
Rule-driven component composition for embedded systems

Thomas Genßler
Program Structure Group

Forschungszentrum Informatik
Haid-und-Neu-Straße 10-14
76131 Karlsruhe, Germany

+49-721-9654 620
genssler@fzi.de

Christian Zeidler
Corporate Research

ABB Germany
Speyerer Str. 4

D-69115 Heidelberg, Germany
+49-6221-59 6259

zeidler@decrc.abb.de

ABSTRACT
We present in this paper an approach tocorrect-by-
construction software composition based on the use of non-
functional properties of the involved components and a set of
constraints and design rules over those properties. We focus
on the domain of software for embedded devices although
most of the presented concepts can also be extended to
component-based software development in general. We be-
lieve that software development for embedded devices would
benefit a lot from the component-based approach. However,
software for embedded devices usually has to fulfill much
stronger reliability and correctness requirements than con-
ventional software. This calls for appropriate techniques and
approaches to ensure the correctness of the software being
built. We propose to use first order predicate logic to check
statically verifiable properties design rules. Furthermore, we
support the specification of contracts which will be checked
dynamically.

Keywords
Static composition checking, components, software for em-
bedded devices

1 Introduction
Component-based software engineering is quickly becom-
ing a mainstream approach to software development. Ac-
cording to Components, Objects and Development Environ-
ments: 1998, International Data Corporation the expected
turnover increase will be a factor of five from 1997 to 2002.
At the same time there will be a massive shift from desk-
top applications to embedded systems. The PITAC report
describes this as the phenomenon of the disappearing com-
puter. More and more traditional IT systems will move from
visible desktop computers to invisible embedded computers
in intelligent apparatus. Furthermore, industrial automation
systems become increasingly decentralized, relying on dis-
tributed embedded devices (intelligent field devices, smart
sensors) to not only acquire but also pre-process data and run
more and more sophisticated application programs (control
functions, self-diagnostics, etc.). As a consequence of these
facts, one can expect that component-based software engi-
neering for embedded systems will be a key success factor
for the software industry in the coming decades.

But the state-of-the-art in software engineering for embed-
ded systems is far behind other application areas. Software

for embedded systems is typically monolithic and platform-
dependent. These systems are hard to maintain, upgrade and
customize, and they are almost impossible to port to other
platforms. Component-based software engineering would
bring a number of advantages to the embedded systems
world such as fast development times, the ability to secure
investments through re-use of existing components, and the
ability for domain experts to interactively compose sophis-
ticated embedded systems software. Visual techniques have
been proven to be very effective in specific domains like GUI
software composition. Composition of embedded systems
software still has a long way to go to reach that level. At the
very least, users would benefit greatly from the effective use
of visual techniques for providing feedback in the develop-
ment process (during design, composition, installation, and
during runtime validation). Unfortunately component-based
software engineering cannot yet be easily applied to embed-
ded systems development today for a number of reasons. Up
to now, the mainstream IT players did not pay much attention
to the (so far) relatively small embedded systems market and
consequently did not provide it with suitable technologies or
off-the-shelf software (such as operating systems). From a
technical point of view, these choices were justified by con-
sidering the major characteristics of embedded devices, such
as limited system resources (CPU power, memory, etc.) and
man machine interface functionality, the typically harsh en-
vironmental conditions, and the fact that the development
and target systems are not the same.

The rapidly growing market share of embedded systems is
changing the equation and making investment in component-
based software engineering for embedded systems not only
viable but also essential. Vendors of embedded devices
would benefit by being able to offer scalable product fam-
ilies, whose functionality could be tailored by flexible com-
position of reusable building blocks. These families are dif-
ferentiated by the performance of the hardware and the pro-
vided functionality, but are based on re-use of many identi-
cal software components. All this requires that the embed-
ded systems software be modular and composed of loosely
coupled, largely self-sufficient, and independently deploy-
able software components.

The project frame for this paper is the project PECOS - Per-
vasiv Component Systems, which is funded by the European



Community. Figure 1 illustrates PECOS main objectives,
The goal of PECOS is to enable component-based software
development of embedded systems by providing an environ-
ment that supports the specification, composition, configu-
ration checking, and deployment of embedded systems built
from software components.

There are many challenges we address in the PECOS project
goals. In this paper we focus on the aspect of component
composition. We first give an overview on the development
process with component before we present an approach to
correct-by-construction software composition.

2 Development with Components
The specific domain of embedded systems implies specific
restrictions. To cope with the resource limitations is one
domain specific problem. Another one is to support devel-
opment of real-time application assembled out of compo-
nents. This is a challenge by itself and a topic of investi-
gations of the last decades. The most prominent approaches
are RoseRT by Rational [11] and Rhapsody by Ilogix [8].

Both of them apply the event base programming style and
support implementation based on state automata, but do
not consider reuse or component orientation as their major
drivers. Therefore they start with UML-like specification
and extend the definition tools with functionality that pro-
vides code generation for an specific target. Both approaches
do not consider neither component model definition nor ar-
chitecture, beyond the event based communication of cap-
sules [11] or active objects [8]. Composition of applications
out of components and active reuse support by appropriate
repository implementation is not offered adequately either.

In order to make component-based software engineering
happen, not only for field devices, and to achieve a reduc-
tion of development costs and time by reuse of established
and proven components, it is not enough to solve only one of
the presented obstacles. An overall approach for the devel-
opment of component-based embedded software is needed.

As we believe this approach has to comprise several main
features as depicted in Figure 1, which we have categorized
in five groups and describe below. In a first outline the iden-
tified groups should concentrate of the following issues:

Component model:

� addresses non-functional properties and constrains such
as worst-case execution time and memory consumption

� allows to specify efficient functional interfaces (e.g.
procedural interfaces)

� allows to specify architectural styles that describe com-
ponents connections and containment relations

� allows for code generation and controlled component
adaptation when architectural styles are applied to com-
ponents (source language or generative components)

Component-based architecture for field devices:

� a framework for field devices that is expressed as stan-
dard interfaces, components, and architectural styles

� is based on field bus architecture

� express compile-time optimization abilities, which
could be applied during target code preparation

Repository:

� storage and retrieval of components during analysis, de-
sign, implementation, and composition

� stores components and architectural styles according to
the component model including interface descriptions,
non-functional properties, implementation (potentially
for different micro controllers), support scripts for com-
position environment, test cases

� supports component versioning

Composition Environment:

� supports composition techniques (visual or script
based)

� checks composition rules attached to architectural
styles in order to verify that a component configurations
meets their constraints

� performs component adaptation and code generation for
the application

� supports definition of composition rules, which in an
subsequent step could be compiled to architectural
styles description

Run-time Environment:

� provides an efficient implementation model for compo-
nents

� addressing the constrains for field devices: low avail-
able memory, implementation possibly necessary in C
or optimized C++

� supports the approach to compile a component-based
design into a optimized firmware for the embedded de-
vice, thus having no run-time environment beside the
RTOS (Real-time operating system)

� allows for a hardware and RTOS independent imple-
mentation of components (e.g. by an RTOS abstraction
layer [13])

2



Component
Repository
• storage and retrieval
of components during
analysis, design, and
implementation

• supports the reuse of
components

Composition
environment
• build applications and
components from other
components

• check composition rules

Run-time
environment
• C++/C-based for
low-end devices

• Java based run-
time

Component
Model

• how to specify
components and
architectures including
resource constraints
(memory consumption,
real-time execution)

Component-
based
Architecture for
field devices
• specification of
architecture and reusable
components for field
devices

Component technology for embedded systems.

Figure 1: PECOS main targets

Based on these five categories, which make up the major
ingredients for a component-based systems (CBS) develop-
ment. All of them are currently poor developed or even ab-
sent. For the ongoing discussion in this paper we concentrate
on the development process with components. Where a pre-
requisite is a sound component specification and a compo-
sition support that the developer can trust, since it provides
him some consistency and certification support for the result
of his composition work.

3 Our Approach: correct-by-construction Software
composition

The most critical part of component-based system construc-
tion is the composition process. Most future defects of the
system being built arise from mismatches and inadequacies
of the composed components. Thus, the static verification of
the correctness of component composition is a very crucial
and important task in the development process.

In traditional software development processes, however,
static correctness checks are usually reduced to syntactical
checks or simple semantics checks like type-checks. But of-
ten these simple checks are not enough to discover defects in
the system that are caused by structural, functional or non-
functional inadequacies of the composed components. Those
defects are hopefully discovered during testing. If not, it can
become very costly to correct them, especially in the area of
embedded devices where software is usually stored in ROM.

The goal of our work is to provide more powerful means
to support acorrect-by-construction software development
process. For this purpose we introduce the notion ofrules as
means to provide stronger correctness checks than mere syn-
tactical checks or type checking. Rules represent statically
checkable constraints. We informally define the termstatic
correctness as follows: A composition is statically correct if

� it is syntactically correctand

� the system complies with the used static type system
and

� all rules are fulfilled

However, some of the constraints on a system can not be
expressed, and thus not be checked, statically. In order to in-
crease dynamic correctness we use contracts to express con-
straints such as pre-, post-conditions and invariants.

The remainder of this chapter is split into two parts. In the
first part we introduce our current component meta-model
which we partly implemented in our composition compiler
prototype PECOS-CoCo. This meta model focuses on mod-
elling component systems in the field of software for embed-
ded devices. Thereafter we concentrate on how this meta-
model supports development with components in this ap-
plication domain, especially how it helps to ensure correct
component composition. We show, how rules can be used
to better support acorrect-by-construction development pro-
cess. We also demonstrate how we use contracts to specify
dynamically checkable constraints.

Component Meta-Model
The proposed component meta model serves to model
component-based systems in the area of software for embed-
ded devices. However, most of the concepts can easily be
mapped to conventional component-based systems.

A central entity in our model is acomponent. Components
model stateful entities of computation, i.e., the actual pieces
of software in the target language of an embedded software
system. A component has aunique identifier and aset of

3



properties. Components support single inheritance. Com-
ponents can be composed out of other components. Com-
ponents have a concept of instantiation. Figure 2 shows a
component definition in our composition system.

Properties of components are distinguished in general pur-
pose properties and pre-defined properties with certain se-
mantics. The latter are explicitly modelled as meta-model
elements. The following shows a list of pre-defined proper-
ties of a component:

� Ports: Ports are distinguished in signals and
events/handler. While signals represent pure data trans-
fer from one component to one or more other compo-
nents, events and handlers serve to invoke functionality
upon a component. An event corresponds to the invo-
cation of functionality while handler correspond to the
declaration of functionality.1 Contracts can be assigned
to a port (see below for description of contracts).

� Rule references: Rules can be attached to components.
When the system is checked, those rules must hold.

� Super component: A component may have exactly one
super component (single inheritance).

� Description: A documentation string.

General purpose properties are either mandatory or op-
tional. They can be used to specify non-functional proper-
ties of components such as worst-case memory consump-
tion,2 needed cycle time etc. Mandatory properties must be
set when the component is composed. A property can ei-
ther be set in the component or for a concrete instance of
that component. In the first case, this property is used for
all component instances if the value is not changed for an
instance while in the second case the property value belongs
to the instance setting it.

Connecting components means connecting their ports or,
in other words, establishing a communication link between
components. Communication, however, can happen in
different ways, e.g., synchronously/asynchronously or via
method call or message passing. To abstract from the con-
crete communication mechanism, we us connectors.Con-
nectors represent meta programs that generate or transform
code in the target language in order to glue the pieces of code
together. Connectors have a unique identifier. They are state-
less and can not be instantiated for obvious reasons.3 A con-
nector takes a set of source and target ports as parameters. A
more detailed discussion of connectors as meta programs can
be found in [2].

1At target language level, an event corresponds to a method call while
handler are mapped onto method definitions.

2In the given application domain (software for embedded devices), such
information is usually available.

3Connectors basically represent code generators. Thus it makes no sense
to instantiate them.

component Actuator extends FunctionBlockf
ports:
// signals
public signal in int p1f
pre:
p1>0;

g;
// event handlers, events are
// specified similarly
public handler execute()f
pre:
// the signal p1 must have been initialized
p1 == valid

g;
properties:

mandatory code : string =
"/codebase/Actuator.java";

//the component is active and
//needs to be scheduled by a scheduler
mandatory active : boolean = true;
//worst case execution time=30ms
mandatory executionTime : int = 30;
// must be set when composing this component
mandatory threshold: int;

description:
"Description of Actuator"

g

Figure 2: Example of a CoCo Component

A composition specifies how components are intercon-
nected. Compositions declare a fix number instances of
components and define their configuration. Furthermore,
a composition specifies how the ports of those instances
are wired, i.e., which connector is used for connecting
which ports. The expressionsequentialMultiCast-
MethodCall(s.execute() -> a1.execute(),
a2.execute()); in figure 3 states that the actuator com-
ponentsa1, a2 be connected to the scheduler component
s, using method call communication. Since their are two
communication sinks (a1.p1, a.2.p1, those methods
are called sequentially. The connectorsequential-
MultiCastMethodCall generates the respective code
fragements, i.e., the method invocations in the scheduler
component.

Note that instances can not be created dynamically but only
statically, i.e., via declaration in the instances list. However,
in the application domain we focus on (embedded software)
this is not really a limitation.

Compositions can occur as part of a composite component
or at top level (system composition). Figure 3 shows an ex-
ample of a composition.Rules andcontracts specify con-
straints over a component or a composition. A rule spec-
ifies constraints over one or more components in terms of
predicates over component properties. Rules only refer to
statically available information like properties, connector or
component identifiers and the like. Thus they can be checked
statically as they do not refer to information that is only avail-
able at runtime. Rules are distinguished in

4



compositionf
instances:
a1: Actuator;
a2: Actuator;
s: Scheduler;

configuration:
a1.threshold = 20;
a2.threshold = 30;
s.cycleTime = 100; // 100 ms cycle time

wires:
sequentialMultiCastMethodCall(
s.execute() -> a1.execute(), a2.execute());
// use the standard signal connector
a1.p1 -> a2.p1;

rules:
systemHasScheduler() and
existsOnlyOneScheduler() and
allActiveComponentsAreScheduled() and

// check if the sum of the worst
// case execution time is lower
// than the cycle time of the scheduler.
sumExecutionTimeLTCycleTimeOfScheduler(
[a1,a2],s
);

g

Figure 3: Example of a Composition

� Consistency Rules: Consistency rules can be attached
to a certain component. They check constraints con-
cerning the properties of this particular component such
as”if the component has property X it must also have
property Y”.

� Composition Rules: Composition rules express con-
straints over a composition. Those constraints range
from simple structural constraints to architectural
styles, i.e.,”Each component in the system is either
passive or it is active and scheduled by a scheduler”.

Contracts, on the other hand, may refer to dynamic informa-
tion, i.e., the current values of signals. Thus, they can not
always be checked statically but often the checking must be
deferred to runtime. Contracts are distinguishes in pre-, post-
conditions and invariants. Contracts can only be assigned to
ports. Refer to figure 2 for an example of contracts.

The last important entities in our meta model arepackets.
Packets define the structure of the actual data being trans-
ferred between components.

Correct Component Composition
The above meta model serves to describe components and
their relationships and provides also a basis for code genera-
tion, i.e., the creation of code skeletons or the generation of
glue code. On top of that it especially focusses on ensuring
correctness of component composition. In contrast to tradi-
tional approaches we do not only apply syntactic checks or
simple semantics checks (like type checking) but also val-
idate constraints over non-functional properties (i.e., struc-
tural, runtime requirements) of a component. To do so, we

extended the concept of components with the notion of func-
tional and non-functional properties. Consistency and com-
position rules provide as with a means to reason about the
static correctness of a component or composition. We are
now ready to refine our definition of static correctness of a
composition as follows:

A composition is statically correct if

� it is syntactically correctand

� the system complies with the used static type system
and

� for all component instances of a composition holds:
there exists no mandatory property of the component of
the respective instance that is not set to a certain value
– either at component level or at instance leveland

� the consistency rules of all involved components are ful-
filled and

� all composition rules of the respective composition are
fulfilled

% knowledge base
% components
component(’Actuator’).
component(’FunctionBlock’).
component(’Scheduler’).

% inheritance
extends(’Actuator’, ’FunctionBlock’).

% ports
signal(’Actuator’,[’public’], ’in’, ’p1’).
handler(’Actuator’,’public’,’execute’, []).
event(’Scheduler’,’public’,’execute’, []).

%properties
property(’Actuator’,’mandatory’,

’code’,’/codebase/Actuator.java’).
property(’Actuator’,’mandatory’,

’executionTime’, 30).
property(’Actuator’,’mandatory’,

’active’, ’true’ ).
property(’Actuator’,’mandatory’,

’threshold’, ’void’).
property(’Scheduler’,’mandatory’,

’isScheduler’, ’true’).
property(’s’,’mandatory’,

’cycleTime’, ’void’).

Figure 4: Prolog knowledge database for an ”Actuator”

To prove the static correctness of a system, we first apply
the usual syntactical and type analysis techniques. After
that we check if all mandatory properties are set to a valid
value. In order to check the fulfillment of consistency and
composition rules that are attached to a certain component
or a composition we employ first order predicate logic re-
stricted to the form of Horn clauses. We map the knowl-
edge about the entire system or parts of it as well as the

5



rules onto terms in this logic. Structural information, such
as component names, component inheritance relationships
as well as knowledge about component properties and their
values are mapped onto ground terms (or facts) while rules
are mapped on predicates and functions. As we only use
Horn clauses, this information can easily be translated into
Prolog. In our composition environment prototype we use a
Prolog engine ([16]) to perform the actual correctness check.
Figure 4 shows the Prolog knowledge base derived from the
component specification above.

Consistency and composition can as well easily be mapped
to Prolog terms. The correctness check can then be reduced
to a Prolog goal containing a conjunction of all rules that
must be fulfilled. Figure 5 shows, how composition rules
can be translated to Prolog.

Contracts, on the other hand, can in general only be checked
at runtime. For each contract we generate the appropriate
check code for dynamic checking. The code for checking,
for example, pre-conditions and invariants for an event han-
dler is then always executed upon method entry of the cor-
responding method. On method exit, post-condition checks
are invoked. This facilitates testing as violations of such con-
straints are detected during runtime. However, some of those
contracts could also be checked statically, if they only used
statically available information. The static evaluation of con-
tracts remains, however, subject of further investigations.

Discussion of our approach
The proposed approach allows for powerful static correct-
ness checks at composition time. The applicability of rules
ranges from checking simple properties of a component or
composition to enforcing architectural styles. Our approach
is, to a great extent, language independent. Although we
currently only support Java, we plan to incorporate language
support for C and C++.

As mentioned before, we do not support dynamic creation
of component instances. While this allows for a number of
static predictions on the behavior of the system it also limits
the class of systems we are able to deal with. However, in
our main application domain, this is not a real problem as
embedded systems usually prohibit dynamic object creation
anyway.

Beyond checking of static properties, one could also con-
sider to extended our approach to dynamic properties using
program analysis techniques. However, this would come at
the price of losing some language independency at the model
level.

4 Related work
Several approaches to the composition of software out of
components have been proposed in the literature. An impor-
tant contribution to this issue stems, without doubt, from the
field of software architecture systems [1, 14, 15, 3]. Archi-
tecture systems introduce the notion of components, ports,
and connectors as first class representations.

Ensuring the correctness of software composition at the con-
struction time has been addressed in literature in a number

of different ways. In [4] the authors introduce the notion of
micro-components. Micro-components represent program-
ming language idioms. Micro-components have assigned
contracts and requirements. When being composed those
contracts and requirements are statically checked using first
order predicate logic. However, non-functional requirements
and composition rules are not considered.

[6] focusses on the interactions between (distributed) compo-
nents. In this paper the authors introduce an semi-automatic
approach to interaction protocol checking. The main idea of
this approach is to use so-calledprogram nets, an subclass
of algebraic Petri-nets to model the interaction behavior of
components. The program nets of components can then be
composed and liveliness and correctness properties can be
checked with the known restrictions. Other approaches to
interaction compatibility checking can be found in [9] (mod-
elling of dynamic interaction protocols in terms ofregular
types) [17] (regular expressions to define interaction proto-
col which are used for runtime checking) and others.

Object Constraint Language (OCL) is another approach to
put more semantics information into software model. OCL
is a precise, textual language for expressing constraints over
elements of an UML model like pre- and post-conditions,
invariants as well as navigation paths in object graphs. How-
ever, until recently there have been few attempts to provide
tool support for checking OCL constraints. Approaches to
the specification of a precise semantic for OCL in order to
enable tool support can be found among others in [12, 7].
Available OCL tools include IBM’s free OCL parser [5],
the OCL compiler (generates code for evaluating OCL con-
straints at runtime) [10] and others.

5 Conclusions and Future Work
In this paper we have introduced an approach tocorrect-by-
construction software development with components. It is
limited to static system construction for embedded systems
domain, but introduces handling of non-functional properties
and the notion of statically verifiable construction rules.

Our future work will focus on the extension of our realiza-
tion towards support of C and C++ as well as the support of
dynamic applications. A challenge we definitely will try to
face is the incorporation of contracts, which could be proved
during the composition time. This for sure needs data flow
analysis and will be language specific.

Another area of interest is interaction protocol checking
among components. Protocol checking can be reduced to
the language inclusion problem which is only decidable for
regular languages. However, there have been approaches to
extend interaction protocol checking to special context-free
call sequences. We will investigate how far we can adopt
protocol checking techniques for our our approach. All those
extensions are planned to be supported by tool prototypes in
order to demonstrate the relevance and applicability for in-
dustrial environments.

6



systemHasScheduler :-
exists(I,instanceProperty(I,’mandatory’,’isScheduler’, ’true’)),
write_ln(’systemHasScheduler passed successfully.’).

existsOnlyOneScheduler :-
existsOneSolution(I, instanceProperty(I,’mandatory’,’isScheduler’, ’true’)),
write_ln(’existsOnlyOneScheduler passed successfully.’).

allActiveActuatorsAreScheduled :-
forall(instance(I,’Actuator’),(instance(S,’Scheduler’),exists(C,wire(C, S,’execute’,I,’execute’)))),
write_ln(’allActiveActuatorsAreScheduled passed successfully.’).

sumExecutionTimeLTCycleTimeOfScheduler :-
findall(T, (instance(I, ’Actuator’), instanceProperty(I,’mandatory’,’executionTime’,T)), Set),
sumList(Set,Res),
existsOneSolution(I, instance(I, ’Scheduler’)), instanceProperty(I,_,’cycleTime’, CycleTime),
Res =< CycleTime,
write_ln(’sumExecutionTimeLTCycleTimeOfScheduler passed successfully.’).

Figure 5: Composition Rules in Prolog

6 Acknowledgement
The work presented in this paper is part of the ongoing re-
search project PECOS granted by the European Commission
under IST Programm IST-1999-20398.

REFERENCES

[1] Robert Allen and David Garlan. A formal basis for
architectural connection.ACM Transactions on Soft-
ware Engineering and Methodology, 6(3):213–49, July
1997.

[2] U. Aßmann, T. Genßler, and H. B¨ar. Meta-
programming Greybox Connectors. In Richard
Mitchell, Jean Marc J´ezéquel, Jan Bosch, Bertrand
Meyer, Alan Cameron Wills, and Mark Woodman, ed-
itors,Proceedings of the 33th TOOLS (Europe) confer-
ence, pages 300–311, 2000.

[3] Paul C. Clements. A survey of architecture description
languages. InInt. Workshop on Software Specification
and Design, 1996.

[4] Agustin Cernuda del Rio, Jose Emilio Labra Gayo,
and Juan Manuel Cueva Lovelle. Itacio: a compo-
nent model for verifying software at construction time.
http://www.sei.cmu.edu/cbs/cbse2000/papers/06/06.html,
2000.

[5] IBM Application Development. The ob-
ject constraint language. http://www-
4.ibm.com/software/ad/standards/ocl.html, 2001.

[6] T. Genßler and W. L¨owe. Correct Composition of Dis-
tributed Systems. InProceedings of the 31st TOOLS
conference, 1999.

[7] A. Hamie, J. Howse, and S. Kent. Interpreting the Ob-
ject Constraint Language. InProceedings of Asia Pa-
cific Conference in Software Engineering. IEEE Press,
July 1998.

[8] Ilogix. Rhapsody of ilogix.
http://www.ilogix.com/fsprod.htm, 2000.

[9] O. Nierstrasz. Regular types for active objects. InPro-
ceedings OOPSLA’93, pages 1 – 15. ACM, 1993.

[10] University of Dresden. The OCL compiler.
http://dresden-ocl.sourceforge.net/, 2001.

[11] Rational. Rose for real-time.
http://www.rational.com/products/rosert/index.jsp,
2000.

[12] Mark Richters and Martin Gogolla. On formalizing the
UML object constraint language OCL. In Tok-Wang
Ling, editor,Proc. 17th Int. Conf. Conceptual Model-
ing (ER’98). Springer, Berlin, LNCS, 1998.

[13] Douglas Schmidt. Tao.
http://www.cs.wustl.edu/ Schmidt/TAO.html, 2000.

[14] M. Shaw and D. Garlan.Software Architecture – Per-
spectives on an Emerging Discipline. Prentice Hall,
1996.

[15] Mary Shaw, Robert DeLine, D.V. Klein, T.L. Ross,
D.M. Young, and G Zelesnik. Abstractions for software
architecture and tools to support them.IEEE Transac-
tions on Software Engineering, pages 314–335, April
1995.

[16] SWI. Swi prolog.
http://www.swi.psy.uva.nl/projects/SWI-Prolog/,
2001.

[17] Jan van den Bos and Chris Laffra. PROCOL – A Paral-
lel Object Language with Protocols. InProceedings
of the OOPSLA ’89 Conference on Object-oriented
Programming Systems, Languages and Applications,
pages 95–102, October 1989. Published as ACM SIG-
PLAN Notices, Proceedings OOPSLA ’89, volume 24,
number 10.

7


