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Abstract
Software for embedded systems must cope with a variety of stringent constraints, such as real-time requirements,

small memory footprints, and low power consumption. It is usually implemented using low-level programming
languages, and as a result has not benefitted from component-based software development techniques. This paper
describes a data-centric component model for embedded devices that (i) minimizes the number of concurrent tasks
needed to implement the system, (ii) allows one to verify whether components meet their deadlines by applying
Rate Monotonic Analysis (RMA), and (iii) can generate and verify schedules using Constraint Logic Programming
(CLP). This model forms the foundation for a suite of tools for specifying, composing, verifying and deploying
embedded software components developed in the context of the PECOS project.

1. Introduction

Component-based software development
(CBSD) is quickly becoming a standard ap-
proach to develop mainstream software systems.
Most component models and systems, such as
(D)COM, .Net, JavaBeans [ 17] and CCM [ 24],
however, target the development of mainstream
desktop applications with abundant hardware
resources. None of these existing models explic-
itly addresses the constraints imposed by small
embedded devices. Although CBSD would bring
numerous advantages to the embedded systems
world, such as shorter development times, and
the ability to secure investments through reuse of
existing components, in practice, standard com-
ponent models are too heavyweight to be applied
to embedded systems development.

In this paper we outline an approach to CBSD
for embedded systems developed in the context
of the European IST project PECOS2. PECOS en-
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ables CBSD for small embedded systems by pro-
viding an environment that supports the specifi-
cation, composition, configuration checking, and
deployment of embedded systems built from soft-
ware components. The PECOS approach was ap-
plied in the context of field devices, small embed-
ded devices developed by the prime contractor
of the project, ABB. The central element of the
approach is a data-centric component model that
makes it possible to check non-functional require-
ments of component compositions.

The PECOS component model is unusual in
that PECOS components have very simple inter-
faces consisting solely of data ports. Components
are either active, event or passive, and interaction
occurs only where data ports are connected. This
design choice makes it particularly easy to reason
about synchronization and timing aspects of com-
ponents. First of all, it enables timing analysis
of component compositions using rate monotonic
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Figure 1. Pneumatic positioner (TZID) field de-
vice.

analysis, a technique for verifying that a set of
tasks can meet their deadlines. Second, it enables
schedule verification of component compositions
using a constraint logic programming approach.

The next section describes the context of field
devices, their specific constraints and the solu-
tions proposed by the PECOS project. Then Sec-
tion 3 presents the PECOS component model.
Sections 4 and 5 then address the issues of the
timing verification and schedule verification of
compositions. Section 6 discusses the model and
some related work. We conclude with a few re-
marks on the current status of this work.

2. Field Devices: Context and Challenges

Rather than attempt to develop a CBSD ap-
proach for the embedded systems domain in gen-
eral, the PECOS project focussed on the specific
challenges and demands of field devices. In this
section we introduce field devices, consider the
problems they pose for CBSD, and outline how
PECOS tackled these problems.

2.1. Field Devices
Field devices are small reactive, embedded sys-

tems that make use of sensors to continuously
gather data, such as temperature, pressure or rate
of flow. An example of a typical field device is the
TZID pneumatic positioner (Figure 1), used to
control pneumatic actuators attached to valves.
Such devices have the following characteristics:

• The available power is only 100 mW for the
whole device. This limits the choice of suit-
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Figure 2. A canonical field device containing
three subcomponents: Device and ModBus (ac-
tive), PA (passive), and FQD (event).

able CPUs. The software architecture is
driven by the fieldbus architecture, a com-
mon standard for linking devices from dif-
ferent manufacturers. Fieldbus stack imple-
mentations from third party suppliers are
used and need to be integrated.

• Field devices use one dedicated processor,
optimized for overall power consumption
with a speed ranging from just a few MHz
to several tens of MHz. The processor typi-
cally has some RAM (around 20 kilobytes),
non-volatile memory and a great deal of I/O
on-chip, but often lacks extra functionality
like a floating point unit.

• Parts of the software impose real-time con-
straints, such as the control loop, and the
execution of fieldbus function blocks.

• The device has a static software configura-
tion, i.e., the firmware is updated or re-
placed as a whole, without dynamic load-
able functionality. There is also no require-
ment for dynamic memory allocation.

• Many field devices are used in safety critical
areas, such as chemical plants and therefore
require costly certification procedures. In
order to minimize the chance of certification
failures, thorough testing is needed.
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2.2. A Canonical Field Device
In order to validate CBSD for embedded sys-

tems, the PECOS project developed both hard-
ware and software for a demonstrator device with
characteristics very similar to the TZID field de-
vice. This device is concerned with setting a valve
at a specific position between open and closed.
Figure 2 shows a component Device containing
three connected subcomponents that collaborate
to set the valve position. A control loop is used
to continuously monitor and adjust the valve.

ModBus is an active component i.e., with its
own thread of control. It is responsible for inter-
facing to a piece of hardware called the frequency
converter, which determines the speed of the mo-
tor. The frequency to which the motor should be
set is obtained from the PA component. ModBus
outputs this value to the frequency converter us-
ing the ModBus protocol (hence its name). The
ModBus component requires its own thread, be-
cause it blocks waiting for a (slow) response from
the frequency converter.

FQD (Fast Quadrature Decoder [ 18]) is an
event component that is triggered when an event
is raised from the motor. This component ab-
stracts from a micro-controller module that does
FQD in hardware. It provides the PA with the
velocity and the position of the valve.

PA is a passive component that implements the
control loop to set the valve to a certain position.
It holds the desired position of the valve, reads the
current state of the valve from the FQD compo-
nent, computes the new frequency for the motor
controlling the valve and passes this to the Mod-
Bus component. This repeated adjustment and
monitoring constitutes the control loop.

This example is used throughout the paper to
illustrate the different concepts that are intro-
duced.

2.3. The PECOS Approach
PECOS develops a CBSD approach that ab-

stracts from best practice in field device software
development. It is non-intrusive, and evolution-
ary, rather than radical, and consists in the fol-
lowing elements:

• Component Model : the component model
is the foundation for the tools. It abstracts

from best practice in software design for
field devices, and supports reasoning about
non-functional constraints (timing, schedul-
ing and memory consumption).

• Component Description Language (Coco):
Coco implements the PECOS component
model and is used to specify components
and field devices.

• Code Generation: Coco specifications are
used to generate code skeletons.

• Runtime Environment (RTE): Generated
code targets the RTE, which abstracts from
the real-time operating system used.

• Verification: When components are com-
posed, functional and non-functional as-
pects of the composition can be verified.
Composition rules express constraints over
compositions, such as dependencies be-
tween components. Non-functional checks
include timing analysis, schedule genera-
tion and verification, and checks on memory
consumption.

This paper only presents the component model
and the timing verification. Detailed information
on the other items can be found in [ 7] or on the
PECOS website mentioned before.

3. The PECOS Component Model

The PECOS component model has been de-
signed with the particular requirements of field
devices in mind, and reflects best practice in this
domain. For this reason the model differs sub-
stantially from typical component models, and is
much simpler in many respects.

3.1. Design choices
The following design choices for the PECOS

component model directly reflect best practice in
the field device domain:

• Cyclic behavior : Each component is respon-
sible for a single task which is repeatedly ex-
ecuted. However, the model also supports
aperiodic event or active components.
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Figure 3. Overview of the PECOS Component
Model.

• Fine-grained components: Components en-
capsulate a single task and export a data
interface. They communicate by means of
shared data. The result is a fine-grained
model that makes it possible to minimize
concurrency and check timing constraints.

• Threading : Components may be active, i.e.,
have their own thread of control, event (to
model the capture of an event), or passive.

• Minimize critical sections: Contention for
shared resources must be minimized due to
the high cost of locking data on the plat-
forms used.

• Separate scheduler : Control flow is sepa-
rately specified by a scheduler for composite
components.

3.2. Static Structure
The PECOS field device component model [ 3]

defines a vocabulary of components, ports, con-
nectors, and the rules governing their composi-
tion. The model is illustrated in Figure 3.

A component is a computational element with
a name, a number of property bundles and ports,

and a behavior. There are active components
with their own thread of control, passive com-
ponents without their own thread of control, and
event components, whose behavior is triggered by
a hardware or software event. The behavior of a
component consists of a procedure that reads and
writes data available at its ports, and may pro-
duce effects in the physical world. This behav-
ior is modeled as the entry point labelled exec.
A port represents data which is read or written
by a component, and which may be shared with
other components. Each port is characterized by
its name, its type, a range of possible values, and
a direction (in, out or inout) indicating whether
the component reads, writes, or reads and writes
the data.

A composite component is specified by connect-
ing selected ports of its internal subcomponents
(that can be composites themselves). A connec-
tor describes a data-sharing relationship between
ports. It has a name, a type, and a list of ports
it connects. Only compatible ports may be con-
nected [ 3]. Composite components need to spec-
ify a schedule for executing their subcomponents.

A property is a tagged value. The tag is an
identifier, and the value is typed. A property
bundle is a named group of properties. Property
bundles are used to characterize aspects of com-
ponents, and are used to add meta-information to
the model, such as information regarding timing
or memory usage.

In the example of Figure 2, FQD is an event
component, PA is a passive component and Mod-
Bus is an active component. The composition it-
self (the Device component) is an active compos-
ite component. FQD has out ports actualPosition
and velocity, connected to in ports of PA (the-
ActualPosition and theVelocity). The out port
frequencyToSet of PA is connected to the in port
of the same name on ModBus.

3.3. Execution Model
We now consider the dynamic aspects of the

model, in particular synchronization and schedul-
ing.
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Figure 4. Tree view of the example.

3.3.1. Synchronization
The model imposes a hierarchical structure on

compositions with a single composite component
at the top level. Since this component controls
the whole application, it is always active. The
top-level component can be interpreted as a tree
of simple and composite components, some of
which are active, and others which are not.

The total number of threads in an applica-
tion is the sum of the number of active compo-
nents and the number of event components. Each
passive component is fully under the control of
the (unique) active component that contains it.
The behavior of a component is given by its pre-
defined exec procedure, which can be empty. The
complete behavior of a composite component con-
sists of the generated schedule which executes the
passive components it contains and its own exec
procedure in some given sequence.

The only difficulty is posed by the critical sec-
tions where separate threads read or write shared
data. Contention occurs precisely wherever the
external ports of an active component (whether
simple or composite) are connected to the ports
of any other component. In order to strictly
limit the possible interference between concur-
rent threads, all of the ports belonging to a single
thread, i.e., an active component and all the pas-
sive components it contains, are grouped together
as a single dataspace for that thread. Ports that

are shared between threads are replicated, and ex-
plicitly synchronized by a sync procedure which
locks the shared ports and updates the out-of-
date copies. These sync procedures constitute the
only critical sections in an application.

A composite component therefore not only
schedules the exec procedures of its passive sub-
components and its own exec procedure, but also
the sync procedures of its active and event sub-
components.

This is illustrated in Figure 4. PA is passive
and thus uses the dataspace provided by Device.
The FQD and ModBus components have their own
dataspace, used by their exec procedure. Their
sync procedure has access to both dataspaces so
that they can be synchronized. Note that any
passive subcomponents of FQD would use the
dataspace of FQD. Any passive subcomponents
of PA would use the dataspace provided by De-
vice.

The synchronization semantics of the PECOS

component model has been formalized [ 19] using
Petri nets [ 20].

3.3.2. Scheduling
We can now summarize scheduling as follows:

• A composite component must provide a
schedule for its direct subcomponents, i.e.,
which specifies when to run its own exec
procedure, the exec procedures of its passive
subcomponents and the sync procedures of
its active and event subcomponents.

• Each active and event component executes
its own exec procedure and that of any sub-
components in a single thread of control.

• Passive components are scheduled by their
parents.

• Synchronization procedures for active and
event components are scheduled by their
parents.

Figure 5 illustrates a sample run of a field de-
vice over a period of 120 milliseconds. Since the
period of the device is 60 ms the figure shows two
periods in the runtime of the device. Because
there are two active components and one event
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Figure 5. Possible Execution trace for the exam-
ple.

component in the example, there are three con-
current threads: one for the Device component
(Task 1), one for the ModBus component (Task
2), and one for the FQD component (Task 3). As-
sume that the priority of task 1 is higher than the
priority for task 2, which is higher than the pri-
ority of task 3.

In the first period of task 2, the sync procedure
of the ModBus is executed, followed by the exec
procedure for the passive PA component and the
sync procedure for the FQD component. When
they are finished executing, the lower priority
task 3 executes the exec procedure of the ModBus
component. Since there is no event that triggers
the exec procedure for the FQD component, noth-
ing happens in task 3. In the second period of the
device more or less the same happens except that
an event triggers the exec procedure of the FQD
component. That interrupts the behavior in task
2, since it has a higher priority. When it is fin-
ished, task 2 resumes, followed by task 3.

3.4. Checking Non-Functional Require-
ments

One of the key challenges for the PECOS com-
ponent model was to support timing analysis
to verify whether a component composition is
schedulable and can meet its deadlines. Two pos-
sibilities exist to do this. Either the internal be-
havior of components can be modeled (for exam-
ple using CSP [ 12] or Petri nets [ 20]) or the
components can be instrumented at runtime to
obtain execution times. The latter approach was
chosen, since it was well-understood and corre-

sponded to best practice.
The input for tools checking non-functional re-

quirements is always a concrete component com-
position where the property bundles of compo-
nents contain runtime information. This runtime
information consists of the worst-case execution
times of components, and optionally the maxi-
mum blocking times for active or event compo-
nents.

Two complementary checks are performed us-
ing this information: rate monotonic analysis
(RMA) and schedule verification. The RMA ver-
ification ensures that the overal component com-
position has time enough to run. Schedule verifi-
cation ensures that within a task, activities can be
scheduled sequentially. Both checks are comple-
mentary, since the RMA verification works on the
level of the complete device, but can by itself not
ensure that the schedule for a task is feasible. The
schedule verification can ensure that the schedule
for a task is feasible, but not that there is enough
time to run all the activities (taking other tasks
and task-switching overhead into account).

The next two sections explain the two comple-
mentary checks in detail and applies them to the
example field device.

4. Timing Verification

Given a component composition, rate mono-
tonic analysis (RMA) is used to check whether
all the components involved in the composition
meet their deadlines. This section briefly intro-
duces RMA, and then shows the mapping from
the component model to RMA and how this is
used in practice.

4.1. Rate Monotonic Analysis
Rate monotonic analysis (RMA) [ 23] consists

of a number of simple, practical techniques to
generate or verify schedules for a set of real-time
tasks. RMA algorithms assign a fixed priority
to each task and assign higher priorities to tasks
with shorter periods. It then provides different
Theorems to check whether tasks can meet their
deadlines depending on whether the tasks are (i)
periodic and independent, (ii) mixed periodic and
aperiodic, or (iii) interacting [ 23]. For PECOS in-
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(1) each resource has a ceiling priority defined
as the highest priority of all the potential tasks
that use the resource. (2) A task gets the lock
on a resource if this resource is not locked. The
task then inherits the resource’s ceiling priority
plus one. It can then proceed with the execu-
tion of the critical section. If the lock could not
be acquired, the task is blocked up to the point
where the blocking task unlocks the resource and
retrieves its assigned priority.

Figure 6. Rules employed by the highest-locker
protocol.

teracting tasks are needed, because of the sync
procedures of active and event components.

The difficulty with interaction is that high pri-
ority tasks should be minimally delayed by lower
priority tasks when both are contending for the
same resources. But when there are different
tasks with different priorities that can freely lock
resources, the periods where tasks of a higher pri-
ority are blocked by tasks of a lower priority be-
come unpredictable. This situation is called un-
bounded priority inversion. Since the blocking
times become unpredictable, no timing verifica-
tions can be done.

Therefore RMA assumes that the implementa-
tion uses real-time synchronization protocols that
have two important properties: freedom from mu-
tual deadlock, and bounded priority inversion,
where at most one lower priority task can block a
higher priority task. Examples of such protocols
are the priority ceiling protocol or the highest-
locker protocol (shown in Figure 6).

When such real-time synchronization protocols
are used, a theorem known as RMA theorem 4
(see Figure 1) can be used to check whether a set
of interacting tasks meets its deadlines. Note that
the other RMA theorems (one to three) either as-
sume non-interacting tasks or only provide crude
approximations.

A set of n periodic tasks using an appropri-
ate real-time synchronization protocol will always
meet its deadlines, for all task phasings, iff

∀i, 1 ≤ i ≤ n,

min(k,l)inRi

i−1∑
j=1

Cj

⌈
lTk

Tj

⌉
+ Ci + Bi ≤ lTk

where Ci, Ti, and Bi are the worst-case execution
time, period and blocking time for a task i, and

Ri =
{

(k, l)|1 ≤ k ≤ i, l = 1, ...,
⌊

Ti

Tk

⌋}
Table 1
RMA Theorem 4

4.2. RMA based Timing Analysis
To use RMA to verify a component composi-

tion a mapping is needed from components to
RMA tasks. The example used is the same as de-
scribed in Section 2.1 and used in the rest of the
paper, but extended with runtime figures. This
is shown in Figure 7. It is the input used for
both the RMA analysis and the schedule analysis
discussed in Section 5.

Mapping component behavior to tasks.

With a passive component P, a (periodic) task
is associated that has a worst-case execution time,
period and deadline as defined by Ps timing prop-
erty bundle. With an active or event component
A, two tasks are associated: a task Tsync for the
sync procedure and a task Texec for the exec pro-
cedure. The worst-case execution time, period
and deadline of Tsync and Texec are given by the
sync and exec part of the timing bundle of A.

Note that RMA only allows tasks that are pe-
riodic, an inherent difficulty when applying RMA
in a context where aperiodic tasks exist. To solve
this problem lots of research is done in mapping
aperiodic behavior to periodic tasks [ 23, 15].
Proposed solutions differ in desired response time,
overal optimality of the scheduling, the ability to
recuperate slack time left by non-utilized aperi-
odic tasks, and run-time overhead of the decision
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Device
  Synchronisation:
    wcet: 0
  Execution:
    wcet: 0, period:60, priority:2
    order: FQD, 
              ProcessApplication,
              ModBus

FQD
 Synchronisation:
    wcet: 10
  Execution:
    wcet:15, period:30,
     priority:3

actualPosition

velocity
PA
 Execution:
    wcet: 5

theActualPosition

theVelocity

frequencyToSet

ModBus
 Synchronisation:
    wcet: 5, blocking:5
  Execution:
    wcet:20, period:500,
    priority:1

frequencyToSet

Figure 7. The example from Figure 2 extended
with the runtime information for the components.
All numbers indicate milliseconds, wcet stands for
worst-case execution time.

algorithm. One class of solutions are sporadic
servers, that have as advantage that they have a
straight-forward implementation with very little
runtime overhead. A sporadic server is equivalent
to a regular periodic task from a theoretical point
of view and thus fully compatible with RMA al-
gorithm. In the example there is one aperiodic
component, ModBus, of low priority that we map
to a sporadic server task with a long deadline of
500 (taskT5).

Assigning Priorities to tasks.

Then priorities need to be assigned. RMA spec-
ifies that the shorter the period (worst-case ex-
ecution time) of a task, the higher its priority.
For tasks with the same period, arbitrary priori-
ties are chosen so that the tasks can be ordered
according their priority. So when mapping the
model to RMA the timing bundles are processed
to make sure that these conditions hold. In the
example all the priorities are given, so no priori-
ties have to be chosen.

Deriving blocking times.

All tasks need blocking times. Tasks associated
with passive components always have a blocking
time of 0. But tasks for active or event compo-
nents can indicate the time they need to lock the
data space during synchronization or execution.
When those blocking times are not given, worst-
case blocking times are derived using the priori-
ties and worst-case execution times. To explain
how blocking times are extracted, assume the fol-
lowing setup: A is a composite active or event
component that has n subcomponents. The sync
procedure of A is called Async. The exec proce-
dure is called Aexec. Every subcomponent has
procedures that are scheduled by A. Call these
procedures S1 to Sm, where m ≥ n (since some
of the subcomponents can be composite compo-
nents). Now call S the set consisting of Async and
S1 to Sm. The datastore can thus be accessed si-
multaneously by Aexec and at most one element
of S. To see which blocking can occur, S is split
in two subsets: L is the subset of S where the
elements have a priority that is lower than the
priority of Aexec; H is the subset of elements that
have a higher priority. With this division made,
worst-case blocking times can be given for those
elements that do not explicity provide values:

• Elements in L are the ones that can block
Aexec. The worst-case blocking time of each
element in L that does not specify an ex-
plicit value is either the blocking time of
exec (when it is given) or the execution time
of exec.

• Elements in H are the ones that can be
blocked by Aexec. The worst-case blocking
time of Aexec is the maximum of the worst-
case execution times and explicit blocking
times of the elements in H.

In the example, the blocking time for PA.exec
is 0 since it is a passive component. ModBus.exec
has the lowest priority in the example, so its
blocking time is also 0. For the FQD component,
no blocking times are specified. The worst-case
blocking time for the FQD.exec is 10 (the worst-
case execution time of the FQD.sync), and is 0 for
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Behavior wcet period blocking
FQD.exec C1 = 15 T1 = 30 B1 = 10
FQD.sync C2 = 10 T2 = 60 B2 = 0
PA.exec C3 = 10 T3 = 60 B3 = 0
ModBus.sync C4 = 5 T4 = 60 B4 = 5
ModBus.exec C5 = 20 T5 = 500 B5 = 0

Table 2
The result of mapping the component example to
input for doing a RMA analysis

FQD.sync. Then the tasks are ordered from high-
est to lowest priority, resulting in Table 2. This
table is the actual input for the RMA analysis.

Applying the theorem.

Theorem 4 can now be applied on the tasks
obtained from the component model, since every
tasks has a worst-case execution time, period and
blocking time. The result of the analysis indi-
cates whether the component composition given
can meet its overall deadlines.

In the example the input for theorem is given
by Table 2. The results of fitting the numbers
from the table in the theorem are not shown here,
but the result is that the equation holds. This
assures us that globally there is enough time to
run this component composition.

5. Schedule Generation and Verification

RMA assumes a set of tasks that run concur-
rently. However, as explained in Section 3.3.2,
not all tasks run concurrently and hence check-
ing the global timing properties is not enough.
The model associates a thread with each ac-
tive and event component, in which each exec
and sync procedure has to be run (depending on
the nesting of the components), and in what or-
der (through the schedules specified in compos-
ite components). But whether it is possible to
fit these behaviors sequentially in each thread
needs to be checked by a schedule verification
tool. Since this is essentially a resource alloca-
tion problem, constraint solving is an appropriate
solution.

This section first explains constraint solving,

FQD
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ModBus
sync

ModBus
sync

ModBus
sync

task
2

task
1

task
3

peri
od

start>0 task = nr

task = nr
task = nr task = nr

task = nr

task = nr task = nrend < period

end < period

end < period

start >
 end

start > end start = 
end + 20

start = 
end + 20

start>0 start>0

Figure 8. Constraint network for the example.
The circles are variables for the activities (white)
and for device information (grey). The connec-
tions are constraints on those variables.

and then shows how to map the component model
to a constraint network.

5.1. Constraint Solving
The classical definition of a constraint is simply

a relation between variables that should be main-
tained at all times [ 13, 4]. There are different
mechanisms to express and solve constraints, a
discussion of which falls outside the scope of this
paper. Generally speaking constraint solving can
be divided in two categories. First of all there are
approaches based on logic programming, in par-
ticular Constraint Logic Programming (CLP) [
13]. Second there is a number of (numerical) in-
cremental constraint solvers that have primarily
been applied in the context of graphical user in-
terfaces [ 8, 4]. After experimenting with both we
decided to go with a CLP approach because it al-
lows us to generate all possible schedules, whereas
incremental constraint solving techniques only
give a single possible schedule.

5.2. Using CLP to Generate and Verify
Schedules

To use CLP to verify or generate a schedule, a
component model needs to be translated to a con-
straint network that can be solved. This section



10

explains the mapping from the component model
to a constraint network. Applying the mapping
to the example yields a network as shown in Fig-
ure 8.

With every sync or exec procedure one or more
activities are associated. How many activities are
needed depends on the period given for the behav-
ior and the overall time for the schedule since the
period specifies the interval at which the compo-
nent expects to be executed. For example, when
a component specifies that its execution behavior
has a period of 20 milliseconds, and the schedule
is 60 milliseconds long, the execution behavior has
to be executed three times, separated by 20 mil-
liseconds. So this execution behavior is mapped
to three activities, with constraints that express
the distance between them.

Then the activities need to be assigned to
the appropriate tasks. Each activity therefore
has a task number, and those task numbers are
constrained by traversing the component tree.
Whenever an active or event component is en-
countered, the activity for the exec procedure is
assigned to a new task, together with the activ-
ities for the subcomponents (until one of those
subcomponents is an active or event component
again). The sync procedure inherits the task of
the parent of the component.

Finally the order of components is codified as
constraints on the appropriate activities. Any
other information on starting times of compo-
nents is also taken into account. For example,
specifiying that a certain execution behavior com-
ponent should start at 20 milliseconds is mapped
to a constraint that specifies that the start of the
activity corresponding to that execution behavior
should be 20.

We used ECLiPSe, a constraint logic program-
ming language, to implement the mapping, re-
sulting in a constraint network as shown in Fig-
ure 8. Note that each of the variables in this
network has a finite domain. The domain for the
task variables is between 1 and the number of
tasks needed. The domain for the start, end and
worst-case execution times in each of the activ-
ity variables is between 0 and the period of the
device. To solve this network we employ a tech-
nique known as edge finding [ 6], a general con-
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Figure 9. Graphical depiction of a result from
running the schedule verification tool. It shows
the sequential ordering of behaviors for the three
tasks in the model.

straint satisfaction technique directly available in
ECLiPSe as a library. This technique derives
stronger bounds on the starting times of the activ-
ities, while making sure that they do not overlap.
The result of solving the network is either a sched-
ule for each task in the component model or a fail-
ure. A failure indicates that there is at least one
task for which no schedule could be found. When
at least one solution can be found, a sequential
schedule for each thread separately is found. One
of these solutions for our example device is shown
in Figure 9. Finding one static schedule for the
whole device is not possible because field devices
need active and event components. For simple
devices, only passive components can be used in-
side the field device, and then the solutions of the
schedule verification yield the static schedule for
the overall device.

Note that since a CLP language is used, any in-
complete information is regarded as a logic vari-
able that needs to be solved. For example, the
constraint network can be used to find the maxi-
mum worst-case execution times that are possible
for one or more components in a composition. Or
schedules can be seen for different orders for sub-
components, so that the developer can select the
most appropriate one. Hence the schedule verifi-
cation tool can also be used to generate schedules
or to have an interactive way of building sched-
ules.
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6. Discussion and Related Work

According to Szyperski [ 25], component-based
software development now promises to “deliver
reusable, off-the shelf software components for
incorporation into large applications”. Compo-
nents are typically defined as entities that encap-
sulate some internal representation with one or
more interfaces. This enables binary composition
of components, usage of multiple implementation
languages, easier distribution of components and
even dynamic reconfiguration of applications at
runtime [ 24, 17].

All these approaches, however, need some run-
time infrastructure to work. For example, to sup-
port distribution, centralized or distributed nam-
ing services have to be used. Unfortunately, the
context of field devices at this time does not al-
low for such runtime infrastructure. The PECOS

component model therefore focuses on static com-
position, and assumes only a runtime environ-
ment that supports synchronous passing of data
according to a blackboard-like architecture.

There are also similarities between the PECOS

approach and architectural description languages
(ADLs). An ADL is a language for modelling
a software system’s conceptual architecture in
terms of components, connectors, and configura-
tions [ 9]. An ADL typically embodies a formal
semantic theory that allows certain analyses to
be performed. Some ADLs focuss on supporting
distributed applications (such as Darwin/Regis [
16], Rapide [ 14]). Others focuss on describing the
semantics of the internals of components in some
formalism to do certain verifications (for example
Wright [ 2]).

In the context of PECOS formal approaches
(like Timed Petri nets [ 26], real-time object-
oriented modeling [ 21], real-time UML [ 22] syn-
chronous languages like Esterel [ 5] and Lustre [
10], StateCharts [ 11], or Piccola [ 1]) that de-
scribe the behaviour of components in order to
verify runtime and synchronization aspects were
not applicable. This was motivated by the fact
that the approach had to be usable by the cur-
rent developers that had no experience with for-
mal techniques. Instead the runtime aspects of
the components are measured, a technique with

which the developers have a lot of experience and
have already well-proven hard- and software so-
lutions.

The main similarities between the PECOS com-
ponent model and general-purpose component
models and ADLs reduce to:

• the behavior of components is black-box,
and completely encapsulated in the compo-
nents,

• the interface of a component, is completely
separate from its implementation, and from
its interconnection with other components,

• the model is language-independent, though
composition of heterogeneous components
is not supported.

The main differences can be summed up as:

• components have a single interface that con-
sists of the data that it requires/provides.
There is no interface for behavior, since the
model is fine grained and a component en-
capsulates a single piece of behavior.

• model elements have property bundles that
are used to attach meta-information to
components.

• the model enables timing verification with
rate monotonic analysis and schedule veri-
fication and generation.

7. Conclusion

Modern development techniques have been dif-
ficult to apply to embedded software due to the
mismatch between the severe constraints posed
by the target devices, and the generous assump-
tions required by the techniques. The PECOS

project has developed a viable approach to en-
able CBSD for a class of embedded systems
known as field devices. Rather than attempt-
ing to adapt existing component models to the
domain of field devices, a new, pragmatic compo-
nent model was developed that reflects best prac-
tice in terms of component concepts. With mem-
ory being a scarce resource and computing power
being severely limited, the model is data-centric
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and eliminates concurrency and synchronization
wherever possible. However, it supports passive,
active and event components and enables timing
analysis and schedule verification to ensure that
component compositions can be deployed success-
fully.

Although a full validation of the PECOS ap-
proach was not possible within the scope of the
project, the ideas have been convincingly tested
in the context of the field device demonstrator,
and plans are underway to apply the model to
further case studies.

Results of the project are available from
www.pecos-project.org.

Acknowledgment. Thanks to Andrew Black
for many useful discussions during his visit at the
Software Composition Group lab.
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