
Class�management using Logical Queries�

Application of a

Re�ective User Interface Builder

Roel Wuyts
Programming Technology Lab

Vrije Universiteit Brussel� Pleinlaan �� ���� Brussel� Belgium

E�Mail � rwuyts�is�	vub	ac	be

Anon	 FTP� progftp	vub	ac	be

WWW� progwww	vub	ac	be

January ��� �

�

Abstract

Current browsers for object�oriented lan�
guages su�er from restricted query capabil�
ities that only allow for class�oriented views
on the classsystem� As a result� browsers are
very poor in providing support for software
engineering techniques that go beyond single
classes� like frameworks� contracts and design
patterns� This paper proposes the combina�
tion of a logical query language and user in�
terface components as a foundation for non
class�oriented� customizable browsers able to
support recent and future object�oriented soft�
ware engineering techniques� Validation of
this proposal is done by building browsers for
di�erent domains in Smalltalk�

� Introduction

Recent programming environments
use browsers to permit browsing and editing
of source code� Where in classic imperative
programming languages like Pascal a simple
editor su�ces� object�oriented languages need
more sophisticated tools due to the scattering
of source�code all over the class�system� In
such systems� the browser is the key to unlock
the world of object�oriented programming�
Since software engineering techniques in

the past were essentially class�based� so were
browsers� The primary static relation between
classes� i�e� inheritance� was also supported�
However� recent techniques are shifting from
single classes to more elaborate relations be�
tween classes� for example frameworks� con�
tracts and design patterns ��� �� 	� 
�� Cur�
rent class�based browsers fail to accommodate
these new insights� due to two problems� The

�rst is the lack of a sophisticated query system
that enables queries ranging over the whole
class�system� The second problem is the lack
of customizability of the queries and of the
user interface used to present their results�

To address the raised problems� this paper
proposes the use of a logic programming lan�
guage as query�mechanism for questioning the
class�system� and custom user interface com�
ponents for building the user interface� The
logic programming language enables strong
queries� and cannot only range over classes�
but over the full class�system including in�
stance and class variables� methods and user�
de�ned facts� It is also explicit� giving the
user the power of adding facts and rules� and
using own queries� The custom user interface
components are used as pre�fabricated build�
ing blocks that are easily adapted using a re�

ective user interface builder�

VisualWorks Smalltalk ��� �� was used as the
programming environment for validating the
proposed mechanism� First� a logic program�
ming language was implemented to serve as
query language� Then the already existing re�

ective User Interface Builder ApplFLab was
used to build the custom user interface com�
ponents� Afterwards� several browsers were
constructed to browse classes and more com�
plicated structures�

This paper is organized as follows� The two
following sections will further introduce the
two basic concepts in more detail� The next
section is concerned with high�end customiz�
able browsers� The last topic covered before
the conclusion demonstrates the use of our
concepts in building a browser for the Bridge
design pattern�

�



� The Logic Programming

Language

Logic programming languages are declarative
and multi�directional languages using logical
terms to express facts� rules and queries� Facts
and rules are used to write down information�
while the queries allow to question this infor�
mation� Using a logic programming language
to express queries has the advantage that� al�
though the queries are very powerful� the lan�
guage is easy to understand and use�
Implementations of logic programming lan�

guages use the SLD�resolution algorithm to
implement the inference mechanism that takes
care of handling the queries� More elaborate
information about use and implementations of
logic programming languages can be found in
��� ���� A small logic programming language
based on the approach used in ��� was imple�
mented in Smalltalk to use as query mecha�
nism� We will �rst give some example facts�
rules and queries that demonstrate the basic
functionality�� To begin with� we will add
facts for every class we want to take in account
by giving the name of the class� the name
of the superclass and an identi�er ��classIn�
cluded�� �

Dictionary Object �classIncluded�
Collection Object �classIncluded�
OrderedCollection Collection �classIncluded�
MySpecialCollection OrderedCollection
�classIncluded�
���

This adding of facts is only necessary be�
cause of the decision that was taken to sep�
arate the logic programming language from
the Smalltalk class system� This separation
ensures the generality of the query language�
since it is not based on a speci�c language or
class�system� We will now write a very simple
rule to describe what a class is� and when a
class is a direct subclass �

isClass ��class� � �class �X �classIncluded�
isDirectSubclass ��class �super� � �class �super
�classIncluded�

In these rules� �nding values for the vari�
ables simply comes down to matching pat�
terns� The next rule that describes a hierarchy
of classes is already more interesting �

inHierarchy��root �class� � isDirectSubclass ��root
�class� �or
�isDirectSubclass��root �class�super� �and inHierar�
chy��root �class�super��

This rule features inference� brackets� the
logical operators �and and �or and recur�
sion� Besides these facts concerning the class�
system itself� users are also able to add facts
speci�c for their situation� such as for example

MySpecialCollection author Mike

�a note concerning the notation 	 variables are di�
rectly preceded by a question mark
 the logical opera�
tions are �or and �and

MySpecialCollection version � sub �
MySpecialCollection not�tested

Having de�ned some facts and rules� it is
time to ask some queries� To get for example
a list of all the classes we can simply pose �

isClass��X�

The di�erent values for X will be the classes
present� Facts and rules can be also be com�
bined �

isDirectSubclass �OrderedCollection �class� �and
�class author Mike

Given the facts present this query will re�
turn the name �MySpecialCollection��
As can be seen� the implemented language

is rather classic� An exception is the feature
that makes it possible to use Smalltalk blocks
as a predicate for rules or queries� This is the
only place where Smalltalk can be used in the
logic programming language� Such use of a
Smalltalk block takes the form of



Smalltalk block� arguments �

the arguments being logical variables� To
demonstrate how a Smalltalk block could be
used as predicate� we make a rule for abstract
classes that states that a class is abstract if it
has at least one method that returns �self sub�
classResponsibility� �as is common practice in
the Smalltalk community� �

abstract��abs� � isClass��abs� �and 

	absName
��Smalltalk at	 absName�
whichSelectorsReferTo	 �subclassResponsibility�
isEmpty not� �abs�

Almost the same result could be accom�
plished by adding a fact and a rule of the form
�

name�of�class �abstract�
abstract��abs�� isClass��abs��and �abs �abstract�

The former formulation has the advantage
of being smaller� since in the latter facts need
to be supplied for every abstract class� How�
ever� the latter is more general for two reasons�
First of all� it is independent from Smalltalk
since it only uses logical facts and rules� Sec�
ondly the smalltalk block is just a predicate�
and thus serves only as a �lter to reject some
elements and keep others�
The next section will introduce the custom

user interface components and the user inter�
face builder that is used to create and manip�
ulate these components� ApplFLab�

� The User Interface

Components

The re
ective user interface builder �UIB�
used is ApplFLab �Application Framework

�



Laboratory�� a UIB based on Parcplace�s Vi�
sualWorks� Although the VisualWorks UIB is
a proven development tool that is well inte�
grated with the underlying Smalltalk develop�
ment environment� it lacks a profound mech�
anism for reusing user interface components
���� ���� ApplFLab provides this reuse abil�
ity through user interface components� appli�
cations in which part of the domain knowledge
has to be speci�ed when the component is used
in an application� User interface components
can be nested� resulting in larger components
for which again speci�cations can be given�
Take for example an application that displays
a list� and then waits untill the user presses a
continue button beneath the list� Reusing this
application is �ne� but not on an as�is basis �
it might be necessary to change the label of
the button to OK� ApplFLab provides user�
friendly tools that enable the programmer of
the user interface component to express that
the label of the button should be �lled in when
the user uses the component�

For the tools and browsers described in the
next sections� two layers of components were
constructed� First� some base components
were made �lists� buttons� text �elds and text
editors�� based on existing VisualWorks com�
ponents� but with simple input�output behav�
ior making it easy to link components with
one another� More advanced components were
built using these base components� represent�
ing higher level reusable parts of browsers�
The most important of these components are
the QueryList� Classlist� MethodList and Ed�
itSpace� These components can be used as
prefabricated browser building blocks or can
be adapted to address more speci�c needs�

Using the basic components� tools were
build to add� change and remove facts� rules
and queries� Since these tools were con�
structed with the user interface components�
they can easily be adapted to the taste of the
user�

The next sections show the combination
with the logic programming language on two
domains� To begin with� class browsers are
made that are far more powerful than the
browsers that are standard provided� thus
showing the validity of the concept� After�
wards a browser for a design pattern is made�
showing how new programming techniques
can be supported by browsers using the com�
bination of logic query language and user in�
terface components�

� Class Browsers

The �rst class browser built was a simulation
of the System Browser� which is a standard
tool in the VisualWorks Smalltalk environ�
ment that enables the programmer to have a
look at all the classes available� their de�nition
and their methods �see �gure ��� This browser
can be simulated using only four queries and
�ve user interface components� thus showing
the generality of the concept�
Next a simple browser was build that en�

ables to walk through the class�system by ap�
plying queries� and includes a back�track fa�
cility �see �gure ��� The facts and rules are
those used in the logic programming language
section� The idea is to provide a standard set
of facts� rules and queries� and let the user
extend or modify these� using the tools de�
scribed in the previous section to tailor the
functionality of the browser� One can think
of information concerning versions� authors or
frameworks� Customized queries can then im�
mediately be formulated and used� for exam�
ple

isClass ��class� �and abstract��class� �and frame�
work��class BrowserFramework�

that returns all the abstract classes in
the framework �BrowserFramework�� given the
two rules abstract and framework that respec�
tively return whether �class is abstract and
whether or not it belongs to a certain frame�
work�

The programmer is now able to paint a
browser using some of the browser user inter�
face components� The result is then a class�
oriented browser with customizable function�
ality � new facts� rules and queries can be
edited and applied � and customizable inter�
face�
To demonstrate the extendibility� the sim�

ple browser was extended to take methods into
account� This merely comes down to adding
facts of the form

class methodName �methodIncluded�

and some more rules

hasMethod��class �method� �
�class �method �methodIncluded�
sameProtocol ��class� �class� �methods� �
hasMethod
��class� �methods� �and hasMethod��class� �meth�
ods�

This last rule can be used to compare meth�
ods from classes� This is very important in
method�oriented browsers to enable the com�
parison of protocols of classes�

Once the functionality is extended by sup�
plying facts� rules and queries that take meth�
ods into account the interface can be extended

�



with for example a MethodList component�
The resulting browser is depicted in �gure ��

The resulting browser demonstrates that
the customizability o�ered by combining our
explicit logic programming language and user
interface components is endless� Next sec�
tion will demonstrate this by constructing a
browser for the bridge design pattern�

� Bridge Pattern Browser

Design patterns are solutions to common de�
sign problems that have evolved over time and
are elegant and well�designed �
� ��� An ex�
ample is the bridge design pattern� that de�
scribes a system in which an abstraction is
decoupled from its implementation such that
both can vary independently� This gives rise
to a abstraction hierarchy� with as root the so
called �abstraction class�� and a implementa�
tion hierarchy where the �implementor class�
is the root� The abstraction and implemen�
tor class are bridged by an aggregation re�
lation� This aggregation is the �rst part of
the bridge pattern� and can be implemented
in di�erent ways � using an instance vari�
able� a dictionary with associations between
abstraction classes and implementor counter�
parts� or a global variable� For this di�erent
implementations� di�erent �types� of aggrega�
tion were de�ned � instance�variable� dictio�
nary and global�variable� The second part of
the bridge pattern is formed by the methods of
the abstraction class� the protocol� Methods
of this protocol are used on the implementor
side to implement operations�
Current programming environments pro�

vide almost no tools that support new pro�
gramming techniques like design patterns� To
demonstrate that a logic query language and
user interface components can be used to cre�
ate browsers that support such techniques� a
browser for the bridge pattern was build� As�
suming that we have the facts and rules of the
previous section� only one kind of fact is nec�
essary to obtain such browser� i�e� for each
bridge design pattern used we state the fol�
lowing �

BridgePattern Example Window Xwindow instance�
variable myReference

This fact de�nes a bridgePattern with name
Example� using Window as the abstraction
class� Xwindow as the implementor class� and
an aggregation of type instance�variable using
myReference to do the reference� We can then
de�ne some rules that facilitate working with
this fact �

allBridgePatterns ��bridge�
� BridgePattern �bridge �abstraction �implementor
�inst �ref

bridgeParticipants ��bridge �abstraction �implemen�
tor� � BridgePattern�bridge �abstraction�implemen�
tor �inst �ref
bridgeAggregation ��bridge �inst �ref� � BridgePat�
tern �bridge �abstraction �implementor �inst �ref

We can now obtain the protocol of the
bridgepattern� the abstraction and implemen�
torhierarchies and the used reference types us�
ing following rules �

protocol ��bridge �prot� � bridgeParticipants
��bridge �abstraction �implementor�
�and protocol ��abstraction �prot�
abstractionHierarchy ��bridge �absClass� �
bridgeParticipants ��bridge �abstraction
�implementor� �and inHierarchy ��abstraction �ab�
sClass�
referenceTypes ��type� � bridgeAggregation ��bridge
�type �ref�

The user interface that was constructed for
this browser resembles the OMT�like scheme
given in ���� It is shown in �gure �� This exam�
ple shows how creating a highly sophisticated
browser can be done using just one fact� some
rules� and a user interface built using some
custom components�

� Conclusion

To address two problems faced by browsers
in recent programming environments� the ab�
sence of a sophisticated query language and
the lack of customizability� this paper pro�
poses the use of a logical query language and
custom user interface components� Not only
does this combination prove to be powerful
thanks to the logic programming language�
the open�endedness ensures support of di�er�
ent programming techniques� To claim this
statement� browsers were build in Smalltalk
that demonstrate the power and customiz�
ability on di�erent domains� Such browsers
are not only keys to unlock the rich world
of object�oriented programming� they are the
master key to open just those doors the pro�
grammer wants to enter�

� Acknowledgements

I wish to thank following persons for their
important contributions that made this work
possible � prof� dr� Theo D�Hondt� dr�
Patrick Steyaert� Serge Demeyer� Koen De
Hondt� Wim Codenie and Carine Lucas�

References

��� H� Abelson� G�J� Sussman� and J� Suss�
man� Structure and interpretation of

�



computer programs� MIT Press� Cam�
bridge� �
���

��� W�F� Clocksin and C�S� Mellish� Pro�

gramming in Prolog� Springer�Verlag�
Berlin� �
���

��� E� Gamma� R� Helm� R� Johnson� and
J� Vlissides� Design Patterns� Addison�
Wesley� Reading� Massachusets� �

��

��� P�D� Gray and R� Mohamed� Smalltalk�

�� � A Practical Introduction� Pitman�
�

��

��� R� Helm� I�M� Holland� and D� Gan�
gopadhyay� Contracts� Specifying be�
havioural composition in object�oriented
systems� pages ��
����� OOPSLA�
ECOOP�
�� ACM Press� �

�� New�
York�

��� R�E� Johnson and B� Foote� Design�
ing reusable classes� Journal of Object�

Oriented Programming� �� �
���

�	� R�E� Johnson and V�F� Russo� Doc�
umenting frameworks using patterns�
pages ���	�� OOPSLA� ACM Press�
�

�� New�York�

��� Parcplace Systems� VisualWorks Tuto�

rial� �

��

�
� W� Pree� Design Pat�

terns for Object�Oriented Software Devel�

opment� Addison�Wesley� Reading� Mas�
sachusets� �

��

���� L� Sterling and E� Shapiro� The art of

Prolog� The MIT Press� Cambridge� �
���

���� Patrick Steyaert� Koen De Hondt� Serge
Demeyer� and Niels Boyen� Re
ective ap�
plication builders� In Chris Zimmermann�
editor� Advances in Object�Oriented Met�

alevel Architectures and Re�ection� CRC
Press Inc� Boca Raton� Florida� �

��

���� Patrick Steyaert� Koen De Hondt� Serge
Demeyer� and Marleen De Molder� A
Layered Approach to Dedicated Appli�
cation Builders Based on Application
Frameworks� In D� Patel� Y� Sun�
and S� Patel� editors� Proceedings of the

���� International Conference on Object�

Oriented Information Systems� pages
�������� Springer�Verlag� �

��

� Figures

�



Figure �� SystemBrowser�

Figure �� SimpleQueryBrowser�

Figure �� QuerySystemBrowser�

�



Figure �� BridgePatternBrowser�

	


