
PECOS is a collaborative project between industrial and
research partners that seeks to enable component-based
technology for a class of embedded systems known as "field
devices". In this paper we introduce to the software process,
which we are currently developing within this project. In
particular, we address the management of non-functional
requirements and constraints, as well as architectural issues
and the idea of product lines. We report on the current status
of the PECOS process, including its application within an
industrial case study.

Component-based Software Engineering, Software Process,
Component Technology

I. INTRODUCTION

Software engineering is far less developed for embedded
systems than for other application areas. Software for
embedded systems is typically monolithic and strongly
platform-dependent. Embedded Systems are difficult to
maintain, upgrade and customize, and they are almost
impossible to port to other platforms. Component-based
software engineering would bring a number of advantages
to the embedded systems world such as shorter
development times, the reuse of existing components and
architectures, and the ability for domain experts to
interactively compose and adapt sophisticated embedded
systems software.

Unfortunately, the mainstream IT players have not paid
very much attention to the (so far) relatively small
embedded systems market, and consequently little
component-based technology or tools for embedded
systems exists. The PECOS Project [6][7] is aiming at
enabling component-based development for embedded
systems, taking the domain of field devices as a case study.
The central concept of PECOS is a component model,
which is suitable for embedded devices. This model is
supported by the COCO language, which serves to specify
components and system architectures. For an overview of
PECOS concerning the component model and the CoCo
language see [1].

1
 ABB Corporate Research

Wallstadter Strasse 59
68526 Ladenburg, Germany
Tel.: +49 (6203) 71-6251, Fax: +49 (6203) 71-6253
[Christian.Stich|Christian.Zeidler]@de.abb.com

2 Forschungszentrum Informatik (FZI),
Haid-und-Neu-Straße 10-14,
76131 Karlsruhe, Germany,
Tel.: +49 (721) 9654-636, Fax: +49 (721) 9654-637
Email: winter@fzi.de

Around the model we are working on a development
environment (the composition environment), which
integrates a number of tools for efficient software
development, e.g. a tool for schedule generation. But this is
only half of the truth. The best tools will not help much, if
they are not employed systematically. A clearly defined
development process is needed in order to get as much out
of the component oriented approach as possible. The
software process has to answer the question, which has to
perform which development tasks at which point in time;
what the necessary input for this task is and which artifacts
it is intended to achieve. In order to enable a reasonable
development for field devices, we are currently evolving a
suitable software process within the PECOS project, which
will be presented in the following sections of this paper.

Therein, we want to focus on two central issues. The first
question we try to answer is how we enable the
development of families of PECOS field devices that means
families of field devices, which are somehow similar and
rely on a common architecture. This leads us to the question
how architectural patterns for field devices can be specified
and how we develop a specific device from a predefined
architecture. The second issue concerns the composition a
PECOS field device from an asset of pre-fabricated
components and how these components have to be coupled
not only on the functional, but also on the non-functional
level. This concerns first of all the development of global
schedules for specific field devices, but also the topic of
design rule checking.

The organization of the rest of the paper is the following. In
section III we present a high-level overview of a component
based software development process for PECOS field
devices. We then describe the tasks for component
development in section IV. Then, in section V we present in
detail the tasks that have to be performed during application
composition, with a focus on architectural issues and the
treatment of non--functional requirements. Finally, we
conclude with a summary and outlook of work to be done
next.

II. SOFTWARE PROCESSES

Software processes span the development, use, and
evolution of software systems. These processes consist of a
partial ordering of tasks, decomposable into sub-tasks and
actions that collectively describe how software systems
come to be the way they are. People with various skills and
resources perform these processes using a variety of
automated, semi-automated, or manual tools and
techniques. Over the time many different software

Michael Winter2, Christian Zeidler1, Christian Stich1

The PECOS Software Process

development processes where developed and are used in
different organizations.

Activity oriented: Waterfall model: A model of the
software development process in which the constituent
activities, typically a concept phase, requirements phase,
design phase, implementation phase, test phase, and
installation and checkout phase, are performed in that order,
possibly with overlap but with little or no iteration, see
Figure 1. Major drawback of this approach it the strict
sequential work order, which results in stringed workflows
and high risks and costs in case of failure detection e.g.
specification errors etc.
A specific flavour of that approach is the V-Model, which
defines the counterparts of activities, which have to be
performed in order to enable the validation of the system
with respect to the specification.

Phase driven Models: Other developed approaches
concentrate on the development phases and order them in
different relations in order to optimize iterative
development approach or enable parallel development on a
software product. Well known Approaches like the spiral
model of Boehm [5], see Figure 2, and some new
approaches as the Rational Unified Process (RUP) [3], see
Figure 3.

Common to all approaches it the introduction of
incremental development style to manage the complexity
reduces risks and introduces a more flexible project
planning. It’s worthwhile to read the referenced books in
order to get into more details.

III. PECOS PROCESS OVERVIEW

The PECOS process aims to enable component-based
software development for embedded systems, specifically
for field devices. This process addresses the major
technological deficiencies of state-of-the-art component
technology with respect to the non-functional requirements
of embedded systems, such as limited CPU power, memory
and hard real-time. The goal of the PECOS project is to
consider this issues more thoroughly in order to enable
assessment of these properties during the construction time.
We distinguish two kinds of development, the application
and the component development.

The topic of software processes with respect to components
concentrates on the methodology of software development
for a selected component model (e.g. EJB, COM, CORBA
Component Model or even self-made like PECOS one). It
defines a development processes or selects one of the
existing, e.g. RUP [3], Catalysis [4] etc., and adopts or
extends them to the needs of what is missing or needed for
CBSE. It has to be considered for initial system
development as well as for evolving software systems, the
latter comprising to some extend re-engineering aspects. In
general all software development phases have to be
reconsidered in context of software components.

System-
Analyse

System-
Spezification

System-
Design

Modul-Spezif.
und -Design

Coding,
Modultest

Deployment
a. Maintain.

Integration a.
System test

Figure 1 Waterfall Model

Figure 2 Spiral Model of Boehm

Figure 3 Iterative approach of the RUP Model

The two listed examples could serve as a blueprint for the
software processes definition, even if they are matters of
religious discussions. What we indeed try to outline is a
generous way of software process for CBSE. It is of course
pretty coarse-grained but enables a common understanding
of needed procedures. Thereby we assume that any
component-base application development applies an
iterative development model. Its n-iteration respectively
uses the waterfall model, where requirements specification,
rough and fine design, implementation, documentation,
testing (module and integration), and getting in operation is
executed, see Figure 4.

IV. COMPONENT DEVELOPMENT

Typically the development of a
PECOS component is triggered
during application composition
when the need for a component is
identified and this component cannot
be provided from the component
repository.
A person in-titled component
developer carries out the
development of a new PECOS
component. This role stresses the
distinction between component
development and application
composition from components.

The tasks of component
development, as shown in Figure 5,
are presented in the following sub-
sections in a linear style. In praxis,
several iterations over this process
may be necessary.

A. Requirements Elicitation &
Analysis

During requirements elicitation, the requirements of the
component are collected. They comprise functional as well
as non-functional aspects. The functional aspects concern
the data flow in and out of the component. The non-

functional aspects concern timing constraints, memory
consumption and the like. The application developer who
identifies the need for a component with certain
characteristics generally performs requirements elicitation.

During requirements analysis, the component developer, as
formulated by the application developer, reviews the
component requirements. Requirements analysis aims at
revealing inconsistencies and ambiguities in the
requirements, which are inherent to specifications in natural
language.

B. Interface Design

The next step is to define the component’s interface in a
formal way. In PECOS this is done with the CoCo
language. The component interface contains information
both about functional (data ports) as well as non-functional
characteristics (properties) of the component.

1) Specify component type
First, a decision upon the kind of the component has to be
taken. The PECOS component model defines three kinds of
components: passive, active and event components. For a
detailed presentation of the different kinds of components,
please refer to the PECOS component model [1]. Then, the
component can be characterized by specifying its name,
ports and properties.

2) Specify Ports
The component’s in- and out-ports specify the functional
part of the interface. PECOS component port is a data
exchange point, which is used to communicate with other
components. A component may read form its in-ports and
write to its out-ports when it is scheduled. The design of the
component’s ports has to be suitable with respect to the
functional and non-functional requirements that have to be
met by the component.

3) Specify Properties
In addition to its type and its data ports, a component is
characterized by a set of properties. Properties are name-
value pairs, which describe (typically non-functional)
characteristics of a component. Common properties are:
memory consumption, worst-case execution time etc.
During interface design, the kinds of properties of the
component are specified while the property values are
typically assigned later in the development process.

C. Component Implementation

The next step to take is to specify the behavior of the
component. Therefore the following two tasks have to be
carried out.

1) Select Implementation Language
First, an implementation language has to be chosen. At the
moment PECOS is supporting C++ and Java. This step may
be pre-determined, as the implementation language within a
single PECOS application has to be consistent. Thus, the
implementation language may be determined in the
component’s requirements.

2) Generate Code Skeletons & Fill in Code
Depending on the implementation language, a tool is used
to generate code skeletons for either Java or C++ classes.

Traditional Waterfall Micro Process

3. Create

Component-Based Application Development

1. Find 2. Select 4. Adapt 6. Replace5. Deploy

Requirements Design Implementation Test Release

Figure 4 CBSE Process: 2 layers

Requirements
Elicitation

Interface
Specification

Test & Profiling

Documentation &
Release

Implementation

Figure 5
Component

Development
Steps

These classes provide a base class with method interface,
which is declared as virtual. A derived class has to be
implemented to perform the functional behavior of the
required component. Each type of component - passive,
active or event - requires a different method-interface.

D. Testing

Testing is an important concern to assure the software
quality. The level of software testing dealt with in particular
is the ‘unit test’ level and concerns the functional properties
of software components.
Testing needs to be carried out in such a way that it is
reviewable, (automatically) repeatable, and leaves an
auditable trace of what happened. Testing should also be
carried out in such a way that these tests can be modified
and reused at a later date.

The task of testing consists of the following activities:
• Specify test cases
• Implement test cases
• Execute test cases
• Analysis Test Result

First, test cases have to be specified. Test cases in PECOS
specify the relationship between in- and out-port values: A
test case describes which results are expected on a
components out-ports, for a given setting of the in-ports.
• Inputs to a component under test are parameter values

going in the component.
• Outputs are out-port value parameter

Separate test cases are repeated as many times as necessary.
Test case implementation is the task of coding the test cases
in a form, which enables an automated execution by some
testing tool.
PECOS supports three different methods for testing:
• STUBS is an option to simulate calls using so-called

‘stubs’ and it gives the possibility to simulate the
behavior of external calls.

• NEGATIVE checks ensures that the software under
test does not do what it should not do.

• TIMING checks. Often it is not only necessary to
ensure that a given component has the correct logical
behavior. It must be ensure that the timing performance
is acceptable.

Test case execution denotes the actual execution of the test.
Finally, the test results have to be interpreted and either led
to the insight, that a component indeed behaves as expected
or that some error has occurred.

E. Profiling

The profiling step collects detailed non-functional
information about the component. The goal is to provide
explicit reports that indicate for instance how much a
particular function takes to execute as well as how often it
is called within a component. Runtime performance is
collected by a system running remotely the embedded

component. This allows manual optimization of the
nonfunctional behavior.
Profile collection in a real-time domain is a two-phase
process:

a. Online sample collecting
b. Offline profile analysis

This separation allows minimizing the on-line overhead and
the time consumption of profile collection by deferring as
much work as possible until off-line processing.
We distinguish three different techniques for collecting the
non-functional properties in the PECOS process for each
component type:

1) Time sampling
The processor’s instruction counter is used to monitor and
collect timing data.

2) Source code insertion
The profiler uses instrumentation code inserted into the
component to determine the non-functional information.

3) Binary instrumentation
 The profiler analyzes binary sequences and a new binary
containing instrumentation code is generated.

F. Documentation & Release

The component documentation is basic for applicability of
the component. The application developer, who reuses the
component, needs detailed information about at least the
black-box behavior. This component profile has to match
his requirements.
Hence, before the component can be released, it has to be
properly documented. Documentation is an important
subject to increase the re-use and the quality of the
component.
Component documentation templates guaranty common
description and consist of the descriptions for:

1) Behavior
2) Interface, In- and Out-ports
3) Test result
4) Profile with non-functional properties
5) Recipes and use cases

Meta-techniques help to get the white-box and the behavior
description more in detail. Recipes and use cases give ideas
how to use the component in composed applications and
steer the component developer to have the re-use of the
component in mind.
The last step of the component development is to release
the component to the application developer. This task has to
assure that the component is packaged in a form to be easily
used by the application developer. To collect the profile of
the component a common test-bed is used in which the
component is executed on the target system.

V. APPLICATION DEVELOPMENT

In the previous section, the development of PECOS
components has been presented. As already mentioned, the
development of PECOS components is triggered during
application composition. This task is the major activity
during application developing.

As a starting point for the composition of a PECOS
application, a global architecture is given (see section
V.A.2). It defines the de-composition of the application into
components, which are sub-systems at this level of
granularity. This decomposition is stepwise refined and
filled with content during application composition.

It has to be pointed out, that application composition is a
highly creative activity of system decomposition and that
the tasks presented in the sequel are strongly interrelated.
Therefore, a purely linear process description like in the
waterfall model is surely over-simplified.

In the PECOS process, see Figure 6, just as in any modern
software process, the principle of step-wise refinement is
addressed by repeated iterations over a linear process. This
process is presented in the following sub-sections.

A. Preamble

The requirements specification of a field device addresses
the three parts of the device: the mechanics, the hardware
and the software. Application development is the process of
producing a software system conforming to the software
requirements of the device.

The requirements specification of a field device addresses
the three parts of the device: the mechanics, the hardware
and the software. Application development is the process of
producing a software system conforming to the software
requirements of the device.

1) Requirements Elicitation
Requirements elicitation is the first activity in every
software development process. Nevertheless, it is not
addressed within this paper. But we assume that the
requirements for the application to be built are readily
available. This is legal for the special domain of field
devices we are considering here:
In these domain requirements engineering only makes sense
for a complete field device, comprising its mechanical,
hardware and software parts altogether. As we solely
consider the software part here, we may assume the
software requirements to be given.

2) Architecture Specification
The second step in developing a PECOS application is to
design the high-level system decomposition that means the
architecture of the application. Typically, the system
architecture will not be designed from scratch. But rather a
standard architecture is taken and adapted to the needs of a
specific PECOS application. This comes from the fact, that
field devices are most probably part of a product family
with similar requirements and architectures.
The used of a standard architecture has several advantages.
First, it promotes a faster development, as high-level design
information is reused. And also the probability that ready
available software components built for former applications
fit into the application is increased.
Second, a standard architecture, which has already been
used for several times in slightly modified ways, is well
known and has been approved to fit the needs of field
devices.

B. Identify Components

The first task of each iteration taken during application
composition consists of identifying components. On the
uppermost level, the application architecture defines the
decomposition of the application into components. This
decomposition is very coarse-grained and the identified
sub-systems generally cannot be realized directly. But they
have to be decomposed into smaller components in order to
manage their complexity.
The aim of component identification is to decompose a
given component into more fine-grained components. This
is performed until the establish decomposition is fine-
grained enough to be realized.

C. Query for Components

The query for components task is employed in order to
search for ready available components which can be used to
realize a given system decomposition. This task is
supported by a component repository, which contains a
collection of available components.
Several concrete techniques can be used to find components
in the repository. E.g. a simple string-matching search can
be performed. Another possibility is to structure the
repository in a tree-like manner and to use this structure to
look for components. In praxis, most probably a
combination of these two methods will be used.
It is obvious that querying for components and identifying
components are two highly related tasks. The system
decomposition (top-down approach) results in components
which are needed to realize the application. The other way
round, the availability of certain components (bottom-up
approach) may influence the system decomposition.

D. Select Components

Querying the repository results in a list of available
components. These have to be inspected in order to find
out, if they can be used to realize a part of the application.
Depending on the available components, a number of
different actions may be necessary.

Identify
Components

Query for
Components

Select

Compose
Components

Figure 6 Application
Composition Tasks

If the set of components, resulting from the query, contains
a component, which is suitable to directly realize a part of
the application, perfect reuse is enabled. This 100% match
scenario may not seem very probable. But in the context of
product families that rely on a standard architecture, this
becomes possible.
In the case of an almost suitable component, adaptation to
the reuse context may be possible with little effort. Or, as
an alternative, it may be possible to use the component after
slightly modifying the system decomposition itself.
If no suitable component can be found, the task of
component development is triggered. This case has already
been looked at in section IV.

E. Compose Components

The previous tasks are assumed to lead to a set of
components, which are suitable to realize (parts of) the
application. The next step to be taken is to compose them.
Wiring components in PECOS means to determine the data
and control-flow dependencies between these components.
It is sufficient to connect corresponding in- and out-ports.
The control-flow is responsible to actually push the data
through the connections. This is addressed by an
application-global schedule, which conforms to the timing
requirements of the device. For a detailed presentation of
the PECOS execution model see [6].
Composition rules and contracts are used to specify
constraints over a composition and to back a correct-by
construction approach. Rules designate constraints over a
component or composition in terms of predicates over
component properties. They only refer to statically
available information, as they do not direct to information
that is only attainable at runtime.
Besides determining the constraints and the flow between
components, additional non-functional properties have to be
taken into account. One example therefore is power
consumption.
After composing the composition compiler maps active
components to separate threads. The assignment of
priorities, periods and deadlines are specified by component
properties. The application schedule is computed form these
values.
To be able to execute the composed application an
execution environment is introduced. A very thin
abstraction layer abstracts from the underlying real-time
operating system and provides language independent
interfaces for synchronization and a common application-
programming interface.

F. Application Test

The non-functional and the functional behavior of the
composed application have to verify according to the
application requirements.
The task of testing consists of the following activities:
• Specify test cases
• Implement test cases
• Execute test cases
• Analysis Test Result

First, test cases have to be specified. A test case describes
which results are expected.
Test case implementation is the task of coding the test cases
in a type, which enables an automated execution by an
application-testing tool.
Automation is used to replace or supplement manual testing
with a suite of test programs. Manual testing often yields
inconsistent coverage and results. An automated test suite
ensures the same scope and process is used repeatedly each
time testing is performed. The automated test detects
functional and performance issues more efficiently,
allowing focusing on improved time to market, repeatable
test procedures, and reduced testing costs.
Every integration test should include a test plan and a test
report. The test plan includes a detailed description of the
test scope, setup and procedures. It is essential when the test
requires manual operation. It should also include a trace-
ability matrix with the functional specifications. The test
report should be issued and updated after major testing
sessions (like a new release) and contain indication of all
problems encountered during testing [8].
Functionality testing verifies that all of an application's
features perform in a fitting manner. Application designers
usually perform functionality tests while designing and
debugging single components or the whole application.
Reliability testing ensures that the application functions
properly. To perform reliability testing, the application runs
it continuously for several time, error are monitored the
entire time.
For new application versions is our aim to have fully
automatic regression testing for integration. Regression
testing evaluates the performance and functionality of
software and software upgrades. Regression testing differs
from functionality testing because it tests features that the
hardware or software carries over from its previous version,
rather than testing new features. Regression testing
demonstrates how a new version of a composed application
fixes bugs from the previous version and finds bugs that the
new version introduces.

Finally, the test results have to be interpreted and either
guide to the insight, that the composed application in fact
behaves as expected or one more application assembly
iteration step is needed.

G. Application Documentation and Deployment

Maintenance plays a key role in software engineering. It
consumes the greatest proportion of expenses in the
software life cycle. Although tools that support program
comprehension on source code and component level are of
great help, adequate documentation is the most obvious and
effective way to support this comprehension process.
Software documentation is a necessity to enable
maintenance, and increasingly attention is being paid to it in
practice.
The application documentation consists of the following
sections:
• Requirements
• Architecture

• Functionality
• Tests
• Used components

Documentation, configuration and released application
build the deployment package. The release is documented
in the software package definition, in which the
identification of the system and its components is
presented. The release is based on the formal inspection of
the test results.
Deployment manages the evolution of the application after
it has been developed. It manages the install process,
updating, reconfiguration and adapting software. An
intelligent deployment tool can be used to manage,
package, and deploy the component-based application on a
set of embedded devices to the embedded device.

VI. SUMMARY

The presented component-based development process
subsumes the steps needed to develop applications out of
components and in special cases the development of
component itself. It concentrates especially on the
composition phase, where we invest in methodologies
enabling to predict the quality of a composed application as
well as the stability. With enrichment of the component
model with non-functional properties we are investigating
in prediction of the behavior of composed systems, while
we first address the need of small embedded devices i.e.
micro controller time and memory consumption. The next
steps we will investigate in are the validation of
composition against the executions constraints of single
components and validation of the scheduling, generated in
consideration of these constraints. Furthermore we will
investigate in the problem of version management of
components and look for pragmatic approaches guiding
software developers how to program components, which
are exchangeable and so, enable system evolution.

VII. ACKNOWLEDGEMENT

The work presented in this paper is part of the research
project PECOS [7] granted by the European Commission
under the IST Program IST-1999-20398.

VIII. REFERENCES
[1] Oscar Nierstrasz, Gabriela Arévalo, Stéphane Ducasse, Roel

Wuyts, Andrew Black, Peter Müller, Christian Zeidler, Thomas
Genssler and Reinier van den Born, A Component Model for Field
Devices, Component Deployment 2002, Berlin, June 20-21

[2] Watts S. Humphrey, Managing the Software Process, Addison
Wesley Longman, Inc, 1989.

[3] Ivar Jacobson, Grady Booch, James Rumbaugh, Unified Software
Development Process, Addison-Wesley, Object Technology Series,
ISBN: 0201571692

[4] Alan Cameron Wills and Desmond francis D’Souza, Objects,
components, and Frameworks with UML – The Catalysis Approach,.
Addison-Wesley, 1999.

[5] Barry W Boehm, Software Engineering Economics, Prentice Hall,
1981

[6] P.O. Müller, C. Stich, C. Zeidler, Components @ Work:
Component Technology for Embedded Systems, 27th Euromicro
Conference, Euromicro Workshop on Component-based Software
Engineering, Warsaw, Poland, September 4th – 6th, 2001

[7] The PECOS consortium. Pervasive Component Systems.
http://www.pecos-project.org. 2000-2002

[8] Andreas Stelter, Software Process Guidelines, ABB Automation
Products, 2001

