
The Bumpy Relationship of Developers and Cryptography

Mohammadreza Hazhirpasand

Faculty of Science
Institute of Computer Science

University of Bern

Prof. Dr. Oscar Nierstrasz

Dissertation

The Bumpy Relationship of Developers and
Cryptography

for the attainment of the PhD degree of the University of Bern

written by

Mohammadreza Hazhirpasand
from Rasht, Iran

Bern, April 2022

Supervisors:

Prof. Dr. Oscar Nierstrasz

Prof. Dr. Mohammad Ghafari

Examiner:

Prof. Dr. Awais Rashid

Created at:

Institute of Computer Science

University of Bern

Hochschulstrasse 6

CH-3012 Bern

Typesetting:

.com

LATEX, LaTeX Project Public License (LPPL)

UZH/USZ habilitation template from J. von Spiczak, CC BY 4.0

ETH CADMO template from F. Mousset and H. Einarsson

Print:

Copy Shop AG

Bahnhofstrasse 1

CH-8001 Zürich

https://www.copyshop.ch/

https://www.copyshop.ch/

I would like to acknowledge and give my warmest thanks to Prof. Oscar
Nierstrasz. His profound knowledge about various facets of life and his impec-
cable character not only helped me in computer science but also shed light on
other areas throughout all these years. A debt of gratitude is also owed to Prof.
Mohammad Ghafari whose expertise and criticality considerably improved my
initially dim academic views. This journey could have never been completed
without the presence, constructive feedback, and amazing accompany of my
dear intelligent colleagues, namely Pascal, Nitish, Manuel, Pooja, and many
others who visited us off and on. Moreover, I would like to thank Arvin, Da-
nial, Hamed, Arian, any many others who were not present in Switzerland but
they never failed to give their moral support. I am deeply grateful to my won-
derful mother whose unconditional love has given me life and hope. Finally, I
would like to dedicate my dissertation to my departed father whose delightful
memories have always inspired and emboldened me to surmount even the most
formidable obstacles.

Abstract

As the cornerstone of the internet, cryptography is becoming increas-
ingly important in software development. Nevertheless, the way this
cornerstone is laid is so critical that a mistake can result in grave rep-
utational and financial loss. Given the rapid growth of applications for
various platforms and devices, developers with varying levels of expertise
are more likely to make catastrophic mistakes in employing cryptogra-
phy. The imminent threat of misusing cryptography prompted us to
investigate what factors impede developer performance.

Having explored how cryptography is used in open-source as well as
enterprise projects, we realized that crypto API misuses do occur in both
areas. To understand the primary causes, we investigated the prevalence
of crypto API misuse from two major aspects, i.e., the API and developer
perspectives, and presented feasible remedies.

From the API perspective, we conducted three studies on Stack Over-
flow: (1) a large-scale analysis of 91 954 crypto-related questions, (2) an
analysis of 500 questions with regards to 20 crypto libraries, and (3) a
close scrutiny of Java crypto APIs. We realized that there is a distinct
lack of knowledge among askers in fundamental concepts, such as cer-
tificates, asymmetric and password hashing, and that the complexity of
crypto libraries weakened developer performance to correctly implement
a crypto scenario. More specifically, libraries are not yet designed so as
to help avoid inadvertent misuse, aside from their problematic installa-
tion and usage. The API-level analysis showed that APIs require myriad
options and leave developers inundated with many alternatives to choose
from. Furthermore, the code snippets, as well as solutions on Stack Over-
flow, contain security violations, resulting in a massive ripple effect as
others may end up with untrustworthy sources and examples.

From the developer perspective, we conducted four studies: (1) an
analysis of developer performance in using crypto APIs, (2) gathering
open-source maintainers’ feedback for their crypto misuses, (3) a survey
with 97 developers who used crypto APIs in open-source projects, and (4)
an analysis of crypto experts’ activity on Stack Overflow and GitHub.
We found out that four factors of developer experience, i.e., developer
involvement in multiple projects, the number of crypto commits, crypto
API diversity, and the frequency of committed lines of code, did not im-
prove developer performance over time. Developer feedback on GitHub
revealed that security hints in API documentation are scarce, that some
misuses stem from third-party libraries, and that code context affects
the way crypto APIs are used. While being concerned about security,
developers often fail to incorporate security standards into their develop-
ments, e.g., low rate of adoption of security tools or security-concerned
questions on Stack Overflow. They also have a low tendency towards
consulting educational sources particularly tailored for cryptography and
are more inclined to turn to untrustworthy sources, e.g., Stack Overflow.
The findings showed that crypto experts’ practices on GitHub accord
with the crypto topics and programming languages they feel confident
to contribute on Stack Overflow.

iv

As for plausible remedies for alleviating crypto API misuses, we con-
tacted the top 1% of crypto experts to collect their views regarding root
causes and solutions. Crypto experts mentioned that the root causes for
the challenging areas can be classified into three major categories: learn-
ing resources, crypto APIs, and human-related. They also suggested a
number of solutions, such as employing misuse-resistant libraries and im-
proving one’s knowledge by consulting dependable online sources, e.g.,
Coursera. We also introduced a tool, i.e., CryptoExplorer, to assist de-
velopers by delivering real-world examples. A preliminary study of Cryp-
toExplorer showed that the tool helps developers explore secure crypto
examples and learn how to correctly use crypto APIs by comparing ex-
amples of correct uses and misuses.

We conclude that existing approaches may arguably have a limited
impact, cannot be practical on a large scale, and can only target a spe-
cific audience. We believe that there are two promising methods to cope
with this issue successfully: (1) developing misuse-resistant crypto APIs
to render unintentional API misuse exceedingly improbable, (2) produc-
ing high-quality, easy-to-understand, and entertaining online tutorials to
broaden developer knowledge in this domain.

v

Contents

Contents vi

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Thesis Statement . 3
1.2 Contributions . 3
1.3 Outline . 5

2 State of the Art 7
2.1 The importance of security . 7
2.2 Knowledge acquisition . 8
2.3 Crypto API misuse . 10
2.4 Tools . 12
2.5 Developer performance . 13

3 Cryptography in the wild 17
3.1 Study design . 18

3.1.1 HackerOne . 19
3.1.2 Java projects . 22

3.2 Results and discussions . 24
3.2.1 HackerOne . 24
3.2.2 Java projects . 31

3.3 Threats to validity . 33
3.3.1 HackerOne . 33
3.3.2 Java projects . 34

3.4 Summary and conclusion . 34

4 Crypto hurdles - the API perspective 37

vi

Contents

4.1 Study design . 38

4.1.1 General crypto questions analysis 39

4.1.2 Crypto libraries analysis 42

4.1.3 Java symmetric APIs on Stack Overflow 44

4.2 Results and discussions . 50

4.2.1 General crypto questions analysis 50

4.2.2 Crypto libraries analysis 55

4.2.3 Java symmetric APIs on Stack Overflow 60

4.3 Threats to validity . 65

4.3.1 General crypto questions analysis 65

4.3.2 Crypto libraries analysis 65

4.3.3 Java symmetric APIs on Stack Overflow 66

4.4 Summary and conclusion . 66

5 Crypto hurdles - the developer perspective 69

5.1 Study design . 70

5.1.1 Developer performance 71

5.1.2 Developer feedback . 72

5.1.3 Developer survey . 72

5.1.4 Experts’ practices . 75

5.2 Results and discussions . 79

5.2.1 Developer performance 79

5.2.2 Developer feedback . 87

5.2.3 Developer survey . 91

5.2.4 Experts’ practices . 98

5.3 Threats to validity . 100

5.3.1 Developer performance 100

5.3.2 Developer feedback . 101

5.3.3 Developer survey . 101

5.3.4 Experts’ practices . 102

5.4 Summary and conclusion . 102

6 Root causes and Remedies 105

6.1 Study design . 106

6.1.1 Experts’ opinions . 107

6.1.2 CryptoExplorer . 109

6.2 Results and discussions . 112

6.2.1 Experts’ opinions . 112

6.2.2 CryptoExplorer . 120

6.3 Threats to validity . 121

6.3.1 Experts’ opinions . 121

6.3.2 CryptoExplorer . 122

6.4 Summary and conclusion . 122

vii

Contents

7 Conclusions 123

Bibliography 125

viii

List of Figures

1 The methodology followed to answer the first research question . . 18

2 The total number crypto reports per year 21

3 The misuses vs. uses of each API in percentage 33

4 The methodology followed to answer the second research question 38

5 Hierarchy of technical aspects categories 47

6 The results of manual analysis for the three topics 51

7 Number of issues assigned to the technical aspect categories . . . 61

8 Number of issues assigned to the requirement categories 62

9 The relative overlapping of technical aspects and requirements cat-
egories . 64

10 The methodology followed to answer the third research question . 70

11 The pipeline for collecting and analyzing top crypto responders . . 75

12 The number of secure, total number of commits, and number of
JCA developers in each year . 80

13 The distribution of developers and their commits in different projects 81

14 The secure versus total number of each API use in percentage . . . 82

15 Secure and buggy commits based on the number of JCA commits
grouping . 84

16 Performance vs. number of JCA commits 85

17 Secure and buggy commits based on API grouping 86

18 Performance vs. number of APIs 87

19 Years of experience in programming and Java 92

20 Security concern by participants 93

21 How developers evaluate a crypto copy-pasted code 94

22 Security concerns by companies . 95

23 Security support provided by participant companies 96

24 The number of developers based on their percentage of Stack Over-
flow programming languages usage in GitHub repositories 99

ix

List of Figures

25 The numbers of developers with experience in each crypto concept
on Stack Overflow and GitHub . 100

26 The methodology followed to answer the fourth research question . 106
27 The steps taken in this study to contact top 1% of crypto respon-

ders on Stack Overflow . 107
28 The workflow of CryptoExplorer 111
29 Exploring code examples based on a given code snippet 112
30 Crypto libraries with which the participants mainly work 113

x

List of Tables

1 The structure of the collected data from HackerOne 20
2 The selected weakness types and the associated number of reports 21
3 Fields of each API use in CryptoMine 23
4 The eight crypto themes on HackerOne, underlying causes, and

mitigations . 29
5 Mostly misused APIs with more than 10 misuse types 33

6 The selected crypto libraries and their associated number of posts
on Stack Overflow . 42

7 The selected weakness types and the associated number of reports 44
8 The collected security rules . 49
9 The three topics and their top keywords 52
10 The deduced themes, number of posts in each theme and associated

description . 55
11 The number of assigned posts to each theme in a crypto library . . 57
12 The number of issues assigned to the technical aspects subcategories 62
13 The number of found security violations based on the collected rules 64

14 Factors to explore in the survey . 73
15 The 64 crypto tags and associated unique top 1% crypto responders 76
16 The selected crypto libraries in the seven programming languages . 78
17 The status of projects and commits 80
18 The status of developers and their commits 81
19 The Spearman correlation matrix 83
20 The Wilcoxon signed rank test result for the performance vs. counts 84
21 The Wilcoxon signed rank test result for performance vs. API . . 86
22 The information sources that developers use - bold items are the

highest in each row . 94

23 The status of projects and commits 110

xi

Chapter 1

Introduction

Nowadays security is an inextricable part of software development. This is
due to the fact that malicious minds employ advanced techniques to bypass
security measures. We discovered, for instance, that clever methods in click-
jacking attacks allow attackers to lure victims into granting web permissions
unwittingly [73]. In one study, we discussed the latent inherent flaw used by
attackers that can circumvent the same-origin policy of browsers and severely
jeopardize the security of the users’ internal network [67]. Similarly, we demon-
strated the peril of using JavaScript together with a flaw in WebRTC to scan
the users’ private network and conduct a seemingly invisible enumeration [68].
To shield software systems, security professionals observe three essential secu-
rity goals, i.e., confidentiality, integrity, and availability. Overlooking any of
the three aforementioned pillars causes a major loss to software companies.

There exist a number of well-known attacks, leaving each of the aforemen-
tioned pillars vulnerable. For instance, adversaries conduct snooping attacks
to jeopardize the confidentiality, replaying attacks to threaten the integrity,
and denial of service attacks to put the availability of software systems at risk.
Fortunately, most of such attacks can be effectively prevented provided that
developers use the recommended secure coding practices. However, due to the
nature of open-source software and the fast-growing pace of information tech-
nology, developers might possess varying levels of expertise/experience and
educational background. The diversity exacerbates the problem so that de-
velopers can be dimly aware of the inevitable consequences of insecure coding
practices.

Cryptography is indispensable to information security in supporting the
three essential goals, i.e., integrity, confidentiality, and authentication [26].
Hence, developers’ mistakes in employing cryptography can bring about un-
desirable outcomes, e.g., infringing users’ privacy. For instance, integrity, as
one of the objectives, ensures that data are not changed in transit and manip-
ulation is not permitted by an unauthorized person or program. There exist
measures often referred to as cryptographic checksums, e.g., Message Au-

1

1. Introduction

thentication Code (MAC), to verify integrity. Nevertheless, choosing a weak
hashing algorithm for integrity checks results in security breaches if adver-
saries attempt to conduct tampering, injection, or brute-force attacks [113].
The second goal of cryptography is to provide confidentiality in a way that
a concealed message cannot be read by unauthorized parties. This process
commonly necessitates the usage of cryptographic keys so that the recipient
decrypts the message with a key that may or may not be the same as the
one used by the sender. However, developers’ inadequate knowledge causes
poor, insecure choices in areas such as algorithms and key sizes [119]. For
instance, developers either unwittingly use DES as an algorithm for encryp-
tion/decryption or knowingly choose a strong algorithm but opt for weak key
sizes, imposing severe security risks on the entire software system. The third
goal of cryptography is to provide authentication in which a user can prove
their identity to other users. This can be achieved by digital certificates. En-
tailing various subjects, digital certificates, however, have a steep learning
curve for developers [77].

Indeed, such mistakes stem from two major sources, (1) inadequate knowl-
edge of developers, (2) the complexity of crypto APIs. Regarding cryptogra-
phy knowledge, developers who do not work in a company may not receive
any formal security training or have no access to a security consultant. Even
if working in a company, developers may still not benefit from any security
training [76]. Yet, general security training, if provided, cannot alone posi-
tively impact developers’ performance in writing secure code [97]. As a con-
sequence, developers feel a conspicuous lack of confidence while working with
cryptographic concepts and seek quick solutions from online sources. Unfor-
tunately, the official documentation of various programming languages does
not sufficiently deter developers from using insecure APIs or parameters ow-
ing to the lack of security hints [72]. Hence, developers refer to online forums,
e.g., Stack Overflow, to resolve the uncertainties but such places have proven
to contain unverified code snippets and suggestions. A blind imitation of re-
sponses from such online sources can inadvertently influence the security of
thousands of software systems.

The second decisive factor in emerging crypto mistakes is the noticeable
complexity of crypto APIs. There are commonly several crypto libraries for
any given programming language, most of which suffer from usability smells
[120]. Improving APIs often tends to be a challenging task since not only
is the presence of API authors required but also any drastic changes in such
APIs would cause backward compatibility issues. A more feasible approach
suggested by researchers is to add code examples to the documentation, which
provide immense help for the comprehension of how an API works. Although
static analysis tools enable developers to alleviate the hardship of securely
using crypto APIs, developers are not willing to use such tools due to various
reasons, e.g., project-level constraints, or unfamiliarity with such tools [147].

2

1.1. Thesis Statement

1.1 Thesis Statement

This study aims to investigate what factors impede developer performance in
using cryptography correctly. We explain our thesis as follows:

Cryptography is perceived as being hard by developers and requires expert knowledge
to understand its various sub-areas, e.g., symmetric/asymmetric encryption. De-
velopers also do not benefit from extensive learning material, reliable sources, and
security tools in their development.

To investigate the root causes of why cryptography is misused, we explore
various aspects of crypto APIs and developer practices. We conduct several
studies to understand which issues are common, why these issues occur, and
what feasible solutions can alleviate the issues. In particular, we are going to
address this grave concern with four major research questions (RQs). Each
RQ provides valuable insights into why developers struggle with using crypto
APIs correctly. The four RQs are as follows:

• RQ1: What crypto mistakes do developers make in the wild?

• RQ2: What hurdles are mostly discussed concerning crypto APIs?

• RQ3: What are the practices of developers in using cryptography?

• RQ4: What are the feasible remedies to alleviate the issue of misusing
crypto APIs?

1.2 Contributions

In this study, our contributions are presented in various published papers.
There are a number of works in which the participation of developers was
part of the research work. However, we acquired the necessary permission
and research ethics within our research group to conduct such studies. We
list the published research papers with the � icon, the proposed tool papers
with the r icon, and the submitted papers with the icon.

Motivation : The motivation of why security is important:

– Chapter 2 → � Mohammadreza Hazhirpasand, Mohammad Gha-
fari, and Oscar Nierstrasz. Tricking Johnny into granting web per-
missions. In Proceedings of the Evaluation and Assessment in Soft-
ware Engineering, pages 276–281, 2020
� Mohammadreza Hazhirpasand and Mohammad Ghafari. One
leak is enough to expose them all. In International Symposium on
Engineering Secure Software and Systems, pages 61–76. Springer,
2018
� Mohammadreza Hazhirpasand, Arash Ale Ebrahim, and Oscar

3

1. Introduction

Nierstrasz. Stopping DNS rebinding attacks in the browser. In
ICISSP, pages 596–603, 2021
� Arash Ale Ebrahim, Mohammadreza Hazhirpasand, Oscar Nier-
strasz, and Mohammad Ghafari. FuzzingDriver: the missing dic-
tionary to increase code coverage in fuzzers. In IEEE 29th Inter-
national Conference on Software Analysis, Evolution and Reengi-
neering (SANER). IEEE, 2022

RQ1 : To study how cryptography is used in the wild:

– Chapter 3 → � Mohammadreza Hazhirpasand and Mohammad
Ghafari. Cryptography vulnerabilities on HackerOne. In IEEE
International Conference on Software Quality, Reliability and Se-
curity. IEEE, 2021
� Mohammadreza Hazhirpasand, Mohammad Ghafari, and Oscar
Nierstrasz. Java cryptography uses in the wild. In Proceedings of
the 14th ACM/IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement (ESEM), pages 1–6, 2020

RQ2− 3 : Hurdles in cryptography:

– Chapter 4 → � Mohammadreza Hazhirpasand, Oscar Nierstrasz,
Mohammadhossein Shabani, and Mohammad Ghafari. Hurdles for
developers in cryptography. In 37th International Conference on
Software Maintenance and Evolution (ICSME), 2021
� Mohammadreza Hazhirpasand, Oscar Nierstrasz, and Moham-
mad Ghafari. Dazed and confused: What’s wrong with crypto li-
braries? In 18th Annual Conference on Privacy, Security and Trust
(PST). IEEE, 2021
� Mohammadreza Hazhirpasand, Mohammad Ghafari, Stefan Krüger,
Eric Bodden, and Oscar Nierstrasz. The impact of developer experi-
ence in using Java cryptography. In 2019 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 1–6. IEEE, 2019
� Mohammadreza Hazhirpasand, Oscar Nierstrasz, and Moham-
mad Ghafari. Worrisome patterns in developers: A survey in cryp-
tography. In Proceedings of the 36th IEEE/ACM International
Conference on Automated Software Engineering Workshops, 2021
� Mohammadreza Hazhirpasand, Oscar Nierstrasz, and Moham-
mad Ghafari. Crypto experts advise what they adopt. In Pro-
ceedings of the 36th IEEE/ACM International Conference on Au-
tomated Software Engineering Workshops, 2021
� Mohammadreza Hazhirpasand, Mohammad Ghafari, and Oscar

4

1.3. Outline

Nierstrasz. Java cryptography uses in the wild. In Proceedings of
the 14th ACM/IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement (ESEM), pages 1–6, 2020
 Sophie Gabriela Pfister (2021), Jenny in Wonderland Exploring
the Difficulties of Symmetric Encryption [Bachelor’s thesis, Univer-
sity of Bern]

RQ4 : To point out feasible remedies and the lessons learned:

– Chapter 6 → Mohammadreza Hazhirpasand, Oscar Nierstrasz,
Mohammadhossein Shabani, and Mohammad Ghafari. Crypto heroes:
Views and recommendations. In Proceedings of the 37th ACM/SI-
GAPP Symposium on Applied Computing, 2022
r Mohammadreza Hazhirpasand, Mohammad Ghafari, and Oscar
Nierstrasz. CryptoExplorer: An interactive web platform support-
ing secure use of cryptography APIs. In 2020 IEEE 27th Interna-
tional Conference on Software Analysis, Evolution and Reengineer-
ing (SANER), pages 632–636. IEEE, 2020

1.3 Outline

The thesis investigates each RQ with reference to the state of the art, moti-
vation, methodology, results, and contributions.

Chapter 2 explains why security is important and presents the state of
the art of cryptography with respect to each research question. The chapter
highlights the gap that exists, which we address in this thesis.

Chapter 3 explores how cryptography is employed in the wild. We first
check the extent to which crypto vulnerabilities are problematic in industry.
Then, we check developers’ coding practices in using crypto Java crypto APIs
in open-source projects.

Chapter 4 examines issues in cryptography with respect to three facets.
For the first aspect, we consider the issues developers encounter while working
with crypto APIs. To do so, we check on which common problems developers
ask for help on Stack Overflow. Then, we take a closer look at questions
that are specifically related to crypto libraries. Lastly, we choose a popular
language, i.e., Java, to obtain a view of what problems are common in Java
crypto APIs that are intended to use for symmetric encryption.

Chapter 5 studies developer practices with respect to four facets. First,
we examine whether developers experience an improvement in their perfor-
mance based on several factors, e.g., increase in the number of commits, or
days of contribution. Then, we contact some of the developers who had the

5

1. Introduction

experience of working with crypto APIs and collect their reactions to their per-
formance in using cryptography. We also survey developers who had crypto-
related commits on GitHub’s open-source projects. We ask them about their
coding and security practices to understand their characteristics. Finally, to
see how crypto experts on Stack Overflow use cryptography on GitHub, we
attempt to find their practical experiences on GitHub.

Chapter 6 demonstrates the root causes as well as possible temporary
solutions for facilitating the correct usage of cryptography. To this end, we
contact crypto expert users on Stack Overflow and ask their opinions for im-
proving the state of cryptography, both for the developer and library perspec-
tives. We also present a tool called CryptoExplorer, which enables developers
to search for crypto code snippets. The code snippets are analyzed by a static
analysis and if there are any misuses, CryptoExplorer highlights the security
issues.

Chapter 7 reviews the research questions, delineate the concluding ob-
servations, and designates potential future work in this direction.

6

Chapter 2

State of the Art

Cryptography has been studied from various aspects, such as how to break
crypto algorithms, how it has been adopted by developers, and how crypto
APIs should be devised and improved in regard to usability. We first elucidate
why security, in general, is a critical element in software development based on
our previous studies. Then, we focus on the studies with respect to cryptog-
raphy that target the areas relevant to this thesis. In the following, we briefly
explain the selected areas. First, knowledge acquisition consists of three sub-
components, i.e., training, education, and online sources, that either boost
or, if not adequately acquired, adversely affect the performance of developers.
Second, crypto API misuse is one possible consequence of thoughtless selec-
tion, faulty implementation, and improper assessment of using cryptography.
Third, various security tools are proposed to assist professionals to ease the
use of cryptography; nevertheless, the extent to which such tools are usable
and adopted is unclear. Lastly, developer performance in cryptography widely
varies, the causes of which have been investigated from various aspects. At
the end of each section, we present our findings in brief and how they are in
line with the associated literature.

2.1 The importance of security

The importance of incorporating security into all phases of software devel-
opment cannot be overstated. However, in contrast to software developers,
adversaries are continuously looking for ingenious methods to circumvent the
already in place security measures. For example, we observed that adversaries
can effortlessly conduct IP and port enumeration via four different methods,
e.g., WebSocket, to discover live hosts in the web visitor’s private network
[68]. We found that an attacker requires fewer than 5 minutes to relatively
map a /24 subnet mask of the victim. As regards browsers, we detected a
design flaw in the permission box of browsers [73]. This issue enables ne-
farious attackers to design a decoy element, place it precisely in a particular

7

2. State of the Art

coordinate, and trick victims into playing a game, resulting in allowing criti-
cal permissions, e.g., webcam or location. In addition, we demonstrated how
adversaries can bypass the same-origin policy of browsers with the help of
DNS rebinding attacks and stealthily interact with the internal web-based
platforms. Comparing various preventive measures, we confirmed that the
most effective way to halt DNS rebinding attacks is to use signed SSL/TLS
certificates [67]. Lastly, both security professionals and sophisticated hackers
employ fuzzers to find security vulnerabilities in software. For instance, Grieco
et al. developed a novel fuzzer, called ContractFuzzer, to test Ethereum smart
contracts and discovered 459 vulnerabilities in 6991 smart contracts [63]. In
the same vein, to increase the efficiency of coverage-based greybox fuzzers, we
introduced FuzzingDriver, which provides fuzzers with useful dictionaries to
outperform their code coverage and to increase the likelihood of discovering
security vulnerabilities [8].

2.2 Knowledge acquisition

Training: A prime factor in successful information security management is
effective compliance of security policies and suitable integration of people,
processes, and technologies. Security awareness training of employees is one
of the mechanisms in which the effectiveness of integration can be enhanced.
Emina et al. conducted a security awareness program in a company with 2900
employees and subsequently audited how effective and successful the program
was [46]. The results showed positive outcomes in relation to the impact of hu-
man awareness of the success of information security management programs.
Siponen et al. conducted a field survey to comprehend which factors assist
employees’ compliance with security policies [135]. Their results demonstrated
that the visibility of information security policies has a considerable impact
on employees’ adherence to the policies. Furthermore, employees comply with
information security policies if they are fully aware of how vulnerable their
organization is to security hazards and the severity of these threats. A group
of researchers explained a theoretically grounded information security train-
ing that was validated through action research [79]. The findings imply that
by using constructiveness in the context of security training, the security be-
havior of employees can be enhanced. Kweon et al. attempted to discover a
relationship between cybersecurity training and the number of incidents of or-
ganizations [96]. They realized that the role of security training and education
has a positive impact on reducing the number of incidents in organizations.
The need for regular information security training is undeniable in companies
[143]. From the training frequency viewpoint, quarterly security awareness
training is recommended to renew employee knowledge concerning the latest
threats and trends, and in case some difficulties exist, biannual training could
be the minimum required time frame [57]. Puhakainen et al. stressed that in-

8

2.2. Knowledge acquisition

formation security trainings and communication efforts should be continuous
and integrated into the organization’s usual communication efforts otherwise
security policies lose their efficacy [125]. According to the SANS Institute, a
security awareness program should consider who is going to be in the training
course, which topics are suitable for the audience, and ultimately how partic-
ipants engage in order to identify how frequent security training should take
place.1 Last but not least, the lack of an official role in organizations as secu-
rity champions is evident, and oftentimes this role is given to someone on the
development team with limited security knowledge. By hiring security consul-
tants, managers can benefit from the resulting security level of products, and
security testers would largely capitalize on the presence of such knowledgable
consultants [140] [123].

Education: Cryptography is an essential component of computer security,
network security and all information security-related courses [106]. However,
a cryptography course must be carefully adopted based on target audience
since they can be from various fields, such as computer science, mathemat-
ics, and information security [6]. In a study, the researcher focused on design
thinking (DT) activities for teaching cryptography to students [9]. They de-
vised a cryptography curriculum for a semester and the pilot study showed
improvements in solving complex cryptographic problems as well as better
student comprehension. Hamdani et al. addressed the issue of creating a
stand-alone cryptography course independent of other subjects, such as dis-
crete mathematics, statistics, number theory, and modern algebra[7]. They
proposed two detailed curricula for the undergraduate and graduate students.
Aydin contextualized abstract ideas from algebra and number theory, taught
in a mathematics course by utilizing computer science and engineering ex-
amples from cryptography and coding theory [12]. For students, the theory
and applications of cryptography are considered complicated. Adamovi et al.
eased the learning curve of cryptography by introducing a different, interac-
tive open-source tool, called CrypTool [4]. They received affirmative feedback
with regard to the teaching method compared to the traditional approaches.
Bajracharya et al. argued the paramount importance of incorporating data se-
curity disciplined (i.e., cryptography, steganography, and watermarking) into
academic courses [16]. They concluded that such fundamental knowledge leads
the students to careers such as digital media forensics, steganography, and
cryptography expert. All in all, mathematics and cryptography are inextrica-
bly linked to each other, and for instance, public-key cryptography requires
significant background in algebra, number theory, and geometry, which ren-
ders the understanding of the main subject difficult for inexperienced, average
developers [55].

Online sources: Massive Open Online Courses (MOOCs) supply free or

1https://www.sans.org/security-awareness-training/blog/

wrong-question-how-long-should-security-awareness-training-be

9

https://www.sans.org/security-awareness-training/blog/wrong-question-how-long-should-security-awareness-training-be
https://www.sans.org/security-awareness-training/blog/wrong-question-how-long-should-security-awareness-training-be

2. State of the Art

affordable online courses available for anyone interested in studying cryptog-
raphy. There are two MOOC platforms, (1) Coursera (offered by Stanford
University), and (2) edX (offered by MITx), that present a large number of
computer science courses. There are many cryptography courses, e.g., “Cryp-
tography 1” 2 and “Cryptography” 3 , available on the Coursera platform
for interested students to learn [95]. There exists a large number of online
cybersecurity courses, including cryptography, on other platforms, e.g., Khan
Academy [60]. 4

Although using Stack Overflow might help the functional correctness, it
leads to more insecure copy-pasted code snippets [2]. Ye et al. worked on a
system called insecure code snippet detection (ICSD) to detect the imminent
insecure code snippets available on Stack Overflow [157]. In a survey with
87 Stack Overflow visitors, researchers found that Stack Overflow answers
contain outdated answers, wrong solutions, and buggy code [126]. Acar et al.
conducted a comprehensive study by surveying 295 application developers, and
a lab study with 54 Android developers (professionals and students) in which
they were allowed to resolve coding issues with one of the following four means:
any resources, Stack Overflow only, official Android documentation only, or
books only [2]. Their findings suggest that developers use Stack Overflow as
a major source. Interestingly, developers who could use any resources had
similar performance (functional and security correctness) to those who were
assigned to use Stack Overflow only. Acar et al. pointed out that official API
documentation commonly (1) lacks security-related hints, (2) crypto libraries
should offer a simple (3) and accessible documentation with secure, easy-to-use
code examples [1].

In this study, we show that developers who used cryptography had a strong
tendency to use insecure resources, e.g., Stack Overflow, and there was a lack
of security training and consultants at workplace. As for the educational
tools, we propose CryptoExplorer. In particular, CryptoExplorer aim was
to help developers to learn the correct way of using crypto APIs by looking
into real-world pre-analyzed crypto examples. Suggestions by crypto experts
highlight the need for a dedicated curriculum for cryptography in universities,
abundant dependable, useful resources, e.g., Coursera, and improvements in
code examples and security warnings in documentation.

2.3 Crypto API misuse

The improper usage of cryptography can expose imminent threats. For in-
stance, authentication is the first gate to every software and in microservices,
JSON Web Token (JWT) plays an important role in token-based user-to-

2https://www.coursera.org/learn/crypto
3https://www.coursera.org/learn/cryptography
4https://www.khanacademy.org/

10

https://www.coursera.org/learn/crypto
https://www.coursera.org/learn/cryptography
https://www.khanacademy.org/

2.3. Crypto API misuse

service authentication [155]. Nonetheless, the JWT tokens are prone to some
attacks, such as failing to verify the signature, kid parameter injection and
allowing the None algorithm.5 The “Public-Key Cryptography Standards,” or
“PKCS” standards consist of a number of components, called PKCS #1, #3,
and #5-15. PKCS is defined for both binary and ASCII data types, describing
the syntax for messages in an abstract manner. For instance, PKCS #8 is a
private-key information syntax standard, defining a method to store private
key information [148]. However, there exist some security caveats for PKCS
#11 and PKCS #1 1.5 [27, 84]. There are a number of encryption modes,
which can be puzzling for inexperienced developers. For instance, the block
ciphers, e.g., DES which deals with encrypting fixed length of data, use vari-
ous chaining modes, e.g., cipher block changing or CBC, to encrypt bulk data.
The advantages and disadvantages of encryption modes, such as CBC, ECB
and CTR, have been well studied from the security and performance perspec-
tives [101, 19, 42]. Initialization vectors (IV) have been seen as a problematic
issue in developers’ questions on Stack Overflow. Developers should be aware
of IV attacks as a security risk of the CBC encryption mode in block ciphers
and that they can be applied also in IPsec [105]. In such attacks, an unau-
thenticated IV in CBC encryption is used so that the adversary can control
the first block of the decrypted plaintext. IV attacks also exposed the security
of WEP protocol in wireless networks [139]. The length of cryptography keys
and random-number generators play a crucial role in the security of the out-
come cipher [133]. For instance, recommendations such as using 128-bit keys
rather than 40-bit weak keys, choosing triple-DES over DES, 2,048-bit RSA is
stronger than 1,024-bit RSA, or using secure random-number generators are
often seen in various security standards.

The study by Lazar et al. is the most relevant one to our work [98],
wherein they performed a systematic study of 269 cryptographic vulnerabil-
ities reported in the CVE database from 2011 to 2014. They categorized
crypto vulnerabilities into four main groups, i.e., plaintext disclosure, man-
in-the-middle attacks, brute-force attacks, and side-channel attacks. Braga et
al. carried out a data mining technique, namely Apriori, to extract associa-
tion rules among cryptographic bad practices, platform-specific issues, cryp-
tographic programming tasks, and cryptography-related use cases from three
popular forums: Oracle Java Cryptography, Google Android Developers, and
Google Android Security Discussions [29]. They classified their findings into
nine categories: namely Weak Cryptography (WC), Bad Randomness (BR),
Coding and Implementation Bugs (CIB), Program Design Flaws (PDF), Im-
proper Certificate Validation (ICV), Public-Key Cryptography (PKC) issues,
Poor Key Management (PKM), Cryptography Architecture and Infrastructure
(CAI) issues, and IV/Nonce Management (IVM) issues. Chatzikonstantinou
et al. conducted a study on how developers use cryptography in mobile ap-

5https://www.netsparker.com/blog/web-security/json-web-token-jwt-attacks-vulnerabilities/

11

https://www.netsparker.com/blog/web-security/json-web-token-jwt-attacks-vulnerabilities/

2. State of the Art

plications [35]. They discovered that 87% of the applications had at least
one crypto misuse in one of the four cryptographic categories defined in the
study: usage of weak cryptography, weak implementations, weak keys, and
weak cryptographic parameters.

In spite of crypto library authors’ good intentions, their strategy of warning
developers seems to be largely a failure until now. Green and Smith proposed
ten principles to make cryptography libraries more usable and constructing
more secure APIs [62]. For instance, they emphasized that APIs should suffi-
ciently satisfy both security and non-security requirements, or APIs must be
easy to learn, even in the absence of cryptographic expertise. To extend the
Green and Smith work, Patnaik et al. investigated the extent to which crypto
libraries implement the ten principles [120]. They selected seven crypto li-
braries and identified 16 underlying usability issues. While Patnaik et al.
study provided corroborative evidence to validate Green and Smith’s princi-
ples, they also pointed out issues that were missed in the previous study. They
derived four usability smells, which are indicators that an interface may be
challenging to use for its intended users. Mindermann et al. demonstrated a
list of recommendations for designing crypto libraries according to an exper-
iment using Rust crypto APIs [108]. They pointed out insecure defaults and
options, the use of authenticated encryption in low-level libraries, the absence
of warnings concerning deprecated, broken features, and the scarcity of exam-
ples in the documentation. They also declared that their recommendations
are just more specific and are not in conflict with Green and Smith’s top ten
principles.

Unlike other studies, we attempt to provide a fairly comprehensive account
in five stages of what general developers might encounter while working with
cryptography. In the first two stages, we check the status quo of cryptography
usage both in industry and open-source projects. We provide eight main
categories of problems in using cryptography. Thereafter, we pinpoint the
prevailing challenges, mined from Stack Overflow, that developers generally
encounter in cryptography. Then, we narrow down the scope to 20 crypto
libraries to understand what kinds of problems are more prevalent. In the
end, we choose symmetric APIs in a programming language to discern the
issues related to such APIs in minute detail.

2.4 Tools

Security tool adoption: Johnson et al. conducted interviews with 20 devel-
opers to understand the determinant factors why static analysis tools were not
adopted by many developers [86]. Participants mentioned reasons such as the
high rate of false positives, the way that warnings are displayed, faulty inte-
gration of the tool into the development process, lack of detailed explanation
of bugs with automatic fixes, and not including understandable configuration

12

2.5. Developer performance

options in the tool for all levels of developers. Other researchers investigated
the reasons for a low rate of security tool adoption [13] [14]. They found
that organization and team policies affect the usage of security-related tools
and larger organizations use security tools more than small ones. The greater
adoption of security tools can be influenced by factors such as the culture of
the company, security concerns, training, and dedicated security and testing
teams. Witschey et al. conducted a study to understand what factors af-
fect the usage of security tools [150]. Strangely enough, being more concerned
about security did not lead to greater security tool usage while having training
or academic background in the security field did.

Tool support: CryptoLint, developed by Egele et al., checks real-world
Android applications for the violation of six security rules [43]. They suc-
ceeded to find 10 327 of 11 748 Android applications analyzed by CryptoLint
that use cryptographic APIs exposed to at least one mistake. CryptoLint
is not yet open source. Yong Li et al. proposed iCryptoTracer, which per-
forms a combination of static and dynamic analysis on iOS applications [100].
Their research showed that nearly 65.3% of the examined applications suffered
from a cryptographic misuse. Rahaman et al. describe CRYPTOGUARD, a
deployment-quality static analysis tool to identify Java cryptographic misuses
[127]. They provide contextual refinements for false positive reduction, on-
demand flow-sensitive, and context-sensitive analysis. Kim et al. introduced
a code search engine that merges results from API documents with code ex-
ample summaries, mined from the web [90]. However, it is not tailored to
mine secure examples. Krüger et al. presented a tool called CogniCrypt, an
Eclipse plugin that empowers developers to identify cryptographic misuses in
Java code[92].

Our findings also provided corroborative evidence that developers gener-
ally do not welcome security tools. The findings of our survey showed that
only one-fifth of developers use static analysis tools. The root causes of this
issue can be multifaceted and are outside of this study’s scope.

2.5 Developer performance

The significance of correctly employing cryptography and obtaining profes-
sional help from online sources has been discussed by numerous authors in
the literature. Sifat et al. studied three popular online sources, i.e., crypto
Stack Exchange, Security Stack Exchange, and Quora, to find out the com-
mon challenges concerning implementing security in data transmission [85].
They uncovered that Transport Layer Security (TLS) is the most discussed
technique and users’ interest has increased in this topic over the years. Yang
et al. carried out a large-scale analysis of security-related questions on Stack
Overflow and reported a classification of five topics [153]. A recent study con-
ducted by Meng et al. has recognized the challenges of writing secure Java

13

2. State of the Art

code on Stack Overflow [107]. Their results provide compelling evidence to
the fact that the security implications of coding options in Java, e.g., CSRF
tokens, are only partially grasped by many developers. A study confirmed
that developers are uncritically using the insecure code snippets found on
Stack Overflow [53]. The aforementioned findings jeopardize the security of
software[54]. We observed that relying on poorly validated responses on on-
line forums was inextricably linked to software systems’ security implications.
Acar et al. assigned 307 active GitHub users to complete several security-
relevant programming tasks and surprisingly, found no statistically significant
differences concerning functional correctness and security perception among
the participants who registered their status as a student, professional devel-
oper, or those who had security background [3]. Interestingly, they found
that years of experience was not an effective factor for security perception.
Oliveira et al. designed a study for 109 developers to use some APIs that
had some blind spots, i.e., containing underlying causes to misuse an API,
and some easy to use ones [115]. The results show that developer expertise
and experience did not predict their ability to identify blind spots. In another
study, the outcome of an experiment with 54 professional and inexperienced
developers for writing security-related code explains that development expe-
rience is not a decisive factor for code security [2]. Nadi et al. conducted two
surveys and asked developers about the issues they face when working with
crypto tasks [112]. The participants mentioned several types of issues includ-
ing lack of documentation, difficulty in API use, and indirection between the
APIs and the underlying implementation. The authors also realized that de-
velopers from various knowledge level groups still face the same types of issues
in cryptography. Robillard et al. conducted surveys and interviews with Mi-
crosoft developers, and realized that poor documentation is a major learning
obstacle for learning APIs [130]. Gorski et al. conducted a controlled online
experiment with 53 participants to learn the effectiveness of API-integrated
security advice which informs about an API misuse as guidance close to the
developer [61]. They achieved a high rate of success as 73% of the participants
who received the security notice fixed their insecure code accordingly. Kafader
et al. developed a fluent API called FluentCrypto to facilitate the secure and
correct use of cryptography in Node.js [88]. They solution provides task-based
approach and hides the low-level complexities from the developer.

Developer mapping: A series of recent studies have focused on profiling
developer expertise either on single or multiple platforms [152] [28]. A common
concern in profiling developer expertise cross-platforms is to track developer
identity, as developer activity can be dispersed from one platform to another
[91]. For instance, Zhang et al. used the developer email and the hashing ap-
proach to identify the same developer with the same email address on another
platform [159]. Yung et al. looked into the challenge of expert finding with the
Topic Expertise Model (TEM) [102]. Their approach jointly modeled topics
and expertise by combining textual content model and link structure analy-

14

2.5. Developer performance

sis. Tian et al. proposed a novel methodology to identify experts who utilize
various user attributes and related platform-specific information, for instance,
high-quality Stack Overflow answers in specific programming technologies and
high-quality projects measured using source code metrics [141]. Sajedi et al.
checked the features that overlap in GitHub and Stack Overflow [15]. They
defined three high-order metrics related to both networks (i.e., development,
management and popularity). Their findings revealed moderate and strong
correlations between the derived metrics within each platform. Vasilescu et
al. analyzed the differences of 46 967 active users both on Stack Overflow and
GitHub to understand Stack Overflow’s involvement of GitHub’s developers
[146]. They discovered that the users who provide more answers on Stack
Overflow tend to have a high number of commits. Their results imply that
users with a high number of commits on GitHub have a greater tendency to
take the role of a “teacher” instead of asking more questions on Stack Over-
flow. Vadlamani et al. focused on perceiving what constitutes the notion of
an expert developer and what key elements affect developer contribution[142].
They conducted a survey with active software developers both on Stack Over-
flow and GitHub. Their results show that developers consider personal drivers
to be more critical than professional factors for GitHub contribution, and the
majority of experts participate in both private and public repositories.

Developer concern: Research indicates that some organizations use ex-
ternal resources,e.g., penetration testers, to encourage developers to pay ex-
tra attention to security in development, however, without strong support,
the motives tend to lose priority compared to the important functional re-
quirements [151]. Likewise, managers sometimes are obliged to make vital
decisions, such as releasing the code with some known problems, due to busi-
ness forces [140].

In this study, we take a different approach in order to observe whether
developer experience affects developer performance. We conduct the first
mapping of experts’ crypto practices between two popular software platforms,
Stack Overflow and GitHub, to learn if there is a connection between the ac-
tivities performed in the two platforms. Furthermore, we contact the crypto
experts to ask for opinions and views regarding the root causes and plausible
remedies of misusing crypto APIs. The results of our survey validate that
developer concerns are incongruent with their practices.

15

Chapter 3

Cryptography in the wild

Cryptography, hereafter crypto, is widely employed nowadays to safeguard
against any threat posed to the integrity, confidentiality, authentication, and
non-repudiation of our data. For instance, in the absence of cryptography it
is infeasible to use any wireless/wired network and perform any online bank-
ing activity. Unfortunately, prior research has showed that crypto has often
been used insecurely causing undesirable outcomes for businesses and major
companies. For instance, researchers detected a weakness in the generation of
session-ids in Java Servlet 128-bit and introduced an efficient practical pre-
diction algorithm to impersonate a legitimate client [65]. Similarly, in 2008,
a researcher found that the random number generator in Debian’s OpenSSL
package is predictable.1 More recently, researchers found in the widely-used
online meeting software, i.e., Zoom, that in each Zoom meeting, a single
AES-128 key is employed in ECB mode, which is not recommended, by all
participants to encrypt and decrypt audio and video.2

Previous studies have shown that crypto has been misused in a wide range
of software systems. For instance, Wickert et al. developed a static analysis
tool that discovered misuses in Python crypto APIs [149]. They examined
895 popular Python projects from GitHub and 51 MicroPython projects for
embedded devices, reporting that 52.26% of the Python projects had at least
one misuse and that, the design of crypto APIs in python prevented developers
from misusing APIs. Likewise, by developing CryptoLint to check Android
applications, Egele et al. discovered that 88% of analyzed applications had
at least one crypto mistake [44]. As regards crypto flaws in popular software,
Lazar et al. studied 269 cryptographic vulnerabilities reported in the CVE
database from 2011 to 2014 [98]. Their findings suggested that only 17% of
the bugs are rooted in cryptographic libraries with catastrophic consequences
and the remaining are misuses of cryptographic libraries. This emphasizes

1https://www.debian.org/security/2008/dsa-1571
2https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a\

-quick-look-at-the-confidentiality-of-zoom-meetings/

17

https://www.debian.org/security/2008/dsa-1571
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a\-quick-look-at-the-confidentiality-of-zoom-meetings/
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a\-quick-look-at-the-confidentiality-of-zoom-meetings/

3. Cryptography in the wild

Developers' crypto mistakes in the wild

To study HackerOne's
crypto-related reports

Facet 2

To study GitHub's Java
open-source repos

Facet 1

Figure 1: The methodology followed to answer the first research question

that careful examination of recent crypto vulnerabilities/misuses magnifies
the importance of this area and why this domain requires further research.

3.1 Study design

In this chapter, we aim to examine the current status of crypto misuses/vul-
nerabilities. To that end, we address the first research question (RQ1) of our
study: What crypto mistakes do developers make in the wild?, from two facets,
illustrated in Figure 1.

Facet 1 → We reviewed recent vulnerability reports on the HackerOne bug
bounty platform to understand what types of cryptography vulnerabil-
ities exist in the wild. We extracted eight themes of vulnerability and
discussed their real-world implications and mitigation strategies. SSL-
related attacks received the most reports due to a lack of awareness or
attention among professionals about SSL/TLS certificates.

Facet 2 → We used a static analysis tool to analyze 489 open-source Java
projects that rely on Java Cryptography Architecture, and manually in-
spected 50% of the analysis results to assess the tool’s performance. We
learned that 85% of crypto APIs are misused and among the manually
investigated records, 74 records (6%) were flagged as rejected, meaning
that the records were mistakenly marked as misuses by the tool.

In the following, we explain how we collect the data and analyze them for each
of the aforementioned facets.

18

3.1. Study design

3.1.1 HackerOne

Various bug bounty platforms exist such as HackerOne3, Bugcrowd4, Wooyun5,
and Synack6, wherein highly trusted security researchers discover security vul-
nerabilities in companies’ bounty programs. Although some studies analyzed
the Wooyun platform, the website has not been accessible since July 20, 2016
[160].7 HackerOne, Bugcrowd, and Synack are among the three most searched
keywords, respectively, for bug bounty platforms on Google. 8 Despite the ad-
vantages of such platforms, we could only consider the ones in which there is a
tendency to disclose vulnerability reports and the reports must entail adequate
explanations. We conducted a preliminary check on HackerOne, Synack, and
Bugcrowd to observe which platforms present detailed vulnerability reports.
Bugcrowd enables access to bug bounty programs, detailed user statistics, the
number of vulnerabilities discovered, and the average payout in each program.
However, of 257 bug bounty programs, there were only 17 programs that had
limited disclosed reports (i.e., 54 reports). Similarly, the Synack platform also
does not provide access to the detailed reports of discovered vulnerabilities.
In contrast to the previous two platforms, HackerOne permits hackers as well
as organizations to study a vast number of preceding vulnerabilities’ reports
that are marked as disclosed. We, therefore, decided to study HackerOne.

Recent bug reports are accessible on the hacktivity page9 and search filters
allow one to navigate disclosed reports. A more detailed inspection showed
that HackerOne employs the GraphQL query language to retrieve data from
remote APIs. The data.hacktivity items.pageInfo.endCursor property in the
retrieved JSON is a key that can be used for retrieving the next page’s content.
We wrote a Python script to automatically fetch disclosed reports from two
APIs on HackerOne. The accumulated data are publicly available.10

The collected data contain 19 fields (See Table 1). The title and URL
fields are about the headline and the full web address of the vulnerability re-
port. The to whom and by whom fields describe the company that receives
the vulnerability report and the person who found the vulnerability. Regard-
ing the vulnerability, the chosen severity rating and score are stored in the
severity rating and severity score fields. The user reputation field describes
the points received or lost based on report validity. The user rank field ex-
plains user ranking based on the earned reputation. The user signal field
stores information for identifying experts who have had consistently valid re-
ports. The user impact describes the expert’s activity in terms of severity

3http://hackerone.com
4https://www.bugcrowd.com/
5http://www.wooyun.org/
6https://www.synack.com/
7https://en.wikipedia.org/wiki/WooYun
8Top bug bounty platforms searched on Google
9https://hackerone.com/hacktivity

10http://crypto-explorer.com/hackerone/data.sql

19

http://hackerone.com
https://www.bugcrowd.com/
http://www.wooyun.org/
https://www.synack.com/
https://en.wikipedia.org/wiki/WooYun
https://trends.google.com/trends/explore?q=HackerOne,bugcrowd,safehats,Intigriti,Synack
https://hackerone.com/hacktivity
http://crypto-explorer.com/hackerone/data.sql

3. Cryptography in the wild

level. The user percentile and user imp percentile fields help the security ex-
perts to compare their percentile signal and impact rank to other experts on
the platform. The report state shows the decision made for the report. The
dates for when the report is submitted and disclosed are specified in the re-
port date and disclose date fields. The weakness field reports the vulnerability
type of the report and is our field of interest for finding cryptography-related
vulnerabilities. The award field specifies the amount of money given to se-
curity researchers, and the summary field reflects the explanation of security
experts for the identified vulnerability.

Table 1: The structure of the collected data from HackerOne
Field Description
Title the report’s title
URL the url of the report
To whom the company to which report is sent
By whom the person who sent the report
Username the username of the sender of report
User profile pic the user’s profile picture
Severity rating the severity of the report (low/medium/high)
Severity score the score of severity (0 ∼10)
User reputation the reputation of the user
User rank the rank of the user
User signal the average reputation per report
User percentile the user signal percentile relative to others
User impact the average reputation per bounty
User imp percentile the user impact percentile relative to others

Report state
the state of the report (duplicate, informative,
not-applicable, resolved, spam)

Report date the date that the report was submitted
Disclose date the date that the report was disclosed
Weakness The weakness type assigned to the report
Award The amount of money given to the reporter

Summary
The description of how the
vulnerability is discovered

Analysis: Our aim is to analyse vulnerability reports related to cryptog-
raphy. Hence, two reviewers reviewed all the weaknesses, i.e., 120 weaknesses,
from the weakness field and extracted crypto-related keywords. Each weak-
ness commonly consists of 3 or 4 words explaining the corresponding category
of vulnerability, e.g., Brute Force, or Command Injection - Generic. Af-
ter cross-checking the extracted keywords, they resolved their disagreement
and achieved a consensus on two keywords, namely “crypto” and “encrypt”.
Table 2 describes the selected weakness types and their associated number
of reports in the data. The “Cryptographic Issues - Generic” type has the
highest number of reports (i.e., 161) and the “Reusing a Nonce, Key Pair in
Encryption” type has the lowest number of reports (i.e., 1) among the nine
weakness types. In total, there are 187 vulnerability reports whose weakness
type contained these two keywords. Of the 187 reports, there are 33 vulnera-
bility reports in 2014 and there is a peak in 2017 with 52 vulnerability reports
(See Figure 2). In 2018, 2019 and 2020, the number of crypto reports dropped

20

3.1. Study design

0

10

20

30

40

50

60

2014 2015 2016 2017 2018 2019 2020

Crypto reports

Figure 2: The total number crypto reports per year

Table 2: The selected weakness types and the associated number of reports
Weakness # reports
Cryptographic Issues - Generic 161
Weak Cryptography for Passwords 7
Use of a Broken or Risky Cryptographic Algorithm 4
Inadequate Encryption Strength 3
Missing Encryption of Sensitive Data 3
Missing Required Cryptographic Step 3
Use of Cryptographically Weak Pseudo-Random Number... 3
Use of Hard-coded Cryptographic Key 2
Reusing a Nonce, Key Pair in Encryption 1

to 14, 19, and 11, respectively. However, the data for 2020 may not be com-
plete as we have not updated the data since the end of 2020 and more reports
could be marked as disclosed. To increase the number of reports from other
weakness types, we searched 40 crypto keywords, identified in the previous
study [77], in the reports’ summary. We found 221 unique reports containing
at least one keyword in their summary.

Afterward, we used thematic analysis, a qualitative research method for
finding themes in text [30], to find the frequent themes in the reports. We
did not prepare a list of themes beforehand to assign the reports to the suit-
able themes. We derived the themes by finding patterns, commonalities over
the course of the thematic analysis. The two reviewers individually read the
selected reports (the title and summary fields), extracted the core problems
of each report, built a list of themes, and assigned each report to a suitable
theme. Each of them improved the extracted themes by reviewing the reports
iteratively. Each reviewer stopped after three rounds of refinement and extrac-
tion since they noticed that the iterative process no longer adds anything of
significance to the analysis. However, of 187 crypto-related reports, 33 reports
did not have sufficient explanation, and accordingly we omitted them. Of 221
reports whose summary contained crypto keywords, only 19 reports (i.e., 8%)
were related to cryptography. In general, we omitted the reports that were

21

3. Cryptography in the wild

marked not applicable by the companies. Finally, the reviewers discussed the
themes and associated reports with each other. We calculated Cohen’s kappa,
a commonly used measure of inter-rater agreement [39], between the two re-
viewers and obtained 71% Cohen’s Kappa score, which manifests a substantial
agreement between them. The reviewers re-analyzed the specific reports in a
session where they had disagreements and achieved a consensus. They real-
ized that their wording mechanism of themes differed in some cases and thus,
unified themes were devised.

3.1.2 Java projects

We started with a set of projects identified in previous work [94] that used
JCA APIs. We used GitHub APIs to fetch the collaborators of these projects
and check what other Java projects they contributed to, which helped us to
collect more projects. Next, we used the GitHub search code API to check
whether a Java project uses any of the JCA APIs, such as Cipher, or KeyStore.
The GitHub search code API limits the number of requests to 30 per minute,
therefore we executed this phase in parallel with different GitHub accounts. If
the project is forked, then we cloned the original repository. Forked projects
significantly increase the chance of having duplicate projects in the dataset.
We also did not limit our search criteria based on the number of project forks
or stars, as we were only interested in collecting crypto API uses regardless of
factors such as project size, popularity, or the degree of recent activity.

We compiled each project in preparation for the static analysis phase. We
used a bash script to check for the existence of the build file (POM) in the
project’s path and then proceed to compile the project using Maven. We ex-
cluded any projects that cannot be compiled due to unresolved dependencies.

Analysis: We used an open-source static analysis tool called CogniCrypt,
which detects known misuses of JCA APIs [93]. It uses a set of rules to
analyze method-call patterns, parameter constraints, and secure compositions
of cryptography-related classes. We chose CogniCrypt as it supports a wide
range of APIs, is open-source, and relies on an extensive rule set created
by crypto experts. We extended the tool to collect and report information
regarding at what line number each API is used and in which user-defined
method the API use occurred.

We fed each project’s binary code (i.e., .class files) to CogniCrypt. Most
projects were analyzed within 10 minutes. Accordingly, we aborted lengthy
analyses that take more than 15 minutes. Ultimately, 48 analyses were termi-
nated.

For every successful analysis, we used the GitHub API to obtain metadata
of each project, i.e., the number of stars, the number of forks, the creation
and the last updated date of the project.

Schema: We used a bash script to extract information from the gener-
ated analysis reports with the help of regular expressions. We presented the

22

3.1. Study design

extracted values in the CryptoMine dataset as a comma-separated CSV file.
Each record describes a single crypto API use. Table 3 presents each field
and its description in a record. Each data record represents meta-information
about a crypto API use in a project such as line number of the API use, Java
file path containing the API use, or project’s address on GitHub.

Table 3: Fields of each API use in CryptoMine
Field Description

PS url project’s address on GitHub
Star count number of stars of a project
Fork count number of forks of a project
Creation date creation date of a project
Updated date last updated date of a project
Last visited the last time we checked a project
File path file path containing a crypto use
S object status of a use (0 means a misuse, otherwise it

is 1)
API name name of the crypto API
Line number line number of the crypto use

User method
the user-defined method where the crypto
API is used

Misuse type

a string referring to the type of the
crypto misuse (wrong type, wrong object,
wrong constraint, incomplete operation,
incomplete order)

Misuse desc the description of the crypto misuse

Manual check
the manually checked status of an API use
(Accepted, Rejected, Unvalidated)

The user method field provides information about the user-defined func-
tion where a crypto API use exists.

The misuse type field can represent any of the following five types pro-
vided by the static analysis tool. The “wrong type” means when a developer
incorrectly uses a certain reference type. For instance, the constructor of
PBEKeySpec requires the password to be passed as a character array, and
should not be as a string object. The “wrong object” occurs when an object
is passed to another object but not in the correct way to fulfill expected secu-
rity requirements. The “wrong constraint”, which is a common misuse type,
occurs when a developer selects wrong values for integer or string objects to
pass to a crypto API, like key sizes, algorithm names, or iteration counts. The
“incomplete operation” indicates the whole path for the desired cryptographic
purpose is not fulfilled, e.g., failing to call PBEKeySpec.clearPassword(). Fi-
nally, the “incomplete order” misuse shows that the expected method call
sequence to be made is incorrect, e.g., failing to call to init() in the Cipher
API.

The misuse desc field explains for what reason, which is provided by the
tool, a crypto API use violates CogniCrypt’s rules. The manual check field
indicates the manual cross-validation status of an API use. In case of ap-
proval, i.e., agreement with the tool, we set the value of the field to Accepted,

23

3. Cryptography in the wild

otherwise, the value is set to Rejected. Non-validated records are indicated by
Unvalidated. Lastly, interested researchers can request to receive the cloned
version of the projects.

Manual investigation: Two reviewers manually checked 1280 records
of CryptoMine (48% of the dataset). They relied on their expertise and the
CrySL rules provided by the static analysis tool. The CrySL rules determine
the secure uses of a crypto API. The reviewers examined the 1280 records sep-
arately and finally cross-check their individual judgments. In case of conflicts,
they referred to the tool’s rules and discussed them.

3.2 Results and discussions

In the following, we present and discuss our results regarding the two facets
of this chapter.

3.2.1 HackerOne

We present each theme of vulnerabilities, their prevalence in HackerOne’s
reports, and explain mitigation strategies suggested by the literature.

SSL-related attacks

POODLE: The POODLE vulnerability can expose a man-in-the-middle pos-
sibility for attackers when using SSL 3.0 or under some circumstances for the
TLS 1.0 - 1.2 protocols. Attackers are able to make 256 SSL 3.0 requests
to reveal one byte of encrypted data. Mitigation: In order to mitigate the
POODLE attack, SSL 3.0 must be disabled [109]. If disabling SSL 3.0 is not
practical, the use of the TLS FALLBACK SCSV cipher suite ensures that SSL
3.0 is used only when a legacy implementation is involved, and thus, attackers
are not capable of forcing a protocol downgrade. [109].11

Sweet32: The Sweet32 vulnerability enables attackers to reveal small
parts of an encrypted message produced by 64-bit block ciphers, such as Triple-
DES and Blowfish, under limited circumstances for TLS, SSH, IPsec and
OpenVPN protocols. Mitigation: changing the default ciphers, such as 3DES
or Blowfish, avoiding legacy 64-bit block ciphers, and selecting a more secure
cipher like AES approved by NIST [22].12

DROWN: The DROWN vulnerability affects the OpenSSL library, SSL,
and TLS on servers wherein SSLv2 connections are allowed [11]. Attackers
can passively decrypt collected TLS sessions when a server supports SSLv2 as
a Bleichenbacher padding oracle. The DROWN exploitation entails a chosen-
ciphertext attack in order to steal a session key for a TLS handshake. Mit-
igation: server administrators must upgrade OpenSSL to the latest version

11https://tools.ietf.org/html/rfc7507
12https://sweet32.info/

24

3.2. Results and discussions

and disable SSLv2, e.g., use the following command in Apache webserver:
SSLProtocol All -SSLv2.13

BREACH: The BREACH vulnerability is a weakness in HTTPS when
HTTP compression is used [124]. The attack is agnostic to the version of TL-
S/SSL and applicable to any cipher suite. The attacker can obtain information
about secrets in a compressed and encrypted response by attacking the LZ77
compression. In practice, the attacker injects random guesses into HTTP re-
quests and measures the size of the compressed and encrypted responses to
collect the smallest response sizes, meaning that the random guess matches the
secret. Mitigation: to make the attack infeasible, HTTP compression must be
disabled [132]. There are other countermeasures such as masking the secret
with a one-time random value with each request and resulting in producing a
new secret every time or to monitor and enforce request rate-limiting policy
to discern nefarious visitors from genuine visitors [132].

SSL stripping: In an SSL stripping scenario, attackers downgrade the
interaction between the client and server into an unencrypted channel to or-
chestrate a man-in-the-middle attack. There are several ways such as creating
a hotspot, conducting ARP spoofing, and DNS spoofing to lure victims into
the wicked network [82]. Mitigation: the SSL pinning technique is about
avoiding man-in-the-middle attacks by checking the server certificates with
a pinned list of trustful certificates added by developers during the applica-
tion development phase [116] [50]. Other effective approaches against SSL
stripping include: the HSTS (HTTP Strict Transport Security) header [81],
History Proxy [114], and static ARP table [38].

Freak: The Freak vulnerability empowers attackers to intercept secure
HTTPs connections between clients and servers and persuade them to em-
ploy “export-grade” cryptography which presents out-of-date encryption key
lengths [21]. The exploitation entails downgrading the RSA key length to 512-
bit export-grade length in a TLS connection. Mitigation: upgrade OpenSSL
and the EXPORT grade ciphers must be disabled on the client side.14 More-
over, it is necessary to use Perfect Forward Secrecy (PFS) cipher suites for
key exchange,e.g., Diffie-Hellman(DH) or Elliptic Curve DH in the ephemeral
mode [5].

BEAST: The BEAST vulnerability provides a man-in-the-middle oppor-
tunity for attackers so as to reveal information from an encrypted SSL/TLS
1.0 session. The attack phase necessitates an adaptive chosen plaintext at-
tack with predictable initialization vectors (IVs) and a cipher block chaining
mode (CBC) [45]. Mitigation: enable TLS 1.1 or preferably 1.2 which employ
random IV and can also switch to using RC4 instead of using block ciphers
[132].

Certificate mis-issue: The Certification Authority Authorization (CAA)

13https://www.openssl.org/blog/blog/2016/03/01/an-openssl-users-guide-to-drown/
14https://access.redhat.com/articles/1369543

25

3. Cryptography in the wild

DNS resource record allows a domain owner to set which Certificate Author-
ities are permitted to issue certificates for the domain. In that case, other
CAA-compliant certificate authorities should refuse to issue a certificate. Miti-
gation: server managers should use the CAA feature in order to prevent issuing
certificates by other unauthorized CAs [66].

On HackerOne: There are various type of attacks against SSL in the
vulnerability reports. The highest number of references belong to the POO-
DLE and SWEET32 attacks that appeared in 13 and 7 reports. The Breach
and Drown attacks each appeared 4 times in reports and the SSL pinning
and Beast attacks each discussed 3 times in reports. Other types of attacks,
such as SSL stripping, freak attack, CBC cut and paste attack, invalid curve
attack, divide-and-conquer session key recovery, appeared only once in all re-
ports. There are 25 reports that are about certificate-related issues, such as
the CAA record or validation of a certificate. One of the major issues that
security experts found was the missing DNS Certification Authority Autho-
rization (CAA) record. Failure in certificate validation in mobile apps and
insecure enabled RC4 cipher suites are the other evident reasons in the re-
ports.

Weak crypto defaults

Cryptographic algorithms require various parameters which developers should
provide. If an insecure argument or a weak crypto hash function, e.g., MD5,
is used, it may pose a severe threat to the security of a program. For instance,
the use of insufficiently random numbers in a cryptography context leads to
predictable values, or impersonating other users and accessing their sensitive
information. Moreover, using a weak key length can also weaken the security
of crypto algorithms to withstand brute-force attacks. Mitigation: testing is
an effective way to ensure that the implementation is able to pass the basic se-
curity tests, e.g., the National Institute of Standards and Technology (NIST)
offers test vectors for a number of cryptographic primitives.15 Moreover, NIST
provides cryptographic standards and guidelines which is a reliable source for
finding the right parameters and algorithms for various circumstances in cryp-
tographic scenarios.16 Employing static analysis tools in order to check crypto
misuses in code snippets can immensely help developers in detecting crypto
API misuses in the development phase, e.g., CryptoLint [44] and MalloDroid
[49].

On HackerOne: There are 25 reports that contained weak crypto de-
faults as one of their main issues. Experts found that weak encryption, e.g.,
512-bit RSA key or MD5, could lead to remote command execution, bypassing
the download restriction for confidential files, decrypting data sent over SSH,
gaining local file inclusion, and corrupting or modifying files on the server.

15http: //csrc.nist.gov/groups/STM/cavp/
16https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines

26

3.2. Results and discussions

There are six reports that security experts found bugs due to the existence of
weak random number generators in systems. For instance, a bug could give
access to the attacker to obtain access to OAuth access token as a result of
using PRNG instead of SecureRandom. In a report, a security researcher no-
ticed that the target uses the TLS RSA WITH 3DES EDE CBC SHA cipher,
which is not marked as weak on SSL labs.17 In four reports, the specified key
size was problematic. Another security researcher noticed that using a spe-
cific cryptographic function reduces the permutations of cryptographic keys.
As a result, reduced permutations boost the chances of IV re-use. In two
reports, the short length of keys, e.g., 64 bit, increased the chance of finding
key collisions and conducting brute force attacks.

OpenSSL bugs

There are implementation bugs in crypto libraries that jeopardize the security
of software systems using such libraries. What’s worse, the software developers
commonly cannot fix such vulnerabilities, and identifying them are beyond de-
veloper responsibility. Such flaws can be extremely dangerous as they expose
thousands of software to security risks. Mitigation: applying formal verifica-
tion methods to examine the security properties of a cryptographic protocol
can be considered, such as Cryptol [47] and PCL [41]. Furthermore, fuzzing
approaches can also be part of library test suites or continuous integration in
order to run before any versions are released, e.g., the TLS-attacker framework
is being used in MatrixSSL and Botan libraries [138].

On HackerOne: Security experts found 25 bugs in the OpenSSL library
and in total, they received a $24 500 award. Security researchers reported
vulnerabilities specifically to the implementation of OpenSSL. For instance,
a security researcher reported that there is a mismatch in accepting a nonce
value for the AEAD cipher. Other vulnerabilities concerned about consuming
excessive resources or exhausting memory, recovering key on Diffie–Hellman
small subgroups, performing padding oracle in AES-NI CBC MAC check, heap
corruption, out-of-bounds read, and denial of service attacks.

HTTP/HTTPs mixed content

The improper way of using HTTPS and mixing it with insecure network pro-
tocols, e.g., HTTP or WebSocket (WS), can bring about undesirable out-
comes for the website. Attackers can eavesdrop and conduct complicated
attacks, e.g., CRIME, JavaScript execution, cookie stealing, due to the un-
avoidable mistake of combining HTTPS and HTTP [37]. Mitigation: all the
traffic should go through secure channels and the features that enforce secure
connections on browsers, devices, and servers must be utilized. There are a
number of HTTP headers that enforce and log the usage of HTTPS, namely

17https://www.ssllabs.com/

27

https://www.ssllabs.com/

3. Cryptography in the wild

Content-Security-Policy-Report-Only and Upgrade-Insecure-Requests.18 The
latter HTTP header necessitates that the browser must upgrade all insecure
URLs before making any requests. For establishing secure WebSocket com-
munications one must use the “wss://” instead of the “ws://” scheme, which
utilizes port 443 [52].

On HackerOne: There are 22 reports in which security experts observed
an insecure redirect from HTTPS to HTTP, lack of HTTPS on the login
page, downloading resources from insecure channels, compromising HTTPS
by loading resources from non-secure sources, downgrading from HTTPs to
HTTP, and invitation reminder emails including HTTP links.

Timing attacks

Timing attacks exploit execution time differences. A timing attack is possible
when a password check module immediately returns “false” as soon as the first
character in the supplied password is different from the stored one. The at-
tacker can observe the time it takes the system to respond to various queries
until the correct password is extracted. Mitigation: in the aforementioned
scenario, the developers should compare all of the characters before returning
true or false. Returning an early response will leak information. Likewise,
when the developers compare strings of equal length and drop the compar-
ison when one string is longer or shorter causes information leakage about
the secret string length. There are other preventive approaches, for instance,
eliminating cache information leakage, including “random noise” into the com-
putation, constant time implementations in the code, or using special APIs
(e.g., hmac.compare digest in Python19) for checking hashed passwords[83]
[136] [59].

On HackerOne: There are 11 reports that the timing attacks were the
root cause of the vulnerability. Security researchers noticed that using ==
operator performs a byte-by-byte comparison of two values and once the two
differ it terminates. In other words, the longer the process takes time, the
more correct characters the attacker has guessed.

Hard-coded secrets

Hard-coded secrets can provide vital information for attackers in order to
simply authorize themselves with privileged access in a software system. Such
information can be divided into three categories, namely passwords/tokens,
hard-coded usernames, and hard-coded private cryptographic keys. Mitiga-
tion: one advantage of static analysis tools is to prevent developers from using
the same cryptographic key multiple times, hard-coded cryptographic keys for
encryption or hashes [134]. The Common Weakness Enumeration (CWE-798)

18https://www.w3.org/TR/upgrade-insecure-requests/
19https://docs.python.org/3/library/hmac.html#hmac.compare_digest

28

https://www.w3.org/TR/upgrade-insecure-requests/
https://docs.python.org/3/library/hmac.html#hmac.compare_digest

3.2. Results and discussions

Table 4: The eight crypto themes on HackerOne, underlying causes, and mitigations
Themes # reports Underlying causes Remedies

SSL-related
attacks

58
Using insecure SSL versions
e.g., 2.0, 3.0 and TLS 1.0/1.1

Upgrade to more secure protocols
(TLS 1.3)
Upgrade OpenSSL to the latest version
Avoid using 3DES, RC4,and Bluefish

Weak crypto
defaults

25

Using wrong parameters and
hashing algorithms (MD5, SHA-1)
Short keys
Insecure random number generators

Use stronger hashing algorithms
e.g., SHA-2 and SHA-3
Use guidelines to find the
recommended key sizes
Use cryptographic PRNG

OpenSSL bugs 25 Implementation flaws
Formal verification methods
Fuzzing approaches

HTTP/HTTPs
mixed content

22

Loading third-parties that have
no SSL
Having no measures to
check the mixed-content

Install SSL certificate for the website
Enforce HTTPS connections by the
Upgrade-Insecure-Requests and
Content-Security-Policy-Report-Only
HTTP headers

Miscellaneous
attacks

12

Using normal hashing algorithms
(MD5) and prepending a message
The KRACK attack
Using early versions of
RSA padding

The usage of authenticated encryption
e.g., AES-GCM or RSA-OAEP
The usage of standard HMAC
Upgrading router firmware

Timing attacks 11
Byte-by-byte comparison of
two values

The usage of specific APIs to check
two hashes
(e.g., constant time compare in Django)
Including random-noise into computation

Hard-coded
secrets

11
Placing static secret keys or
hard-coded passwords in source
codes or servers

File system encryption techniques
Secure architectural design
Manual source code review

HTTP header
issues

9

Using cookies without the secure
parameters
Not enforcing the usage of HTTPS
from client-side

The usage of the “HttpOnly”
and “secure” flags
The usage of the HSTS header

also suggests file system encryption techniques, secure architectural design,
manual source code review, and dynamic analysis with manual results inter-
pretation mitigation strategies.20

On HackerOne: There are 11 reports that the disclosure of secret keys
or hard-coded passwords was the main theme of the reports. Security experts
found secret keys or hard-coded passwords in different areas such as an error
page, log files, or within a JavaScript source.

HTTP header issues

The attacker can eavesdrop on the HTTP connection to steal the victim’s
cookie or an XSS attack can retrieve the victim’s cookie in case the cookie
is not set properly. Mitigation: The “HttpOnly” flag in cookies prevents the
access of the cookie from the client-side via JavaScript code in case of XSS
exploitation. Moreover, to prevent hackers from eavesdropping on the cookies
sent between client and server, the secure flag in cookies forces that the cookie
must be only sent over an HTTPS connection [31]. The HSTS header resides
on the browser, automatically redirects HTTP requests to HTTPS for the
target domain, and does not permit a user to override the invalid certificate
message on browsers [81].

20https://cwe.mitre.org/data/definitions/798.html

29

3. Cryptography in the wild

On HackerOne: There are 9 reports that contained problems related to
HTTP cookies and the HSTS security HTTP header. The main issue related
to cookies is tied with not setting the SSL flag and HttpOnly in cookies. We
also observed a lack of HSTS for websites and setting improper max-age for
the header are frequent issues in the reports. Moreover, experts found that
duplicate HSTS headers lead to ignoring HSTS on Firefox and it is feasible to
downgrade a chosen victim from an HTTPS connection to HTTP.

Miscellaneous attacks

KRACK: The KRACK vulnerability concerns weaknesses in the WPA2 pro-
tocol four-way handshake for wireless networks. The exploitation process in-
cludes bypassing the official countermeasure of the 802.11 standard and rein-
stalling the group key, by combining WNM-Sleep frames with EAPOL-Key
frames [145]. Mitigation: The users must update their Windows, OSX, Linux,
Android, iOS, and firmware of home routers to address KRACK attacks [51].21

The Wi-Fi Alliance should not solely test products for interoperability, but
should also employ fuzzing techniques to detect vulnerabilities [145].

Hash length extension: The hash length extension attack occurs if a
developer prepends a secret value to a message, misusing a hashing algorithm
in order to build a naive message authentication system [40]. In spite of the
fact that the value of the prepended secret is confidential, if the attacker has
knowledge about the string and the hash, he can still generate valid hashes.
Mitigation: Developers must use the standard HMAC and avoid using MD5,
SHA1, SHA-256, and other hashing algorithms [89].

Chosen ciphertext: The attack happens when the adversary can obtain
the decrypted version of chosen ciphertexts. With the obtained pieces of
information, the adversary can make attempts to recover the hidden secret
key that was used for decryption [25]. Mitigation: To protect from such
attacks, one can use secure crypto algorithms such as AES-GCM or RSA-
PKCS#1 version 2 (RSA-OAEP) or consider the integrity and authenticity
of the ciphertext [25] [87]. Developers must avoid using the RSA encryption
standard PKCS #1 v1.

On HackerOne: In this category, we observed several attacks that were
repeated in 12 reports. The padding oracle attack was repeated four times,
and encryption without authentication as well as insecure data storage each
were repeated twice in the reports. The remaining attacks, i.e., the hash
extension length attack, the chosen-cipher text attack, the KRACK attack,
and the Heartbleed attack appeared only once in the reports.

21https://www.kaspersky.com/resource-center/definitions/krack

30

3.2. Results and discussions

Summary

In Table 4, we show the eight crypto themes observed in the analyzed reports.
The SSL-related attacks theme appeared more than other themes while the
least appeared themes are OpenSSL bugs and HTTP header issues. We ob-
serve that the key reason for major issues is rooted in avoidance of using
secure solutions by developers. For instance, despite the availability of TLS
1.3, there exist servers wherein SSL 3.0 is enabled. Developers commonly over-
look the security parameters in cookies and this severely leads to downgrading
the security levels of web applications. Such options are clearly elucidated in
various reliable sources and even practical examples do exist. 22 23 Further-
more, there exist encryption/decryption scenarios in which developers should
comprehend several intricate concepts such as IV, differences between AES-
ECB and AES-GCM, and key lengths. For example, despite the inevitable
consequence of deterministic random bit generators (DRBGs), developers paid
inadequate scrutiny, leading to several fatal mistakes in software systems, e.g.,
stealing $5 700 bitcoin due to a bug in entropy use in the Android DRBG. 24

Similarly, IV attacks also jeopardized the security of WEP protocol in wireless
networks [139]. Some of the developers’ mistakes can be avoided by employ-
ing security tools. For instance, the usage of outdated hashing algorithms or
hard-coded secrets is easily identifiable with crypto misuse detectors. Nev-
ertheless, there are various factors to dishearten developers from using such
tools, e.g., organizational and project-level constraints. Notably, the total
number of participants in a study who use a static analysis tool is fewer than
one-fifth (i.e., 18) of the total number of participants (i.e., 97) [76].

The themes are a summarized version of what has been improperly imple-
mented in the industrial environment as well as signifying the seriousness of
companies in addressing the issues. The provided real-world crypto vulnera-
bility themes can assist developers, who lack knowledge in cryptography, to
become more cautious while working with various elements, e.g., OpenSSL,
HTTP security headers, or hard-coded secrets, in the development phase. We
also provided remedies, corroborated by previous research, for each theme
to facilitate the hassle of finding secure practices. Future research should
combine the current results with prevalent issues in other similar areas, e.g.,
authentication, and authorization circumventions.

3.2.2 Java projects

In this section we first report on the current status of crypto API uses in open-
source projects, and then present the key messages of developer feedback.

22https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
23https://owasp.org/www-community/controls/SecureCookieAttribute
24https://arstechnica.com/information-technology/2013/08/

google-confirms-critical-android-crypto-flaw-used-in-5700-bitcoin-heist/

31

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://owasp.org/www-community/controls/SecureCookieAttribute
https://arstechnica.com/information-technology/2013/08/google-confirms-critical-android-crypto-flaw-used-in-5700-bitcoin-heist/
https://arstechnica.com/information-technology/2013/08/google-confirms-critical-android-crypto-flaw-used-in-5700-bitcoin-heist/

3. Cryptography in the wild

The state of crypto uses

We investigated the use of 15 JCA APIs in 489 projects. We found that only
two projects are completely healthy, and remaining 487 projects suffer from at
least one crypto misuse. The mean of the project forks is 139, and the median
value is 7.5. The mean of the project stars is 348, and the median value is 5.

Among the manually investigated records, 74 records (6%) were flagged
as rejected, which means according to the tool’s rules and the opinions of
reviewers they are mistakenly marked as misuses. For instance, before using
the sign method in the Signature API, a developer needs to call either the
initSign or the update method. However, in some cases, developers used the
update method in a loop, while the automatic analysis could not recognize it.

Figure 3 summarizes the uses vs. misuses of each of these APIs as well
as the total number of each API use in parenthesis. Developers seemingly
have severe difficulties in using more than half of the APIs whose correct uses
were less than 51%. For instance, the correct uses of five APIs namely, Se-
cretKeySpec, IvParameterSpec, KeyStore, Cipher, MessageDigest, and Signa-
ture were at most 10%. In contrast, developers had a promising performance
in using the SecretKey, Mac, SecureRandom and KeyPair APIs, i.e., at least
90% uses were correct.

Various misuse types may pose threats with different levels of severity
depending on how a project is intended to be used, e.g., selecting a wrong
constraint MD5 versus skipping to dispose of a crypto object. Table 5 gives
information about the distribution of crypto misuse types in the top six most
misused APIs. Most of the misuses were of the ConstraintError type followed
by RequiredPredicateError and TypestateError. The ConstraintError type
made up the largest proportion of misuses, showing that developers struggle
with choosing correct parameters for crypto APIs. The second most common
misuse is the RequiredPredicateError type, which means an insecure object is
passed to other objects as an arguments. The NeverTypeOfError and Incom-
pleteOperationError types account for nearly 23% of the total misuse types
that exist in all analyzed projects.

The complete analysis results are publicly available via the CryptoMine
dataset,25 which facilitates investigation of the following research questions:
(1) What are the most common crypto mistakes, and what should we do
to improve learnability in this domain? (2) How do crypto uses evolve in a
project? (3) How do the quality characteristics of a project correlate with
crypto uses in that project? (4) In what context are crypto APIs commonly
used? (5) Why do some developers perform better in using cryptography?
(6) What is the performance of the static analysis tool in detecting crypto
misuses? (7) What is the benchmark result of comparing several static analysis
tools in detecting crypto uses of the dataset’s projects? Even though some of

25http://crypto-explorer.com/cryptomine/

32

http://crypto-explorer.com/cryptomine/

3.3. Threats to validity

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

AlgorithmParameters (6)
SecretKeySpec (176)

Signature (172)
Cipher (323)

KeyStore (421)
MessageDigest (992)

IvParameterSpec (35)
GCMParameterSpec (2)

KeyGenerator (32)
KeyPairGenerator (45)

Mac (203)
SecureRandom (149)

KeyPair (36)
DHParameterSpec (1)

SecretKey (26)

API use API misuse

Figure 3: The misuses vs. uses of each API in percentage

the aforementioned research questions might not fit in the scope of this study,
it certainly helps to explore relevant areas.

Table 5: Mostly misused APIs with more than 10 misuse types
JCA API IncompleteOperationError NeverTypeOfError TypestateError RequiredPredicateError ConstraintError
SecretKeySpec 170
Signature 5 1 49 26
Cipher 42 83 52
KeyStore 32 160 16
MessageDigest 72 178 400
IvParameterSpec 30

3.3 Threats to validity

In the following, we describe the threats to validity of each of explored facets.

3.3.1 HackerOne

To alleviate the errors of report categorization, each reviewer separately checked
each bug report, and finally, they cross-checked their results. Besides checking
the reports whose weakness field contained the “crypto” and “encrypt” terms,
we also analyzed 221 reports whose summary contained 40 crypto-related key-
words [77]. However, studying other reports (i.e., 8903) on HackerOne may
also uncover new relevant reports. In this work, our preliminary study re-
vealed that Bugcrowd, and Synack do not provide detailed reports of discov-
ered vulnerabilities, and hence, we only focused on vulnerabilities reported

33

3. Cryptography in the wild

on HackerOne. We cannot lose sight of fact that the number of vulnerabil-
ity reports in recent years has increased but many could have not yet been
disclosed. On HackerOne, studying private or not yet disclosed reports is not
possible. Furthermore, studying all the available reports in detail is not fea-
sible since the examined end-points or applications are not accessible to the
public. Lastly, the analyzed vulnerabilities reports are associated with distin-
guished companies, and hence, such companies are more security conscious
than the average software firms.

3.3.2 Java projects

It is infeasible to manually identify crypto (mis)uses in source code at large-
scale. In contrast to manual analysis, adoption of static code analysis tools
can considerably help developers to automatically detect crypto misuses and
write more secure code. Therefore, we employed a static analysis tool, i.e.,
CogniCrypt, in order to assess the status of crypto uses in hundreds of Java
projects. The primary reason for this choice is that the tool is open-source
and supports a wide range of crypto rules for different APIs, which are easily
extendable. However, the CryptoMine dataset does not represent all the JCA
APIs and their various usages, e.g., different parameters or method calls.
This can be addressed by increasing the number of analyzed projects which
contain different usages of crypto APIs. To provide a better level of reliability,
we have manually cross-checked 48% of the results in the CryptoMine dataset.
Nevertheless, the manual analysis of a large dataset is a non-trivial task and
to accelerate the process we invite interested researchers to join us. Moreover,
security assumptions may change over a period of time. For instance SHA1,
which was judged to be secure in the past, is considered insecure now.

3.4 Summary and conclusion

We were curious to observe what types of crypto flaws security experts find
in real-world programs. We extracted disclosed vulnerability reports from
HackerOne and analyzed the ones which were labeled as cryptography sensitive
report. We found eight themes of crypto vulnerability in 173 reports. We
introduced each theme’s vulnerability, implications, prevalence on HackerOne,
and suggest mitigation strategies. This study showed that developers do not
commonly employ secure options in cryptography, leading to severe security
vulnerabilities. Voracious readers and developers can learn from the findings,
which are based on real bug reports, to avoid making the same fatal mistakes
in practice.

We analyzed hundreds of projects in which JCA APIs were used, to observe
the status of API use in open-source projects, to learn what crypto misuse
types exist, and to investigate the influential factors in misusing such APIs.
We found that 85% of the crypto APIs suffered from at least one misuse,

34

3.4. Summary and conclusion

though not all misuses were at the same level of severity. To support the
research community, we publicly share the CryptoMine dataset, including the
analysis results, and information about each project such as its metadata
information, the precise locations of API use, and the safety status of these
APIs, to name but a few.

35

Chapter 4

Crypto hurdles - the API perspective

We witnessed in the previous chapter how cryptography is misused by main-
stream developers and what dire consequences these misuses may have. There
are various reasons that contribute to the emergence of crypto vulnerabilities.
However, broadly speaking, we classify the various issues into two major per-
spectives: crypto APIs and developer performance. In this chapter, we only
focus on the crypto APIs perspective and investigate the latent factors why
cryptography is regarded as difficult for developers.

To alleviate the issue of crypto misuse, one might suppose that developers
must examine their code with the most recent comprehensive list of secu-
rity rules concerning crypto APIs. Regrettably, creating and updating such
a list can be challenging as the standards might frequently change. This can
be due to the fact that security researchers oftentimes discover new vulner-
abilities against existing primitives. For example, researchers recommended
using stronger cryptographic hash functions owing to a collision attack against
SHA-1.1 Furthermore, the sheer number of crypto libraries presents various
approaches to use crypto APIs with varying levels of usability [108]. Ana-
lyzing the usage of the PBEKeySpec API in Java reveals that there are four
imminent threats that must be addressed [56]. Consequently, developers have
to struggle with the diversity of parameters and concepts in crypto APIs, as
well as with the high complexity of creating a list of security rules.

To clear the confusion, developers commonly seek quick solutions on online
question and answer (Q&A) forums and reuse the unconfirmed code snippets
[53]. Stack Overflow is used as a knowledge base by many users who are not
part of the discussions and this one-way communication may unwittingly con-
tribute to the spread of insecure code, as the community’s voting mechanisms
does not effectively deter them from answers [144]. Fischer et al. demonstrated
that 30% of crypto code examples found on Stack Overflow were insecure, and
such vulnerable code snippets were reused in approximately 190 000 Android

1https://security.googleblog.com/2017/02/announcing-first-sha1-collision.

html

37

https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html

4. Crypto hurdles - the API perspective

Studying crypto hurdles from the API perspective on online sources

A Large-scale analysis
of crypto questions on

Stack Overflow

An analysis of crypto
libraries questions on

Stack Overflow

An analysis of Java
symmetric questions
and code snippets on

Stack Overflow

Facet 1 Facet 2 Facet 3

Figure 4: The methodology followed to answer the second research question

applications [53]. What is worse, they understood that the feedback of Stack
Overflow’s users was not effective in stopping the reuse of insecure code snip-
pets. In another study, researchers noticed that on average posts containing
insecure snippets received higher view counts and scores [36]. Yang et al. con-
ducted a large-scale analysis of security-related questions on Stack Overflow
[153], finding five main categories, i.e., web security, mobile security, cryptog-
raphy, software security, and system security; however, they did not delve into
the challenges of each topic. We believe that detailed scrutiny of such online
forums contributes to clarifying the state of developers’ problems with crypto
APIs.

4.1 Study design

The aim of this chapter is to observe what crypto hurdles developers encounter
and enquire about on online sources, especially Stack Overflow. To that end,
we address the second research question (RQ2) of our study: What hurdles
are mostly discussed concerning crypto APIs?, from three facets, illustrated
in Figure 4.

Facet 1 → We conducted a large-scale study on crypto-related questions on
Stack Overflow. We were interested in the reoccurring cryptography
themes. We clustered 91 954 questions with a machine learning tech-
nique and manually analyze 383 questions. We found three major themes
in crypto-related discussions and reported that developers either have a
distinct lack of knowledge in understanding the fundamental concepts,
e.g., OpenSSL, public-key cryptography or password hashing, or the us-
ability of crypto libraries undermined developer performance in correctly
realizing a crypto scenario.

Facet 2 →We specifically focused on discussions on Stack Overflow that tar-
get crypto libraries. We manually studied 500 posts on Stack Overflow
associated with 20 popular crypto libraries, inferring that there were
ten themes in the discussions in which the majority of posts (i.e., 112)
were about encryption/decryption problems and 111 posts about instal-
lation/compilation issues of crypto libraries.

38

4.1. Study design

Facet 3 → We further narrowed down the analysis to a specific topic rather
than analyzing a broad crypto topic as in previous facets. We selected
150 Stack Overflow’s posts with respect to Java crypto APIs (JCA, or
Java Cryptography Architecture) that were linked to symmetric encryp-
tion. In this analysis, our purpose was to understand (1) what issues are
prevalent with JCA APIs while developers have to accomplish symmetric
encryption scenarios, and (2) the degree to which security risks exist in
code snippets and also the question and answer body. We observed that
most of the identified issues were related to the generation of parameters
(e.g., keys) or instantiating a Cipher object (e.g., specifying encryption
mode). The results revealed that the majority of security risks were
notably present in code snippets of questions. Moreover, the identified
risks were mainly related to both the use of unsafe encryption modes
and constant/static values as a key or initialization vector.

In the following, we explain how we conducted the data collection and analysis
phases for each of the aforementioned facets.

4.1.1 General crypto questions analysis

Data extraction:

To collect crypto-related posts on Stack Overflow, we assumed that the at-
tached tags to a question mainly reflect the question’s topic. We first used the
“cryptography” tag, i.e., base tag, to fetch crypto-related posts, i.e., 11 130
posts, with the help of the (Stack Exchange) Data Explorer platform. We
found 2 184 tags (candidate tags) that occurred in posts together with the
“cryptography” tag. However, not all candidate tags were crypto-related e.g.,
C#.

To find relevant posts with the base tag, we used two metrics to deter-
mine which of the candidate tags are exclusively related to the base tag. We
introduced the first metric as affinity to determine the degree to which a can-
didate tag (T) is exclusively associated with the base tag (BT). For each T, we
used the posts with tags function, for brevity pwt(), to calculate the number
of posts whose tags contain both T and BT . We used pwt() to obtain the
number of posts whose tags contain T. Given these two values, we compute
affinity(T,BT) = |pwt(T,BT)| / |pwt(T)|, whose result ranges from zero to
one.

The smaller the value of the first metric, the weaker the association be-
tween T and BT. For example, the “C++” and “encryption” tags each ap-
peared 639 897 and 29 737 times respectively in the entire Stack Overflow. The
“C++” tag appeared together with BT 540 times and “encryption” was used
3535 times with BT. The value of affinity for the “C++” tag is 0.0008 and
0.1188 for the “encryption” tag, values which demonstrate a strong affinity
for “encryption” and BT.

39

4. Crypto hurdles - the API perspective

However, higher values of affinity for some candidate tags do not neces-
sarily indicate tags that are closely related to cryptography. For example, the
“s60-3rd-edition” tag appeared once with the base tag and in total 11 times
in Stack Overflow. The value of affinity for this candidate tag is 0.09, which
is close to the value of the “encryption” tag, even though it appeared only
once with the base tag. To resolve this issue, we introduced a second met-
ric, coverage(T,BT) = |pwt(T,BT)| / |pwt(BT)|. The second metric indicates
the coverage of the BT posts by T. As an example, the value (i.e., 0.00008)
of coverage for the “s60-3rd-edition” tag proves that the candidate tag does
not exclusively cover the base tag while the “C++” tag covers 0.04 of the
cryptography-related questions.

Two reviewers examined various combinations of thresholds for the two
metrics, and manually reviewed the resulting tags. We noticed that the thresh-
olds to collect only crypto-related tags from the candidate tags (i.e., 2 184)
are the ones above the affinity: 0.025 and coverage: 0.005. There are 40
crypto-related tags that fall within the selected threshold domain. The list of
crypto-related tags as well as their frequencies are available online.2 Next, we
again used Stack Exchange Data Explorer to extract posts containing each of
the selected tags (i.e., 40 tags) but not the base tag, and recorded them in
CSV files, which are available online.3

Topic modeling: We combined the title and body of a post in order to
create a document. We removed duplicate post IDs in multiple CSV files, and
finally obtained 91 954 unique documents, without considering when the posts
were created. Evidently, each of the documents contained a large number of
unnecessary text elements that could produce noise in the output of a topic
modeling algorithm. We preprocessed the documents in the following steps:
(1) we removed all the code blocks enclosed by the “<code>” tag, (2) we
removed all the HTML elements with the help of the Beautiful Soup library,4

(3) we removed newlines and non-alphanumeric characters, (4) we used the
NLTK package to eliminate English stop words from the documents, and
finally (5) we used the Snowball stemmer to normalize the text by transforming
words into their root forms, e.g., playing converts to play. We found 269 795
stemmed words in total. Finally, we used the CountVectorizer class in Scikit-
learn to transform the words into a vector of term/token counts to feed into
a machine learning algorithm.

We used Scikit-learn,5 a popular machine learning library in Python that
provides a range of supervised and unsupervised learning algorithms. Latent
Dirichlet Allocation (LDA) is an unsupervised learning algorithm based on
a generative probabilistic model that considers each topic as a set of words
and each document as a set of topic probabilities [24]. LDA has been used

2http://crypto-explorer.com/paper_data/tags.csv
3http://crypto-explorer.com/paper_data/
4https://www.crummy.com/software/BeautifulSoup/
5https://scikit-learn.org/

40

http://crypto-explorer.com/paper_data/tags.csv
http://crypto-explorer.com/paper_data/

4.1. Study design

to discover latent topics in documents in a large number of prior studies [17]
[153] [131].

Before training a model, LDA requires a number of important parameters
to be specified. LDA asks for a fixed number of topics and then maps all
the documents to the topics. The Alpha parameter describes document-topic
density, i.e., higher alpha means documents consist of more topics, and gen-
erates a more precise topic distribution per document. The Beta parameter
describes topic-word density, i.e., higher beta means topics entail most of the
words, and generates a more specific word distribution per topic.

The optimal values of hyperparameters cannot be directly estimated from
the data, and, more importantly, the right choice of parameters considerably
improves the performance of a machine learning model [118]. We therefore
used the GridSearchCV function in Scikit-learn to perform hyperparameter
tuning to generate candidates from an array of values for the three aforemen-
tioned parameters, i.e., Alpha, Beta, and the number of topics. As research
has shown that choosing the proper number of topics is not simple in a model,
an iterative approach can be employed [161] to render various models with dif-
ferent numbers of topics, and choose the number of topics for which the model
has the least perplexity. Perplexity is a measure used to specify the statistical
goodness of fit of a topic model [24]. We therefore specified the number of
topics from 1 to 25. We also used the conditional hyperparameter tuning for
Alpha, which means a hyperparameter may need to be tuned depending on
the value of another hyperparameter [103]. We set alpha = 50 / number of
topics and beta = 0.01, following the guidelines of previous research [64].

Optimizing for perplexity, however, may not always result in humanly
interpretable topics [34]. To facilitate the manual interpretation of the topics,
we used a popular visualization package, named pyLDAvis6, in Python. The
two reviewers separately checked the resulting top keywords of the topics, i.e.,
from 1 to 25, and the associated pyLDAvis visualizations to ensure that the
given number of topics is semantically aligned with human judgment.

Data analysis: We computed the required sample size for 91 954 docu-
ments with a confidence level of 95% and a margin of error of 5%, which is 383
documents. We then used stratified sampling to divide the whole population
into smaller groups, called strata. In this step, we considered each topic as one
stratum, and randomly selected the documents proportionally from the differ-
ent strata. We then used thematic analysis, a qualitative research method for
finding topics in text [30], to extract the frequent topics from the documents.
Two reviewers carefully reviewed the title, question body, and answer body of
each document. Each author then improved the extracted topics by labeling
the posts iteratively. We then calculated Cohen’s kappa, a commonly used
measure of inter-rater agreement [39], between the two reviewers. The results
indicated 79% agreement between the two reviewers. Finally, the two review-

6https://github.com/bmabey/pyLDAvis

41

4. Crypto hurdles - the API perspective

Table 6: The selected crypto libraries and their associated number of posts on Stack Overflow

Tag name # of posts Tag name # of posts

OpenSSL 14 254 libsodium 272
Bouncy Castle 2 799 M2Crypto 263
CryptoJS 1 286 Web Crypto API 215
mcrypt 924 JCA 200
PyCrypto 842 CommonCrypto 199
phpseclib 796 node-crypto 170
Crypto++ 713 Botan 117
CryptoAPI 584 Spongy Castle 115
pyOpenSSL 436 SJCL 77
Jasypt 336 wolfSSL 50

ers compared their final labelling results, and re-analyzed the particular posts
in a session where they disagreed in order to discuss and arrive at a consensus.

4.1.2 Crypto libraries analysis

We aim at studying posts associated with popular crypto libraries on Stack
Overflow. We assumed that discussions related to crypto libraries contain the
name of the library as a tag. Hence, we selected the “cryptography” tag, i.e.,
base tag, to observe what other tags were used together with the base tag. We
used Stack Exchange Data Explorer to run a query in order to fetch tags that
appeared together with cryptography.7 We realized that there are 2 184 tags,
i.e., candidate tags. The reviewers separately checked each of the candidate
tags. Each of the reviewers selected the ones that are crypto libraries. They
used the internet to explore a tag in which they had a lack of certainty. Then,
they cross-checked the choices and discussed the tags. They arrived at the
conclusion that tags that do not represent a crypto library or only provide
a particular, limited service in cryptography (e.g., hashing) should not be
considered. As a result, there were 6 tags that were eliminated from the list,
namely rsacryptoserviceprovider, aescryptoserviceprovider, rijndaelmanaged,
bcrypt, javax.crypto, and hashlib. The aforementioned tags are either a crypto
class, namespace, or a dedicated module only for hashing. Ultimately, they
agreed on a list of 20 crypto libraries, illustrated in Table 6.

Crypto library selection: The selected crypto libraries are all widely
used in practice and have been examined in research projects. For instance,
six of the selected libraries, i.e., OpenSSL, libsodium, Bouncy Castle, SJCL,
Crypto-JS, and PyCrypto, were studied for finding usability issues [120].
MCrypt is the successor to the Unix crypt command, which supports modern
encryption algorithms.8 The phpseclib library offers pure-PHP implementa-
tions of SSH2, SFTP, RSA, DSA, and many other algorithms.9 Crypto++

7https://data.stackexchange.com/
8http://mcrypt.sourceforge.net
9https://github.com/phpseclib/phpseclib

42

http://mcrypt.sourceforge.net
https://github.com/phpseclib/phpseclib

4.1. Study design

and Botan are both C++ crypto libraries that support a wide range of crypto
algorithms and security protocols.10 11 The Microsoft CryptoAPI interface
enables developers to employ authentication, encoding, and encryption to
Windows-based applications.12 Jasypt and Java Cryptography Architecture
(JCA) are both intended for Java developers, and the latter is part of the Java
security API.13,14 The Web Crypto API is intended to present basic crypto-
graphic operations for web applications and defines cryptographic primitives
in a native JavaScript API. 15 The wolfSSL TLS library is a lightweight,
C-language-based library designed for IoT, embedded systems, and smart
grids.16 There are also popular OpenSSL wrappers in languages such as node-
crypto in Node.js and pyOpenSSL in Python. There have been numerous stud-
ies to investigate the security point of view of aforementioned crypto libraries
and their strengths and weaknesses were examined [32, 154, 138]. However,
the security evaluation of these crypto libraries falls outside the scope of this
study.

Manual analysis: In total, there are 24 648 posts that contained the
selected crypto libraries’ tags. We computed the required sample size for the
population with a confidence level of 95% and a margin of error of 4.34%,
which results in sampling 500 posts. We then equally selected 25 posts from
each tag (i.e., a crypto library). We queried the posts containing a crypto
library tag, e.g., OpenSSL, and set the search criteria to “recent activity”, so
that Stack Overflow returns the recent active discussions. Since we observed
questions that are either unanswered or received negative votes, we decided
to choose the posts for which the question received at least one upvote and at
least one answer. The list of the selected questions is available online.17

Thereafter, we employed thematic analysis, a qualitative research method
for finding themes in texts [30], to deduce the frequent topics from the chosen
posts. Since our study is of an exploratory nature, we did not devise a list
of themes prior to studying the posts. Hence, in order to link each post to a
suitable theme, two reviewers were responsible to separately study the posts
and deduce the main issue (i.e., theme) of the post. The reviewers carefully
reviewed the title, question body, and answer body of each post. Despite the
fact that each post may entail several crypto concepts, the reviewers’ objective
was to find the key issue of each post. They employed open coding in which a
short explanation label was assigned to each post [99]. Each author reiterated
the coding phase three times to improve their deduced list of themes. To

10https://www.cryptopp.com
11https://botan.randombit.net
12https://docs.microsoft.com/en-us/windows/win32/seccrypto/

cryptography-portal
13http://www.jasypt.org/
14https://www.oracle.com/java/technologies/javase/javase-tech-security.html
15https://www.w3.org/TR/WebCryptoAPI/
16https://www.wolfssl.com/
17http://crypto-explorer.com/crypto_libs/

43

https://www.cryptopp.com
https://botan.randombit.net
https://docs.microsoft.com/en-us/windows/win32/seccrypto/cryptography-portal
https://docs.microsoft.com/en-us/windows/win32/seccrypto/cryptography-portal
http://www.jasypt.org/
https://www.oracle.com/java/technologies/javase/javase-tech-security.html
https://www.w3.org/TR/WebCryptoAPI/
https://www.wolfssl.com/
http://crypto-explorer.com/crypto_libs/

4. Crypto hurdles - the API perspective

Table 7: The selected weakness types and the associated number of reports
Query # of posts # of selected posts
[java] Cipher.getInstance(AES) 3233 126
[java] Cipher.getInstance(DESede) 295 12
[java] Cipher.getInstance(DES) -DESede 300 12

evaluate the inter-rater agreement between the two reviewers, we employed
Cohen’s kappa to assess the agreement level [39]. Deducing the themes from
the posts, the reviewers received 68% Cohen’s Kappa score, which indicates a
substantial agreement between the two reviewers. Finally, the two reviewers
compared the two lists and discussed any disagreements. The two reviewers
used different wording for building the list of themes and the total number of
themes was not identical. They re-analyzed the particular posts in multiple
sessions where they had different views. In some scenarios, they realized that
one of the reviewers broke down one theme into several sub-themes, which
they then merged if necessary. Ultimately, they agreed on 10 themes for the
analyzed posts.

4.1.3 Java symmetric APIs on Stack Overflow

To look for posts on Stack Overflow relevant to Java symmetric APIs, we
defined a set of queries. We used the Java tag combined with a minimal
Cipher.getInstance() statement for each symmetric algorithm. We chose the
Cipher class as it supports a wide range of symmetric and asymmetric encryp-
tion algorithms in Java. The Cipher.getInstance() statement must be employed
in all encryption scenarios using the Cipher class. Not all symmetric algorithms
supported by JCA are very popular, and hence the corresponding queries re-
turned only a small number of posts, based on which we therefore decided to
exclude unpopular algorithms, such as RC2, and instead focus on the three
most popular symmetric encryption algorithms: AES, 3DES, and DES. We
calculated the sample size of our study with a confidence level of 95% and a
margin of error below 8%, which returns 150 posts. Then, according to the
number of posts returned by each query, we computed the sample size per
query proportionally. The defined queries, as well as the associated number
of selected posts, are presented in Table 7.

Stack Overflow enables users to customize their search query based on
various criteria, e.g., date of creation or popularity. In order to achieve a
balanced view in our sample set, we chose 50% of the sample size from the
newest posts and the remaining from the most popular ones since the majority
of developers first search for solutions before posting a question on Stack
Overflow. We also excluded all posts that did not refer to the implementation
of symmetric encryption using the JCA library. A post commonly consists of
more than one issue, and hence we included the posts in which at least one
issue, question, or piece of advice was found relevant to our scope.

44

4.1. Study design

Analysis of Issues

The goal of the first part of the analysis is to answer “what issues are preva-
lent with JCA APIs while developers have to accomplish symmetric encryption
scenarios”. To that end, we conducted a qualitative content analysis follow-
ing the guidelines presented by Mayring [104]. The guidelines enabled us to
employ method-integrative approaches that combine qualitative and quanti-
tative elements. These requirements are all key characteristics of Mayring’s
guidelines. We conducted the analysis in three rounds in which two reviewers
were involved. We first summarized the chosen posts to elicit the relevant
information (issues and questions), and then conducted two rounds of classi-
fication.

In the summarization step, the goal was to extract and record all relevant
information so that we did not have to read over the posts again. There were
two coders involved in summarization, each of whom independently performed
and then discussed their results with the other to create a consistent and more
accurate list of records. Notably, we eliminated the posts that did not precisely
refer to our scope, namely issues that referred to the conversion of plain text
or ciphertext (e.g., character-encoding).

For each post, we recorded an issue or a series of issues and questions with
which the original poster was facing. To find the solutions, we first studied the
accepted answers of the posts and then looked at other responses. We also
recorded the suggested security caveats by the responders. Finally, we had
one record for each post that consisted of a short description (e.g., an error
message, a shortened form of a question) and a longer description for possible
solutions. Afterward, all records were classified in two rounds: first based on
technical aspects and then on the requirements that the original poster was
not able to meet. In each round, we assigned at most one category to each
record.

Technical Aspects

In the first round of classification, we concentrated on the technical aspects
of implementing symmetric encryption, e.g., mistakes in the original poster’s
code that lead to errors. We began with a set of predefined main categories
and inductively refined them during the classification. Each time, we outlined
a new category and then restarted the classification.

The five main categories that developers must consider when implementing
symmetric encryption using JCA are as follows: Cipher Object Instantiation,
Generating Algorithm Parameters, Cipher Object Initialization, Transforma-
tion, and Transmitting Algorithm Parameters. We defined subcategories ei-
ther to obtain deeper insights (i.e., if an issue targeted only one aspect of the
main task) or to provide detailed classification (i.e., dependencies between
two properties). The five main categories and their associated subcategories

45

4. Crypto hurdles - the API perspective

(depicted in Figure 5) are described as follows.

• Cipher Object Instantiation: We assigned this category to all issues and
questions referring to an erroneous use of the Cipher.getInstance(...)

statement. As a parameter, developers must pass a transformation string
consisting of:

– Algorithm (mandatory)

– Encryption Mode (optional)

– Padding (optional)

As a result, we defined the following subcategories:

– Dependency Encryption Mode–Padding: The encryption mode
determines whether padding is required or not. We assigned this
category to all issues caused by an improper specification of these
two properties.

– Cipher Object Instantiation–Other: For issues and questions
related to the Cipher object instantiation but not any of the afore-
mentioned aspects.

• Generating Algorithm Parameters: Depending on the specification of the
Cipher object, different kinds of parameters are required. For encryption,
the developer might need to perform the following tasks:

– Key Derivation: For issues and questions referring to random
key generation, password-based key derivation, or key exchange
protocols.

– Initialization Vector / Nonce Generation: For issues and
questions referring to the generation of the IV or nonce used for
the transformation.

– Generation of Other Algorithm Parameters: For issues deal-
ing with generating other necessary parameters, e.g., for Galois/-
Counter Mode (GCM) - GCMParameterSpec

• Cipher Object Initialization: We assigned this category to all issues
caused by the misuse of the init(...) statement, (e.g., not passing all
required parameters).

– Dependency Algorithm–Key: The algorithm determines which
data type the key must be stored in. It also defines the permitted
key sizes. We assigned this category to issues caused by passing
an improper key to the init(...) method or questions about this
dependency.

46

4.1. Study design

– Dependency Algorithm/Encryption Mode - IV: The encryp-
tion mode determines whether an IV is required or not. For some
encryption modes (e.g., CBC), the IV must be the same size as the
algorithm’s block size.

– Cipher Object Initialization–Other

• Transformation: This category was assigned to all issues and questions
targeting the actual transformation methods update(...) and doFinal(...)

(e.g., passing the wrong input parameters or questions about the out-
put).

• Transmission of Parameters: As all parameters from encryption must be
reused for decryption, they must either be stored or transmitted. This
category was assigned to all issues and questions referring to storing,
restoring, or transmitting parameters. We further defined the following
subcategories:

– Key Transmission: The key must be kept secret.

– Transmission of Other Parameters: IV and other parameters
must be transmitted along with the ciphertext since secrecy is not
a requirement.

• Dependency Encryptor–Decryptor : The Cipher objects used for encryp-
tion and decryption must be specified and initiated in the exact same
way except for the parameter specifying the operation in the init(...)

statement. We assigned this category to all issues caused by conflicting
configurations.

Figure 5: Hierarchy of technical aspects categories

If all tasks are correctly implemented, the code compiles and runs without
any errors. Thus, if developers ask questions on Stack Overflow about a tech-
nical aspect, they either implemented a task incorrectly or have a question
regarding one of these categories. During this first classification round, each

47

4. Crypto hurdles - the API perspective

reviewer asked the following two questions in order to mark the issue: (1)
What implementation step was performed incorrectly that caused the error? ,
(2) What implementation step is targeted by the question?

Requirements

Not every issue is a technical issue. For this reason, we defined a second set
of categories concerning the design of an application. Consulting Sommerville
as a theoretical base [137], we identified various types of functional and non-
functional requirements as categories. During the analysis, we addressed this
question: Which requirements are the askers unable to meet?. Not all require-
ments defined by Sommerville occurred in our analysis, and therefore we only
assigned the following categories:

• Use Case (functional requirements)

• Performance

• Space

• Reliability

• Portability

• Interoperability

• Security

During the analysis phase, we only assigned a category to a post if either
the original poster was not able to meet a certain requirement or someone
warned that the shared code snippet might cause some issues regarding one
of the requirements (e.g., a security or performance hint).

Analysis of Security Risks

The goal of the second part of the analysis is to investigate “the degree to
which security risks exist in code snippets and also the body of Stack Over-
flow’s posts.” For this purpose, we defined a set of security rules about the
implementation of symmetric encryption. Then we manually checked the posts
against the security rules to observe if there is any violation.

48

4.1. Study design

Table 8: The collected security rules
Rule ID Rule - Cipher object instantiation
R-01 Use AES or Blowfish algorithm
R-02 Do not use ECB or CBC encryption mode

Rule ID Rule - Generating algorithm Parameters
R-03 Rules for key derivation
R-03-a Do not use a static key
R-03-b Do not use static salt for key derivation
R-03-c Use at least 64 bits of salt for key derivation
R-03-d Use at least 1000 iterations for key derivation
R-03-e Do not use a weak password
R-03-f Do not reuse passwords multiple times
R-04 Rules for IV / nonce generation
R-04-a Do not use a static IV
R-04-b Do not use a static seed for IV generation
R-04-c Use SecureRandom for IV generation

Rule ID Rule - Cipher object initialization
R-05 Do not reuse the same key-IV pair

Rule ID Rule - Parameter transmission
R-06 Do not use a static password to store

Security Rules

We derived our rules from two popular crypto static analysis tools, namely
CRYLOGGER (Piccolboni et al. [122]) and CogniCrypt (Krüger et al. [94]).
We only considered the rules that were applicable to symmetric encryption
and organized them based on the technical aspect classification. We did not
take into account the context of usage to simplify the evaluation. The resulting
rules can be found in Table 8.

Tracking Security Rule Violations

We studied the original sample to observe any security rule violations. To
that end, we only considered the question body, the accepted answer, and the
comments. We also differentiated between “question” and “answer” as well as
“code” and “text”. Two reviewers analyzed the four aspects independently,
compared their results, and eventually made a list for each:

• Question–Code

• Question–Text

• Answer–Code

• Answer–Text

While analyzing the code snippets, we concentrated on the parts in which
encryption, decryption, key derivation, IV generation, and key storage were
implemented. For instance, due to debugging purposes, if someone defined

49

4. Crypto hurdles - the API perspective

a key as String in the main method and passed it to the encryption section
as a parameter, we did not consider this a security risk. The encryption
section can still be safe if an appropriately derived, non-static key is passed.
Furthermore, some askers did not post their complete source code with their
questions, which could have otherwise created some biases in our judgment.

4.2 Results and discussions

In the following, we present and discuss our results regarding the three facets
of this chapter.

4.2.1 General crypto questions analysis

Our hyperparameter tuning demonstrated that the best number of topics is
three. Similarly, after analyzing pyLDAvis’s visualizations and top keywords
for 1 to 25 topics, the two reviewers achieved a consensus on three as the num-
ber of topics. The pyLDAvis interactive visualization for the three topics is
available online.18 The reviewers named the topics by considering the general
themes of top keywords returned by LDA (See Table 9). We determined that
the first topic is about digital certificates and configuration issues, the second
one is about programming issues concerning encryption and decryption, and
the third concerns passwords/hashes and basic crypto-related algorithms (See
Figure 6). As an influential indicator of topic relevancy, we realized that the
frequencies of the candidate tags used in the three topics are aligned with
the general themes of the topics.19 For instance, we observed that the AES,
DES, Encryption, and RSA tags are mostly used in programming issues, the
Hash, SHA, SHA256, MD5, XOR, and Salt tags are more frequent in the
password/hash topic, and finally, the Digital-signature, Keystore, OpenSSL,
Private-key, Public-key, Smartcard, and X509certificate tags are more com-
mon in the digital certificate topic.

With respect to stratified sampling, we considered the number of doc-
uments in each stratum (i.e., each topic) as 139, 124, and 119 documents
from the first topic to the third one respectively. The selected documents
were created in the last 5 years on Stack Overflow. Extracting the themes,
the reviewers achieved 79% Kappa score, which demonstrates a substantial
agreement between the two reviewers.

Topic One: Digital certificate and configuration problems

The manual analysis for the first topic depicts that developers discussed two
main areas, namely certificate/OpenSSL (63%) and SSH (37%). For instance,
the discussions were related to OpenSSL configuration, signing and verifying

18http://crypto-explorer.com/paper_data/lda.html
19http://crypto-explorer.com/paper_data/tags-topics.csv

50

http://crypto-explorer.com/paper_data/lda.html
http://crypto-explorer.com/paper_data/tags-topics.csv

4.2. Results and discussions

M
an

ua
l A

na
ly

si
s

To
pi

c
1:

D

ig
ita

l c
er

tif
ic

at
e

an
d

co
nf

ig
ur

at
io

n
pr

ob
le

m
s O

pe
nS

SL
 /

C
er

tif
ic

at
e

SS
H

N
o

pa
ss

w
or

d

K
ey

s
m

an
ag

em
en

t

Pr
og

ra
m

m
in

g
la

ng
ua

ge
s

C
on

fig
ur

at
io

n

H
TT

Ps
 /

SS
L

Si
gn

 a
nd

 v
er

ify
a

si
gn

at
ur

e

R
SA

 k
ey

s
ge

ne
ra

tio
n

fo
rm

at

C
er

tif
ic

at
e

st
or

ag
e

A
ut

he
nt

ic
at

io
n

R
SA

A
ES

To
pi

c
2:

Pr
og

ra
m

m
in

g
is

su
es

M
ic

ro
so

ft
C

ry
pt

oA
PI

Sa
m

pl
e

im
pl

em
en

ta
tio

n

M
od

es
 /

ke
y

si
ze

 /
ot

he
r p

ar
am

et
er

s
B

ad
 le

ng
th

er
ro

r

K
ey

m
an

ag
em

en
t

 E
xp

on
en

t
an

d
m

od
ul

us

Pa
dd

in
g

m
od

e

O
pe

nS
SL

co
m

pa
tib

ili
ty

La
ng

ua
ge

in
te

ro
pe

ra
bi

lit
y

is
su

es

A
 c

on
ce

pt
 o

r
an

 A
PI

D
iff

er
en

t
la

ng
ua

ge
/li

bs

To
pi

c
3:

Pa

ss
w

or
d/

ha
sh

es
 a

nd
ba

si
c

cr
yp

to
 a

lg
or

ith
m

s

Pa
ss

w
or

ds
A

lg
or

ith
m

s

 B
cr

yp
t

 P
B

K
D

F2
 -

sc
ry

pt
M

D
5

- S
H

A
1

-
...

Sa
lt

- h
as

h
R

ev
er

si
ng

a
ha

sh

R
ai

nb
ow

br
ut

ef
or

ce

Pr
im

e
nu

m
be

r

M
od

ul
ar

ex

po
ne

nt
ia

tio
n

Tr
ad

iti
on

al
al

go
rit

hm
s

A
ut

he
nt

ic
at

io
n

in
di

ffe
re

nt
 li

br
ar

ie
s

Figure 6: The results of manual analysis for the three topics 51

4. Crypto hurdles - the API perspective

Table 9: The three topics and their top keywords

Topic Top keywords

Digital certificate and
configuration problems

use, certif, file, server, key, openssl, client,
work, tri, need, sign, user, error,applic, creat,
code, secur, app, encrypt, ssl, store, instal,
like, connect, problem, want, way, run, request

Programming issues

key, encrypt, use, decrypt, code, data, file,
string, tri, public, work, ae, im, byte, need,
java, generat, messag, encod, privat, rsa,
cipher, algorithm, block, like, implement,
error, problem, function, text

Password/hashes and
basic crypto algorithms

hash, use, valu, password, function,like,
array, string, need, code, number, key, want,
way, store,data, tabl, im, salt, tri, differ,
time, algorithm, work, md5, user, make,
generat, object, implement

a signature, and generating PEM files using OpenSSL. There were also ques-
tions concerning how to generate self-signed certificates, access a certificate
store, create a Certificate Signing Request (CSR), establish https and secure
connections, and configure certificate-based authentication in ASP.NET. In
the SSH-related questions, the majority of the users had difficulty setting
SSH with no password, checking the right permission for SSH keys, using SSH
programmatically, and connecting to SSH servers of other platforms (e.g.,
Amazon).

Topic Two: Programming issues

We observed that the three most frequently discussed programming languages
were Java (i.e., 44), C/C++ (i.e., 31), and C# (i.e., 19). In 31% of the posts
developers discussed issues related to the AES algorithm such as different en-
cryption modes (e.g., CBC and ECB) and key sizes (e.g., 128, 192, and 256-
bit). In addition to symmetric encryption, 47% of the posts were related to
working with asymmetric encryption (i.e., RSA). The challenges were mostly
concerned with different padding modes (e.g., OAEP), how to calculate or
understand the raw modulus and exponent numbers, and how to generate
and work with different key file encodings in RSA (e.g., DER-encoded format,
PEM, or XML). Moreover, another evident problem was dealing with differ-
ent RSA key formats, i.e., Public Key Cryptography Standards (PKCS). The
users commonly asked how to convert PKCS#8 to PKCS#1 or other stan-
dards, and how to programmatically generate or use different key standards
in various crypto libraries (e.g., Bouncy Castle). There were users who had
problems with illegal block size errors, often misunderstanding the suitable
usage of RSA, e.g., encrypting a long text. Nevertheless, the discussions were
resolved by proper responses that suggested incorporating AES and RSA into
the encryption/decryption scenario. Another type of question was about the

52

4.2. Results and discussions

issues in Microsoft CryptoAPI (12%). Developers reported issues on working
with OpenSSL or using RSA keys from other sources, e.g., importing keys
from OpenSSL into Crypto API, converting RSA keys to be used by Bouncy
Castle, verifying an OpenSSL DSA signature using CryptoAPI, having extra
fields in generated keys by PHP OpenSSL, and signing a message with py-
OpenSSL in Python and verifying it with CryptoAPI. Moreover, there were
questions (10%) associated with how to either implement a scenario, e.g., en-
cryption of a string with RSA public key with Swift on iOS, or deal with
problems while working with more than one crypto library or programming
language, e.g., encryption of a string with RSA in JavaScript and decryption
in Java, or decryption of a string in Java which is already encrypted using
AES-256 in iOS.

Topic Three: Password/hashes and basic crypto algorithms.

Our findings for the password/hash topic suggest that users primarily dis-
cussed problems associated with either passwords (86%) or basic crypto al-
gorithms (14%). Different facets of producing secured passwords were the
topic of most discussions. First and foremost, users were uncertain which
hashing algorithms (e.g., MD5, SHA-1) can provide a higher level of relia-
bility and how password length contributes to the strength of the resulting
hash. Users lacked the required knowledge as to what salt is and how salt
can maximize the security of a hash. In addition to pointing out the pros
and cons of static salt vs random salt, respondents encouraged users to use
salted passwords in order to render the brute-force or the rainbow table at-
tack prohibitively expensive. Developers were doubtful about which crypto
functions, i.e., bcrypt(), PBKDF2(), or Scrypt(), are more secure and faster,
and what key differences distinguish the three functions from other hashing
algorithms, e.g., MD5, SHA-256. As regards the basic crypto algorithms,
users contributed to responses concerning how to produce or find prime num-
bers, how to use the BigInteger class for RSA modular exponentiation, how
to produce unique URL safe hash or IDs, and how to solve a Caesar Cipher
or substitution ciphers. Lastly, a few users discussed how to program an
authentication module in web programming frameworks such as Laravel, or
CakePHP.

Topic difficulty and popularity

We checked the popularity and difficulty level of each topic so as to determine
which questions attracted more attention or received acceptable answers with
a longer time span, which the same approach was used in the previous study
[153]. We used four factors to measure the popularity of a topic, namely the
average number of views of documents, the average number of comments, the
average number of favorites, and the average score of documents. The four fac-

53

4. Crypto hurdles - the API perspective

tors can be found in the CSV files,20 namely CommentCount, FavouriteCount,
Score, and ViewCount. We considered the average number of ViewCount as
the foremost factor to judge the popularity of a topic, the question’s score
and the number of FavouriteCount as the second most important factors, and
the average number of comments as the last factor. To find the most difficult
topic, we used two factors, namely the average time it takes for a document
to obtain an accepted answer, and the ratio of the average number of answers
in documents to the average number of the views. We avoided recently posted
questions from affecting the analysis by only including those that are older
than six months.

We infer that questions related to the usage of digital certificates, and
configuration problems are the most popular (highest average ViewCount and
FavouriteCount), and questions related to hashing and passwords are also
viewed as popular based on the other two factors (i.e., average CommentCount
and Score). From the difficulty standpoint, we notice that the programming
issues topic is the most difficult topic as it had a greater average response
time, and its proportion of average answers to average views is the lowest.

Summary

The challenges in each theme were studied in detail to demonstrate how devel-
opers struggle to use or comprehend various areas of cryptography. According
to our findings, we believe that there are two foremost reasons with which de-
velopers mainly encounter problems in cryptography. The first leading cause
is a distinct lack of knowledge to discern why or what they need to use to ac-
complish a crypto task. We observed ample evidence where developers lacked
the confidence to choose the best algorithm or parameter, for instance, the
right and safest padding option in AES. Consequently, developers may use
boilerplate code snippets from the provided answers, in spite of the answers’
reliability and security[144]. In the second factor, although the fundamental
concepts are the same, the implementation approach of a crypto concept in
various crypto libraries is influential to developer performance. Compelling
evidence in findings urges that working with more than one crypto library due
to using various architectures or platforms in a project creates confusion for de-
velopers regarding how a particular problem can be resolved. They commonly
have trouble in creating keys with one library and import them into another
library or verifying a signature in a different crypto library. Furthermore, ad-
equate explanations and the existence of useful examples in documentations
can alleviate the difficulty of using cryptography.

20http://crypto-explorer.com/paper_data/

54

http://crypto-explorer.com/paper_data/

4.2. Results and discussions

Table 10: The deduced themes, number of posts in each theme and associated description
Theme # of posts Description
Encryption/Decryption 112 Technical problems, e.g., modes of encryption, AES, or IV
Library installation 111 Posts related to installation or compilation
Certificate-related issues 74 Posts related to SSL, self-signed certs, PEM, PKCS7, DER
Library interoperability 63 Posts related to working with more than a crypto library
Generate/store keys 45 Posts related to loading or generating a crypto key
Hashing 37 Posts related to MD5, SHA, and other hashing algorithms
Digital signature 34 Posts related to how to sign or verify a signature
Sample implementation 19 Posts where a sample code was requested
Random number generator 3 Posts related to generating a true random number
Cryptography attacks 2 Concerns for cryptographic attacks in discussions

4.2.2 Crypto libraries analysis

Table 10 lists the themes, the associated number of posts in each theme, and
a brief summary of what each theme is. The highest number of posts is asso-
ciated with encryption/decryption of a file while the least number of posts is
associated with cryptography attacks. Table 11 describes in more detail the
number of assigned posts to each theme in the 20 crypto libraries. The high-
lighted cell demonstrates the highest number of posts in each theme compared
to other libraries. For instance, of 25 analyzed questions in pyOpenSSL, 17
posts were assigned to certificate-related issues. In the following, we discuss
each of the 10 themes of developer challenges in the 20 crypto libraries.

Encryption/Decryption

In this theme, developers struggled with how to conduct file encryption or
decryption. However, the range of sub-problems varies. The first group of
challenges is with those who could encrypt a piece of data but the decryption
phase was not successful. For instance, a developer encrypted a string with
Spongy Castle and the decryption code was not working due to not employing
AndroidKeyStore for retrieving the private key. Another observed issue was
misusing the doFinal, init and update methods in the Cipher API. A developer
missed all the important elements, i.e., keys, IV, encoding, and padding, to
perform the decryption process when working with the CryptoJS library.

Another type of discussion was related to the mode of encryptions. For in-
stance, a developer asked for ways of checking the authenticity of an encrypted
text and the responses suggested Galois/Counter Mode (GCM) in the AES
encryption. In another discussion, a developer was unsure of the internals of
cipher-block chaining (CBC) and why only the first block could be corrupted
but the subsequent blocks will be as expected if the initialization vector (IV)
is incorrect, whereas in other discussions, either the IV was forgotten in the
decryption process or unequal IVs were used. A developer confused the differ-
ence between Electronic codebook (ECB) and CBC, and which one requires
the IV for encryption/decryption of a file. With regards to different modes of
encryptions, a common uncertainty was about the correct length of the IV.

One of the prevalent sub-problems was concerning the correct way of en-

55

4. Crypto hurdles - the API perspective

coding/decoding the ciphertext. For instance, a developer forgot to use UTF-8
to convert plaintext to an array of bits. Other discussions had the same prob-
lem of converting the cipher to either hexadecimal or Base64.

There were also some challenges that could not be grouped together,
and hence we classified them as miscellaneous. For instance, a developer
did not know how to encrypt/decrypt a binary file. To do so, a parameter
use_binary=true must be passed to the DataSink Stream API in the Botan
library. In another example, developers discussed how large files can be en-
crypted by the WebCrypto API. Developers struggled to use the provided
functions in libraries to generate secured random numbers.

Other discussions were centered on password-based encryption (PBE). De-
velopers asked how to configure PBE APIs in libraries such as Jasypt. The
PBE API commonly requires a password, iteration count, and salt generator,
for which developers struggled to assign the correct values.

Lastly, different padding schemes created technical problems for develop-
ers. Discussions were related to the security level provided between PKCS1.5
and OAEP, the usage of zero padding in OpenSSL, PKCS#7 padding with
AES, and how padding can be disabled in a crypto library.

In the encryption/decryption theme, we found sub-problems in which develop-
ers mainly asked for help. The sub-problems include password-based encryption,
paddings, encoding/decoding, modes of encryption, library specific issues, and de-
cryption issues.

Library installation

This theme depicts problems regarding installation, compilation, usage is-
sues, and setting up the prerequisites for a library to work. This theme has
the second-highest number of posts as developer platforms and integrated
development environments (IDEs) varied when developers worked with a spe-
cific crypto library. For instance, developers discussed the dependencies of
Spongy Castle in the Gradle file, setting up Android Studio with Spongy Cas-
tle, adding JCE to JRE 8 on macOS Sierra, and building the Botan library
with the nmake command. Each crypto library commonly uses a specific way
to install or compile of the library or its modules. For instance, in the Py-
Crypto and M2Crypto libraries, developers commonly need to resolve their
issues with the pip command, and similarly, the usage of npm was the key
reason for other discussions related to the node-crypto library.

It is patently evident that the process of getting a crypto library up and running
under different circumstances, e.g., platforms or IDEs, can be troublesome for de-
velopers.

56

4.2. Results and discussions

Table 11: The number of assigned posts to each theme in a crypto library

E
n
c
r
y
p
t
io

n

D
e
c
r
y
p
t
io

n

L
ib

r
a
r
y

in
s
t
a
ll

a
t
io

n

C
e
r
t
ifi

c
a
t
e
-r

e
la

t
e
d

is
s
u
e
s

L
ib

r
a
r
y

in
t
e
r
o
p

e
r
a
b
il

it
y

G
e
n
e
r
a
t
e
/
s
t
o
r
e

k
e
y
s

H
a
s
h
in

g
D

ig
it

a
l

s
ig

n
a
t
u
r
e

S
a
m

p
le

im
p
le

m
e
n
t
a
t
io

n

R
a
n
d
o
m

n
u
m

b
e
r

g
e
n
e
r
a
t
o
r

C
r
y
p
t
o
g
r
a
p
h
ic

a
t
t
a
c
k
s

O
p

e
n
S
S
L

7
4

6
3

3
1

1

B
o
u
n
c
y

C
a
st

le
5

1
8

1
7

2
1

C
ry

p
to

J
S

7
1

1
1
3

2
1

m
c
ry

p
t

5
1
6

4

P
y
C

ry
p
to

6
8

2
6

1
2

p
h
p
se

c
li

b
4

7
2

4
2

6

C
ry

p
to

+
+

7
3

2
3

4
4

1
1

C
ry

p
to

A
P

I
6

8
1

4
5

1

p
y
O

p
e
n
S
S
L

4
1
7

1
3

J
a
sy

p
t

9
1
1

1
4

li
b
so

d
iu

m
8

8
3

2
1

1
1

1

M
2
C

ry
p
to

2
1
2

3
3

3
2

W
e
b

C
ry

p
to

A
P

I
6

1
2

7
4

2
2

1

J
C

A
6

4
4

4
3

3
1

C
o
m

m
o
n
C

ry
p
to

5
5

1
8

2
4

n
o
d
e
-c

ry
p
to

9
1

1
7

3
3

1

B
o
ta

n
7

1
1

2
1

1
2

1

S
p

o
n
g
y

C
a
st

le
4

5
6

8
1

1

S
J
C

L
8

1
8

2
3

2
1

w
o
lf

S
S
L

1
8

1
2

1
1

2

57

4. Crypto hurdles - the API perspective

Certificate-related issues

We found two sub-problems with the theme of the certificate-related issue.
The first challenge developers encountered was working with various file for-
mats, e.g., p7b, and various encodings e.g., Privacy Enhanced Mail (PEM) or
Distinguished Encoding Rules (DER). Developers asked about how to read or
save PEM files using crypto libraries, storing/reading private keys in a Public
Key Cryptography Standards (PKCS#8) file, differences between DER and
PEM file formats, and storing/reading public and private keys in a PKCS#12
file. The other issue of developers was to extract various elements from a cer-
tificate, e.g., expiration date, list of Subject Alternative Name (SAN) and Cer-
tificate Authority (CA), and cipher list. They also had challenges in checking
a valid certificate, generating a self-signed certificate, using different versions
of TLS and SSL, and TLS handshake issues.

Certificates are coupled with many cryptographic concepts and this fact compli-
cates working with certificates. Various PKCS standards and the correct way of
establishing a TLS connection are still problematic.

Library interoperability

It is common for developers to work with more than one crypto library in
a large project. However, there might be some discrepancies between the li-
braries. A common issue was that developers encrypted a piece of data with
OpenSSL, i.e., via command line, and then they had issues with decryption of
the ciphertext with another library. This is due to the fact that the default val-
ues in libraries commonly do not match. For instance, a developer encrypted
a text with OpenSSL but could not decrypt it with the Botan library because
of the default usage of PKCS#1 v1.5 padding in OpenSSL. Furthermore, on
closer inspection, root causes are mainly the inappropriate encoding of the
ciphertext, incorrect IVs, generating cryptographic keys differently, and using
unequal key formats and padding options.

Working with more than one library seems to be a challenging task for developers
due to different default values in APIs, encodings, paddings, and key generation
methods.

Generating/storing crypto keys

For every cryptography scenario, developers need to generate and store their
crypto keys. In the analyzed discussions, the challenges are related to stor-
ing keys, e.g., AndroidKeyStore, generating a valid ECDSA or RSA key pair,
generating a symmetric key, differences between trust store and keystore, gen-
erating keys with Key Based Key Derivation Function (KBKDF), the correct
length of possible keys for various algorithms, and the meaning of modulus
(n) and public key exponent (e) in RSA keys.

58

4.2. Results and discussions

Developers has difficulties dealing with the differences of crypto keys among sym-
metric, e.g., AES, and asymmetric, e.g., RSA or ECDSA, algorithms.

Hashing

It appears that developers still talk about the possibility of reversing a hashed
string. However, most of the discussions were about generating a hash string,
the right way of using salt, calculating checksum for large files, issues in using
Hash-based Message Authentication Code (HMAC), and the usage of hash
functions, i.e., Password-Based Key Derivation Function 2 (PBKDF2), bcrypt
and scrypt.

Compared to the other themes, hashing requires developers to understand fewer
concepts and hence, there are fewer discussions in the recent active posts.

Digital signature

Developers faced issues when signing and verifying a signature. A developer
misunderstood the application of the Cipher API and the Signature API for
signing a piece of data in JCA. Another developer was worried about per-
formance bottleneck when there is a massive dataset. In other discussions,
developers failed to verify a signature due to the wrong encoding of RSA keys
in browsers (URL encoding), using a hash as data to be signed instead of the
data itself, using the wrong key for signing or verification, the mismatched
padding for the signature, and verifying a certificate in the chain of trust.

It seems developers suffered from the lack of technical knowledge about digital sig-
natures and issues that are indirect to the topic, e.g., browser encoding and default
values for padding in crypto libraries.

Sample implementation

Developers mainly asked for two types of sample implementation. In the first
type, developers had a sample code from a language or a specific crypto li-
brary and were looking for an equivalent piece of code in another language or
library. For instance, a developer had a piece of encryption code in Objective-
C but was not able to do the same in Swift. In the second type, developers
had a goal but did not know how the task could be accomplished. For exam-
ple, a developer requested a sample implementation of AES256 CBC in the
M2Crypto library.

Documentation of crypto libraries should provide extensive secure examples so that
developers have a reliable source of sample implementations.

59

4. Crypto hurdles - the API perspective

Cryptographic attacks

Only 0.4% of the analyzed posts were concerned about cyber attacks. The
first discussion was about conducting a man-in-the-middle attack when a self-
signed certificate is used. The asker received comprehensive responses regard-
ing why a self-signed certificate is not recommended. In the second discus-
sion, a developer was not able to comprehend how the length extension attack
works.

Just two discussions explicitly discussed attacks against cryptography. However,
such discussions may appear more in crypto.stackexchange.com. At the same time,
most general developers consult Stack Overflow as it is more general compared to
crypto stackexchange

We attempted to cast some light on the common technical issues of devel-
opers with various crypto libraries. We observed that developer uncertainty
in a particular crypto library not only is related to one or two areas but is
frequently linked to more than five themes. There are some libraries, such as
OpenSSL and WolfSSL, that are intended to be used for special purposes, i.e.,
secure communications over computer networks. This increases the likelihood
of identifying more questions related to the certificate issues in such libraries.
Moreover, a popular crypto library, such as Bouncy Castle, presents a wide
range of crypto APIs and be can be utilized in two popular programming
languages, i.e., C#, and Java. This can explain why identified questions are
linked to seven themes. Some of the extracted themes are interrelated, e.g.,
certificate-related issues, digital signatures, and generating/storing keys. For
instance, a developer may need to generate an RSA key pair to work with
certificates. However, we attempted to carefully identify the core issue of the
posted challenge.

The detailed issues in working with various crypto libraries could provide
valuable support for professionals to identify the probable pitfalls in the design
phase of software development. Admittedly, identifying crypto pitfalls in ear-
lier stages can substantially boost the security and the speed of development
of software. As a result, such forethoughts can facilitate the use of cryptogra-
phy in the implementation phase and prevent inexperienced developers from
making fatal security mistakes that may have pernicious effects after the re-
lease phase. Further research is needed to shed light on how similar APIs
in popular crypto libraries are misunderstood and whether the complexity of
APIs has an impact on creating more problems or not.

4.2.3 Java symmetric APIs on Stack Overflow

In the following, we first discuss the results obtained from the analysis of JCA
APIs relevant to symmetric encryption and then explain the state of security
violations in analyzed posts on Stack Overflow.

60

4.2. Results and discussions

JCA symmetric APIs issues

In the first analysis, depending on what the asker was struggling with, we
classified the issues according to the technical aspect and/or requirement cat-
egories. In total, we recorded 219 issues, of which 197 (90%) were related to
technical aspects while 76 (35%) were related to requirements, and 62 records
were classified twice. We could not classify only one post due to the insuffi-
ciency of the provided information.

50

53

36

18

7

33

0 10 20 30 40 50 60

Cipher object instantiation

Generation of algorithm parameters

Cipher object initialization

Transformation

Transmission of algorithm parameters

Dependency encryptor - decryptor

Number of issues

Figure 7: Number of issues assigned to the technical aspect categories

As shown in Figure 7, the most common categories in the first round of
categorization were Generation of Algorithm Parameters (53) and Cipher Ob-
ject Instantiation (50), both of which referred to specifying and generating
the properties used during encryption and decryption. During the genera-
tion of algorithm parameters, developers might derive a key, an IV, and other
algorithm parameters such as advanced authentication data. The askers espe-
cially struggled with key derivation (36 records). During the instantiation of
a Cipher object, developers specify algorithm, encryption mode, and padding.
In this context, the askers were particularly dealing with the latter two as-
pects, namely encryption mode (18), padding (11), and dependency of these
properties (11). The third most common category was Cipher Object Initial-
ization (36). Most issues were assigned to the other subcategory as the askers
often did not pass all the required parameters of the init(...) method. The
fourth most common category was Dependency Encryptor–Decryptor (33).
The high prevalence of issues in this category implies that many developers
lack knowledge about (symmetric) encryption in general. The fact that the
Cipher objects for encryption and decryption must use the exact same algo-
rithms and parameters is the basic principle of symmetric encryption.

61

4. Crypto hurdles - the API perspective

Table 12: The number of issues assigned to the technical aspects subcategories
Subcategory % # Main category (relative frequency)
Algorithm 14% 7
Encryption mode 36% 18
Padding 22% 11
Dependency encryption mode - padding 22% 11
Cipher object instantiation - other 6% 3

Cipher object instantiation - 22.83%

Key derivation 67.9% 36
IV / nonce generation 26.4% 14
Generation of other algorithm parameters 5.6% 3

Generation of algorithm parameters - 24.2%

Dependency algorithm - key 22.22% 8
Dependency algo/encryption mode - IV 22.22% 8
Cipher object initialization - other 55.56% 20

Cipher object instantiation - 16.44%

Transformation 100% 18 Transformation - 8.22%
Key transmission 71.4% 5
Transmission of other algorithm params 28.57% 2

Transmission of algorithm parameters - 3.2%

Dependency encryptor - decryptor 100% 33 Dependency encryptor - decryptor - 15%

Some askers confused the two methods that perform transformation, i.e.,
update(...) and doFinal(...). They did not know which method must be called
in their scenario. Among issues referring to the transmission of algorithm
parameters (7), the majority (5) were about the transmission of the key. The
remaining issues were related to the IV (1) and the salt used for password-
based key derivation (1). Table 12 presents the complete list of subcategories
for technical aspects and the associated frequency of each issue.

Security was the predominant category with respect to the requirements
categories (46 records), which seemed logical as the posts were all centered
around cryptography. However, only three askers were concerned about the
security implication of their code snippets. They were worried about the safety
of generated IV, or about whether it is secure to reuse algorithm parameters
(e.g., key or IV) for several transformations, or about whether encryption
becomes safer if salt is added to the plain text. A more common security issue
was that programmers were not able to run AES-256 due to missing security
policy files (5 posts).

46

12

7

5

5

4

2

0 10 20 30 40 50

Security

Portability

Interoperability

Use case

Reliability

Performance

Space

Number of issues

Figure 8: Number of issues assigned to the requirement categories

62

4.2. Results and discussions

Figure 8 presents the number of issues assigned to the requirement cate-
gories. There were 12 issues related to the portability of an application, often
referring to original askers who did not specify all values. For example, several
programmers only passed “AES” to the Cipher.getInstance(...) method. In
that case, default values were automatically used for encryption mode and
padding. These values, however, varied among different providers as well as
different platforms. Seven records were assigned to the interoperability cat-
egory that often occurred if the askers implemented one task in a library
in which the default values (e.g., padding) were different from the standard
crypto APIs in Java. As a result, the askers incorrectly instantiated or ini-
tialized the Java Cipher objects. For example, some of these default values
were also not supported by JCA (e.g., ZeroPadding) or a developer used a
non-standardized function (i.e., SHA1PRNG) for random number generation.
The issues referring to the use-case category were mostly about the misuse of
encryption for an inappropriate use case (2) and the use case that was not
supported by the JCA APIs (2). Most of the issues assigned to the reliability
category were due to declaring the Cipher objects statically in global space.
Moreover, the applications frequently crashed because the Cipher objects were
not thread-safe.
Some developers complained that the execution of the getInstance(...) method
was taking too long (lacking performance). One developer also observed that
the encryption of a large file was time-consuming. Yet, others reported that
an OutOfMemoryException occurred when they attempted to encrypt a large file
all at once.

As previously mentioned, some records were classified twice in both tech-
nical and requirements aspects. Figure 9 indicates the relative overlapping
of categories. We observed that the highest overlap is for Generation of Al-
gorithm Parameters and Security, accounting for 21% of the records. Most
of them referred to static values being used for key or initialization vectors.
The second-highest overlap is between the Cipher Object Instantiation and
Security categories (16%). Almost all of the issues referred to the use of an
unsafe encryption mode. The issues assigned to the Portability or Interoper-
ability category and some other technical aspects category were mostly due
to default values that varied among platforms and libraries.

Security violation

We manually checked 150 questions, 84 answer posts, and related comments
to detect any violations against the specified ruleset and found a total of 331
security risks. Most of the violations (249, 75%) stemmed from code snippets
in question posts, the body of which only included 38 security risks. We also
found 35 rule violations in answers’ code snippets and nine in answers’ text.
Some answers just fixed the functionality of a question-related code snippet

63

4. Crypto hurdles - the API perspective

Figure 9: The relative overlapping of technical aspects and requirements categories

Table 13: The number of found security violations based on the collected rules
Rule Q code Q text A code A text Total
R-01 Use AES or blowfish algorithm 24 11 0 0 35
R-02 Do not use ECB or CBC encryption mode 113 20 20 6 159
R-03-a Do not use a static key 43 2 3 2 50
R-03-b Do not use static salt for key derivation 7 1 1 0 9
R-03-c Do not use short salt for key derivation 3 0 1 0 4
R-03-d Do not use <1000 iterations for key derivation 6 0 1 0 7
R-03-e Do not use a weak password 10 0 1 0 11
R-03-f Do not reuse passwords multiple times 3 0 1 0 4
R-04-a Do not use a static IV 24 2 5 1 32
R-04-b Do not use a static seed for IV generation 1 0 0 0 1
R-04-c Use SecureRandom for IV generation 0 0 0 0 0
R-05 Do not reuse the same key-IV pair 12 2 2 0 16
R-06 Do not use a static password for store 3 0 0 0 3

without enhancing its security. The resulting code, therefore, carried the se-
curity risks from the question. Another common observation was that users
correctly provided excellent advice that ECB should not be regarded as a safe
mode of encryption. However, they suggested using CBC instead, which must
not be employed in client-server scenarios. Such advice is not safe, especially
if the context is unknown in the question’s body.

The further analysis focused on the code snippets. However, some askers
only shared the code section where the issue occurred and did not show how
the other relevant parts (e.g., key derivation) were implemented. On average,
each question contained 1.66 security risks in its code snippets. We noted that
the average for the most popular posts (1.91) is slightly higher than that the
newest posts (1.43). In total, 24 question posts did not contain any security
risks in their code snippets. The most frequently violated rule was R-02: Do
not use ECB or CBC encryption mode. In more than 75% of question posts,
the asker used one of these unsafe block cipher modes. This is also due to
the fact that ECB is the default encryption mode for most crypto providers.

64

4.3. Threats to validity

The second and third most violated rules were R-03-a: Do not use a static
(= constant) key, R-04-a: Do not use a static (= constant) IV, and R-01:
Use AES or Blowfish algorithm. It is worth mentioning that we included 24
posts where DES or 3DES was used. Some askers stated that they used static
values only for Stack Overflow to simplify their code. Nevertheless, this is a
potential security risk if a developer naively copies and pastes the code snippet
for personal usages. Using both static key and IV could lead to the reuse of
key-IV pairs (R-05), which was the fifth most often violated rule. The least
violated rules were R-04-c: Use SecureRandom for IV generation, R-04-b:
Do not use a static seed for IV generation, and R-06: Do not use a static
(=constant) password for store. Since most askers used ECB, which does not
require an IV, and the rest used static IV, there were not many code sections
showing IV generation. There were a few questions’ bodies that showed or
explained how the key was stored.

4.3 Threats to validity

In the following, we describe the threats to validity of each of the explored
facets.

4.3.1 General crypto questions analysis

In this study, we concentrate on one major platform where developers discuss
crypto topics. This may not be sufficient as there are many other platforms,
such as crypto Stack Exchange, which can provide more data to analyze. We
measured topic difficulty and popularity based on metrics used in the previ-
ous study. Nevertheless, these observations may not be sufficient to determine
what type of crypto questions are more challenging than others. Users may
not always feel responsible for selecting a reasonable answer as an accept-
able answer. Therefore, not having an accepted answer does not necessarily
determine if the question is challenging for others.

4.3.2 Crypto libraries analysis

We selected 25 posts from each crypto library. This may not be a representa-
tive sample of the whole population; however, we were particularly interested
in the common themes of issues in various libraries, not just one library. We
selected the latest posts that are active on Stack Overflow that had at least
one answer and skipped the questions to which nobody responded as well as
the questions with no positive received votes. Nonetheless, there are various
approaches to choose the posts, e.g., the number of answers or the number
of views, while each of them can impose some threats to validity. To reduce
subjectivity, two reviewers carefully performed thematic analysis to extract
the themes. The final list of themes is deduced based on their discussions and

65

4. Crypto hurdles - the API perspective

cross-checking. Nevertheless, a few posts could have been assigned to other
themes or a current theme could have been divided into several sub-themes.
We may not have covered all the crypto libraries discussed on Stack Overflow,
but we indeed selected the popular ones.

4.3.3 Java symmetric APIs on Stack Overflow

In relation to the methodical approach, a major threat to validity is that we did
not verify the intercoder reliability of our issue classification or our security
check according to existing metrics. However, the two reviewers consulted
their results after independently conducting their analysis. Nonetheless, our
data is published on GitHub.21 Another limitation is that the total number of
Stack Overflow posts matching our scope cannot be precisely elicited. There
is no guarantee that the employed queries returned all posts referring to our
scope. Additionally, we had to exclude almost two-thirds of all threads as
they did not fit into our scope. The sample size may not be the perfect
representative of problems in the scope of interest. Many of the identified
violations could be due to the lack of our knowledge of the askers’ intention.
Some users may not want to share their keys and IVs and hence, they use
some static strings deliberately to render the question easier for others to
understand and answer.

4.4 Summary and conclusion

We conducted a large-scale study on crypto issues discussed on Stack Over-
flow to find out what crypto challenges users commonly face in various areas
of cryptography. Our findings suggest that developers still have a distinct
lack of knowledge of fundamental concepts, such as OpenSSL, asymmetric
and password hashing, and the complexity of crypto libraries weakened devel-
oper performance to correctly realize a crypto scenario. We call for dedicated
studies to investigate the usability of crypto APIs.

In particular, we were curious to observe what technical problems are
common among different crypto libraries. We selected 25 discussions from 20
crypto libraries on Stack Overflow and to the best of our knowledge, we did
not find any study in which 20 crypto libraries were considered. We identi-
fied 10 themes in the discussions and the majority of libraries were involved
in more than five themes. There exist 0.04% of questions concerning attacks
against cryptography, whereas 112 questions were related to encryption/de-
cryption issues. The developers also asked questions mostly about library
installation, digital certificates, crypto keys, and library interoperability. The
implications of these findings can assist security and software professionals
to correctly guide their team members when dealing with cryptography, and

21data directory

66

https://github.com/pfisteso/BSc_Thesis_Repository/tree/main/data

4.4. Summary and conclusion

especially crypto libraries. Further work is certainly required to disentangle
the problematic commonalities among various crypto libraries.

We addressed two goals defined earlier in the third facet, namely (1) issues
faced by developers when accomplishing symmetric encryption scenarios, (2)
the degree to which security risks exist in code snippets, and also the body of
Stack Overflow’s posts. Considering tasks with which developers are strug-
gling, most of such tasks involved generating algorithm parameters, especially
deriving the key from a password. The second most problematic task was to
instantiate a Cipher object. The askers specifically failed to correctly specify
encryption mode and padding. The third most problematic task was initializ-
ing the Cipher object where the developer did not pass all required parameters
to the init(...) method. One of the major issues in this context was that
default behavior and values were dependent on the crypto provider. The plat-
form, however, decides which providers are available and which provider is
chosen by default. This reduces the portability of applications. An additional
issue was the high number of overloaded methods, particularly getInstance(...)

and init(...). Moreover, some askers failed to choose the right usage of two
methods to perform transformations, update(...) and doFinal(...).
For the second part of analysis, we found that security risks were particu-
larly present in code snippets from question posts. Several answers provided
advice regarding or even improved security, whereas others only focused on
the functionality of the code. The most common security risk was the use of
an unsafe encryption mode. This is related to the most common providers
that use ECB as the default block cipher mode of operation. However, some
answers suggested using CBC instead of ECB, which is not safe depending
on the context. Other common security risks were the use of static values
for either the key or IV, or both. The procedures used for password-based
key derivation also contained security risks. JCA supports PBKDF2 as a safe
procedure for password-based key derivation. However, it was rarely used.

67

Chapter 5

Crypto hurdles - the developer
perspective

In the previous chapter, we investigated the prevalent problems of cryptogra-
phy discussed on online Q&A forums. We found that there are multiple areas,
e.g., OpenSSL, hashing algorithms, or padding options, that expose develop-
ers to some new concepts to comprehend. This can be due to the fact that
developers are not adequately educated about cryptography. In this chapter,
we focus on the other pillar, i.e., developer perspective, to shed light on what
developer practices are common in this domain.

Developers evidently do not hold the same level of knowledge in cryptog-
raphy. Accordingly, their practices and concerns about the safety of their code
are varied. For instance, Nadi et al. conducted two surveys with 48 developers
in which the participants indeed faced difficulties in using Java crypto APIs
with varying levels of knowledge in cryptography [112]. Their findings showed
that the participants spent at least several hours reading online resources com-
pleting their crypto tasks and that 65% of them found the APIs hard to use.
Similarly, Robillard et al. surveyed Microsoft developers and found out that
poor documentation is the major obstacle to learning APIs [130].

Developers with varying levels of expertise and experience differ in both
opinions and performance. Acar et al. had an experiment with 307 active
GitHub users to determine how such developers complete several security-
related coding tasks [3]. Interestingly, they noticed no significant differences
between the analyzed factors including security perception, the participants’
self-reported status as a student or a professional developer, years of experi-
ence, and security background. Likewise, Oliveira et al. devised a study for
109 developers to use and perceive some APIs with embeded blind spots [115].
The results confirmed that developer expertise and experience did not predict
their ability to distinguish the blind spots. However, we believe that developer
performance and practices can be further studied to reveal more influential
aspects of cryptography.

69

5. Crypto hurdles - the developer perspective

Studying crypto hurdles from developer perspective

Developer performance in
using cryptography

A survey with developers
who

use cryptography

Facet 2 Facet 3

Developer feedback for
misusing crypto APIs

Facet 1

What are the practices of
experts in cryptography

Facet 4

Figure 10: The methodology followed to answer the third research question

5.1 Study design

The aim of this chapter is to investigate developer performance and practice in
using cryptography. To that end, we address the third research question (RQ3)
of our study: What are the practices of developers in using cryptography?, from
four facets, illustrated in Figure 10.

Facet 1 → We analyzed 2 324 open-source Java projects from GitHub that
rely on Java Cryptography Architecture (JCA) to understand how crypto
APIs were used in practice, and what factors affected the performance of
developers in using these APIs. We found that, in general, the experience
of developers in using JCA did not correlate with their performance. The
number or frequency of committed lines of code, for instance, showed no
correlation with developer performance.

Facet 2 → We collected 489 projects on GitHub in, and then contacted the
maintainers of each project, in chapter 4, by creating an issue on their
repository to discuss their project’s misuses. We then classified de-
veloper feedback into eight themes, some of which included: security
caveats in the documentation of crypto APIs were scarce; developers
may overlook misuses that originate in third-party code; some reposito-
ries were not maintained; developers were uncertain concerning about
the correct use of an API; and developers complained that the context
in which a crypto API was used was not security-related.

Facet 3 → We surveyed 97 developers who had used cryptography in open-
source projects, in the hope of identifying developer security and cryp-
tography practices. We asked them about individual and company-level
practices, and divided respondents into three groups (i.e., high, medium,
and low) based on their level of knowledge. We found differences between
the high-profile developers and the other two groups. For instance, high-
profile developers enjoyed more years of experience in programming and
more background in security, had attended more security and cryptog-
raphy courses, showed grave concerns over security, and tended to use
security tools more than the other two groups.

70

5.1. Study design

Facet 4 → We investigated whether users who were active in cryptography
discussions also used cryptography in practice. We collected the top 1%
of responders who had participated in crypto discussions on Stack Over-
flow, and manually analyzed their crypto contributions to open source
projects on GitHub. We identified 319 GitHub profiles that belonged
to such crypto responders and found that 189 of them used cryptogra-
phy in their projects. Further investigation revealed that the majority
of analyzed users (i.e., 85%) used the same programming languages for
crypto activity on Stack Overflow and crypto contributions on GitHub.
Moreover, 90% of the analyzed users employed the very cryptography
concepts on GitHub about which they themselves advised on Stack Over-
flow.

In the following, we explain how we conduct the data collection and anal-
ysis phases for each of the aforementioned facets.

5.1.1 Developer performance

Data extraction

We mined Java projects on GitHub, downloaded, and compiled those that use
JCA. We then ran the CogniCrypt tool on these projects to identify crypto
issues. The experiment entailed the following steps: we initially started with
183 projects using JCA APIs that were identified in previous work [93]. We
were interested in collecting as many JCA projects as possible that we could
associate to each developer. Therefore, instead of an exhaustive search on
GitHub, we checked what other projects each developer had contributed to,
and whether they use JCA. We continued this process for every new project,
and stopped when we obtained 2 324 projects that use JCA APIs. Based
on the import statements in each project, we used the GitHub API search
to check whether a project uses any of the crypto classes specified in the
CogniCrypt rule set. In case a project was forked, we looked for the original
repository to download.

Building projects

We needed to compile each project in order to run a static analysis that iden-
tifies crypto misuses. We wrote a bash script to build all the downloaded
projects. The bash script first checked the existence of the POM file in the
project’s path, and if it existed, we would continue with compilation, otherwise
we excluded the project. We tried to compile projects using the Maven build
tool, while skipping the running of the tests (to save time). Many projects
could not be compiled due to dependencies that were not resolved. We ex-
cluded such projects and did not manually investigate the issue. Ultimately,
we were able to compile and build 2 324 projects.

71

5. Crypto hurdles - the developer perspective

Analyzing projects

We used a static analysis tool called CogniCrypt to detect known misuses
of cryptographic APIs in Java bytecode [93]. We chose CogniCrypt for two
main reasons: first, we had contact with the main developers of this tool,
who were willing to support us in the execution of the experiment. Second,
CogniCrypt covers a wide range of crypto APIs while keeping false positives
at a manageably low rate (usually below 10%).

In this step, a bash script went through the folders of all projects and
recursively looked for the target/classes folder where the .class files reside, to
feed them into CogniCrypt.1 We specified a timeout of 15 minutes to abort
lengthy analyses. In the end, roughly 15% of the analyses were interrupted,
and we succeeded in analyzing 2,141 projects.

5.1.2 Developer feedback

As described in chapter 3, we collected 489 Java projects in which JCA APIs
were used and investigated how developers used such APIs. The findings
highlighted that JCA API misuse is prevalent among the projects. To under-
stand the reasons behind the API misuses, we contacted 216 maintainers of
repositories on GitHub, which represents a sample size with a 95% confidence
level and 5% margin of error. For each repository, we opened an issue on the
GitHub page, explained our objectives for reporting crypto misuses, provided
an explanation for each misuse, pinpointed the affected Java files, associated
line numbers, and API names. We waited 20 days for responses from the
developers of repositories, and then we manually extracted their responses.
Thereafter, two reviewers reviewed each response to determine the key mes-
sage of each response. Finally, they cross-checked their findings and, in case
of a conflict, they revisited the concerned response.

5.1.3 Developer survey

We conducted an online survey with developers identified in a recent work
[72] as having used Java Crypto APIs in real-world applications, to under-
stand what security and cryptography practices such developers report. In
the following subsections, we explain our methodology and present the survey
results. We adopted an anonymous online survey approach which involves the
following steps: (i) selecting developers, (ii) designing the survey, (iii) testing
and publishing the survey, and (iv) analyzing the survey. The questions and
the responses of the survey are available online.2

1We used the publicly available command-line version of CogniCrypt and its rule set
available at the time of running this analysis on Jan 16th, 2019.

2http://crypto-explorer.com/crypto/

72

http://crypto-explorer.com/crypto/

5.1. Study design

Table 14: Factors to explore in the survey

Demographics Developer-level Company-level

Developer age
Security course
attendance and experience
as code auditor

Security training
by company

Years of experience
in programming

Crypto knowledge level
and experience in using
Crypto API

Existence of security
consultant

Years of experience
in Java

Background in IT security
and security concern level

Company security
concern level

Educational level
Ways of solving crypto
problems and evaluating
crypto code

The percentage of
security developer
in company

Objective

Previous studies have shown that developers have difficulty in using cryptogra-
phy securely [70][112]. However, we want to tackle the reasons why developer
performance varies in using cryptography. The objectives of this research are
as follows: (1) except for technical difficulties of crypto APIs explored in previ-
ous research [43] [72] [110], the findings can shed some light on the worrisome
and promising practices among developers with respect to cryptography, (2)
finding the indicative factors can assist professionals to correctly guide and
lead such developers at workplaces.

Selecting developers

We selected developers from a recent study conducted by Hazhirpasand et
al. [72], where the authors investigated Java Cryptography Architecture (JCA)
uses and misuses in 489 open-source projects. We identified developers who
committed code containing crypto uses to these repositories, i.e., they ex-
tracted their names and email addresses using the git blame command.

Survey Design

In the survey, we collected information about the participants in three sections,
and then evaluated the factors to determine which of them influence developer
knowledge. To determine the explored factors, we studied the literature and
identified studies wherein individual or work-related facets were studied with
regard to cryptography (See Table 14). Thereafter, we constructed a list of
explored factors that could influence developer knowledge, namely security
tool adoption [86] [13], security concern [151] [140], means of resolving crypto
challenges [2] [123], security training and its frequency [143] [111] [57], and
work and technical experience [129] [3] [115] [2]. Nevertheless, the aim of the
previous studies was to evaluate developer performance or developer practice
but not developer knowledge.

73

5. Crypto hurdles - the developer perspective

The initial section is dedicated to the demographic information of devel-
opers. Within this section, we asked for their degree, field, age, years of
programming and Java programming experience. Participant demographics
help us to determine which factors may affect a respondent’s answers.

In the second section, we mostly focus on developer practices, e.g., security
or cryptography course attendance. They are asked to specify their level of
knowledge about cryptography as well as their experience with crypto APIs.
We used a 5-point Likert scale to ask developers about their security concerns
in development. Further, we asked developers what information sources they
use to solve a crypto scenario or how they evaluate a crypto code snippet.

In the last section of the survey, we primarily concentrate on company-
level factors. We provided them with questions regarding the existence of
security consultant, company-level security concern (5-point Likert scale), and
the percentage of developers responsible for secure development.

Testing, and Publishing the Survey Tool

We used Google Forms to create our online questionnaire. As overlong ques-
tionnaires are rarely completed on the internet [18], we limited the completion
time of the survey to less than 5 minutes. To evaluate the survey before asking
the real participants, we asked five colleagues to review the survey to reveal
potential misunderstandings. Then, based on the received recommendations,
we refined the questions and rearranged them. Next, we emailed the 1231
developers. We noticed that 128 email addresses were not valid, which left us
with 1 103 potential survey participants.

Survey Analysis

We received 97 responses (8.7%) within a month. To perform the analysis, we
did not consider missing values in the analysis. We used percentage graphs in
order to analyze responses of Likert scale questions. Notably, the explanations
of respondents to the open-ended question consisted of fewer than 20 words.
However, to minimize human errors, two reviewers coded the responses and
cross-checked the consistency of the results.

Knowledge factor

Nadi et al. conducted two surveys with 48 developers and devised a four-
level classification for developer crypto knowledge [112]. We used the same
levels in the survey. However, we attempted to minimize the impact of wrong
assumptions with regard to how developers report their level of knowledge in
cryptography. As a result, we provided the participants with an explanation

74

5.1. Study design

of what each level means in this study. The four-level items can be viewed in
the survey file.3

Ethics

The developers’ email addresses were identified by the use of the git blame
command in a recent study [72]. We also asked developers to read the state-
ment of the survey and state their agreement before participating. Moreover,
we did not collect any personal information except for the information explic-
itly gathered by the survey instrument.

5.1.4 Experts’ practices

We describe how we choose crypto tags on Stack Overflow, and our approach
to fetch the top 1% of crypto responders, extract their GitHub profiles, and
identify their crypto contribution (See Figure 11).

stack overflow

Base tag (cryptography)
Candidate tags (2184)
Manual analysis (94% kappa)

64 Crypto tags

Fetch Top 1% Responders

stack overflow

Crypto Tags Crypto Responders

804 crypto users

stack overflow

Scrape top 1% user profile

Crypto Contributers Manual Investigation

Check for PR languages on both
platforms
check for 3 crypto concepts on
both platforms
Look for commonalities in the two
factors

Identify 19 633 repositories
Seven programming languages
Look for crypto library usages
Identify 812 crypto repository
Identify 189 crypto contributors

319 Github users 74 crypto contributors

Crypto Responders Crypto Responder profile

Figure 11: The pipeline for collecting and analyzing top crypto responders

Crypto Tags

To find top crypto responders on Stack Overflow, we had to identify crypto-
related tags. We started with the “cryptography” tag, i.e., the base tag, to
find other tags that were used together with the base tag. To access the data,
we used the Data Explorer platform (Stack Exchange).4 We found 11,130
posts that contained the base tag. Together with the base tag, there were
2,184 other tags, i.e., candidate tags. However, not all the candidate tags
were related to cryptography. The list of candidate tags is available online.5

To discern crypto-related tags, two reviewers separately examined all the
tags and marked the crypto-related ones. We then calculated Cohen’s kappa,
a commonly used measure of inter-rater agreement [39], between the two re-
viewers, and achieved 94% Cohen’s Kappa score between the two reviewers,
which indicates almost perfect agreement. Next, we compared their list of

3http://crypto-explorer.com/crypto/
4https://data.stackexchange.com/stackoverflow/query/new
5http://crypto-explorer.com/mapping_data/

75

http://crypto-explorer.com/crypto/
https://data.stackexchange.com/stackoverflow/query/new
http://crypto-explorer.com/mapping_data/

5. Crypto hurdles - the developer perspective

Table 15: The 64 crypto tags and associated unique top 1% crypto responders
Responders Tag Responders Tag

202 encryption 2 encryption-asymmetric
176 hash 2 cryptoapi
98 cryptography 2 pbkdf2
76 openssl 2 jca
29 md5 2 jasypt
20 keystore 2 commoncrypto
16 xor 2 libsodium
14 digital-sig 2 phpseclib
13 sha1 1 ellipticurve
12 x509certificate 1 ecdsa
11 rsa 1 diffie-hellman
10 mcrypt 1 rsacryptoserviceprovider
8 sha256 1 bcrypt
8 private-key 1 node-crypto
8 sha 1 sjcl
8 public-key 1 spongycastle
7 bouncycastle 1 cryptoswift
7 smartcard 1 hashlib
6 public-key-encryption 1 wolfssl
5 x509 0 crypto++
5 salt 0 pkcs11
5 hmac 0 jce
5 pycrypto 0 pkcs7
4 cryptojs 0 cng
4 pyopenssl 0 cryptographic-hash-function
3 aes 0 aescryptoserviceprovider
3 encryption-symmetric 0 rijndaelmanaged
3 rijndael 0 webcrypto-api
3 3des 0 mscapi
3 m2crypto 0 charm-crypto
3 botan 0 javax.crypto
2 des 0 nacl-cryptography

crypto tags and discussed the inconsistencies. Finally, we came up with a list
of 64 crypto-related tags.

Crypto Responders

We executed a query on the Data Explorer platform to fetch the top 1% of
crypto responders for each of the identified tags from Stack Overflow. Table 15
presents the 64 tags and associated top 1% of unique crypto responders. We
excluded the crypto responders that we had already found in other tags. For
instance, the crypto++ tag had four top crypto responders, considering that
they were among other tags. In total, we retrieved 804 top crypto responders.
The list of top crypto responders is available online.6

Crypto Responder Profile

Stack Overflow offers the ability to its users to share their social media ad-
dresses (e.g., Twitter, GitHub, and personal websites) on their profile. Nev-

6http://crypto-explorer.com/mapping_data/

76

http://crypto-explorer.com/mapping_data/

5.1. Study design

ertheless, the aforementioned information is not accessible on Stack Exchange
Data Explorer. Hence, to find the selected users’ GitHub profiles, we automat-
ically scraped profiles of the 804 Stack Overflow top crypto responders. Using
the BeautifulSoup library in Python, we parsed each user profile automati-
cally. For 804 Stack Overflow users, we could identify 319 GitHub profiles.

Crypto Contributors

We used the GitHub repository API and collected a total of 19 633 public
repositories associated with the 319 GitHub users. We selected the top seven
programming languages used in the repositories, i.e., Python, Ruby, C, C++,
Rust, Java, and C#.

To understand which crypto libraries are popular in the selected languages,
we consulted with two crypto experts. Among the suggested names, there are
some candidates that come with the languages, such as Java.security in Java,
or the libraries that are widely accepted and well-known, such as Bouncy Cas-
tle for Java and C#. Afterward, to ensure the rest of the suggested libraries
are largely accepted in developer community, we checked how popular (i.e.,
star and fork) the suggested open-source crypto libraries are on GitHub, e.g.,
libsodium for the C language had 9.2k stars and 1.4k forks. The crypto li-
braries had on average 1844 stars and 346 forks, and the median numbers were
1105 and 245, respectively.

Using the compiled list of crypto libraries in Table 16, we employed the
GitHub Code Search API and a custom regex script to identify in which files
crypto namespaces, e.g., “System.Security”, were used. At the time of writing
this study, the GitHub Code Search API could not perform the exact keyword
search for the crypto namespaces. Therefore, we relied on a supplementary
regex script to ensure the identified code snippets contain the namespaces.
We retrieved a total of 2 404 crypto files in 812 repositories.

In the last step, we used git blame to identify the contributors who had
committed to the 2 404 crypto files. To do so, we cloned the 812 crypto
repositories and extracted authors and committers of crypto files by git blame.
We then fetched the developers’ email addresses, usernames, and full names by
GitHub user API in order to check whether they are among the contributors
of the 812 crypto repositories. Of the 319 top crypto responders on Stack
Overflow, we found that 189 developers had crypto contributions on GitHub.
They had a mean of 14 and median of three.

Manual Investigation

To address the research question, we performed a manual analysis to ob-
serve to what extent users employ cryptography in practice. To this end,
we checked two aspects of their contribution, (1) the programming language

77

5. Crypto hurdles - the developer perspective

Table 16: The selected crypto libraries in the seven programming languages

P
y
t
h
o
n

R
u
b
y

J
a
v
a

C
C

+
+

C
#

R
u
s
t

p
a
ss

li
b

b
c
ry

p
t-

ru
b
y

J
a
v
a
.s

e
c
u
ri

ty
li
b
g
c
ry

p
t

B
o
ta

n
B

o
u
n
c
y

C
a
st

le
o
c
ta

v
o

p
y
n
a
c
l

R
u
b
y

T
h
e
m

is
J
a
v
a
x
.c

ry
p
to

N
a
C

l
C

ry
p
tl

ib
li
b
so

d
iu

m
-n

e
t

ru
st

ls

h
a
sh

li
b

d
ig

e
st

B
o
u
n
c
y

C
a
st

le
c
ry

p
to

-a
lg

o
ri

th
m

s
C

ry
p
to

p
p

se
c
u
ri

ty
.c

ry
p
to

g
ra

p
h
y

ru
st

-c
ry

p
to

p
y
th

e
m

is
R

b
N

a
C

l
T

h
e
m

is
H

E
li
b

P
C

L
C

ry
p
to

so
d
iu

m
o
x
id

e

P
y
E

ll
ip

ti
c

w
o
lf

S
S
L

c
ry

p
to

b
c
ry

p
t

li
b
so

d
iu

m
R

in
g

S
2
N

-t
ls

used for crypto purposes on both platforms, (2) crypto concepts used on both
platforms.

Identifying detailed crypto concepts in various crypto libraries as well as
crypto discussions can be an arduous task. Therefore, we deduced the concepts
used in this study from recent work on the categorization of developers’ crypto
challenges on Stack Overflow [77]. The researchers’ findings revealed that de-

78

5.2. Results and discussions

velopers mostly encounter challenges concerning hashing, symmetric/asym-
metric, and digital signature. Accordingly, we assumed that developers com-
monly use three high-level crypto concepts, which are (1) hashing, (2) sym-
metric/asymmetric, and (3) signing/verification.

In our manual analysis, we attempted to find commonalities in the pro-
gramming languages (i.e., the seven languages) and crypto concepts that are
used by a developer on both platforms.

To compute the sample size for studying 189 users on GitHub, we defined
a confidence level of 95% and 9% as the margin of error, which yields 74 for
our sample size. We then randomly selected 74 users from the population.
Writing queries on the Stack Exchange Data Explorer platform, we automat-
ically retrieved all the posts (i.e., titles, question and answer body) wherein
the 74 developers were involved on Stack Overflow.

Two reviewers manually reviewed all the posts to extract the programming
languages used in the discussions, i.e., question and answer body. Afterward,
they also checked the title and question body to understand to which concept
or concepts a particular discussion can be assigned. They checked the crypto
codes of the 74 users on GitHub, and extracted the crypto concept(s), and
recorded the programming language of the crypto files. To understanding
the crypto concepts, they looked for the APIs used in the crypto files. For
instance, if the MessageDigest API was used in a Java crypto file, they assumed
that the developer encountered the hashing topic in practice. In cases where
they had doubts about the APIs, they referred to the API documentation
of the library. They had several sessions in order to compare the results
of their investigations and build a unified list. Ultimately, they checked for
commonalities of the languages and the crypto concepts that the users used
across the two platforms.

5.2 Results and discussions

In the following, we present and discuss our results regarding the three facets
of this chapter.

5.2.1 Developer performance

We first present the state of cryptography uses in open-source Java projects,
and then present our study of the factors that may influence developers’ per-
formance.

The State of Cryptography Uses

We analyzed a total of 2,324 projects, i.e., 2,141 plus the 183 initial projects.
These projects consisted of a total of 2,652 unique files containing JCA APIs,
which means, on average, 1.4 files per project.

79

5. Crypto hurdles - the developer perspective

0

150

300

450

600

750

900

1050

1200

1350

1500

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

N
um

be
r

Year

Number of secure commits Number of commits Number of JCA developers

Figure 12: The number of secure, total number of commits, and number of JCA developers in
each year

Figure 12 depicts the number of commits and developers in each year. As
expected, the increase in the number of developers, the number of commits
increases as well. This increase may be due to the emergence of having more
cryptographic features in software systems. However, we assume developers
do not necessarily learn how to properly use crypto APIs as the number of
secure commits is much lower than the total number of commits in each year.

Table 17 depicts the numbers of secure and buggy projects and commits,
and their totals. We found an average of 1.7 distinct API usages per project.
There is an average number of 3.9 commits per project, of which an average
of 1.4 are secure commits and 2.5 are buggy.

Table 17: The status of projects and commits

Secure Buggy Total
Projects 642 1,682 2,324
Commits (LoC) 3,263 5,897 9,160

Table 18 presents the numbers of distinct developers who always commit-
ted secure code, always buggy code, or both secure and buggy code, as well
as the total numbers of commits made by each group of JCA developers. We
observed that 27.41% of developers consistently used the JCA correctly. The
mean value of commits by these developers was 2. About 42% of develop-
ers had mistakes in every commit. These developers on average made 3.4
commits. The remaining 491 developers had a mean value of 12.13 commits.
These developers did not perform well either: the chance of a secure commit
is above 45% only for about half of them (i.e., 52.34%).

80

5.2. Results and discussions

Table 18: The status of developers and their commits

Developer Commits (LoC)
Always secure commits 440 909
Always buggy commits 647 2,293
Secure and buggy commits 491 5,958

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

1 2 3 4 5 6 7 8 9 10 11 12 18

N
um

be
r

Number of projects

Number of JCA developers Number of commits

Figure 13: The distribution of developers and their commits in different projects

We also explored how many distinct developers have contributed to differ-
ent numbers of projects (see Figure 13). We can observe a slight decrease in
the number of developers and their total number of commits as the number of
involved projects increases. On average 1.18 JCA developers contributed to
each project, and each developer contributes to an average of 1.4 projects. The
highest rate of contributions to JCA projects belongs to two developers who
have contributed to 18 projects and produced 118 commits. In our dataset,
98.13% of the population of developers and 88.48% of commits are involved
in five or fewer projects.

Finally, we found that, among the 19 cryptography APIs, MessageDigest
was used the most i.e., 2,859 times by 790 developers. The Cipher, SecureRan-
dom, and SecretKeySpec are the next top APIs that were used more than 1,000
times. Figure 14 presents the distribution of each API use. We can see that
DSAParameterSpec, DHParameterSpec, SecretKey, and SecureRandom were
almost always used correctly. Similarly, developers showed promising per-
formance in using the SecretKeyFactory, and MAC APIs, i.e., at least 87%
usages were correct. Developers seem to have severe difficulties in using about
half of the APIs whose correct usages were less than 25%. The correct usages

81

5. Crypto hurdles - the developer perspective

0 10 20 30 40 50 60 70 80 90 100

PBEParameterSpec
Signature

Cipher
IvParameterSpec

SecretKeySpec
MessageDigest

KeyStore
GCMParameterSpec

PBEKeySpec
AlgorithmParameters

KeyGenerator
KeyPair

KeyPairGenerator
Mac

SecretKeyFactory
SecureRandom

SecretKey
DHParameterSpec

DSAParameterSpec

Usage percentage

Secure usage Total usage

Figure 14: The secure versus total number of each API use in percentage

of five APIs namely, SecretKeySpec, IvParameterSpec, Cipher, Signature, and
PBEParameterSpec were at most 6.58%.

We found that, on average, of 3.9 crypto uses in each project, 2.5 are not secure.
Developers have difficulties in using certain APIs, which require further investiga-
tions at API level to understand the reasons underpinning this dilemma.

Factors Influencing Developer Performance

We define a performant developer as one who makes more secure than buggy
commits. Our assumption is that by making more commits, contributing to
more projects, working with a wide range of crypto APIs to accomplish differ-
ent scenarios, and finally being engaged more days with cryptographic APIs
can perhaps increase the experience of developers. We therefore collected
four factors, namely the numbers of (1) JCA commits, (2) APIs used, (3)
projects, and (4) days a developer committed, and studied whether these fac-
tors, which we assumed they account for developer experience, have an impact
on the performance (number of buggy and secure commits) of developers in
using cryptography.

We studied the correlation only between each of the four aforementioned
factors, and the numbers of secure and buggy commits so as to find factors
highly correlated with developer performance. Both visual inspection and
application of the Shapiro-Wilk test confirmed that our data are not nor-

82

5.2. Results and discussions

Table 19: The Spearman correlation matrix
JCA commits # Project # Days # API used # Secure # Buggy

JCA commits 0.42 0.47 0.75 0.53 0.74
Project 0.42 0.55 0.28 0.3 0.27
Days 0.47 0.55 0.43 0.34 0.31
API used 0.75 0.28 0.43 0.6 0.51
Secure 0.53 0.3 0.34 0.6 -0.051
Buggy 0.74 0.27 0.31 0.51 -0.051

mally distributed. We therefore used the Spearman correlation which does
not assume that the data follow a normal distribution [158]. For every two
variables, it generates a number between 1 and −1 depending on whether the
relationship is positive or negative, respectively.

Table 19 depicts the correlation matrix between pairs of variables. The
variables with a correlation score greater than 0.5 or less than −0.5 with secure
and buggy commits are the number of JCA commits and the number of JCA
APIs used. In the following we study whether these two factors really account
for developer performance.

Number of commits

We grouped developers by quartiles of a boxplot which reflects the distribu-
tion of developers based on their numbers of commits. Correspondingly, the
numbers of their commits can be grouped into three categories ranging from
2 to 4, 5 to 8, or 9 to more number of commits.

Figure 15 presents these groups, and the numbers of secure and buggy
commits in each group. Visually, it is clear that all three groups exhibit an
increase in the numbers of secure and buggy commits as the total number
of commits increases while the median and the average numbers of buggy
commits are always more than those of secure commits. In the first group,
the median of secure commits is zero while it improved in the latter groups. In
the last two groups with more commits, the upper whiskers of secure commits
show that the maximum number of secure commits is less than the maximum
number of buggy commits.

To establish statistical evidence, we pose the following null hypothesis:
the groups of commits are from identical populations. To avoid the disper-
sion of the absolute numbers of secure and buggy commits, we evaluated this
hypothesis from the developer performance perspective i.e., the number of
secure commits divided by the total number of commits by each developer.
Therefore, we checked whether the performance of developers in the different
groups is the same.

We used a rank-based nonparametric Kruskal-Wallis test since the three
groups did not have a normal distribution and this violates one of the assump-
tions of the one-way ANOVA test. The test resulted a p-value of 0.001315
(chi-square 13.269, and df 2), which indicates strong evidence that at least
one of the groups is different.

83

5. Crypto hurdles - the developer perspective

Groups of commits
2 to 4 (635) 5 to 8 (303) 9 to more (255)

N
um

be
r o

f c
om

m
its

0

5

10

15

20

25

30

Clean commits Buggy commits

Figure 15: Secure and buggy commits based on the number of JCA commits grouping

Table 20: The Wilcoxon signed rank test result for the performance vs. counts

First group Second group

Second group 0.0273

Third group 0.0018 1.000

We carried out post hoc analysis to find out which pairs of groups are
significantly different. We used pairwise Wilcoxon signed rank comparison
with the Bonferroni adjustment for the p-value. Table 20 presents the result.
We can verify that the first group has a significant difference compared to
the second and third group (the p-values are considerably less than 0.05).
Nevertheless, the second group comes from an identical population as the
third group.

Figure 16 presents the performance of developers versus the number of
commits they have made. In the plot, we can see that many developers with
a low number of commits have a performance close to either zero or one. The
reason for this is clearly that, with few commits, every secure or buggy com-
mit has a much greater impact on the performance than for developers with
many commits. For this reason the first group, with only few commits, has a
different profile than the others. The trend line shows that with the increase
in the number of commits the performance slightly decreases; we believe that
with more commits, more APIs are used, which consequently increases the
chance of bugs. Therefore, if we do not consider the first group, we can ac-
cept the null hypothesis, and conclude that the performance of developers in
the remaining groups is identical. In other words, we cannot conclude that

84

5.2. Results and discussions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140

Pe
rf

or
m

an
ce

Number of commits

Figure 16: Performance vs. number of JCA commits

developer experience, as measured by number of commits, clearly influences
their performance.

Although the number of commits is correlated with the number of secure and buggy
commits, we did not observe any correlation between the number of commits and
developer performance, i.e., the fraction of secure commits.

Number of APIs

We grouped developers by quartiles of a boxplot, which reflects their dis-
tribution based on the number of different JCA APIs that they use. Corre-
spondingly, the numbers of their commits can be grouped into three categories
ranging from 1 to 2, 3, or 3 to more APIs. Figure 17 presents these groups,
and the numbers of secure and buggy commits in each group. Similar to the
number of commits, the median number of secure commits in the first group
is zero and it increases as the number of APIs increases. The mean value of
buggy commits in each group is always higher than secure commits and the
maximum value is notably higher than secure commits. To establish statis-
tical evidence, we computed the performance of each developer (i.e., secure
commits divided by total number of commits), and used this metric instead
of the absolute number of secure and buggy commits. We define the follow-
ing null hypothesis: The performance of developers is similar in groups that
use a different number of APIs. The Kruskal-Wallis test shows a significant
difference in at least one of the groups. In particular, the p-value of 2.956e-06
(Chi-square 25.464) is not even close to the cutoff value (i.e., 0.05), which
shows a significant difference in the three groups.

85

5. Crypto hurdles - the developer perspective

Groups of JCA APIs
1 to 2 (899) 3 (127) 4 to more (167)

N
um

be
r o

f c
om

m
its

0

5

10

15

20

25

30

35

40

Clean Commits Buggy Commits

Figure 17: Secure and buggy commits based on API grouping

Table 21: The Wilcoxon signed rank test result for performance vs. API

First group Second group

Second group 0.00056

Third group 0.00024 0.19557

The Wilcoxon signed rank test shows that the first group has a considerable
difference with the other groups (See Table 21). Further investigation showed
that developers in the first group mostly overlap with those with the lowest
number of commits (i.e., 2 to 4 commits). As in the previous subsection,
we observe that every commit has a much higher impact on performance for
these developers compared to other groups, leading to the difference of the
first group with others. If we account for this phenomenon, we cannot reject
the null hypothesis, and conclude that the performance of developers who use
different APIs is identical. Figure 18 also shows the performance of developers
versus the number of APIs that they used. Clearly, there is no sharp negative
or positive trend in the performance of developers can be seen as the number
of API increases.

Even though the number of used APIs are strongly correlated with the number of
secure and buggy commits, we did not observe any correlation between this factor
and developer performance

86

5.2. Results and discussions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

Pe
rf

or
m

an
ce

Number of JCA APIs

Figure 18: Performance vs. number of APIs

5.2.2 Developer feedback

Out of 216 repository maintainers, 76 did not respond, and 140 reacted to the
issues within 20 days. Among all the reported misused APIs, MessageDigest
had the greatest number of submitted and received responses. KeyStore and
SecretKeySpec are respectively in the second and third place with 22 and 15
received responses from 32 and 31 submitted issues. Following that, Cipher
and Signature were the last two APIs that had been reported in more than
10 submissions. The rest of the APIs had only a few submitted and received
responses.

We evaluated all of the responses for 140 repositories in order to identify
developer perceptions concerning cryptographic APIs. This widens our views
on how knowledgeable developers are when they misuse a crypto API in their
code.

We realized that only a tiny fraction of repository maintainers (i.e., of
seven repositories) agreed to fix the issues, and a large number of maintainers
(i.e., of 46 repositories) disagreed since the context where the misuse occurred
was not considered to be security-sensitive. Fortunately, 32 repository main-
tainers were interested in starting a dialogue about exactly why a given issue
can cause problems, and whether the associated risks can arise in practice.
We present eight main categories of responses in the following and highlight
the key findings of each category in a box.

Personal repository: We received three responses indicating that the
target repository is for a personal use. A contributor said that “the project
is meant to be used for educational purposes and intentionally contains some
vulnerable examples.” Another mentioned that “the project is created for
internal use and no issue will be addressed.”

People are not aware of the impact these issues could have on those who rely on
online examples, as their repositories are publicly accessible. Another facet could be
that they are not concerned about security when a program is being used on a very
small scale.

87

5. Crypto hurdles - the developer perspective

Will fix later: Developers of seven repositories replied that they will fix
the reported crypto misuses later without asking for any further explanation.
Three of them replied that those misuses do not affect the functionality of the
program and are not urgent to be fixed.

Developers often underestimate the impact of a crypto misuse.

Request for pull: Developers of 17 repositories suggested to create a
pull request. For instance, a contributor responded that “I’m not sure if
I understand the problem. I am not a cryptologist.” We believe a lack of
knowledge in this area exists that may cause developers to blindly accept a pull
request. The inevitable consequence of blindly accepting a pull request could
adversely affect the security of the final software, for instance, an adversary
may submit a downgrade to the existing security mechanisms in a project.

There is a risk that developers who lack security knowledge blindly accept security-
related pull requests.

Refer to the main library: In five cases developers used an open-source
library, and asked us to report the issue to the library’s repository.

Unfortunately, developers seem not to be concerned about security risks associated
with external libraries.

Repo is not maintained: We learned from the responses that 15 repos-
itories are not maintained anymore.

Inactive projects are common in the open source community, for example due to a
lack of financial support. However, as long as the code is available online, novice
developers may rely on open-source projects irrespective of how active the projects
are.

Consult documentation: Developers of 10 repositories were not com-
pletely certain about how the APIs should be used securely. They either asked
us to read the API documentation or quoted a relevant part of the documenta-
tion in their responses. For instance, we suggested not to use java.lang.String
as the second parameter for KeyStore. This parameter is the password param-
eter. Developers replied that “according to the documentation, the parameter
is a String, so why should it never be String?” One responded that “MD5
is still supported by java according to the Java documentation.” Another one
asked us to provide him with the correct use of Signature API as he did not
know how to fix it. A developer referred to the official Java documentation to
express his trust in using the SHA1withRSA algorithm in the Signature API.
Developers of two repositories were not convinced to stop using NoPadding in
the Cipher API. They noted that using an empty string in Java 8 can cause
a run-time error and they cited Cipher ’s page in Java documentation.

88

5.2. Results and discussions

Developers have confidence in official documentation, but security concerns are
mainly absent in such resources.

Uncertainty: We found that many developers (i.e., of 32 repositories)
asked us to provide a clarification. Some developers referred to blog posts
where the KeyStore API was misused by converting a string variable to an
array of characters, i.e., password.toCharArray(), and passing it as the second
parameter to the API. A common skepticism was about which algorithm is
safe to use in SecretKeySpec and KeyPairGenerator.

A few developers asked how the misuses can be exploited in real life. For
instance, a contributor was not convinced about the nature of the “misuse”
as it was not clear to him how a wrong transformation mode in the Cipher
API can be exploited in his application.

As expected, developer uncertainty regarding the correct way of using an API se-
curely is related to either the right method call or the secure algorithm name

Consider the context and disagreement: The majority of responses
(46) are connected with the context of the code. A large number of these
responses were mainly related to the MessageDigest API since MessageDigest
was used more frequently than any other crypto API in the analyzed projects.
This is because MessageDigest can be used in many different scenarios such
as authentication, checksumming, archiving, or in combination with other
algorithms.

One common complaint was that MD5 or SHA1 were not being used for
security purposes. They had been used for archiving or producing hashes
for non-security use cases. For instance, one developer mentioned that the
Redis API needs to generate checksums using SHA1. As another example
of non-security usage, one repository used SHA1 for opening a handshake in
WebSocket and the contributor referred to the RFC 6455 section 1.3 for fur-
ther information. Moreover, three repository maintainers replied that instead
of using String.hashCode(), they used SHA1/MD5 as an internal identifier, i.e.,
generating a normalized document ID based on the URL of the given docu-
ment. Another developer stressed that they use MD5 in order to track if the
template source has been changed or not. A group of developers used MD5 to
get a hash of an email address to produce the avatar URL of the user. SHA1
was also used in a for loop to generate fake data to be stored in a file in a
repository. Contributors to a repository pointed to a code comment preceding
the SHA1 usage that clearly says that SHA1 was used only to generate a single
hash for the entire contents of a folder and it is absolutely sufficient.

Some contributors complained that the critiqued code is very old and the
context is not security-focused, i.e., a decade old, and running a static analysis
is not a good measure to find misuses. In some responses, they did not exactly
mention what the context was and only replied that the context is not security-
sensitive. For example, we manually checked the codes of the repositories and

89

5. Crypto hurdles - the developer perspective

found that MessageDigest was used for purposes such as hashing parameters,
i.e., album name, in the URL or to cache the unpacked ZIP file and avoid
multiple extractions.

In one repository, developers indicated that there was a code comment ex-
plaining why the Signature API had been used in an insecure way. A developer
mentioned that although KeyPairGenerator accepts many algorithms such as
RSA, DSA, and Diffie-Hellman, in this project the APNs protocol demands
KeyPairGenerator to generate key pairs for the Elliptic Curve algorithm.

One contributor cited a blog post where the blogger discussed that SHA1
is still usable regardless of the existing collision vulnerability. He insisted
that they will continue using the algorithm until a serious security problem is
raised by using SHA1. Another developer stressed that MySQL authentication
plugins do not support the usage of SHA-256 and accordingly, SHA1 was used
in their project. In contrast, official MySQL documentation added that since
MySQL 5.6, the sha256 password authentication plugin is supported. With
regard to the misuse of MD5, a developer replied that he cannot change the
algorithm name as the remote endpoint requires an MD5 hash and he is not
able to change it on the remote endpoint.

Developers mainly argued that their context is not related to security. The use of
security APIs to produce hashes was the most common non-security related usage.

We witnessed that some APIs were more prevalent compared to others
in our reports. For example, the MessageDigest API was seen more than
other APIs in all response categories except for “Personal repository.” In
MessageDigest, the most common misuse type is constraint error in which
developers used the MD5 or SHA1 algorithms to compute hashes. As hashing
algorithms could be used for non-security purposes, many maintainers were
expected to note that the context is not relevant. KeyStore and Cipher are
the second most frequently seen APIs in the responses. Repository maintain-
ers mostly asked for clarification or referred to the documentation of Java for
the misuses of KeyStore. The Cipher API had the majority of misuses linked
to its first argument. This occurred due to the diversity of options in the
transformation string. A transformation string includes the name of a cryp-
tographic algorithm (e.g., AES or DES), and may be followed by a feedback
mode and padding scheme, e.g., algorithm/mode/padding. On the whole, de-
velopers had difficulty in understanding what constraint they should pass to
the crypto APIs or how to create an object securely in order to pass it to
another crypto API.

The responses of maintainers highlight the fact that some developers are
fully aware of what they are doing, whereas others have doubts concerning
the correct way of using such APIs. As a result, blaming only developers for
the found crypto API misuses cannot be correct. To highlight the leading
causes of crypto misuses, we identify various influential factors that must be
taken into account. The age of a project can be an essential factor as security

90

5.2. Results and discussions

standards can evolve over time. Another factor is to blindly rely on the use of
third-party libraries. Developers need to spend more time and select libraries
with higher credibility and support. Official documentation and unofficial
online documentation, such as Stack Overflow, can have pernicious effects on
developer choice. This impact can be ruinous when the developer lacks the
minimum knowledge in the domain of cryptography, e.g., choosing ECB mode
from the examples provided by the official documentation. Furthermore, such
developers may not be able to make a good use of static analysis tools to
resolve their crypto problems. On the other hand, statically checking the
developer’s code without considering the context yields misleading results and
could not be a dependable measure for developer performance in this domain.
For instance, recent program analysis tools consider SHA-1 to be insecure.
Such tools produce alerts if a developer cautiously uses three nested SHA-1
to produce a hash while the application is not, indeed, exposed to security
threats. Lastly, even though some developers were aware of the right crypto
usage, the widespread use of such examples on open-source projects may have
profound implications on inexperience developers.

5.2.3 Developer survey

We discuss our findings from the developer self-reported knowledge perspec-
tive. We then compare variables related to each participant characteristic
with the reported knowledge level. The participants rated their knowledge in
cryptography as 21% (i.e., 21) somewhat knowledgeable, 60% (i.e., 58) knowl-
edgeable, and 19% (i.e., 18) very knowledgeable. We respectively assign these
participants to low (21), medium (58), and high-profile (18) groups in this
domain.

Developer demographics

We analyzed whether age, experience in programming, or education are corre-
lated to knowledge in cryptography. Unsurprisingly, the older participants are,
the more experienced they are in programming. Although experienced partic-
ipants exist in every knowledge group, there is a clear distinction between high
to medium-profile developers and low-profile developers (See Figure 19). All
participants from the high-profile group have more than 10 years of experience
in programming, and there are no participants from high or medium-profile
groups with fewer than 5 years of experience in programming. The same pat-
tern was seen among the groups for years of programming experience in Java.
The education level is almost evenly distributed among the three groups. Of
the seven Ph.D. participants, five belong to the medium-profile group.

Developers with a high or medium level of knowledge in cryptography have more
years of experience in programming and Java.

91

5. Crypto hurdles - the developer perspective

100%

84%

11% 5%

81%

19%

76%

17%
7%

66%

19% 15%

43%
33%

24%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Programming
experience > 10

years

Programming
experience 5 - 10

years

Programming
experience < 5

years

Java experience >
10 years

Java experience 5 -
10 years

Java experience <
5 years

High Medium Low

Figure 19: Years of experience in programming and Java

Developer characteristic

To have a glance at developer characteristic, we examined the relationship
between developer knowledge and any of the following: security course at-
tendance, experience in using crypto libraries, background in IT-security, de-
veloper security concern, ways of solving crypto problems and evaluating a
crypto code, and working as a source code auditor.

With regards to security or cryptography course attendance, the more
knowledge developers had, the more courses they attended. The high group
has the highest number of participants (22%) attending both courses, while
there are 9% and 14% such participants of the medium and low groups, re-
spectively. The number of participants who attended such courses is below
40% in all groups.

Although several participants (i.e., 15) responded that they worked as a
secure code auditor, they belong to different knowledge groups, i.e., high (3),
medium (10), and low (2). Just over a half (i.e., 53%) of such participants
never attended a security or cryptography course, whereas the rest (i.e., 7)
attended security and cryptography courses.

In total, 38% of participants (i.e., 37) reported that they had background
in IT security. We observed that a very large proportion (86% and 61%) of
the low and medium-profile participants had no background in IT security. In
contrast, 61% of the high-profile developers expressed their security-relevant
background, achieved through various methods e.g., bachelor and master the-
sis on software security, or personal enthusiasm and self-study in software
security.

Notably, all respondents from the high-profile group stated that they have
at least two years of experience in using crypto libraries, whereas 52% and 21%
of the low and medium-profile developers are not highly experienced (i.e., <=

92

5.2. Results and discussions

2 years) with such crypto libraries.

We received 47 responses regarding the hindrances developers encounter
when dealing with cryptographic tasks. The majority of them mentioned two
key obstacles: the first was the high complexity of using crypto APIs. For
instance, a developer mentioned that “Wide variety of configuration options”
is troublesome. The second obstacle concerned unreliable sources and lack of
security experts in teams. For example, one participant blamed “Poor Java
docs”. More than half of the 47 respondents (63%) were from medium-profile
developers, and 17% of them were from the high-profile group. This means
that developers who still feel confident about their knowledge in cryptography
struggle to use them in the wild.

A large proportion of low-profile developers have no IT security background, while
more than half of the high-profile developers do have such backgrounds. High-profile
developers have slightly better records in the security/cryptography course attendance
and considerably more years of experience in using crypto libraries than other de-
velopers, whereas medium and low-profile developers are almost similar. Developers
from all groups mainly complained about the complexity of crypto APIs and insuf-
ficient documentation.

With regards to developer security concerns, 81% of developers rated their
concern as important or very important. Remarkably, 61% high-profile devel-
opers are very concerned with security while 33% and 43% from low and
medium groups reported the same level of concern (See Figure 20). Only one
high-profile developer is somewhat concerned with security while 19% of low-
and 17% of medium-profile developers reported the same level.

14% 19%

17%

5%

33%

39%

33%

33%

43%

61%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Low

Medium

High

Not at all Slightly Somewhat Moderately Extremely

Figure 20: Security concern by participants

Participants reported various information sources to solve the challenges in
a cryptography-related task (presented in Table 22). In particular, the primary
information sources seem to be online. In each of the three groups, websites
found on search engines and Stack Overflow are among the top three preferred
approaches. It is noteworthy that the role of information security experts is
not as commonly cited as other approaches. Participants only from high- and
medium-profile groups consult with a security expert, and none of them are
from the low-profile group. High-profile participants prefer discussion with

93

5. Crypto hurdles - the developer perspective

colleagues, security consultants, and crypto stack exchange more than other
participants.

Just over half of the developers in all groups only evaluate their code
manually (See Figure 21). Remarkably, the total number of participants who
use a static analysis tool is fewer than one-fifth (i.e., 18) of the total number of
participants. In more detail, high-profile developers had the highest usage of
static analysis tools (28%), while low-profile developers had the lowest usage
of such tools (5%). Of ten developers who do not evaluate the security of their
code, only one belongs to a high-profile group.

Unlike others, nearly all (i.e., 17) high-profile developers are extremely or mod-
erately concerned about security. Developers mainly solve their crypto problems on
Stack Overflow or websites returned by search engines. The high-profile group ben-
efits more from security consultants, discussions with colleagues, and crypto Stack
Exchange to resolve crypto problems. Developers mainly evaluate crypto-related is-
sues manually rather than using analysis tools. All high-profile developers evaluate
their crypto code and they use static analysis more than others. In contrast, low-
profile developers tend to use static analysis tools less than others, and 16% do not
evaluate their code.

Table 22: The information sources that developers use - bold items are the highest in each row

High Medium Low

Websites on search engines 83% 88% 86%
Stack Overflow 72% %74 %80
Crypto Stack Exchange 34% 33% 19%
Security consultant 28% 10% 0%
Books 33% 41% 14%
Discussion with colleagues 77% 38% 57%

71%

78%

89%

5%

21%

28%

14%

12%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Low

Medium

High

I don't evaluate Static analysis tool Manually

Figure 21: How developers evaluate a crypto copy-pasted code

94

5.2. Results and discussions

Company characteristic

Developers were asked to respond to how concerned their companies are with
security (See Figure 22). More than half of the companies (i.e., 72) were
concerned (important and very important) with security. Furthermore, 71%
(i.e., 69) of the companies do not have any security consultant in their team
and 70% of the companies have no or fewer than 30% of developers responsible
for secure development. Disappointingly, we learned that 57% (i.e., 53) of
respondents do not receive security training at workplace. A yearly training
interval is the most common approach (27%), and a two-year training interval
is the least common approach (6%) among companies.

1%

6%
18% 36% 39%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Company level concern

Not at all Slightly Somewhat Moderately Extremely

Figure 22: Security concerns by companies

We observed the mapping of “in-site consultant”, “regular training”, and
“responsible developers” with developer knowledge (See Figure 23). As ex-
pected, in all three factors, high-profile developers reported positive responses
slightly more than the medium-profile group, and noticeably more than the
low-profile group. However, the medium and low-profile developers are very
similar concerning the in-site security consultant.

The majority of companies are concerned with security but the lack of security
consultants, regular security training, and security developers are inevitable. In
particular, high-profile developers benefit more from the three factors.

Discussion

Developer background: Acar et al. assigned 307 active GitHub users to
complete several security-relevant programming tasks and surprisingly, found
no statistically significant differences concerning functional correctness and
security perception among the participants who registered their status as a
student, professional developer, or those who had security background [3].
Interestingly, years of experience was not an effective factor for security per-
ception. Oliveira et al. designed a study for 109 developers to use some APIs
that had some blind spots, i.e., containing underlying causes to misuse an
API, and some easy to use ones [115]. The results show that developer ex-
pertise and experience did not predict their ability to identify blind spots. In

95

5. Crypto hurdles - the developer perspective

44%
50%

55%

26%

41%

27%23% 28%

10%
0%

10%

20%

30%

40%

50%

60%

70%

80%

In-site security consultant Regular security training > 31% secure developer

High profile group Medium profile group Low profile group

Figure 23: Security support provided by participant companies

another study, the outcome of an experiment with 54 professional and inexpe-
rienced developers for writing security-related code explains that development
experience is not a decisive factor for code security [2]. Nadi et al. conducted
two surveys and asked developers about the issues they face when working
with crypto tasks [112]. The participants mentioned several types of issues in-
cluding lack of documentation, difficulty in API use, and indirection between
the APIs and the underlying implementation. The authors also realized that
developers from various knowledge level groups still face the same types of
issues in cryptography. Robillard et al. conducted surveys and interviews
with Microsoft developers, and realized that poor documentation is a major
learning obstacle for learning APIs [130]. To alleviate unsafe coding prac-
tices, security training courses, e.g., secure programming, are more effective
compared to general security training [111].

Security tool adoption: Johnson et al. conducted interviews with 20
developers to understand the determinant factors why static analysis tools
were not adopted by many developers [86]. Participants mentioned reasons
such as the high rate of false positives, the way that warnings are displayed,
faulty integration of the tool into the development process, lack of detailed
explanation of bugs with automatic fixes, and not including understandable
configuration options in the tool for all levels of developers. Other researchers
investigated the reasons for a low rate of security tool adoption [13] [14]. They
found that organization and team policies affect the usage of security-related
tools and larger organizations use security tools more than small ones. The
greater adoption of security tools can be influenced by factors such as the
culture of the company, security concerns, training, and dedicated security
and testing teams.

Ways of solving crypto problems: Even though using Stack Overflow
might help the functional correctness, it leads to more insecure copy-pasted

96

5.2. Results and discussions

code snippets [2]. Ye et al. worked on a system called insecure code snippet
detection (ICSD) to detect the imminent insecure code snippets on Stack
Overflow [157]. In a survey with 87 Stack Overflow visitors, they reported
outdated answers, wrong solutions, and buggy code. Their results cast light
on the choice for finding programming solutions, and how often they reused
a prepared solution. Stack Overflow had the first rank in finding solutions.
Acar et al. conducted a comprehensive study by surveying 295 application
developers, and a lab study with 54 Android developers (professionals and
students) in which they were allowed to resolve coding issues with one of the
following four means: any resources, Stack Overflow only, official Android
documentation only, or books only [2]. Their findings suggest that developers
use Stack Overflow as a major source. Interestingly, developers who could use
any resources had similar performance (functional and security correctness) to
those who were assigned to use Stack Overflow only. The lack of an official role
in organizations as security champions/consultants is evident, and oftentimes
this role is given to someone on the development team with limited security
knowledge. By hiring security consultants, managers can gain positive impacts
from the resulting security level of products, and security testers would largely
benefit from the presence of such consultants [140] [123].

Security concern: Witschey et al. conducted a study to understand
what factors affect the usage of security tools [150]. Strangely enough, be-
ing more concerned about security did not lead to greater security tool us-
age while having training or academic background in the security field did.
Research indicates that some organizations use external resources,e.g., pen-
etration testers, to encourage developers to pay extra attention to security
in development, however, without strong support, the motives tend to lose
priority compared to the important functional requirements [151]. Likewise,
managers sometimes are obliged to make vital decisions, such as releasing the
code with some known problems, due to business forces [140].

Security training: The need for regular information security training is
undeniable in companies [143]. From the training frequency viewpoint, quar-
terly security awareness training is recommended to renew employee knowl-
edge concerning the latest threats and trends, and in case some difficulties
exist, biannual training could be the minimum required time frame [57].
Puhakainen et al. stressed that information security trainings and commu-
nication efforts should be continuous and integrated into the organization’s
usual communication efforts otherwise security policies lose their efficacy [125].
According to the SANS Institute, a security awareness program should con-
sider who is going to be in the training course, which topics are suitable for
the audience, and ultimately how participants engage in order to identify how
frequent security training should take place.7

7https://www.sans.org/security-awareness-training/blog/

wrong-question-how-long-should-security-awareness-training-be

97

https://www.sans.org/security-awareness-training/blog/wrong-question-how-long-should-security-awareness-training-be
https://www.sans.org/security-awareness-training/blog/wrong-question-how-long-should-security-awareness-training-be

5. Crypto hurdles - the developer perspective

By studying the literature we found clear evidence to corroborate the find-
ings of this study. Each of the discussed studies either solely explored one
factor and obtained similar results or they emphasized the importance of the
studied factor to improve the state of developers in security or cryptography.
We believe that even though 81% of the participants, as well as 75% of their
companies, are utterly concerned, i.e., important or very important, about
security, the practices of the participants and companies do not accord with
their grave security concern. However, conducting a survey has some inherent
limitations. To profoundly investigate this matter, conducting interviews with
some of the participants who provided their email addresses can be beneficial
to inspect organizational policies, project-level limitations, and objectives.

5.2.4 Experts’ practices

We explore the usage of crypto responders’ programming languages and crypto
concepts on Stack Overflow and GitHub.

Stack Overflow

We extracted 804 top crypto responders in which 319 users shared their
GitHub profile on Stack Overflow. We fetched the crypto discussions of the
74 users (the sample size), extracted their provided answers, and stored the
names of the programming languages involved in the discussions. In total,
55% of discussions were about Java. A user could have participated in vari-
ous discussions wherein different programming languages were involved. We
therefore considered all those languages as being the areas of the user’s crypto
knowledge. The median and mean numbers of programming languages used
on Stack Overflow are 3 and 2.7, respectively.

More than four-fifths of the developers (i.e., 65) participated in discussions
where the three crypto-concepts were discussed. Similar to programming lan-
guages, a user can provide answers for a discussion in which the knowledge
of a concept or mixed concepts are required. For instance, we considered (1)
hashing (2) sign/verification for the discussion (ID:33305800) on Stack Over-
flow since a user was confused about the differences between hashing with
SHA256 and signing with SHA256withRSA.

GitHub

Of 319 users with GitHub profiles, 189 had made crypto contributions to
public repositories on GitHub. To conduct our manual analysis, we randomly
selected 74 users from the 189 crypto developers. We extracted the names of
programming languages where crypto APIs were used. The median number
of programming languages used on GitHub is 1 and the mean is 1.4. In all 74
cases, the number of programming languages and crypto concepts on Stack
Overflow was higher than or equal to the same groups of data on GitHub. For

98

5.2. Results and discussions

instance, developer A participated in discussions where three languages (i.e.,
C++, C#, Java) were involved as well as the three crypto concepts while the
same developer only used Java crypto APIs for hashing purposes on GitHub.

0

5

10

15

20

25

<50% 50% >50%
The percentage of using Stack Overflow languages on GitHub repositories

developers Median of Stack Overflow languages Mode of Stack Overflow languages

Figure 24: The number of developers based on their percentage of Stack Overflow programming
languages usage in GitHub repositories

Mapping result

Interestingly, we realized that 63 (i.e., 85%) of such users had used at least
one language that matches their crypto activity on Stack Overflow. Such
agreement implies that the users are confident in those languages. We split
the 63 developers into three groups: those who used fewer than 50% of the
languages in their GitHub open-source projects (i.e., 25), those who used half
of the languages (i.e., 16), and those using more than 50% of the languages
(i.e., 22) (See Figure 24). In particular, more than half of the developers (i.e.,
38) had crypto contributions for either half or more than half of the languages
that they prefer to provide crypto help for on Stack Overflow. The developers
who used fewer than 50% of their Stack Overflow languages in open-source
projects constitute 39% (i.e., 25) of the whole.

With regard to crypto concepts, there are six developers who used APIs on
GitHub which are related to the three crypto concepts (See Figure 25). There
are seven developers who used signing/verification and hashing, five developers
who employed hashing and symmetric/asymmetric, and only two developers
used signing/verfication and symmetric/asymmetric. The rest of developers
only used one of the concepts in the identified projects. They might have

99

5. Crypto hurdles - the developer perspective

a broader contribution to cryptography in open-source projects, however, it
may be due to the limitation of our obtained knowledge concerning their prac-
tices on GitHub. On the other side, the manual investigation revealed that,
on Stack Overflow, 65 developers participated in all three concepts, seven de-
velopers only in symmetric/asymmetric, and only two in signing/verification.
Checking the labels of 74 developers, we uncovered that almost all of the de-
velopers (i.e., 67 or 90%) worked with at least one common crypto concept
on both platforms. Of the 67 users, 30% of them had more than one concept
shared on both platforms. The findings imply that developers are confident
in programming languages and the crypto concepts as they had relevant ex-
perience in practice. Likewise, user satisfaction, such as high upvotes for the
responses on Stack Overflow, confirm that the users’ guidance is practical and
effective in the domain of cryptography.

Hashing Signing/verification

Symmetric/asymmetric

7

5 2

6

25

18

11

Hashing Signing/verification

Symmetric/asymmetric

7

65

2

The three concepts on
Stack Overflow

The three concepts on
GitHub

Figure 25: The numbers of developers with experience in each crypto concept on Stack Overflow
and GitHub

5.3 Threats to validity

In the following, we describe the threats to validity of each of the explored
facets.

5.3.1 Developer performance

We analyzed 2,324 Java projects that use JCA APIs. We found these projects
through the contributors of some initial projects that were identified in previ-

100

5.3. Threats to validity

ous work. We did not define any criteria for selecting the remaining projects,
but they may not represent the whole Java ecosystem. Also, we only focused
on Maven projects and did not look for Gradle or ANT projects. We relied on
CogniCrypt for misuse detection as it provides state-of-the art static analyses
and covers a wide range of API misuses. Whereas certain limitations are in-
herent in static analysis in general, we did not check for the existence of false
positives in the results as the authors have done so and found the tool to be
fairly precise. We aborted the analysis of each project after 15 minutes. In-
crease in the timeout may yield more projects to be analyzed. We used the git
blame command in order to identify the last developer who has committed a
change to that line of code, and did not look into the commit history. Though
the last commit can be due to some refactoring or maintenance purposes, we
studied several cases and did not find any other changes concerning crypto
APIs. Moreover, commits can be an outcome of several works by different
people locally where the resulting commit is the only visible one.

5.3.2 Developer feedback

We contacted the maintainers of analyzed repositories and received 140 re-
sponses. However, we did not check whether the contributors who replied to
the issues are the ones who used the crypto APIs. We only relied on their
first reply and did not further pursue the conversation in each issue. In the
initial phase, we did not take into consideration how active the repositories
are, therefore we had some responses concerning “this repository is not main-
tained anymore”. Nevertheless, such abandoned code repositories could have
a negative impact on inexperienced developers.

5.3.3 Developer survey

Our sample of software developers using crypto APIs on GitHub is limited
in size. To increase the number of such developers, more crypto open-source
projects need to be identified, and associated developers must be extracted.
In the survey, there was no participant who reported no knowledge of cryp-
tography, and we did not exclude any participant from our analysis. All the
participants had used crypto APIs in Java open-source projects, and it was
unexpected to receive responses indicating no knowledge of cryptography. De-
velopers, in general, may have different viewpoints on how to evaluate their
knowledge in a specific area, such as cryptography. To lower the risk of as-
sumption bias, we provided the participants in the survey with an extra defi-
nition of what each level of knowledge is intended to mean, and the four-level
knowledge used in a previous study [112]. To grasp the real knowledge of
developers, we need to judge developer knowledge based on their real perfor-
mance, i.e., in a controlled experiment. We only asked the participants about
their companies’ practices since we did not intend to ask about the names

101

5. Crypto hurdles - the developer perspective

or web addresses. Even though we received 97 responses from 1103 potential
participants, it may be possible that more than one participant refers to the
same company.

5.3.4 Experts’ practices

We identified 804 developers who were among the top 1% of responders to
64 crypto tags on Stack Overflow. However, we were only able to find 319
of these developers on GitHub, and did not perform any exhaustive search
on Google to find more users. A developer may have multiple accounts on
GitHub for various purposes but we only consider one account per user. Some
users may have private repositories and make more significant contributions to
crypto-related projects, nevertheless, such contributions cannot be assessed.
We looked into the repositories written in seven programming languages, and
did not analyze the remaining repositories. Even though we included popu-
lar and default crypto libraries in each programming language, adding more
crypto libraries in each programming language can allow a more realistic con-
clusion to be drawn. This is important, considering that the diversity of crypto
libraries in each language is debatable. We used the git blame command to
fetch a crypto file’s contributors. Consequently, there is a likelihood that the
developers who contributed to crypto files had committed to other parts of
the file but not to the cryptography parts.

5.4 Summary and conclusion

We investigated 2,324 open-source Java projects whose code contains usages
of Java Cryptography Architecture (JCA). We discovered that, on average,
of 3.9 crypto uses in each project, 2.5 are not secure, and that developers
have great difficulties in using more than half of the APIs. We also studied
four factors that rationalize developer experience namely the number of JCA
commits, API diversity, the number of projects developers are involved in,
and the frequency of committed lines of code. We found that none of these
factors influence developer performance in this domain.

We investigated the influential factors in misusing such APIs. We con-
tacted the maintainers of the projects to understand the reasons behind the
misuse of crypto APIs, and we classified their responses into eight main cate-
gories. The results demonstrate that security hints in API documentation are
scarce, misuses are rooted in third-party libraries, or the code context plays a
crucial role in using crypto APIs incorrectly. Finally, to support the research
community, we publicly share the CryptoMine dataset, including the analysis
results, and information about each project such as its metadata information,
the precise locations of API use, and the safety status of these APIs, to name
but a few.

102

5.4. Summary and conclusion

We surveyed 97 developers, who used cryptography in open-source projects,
and studied their security and cryptography practices. Our analyses demon-
strate that high-profile developers reported better to the developer- and
company-level questions, e.g., security tool usage, and background in IT secu-
rity. It should be recalled that over 70% of the participants and their compa-
nies are utterly concerned about security. Nevertheless, a number of worrisome
patterns, e.g., lack of regular security training, security consultants, and low
rate of security tool usage, were observed in other participants’ responses. The
results provide corroborative evidence supporting the outcome suggested by
prior research. To further understand the root causes of developer practice in
this area, future studies should consider organizational policies, project-level
limitations and objectives, and developer expertise in practice.

We conducted a study of the top 1% of crypto responders on Stack Over-
flow to shed some light onto the adoption of cryptography on GitHub by
the top crypto responders on Stack Overflow. In particular, to the best of our
knowledge, no previous study has profiled crypto developers across online com-
munities. We found 189 users who used cryptography in open-source projects
on GitHub and studied 74 of this population. The results indicate that the
majority of analyzed users (i.e., 85%) use the same programming languages
for participating in crypto discussions on Stack Overflow and crypto contri-
butions on GitHub. Closer inspection of three areas in cryptography (i.e.,
hashing, symmetric/asymmetric, or signing/verification) revealed that 90% of
the analyzed users had practical experience with at least one of the crypto
concepts that they had discussed on Stack Overflow. Collectively, the results
demonstrate that top crypto users are consistent with their crypto activity on
both platforms, and this provides a basis for further research to investigate
the quality of their practical experience.

103

Chapter 6

Root causes and Remedies

In the last two chapters, we discussed the problems of crypto APIs and com-
mon practices of developers in the field of cryptography. We believe that
utilizing the experience of crypto experts can substantially contribute to com-
prehending the problems, providing insights into secure usage of cryptogra-
phy. Furthermore, thanks to their rich experience in perhaps industry or
open-source communities, the crypto experts might offer invaluable recom-
mendations to improve the problem of misusing crypto APIs. To the best of
our knowledge, no similar attempts have been made to collect the suggestions
of crypto experts with regard to cryptography misuses.

Aside from collecting experts’ opinions, another approach to alleviating
the problem of misusing crypto APIs is to support developers with security or
educational tools. Security tools can be beneficial for developers to understand
a number of intricate subjects in order to securely use crypto APIs. However,
this may not be possible on a large scale due to multiple reasons, e.g., organi-
zational policies or developer unwillingness. There exist several tools to assist
developers in using crypto APIs correctly [127, 43]. These tools nevertheless
need to be installed, are dependent on specific programming environment and
are relatively complex to learn. More importantly, not all developers are aware
of such tools.

We found that an educational pathway might be more intriguing to ex-
plore. In this regard, Adamovi et al. attempted to lessen the learning curve of
cryptography by proposing an interactive tool, called CrypTool [4]. In their
experiments, they obtained positive feedback concerning using the tool in
teaching cryptography in comparison to traditional techniques. Aydin atten-
tively linked the basics between relevant subjects, e.g., algebra and number
theory, that are taught in a mathematics course and several related areas
from computer science and cryptography without requiring a lot of prereq-
uisite knowledge for undergraduates [12]. However, we believe that areas in
the educational part of cryptography are still not sufficiently explored, and
proposing more practical solutions will enormously help address the lack of

105

6. Root causes and Remedies

Hurdles, root causes, and remedies

A survey with the top 1% of
crypto experts on Stack

Overflow

Facet 2

CryptoExplorer, a
platform for developers to

explore crypto uses

Facet 1

Figure 26: The methodology followed to answer the fourth research question

knowledge of developers in cryptography.

6.1 Study design

The aim of this chapter is to collect and analyze the opinions of crypto experts
concerning the current state of problems in cryptography as well as devising
an educational tool for easing the learning curve of crypto APIs. To that
end, we address the fourth research question of our study, i.e., What are the
feasible remedies to alleviate the issue of misusing crypto APIs?, from two
facets, illustrated in Figure 26.

Facet 1 → We surveyed the top 1% of crypto responders on Stack Overflow
to collect their suggestions on how to ease the use of cryptography for in-
experienced, mid-range developers. We contacted 247 users whose email
addresses were available and received 26 detailed responses from the top
crypto responders. These developers mentioned 36 crypto hurdles (e.g.,
validating certificate chains) and the root causes (e.g., outdated tuto-
rials) indicating why cryptography is difficult for developers. Further-
more, they recommended 29 strategies, e.g., employing misuse-resistant
crypto libraries, by which cryptography can be facilitated for developers
as well as for crypto designers. The suggestions reported by the par-
ticipants mainly targeted the human-related, crypto APIs, and learning
resources aspects. The current findings can provide an exhaustive list of
guidelines for inexperienced developers to become reasonably informed
about common challenges and solutions in the cryptography domain.

Facet 2 → We developed a web platform, named CryptoExplorer, stocked
with numerous real-world secure and insecure examples that developers
can explore to learn how to use cryptographic APIs properly. This plat-
form currently provides 3,263 secure uses and 5,897 insecure uses of Java
Cryptography Architecture mined from 2,324 Java projects on GitHub.
A preliminary usability study study showed that CryptoExplorer in-
stantly provides developers with secure crypto API use examples, that

106

6.1. Study design

developers can save time compared to searching on the internet for such
examples, and that they learn to avoid using certain algorithms in APIs
by studying misused API examples.

In the following, we explain how we conduct the data collection and anal-
ysis phases for each of the aforementioned facets.

6.1.1 Experts’ opinions

In this section, we describe how we choose crypto questions on Stack Overflow,
the approach to fetch the top 1% of crypto responders, and the structure of
our survey. Figure 27 shows the steps taken in our methodology and how they
are linked together and what data is passed to the next step.

Base tag (cryptography)
Candidate tags (2184)
Crypto-related tags (64)
Fetch top 1% responders

stack overflow

Crypto Responders

stack overflow

Survey Design Manual AnalysisCrypto Questions & Responders Crypto Responder profile

26 responses

Testing the survey with four
external participants
Coding the responses by two
authors of this work

Demographics
Crypto hurdles for developers
Root causes of the hurdles
Suggestions for developers
Suggestions for crypto designers

Scrape top 1% user profile
Twitter (211)
Websites (412)
Github (319)

247 valid emails804 crypto responders

Figure 27: The steps taken in this study to contact top 1% of crypto responders on Stack
Overflow

Crypto Questions and Responders

In chapter 5, we assessed the practical experience of crypto experts based on
their contribution on Stack Overflow [74]. We recap here what we have done in
subsection 5.1.4. We were inspired by the Stack Overflow feature that presents
top responders according to a specific tag. We based the cryptography tag to
extract 11,130 posts, and subsequently analyzed what other tags appeared
together with the cryptography tag in the posts, providing us with 64 crypto
tags resulted from a manual analysis of the tags (See Table 15).1 Eventually,
804 unique developers constituted the list of top 1% crypto responders of the
64 crypto-related tags.

Crypto Responder Profile

Stack Overflow offers the ability to its users to share their social media ad-
dresses (e.g., Twitter, GitHub, and personal websites) on their profile. Nev-
ertheless, the aforementioned information is not accessible on Stack Exchange

1http://crypto-explorer.com/mapping_data/

107

http://crypto-explorer.com/mapping_data/

6. Root causes and Remedies

Data Explorer. Hence, to find the selected users’ GitHub and Twitter pro-
files, we automatically scraped profiles of the 804 Stack Overflow top crypto
responders. Using the BeautifulSoup library in Python, we parsed each user
profile automatically. We found 319 users’ GitHub profiles, 211 users’ Twit-
ter addresses, and 412 personal website addresses. We looked for the per-
sonal website/blog of such users on their Twitter and GitHub bio. Finally,
we checked the personal websites to find contact details of the users. This
approach armed us with valid 247 email addresses of such users.

Survey Design

We conducted an anonymous survey, which has two parts, namely (1) devel-
oper background, (2) hurdles and solutions. The questions and the responses
of the survey are available online.2 In the first section, we asked for their
(1) education, (2) level of knowledge in cryptography, (3) ways of obtaining
knowledge in cryptography, (4) the crypto library(s) they use most and their
drawbacks or advantages. Concerning the knowledge level in cryptography,
Nadi et al. surveyed 48 developers and introduced a four-level classification
for developer crypto knowledge [112]. To assist participants, we added extra
explanations to each level so that participants can choose the right knowledge
level.

In the second section, we asked four open-ended questions: (1) hurdles
in cryptography for developers, (2) the root causes of the hurdles, (3) tools
or resources to help developers, (4) potential remedies for crypto libraries.
In the survey, we asked the users to read the statement of agreement before
participating. Moreover, we did not collect any personal information except
for the information explicitly collected by the survey instrument.

To publish the survey, we employed Google Forms to build our online sur-
vey. A time-consuming survey is commonly not completed on the internet
[18]. Therefore, we evaluated the completion time of the survey with four col-
leagues who had experience in using cryptography. The assessment phase with
the four potential participants revealed that the survey takes approximately
8 minutes to be completed, and two questions in the second part lack clarity
for the potential participants. Finally, we fixed the problematic questions in
order to increase the lucidity of the questions.

Manual Analysis

To tackle the research question, the explanations of respondents to the open-
ended questions commonly consisted of fewer than 60 words. However, to
minimize human errors, two reviewers separately coded the responses and
cross-checked the consistency of their results. To check the consistency be-
tween the reviewers, we calculated Cohen’s kappa and the agreement for the

2http://185.94.98.132/~crypto/top_crypto/

108

http://185.94.98.132/~crypto/top_crypto/

6.1. Study design

two raters was 81%, which indicates almost perfect agreement between the
two reviewers. To arrive at a consensus, the reviewers had multiple sessions
together to consolidate their lists of coding. Detecting similar or duplicated
codes was a major issue causing discrepancies in their coding.

6.1.2 CryptoExplorer

In this section we present the CryptoExplorer web platform that develop-
ers can use to explore real-world crypto API uses mined from open-source
projects. Developers can search crypto APIs, explore secure and insecure API
uses, and compare them.

We explain the workflow supported by the tool as presented in Figure 28,
and explain the current use cases.

Workflow

CryptoExplorer automatically grows its database of cryptographic examples
by finding cryptographic-related projects and analyzing and storing the cryp-
tographic API examples. The pipeline consists of five major steps to add one
cryptographic example. We use the cron scheduling daemon to automatically
schedule and execute bash scripts.

Search and filter: To add more cryptographic API usages, we look
for current open source projects hosted on GitHub. First, we look for Java
projects using GitHub’s repository search API. We exclude forked projects to
avoid cloning duplicated projects. We then use GitHub’s code search API to
search for JCA APIs inside Java projects. Finally, we store the addresses of
Java projects whose code contains cryptographic APIs.

Clone and compile: We clone and compile projects to perform static
analysis. We clone identified Java projects containing JCA APIs. To build the
projects, we check for the presence of the Project Object Model (POM) file in
the project’s path, and if it exists, we proceed with compilation. The POM file
is an eXtensible Markup Language (XML) representation of a Maven project.
We use the Maven build tool for the compilation process and we skip projects
in which dependencies cannot be resolved. Lastly, we download neither the
forked version of a project nor a project twice for analysis.

Analyse: We currently employ CogniCrypt, a static-analysis tool tailored
to find a wide range of misuses of JCA APIs [92]. The tool returns secure
and buggy API usages. We specified a time period, i.e., 15 minutes, for
CogniCrypt to run the analysis to limit time and resources used on the server.

In future, we plan to add more analysis tools and present their results in
CryptoExplorer.

Parse and inform: We extracted information from the analysis report
to present to developers via CryptoExplorer. In particular, for every project,
we extracted which cryptographic API was (mis)used, the reason for being

109

6. Root causes and Remedies

misused, the corresponding file name, and the line number of each detected
(mis)use. With the help of the git blame command we also identified the last
developer who committed the code associated with each API use, as well as
the commit time.

Afterwards, we created issues on the GitHub page of projects to report the
potential misuses. In case the project owner decided to disable issues for the
project, we sent an email to the developers who committed the API misuse.
Each issue report includes help instructions related to the type of misuse, line
number, and file path.

In order to curate a healthy dataset, we checked responses to each issue
and, in case of a false positive, we adapted the entry in CryptoExplorer’s
dataset. As we needed to manually analyze the responses, we mined 100
projects weekly at the moment. We did not re-examine the repositories auto-
matically once we notified them concerning the crypto misuses.

Store: We stored the analysis results in a database, tracking elements
such as the filename, the crypto API name, the API call line number, the
user-defined function where JCA APIs were used, and whether the API use is
secure or not. CryptoExplorer is designed to support multiple languages: it
must be configured with the API host language, build tools, and static analysis
tools. If a specific crypto algorithm is found to be vulnerable (e.g., SHA-256),
it is feasible to mark the specific crypto algorithm’s usages as buggy in the
database.

Table 23 presents the current numbers of secure and buggy projects and
commits, and their totals. There is an average of 1.7 distinct API usages per
project with a standard deviation of 1.3 and an average number of 3.9 commits
per project with a standard deviation of 7.4.

Table 23: The status of projects and commits
Secure Buggy Total

Projects 642 1,682 2,324
Commits (LoC) 3,263 5,897 9,160

Usage Scenario

The user interface of CryptoExplorer, shown in Figure 29, is simple to use, and
just a few options need to be adjusted to tune the search query. Developers can
either directly visit the publicly available website of the CryptoExplorer, or
use an Eclipse plugin that we have developed to interact with CryptoExplorer
from within the IDE. The simplicity of the plugin only requires developers to
select either an entire Java file or part of one and click on the plugin’s icon to
open CryptoExplorer in a web browser.

CryptoExplorer allows developers to search for example usages of a partic-
ular cryptographic API. For instance, a user might input the MessageDigest

110

6.1. Study design

Search and filter Analyse Store Parse and inform Clone and compile

Figure 28: The workflow of CryptoExplorer

API name to see how this API is (mis)used in different examples in order to
circumvent the lack of usage examples and security hints in the official Java
documentation. Developers may also input a piece of cryptography code that
they would like to evaluate, or to use as a query to find similar crypto usages.
They can choose to explore only secure uses or buggy uses. In case Crypto-
Explorer does not find any example, it suggests examples where both secure
and buggy uses of the queried APIs exist, distinguishable by green and red
colors, respectively.

When developers input sample code to be used to search for usages of
cryptographic APIs, CryptoExplorer identifies the cryptographic APIs in the
code, and presents developers with code examples that use the same APIs.
For better readability, we rank those files higher where crypto API usages are
close to each other in a file and are in the same user-defined method. We
use standard deviation to compute how close API usages are in a file. As
each API could be misused in a few ways, CryptoExplorer does not return
hundreds of examples to users with several identical key messages. In case
users are interested to study more APIs examples, they can navigate more
examples.

For instance, in Figure 29, a user has entered a piece of code that aims
to conduct file encryption. CryptoExplorer recognizes the Cipher and Mac

cryptographic APIs in the code (1). Once the user hits the “Search” button,
CryptoExplorer returns code examples that simultaneously use the same APIs
listed in the search code (2). In this example, CryptoExplorer could not find
any secure example where both APIs were used securely, and it suggested
an example where the APIs were used in both secure and buggy ways. The
misused API is highlighted by a red linear gradient color and the secure API
usage is highlighted by a green linear gradient color. In the case of navigating
large files, there are two buttons that assist users to jump to the highlighted
lines quickly. Under each returned example, users can read related information
regarding the example’s misuses (3). Finally, users can navigate to more
examples (4).

111

6. Root causes and Remedies

Figure 29: Exploring code examples based on a given code snippet

6.2 Results and discussions

In the following, we present and discuss our results regarding the two facets
of this chapter.

6.2.1 Experts’ opinions

We received 26 detailed responses from the top 1% of crypto responders on
Stack Overflow. We received responses from 10% of the contacted users. We
believe that the number of participants is not an essential factor as our acces-
sible target audience is difficult to reach. In particular, we acknowledge the
importance of how detailed the responses are and the quality of the responses
which we capitalize to draw impactful conclusions.

Nearly half of the developers (42%) reported their educational level as ei-
ther Master or PhD. With respect to developer knowledge in cryptography,
46% reported they are very knowledgable, and the rest responded knowledge-
able. The participants reported their level of knowledge neither as somewhat
knowledgable nor not knowledgable. Approximately all of the participants (i.e.,
23) responded to what crypto libraries they primarily used (See Figure 30).

112

6.2. Results and discussions

0

1

2

3

4

5

6

7

8

JC
A

Ope
nS

SL

Bou
nc

yC
as

tle

lib
so

diu
m

.N
ET R

un
tim

e
NaC

l

Bea
rS

SL

Wind
ow

s C
NG

Auth
0

ha
sh

lib
rus

tls

Mbe
dT

LS

Figure 30: Crypto libraries with which the participants mainly work

JCA and OpenSSL each were selected eight times, and Bouncy Castle along-
side libsodium are in second place of participants’ choices.

Crypto Hurdles

In this section of the survey, we asked participants based on their experience
what areas of cryptography are considered to be highly problematic for inex-
perienced developers and received 26 responses. We extracted 21 key areas
from the participants’ responses and described them in the following:

(1) differences between password hashing and encryption, (2) use cases for symmet-

ric/asymmetric encryption, (3) what salt, IV, and nonce are (4) pros and cons of various

modes of encryption (ECB or GCM), (5) confusion in picking an algorithm for a scenario,

(6) safely signing data or what data should be signed to prevent replay attacks, (7) why

not use random number generators, (8) crypto random numbers vs random numbers of

other forms, (9) encryption vs integrity, (10) management of private keys (storage, reusing

keys, and transmission), (11) what are side-channel attacks,(12) the likelihood of attack

vectors, (13) basics of PKI, (14) implementing authentication systems, (15) elliptic curve

concept, (16) giving up when working with low-level APIs, (17) certificate authority and

X.509, (18) what are PKCS standards, (19) how to share a private key across devices,

(20) how to validate certificate chains, (21) hash-based message authentication code (or

HMAC).

We also asked them about the advantages and disadvantages of their li-
brary of choice and received 15 responses. We aggregated their comments

113

6. Root causes and Remedies

concerning specific crypto libraries including advantages and drawbacks as
follows:

JCA: It is comprehensive but the API is clunky. Requires a good notion of several

cryptographic concepts and is not friendly for novice developers. Bouncy Castle: Seems

to be widely accepted as a safe implementation, problem with finding reliable examples,

it has grown too large and documentation is not helpful. Libsodium: Set a new bar

of modern algorithms combined with ease of use, which hides the complexity from the

developer. Hard to use cross platform. BearSSL: very low in resource consumption

(RAM) and fully constant-time. .NET runtime: Not sure if the crypto algorithms are

NIST approved. Does not present a comprehensive list of algorithms, but the existing

ones are easy to use. OpenSSL: No security against accidental misuse and presents

opportunities to make mistakes. The library tends to be difficult-to-configure options

and APIs. However, it is rich in features and it is open source and enables others to

profoundly analyze the library. Windows CNG: it is closed source, not always correctly

documented.

Discussion and related work: The participants pointed out many tech-
nical issues (i.e., 21 items) in cryptography which are regarded as complicated
areas for inexperienced developers. In chapter 5, we conducted a large-scale
study on crypto-related questions on Stack Overflow and figured out that there
are three main themes in the questions [77], which can be mapped to the 21
problematic areas reported by the participants of this study. For instance,
they found digital certificates is to be one of the three topics in which devel-
opers mainly ask questions about areas such as X.509, validating certificate
chains, signing and verifying, generating self-signed certificates, and certificate
authority. In the second topic, they found developers struggle with different
encryption modes (e.g., CBC and ECB) and key sizes (e.g., 128, 192, and
256-bit), and padding options, which are similar to what crypto experts sug-
gested from experience. Lastly, the third found topic in the developer question
implies that developers are uncertain which hashing algorithms (e.g., MD5,
SHA-1) can furnish a higher level of reliability, the relevance between pass-
word length and the resulting hash, to what degree salt can maximize the
security of a hash, and the differences between key stretching algorithms, e.g.,
PBKDF2, bcrypt, and scrypt.

Developers oftentimes are not informed of the undesirable repercussions
and the catastrophic harm of weak random number generators as it makes
adversaries able to predict future outputs of a cryptosystem [156]. Notwith-
standing the significance of deterministic random bit generators (DRBGs),
they may not have received adequate scrutiny, leading to several disastrous
mistakes in software systems, e.g., weakening the DRBG’s seeding process in
Debian DRBG 3, producing weak RSA keys by improper seed generators [20]
[80], and enabling the theft of $5 700 bitcoin due to a bug in entropy use in
the Android DRBG.4

3https://www.hdm.io/tools/debian-openssl/
4https://tinyurl.com/mr45kcvn

114

https://www.hdm.io/tools/debian-openssl/
https://tinyurl.com/mr45kcvn

6.2. Results and discussions

With respect to security concern, we also reported in subsection 5.1.3 that
all the participants in the survey are concerned about the potential attack
vectors and security, whereas the participants rarely employ security tools in
development. Similarly, recent studies exhibited that user data can be easily
susceptible to Man in the Middle attacks provided that developers inadver-
tently employ trust managers in Android that accept all certificates, trust
all hostnames, and ignore SSL errors [117]. This poses security hazards on
authentication systems and eliminates the burden of certificate validation.

Authentication is the first line of defense to every software. In microser-
vices, JSON Web Token (JWT) plays an important role in token-based user-
to-service authentication where each service relies on tokens in a secure and
decentralized manner [155]. Nonetheless, the JWT tokens are prone to some
attacks, such as failing to verify the signature, KID parameter injection and
allowing the None algorithm.5 The “Public-Key Cryptography Standards,” or
“PKCS” standards consist of a number of components, called PKCS #1, #3,
and #5-15. PKCS is defined for both binary and ASCII data types, describing
the syntax for messages in an abstract manner. For instance, PKCS #8 is a
private-key information syntax standard., defining a method to store private
key information [148]. However, there exist some security caveats for PKCS
#11 and PKCS #1 1.5 [27] [84].

Initialization vectors (IV) have been seen as a problematic part in cryp-
tography for developers on Stack Overflow. Developers should be aware of IV
attacks as a security risk of the CBC encryption mode in block ciphers that
can be applied also in IPsec [105]. In such attacks, an unauthenticated IV in
CBC encryption is used so that the adversary can control the first block of the
decrypted plaintext. IV attacks also exposed the security of WEP protocol in
wireless networks [139].

Root Causes

The participants also mentioned 15 factors in three major categories that
are regarded as the root causes of developer difficulty in cryptography. The
influential causes are as follows:

5https://www.netsparker.com/blog/web-security/json-web-token-jwt-attacks-vulnerabilities/

The None algorithm specifies that the token is not signed

115

https://www.netsparker.com/blog/web-security/json-web-token-jwt-attacks-vulnerabilities/

6. Root causes and Remedies

Human-related: Lack of knowledge or interest about what happens under the hood,

a few people are responsible for operations security in small or mid-range companies,

economical/availability hinders hiring experienced developers, excuses for using deprecated

algorithms (e.g., MD5), lack of knowledge in mathematics (e.g., finite fields) and statistics,

inadequate attention toward security testing in software development, developers have

the “functional” mindset, while security can be achieved only with the “hostile” mindset.

Learning resources: Lack of training in companies, incorrect and outdated tutorials, lack

of comprehensive, understandable documentation for developers from any levels, no lesson

dedicated to crypto in major bachelor or master programs. Crypto APIs: Outdated

algorithms in libraries and examples, too many options in APIs, lack of misuse-resistance

APIs, the complex sequences of API calls needed to get to the results, accepting weak key

lengths.

Discussion and Related Literature: The knowledge of developers
varies in terms of security and therefore, companies attempt to hire security
consultants to fill the knowledge gap. However, hiring such experts can be ex-
pensive and may not be feasible for some new or resource limited businesses.
In a survey, out of 97 participants, only 38% reported the existence of a secu-
rity consultant at their workplace [76]. Another issue is sometimes developers
use deprecated algorithms, e.g., MD5, due to various reasons, such as project
limitation, irrelevancy to security context, abandonment of the project, and
security through obscurity [72].

Developers often struggle to find practical examples on documentation and
therefore, they refer to online forums to resolve their crypto issues. Moreover,
the level of explanation in documentations may not match the level of devel-
opers. Acar et al. pointed out that official API documentation commonly
lacks security-related hints, crypto libraries should offer a simple, convenient
interface and accessible documentation with secure, easy-to-use code examples
[1].

As cryptography is a core component of many software systems, having a
dedicated course in bachelor or master programs can benefit students in their
future careers. However, the cryptography course must be carefully adapted
to the target audience since they can be from computer science, mathematics,
computer engineering, and information security fields [6]. In a study, a re-
searcher focused on design thinking (DT) activities for teaching cryptography
to students [9]. He devised a cryptography curriculum for a semester and the
pilot study with students showed a high level of student understanding and
improvement in solving complex cryptographic problems. Hamdani et al. ad-
dressed the issue of creating a stand-alone cryptography course independent
of other subjects, such as discrete mathematics, statistics, number theory,
and modern algebra[7]. They proposed two detailed curricula for the under-
graduate and graduate students. Adamovi et al. eased the learning curve of
cryptography by introducing a different, interactive approach. open-source
tool, called CrypTool [4].

There is corroborative evidence indicating that large numbers of options

116

6.2. Results and discussions

while working with crypto APIs coupled with poor documentation oftentimes
caused the developers to fail [76] [1]. Writing tests can improve the security
of the software and reduce the risk of expensive embarrassments later on.
However, writing tests is regarded as an arduous task for developers. Ghafari
et al. realized that testing is not genuinely embraced by developers and there
is a tendency to abandon writing tests when high effort is necessary [58].
Besides that, other factors such as ongoing changes in requirements and the
urgent need to add new features can also exacerbate the problem of writing
tests.

Ultimately, in order for developers to think like hackers, it is worthy to
discover how blackhat hackers proceed with the exploration and exploitation
phases [48] so that developers can reasonably determine the most effective risk
assessment and management strategies. Most professional security experts
acquire prominent security certifications, such as OSCP/OSEP 6, or CISSP 7,
and practice other methods, such as thinking outside of the box, continuous
study, attending conferences, e.g., Black Hat, OWASP, and SANS [33].

Suggestions

The participants were asked to suggest any resources or tools to help inexpe-
rienced developers. They mentioned 15 suggestions in three major categories
which are described as follows:

Crypto APIs: Use good libraries (e.g., Tink and libsodium), don’t roll your own crypto

(e.g., use TLS), use a library that has the best support, use static analysis tools, to build

a custom crypto protocol, use the Noise framework, understanding SHA and key based

SSH-login then RSA, understanding OpenSSL helps learning about different crypto con-

cepts. Learning resources: For beginners “Network Security” chapter of Andrew Tanen-

baum’s Computer Networks book, https://doc.libsodium.org/ https://crackstation.net/

https://hashcat.net/hashcat/, handbook of Applied Cryptography by Menzenes, secu-

rity.stackexchange.com and Wikipedia, Cryptography courses on MOOC (e.g., Coursera),

OWASP - https://cheatsheetseries.owasp.org/, https://cryptobook.nakov.com/ and secu-

rity blogs of companies e.g., microsoft IBM, read Singh’s The Code Book. Human-

related: Hiring an expert to review the code.

We also asked the participants what tools and resources they used to obtain
their crypto knowledge/experience. We extracted the following means from
21 responses:

6https://www.offensive-security.com/courses-and-certifications/
7https://www.isc2.org/Certifications

117

https://www.offensive-security.com/courses-and-certifications/
https://www.isc2.org/Certifications

6. Root causes and Remedies

Books: Cryptography Engineering by Schneier Ferguson and Kohno, Serious Cryptogra-

phy by J.P. Aumasson, Intro to Modern Cryptography by Katz & Lindell, An Introduc-

tion to Mathematical Cryptography by Hoffstein - Piper - & Silverman, Simon Singh’s

“the code book”, Schneier’s Secrets and Lies, Sterling’s Hacker Crackdown, A Book of

Abstract Algebra, Practical Cryptography and Applied Cryptography by Bruce Scheier,

Finite Fields for Computer Scientists and Engineers. Learning resources: Coursera

class by Dan Boneh, Thawte training, training at companies, https://www.schneier.com,

crypto security blogs/forums (crypto stackexchange), RFCs, IACR ePrint papers, official

documentation, tutorials on youtube (Computerphile), college education, Ph.D. studies.

Practical experience: Implementations of crypto algorithms in the C# runtime, hands-

on experience with Java crypto APIs

We asked the participants what improvements they recommend to increase
the usability of crypto libraries. We received 23 responses and extracted the
following key points from participants’ suggestions:

Crypto APIs: (1) Generate random nonces internally! One less argument to deal with,

(2) implement APIs with friendly and fewer arguments, (3) like libsodium, few functions,

with good defaults, only one algorithm per use case, clear documentation, stable/similar

API across languages and platforms, (4) give developers a way to verify it’s done right,

(5) the library should handle the salt, (6) Add a middle level library that build totally

upon the base crypto library but simplify usage for the most common case uses. A middle

level library can implement the most common use cases setting of some of the arguments

in a basic but secure way, (7) not provide endlessly tunable functions with which to shoot

oneself in the foot, (8) In Java the APIs force the users to consider buffered values. Better

integration with java.io would help. In addition, the implementation factory pattern is

15 years out of date in Java, (9) make the APIs as feature complete as possible, (10)

documentation explaining how to use one API is useless, it must show how the API can be

used in a context, (11) point out to the most common programming mistakes in this area,

(12) more friendly fun video explaining the concepts, (13) documentation should embody

a detailed list of vulnerabilities known to date, (14) support all the common needs such as

cert formats, signing, JWT, etc.

Discussion and Related Literature: It is highly recommended that
security through obscurity can bring about negative consequences and avoid-
ance of such methods is the best choice. Moreover, engineers without thor-
ough knowledge in cryptography oftentimes attempt to build crypto protocols,
which is a very challenging problem. However, such protocols must be evalu-
ated from various facets such as mutual and optional authentication, identity
hiding, forward secrecy, and other advanced features by tools and frameworks
e.g., Noise, ProVerif, and AVISPA [121] [23] [10]. Similarly, there exists a num-
ber of static analysis tools that are specifically designed for checking crypto
APIs, e.g., CHIRON, CogniCrypt [128] [92].

There is a considerable number of security books available on the internet.
However, grasping all the necessary content from books can be cumbersome
for developers, and therefore they prefer other types of information sources,
which can be more engaging and rapidly accessible[76]. For instance, Massive
Open Online Courses (MOOCs) are free online courses available for anyone

118

6.2. Results and discussions

around the world to study. There are two major MOOCs platforms: (1)
Coursera (offered by Stanford University) and (2) edX (offered by MITx)
that present a large number of computer science courses. In particular, there
are cryptography courses, e.g., “Cryptography 1” 8 and “Cryptography” 9,
available on the Coursera platform for interested students to learn [95]. There
exists a large number of online cybersecurity courses, including cryptography,
on other platforms as well, e.g., Udemy and Khan Academy [60]. 10

A prime factor in successful information security management is effective
compliance of security policies and suitable integration of people, processes,
and technologies. Security awareness training of employees is one of the mech-
anisms in which the effectiveness of integration can be enhanced. Emina et
al. conducted a security awareness program in a company with 2900 em-
ployees and subsequent auditing of how effective and successful the program
was [46]. The results had positive outcomes on the impact of human aware-
ness on the success of information security management programs. Siponen
et al. conducted a field survey to comprehend which factors assist employees’
compliance with security policies [135]. The results demonstrated that the vis-
ibility of information security policies has a considerable impact on employees’
adherence to the policies. Furthermore, employees comply with information
security policies if they are fully aware of how vulnerable their organization is
to security hazards and the severity of these threats. Kweon et al. attempted
to discover a relationship between cybersecurity training and the number of
incidents of organizations [96]. They realized the role of security training and
education has a positive association with reducing the number of incidents in
organizations from the quantitative aspect.

As discussed in the hurdles and root causes section, developers lack ade-
quate knowledge to determine what algorithms and additional options render
their cryptosystem insecure. To fully eradicate such unintentional mistakes,
an effective approach is to expose developers to a few sets of secure options
so that they are not inundated with various options in crypto APIs. In the
same vein, Kafader et al. developed a fluent API, called FluentCrypto, to
facilitate the secure and correct use of cryptography in Node.js [88]. Their
solution provides a task-based approach and hides the low-level complexities
from the developer in which the APIs become misuse-resistant. Google also
proposed a library called Tink in which the APIs are secure, ease of use is
considered, and the APIs are misuse resistant.11 Tink is currently available
for Java, Python, C++, and Go. Mindermann et al. conducted a controlled
experiment on two major crypto libraries in Rust with 28 student participants
[108]. They figured out that libraries vary in terms of misuse resistance and
usability and proposed a list of 15 suggestions including technical and non-

8https://www.coursera.org/learn/crypto
9https://www.coursera.org/learn/cryptography

10https://www.khanacademy.org/
11https://github.com/google/tink

119

https://www.coursera.org/learn/crypto
https://www.coursera.org/learn/cryptography
https://www.khanacademy.org/
https://github.com/google/tink

6. Root causes and Remedies

technical ways to address the issues. For instance, one of the suggestions is to
hide low-level APIs in a separate API layer called “hazardous materials” to
inform the developers about the risk of working with this type of API.

6.2.2 CryptoExplorer

We investigated the experience of users interacting with CryptoExplorer to
understand to which extent it supports developers to properly use crypto
APIs.

Experiments

We conducted semi-structured interviews with four participants who used this
platform. They willingly chose to participate without being paid and all had
an academic background in computer science (i.e., two bachelors, and two
Ph.D. students). The participants had at least 2 years of experience in Java
programming. They all used MessageDigest to produce hashes, and they
were familiar with cryptography concepts. However, it was not their daily job
to write cryptographic-related code in Java or any other languages.

We presented CryptoExplorer to the participants, and explained its fea-
tures. Then we asked them to accomplish the following two tasks using Cryp-
toExplorer, while they could consult official JCA documentation as well:

• Task1. Tell us of two security concerns that one should consider when
using the MessageDigest API to generate a hash.

• Task2. Find security issues in a given crypto code snippet that uses the
Cipher API to conduct file encryption, and explain how to resolve them.
This task first must be done by using any resources on the internet and
then with the help of CryptoExplorer.

We asked participants to think aloud while working on each task. In the
end, we interviewed them regarding the difficulties that they experienced.

To accomplish the first task, participants had to search the MessageDigest
API, and explore 20 similar code examples. Every participant succeeded to
complete this task, on average within seven minutes. They stated that they
had to read all of the returned examples as the API was used in a differ-
ent ways (e.g., initialized with different hashing algorithms). A participant
suggested adding an option to decide whether to exclude an example due to
false positives. Such examples may present different scenarios that are not
cryptography-related or tool’s mistake. When we asked whether they know
why a particular security issue exists, they stated that sometimes this was
not directly evident from a misuse itself. They had to read the information
below each example, and in a few cases, they stated the information is not
sufficiently expressive. For instance, one participant did not know why using

120

6.3. Threats to validity

SHA-1 is not secure. One participant said that providing external links for
each misuse could help demystify the reason behind each misuse. A partici-
pant explored more examples by clicking on the more examples button, and
we realized that he could not completely benefit from examples that had vari-
ables whose definitions were missing in the provided Java file. He suggested
excluding examples whose information spans more than one Java file and pro-
viding a button to report such examples. All in all, all participants figured
out what hashing algorithms, e.g., MD5 or SHA1, can be problematic or the
importance of calling the Digest and Update methods in MessageDigest.

To accomplish the second task, participants first used the internet for 20
minutes to find out the misuses in the code snippet. Only one participant
could realize where the problem lies. Then, they used CryptoExplorer and
completed the task on average in eight minutes. They all had to go through
six similar examples to learn the correct and wrong way of using the API.
They found that mainly because the algorithm/mode/padding string in the
getInstance method of the Cipher API accepts several algorithms, mode,
and padding modes. Participants stated that the buttons for jumping to
affected lines help immensely as sometimes files contain hundreds of lines of
codes. They also suggested that a search feature for each example would ease
the problem of finding variables. We also discovered that different types of
misuses have different levels of difficulty for users to understand. For instance,
the incomplete operation error type required developers to carefully read a
misuse example, while a constraint error was often clear to participants only
after looking at a misuse example.

Finally, we asked participants about their experience with CryptoExplorer,
and how much easier it is compared to searching for misuses on the internet.
They all agreed that CryptoExplorer facilitates learning how a crypto API
should be used correctly by providing real-world analyzed examples, high-
lighting the lines, and presenting information related to each example. They
also pointed out that it is extremely hard to find topics on Stack Overflow
or a particular website regarding misuses of a specific cryptographic API and
that they cannot trust the provided cryptographic code snippets.

6.3 Threats to validity

In the following, we describe the threats to validity of each of explored facets.

6.3.1 Experts’ opinions

We employed an existing work’s data in order to conduct our study [74].
They identified 804 developers who were among the top 1% responders in 64
crypto tags on Stack Overflow. The number of crypto-related tags may not
represent the entire crypto-related tags on Stack Overflow but certainly covers
a large number of crypto questions on Stack Overflow (>100,000 questions).

121

6. Root causes and Remedies

Moreover, there is a high likelihood that the missing crypto-related tags may
have been used together with one of the major crypto-related tags used in
this study. Interestingly, the unique number of top crypto responders was
not increased by adding more crypto-related tags, which can predict to some
degree that adding more crypto tags may not certainly result in having more
unique top crypto responders. We were only able to find 319 GitHub profiles
and did not perform any exhaustive search on Google to collect more users.
We only examined their personal blog or website in order to identify their
contact details. We could only contact 247 top crypto responders. Further
investigation on the internet may increase the number of identified contact
details of such users.

6.3.2 CryptoExplorer

One of the inevitable limitations of CryptoExplorer is its maintainability. At
the time of building the tool, we used the rental server to keep the pipeline
up and running. Nevertheless, due to financial constraints, the process of
adding more examples could have been interrupted. The other issue is the
reliability of crypto static analysis tools incorporated into the pipeline. In
case of producing false positives, this might add inaccurate examples to the
database. Hence, a manual inspection on a subset of examples is necessary.

6.4 Summary and conclusion

We conducted a study on the top 1% of crypto responders on Stack Overflow
to shed some light on how cryptography can be eased for developers. We
were interested in perceiving the experience of top crypto users in terms of
hurdles and improvements in cryptography. While the participants reported
various technical subjects that are problematic for developers, the mentioned
root causes for the problematic areas can be categorized into three major is-
sues, namely training and learning resources, crypto APIs, and human-related.
They pointed out suggestions such as the usage of libraries that are misuse-
resistant and the usage of various online sources, e.g., Coursera, where devel-
opers can find reliable and updated cryptography tutorials.

We have presented CryptoExplorer, a web platform to search for real-
world crypto API (mis)uses in open-source projects. It currently provides
hundreds of code examples mined from 2 324 Java projects on GitHub. A
preliminary usability study showed that CryptoExplorer helps developers to
find secure crypto examples, and learn how to properly use crypto APIs by
examining examples of correct uses and misuses. Moreover, as the dataset of
CryptoExplorer is growing, it can be useful for researchers to conduct other
related studies.

122

Chapter 7

Conclusions

Given the high significance of the right usage of cryptography, we explored
many facets of inadvertent misuse of crypto APIs. There are temporary or lim-
ited solutions to this matter. Some studies introduced some educational tools
while others proposed some specialized static analysis tools for cryptography.
In essence, such academic tools, if available to use, lack long-term support,
maintenance, and promotion. Furthermore, they commonly target a limited
audience, e.g., Java developers, or technologies, e.g., JCA APIs, and extend-
ing such tools can be a daunting task as they commonly lack well-written
documentation.

According to our observations, we learned that lack of detailed knowledge
and the high complexity of tools are inextricably intertwined. To discern
which one outweighs the other, we explored several directions of each factor.
To minimize the bias of our personal judgment, we are not able to determine
which one is more influential, despite the fact that each factor alone can be
very impactful. Speaking of the developer perspective, developers are highly
concerned with security; however, they commonly do not adopt the security
standards in their development cycle. This issue has been observed both in
open-source as well as industrial projects. It might be due to the fact that
they have not had any formal, technical, and customized education in this
regard. Such technical training, unlike general security training, can brighten
and broaden a developer’s viewpoint toward security, specifically cryptogra-
phy. More importantly, cryptography itself contains many topics and cannot
be delivered in one security training session. It is troubling that a large per-
centage of computer science graduates do not pass a dedicated course on cryp-
tography, not to mention secure development. One more possible factor could
be the importance of security with regard to project-level and company-level
constraints. Even though developers’ companies are highly concerned with
security, such companies do not utilize security consultants or security de-
velopers. In our investigations, we did not notice a remarkable difference
between having more experience and being fresh to programming. This could

123

7. Conclusions

be interpreted as cryptography has not been significantly noticeable for such
developers over years of working with programming languages. However, there
is a group of developers in our observations who have a distinct knowledge of
cryptography. Contacting developers on GitHub, we understood that there
are some contexts where specific crypto had to be used, some misuses were
rooted in the used third-party library, or the repository had been intended to
be archived. Experts, in this field, assisted a large number of developers on
Stack Overflow. The interesting part is that such expert users use the same
programming languages and crypto concepts both on Stack Overflow discus-
sions and GitHub, showing they participate in the discussions where they have
experience.

As for crypto APIs, complicated and unknown parameters seem to be the
black hole for developers. Therefore, they choose a parameter based on either
chance or other sources, which are insecure or outdated. There are latent
complexities using OpenSSL, crypto APIs from various libraries, more than
a crypto library in a project, different hashes and passwords, and the secure
way to deal with cryptographic keys with relation to generating and storing
such keys.

Future investigations are necessary for various directions to clarify the
reasons behind misusing crypto APIs. For instance, future research on how
computer science students in different countries perceive security at univer-
sity might provide corroborative evidence why such insufficient knowledge still
prevails. We call for not only producing more entertaining video tutorials that
take developers of various levels into account but also promoting free educa-
tional resources for those who are not from a computer science background.
Furthermore, the analysis of project- and company-level constraints with re-
spect to the level of security could also assist to achieve a better, fairly com-
prehensive conclusion. It is also interesting to observe how developers from
various crypto/security knowledge groups can successfully complete crypto-
graphic tasks in a lab environment, and subsequently, compare their level of
security concern, educational background, years of experience, and any other
potential impactful factors. We believe that there should be a principle for
designing crypto libraries mandating the usage of secure options in order to
enable developers to update such libraries’ rules from a reliable source to ap-
ply the latest security updates. This effectively bridges the gap of inadequate
knowledge of developers and inadvertent misuse of crypto APIs.

124

Bibliography

[1] Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel, Doowon
Kim, Michelle L Mazurek, and Christian Stransky. Comparing the us-
ability of cryptographic APIs. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 154–171. IEEE, 2017.

[2] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L
Mazurek, and Christian Stransky. You get where you’re looking for:
The impact of information sources on code security. In 2016 IEEE
Symposium on Security and Privacy (SP), pages 289–305. IEEE, 2016.

[3] Yasemin Acar, Christian Stransky, Dominik Wermke, Michelle L
Mazurek, and Sascha Fahl. Security developer studies with GitHub
users: Exploring a convenience sample. In Thirteenth Symposium on
Usable Privacy and Security ({SOUPS} 2017), pages 81–95, 2017.

[4] Saša Adamović, Irina Branović, Dejan Živković, Violeta Tomašević, and
Milan Milosavljević. Teaching interactive cryptography: the case for
CrypTool. In IEEE Conference, ICEST, 2011.

[5] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick
Gaudry, Matthew Green, J Alex Halderman, Nadia Heninger, Drew
Springall, Emmanuel Thomé, Luke Valenta, et al. Imperfect forward
secrecy: How Diffie-Hellman fails in practice. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security,
pages 5–17, 2015.

[6] Wasim A Al-Hamdani. Missing factors in teaching cryptography algo-
rithms for information security tracks. In 2009 Information Security
Curriculum Development Conference, pages 15–20, 2009.

[7] Wasim A Al-Hamdani and Ivory J Griskell. A proposed curriculum of
cryptography courses. In Proceedings of the 2nd annual conference on
Information security curriculum development, pages 4–11, 2005.

125

Bibliography

[8] Arash Ale Ebrahim, Mohammadreza Hazhirpasand, Oscar Nierstrasz,
and Mohammad Ghafari. FuzzingDriver: the missing dictionary to in-
crease code coverage in fuzzers. In IEEE 29th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2022.

[9] Wasim A Alhamdani. Teaching cryptography using design thinking ap-
proach. Journal of Applied Security Research, 11(1):78–89, 2016.

[10] Alessandro Armando, David Basin, Yohan Boichut, Yannick Cheva-
lier, Luca Compagna, Jorge Cuéllar, P Hankes Drielsma, Pierre-Cyrille
Héam, Olga Kouchnarenko, Jacopo Mantovani, et al. The AVISPA tool
for the automated validation of internet security protocols and applica-
tions. In International conference on computer aided verification, pages
281–285. Springer, 2005.

[11] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger,
Maik Dankel, Jens Steube, Luke Valenta, David Adrian, J Alex Halder-
man, Viktor Dukhovni, et al. {DROWN}: Breaking {TLS} using sslv2.
In 25th {USENIX} Security Symposium ({USENIX} Security 16), pages
689–706, 2016.

[12] Nuh Aydin. Enhancing undergraduate mathematics curriculum via cod-
ing theory and cryptography. Primus, 19(3):296–309, 2009.

[13] Nathaniel Ayewah and William Pugh. A report on a survey and study
of static analysis users. In Proceedings of the 2008 workshop on Defects
in large software systems, pages 1–5. ACM, 2008.

[14] Nathaniel Ayewah, William Pugh, David Hovemeyer, J David Morgen-
thaler, and John Penix. Using static analysis to find bugs. IEEE soft-
ware, 25(5):22–29, 2008.

[15] Ali Sajedi Badashian, Afsaneh Esteki, Ameneh Gholipour, Abram Hin-
dle, and Eleni Stroulia. Involvement, contribution and influence in
GitHub and Stack Overflow. In CASCON, volume 14, pages 19–33,
2014.

[16] Biju Bajracharya and David Hua. Importance of integrating cryptog-
raphy, steganography, and digital watermarking for undergraduate cur-
riculum. CTE Journal, 5(2), 2017.

[17] Abdul Ali Bangash, Hareem Sahar, Shaiful Chowdhury, Alexan-
der William Wong, Abram Hindle, and Karim Ali. What do developers
know about machine learning: a study of ML discussions on StackOver-
flow. In 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR), pages 260–264. IEEE, 2019.

126

Bibliography

[18] Bemad Batinic and Michael Bosnjak. 11 fragebogenuntersuchungen im
internet. Internet für Psychologen, page 287, 2000.

[19] Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A con-
crete security treatment of symmetric encryption. In Proceedings 38th
Annual Symposium on Foundations of Computer Science, pages 394–
403. IEEE, 1997.

[20] Daniel J Bernstein, Yun-An Chang, Chen-Mou Cheng, Li-Ping Chou,
Nadia Heninger, Tanja Lange, and Nicko Van Someren. Factoring RSA
keys from certified smart cards: Coppersmith in the wild. In Inter-
national Conference on the Theory and Application of Cryptology and
Information Security, pages 341–360. Springer, 2013.

[21] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-
Lavaud, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-
Yves Strub, and Jean Karim Zinzindohoue. A messy state of the union:
Taming the composite state machines of TLS. In 2015 IEEE Symposium
on Security and Privacy, pages 535–552. IEEE, 2015.

[22] Karthikeyan Bhargavan and Gaëtan Leurent. On the practical (in-)
security of 64-bit block ciphers: Collision attacks on HTTP over TLS
and OpenVPN. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 456–467, 2016.

[23] Bruno Blanchet, Ben Smyth, Vincent Cheval, and Marc Sylvestre.
ProVerif 2.00: automatic cryptographic protocol verifier, user manual
and tutorial. Version from, pages 05–16, 2018.

[24] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet
allocation. the Journal of machine Learning research, 3:993–1022, 2003.

[25] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols
based on the RSA encryption standard PKCS# 1. In Annual Inter-
national Cryptology Conference, pages 1–12. Springer, 1998.

[26] Mohammad Ubaidullah Bokhari and Qahtan Makki Shallal. A review
on symmetric key encryption techniques in cryptography. International
Journal of Computer Applications, 147(10), 2016.

[27] Matteo Bortolozzo, Matteo Centenaro, Riccardo Focardi, and Graham
Steel. Attacking and fixing PKCS# 11 security tokens. In Proceedings
of the 17th ACM conference on Computer and communications security,
pages 260–269, 2010.

[28] Mohamed Bouguessa, Benôıt Dumoulin, and Shengrui Wang. Identify-
ing authoritative actors in question-answering forums: the case of yahoo!

127

Bibliography

answers. In Proceedings of the 14th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 866–874, 2008.

[29] Alexandre Braga and Ricardo Dahab. Mining cryptography misuse in
online forums. In 2016 IEEE International Conference on Software
Quality, Reliability and Security Companion (QRS-C), pages 143–150.
IEEE, 2016.

[30] Virginia Braun and Victoria Clarke. Using thematic analysis in psychol-
ogy. Qualitative research in psychology, 3(2):77–101, 2006.

[31] Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, and Wilayat
Khan. Automatic and robust client-side protection for cookie-based
sessions. In International Symposium on Engineering Secure Software
and Systems, pages 161–178. Springer, 2014.

[32] Kelsey Cairns, Harry Halpin, and Graham Steel. Security analysis of the
W3C web cryptography API. In International Conference on Research
in Security Standardisation, pages 112–140. Springer, 2016.

[33] Tracey Caldwell. Ethical hackers: putting on the white hat. Network
Security, 2011(7):10–13, 2011.

[34] Jonathan Chang, Sean Gerrish, Chong Wang, Jordan L Boyd-Graber,
and David M Blei. Reading tea leaves: How humans interpret topic
models. In Advances in neural information processing systems, pages
288–296, 2009.

[35] Alexia Chatzikonstantinou, Christoforos Ntantogian, Georgios
Karopoulos, and Christos Xenakis. Evaluation of cryptography
usage in Android applications. In Proceedings of the 9th EAI Interna-
tional Conference on Bio-inspired Information and Communications
Technologies (formerly BIONETICS), pages 83–90, 2016.

[36] Mengsu Chen, Felix Fischer, Na Meng, Xiaoyin Wang, and Jens
Grossklags. How reliable is the crowdsourced knowledge of security im-
plementation? In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pages 536–547. IEEE, 2019.

[37] Ping Chen, Nick Nikiforakis, Christophe Huygens, and Lieven Desmet.
A dangerous mix: Large-scale analysis of mixed-content websites. In
Information Security, pages 354–363. Springer, 2015.

[38] Kefei Cheng, Meng Gao, and Ruijie Guo. Analysis and research on
HTTPS hijacking attacks. In 2010 Second International Conference on
Networks Security, Wireless Communications and Trusted Computing,
volume 2, pages 223–226. IEEE, 2010.

128

Bibliography

[39] Jacob Cohen. A coefficient of agreement for nominal scales. Educational
and psychological measurement, 20(1):37–46, 1960.

[40] Dan Michael A Cortez, Ariel M Sison, and Ruji P Medina. Crypto-
graphic randomness test of the modified hashing function of SHA256 to
address Length Extension Attack. In Proceedings of the 2020 8th In-
ternational Conference on Communications and Broadband Networking,
pages 24–28, 2020.

[41] Anupam Datta, Ante Derek, John C Mitchell, and Arnab Roy. Proto-
col composition logic (PCL). Electronic Notes in Theoretical Computer
Science, 172:311–358, 2007.

[42] Morris Dworkin. Recommendation for block cipher modes of operation.
methods and techniques. Technical report, National Inst of Standards
and Technology Gaithersburg MD Computer security Div, 2001.

[43] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher
Kruegel. An empirical study of cryptographic misuse in Android ap-
plications. In Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, CCS ’13, pages 73–84, New
York, NY, USA, 2013. ACM.

[44] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher
Kruegel. An empirical study of cryptographic misuse in android ap-
plications. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 73–84, 2013.

[45] Abeer EW Eldewahi, Tasneem MH Sharfi, Abdelhamid A Mansor,
Nashwa AF Mohamed, and Samah MH Alwahbani. SSL/TLS attacks:
Analysis and evaluation. In 2015 International Conference on Comput-
ing, Control, Networking, Electronics and Embedded Systems Engineer-
ing (ICCNEEE), pages 203–208. IEEE, 2015.

[46] Mete Eminağaoğlu, Erdem Uçar, and Şaban Eren. The positive out-
comes of information security awareness training in companies–a case
study. information security technical report, 14(4):223–229, 2009.

[47] Levent Erkök and John Matthews. Pragmatic equivalence and safety
checking in Cryptol. In Proceedings of the 3rd workshop on Programming
Languages meets Program Verification, pages 73–82, 2009.

[48] Jose Esteves, Elisabeth Ramalho, and Guillermo De Haro. To improve
cybersecurity, think like a hacker. MIT Sloan Management Review,
58(3):71, 2017.

129

Bibliography

[49] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner,
Bernd Freisleben, and Matthew Smith. Why Eve and Mallory love
Android: An analysis of android SSL (in) security. In Proceedings of
the 2012 ACM conference on Computer and communications security,
pages 50–61, 2012.

[50] Sascha Fahl, Marian Harbach, Henning Perl, Markus Koetter, and
Matthew Smith. Rethinking SSL development in an appified world.
In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 49–60, 2013.

[51] Dávid János Fehér and Barnabás Sandor. Effects of the WPA2 KRACK
attack in real environment. In 2018 IEEE 16th international symposium
on intelligent systems and informatics (SISY), pages 000239–000242.
IEEE, 2018.

[52] Ian Fette and Alexey Melnikov. The websocket protocol, 2011.

[53] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky,
Yasemin Acar, Michael Backes, and Sascha Fahl. Stack overflow con-
sidered harmful? the impact of copy&paste on Android application se-
curity. In 2017 IEEE Symposium on Security and Privacy (SP), pages
121–136. IEEE, 2017.

[54] Felix Fischer, Huang Xiao, Ching-Yu Kao, Yannick Stachelscheid, Ben-
jamin Johnson, Danial Razar, Paul Fawkesley, Nat Buckley, Konstantin
Böttinger, Paul Muntean, et al. Stack overflow considered helpful!
deep learning security nudges towards stronger cryptography. In 28th
{USENIX} Security Symposium ({USENIX} Security 19), pages 339–
356, 2019.

[55] S Galbraith. Mathematics of public key cryptography, version 0.9. 2011.

[56] Jun Gao, Pingfan Kong, Li Li, Tegawendé F Bissyandé, and Jacques
Klein. Negative results on mining crypto-API usage rules in Android
apps. In Proceedings of the 16th International Conference on Mining
Software Repositories, pages 388–398. IEEE Press, 2019.

[57] Bill Gardner and Valerie Thomas. Building an information security
awareness program: Defending against social engineering and technical
threats. Elsevier, 2014.

[58] Mohammad Ghafari, Markus Eggiman, and Oscar Nierstrasz. Testa-
bility first! In 2019 ACM/IEEE International Symposium on Empiri-
cal Software Engineering and Measurement (ESEM), pages 1–6. IEEE,
2019.

130

Bibliography

[59] James Giles and Bruce Hajek. An information-theoretic and game-
theoretic study of timing channels. IEEE Transactions on information
Theory, 48(9):2455–2477, 2002.

[60] Lorena González-Manzano and Jose M de Fuentes. Design recommen-
dations for online cybersecurity courses. Computers & Security, 80:238–
256, 2019.

[61] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke, Christian Stran-
sky, Sebastian Möller, Yasemin Acar, and Sascha Fahl. Developers de-
serve security warnings, too: On the effect of integrated security advice
on cryptographic {API} misuse. In Fourteenth Symposium on Usable
Privacy and Security ({SOUPS} 2018), pages 265–281, 2018.

[62] Matthew Green and Matthew Smith. Developers are not the enemy!:
The need for usable security APIs. IEEE Security & Privacy, 14(5):40–
46, 2016.

[63] Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce.
Echidna: effective, usable, and fast fuzzing for smart contracts. In Pro-
ceedings of the 29th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, pages 557–560, 2020.

[64] Thomas L Griffiths and Mark Steyvers. Finding scientific topics. Pro-
ceedings of the National academy of Sciences, 101(suppl 1):5228–5235,
2004.

[65] Zvi Gutterman and Dahlia Malkhi. Hold your sessions: An attack on
Java session-id generation. In Cryptographers’ Track at the RSA Con-
ference, pages 44–57. Springer, 2005.

[66] Phillip Hallam-Baker, Rob Stradling, and B Laurie. DNS certification
authority authorization (CAA) resource record. Internet Engineering
Task Force, 6844, 2013.

[67] Mohammadreza Hazhirpasand, Arash Ale Ebrahim, and Oscar Nier-
strasz. Stopping DNS rebinding attacks in the browser. In ICISSP,
pages 596–603, 2021.

[68] Mohammadreza Hazhirpasand and Mohammad Ghafari. One leak is
enough to expose them all. In International Symposium on Engineering
Secure Software and Systems, pages 61–76. Springer, 2018.

[69] Mohammadreza Hazhirpasand and Mohammad Ghafari. Cryptography
vulnerabilities on HackerOne. In IEEE International Conference on
Software Quality, Reliability and Security. IEEE, 2021.

131

Bibliography

[70] Mohammadreza Hazhirpasand, Mohammad Ghafari, Stefan Krüger,
Eric Bodden, and Oscar Nierstrasz. The impact of developer experience
in using Java cryptography. In 2019 ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement (ESEM),
pages 1–6. IEEE, 2019.

[71] Mohammadreza Hazhirpasand, Mohammad Ghafari, and Oscar Nier-
strasz. CryptoExplorer: An interactive web platform supporting se-
cure use of cryptography APIs. In 2020 IEEE 27th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
pages 632–636. IEEE, 2020.

[72] Mohammadreza Hazhirpasand, Mohammad Ghafari, and Oscar Nier-
strasz. Java cryptography uses in the wild. In Proceedings of the 14th
ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement (ESEM), pages 1–6, 2020.

[73] Mohammadreza Hazhirpasand, Mohammad Ghafari, and Oscar Nier-
strasz. Tricking Johnny into granting web permissions. In Proceedings
of the Evaluation and Assessment in Software Engineering, pages 276–
281, 2020.

[74] Mohammadreza Hazhirpasand, Oscar Nierstrasz, and Mohammad Gha-
fari. Crypto experts advise what they adopt. In Proceedings of the 36th
IEEE/ACM International Conference on Automated Software Engineer-
ing Workshops, 2021.

[75] Mohammadreza Hazhirpasand, Oscar Nierstrasz, and Mohammad Gha-
fari. Dazed and confused: What’s wrong with crypto libraries? In 18th
Annual Conference on Privacy, Security and Trust (PST). IEEE, 2021.

[76] Mohammadreza Hazhirpasand, Oscar Nierstrasz, and Mohammad Gha-
fari. Worrisome patterns in developers: A survey in cryptography. In
Proceedings of the 36th IEEE/ACM International Conference on Auto-
mated Software Engineering Workshops, 2021.

[77] Mohammadreza Hazhirpasand, Oscar Nierstrasz, Mohammadhossein
Shabani, and Mohammad Ghafari. Hurdles for developers in cryptog-
raphy. In 37th International Conference on Software Maintenance and
Evolution (ICSME), 2021.

[78] Mohammadreza Hazhirpasand, Oscar Nierstrasz, Mohammadhossein
Shabani, and Mohammad Ghafari. Crypto heroes: Views and recom-
mendations. In Proceedings of the 37th ACM/SIGAPP Symposium on
Applied Computing, 2022.

132

Bibliography

[79] Juhani Heikka. A constructive approach to information systems security
training: An action research experience. AMCIS 2008 Proceedings, page
319, 2008.

[80] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J Alex Halder-
man. Mining your Ps and Qs: Detection of widespread weak keys in
network devices. In 21st {USENIX} Security Symposium ({USENIX}
Security 12), pages 205–220, 2012.

[81] Jeff Hodges, Collin Jackson, and Adam Barth. HTTP strict transport
security (hsts). URL: http://tools. ietf. org/html/draft-ietf-websec-strict-
transport-sec-04, 2012.

[82] Md Shohrab Hossain, Arnob Paul, Md Hasanul Islam, and Mohammed
Atiquzzaman. Survey of the protection mechanisms to the SSL-based
session hijacking attacks. Netw. Protoc. Algorithms, 10(1):83–108, 2018.

[83] Marieke Huisman, Pratik Worah, and Kim Sunesen. A temporal logic
characterisation of observational determinism. In 19th IEEE Computer
Security Foundations Workshop (CSFW’06), pages 13–pp. IEEE, 2006.

[84] Tibor Jager, Saqib A Kakvi, and Alexander May. On the security of
the PKCS# 1 v1. 5 signature scheme. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages
1195–1208, 2018.

[85] Sifat E Jahan, Mehjabin Rahman, Anindya Iqbal, and Tishna Sabrina.
An exploratory analysis of security on data transmission on relevant
software engineering discussion sites. In 2017 4th International Confer-
ence on Networking, Systems and Security (NSysS), pages 1–9. IEEE,
2017.

[86] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert
Bowdidge. Why don’t software developers use static analysis tools to
find bugs? In Proceedings of the 2013 International Conference on Soft-
ware Engineering, pages 672–681. IEEE Press, 2013.

[87] Antoine Joux. Authentication failures in nist version of gcm. NIST
Comment, page 3, 2006.

[88] Simon Kafader and Mohammad Ghafari. Fluentcrypto: Cryptography
in easy mode. arXiv preprint arXiv:2108.07211, 2021.

[89] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptogra-
phy. CRC press, 2020.

133

Bibliography

[90] Jinhan Kim, Sanghoon Lee, Seung-won Hwang, and Sunghun Kim. To-
wards an intelligent code search engine. In Twenty-Fourth AAAI Con-
ference on Artificial Intelligence, 2010.

[91] Erik Kouters, Bogdan Vasilescu, Alexander Serebrenik, and Mark GJ
Van Den Brand. Who’s who in gnome: Using LSA to merge software
repository identities. In 2012 28th IEEE International Conference on
Software Maintenance (ICSM), pages 592–595. IEEE, 2012.

[92] Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini,
Eric Bodden, Florian Göpfert, Felix Günther, Christian Weinert, Daniel
Demmler, et al. Cognicrypt: Supporting developers in using cryptogra-
phy. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 931–936. IEEE, 2017.

[93] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira
Mezini. Crysl: An extensible approach to validating the correct us-
age of cryptographic APIs. In 32nd European Conference on Object-
Oriented Programming, ECOOP 2018, July 16-21, 2018, Amsterdam,
The Netherlands, pages 10:1–10:27, 2018.

[94] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira
Mezini. Crysl: An extensible approach to validating the correct usage of
cryptographic APIs. IEEE Transactions on Software Engineering, 2019.

[95] Alptekin Küpçü. White paper on self study cryptography course.

[96] Eunkyung Kweon, Hansol Lee, Sangmi Chai, and Kyeongwon Yoo. The
utility of information security training and education on cybersecu-
rity incidents: an empirical evidence. Information Systems Frontiers,
23(2):361–373, 2021.

[97] David Lacey. Understanding and transforming organizational security
culture. Information Management & Computer Security, 2010.

[98] David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich. Why
does cryptographic software fail? a case study and open problems. In
Proceedings of 5th Asia-Pacific Workshop on Systems, pages 1–7, 2014.

[99] Sarah Lewis. Qualitative inquiry and research design: Choosing among
five approaches. Health promotion practice, 16(4):473–475, 2015.

[100] Yong Li, Yuanyuan Zhang, Juanru Li, and Dawu Gu. iCryptoTracer:
Dynamic analysis on misuse of cryptography functions in iOS applica-
tions. In Man Ho Au, Barbara Carminati, and C.-C. Jay Kuo, editors,
Network and System Security, pages 349–362, Cham, 2014. Springer In-
ternational Publishing.

134

Bibliography

[101] Helger Lipmaa, Phillip Rogaway, and David Wagner. Comments to nist
concerning aes modes of operations: Ctr-mode encryption. In National
Institute of Standards and Technologies. Citeseer, 2000.

[102] Yang Liu, Minghui Qiu, Swapna GOTTIPATI, Feida Zhu, Jing Jiang,
Huiping Sun, and Zhong Chen. Cqarank: Jointly model topics and
expertise in community question answering.(2013). research collection
school of information systems.

[103] Gang Luo. A review of automatic selection methods for machine learning
algorithms and hyper-parameter values. Network Modeling Analysis in
Health Informatics and Bioinformatics, 5(1):1–16, 2016.

[104] Philipp Mayring. Qualitative Inhaltsanalyse : Grundlagen und Tech-
niken. Beltz, Weinheim, 12. edition, 2015.

[105] Christopher B McCubbin, Ali Aydin Selçuk, and Deepinder Sidhu. Ini-
tialization vector attacks on the IPsec protocol suite. In Proceedings
IEEE 9th International Workshops on Enabling Technologies: Infras-
tructure for Collaborative Enterprises (WET ICE 2000), pages 171–175.
IEEE, 2000.

[106] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Hand-
book of applied cryptography. CRC press, 2018.

[107] Na Meng, Stefan Nagy, Danfeng Yao, Wenjie Zhuang, and Gus-
tavo Arango Argoty. Secure coding practices in Java: Challenges and
vulnerabilities. In Proceedings of the 40th International Conference on
Software Engineering, pages 372–383, 2018.

[108] Kai Mindermann, Philipp Keck, and Stefan Wagner. How usable are
Rust cryptography APIs? In 2018 IEEE International Conference on
Software Quality, Reliability and Security (QRS), pages 143–154. IEEE,
2018.

[109] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This POODLE
bites: exploiting the SSL 3.0 fallback. Security Advisory, 21:34–58, 2014.

[110] Ildar Muslukhov, Yazan Boshmaf, and Konstantin Beznosov. Source
attribution of cryptographic API misuse in Android applications. In
Proceedings of the 2018 on Asia Conference on Computer and Commu-
nications Security, pages 133–146, 2018.

[111] Muhammad Nadeem, Edward B Allen, and Byron J Williams. Com-
puter security training recommender for developers. In RecSys Posters,
2014.

135

Bibliography

[112] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. Jumping
through hoops: Why do Java developers struggle with cryptography
APIs? In Proceedings of the 38th International Conference on Software
Engineering, pages 935–946, 2016.

[113] Eric Neidhardt. Asymmetric cryptography for mobile devices. Service-
centric Networking, pages 1–12, 2011.

[114] Nick Nikiforakis, Yves Younan, and Wouter Joosen. Hproxy: Client-
side detection of SSL stripping attacks. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 200–218. Springer, 2010.

[115] Daniela Seabra Oliveira, Tian Lin, Muhammad Sajidur Rahman, Rad
Akefirad, Donovan Ellis, Eliany Perez, Rahul Bobhate, Lois A DeLong,
Justin Cappos, and Yuriy Brun. API blindspots: Why experienced
developers write vulnerable code. In Fourteenth Symposium on Usable
Privacy and Security SOUPS 2018), pages 315–328, 2018.

[116] Marten Oltrogge, Yasemin Acar, Sergej Dechand, Matthew Smith, and
Sascha Fahl. To pin or not to pin—helping app developers bullet
proof their TLS connections. In 24th {USENIX} Security Symposium
({USENIX} Security 15), pages 239–254, 2015.

[117] Marten Oltrogge, Nicolas Huaman, Sabrina Amft, Yasemin Acar,
Michael Backes, and Sascha Fahl. Why Eve and Mallory still love an-
droid: Revisiting TLS (in) security in android applications. In 30th
{USENIX} Security Symposium ({USENIX} Security 21), 2021.

[118] Haidar Osman, Mohammad Ghafari, and Oscar Nierstrasz. Hyperpa-
rameter optimization to improve bug prediction accuracy. In 2017 IEEE
Workshop on Machine Learning Techniques for Software Quality Eval-
uation (MaLTeSQuE), pages 33–38. IEEE, 2017.

[119] Priyadarshini Patil, Prashant Narayankar, DG Narayan, and S Md
Meena. A comprehensive evaluation of cryptographic algorithms: DES,
3DES, AES, RSA and Blowfish. Procedia Computer Science, 78:617–624,
2016.

[120] Nikhil Patnaik, Joseph Hallett, and Awais Rashid. Usability smells:
An analysis of developers’ struggle with crypto libraries. In Fifteenth
Symposium on Usable Privacy and Security ({SOUPS} 2019), pages
245–257, 2019.

[121] Trevor Perrin. The noise protocol framework. PowerPoint Presentation,
2018.

136

Bibliography

[122] Luca Piccolboni, Giuseppe Di Guglielmo, Luca P Carloni, and Simha
Sethumadhavan. Crylogger: Detecting crypto misuses dynamically. In
2021 IEEE Symposium on Security and Privacy (SP), pages 1972–1989.
IEEE, 2021.

[123] Andreas Poller, Laura Kocksch, Sven Türpe, Felix Anand Epp, and
Katharina Kinder-Kurlanda. Can security become a routine? A study
of organizational change in an agile software development group. In Pro-
ceedings of the 2017 ACM conference on computer supported cooperative
work and social computing, pages 2489–2503, 2017.

[124] Angelo Prado, Neal Harris, and Yoel Gluck. SSL, gone in 30 seconds.
Breach attack, 2013.

[125] Petri Puhakainen and Mikko Siponen. Improving employees’ compliance
through information systems security training: an action research study.
MIS quarterly, pages 757–778, 2010.

[126] Chaiyong Ragkhitwetsagul, Jens Krinke, Matheus Paixao, Giuseppe
Bianco, and Rocco Oliveto. Toxic code snippets on Stack Overflow.
IEEE Transactions on Software Engineering, 2019.

[127] Sazzadur Rahaman, Ya Xiao, Ke Tian, Fahad Shaon, Murat Kantar-
cioglu, and Danfeng Yao. CHIRON: deployment-quality detection of
Java cryptographic vulnerabilities. CoRR, abs/1806.06881, 2018.

[128] Sazzadur Rahaman, Ya Xiao, Ke Tian, Fahad Shaon, Murat Kantar-
cioglu, and Danfeng Yao. Chiron: Deployment-quality detection of Java
cryptographic vulnerabilities. arXiv preprint arXiv:1806.06881, 2018.

[129] Martin P Robillard. What makes APIs hard to learn? answers from
developers. IEEE software, 26(6):27–34, 2009.

[130] Martin P Robillard and Robert DeLine. A field study of API learning
obstacles. Empirical Software Engineering, 16(6):703–732, 2011.

[131] Christoffer Rosen and Emad Shihab. What are mobile developers asking
about? a large scale study using Stack Overflow. Empirical Software
Engineering, 21(3):1192–1223, 2016.

[132] Pratik Guha Sarkar and Shawn Fitzgerald. Attacks on SSL a comprehen-
sive study of beast, crime, time, breach, lucky 13 & RC4 biases. Inter-
net: https://www. isecpartners. com/media/106031/ssl attacks survey.
pdf [June, 2014], 2013.

[133] Bruce Schneier. Cryptographic design vulnerabilities. Computer,
31(9):29–33, 1998.

137

Bibliography

[134] Shao Shuai, Dong Guowei, Guo Tao, Yang Tianchang, and Shi Chenjie.
Modelling analysis and auto-detection of cryptographic misuse in An-
droid applications. In 2014 IEEE 12th International Conference on De-
pendable, Autonomic and Secure Computing, pages 75–80. IEEE, 2014.

[135] Mikko Siponen, M Adam Mahmood, and Seppo Pahnila. Technical
opinion are employees putting your company at risk by not following
information security policies? Communications of the ACM, 52(12):145–
147, 2009.

[136] Geoffrey Smith and Dennis Volpano. Secure information flow in
a multi-threaded imperative language. In Proceedings of the 25th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 355–364, 1998.

[137] Ian Sommerville. Software Engineering. Pearson, 9th edition, 2011.

[138] Juraj Somorovsky. Systematic fuzzing and testing of TLS libraries. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 1492–1504, 2016.

[139] Adam Stubblefield, John Ioannidis, Aviel D Rubin, et al. Using the
Fluhrer, Mantin, and Shamir attack to break WEP. In NDSS, 2002.

[140] Tyler W Thomas, Madiha Tabassum, Bill Chu, and Heather Lipford.
Security during application development: An application security expert
perspective. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, pages 1–12, 2018.

[141] Yijun Tian, Waii Ng, Jialiang Cao, and Suzanne McIntosh. Geek tal-
ents: Who are the top experts on GitHub and Stack Overflow? CMC-
COMPUTERS MATERIALS & CONTINUA, 61(2):465–479, 2019.

[142] Sri Lakshmi Vadlamani and Olga Baysal. Studying software developer
expertise and contributions in Stack Overflow and GitHub. In 2020
IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 312–323. IEEE, 2020.

[143] J Andrew Valentine. Enhancing the employee security awareness model.
Computer Fraud & Security, 2006(6):17–19, 2006.

[144] Dirk Van Der Linden, Emma Williams, Joseph Hallett, and Awais
Rashid. The impact of surface features on choice of (in) secure answers
by stackoverflow readers. IEEE Transactions on Software Engineering,
(01):1–1, 2020.

138

Bibliography

[145] Mathy Vanhoef and Frank Piessens. Release the kraken: new kracks in
the 802.11 standard. In Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages 299–314, 2018.

[146] Bogdan Vasilescu, Vladimir Filkov, and Alexander Serebrenik. Stack-
overflow and GitHub: Associations between software development and
crowdsourced knowledge. In 2013 International Conference on Social
Computing, pages 188–195. IEEE, 2013.

[147] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian
Proksch, Harald C Gall, and Andy Zaidman. How developers engage
with static analysis tools in different contexts. Empirical Software En-
gineering, 25(2):1419–1457, 2020.

[148] Yongge Wang. Public key cryptography standards: Pkcs. arXiv preprint
arXiv:1207.5446, 2012.

[149] Anna-Katharina Wickert, Lars Baumgärtner, Florian Breitfelder, and
Mira Mezini. Python crypto misuses in the wild. In Proceedings of
the 15th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), pages 1–6, 2021.

[150] Jim Witschey, Olga Zielinska, Allaire Welk, Emerson Murphy-Hill, Chris
Mayhorn, and Thomas Zimmermann. Quantifying developers’ adoption
of security tools. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pages 260–271. ACM, 2015.

[151] Shundan Xiao, Jim Witschey, and Emerson Murphy-Hill. Social influ-
ences on secure development tool adoption: why security tools spread.
In Proceedings of the 17th ACM conference on Computer supported co-
operative work & social computing, pages 1095–1106. ACM, 2014.

[152] Jiafei Yan, Hailong Sun, Xu Wang, Xudong Liu, and Xiaotao Song.
Profiling developer expertise across software communities with hetero-
geneous information network analysis. In Proceedings of the Tenth Asia-
Pacific Symposium on Internetware, pages 1–9, 2018.

[153] Xin-Li Yang, David Lo, Xin Xia, Zhi-Yuan Wan, and Jian-Ling Sun.
What security questions do developers ask? a large-scale study of
Stack Overflow posts. Journal of Computer Science and Technology,
31(5):910–924, 2016.

[154] Yuval Yarom, Daniel Genkin, and Nadia Heninger. Cachebleed: a tim-
ing attack on OpenSSL constant-time RSA. Journal of Cryptographic
Engineering, 7(2):99–112, 2017.

139

Bibliography

[155] Tetiana Yarygina and Anya Helene Bagge. Overcoming security chal-
lenges in microservice architectures. In 2018 IEEE Symposium on
Service-Oriented System Engineering (SOSE), pages 11–20. IEEE, 2018.

[156] Katherine Q Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer,
Adam Petcher, and Andrew W Appel. Verified correctness and security
of mbedtls hmac-drbg. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 2007–2020,
2017.

[157] Yanfang Ye, Shifu Hou, Lingwei Chen, Xin Li, Liang Zhao, Shouhuai
Xu, Jiabin Wang, and Qi Xiong. Icsd: An automatic system for insecure
code snippet detection in stack overflow over heterogeneous information
network. In Proceedings of the 34th Annual Computer Security Appli-
cations Conference, pages 542–552, 2018.

[158] Jerrold H Zar. Spearman rank correlation. Encyclopedia of Biostatistics,
7, 2005.

[159] Xunhui Zhang, Tao Wang, Gang Yin, Cheng Yang, Yue Yu, and
Huaimin Wang. Devrec: a developer recommendation system for open
source repositories. In International Conference on Software Reuse,
pages 3–11. Springer, 2017.

[160] Mingyi Zhao, Jens Grossklags, and Peng Liu. An empirical study of web
vulnerability discovery ecosystems. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pages
1105–1117, 2015.

[161] Weizhong Zhao, James J Chen, Roger Perkins, Zhichao Liu, Weigong
Ge, Yijun Ding, and Wen Zou. A heuristic approach to determine an
appropriate number of topics in topic modeling. In BMC bioinformatics,
volume 16, page S8. Springer, 2015.

140

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

	Contents
	List of Figures
	List of Tables
	Introduction
	Thesis Statement
	Contributions
	Outline

	State of the Art
	The importance of security
	Knowledge acquisition
	Crypto API misuse
	Tools
	Developer performance

	Cryptography in the wild
	Study design
	HackerOne
	Java projects

	Results and discussions
	HackerOne
	Java projects

	Threats to validity
	HackerOne
	Java projects

	Summary and conclusion

	Crypto hurdles - the API perspective
	Study design
	General crypto questions analysis
	Crypto libraries analysis
	Java symmetric APIs on Stack Overflow

	Results and discussions
	General crypto questions analysis
	Crypto libraries analysis
	Java symmetric APIs on Stack Overflow

	Threats to validity
	General crypto questions analysis
	Crypto libraries analysis
	Java symmetric APIs on Stack Overflow

	Summary and conclusion

	Crypto hurdles - the developer perspective
	Study design
	Developer performance
	Developer feedback
	Developer survey
	Experts' practices

	Results and discussions
	Developer performance
	Developer feedback
	Developer survey
	Experts' practices

	Threats to validity
	Developer performance
	Developer feedback
	Developer survey
	Experts' practices

	Summary and conclusion

	Root causes and Remedies
	Study design
	Experts' opinions
	CryptoExplorer

	Results and discussions
	Experts' opinions
	CryptoExplorer

	Threats to validity
	Experts' opinions
	CryptoExplorer

	Summary and conclusion

	Conclusions
	Bibliography

