
Language Symbiosis through Symbiotic
Reflection

Roel Wuyts, Stéphane Ducasse
{roel.wuyts | ducasse}@iam.unibe.ch

Software Composition Group
Institut für Informatik

Universität Bern, Switzerland

Abstract. Meta-programming is the act of using one system or language
to reason about another one. Reflection describes systems that have ac-
cess to and change a causally connected representation of themselves,
hence leading to self-extensible systems. In reflective languages, only one
language is used, while in meta-programming two languages play a role
(the base language and the meta language). In this paper we introduce
symbiotic reflection, a form of reflection between two languages where
both languages play the base and the meta-language role. New in this
approach is that symbiotic reflection integrates languages from different
paradigms in such a way that they both represent, reason about and act
upon each other. We illustrate symbiotic reflection with SOUL, a logic
programming language in symbiotic reflection with the object-oriented
programming language Smalltalk. We show how SOUL does logic rea-
soning directly on Smalltalk objects, and how to use this to implement
type snooping and second order logic programming.

Keywords. Reflection - Meta Programming - Language Symbiosis - Logic
Programming - Smalltalk

1 Introduction

In todays rapidly evolving world, development environments need to provide
sophisticated tools to inspect, navigate and manipulate software systems. More-
over, developers want design tools that are integrated in their development en-
vironment, and expect functionality to keep the design documentation and the
implementation consistent. Therefore we integrated a logic programming lan-
guage called SOUL, in the Smalltalk development environment, and used it as
a meta-programming language capable of:

– aiding in program understanding: as logic queries are used to interrogate and
match abstract syntax trees (AST) of the software system [20];

– help with forward and reverse engineering: we used the logic programming
language to express and extract design information (software architectures,
design patterns, UML class diagrams and programming conventions) [9, 21].

Using a declarative programming language to reason about other programs
is not new. The well known Lint and its derivatives, for example, use regular ex-
pressions as the reasoning engine over source code [6], abstract syntax trees [16]
or derived source code information [14]. Other approaches use logic programming
languages to do the reasoning [10, 3, 11, 12]. All these approaches are essentially
meta-programming approaches: the reasoning languages reason about the base
languages, making explicit those properties of the base languages they want to
reason about [7]. However, it is not possible to change elements of the base lan-
guage from those declarative languages. This is typically possible in reflective
languages, where the aim is to allow self-extensible systems [17, 13]. Languages
from all paradigms have integrated reflection in some way or another (for exam-
ple, 2-LISP and 3-LISP [17], M-Lisp [13], CLOS [7, 1], Smalltalk [5, 15], Java
and Prolog [2]). Programs in a reflective language have access to a representa-
tion of themselves (introspection), and can even have the ability to change this
(intercession).

In this paper, however, we integrate two languages in such a way that

– both can reason about each other, and
– both can modify each other at runtime.

This we call symbiotic reflection. Note that meta-programming techniques
are not symbiotic reflective because they do not allow the modification of one
another. Reflective languages are, by their own definition, symbiotic reflective
with themselves. However, in this paper we focus on symbiotic reflection be-
tween languages from different paradigms, establishing a tight integration be-
tween both. Throughout the paper we illustrate this with examples from SOUL,
a logic programming language in symbiotic reflection with the object-oriented
programming language Smalltalk. SOUL programs do not only allow one to do
pure logic reasoning, but also to:

1. inspect any kind of Smalltalk object;
2. modify any kind of Smalltalk object ;
3. write logic terms that reason about other logic terms.

The structure of the rest of the paper is as follows. Section 2 analyses a
motivating example to show what can be obtained with symbiotic reflection.
Section 3 then has a look at different kinds of interpreters, including the sym-
biotic reflective interpreter. Section 4 discusses implementation techniques for
implementing a symbiotic reflective interpreter. Section 5 gives another example
of using a reflective interpreter, in this case using SOUL to implement a type
snooper and some second-order logic predicates. Section 6 discusses the related
work. Section 7 concludes the paper.

2 Introductory Example: Scaffolding Support

Before introducing the details of symbiotic reflection, we want to give a concrete
example to show the advantages of symbiotic reflection between a logic and an

2

object-oriented programming language. Therefore we use SOUL, a logic progra-
mming language that is implemented and integrated with the object-oriented
programming language Smalltalk. After we have introduced the example, we
discuss the different kinds of meta-programming and reflection that were used.

2.1 Scaffolding Support

The example shows how to investigate all messages sent to the contents of a
certain variable, and then how to generate methods for all these messages on an-
other class. Hence it implements support for a prototype development approach
(as described by scaffolding patterns [19]) where one starts by implementing a
first class, and can then use this implementation to generate the skeleton imple-
mentation of the class cooperating with the first class.
Sends. First of all we write a simple logic rule sends that relates three argu-
ments: ?c, ?rec and ?sends. It enumerates in the logic list ?sends all the messages
sent to some receiver ?rec in the context of a class ?c. It uses other rules class
and method to state that the variable ?c should be a class and that ?m should
be a method of that class. Then it uses the sendsTo rule (not shown in the
implementation here, as this is only a short example) to enumerate all the sends
to the receiver ?rec in ?sends1:

Rule sends(?c, ?rec, ?sends) if
class(?c),
method(?c, ?m),
sendsTo(?m, ?rec, ?sends).

We then use this rule to query the Smalltalk system. For example, we can
use this rule to find all the messages sent to a variable x in the Smalltalk class
Point2:

Query sends([Point], variable(x), ?s)

However, besides this use of the sends rule that gives a list of all the messages
sent to x, we can also use it to find in the class SOULVariable (the Smalltalk
class implementing variables in SOUL) all the expressions (variables, message
composition, returns. . .) that invoke the methods unifyWith:, and interprete::

Query sends([SOULVariable], ?r, <unifyWith:, interprete:>)

1 Some notes on SOUL syntax:

– the keywords Rule , Fact and Query denote logic rules, facts and queries.

– variables start with a question mark.

– <> is the list notation.

– terms between square brackets are symbiosis terms. They contain Smalltalk-like
expressions that can reference logic variables from the outer scope.

2 Note that Smalltalk includes similar functionality by default. However, with this
predicate it is very easy to indicate a scope for the search, such as in two unrelated
classes or hierarchies.

3

GenerateEmptyMethod. The second rule is called generateEmptyMethod,
and generates a Smalltalk method in class ?c with a given name ?name (and with
an empty implementation). The rule uses an auxiliary predicate methodSource
that relates the name of a method and a string describing a method with that
name (and default arguments, if necessary), that has an empty method body.
Then we use a symbiosis term represented by [] to compile the method ?source
into the class ?c. Symbiosis terms contain Smalltalk-like expressions that can
reference logic variables from the outer scope, as explained in Section 4.3. The
result of the symbiosis term is true or false, depending whether the compilation
succeeds or not:

Rule generateEmptyMethod(?c, ?name) if
emptyMethodSource(?name, ?source),
[(?class compile: ?source) = nil]

The following query creates the method called abs in the class TestNumber :

Query generateEmptyMethod([TestNumber], abs)

Generating the interface. We can then combine our two rules to generate
methods for the Smalltalk class TestNumber for all the messages that are sent
to the variable x in class Point :

Query sends([Point], variable(x), ?xSends),
forall(member(?xSend, ?Sends),

generateEmptyMethod([TestNumber], ?xSend))

2.2 Example Analysis

This example first of all shows the benefits of using a logic programming language
as a meta-programming language to reason about a base language:

– logic programming languages have implicit pattern matching capabilities
that make them useful when walking an AST to find certain nodes;

– multi-way: clauses in logic programming languages describe relations be-
tween their arguments. These relations can be used in different ways, de-
pending on the arguments passed.

– powerful: it is Turing complete. We used it to express and extract design
information such as design patterns or UML class diagrams from the source
code. For this, the full power of a programming language is needed, and
non-Turing complete languages are generally not sufficient [21].

More importantly, it also demonstrates the different kinds of reasoning and
reflection that are available in SOUL (and that we attribute to symbiotic reflec-
tion, as we see afterwards):

1. Introspection. SOUL terms can reason about their own implementation (as
is shown in the query where we use SOULVariable).

2. Not shown in this example, but later on in Section 5, is the implementation
of second-order logic predicates like findall, forall, one, calls, . . . in SOUL
itself.

4

3. Symbiotic Introspection: we also do logic reasoning directly over Smalltalk
objects, i.e., on the meta-language itself. In the example we use Smalltalk
classes, that are then inspected to get the methods they implement. It is
important to note here that these are the Smalltalk objects themselves that
are used, and not decoupled representations.

4. Symbiotic Intercession: we use the logic programming language to mod-
ify code in the implementation language. Thus, not only can we inspect
Smalltalk objects, we can also change them. For example, the generateEmp-
tyMethod rule adds methods to a class. Because the class that is passed is
the actual Smalltalk class, adding this method immediately updates the base
language.

In symbiotic reflection, the meta-language implements the base language and
the base language can reason about and act on the meta-language. Thus the
languages are at the same time base language and meta-language for each other.

3 (Symbiotic) Reflective Interpreters

In this section we introduce some classic terminology and definitions of meta-
programming and reflection. We then have a look at three different interpreters
and discuss their differences. In the following sections we then discuss the imple-
mentation of a symbiotic interpreter in general, and the particular case of our
example language, SOUL.

3.1 Terminology and Definitions

First of all we want to establish some classic terminology. When implementing
an interpreter, the language implementing the interpreter is the meta-program-
ming language (hereafter called M), and the interpreted language is the base
language (hereafter called B). The meta-programming language interprets the
program that implements the base language. Both the meta-programming lan-
guage and the base language manipulate certain data. The difference between a
non-reflective, a reflective and a symbiotic reflective interpreter lies in the data
they manipulate, as we will show in a moment.

We also first define what is meant by causally connected, and by a reflective
system, since we will use these definitions throughout the rest of the discussion:
Definition: causally connected A computational system is causally con-
nected to its domain if the computational system is linked with its domain in
such way that, if one of the two changes, this leads to an effect on the other [8].
Definition: reflective system A reflective system is a causally connected
meta system that has as base system itself [8].

5

Definition: Reflection. Reflection is the ability of a program to manipulate as
data something representing the state of the program during its own execution.
There are two aspects of such manipulation: introspection and intercession.
Introspection is the ability for a program to observe and therefore reason about
its own state. Intercession is the ability for a program to modify its own exe-
cution state or alter its own interpretation or meaning. Both aspects require a
mechanism for encoding execution state as data; providing such an encoding is
called reification. [1]

3.2 Interpreters

We now give an overview of non-reflective interpreters, classic reflective inter-
preters and symbiotic reflective interpreters, and their differences.

base language

meta language

data

data

base-language data

no explicit representation

Fig. 1. A non-reflective interpreter. The base language can only manipulate base level
information and not meta-level information.

Non reflective interpreter. A non-reflective interpreter is a program writ-
ten in the meta-programming language, that needs to evaluate expressions con-
sisting purely of representations of base-language entities. For example, when
implementing a Pascal interpreter (in a language L that we leave unspecified
here), we will at some point need to implement addition of Pascal numbers.
Thus, we will have an L expression to implement this addition, with arguments
that represent the Pascal Numbers in L. Hence, from the point of view of the
base language (Pascal in the example), there is no interaction with the meta-
programming language as shown in Figure 1.

Reflective interpreter. As shown in Figure 2, a reflective interpreter can
access and manipulate two kinds of data: (1) the base level data and (2) a
causally connected representation of itself, called the self representation [17].
During the interpretation the arguments can stem from both levels (but the
meta-entities have to be part of the data implementing the base-language). So
when interpreting an expression:

6

base language

meta language

data

data

base-language data

causally
connected

self representation

Fig. 2. A Reflective Interpreter. The base language can access and act on its self-
representation

interpret(arg1, arg2 . . . argn)
the arguments arg1, . . . , argn can be two things:

– base language entities treated at the meta-level,
– self-representing meta-entities.

Symbiotic reflective interpreter. A symbiotic reflective interpreter as
shown in Figure 3 is a reflective interpreter that, in addition to being able to
manipulate its self-representation can also manipulate the meta-language. As the
meta-language implements the base language and the base language can reason
about and act on the meta-language, both base language and meta-language can
then act and reason on each other.

For example, the following SOUL expression uses the logic term [Array], the
logic representation of the Smalltalk class Array:

method([Array], ?m)

The interpreter (a Smalltalk program implementing the SOUL interpreta-
tion) manipulates Array (a Smalltalk entity that has nothing to do with SOUL’s
implementation). However, in the following SOUL expression, the interpreter
manipulates ?m, a variable term (a base language entity) and SOULVariable (a
meta-entity from SOUL’s Smalltalk implementation, part of the self-representation):

method([SOULVariable], ?m)

Different meta and base languages. We stress that reflective systems
that are written in the same language are in symbiotic reflection because of
their uniformity. However, distinguishing symbiotic reflection from reflection is
mandatory when different languages are involved where the meta-language can
be modified from the base language. The next section shows how to solve the
problems that arise during the interpretation of the manipulated entities.

7

base language

meta language

data

data

base-language data

self representation

causally
connected

meta-data representation

Fig. 3. A Symbiotic Reflective Interpreter. From the base language it is now possible
to access and manipulate the base language self representation and also the meta-level
representation

4 Implementing Symbiotic Reflection between Two
Languages

In this section we present problems that occur when the interpreter is symbiotic
reflective (i.e., when the base language manipulates its meta-language). Then we
show how the upping/downing schema proposes a uniform solution.

4.1 Problems with Handling Objects from Two Different Worlds

Enabling symbiotic reflection between two languages requires that entities of
both languages can be manipulated in each language. When the two languages
are the same, the task is relatively easy (although not necessarily straightfor-
ward) because all the entities share a common data structure. For example, in
Smalltalk, the reflective method instVarAt: allows one to access the instance
variable of any object because it is defined on the class Object.

In our case the logic programming language is implemented in the object-
oriented programming language, and represents and acts on the object-oriented
one. The logic engine is able to manipulate objects as terms and the terms
are manipulated as objects. Suppose SOUL would not use the upping/downing
schema we present further on, then lots of (implicit or explicit) type checks would
be needed to check every time whether we are using a logic term or an object.
A concrete example. In the logic programming language we have a unify
predicate to unify two arguments. This predicate can be called in different ways:
with (representations of) objects and with terms:

Query unify(?c, foo(bar)).

8

Query unify(?c, [Array]).

The SOUL interpreter somewhere has to implement the unification of two
arguments. However, as we see in the logic code, the arguments can be instances
of the classes implementing logic terms (like ?c or foo(bar)) as well as objects (like
Array), that have nothing to do with the implementation of the logic interpreter.

The problem is that the interfaces of these classes differs, since they concep-
tually belong to two different worlds. The classes implementing logic interpreta-
tion typically know how to be unified and interpreted logically, whereas regular
objects do not. Possible solutions are:

– All methods in the logic interpretation that come in contact with logic terms
need to do ad-hoc checks and conversion in the case of a dynamically typed
object-oriented programming language or provide several methods with dif-
ferent types in the case of a statically typed object-oriented programming
language, or

– implement everything on the root class, so that objects can be used as terms
and vice versa. Or,

– convert systematically, but only when needed. Only the ’touching points’
between both worlds need to make sure that objects are treated as objects
and terms as terms. All the other points are not concerned with the fact
that both can exist.

Neither of the first two solutions is satisfactory. In the first one lots of different
type-checks have to be done throughout the implementation of the logic inter-
preter. For the second solution we effectively have to change the implementation
language and implement the complete behaviour for the logic interpretation on
the root class. The third option is the one we prefer, and that will be discussed
in next section.

We would like to stress that such a transfer of entities between languages has
to be addressed in any language where data structures from the meta-program-
ming language can be manipulated from the base language. At the worse the
programmer has to be aware that he is manipulating implementation entities and
has to interpret or wrap them himself. This is for example the case in 2-LISP [17],
a LISP derivative for studying meta-circularity (as we discuss in Section 6).

4.2 The Upping/Downing Schema

A unified and integrated solution is possible. In our case, it enables objects to
be manipulated as logic terms and terms as objects. To explain such a schema
we have to introduce two levels: the up level and the down level.

Symbiotic reflection implies that both languages play the base and the meta-
language role. The role depends on the view we have on the overall system. From
a user point of view, the logic programming language representing and manip-
ulating the object-oriented language acts as a meta language while the object

9

Down level
(OOP)

Up level
(LP)

logic term

upping
downing

object

Fig. 4. The up-down schema allows the uniform manipulation of entities. In our con-
text, it lets Smalltalk objects be directly accessed in SOUL.

language acts as a base language. However, the logic programming language is
implemented in the object-oriented language. So from the interpreter point of
view, the object-oriented language is the meta-language and the logic program-
ming is the base language. Hence, it is not clear what we mean by ‘meta level’
or ‘base level’ in this context, so from now on we consider two conceptual levels
as shown in Figure 4.
1. the down level is the level of the implementation language of the logic pro-

gramming language (the object-oriented programming language);
2. the up level is the logic programming language level being evaluated by the

down (object-oriented programming language) level.

Enabling the access and manipulation of down level structures (the object-
oriented programming language) from the up level (the logic programming lan-
guage) in a unified way is possible by following the simple transfer rule: upping a
down entity should return an upped entity and downing an upped entity should
return a down entity. Applied to SOUL, this rule reads: upping an object should
return a term and downing a term should return an object.

This is expressed by the following rules where T represents the set of terms
and O the sets of objects, wrappedAsTerm is a function that wraps its argu-
ment into a term and implementationOf is a function that returns the data
representing its argument.
– (1) x ∈ T, x /∈ O, up(down(x)) = x

For example in SOUL, up(implementation(?c)) =?c
– (2) x /∈ T, x ∈ O, up(x) = wrappedAsTerm(x)

For example in SOUL, up(1) = [1] = wrappedAsTerm(1), where [1] is the
logic representation of a term wrapping the integer 1.

– (3) x ∈ T, x /∈ O, down(x) = implementationOf(x)
For example in SOUL, down(?c) = aV ariableTerm, the smalltalk object
representing the logic variable ?c.

– (4) x /∈ T, x ∈ O, down(up(x)) = x
For example in SOUL, down([1]) = 1, where [1] is the logic representation
of a term wrapping the integer 1.

The transfer rules (1) and (4) are limiting the meta-level to one level. The
transfer rule (2) expresses that upping a plain object results in a wrapper that
encapsulates the object and acts as a term (and so can be logically unified and
interpreted). The transfer rule (3) expresses that downing an ex-nihilo logic term
to return the object implementing that term.

10

4.3 Using the Upping/Downing Schema

Symbiotic reflection requires base symbiotic operators that make the bridge be-
tween the base level and the meta-level. These operators are the ones that use
the upping and downing to make sure that elements are used ’on the right level’
(depending on the operator). They do no need to typecheck, because the up and
down schema makes sure that they are at the level that is expected, and wraps
or unwraps as needed.

SOUL has one operator that bridges languages, the symbiosis term, that
relates objects to terms. The symbiosis term allows one to use Smalltalk code
(parametrized by logic variables) during logic interpretation. It is a logic term
that wraps Smalltalk objects and message sends in the logic programming lan-
guage3. From the users point of view the symbiosis term takes the form of writing
a regular Smalltalk expression that can contain logic variables as receivers of
messages, enclosed within square brackets as shown by the examples in Section 2.
Conceptually, however, this is not Smalltalk code but a representation of it.
However, choosing a familiar representation makes it easy to adopt. For example,
LISP uses dotted pairs (lists) to represent structures which, albeit not necessary
for enabling the meta-facilities [13], certainly made it easy to adopt them.

When we evaluate a SOUL logic expression to unify terms, we are clearly
reasoning at the logic level (the up level). Hence we conceptually think in terms
of clauses, terms, unification and backtracking, and expect the result to be a logic
result (a logic failure or success, with an updated logic environment containing
updated logic bindings). However, the SOUL interpreter is a program in the
object-oriented programming language (the down level), so somehow this has to
be mapped, taking care that everything is interpreted at the down level.

Generally speaking, to interpret an up-level expression:

– we down all elements taking part in that expression;
– we interpret the expression at the down level, and obtain a certain down-level

result;
– we up this result.

This solution is analogous to the solutions in for example Lisp, where there
is typically a ”reduction rule” for quoted pairs, which recursively propagates
quotations inwards to the atoms [13]. This recursion is not shown here, but
happens also. We now want to give two examples to illustrate this.

3 For Prolog users: despite its name, a symbiosis term can be used both as term and
as predication.

11

Example 1. Let us look at the interpretation of the following SOUL expression
(See Section 2):

sends([SOULVariable], variable(name), ?xSends)
This expression consists of a compound term, with three arguments. The Small-
talk object representing this logic expression is a parse tree that consists of an
instance of class SOULCompoundTerm, that holds on to its arguments. Inter-
preting the logic expression in a logic context comes down to sending interprete:
to the parse tree at the Smalltalk level (taking the logic context as an argument).
Therefore we down the parse tree and the logic context before sending it inter-
prete:. The result of sending interprete: is a Smalltalk object, and an updated
logic context (containing bindings for the variable ?xSends). This is then upped
to get the logic result.
Example 2. Because of the explicit upping and downing, the evaluation works
as well for (representations of) objects as for terms. Let’s evaluate the following
expression:

[(?class compile: ?source) = nil]
in a logic environment θ where variable ?class is bound to [TestNumber], and
variable ?source is bound to ‘abs “empty method source”‘. This is illustrated in
Figure 5.

<[(?class compile: ?source) ~= nil]>,
ϑ = { ?class->[TestNumber],
 ?source->[‘abs “empty method source”’]}

[:env | ((env at: 1) compile: (env at: 2)) ~= nil]
value: (Array with: TestNumber
 with: ‘abs “empty method source”’

true

[true]
Up level

Down level

1

2
3

4

Fig. 5. Interpreting a symbiosis term in a logic environment θ

To interpret the expression, we need to down the expression itself as well
as the bindings for the variables in the environment (step 2 in the figure). In
this example, the bindings are two Smalltalk objects wrapped as terms (the
class TestNumber and a string). Downing these terms will yield the objects they
contain. The result is the following Smalltalk expression that can be evaluated
by the SOUL interpreter:

(TestNumber compile: ‘abs “empty method source”‘) = nil
This piece of Smalltalk code compiles a method in the class TestNumber.

The source describes a method called abs, that contains no statements, but just
some comment. The result of sending compile: is nil if something went wrong,
or the compiled method if it was successful. So, the final result of the complete
expression is the Smalltalk object true if the method was successfully compiled,
and false otherwise (step 3 in the figure). This result is upped to get a result in
SOUL: a logic success or a logic failure (step 4).

12

5 More Examples

In this section we show two examples where SOUL’s symbiotic reflection is put to
good use: we implement a type snooper and second-order logic predicates. These
examples illustrate the transparency in which objects and terms are manipulated
in SOUL, due to the symbiotic reflection. In the logic code they behave as logic
terms, while inside symbiosis terms, they are automatically treated as objects.

5.1 Type Snooper

SOUL comes with a whole framework of rules to reason about the structure
of object-oriented (Smalltalk) programs. One of these rules implement a type-
inferencer, that not only takes ’classic’ type rules into account but also program-
ming conventions and design patterns [21]. To make the advantages of symbiotic
reflection clear, we extend the existing type inferencer with a type snooper. Type
snooping uses the fact that in the Smalltalk development environment objects
exist from the class we want to find types of instance variables for. Hence, by
looking at these instance variables we find collections of existing types. This is
exploited in the rule objectsForVar rule shown below. In line 2, the instance
variables of the class bound to the variable ?class are extracted. Then, using the
instVarIndex predicate in line 3, the index of the variable in the class is bound
to ?index.4 Lines 4, 5 and 6 then find all the instances of the class for which we
want to type the instance variable. From each of these instances we retrieve the
object.

Rule objectsForVar(?class, ?var, ?objects) if
1 class(?class),
2 instVar(?class, ?var),
3 instVarIndex(?class, ?var, ?index),
4 generate(?objects,
5 [(?class allInstances collect: [:c |
6 c instVarAt: ?index]) asStream]).

The second rule, snoopTypeInstVar, implements the actual type snooping.
For an instance variable ?var of a class ?class it gives the list of types in the
variable types. It therefore enumerates all the instances of class using the em-
phobjectsForVar predicate and then, for each of these objects, gets its class (in
the symbiosis term on line 9). All these results are enumerated in a list ?allTypes,
from which the doubles are removed to get types.

Rule snoopTypeInstVar(?class, ?var, ?types) if
7 findall(?cl,
8 and(objectsForVar(?class, ?var, ?o),
9 equals(?cl, [?o class])),

4 This is part of the Smalltalk meta-facilities. Objects store their instance variables in
slots, that can be accessed with the index. This is done on line 6 where the index is
used again.

13

10 ?allTypes),
11 noDups(?allTypes, ?types).

Important in this example is to see the integration between the logic terms
and objects. For example, line 3 is a call to a logic predicate that includes three
logic variables (that are passed around and unified throughout this rule). But in
the symbiosis term on lines 5 and 6 the values bound to the logic variables are
treated as objects, without the need to check or convert them. This is possible
because SOUL is symbiotic reflective. Without symbiotic reflection integrating
such a support is not possible, because we cannot reason about the elements of
our base language. In symbiotic reflection we have the objects, and can use them
as such, so that we can directly reuse them during the logic interpretation.

5.2 Second-order logic

As a second example we show how to write second-order logic predicates in
SOUL. Therefore we reify two concepts that are important during the evaluation
of a logic term: the logic repository and the logic environment that holds on to
the bindings. We chose to make these two concepts available in the symbiosis
term, under the form of two hardcoded variables: ?repository and ?bindings. The
?repository variable references the logic repository used when interpreting the
symbiosis term. The ?bindings variable holds the current set of bindings. This
simple addition makes it possible for a symbiosis term to inspect and influence
its interpretation. As an example we give the implementation of two widely used
logic predicates: assert and one. The assert predicate adds a new logic clause
to the current repository. The one predicate finds only the first solution of the
term passed as argument. If this first solution is found, the bindings are updated
and the predicate succeeds, otherwise the predicate fails:

Rule assert(?clause) if
[?repository addClause: ?clause].

Rule one(?term) if
[| solution |

solution := (?term resultStream: ?repository) next.
solution isNil

ifTrue: [false]
ifFalse: [?bindings addAll: solution. true]

].

We can then use the assert predicate to assert facts in the repository, as is
done in the following query:

Query assert(foo(bar))

We want to draw the attention on an important conceptual difference between
the examples here when compared with the examples in the type snooper. The
symbiosis terms in these examples get passed self-representations, because they

14

manipulate objects that implement the logic clauses and terms. This is clear in
the query using assert: the argument is a logic term. In the type snooper, the
symbiosis terms were passed ’regular’ objects. Because of the symbiotic reflection
(and the up/down mechanism used) this does not show up in the symbiosis terms,
and no checks are needed.

6 Related Work

One can hardly talk about reflection without discussing the work that has been
done in the LISP community, even though the goals of our approach are quite
different. One of the very nice features of LISP is that it has a built-in mecha-
nism to represent its language constructs: the quotation form. This provides a
core meta-reasoning structure, since parts of programs can be assembled, passed
around and then evaluated at will. This basic LISP functionality was extended
in the well-known work on procedural reflection by Smith [17]. In this work,
2 languages were introduced. The first, 2-LISP, deals with quotation issues by
providing two explicit user primitives to switch between representations of struc-
tures and the structures themselves. These primitives were called up and down,
a terminology that was used in much of the following work, including this paper.
We want to stress two problems with 2-LISP, which is that up and down needed
to be called by the user whenever necessary and that down is not the inverse
of up. 2-LISP was actually meant as the basis for the better-known 3-LISP, a
reflective language with an implementation based on reflective towers.

In [13] it is written that the quotation form in the original definition of LISP
is essentially flawed, and hence that the apply in LISP and descendants like 2-
LISP and 3-LISP or even Scheme crosses levels. Moreover, it is this level-crossing
that allows much of the meta-circular capabilities of LISP. This was remarked
by Muller, and was addressed in his LISP flavour, called M-LISP. In M-LISP,
the apply function does not cross levels, which removes a lot of the awkward
constructions needed in 2-LISP. Moreover, up is represented by a relation R, and
down by R−1, where down is the inverse of up. Reification has to be introduced
at the cost of equational reasoning (which is done with extended M-LISP), and,
even extended M-Lisp corresponds to only a restricted 3-Lisp.

The approach taken by symbiotic reflection is comparable with the approach
taken by M-Lisp, except that the goals are quite different. The goal of M-Lisp
(as with the other research in reflection in general) is to study ’self-extensibility’
of programs, and provide formal language semantics to that end. The approach
in our paper is driven from a software engineering problem, to study a symbio-
sis between two languages from different paradigms. In our case, up and down
therefore not only bridge levels, but also language paradigm boundaries. As in
M-Lisp (and contrary to 2-Lisp and 3-Lisp), up and down in SOUL are sym-
metric and are called automatically. Note however that in SOUL this relation is
still kept fairly simple (only objects are reified as logic terms), however this is
not necessarily the case. One of the important parts of future work is to have a

15

tighter integration between languages by reifying more object-oriented concepts,
which will lead to a more difficult relation.

Besides relating our work to LISP, we also need to mention the work done
around Agora [18, 4], a prototype-based language that is symbiotic reflective with
its implementation language. The implementation uses an up/down mechanism
to get reflection with its object-oriented implementation language (Smalltalk,
C++ or Java). However, this paper looks at symbiotic reflection between two
languages from different paradigms.

7 Conclusion

In this paper we presented symbiotic reflection as a way to integrate one lan-
guage (the up-level language) with another language (the down-level language)
it reasons about and is implemented in. The benefit is that the up-level language
can not only reason about its self-representation (as is the case with classic re-
flection), but on the complete down-level language. As a result, both languages
are meta-language for each other. Symbiotic reflection was illustrated concretely
with the object-oriented programming language SOUL, a logic programming
language in symbiotic reflection with Smalltalk:

– Introspection SOUL terms can do logic reasoning about other SOUL terms;
– Reflection SOUL predicates can change data of the SOUL interpreter from

within SOUL;
– Symbiotic Introspection: SOUL can do logic reasoning about any Smalltalk

object;
– Symbiotic Intercession: SOUL can do logic reasoning to modify code in the

implementation language, impacting the implementation language.

To show the benefits of symbiotic reflection we expressed three non-trivial
concrete examples in SOUL. We wrote logic predicates implementing second-
order logic operations in SOUL, provided prototype development support and
integrated lightweight type-inference with type snooping.

8 Acknowledgments

Thanks to everybody who contributed to this paper: the ex-colleagues from the
Programming Technology Lab (where Roel Wuyts did his phd of which this
paper is a part) and the people of the Software Composition Group. We want
to thank Jacques Malenfant for his comments on an early draft of this paper.

References

1. D. Bobrow, R. Gabriel, and J. White. Clos in context – the shape of the design.
In Object-Oriented Programming : the CLOS perspective, pages 29–61. MIT Press,
1993.

16

2. K. A. Bowen and R. A. Kowalski. Amalgamating language and metalanguage in
logic programming. In K. L. Clark and S.-A. Tarnlund, editors, Logic programming,
volume 16 of APIC studies in data processing, pages 153–172. Academic Press,
1982.

3. R. F. Crew. Astlog: A language for examining abstract syntax trees. In Proceedings
of the USENIX Conference on Domain-Specific Languages, 1997.

4. W. De Meuter. Agora: The story of the simplest mop in the world - or - the scheme
of object-orientation. In Prototype-based Programming. Springer Verlag, 1998.

5. B. Foote and R. E. Johnson. Reflective facilities in smalltalk-80. In OOPSLA 89
Proceedings, pages 327–335, 1989.

6. S. C. Johnson. Lint, a C program checker. Computing Science TR, 65, Dec. 1977.
7. G. Kiczales, J. des Rivières, and D. G. Bobrow. The Art of the Metaobject Protocol.

MIT Press, 1991.
8. P. Maes. Computational Reflection. PhD thesis, Dept. of Computer Science, AI-

Lab, Vrije Universiteit Brussel, Belgium, 1987.
9. K. Mens, R. Wuyts, and T. D’Hondt. Declaratively codifying software architectures

using virtual software classifications. In Proceedings of TOOLS-Europe 99, pages
33–45, June 1999.

10. S. Meyers, C. K. Duby, and S. P. Reiss. Constraining the structure and style of
object-oriented programs. Technical Report CS-93-12, Department of Computer
Science, Brown University, Box 1910, Providence, RI 02912, Apr. 1993.

11. N. H. Minsky. Law-governed regularities in object systems; part 1: An abstract
model. Theory and Practice of Object Systems (TAPOS), 2(1), 1996.

12. N. H. Minsky and P. P. Pal. Law-governed regularities in object systems, part 2:
A concrete implementation. Theory and Practice of Object Systems, 3(2):87–101,
1997.

13. R. Muller. M-LISP: A representation-independent dialect of LISP with reduction
semantics. ACM Transactions on Programming Languages and Systems, 14(4):589–
616, Oct. 1992.

14. G. C. Murphy. Lightweight Structural Summarization as an Aid to Software Evo-
lution. PhD thesis, University of Washington, 1996.

15. F. Rivard. Reflective Facilities in Smalltalk. Revue Informatik/Informatique, revue
des organisations suisses d’informatique. Numéro 1 Février 1996, February 1996.

16. D. Roberts, J. Brant, R. Johnson, and B. Opdyke. An automated refactoring tool.
In Proceedings of ICAST ’96, Chicago, IL, April 1996.

17. B. C. Smith. Reflection and semantics in LISP. In P. C. K. Kennedy, editor,
Principles of Programming Languages. Conference Record of 11th Annual ACM
Symposium, Salt Lake City, UT, Jan. 15-18, 1984, number ISBN 0-89791-125-3,
pages 23–35, New York, 1984. ACM.

18. P. Steyaert and W. D. Meuter. A marriage of class- and object-based inheritance
without unwanted children. In W. Olthoff, editor, Proceedings ECOOP’95, LNCS
952, pages 127–144, Aarhus, Denmark, Aug. 1995. Springer-Verlag.

19. J. Vlissides, J. Coplien, and J. Kerth, editors. Pattern Languages of Program
Design 2. Addison-Wesley Publishing Company, 1996.

20. R. Wuyts. Declarative reasoning about the structure of object-oriented systems. In
Proceedings TOOLS USA’98, IEEE Computer Society Press, pages 112–124, 1998.

21. R. Wuyts. A Logic Meta-Programming Approach to Support the Co-Evolution of
Object-Oriented Design and Implementation. PhD thesis, Vrije Universiteit Brus-
sel, January 2001.

17

