
1

Components @ Work:
Component Technology for Embedded Systems

Peter O. Müller
Christian Stich

Christian Zeidler
ABB Corporate Research
Asea Brown Boveri AG

Speyerer Straße 4
69115 Heidelberg, Gemany

+49 6221 59 [6223|6211|6259]
[peter.o.mueller|christian.stich|christian.zeidler]@de.abb.com

ABSTRACT
During the last years the use of component-based

software development (CBSE) gets more and more com-
mon for desktop applications to speed up time to market
and reduce development costs. Especially in the area of
embedded real-time systems the reuse of tested and ro-
bust parts of prior applications is of great desire, to ful-
fill the strong requirements on maturity, availability and
cost. But further requirements like low power design and
real-time execution of components makes it impossible to
use component frameworks well known in the desktop
area. This paper discusses the problems of component-
based software development for embedded real-time
systems and derives requirements for a component
framework for this domain. First insights for such a
framework are presented.

1. Introduction
Component-based software engineering (CBSE) is
quickly becoming a mainstream approach to software
development. At the same time there will be a massive
shift from desktop applications to embedded systems.
More and more traditional IT systems will move from
visible desktop computers to invisible embedded comput-
ers in intelligent apparatus, e.g. web connected fridges,
house automation utilities, PDAs, cellular phones, spon-
taneous networked devices, just to mention few examples.
Furthermore, industrial automation systems become in-
creasingly decentralized, relying on distributed embedded
devices (intelligent field devices, smart sensors) to not
only acquire but also pre-process data and run more and
more sophisticated application programs (control func-
tions, self-diagnostics, etc.). As a consequence of these

facts, one can expect that component-based software en-
gineering for embedded systems will be a key success
factor for the software industry in the coming decades.

In this paper we briefly out line the specific application
domain of CBSE, followed by a scenario example from
process automation domain, for which a prototypical im-
plementation is described thereafter. We conclude with
our findings in “lessons learned”, where we define the
needs for effective CBSE and describe a foundation of
functionality needed for “embedded CBSE” and an out-
look to future activities.

2. Domain Characteristics
But the state-of-the-art in software engineering for em-
bedded systems is far behind other application areas.
Software for embedded systems is typically monolithic
and platform-dependent. These systems are hard to
maintain, upgrade and customize, and they are almost
impossible to port to other platforms. Component-based
software engineering would bring a number of advan-
tages to the embedded systems world such as fast devel-
opment times, the ability to secure investments through
re-use of existing components, and the ability for domain
experts to interactively compose sophisticated embedded
systems software.

Visual techniques have been proven to be very effective
in specific domains like GUI software composition.
Composition of embedded systems software still has a
long way to go to reach that level. At the very least, users
would benefit greatly from the effective use of visual
techniques for providing feedback in the development
process (during design, composition, installation, and

2

during runtime validation). Unfortunately component-
based software engineering cannot yet be easily applied
to embedded systems development today for a number of
reasons. Up to now, the mainstream IT players did not
pay much attention to the (so far) relatively small em-
bedded systems market and consequently did not provide
it with suitable technologies or off-the-shelf software
(such as operating systems or suitable component mod-
els). From a technical point of view, these choices were
justified by considering the major characteristics of em-
bedded devices, such as limited system resources (CPU
power, memory, etc.) and man machine interface func-
tionality, the typically harsh environmental conditions,
and the fact that the development and target systems are
not the same.

The rapidly changing market makes investment in com-
ponent-based software engineering for embedded systems
not only viable but also essential. The key for industries
to benefit from the increasingly powerful and less expen-
sive hardware, is the ability to develop and port embed-
ded software more quickly and at acceptable costs. Ven-
dors of embedded devices would benefit by being able to
offer scalable product families, whose functionality could
be tailored by flexible composition of reusable building
blocks. These families are differentiated by the perform-
ance of the hardware and the provided functionality, but
are based on re-use of many identical software compo-
nents. All this requires that the embedded systems soft-
ware be modular and composed of loosely coupled,
largely self-sufficient, and independently deployable
software components.

ABB’s business unit Instruments develops a large num-
ber of different field devices, e.g. temperature-, pressure-,
and flow-sensors, actuators, positioners, etc. As the field
device hardware becomes more and more commodity, the
software determines the competitiveness of field devices.
The market demands for additional functionality in
shorter time cycles. This means, that software dominates
the development and maintenance costs of field devices.

However, today's field device software is monolithic
software developed specifically for each field device type.
Monolithic software prevents to serve the field device
market with value-added features in a cost-efficient way:

- Same functions needed by different field devices are
implemented repeatedly at different development lo-

cations in different ways (e.g. Fieldbus Drivers,
Nonvolatile Memory-Manager, FFT1-algorithm).

- Functions and modules are implemented for a spe-
cific environment with no standardized interface
(e.g. Interrupt-Driven, Port I/O)

- Long development time
- Monolithic software has a fixed functionality that is

hard to maintain, to extend, and to customize.

3. Example Scenario: Field Device
The requirements and the architecture of field devices
will be discussed in this paper at an example: a pneu-
matic positioner (TZID), see Figure 1. Pneumatic posi-
tioners are used to control pneumatic actuators attached
to valves. Main features are:

- low priced and lightweight
- bus powered (2-wire)
- position measurement
- self-adapting position control loop
- diagnostic capabilities
- communication with the control system via fieldbus

(Profibus PA and Fieldbus Foundation)

3.1. Requirements of field devices
The following requirements, resource constraints and
typical implementation techniques have to be taken into

account when discussing a component-based approach
for the field device implementation:

- The available power is only 100 mW for the whole
device. This limits the choice of CPUs come into
question.

1 Fast Fourier Transformation

Figure 1: Pneumatic positioner TZID

3

- Software architecture is driven by fieldbus architec-
ture (e.g., function block concept). Fieldbus stacks
from 3rd party suppliers are used.

- Parts of the software require real-time execution
(control loop, execution of fieldbus function blocks).

- The implementation language today is C. C++ may
become an option, possibly in a special dialect like
Embedded C++2. However, such C++ or EC++ [3]
compilers are not available today for the relevant low
power micro-controller.

- The device has a static software configuration, i.e.
the firmware is updated/replaced completely, no dy-
namic loadable functionality (this may change in
future).

- Many field devices are used in safety critical areas,
e.g. chemical plants. Therefore costly certification
procedures are required for such devices.

- Typical lifetime of field devices is up to 10 years.

3.2. Component-based architecture for field de-
vices

Figure 2 illustrates a first attempt how to componentise

2 EC++ is a subset of C++ omitting templates, exceptions, RTTI,
multiple inheritance, etc. in favor of high performance, low memory con-
sumption and ROM-able code; see [EC++99]

the software for a field device. As stated above, one main
driver for this software architecture of field devices is the
fieldbus architecture. The example is tailored for Profibus
[4].

In the following, the main components, their responsi-
bilities, their composition relations, and the main moti-
vation, why to pack a certain function as component, is
discussed.

3.3. Block, Sub Block, and Parameter
From a fieldbus point of view, blocks are the most natural
components for a field device. They provide the building
blocks of the fieldbus application. In Figure 2, two blocks
are shown: an Analog Output Function Block represent-
ing the automation function of the device within the
control system and a Transducer Block representing the
parameters & functions of the connection to the process
(i.e. position measurement and control of pneumatic con-
verter). The interface of a block is defined by its pa-
rameters. Parameters represent process and configuration
data and have a number of attributes like: the actual
value, data type, storage class (constant, dynamic, non-
volatile), access rights, default value, parameter type (in,
out, contained) etc.

Block and parameter as software components should pro-

Block Container
Scheduler

Profibus PA Mapper

Profibus PA Stack Local Operation

Display, Buttons

AccessManager

Persistent Storage

AO Function Block Transducer Block

SP

MODE

READ-
BACK

OUT

OUT_CHAN

IN_CHAN

POS_VALUE

FEEDBACK

Pos
Control

Pos
Measure.

I/O
HW

CTRL_PAR

AO
Algorithm

PC/Handheld-Interface

Figure 2: Architecture of a field device

4

vide a model for the implementation of Function and
Transducer Blocks with the following features:

- It is independent of the particular fieldbus. This
seems to be easy for the two most popular fieldbusses
used in process industry (Profibus, Fieldbus Founda-
tion[5]), because they share the same roots.

- It should support a component-based implementation
of the block algorithm by sub-blocks. This is espe-
cially important for transducer blocks because the
same transducer block algorithm should be reusable
between a Fieldbus Foundation (FF) and a Profibus
device although the transducer blocks themselves
may have a different interface in terms of parame-
ters.

- It supports infrastructure functions that are beyond
the scope of the fieldbus application like user/factory
access control for parameters, persistent parameter
storage, and support for parameter display. This
support needs to be expressed by additional
block/parameter attributes and operations.

- It provides an optimal memory use for the parame-
ters and their attributes (ROM and RAM). This re-
quires support from the component model to specify
and implement different memory classes.

3.4. Block Container
The Block Container provides the run-time environment
for Blocks. The main idea is to provide an execution
model for blocks that relieve the blocks from dealing
with the details of scheduling, parameter transfer be-
tween blocks, and parameter access synchronization. The
responsibilities of the Block Container are:

- Scheduling the execution of blocks. The scheduling
strategy also implies a strategy for synchronizing pa-
rameter access by different threads (e.g. acyclic pa-
rameter access from fieldbus, block execution, sub-
blocks having an own thread).

- Handling the parameter transfer between blocks. The
fieldbus specifications define different communica-
tion mechanisms between Function Blocks (config-
ured by link objects) and between Function Block
and Transducer Block (configured by channel pa-
rameters), see Figure 2. The Block Container should
provide a unified block communication that covers
both ways.

- Interfacing to the fieldbus and handling of cyclic
(process data) and acyclic (configuration data) field-
bus services that result in parameter accesses.

- Enforcing an access policy for block parameters
(read, write, passwords, etc.)

In this approach, most of the work is delegated to the
Block Container, so that the Block algorithm itself can
always rely on valid parameter values and don't need to
take care for synchronization.

The concept of Block Container and Blocks is common to
both Profibus and FF. However, adaptation to the used
bus is needed in the following areas:

- different Blocks are used (different parameters and
block algorithm)

- different scheduling strategies (FF has a system wide
block schedule defined by the FF standard, Profibus
has not)

- different communication services for process values
(FF uses publisher-subscriber model allowing slave-
to-slave communication, Profibus uses cyclic data
transfer between master and slave only).

Therefore, we suggest to implement functions like block
scheduling, parameter access control, and mapping of the
field bus stack to the Block Container in separate compo-
nents that can be plugged into the Block Container as
shown in Figure 2.

3.5. Fieldbus Stack and adaptation to Block Con-
tainer

Fieldbus stacks are standard components, most preferably
taken from 3rd party vendors. Adaptation to the Block
Container is done via a Mapper component. The main
responsibilities for the Mapper are:

- mapping of fieldbus specific addressing schemas to
Block and Parameter schema internally used.

- translation of cyclic and acyclic fieldbus services into
read/write accesses to Block Parameters managed by
the Block Container

- handling of device management (directory objects)
- handling of link objects, i.e. configuration of the

inter-Function Block communication at the Block
Container level

The functionality of the Mapper (and partly also of the
Block Container) depends on the functionality provided
by the communication stack. Most stacks are designed in
a way that an application must be implemented “around”
the stack. E.g. for callbacks one has to add code in partly
written functions. This makes it hard to separate the ap-
plication from the stack. For encapsulation it would be
better to have an API that makes it possible to register

5

callback methods or a handler class [6].

3.6. Local Operation
Local operation includes parameter access and changing
them directly at the device using a local display, con-
necting a Service PC via RS232 or a wireless link. The
Block Container should handle local parameter access
similar to the acyclic fieldbus services.

3.7. Persistent Storage
Some Block Parameters have to be stored non-volatile,
e.g. in EEPROM3. The Persistent Storage component is
responsible for saving/loading persistent data, managing
the programmable memory, error detection and correc-
tion, versioning etc.

4. Case Study Implementation
Our scenario depicts just few aspects, which are essential
to field device realization. Those are used to implement a
framework outlined in this section. Because building of
frameworks is hard [7] we have tried to spend as much
time as possible to:

- Get an in-deep knowledge of the problem domain.
- Analyze code from the domain to find patterns that

solve typical problems.
The framework has a better chance to be successful when

3 Electrical Erasable Programmable Read Only Memory

several iterations are made. Therefor we have started to
develop a first device prototype that will be discussed in
the following section. It can be seen as starting point for
further design discussions and a first proof of concept.

Figure 3 shows the objects living in the block container.
The main object is the Block (function blocks like analog
output, transducer block, control algorithm blocks). A
Block contains parameters representing the state of the
block and an algorithm executed by a run() method.
Block parameters must be accessible from the communi-
cation stack. Both cyclical and sporadic access has to be
supported.

A FieldbusObject is the smallest addressable unit from
the fieldbus point of view. Its data type can be a simple
type (e.g. integer, float, string, time), a structure of sim-
ple types, or an array of simple types. Therefore, a Field-
busObject is modelled as a collection of one or more
FieldbusDataElements. A FieldbusDataElement repre-
sents a simple data type with additional low-level func-
tions like range checks for data validation.

An example for a FieldbusObject is the set-point pa-
rameter of an Analog Output function block consisting of
the FieldbusDataElements VALUE and STATUS.

During the first implementation a bunch of open ques-
tions came up. The following items show some open is-
sues:

CompositeFbObject

iterator()
FieldbusDataElement

value
dataType
fbDataType
defaultValue
range
description

read()
write()
validate()

FieldbusObject

storageClass
accessRight

read(data : char*)
write(data : char*)

nn

nn

BlockPar
ameter

usage

Block

run()

LinkObject

Directory

blocks

Obj2Si()
si2Obj()

Smalles data entity
adressable from the
fieldbus

Figure 3: Class diagram showing the objects living in the block container.

6

1. Each time e.g. the value of a FieldbusObject should
be read or written the request has to be checked for
validity (e.g. valid datatype). In some cases it is nec-
essary to make sure that a change in one Fieldbu-
sObject is consistent with the values of some other
FieldbusObjects within a block. Then the responsi-
bility for this set of objects could not be in one Field-
busObjects.

2. The implementation of a block algorithm may be
active (i.e. have its own thread of control). For active
Blocks synchronised access to its FieldbusObjects is
required. Several design alternatives exist:

- One global lock in the container to fine-grained
locking in the get/set methods of each Block.

- Commercial tools like Rhapsody [1] or RoseRT
[2] provide an event-based solution (Ports and
Protocols) that the user must use for all active
objects.

3. For cyclical requests FieldBusObjects from different
blocks must usually be used to create a response
frame. FieldBusObjects distributed over different
blocks requires iteration to create the response
frames and therefore some kind of synchronisation.

The proposed architecture divides the field device soft-
ware into two parts:

- The infrastructure (framework) containing the Block
Container, Block and Parameter concept, Scheduler,
Access Manager, Persistent Storage, Local Opera-
tion, Fieldbus Stack and Mapper, and

- The application dependant Blocks like Function
Blocks and Transducer Blocks.

Table 1 summarizes the components, their reusability,
and variation points to adapt the components to the spe-
cific field device.

The main challenge lies in providing a framework that is
reusable within all kind of field devices. Therefore, the
architecture and its supporting component technology
should provide:

1. A framework that can be easily adapted to the spe-
cific field device.

2. An implementation model for Function - and Trans-
ducer Blocks that relieves these blocks from infra-
structure tasks like execution scheduling, persistent
parameter storage, access control, and access syn-
chronization. Furthermore this allows a component-
based implementation of the blocks itself to broaden
the potential reuse of finer-grained functions within
a device family (e.g. different control algorithms).

Component Reusability Variation Points
Block Container Through all field devices different Scheduler, Access Manager and Fieldbus

Mapper possible for adapting to field bus
Block (concept and
interface)

Through all field devices parameters and their configuration, sub-blocks

Function Blocks Through all field devices none, most of them are predefined by fieldbus specs
Transducer Block only within one device

family (profile)
Implementation of transducer block algorithm com-
posed of sub-blocks. Same transducer block algo-
rithm composed of sub-blocks can be packed into
FF and PA Transducer Blocks having different in-
terface in terms of parameters.

Local Operation through all field devices different implementations (e.g. display/buttons,
infrared, bluetooth)

Persistent Storage through all field devices different implementations possible for EEPROM or
Flash-PROM

Fieldbus Stack and
Fieldbus Mapper

through all devices of
one bus type

none beside stack configuration (will be a third
party component)

Table 1 Possible Components and their characteristics

7

5. Lessons Learned
The scenario gives indication, which functionality and
ability a component model should provide from the point
of view of the application domain. To name just a major
one, which is to handle resource constrains and it's im-
plications on the component technology.

To cope with the resource limitations is one domain spe-
cific problem. Another one is to support development of
real-time application assembled out of components. This
is a challenge by itself and a topic of investigations of the
last tens of years. The most prominent approaches are
RoseRT by Rational [2] and Rhapsody by Ilogix [1]. Both
of them apply the event base programming style and sup-
port implementation based on state automata, but do not
consider reuse or component orientation as their major
drivers. Therefor they start with UML-like specification
and extend the definition tools with functionality that

provides code generation for a specific target. Both ap-
proaches do not consider neither component model defi-
nition nor architectures, beyond the event based commu-
nication of “capsules” [2] or “active objects” [1]. Compo-
sition of applications out of components and active reuse
support by appropriate repository implementation is not
offered adequately either. For more details on that state-
of-the-art tools see the appropriate section in this report.

In order to make component-based software engineering
happen, not only for field devices, and to achieve a re-
duction of development cost and time by reuse of estab-
lished and proven components, it is not enough to solve
only one of the presented obstacles. An overall approach
for the development of component-based embedded soft-
ware is needed.

As we believe this approach has to comprise several main
features as depicted in Figure 4, which we have catego-
rised in five groups and describe below. In a first outline
the identified groups should concentrate of the following
issues:

Component model:
- addresses non-functional properties and constraints

such as worst-case execution time and memory con-
sumption

- allows to specify efficient functional interfaces (e.g.
procedural interfaces)

- allows to specify architectural styles that describe
components connections and containment relations

- allows for code generation and controlled component
adaptation when architectural styles are applied to
components (source language or generative compo-
nents)

Component-based architecture for field de-
vices:
- a framework for field devices that is expressed as

standard interfaces, components, and architectural
styles

- is based on field bus architecture
- express compile-time optimization abilities, which

could be applied during target code preparation

Repository:
- storage and retrieval of components during analysis,

design, implementation, and composition
- stores components and architectural styles according

to the component model including interface descrip-
tions, non-functional properties, implementation

Component
Repository

Composition
environment

Run-time
environment

Component
Model

Component-based
Architecture for

field devices

Figure 4: Component technology for embedded devices

8

(potentially for different micro controllers), support
scripts for composition environment, test cases

- supports component versioning

Composition Environment:
- supports composition techniques (visual or script

based)
- checks composition rules attached to architectural

styles in order to verify that a component configura-
tions meets their constraints

- performs component adaptation and code generation
for the application

- supports definition of composition rules, which in an
subsequent step could be compiled to architectural
styles description

Run-time Environment:
- provides an efficient implementation model for com-

ponents
- addressing the constraints for field devices: low

available memory, implementation possibly neces-
sary in C or optimized C++

- supports the approach to compile a component-based
design into a optimized firmware for the embedded
device, thus having no run-time environment beside
the RTOS

- allows for a hardware and RTOS independent im-
plementation of components (e.g. by an RTOS ab-
straction layer)

Based on these five categories, which make up the major
ingredients for a component-based systems (CBS) devel-
opment, we outline a vision of a software development
process taking these considerations into account.

6. Conclusion
In order to bring the advantages of component-based
software engineering to embedded systems the special
domain characteristics have to be taken into account. To
manage the development of the components a compre-
hensive proficient approach for embedded software is
needed. We divided this process into five categories in
which is concentrated to deal the requirements of field
devices.

To build a case study for an usable component based
software engineering system for field devices the ability
must be given to retain the special needs and require-
ments of the field devices in each step. We will address
this aspects in future work in context of the PECOS [8]

projects.

REFERENCES
[1] http://www.ilogix.com/fs_prod.htm
[2] http://www.rational.com/products/rosert/index.jsp
[3] Embedded C++ Specification,
http://www.caravan.net/ec2plus, 1999
[4] Profibus omepage, www.pno.org
[5] Fieldbus Foundation homepage, http://www.fieldbus.org/
[6] D. Schmidt, I. Pyarali, The Design and Use of the ACE
Reactor, Washington University,
http://www.cs.wustl.edu/~schmidt/ACE-papers.html
[7] F. Buschmann, A. Geisler, T. Heimke, C. Schuderer:
Framework-Based Software Architectures for Process Automa-
tion Systems, Proceedings of the 9th IFAC Symposium on
Automation in Mining, Mineral and Metal Processing (MMM
'98), Cologne, Germany, 1998
[8] PECOS Project Web Site, http://aurora.unibe.ch:8080/

