
Forms, Agents and Channels
Defining Composition Abstraction with Style

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Franz Achermann

von Buochs, NW

Leiter der Arbeit: Prof. Dr. O. Nierstrasz

Institut für Informatik und angewandte Mathematik

Forms, Agents and Channels
Defining Composition Abstraction with Style

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Franz Achermann

von Buochs, NW

Leiter der Arbeit: Prof. Dr. O. Nierstrasz
Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, 29. Januar 2002 Der Dekan:

Prof. Dr. P. Bochsler

Abstract

Object-oriented technology and design is not the final answer to the recurrent problem of
making systems, on one hand, more open and flexible and, on the other hand, more robust,
safe, and fast. While object-oriented languages have a lot of success in implementing com-
ponents, they have rather limited support for expressing composition abstractions. As such,
the component-based software principle is only partially supported by the object-oriented
approach.

Component-based software development breaks down an application into stable parts,
i.e., the components, and high-level abstractions for composing the components. Flexibility
is provided by the possibility to recompose. How can we design a composition language to
support this metaphor? What mechanisms are needed to encapsulate components, to make
their contextual assumptions explicit, and to define composition abstractions in a compact
way?

We argue that we should seek the minimal kernel of mechanisms that allows us to define
composition abstractions, instead of adding additional language constructs to the object-
oriented paradigm. This is necessary in order to reason about these abstractions and derive
properties of the composed application. In this thesis we propose Forms, Agents and Chan-
nels as this minimal set of abstractions. Forms are extensible records unified with services.
They are primitive objects, act as explicit namespaces, and encapsulate arguments to invoke
services. Agents are autonomous entities that exchange forms along channels. We show that
this simple model is expressive enough to define high-level composition abstractions while
being small enough to be mathematically tractable.

We present the formal model of forms, agents and channels in terms of a composition cal-
culus. We encode the composition calculus into the asynchronous π-calculus and show the
soundness of this encoding. We define the composition language Piccola on top of the com-
position calculus by adding some syntactic sugar and by defining a bridge to access external
components. The usefulness of Piccola is demonstrated by defining composition abstrac-
tions and reasoning about them at the level of the language. We present several kinds of
composition abstractions: wrappers to adapt components, connectors to implement compo-
sition styles, and coordination abstractions that cross-cut the functional decomposition of a
system. We also demonstrate how to reason about composition and how to use glue code to
detect and fix compositional mismatches.

Acknowledgements

First of all, I would like to express my gratitude to Oscar Nierstrasz for giving me the possi-
bility to work in the SCG and for his continuous support for my PhD work. I learned a lot
from him, not only about software composition and scientific writing, but also how to target
problems that at first seem unmanageable for me. Thank you a lot.

I also want to thank Martin Odersky for writing the Koreferat and for being on the PhD
committee.

Many thanks to Uwe Nestmann who helped me to improve the presentation of the for-
mal material in this thesis. Thanks also to Andrew Black who read parts of this work. His
comments helped me to better express my ideas. I also thank Thomas Studer for his com-
ments on some earlier drafts.

I also thank my colleagues involved with Piccola. Many thanks to Nathanael Schärli. We
had a lot of interesting and fun discussions about Piccola and other important aspects. I also
want to thank Stefan Kneubühl, Michael Locher, Andreas Schlapbach (he kindly helped me
to improve my English sentences), Cristina Gheorghiu, and finally Jean-Guy Schneider and
Markus Lumpe with whom the early idea of forms was born out of intensive discussions.

I thank the members of the SCG for their careful reading and commenting on earlier
drafts of my writings, for interesting discussions over lunch, for coffee-drinking and cake-
eating together, and for the good time we had: Gabriela Arévalo, Juan Carlos Cruz, Serge
Demeyer, Stéphane Ducasse, Isabelle Huber, Michele Lanza, Robb Nebbe, Tamar Richner,
Matthias Rieger, Therese Schmid, Sander Tichelaar, and Roel Wuyts.

Last but not least, I thank my parents for their continuous support for me and my ideas. It
is good to know that they stand behind me. I also thank my family and friends, in particular
Cornelia for being here and for all the love she has for me. Beside God’s love for me, being
married with Cornelia is the best that could have happend to me. I also thank our son Cyrill
for being here.

Franz Achermann
January, 2002

Contents

1 Introduction 1
1.1 The Problem . 1
1.2 Approach and Contributions . 2
1.3 Thesis Outline . 4

2 Software Composition 7
2.1 Components and their Environment . 7
2.2 Requirements and Related Work . 8

2.2.1 Frameworks . 8
2.2.2 Software Architecture . 11
2.2.3 Domain-specific Scripting Languages 13
2.2.4 Embedding Languages . 13
2.2.5 Heterogeneous Systems . 14

2.3 Forms, Agents and Channels . 14
2.3.1 Design Guidelines for Piccola . 15

3 A Composition Calculus 17
3.1 Requirements and Related Work . 17
3.2 The Piccola Calculus . 20

3.2.1 Design Rationale . 21
3.2.2 Syntax . 22
3.2.3 Syntactic Conventions . 25
3.2.4 Structural Congruence . 25
3.2.5 Reduction Relation . 30

3.3 Recursive Services . 32
3.4 Examples . 33

3.4.1 Encoding Booleans . 33
3.4.2 Communication . 34
3.4.3 Replication . 35
3.4.4 Form Inspection . 35

3.5 Equivalence for Agents . 37
3.6 Erroneous Reductions . 39
3.7 Canonical Terms . 40
3.8 Proving the Beta Equivalence . 42
3.9 Comparison with the Form- and the πL-calculus 44
3.10 Discussion . 45

ix

CONTENTS

4 Pi semantics of Piccola 47
4.1 The Localized π-calculus . 47

4.1.1 Syntax . 47
4.1.2 Labeled Transition Semantics . 48
4.1.3 Sorting . 49

4.2 Behavioural Equivalence . 50
4.2.1 Proof Techniques . 50
4.2.2 Some Laws for Lπ . 52

4.3 Recursive Definitions . 53
4.4 Encoding Piccola in Lπ . 53

4.4.1 Terminology . 54
4.4.2 Encoding of Forms . 54
4.4.3 Encoding Agents . 58

4.5 Soundness of the Encoding . 60
4.6 Proving Laws for the Piccola Calculus . 66
4.7 Discussion . 66

5 A Small Composition Language 67
5.1 Programming with Explicit Environments . 68
5.2 The Language . 69

5.2.1 Abstract Syntax . 69
5.2.2 Precedence Rules . 71
5.2.3 Indentation . 73

5.3 Abbreviations . 74
5.3.1 Services . 74
5.3.2 Nested Bindings . 75
5.3.3 Assignment . 76
5.3.4 Quoted Expressions . 76
5.3.5 User Defined Operators . 77
5.3.6 Collections . 77

5.4 Functional Piccola Agents . 78
5.5 Semantics . 79

5.5.1 Dynamic Namespace . 79
5.5.2 Fixed Points . 81

5.6 Initial Root . 86
5.7 More on Fixed Points . 86

5.7.1 A Lazy Fixed-Point Combinator . 86
5.7.2 Comparing the Lazy Combinator and Def 87
5.7.3 Fixed Point Combinator using Channels 89

5.8 External Components . 89
5.9 Language Design . 92
5.10 Discussion . 94

6 Partial Evaluation 95
6.1 A typical Example . 95
6.2 Overview . 97
6.3 The Algorithm . 99

x

CONTENTS

6.3.1 Combining Side-effects and Lazy Forms 100
6.3.2 Separating Side-effects . 102

6.4 Correctness . 107
6.5 New-state Services . 108
6.6 Constant Folding . 111
6.7 Discussion . 112

7 Composition Styles in Piccola 115
7.1 Plugging versus Wiring . 116
7.2 A Push-Flow Style . 117
7.3 Implementing Styles . 119

7.3.1 Component Factories and Instances . 119
7.3.2 The Functional Way . 120
7.3.3 First-Class Wiring . 124
7.3.4 Discussion . 127

7.4 Event Wiring . 128
7.5 A Merge-Push Style . 129
7.6 GUI Composition . 131

7.6.1 Simple GUI Layout . 132
7.6.2 Using Default Arguments . 134
7.6.3 Using First-class Labels . 135

7.7 Combining Styles . 136
7.7.1 Composing GUI elements . 136
7.7.2 Adding Listeners . 137
7.7.3 Deferring the Wiring with Once Functions 138
7.7.4 Specific Filter-GUI Composition . 138
7.7.5 Summary . 140

7.8 Mixins and Inheritance . 141
7.9 Aspect Wrappers . 144
7.10 Control Abstractions . 147

7.10.1 Blocks . 147
7.10.2 Exception Handling . 149

7.11 Discussion . 150

8 Reasoning at the Language Level 153
8.1 Transition-based Reasoning . 154
8.2 Reusable Glue Code . 158
8.3 Reader-Writer Policy . 162
8.4 Adapting Filters . 163

8.4.1 Integrate Host Components . 164
8.4.2 Pull Filter . 165
8.4.3 Adapting Pull Filter . 167
8.4.4 Enforce Contextual Dependencies . 171
8.4.5 A Closeable Slot . 172
8.4.6 A Synchronized Adapter for Pull Filters 173

8.5 Discussion . 177

xi

CONTENTS

9 Conclusion and Future Work 179
9.1 Validation . 179
9.2 Future Work . 180
9.3 Concluding Remarks . 181

A The Piccola calculus 183

B Proofs for Chapter 3 185
B.1 Proof of Proposition 3.13 . 185

C Proofs for Chapter 4 189
C.1 Proof of Lemma 4.12 . 189
C.2 Proof of Lemma 4.16 . 190
C.3 Proof of Lemma 4.17 . 191

D Proofs for Chapter 6 195

E Core library abstractions 203

References 205

xii

List of Figures

6.1 Wrapper for a List . 96

7.1 Wiring Streams . 118
7.2 Double dispatch for Push-stream style . 122
7.3 Pushfilters with first-class wires . 125
7.4 A Multiplexer for Push-Streams . 130
7.5 Regions of a Borderlayout . 132
7.6 Plugging a GUI . 133
7.7 The Generated Layout . 133
7.8 Creating a Flow Layout . 137
7.9 Wrapping GUI components . 139
7.10 Mixin Abstraction . 143
7.11 Instantiating Mixins . 143
7.12 A weaver for the observable aspect . 146
7.13 Definition of the block abstraction . 148
7.14 Sequence Diagram for a loop . 148
7.15 Defining a try-catch Abstraction . 149
7.16 Sequence Diagram for Throwing an Exception 150

8.1 Specification of a non blocking channel . 155
8.2 A reader-writer policy . 162
8.3 State transitions of the Reader-Writer policy . 163
8.4 Wrapping with a Reader-Writer Policy . 164
8.5 Pull style defragmenter . 166
8.6 Push style defragmenter . 167
8.7 Adapting Pull filter to a push style . 168
8.8 Comparing adapted service filters . 169
8.9 Enforce Synchronized Access to Filters . 172
8.10 Remove Air Bubbles . 172
8.11 Closeable Slot . 173
8.12 Synchronized pull stream adapter . 174
8.13 Applying the hand-coded Push Defragmenter 175
8.14 Applying the adapted Pull Defragmenter . 176

xiii

LIST OF FIGURES

xiv

List of Tables

2.1 Piccola Composition Layers . 15

3.1 Agents and Forms . 23
3.2 Free Channels . 25

4.1 The Lπ-calculus . 48
4.2 Labeled Transition System for the Lπ-calculus 49
4.3 Encoding Forms . 55
4.4 Encoding of Piccola in Lπ . 59

5.1 Piccola Language Syntax . 70
5.2 Precedence Rules . 71
5.3 Piccola Language Abbreviations . 74
5.4 Functional Piccola Agents . 78
5.5 Embedding functional agents . 78
5.6 Translating simplified Piccola terms to expressions 80

6.1 Lazy Forms . 99
6.2 Free variables and defined labels . 100
6.3 Substitution . 101
6.4 Embedding side-effects and lazy terms . 101
6.5 Split Function . 103
6.6 Projection . 105
6.7 Service Selection . 105
6.8 Stripping new-state services . 110

7.1 Provided and required services for the push-stream style 117
7.2 Signature for the Push-flow Style . 118
7.3 Features for Composition . 151

xv

LIST OF TABLES

xvi

Chapter 1

Introduction

Component-based software development appears as the dominant solution to one of the
hardest and recurring problems we face in software engineering: How can we effectively
evolve software in the face of changing requirements? How can we master the complex-
ity that is inherent in big systems? Software composition breaks an application down into
manageable pieces, components, and specifies an application as the composition thereof. Com-
ponents encapsulate what is stable behind well defined interfaces — flexibility is provided
by the possibility to reconfigure, re-compose, or replace components.

The idea of composing a system out of building blocks is not new — in fact it was en-
visioned as a solution to the first software crisis in the late sixties [McI69]. The goal was to
reuse components for different applications to leverage development cost and to establish a
market for software components. In the last years this idea increased in popularity by the
emergence of component models like COM [Rog97] or EJB [MH00] and their use in industry.

1.1 The Problem

How can we design components in such a way that they can cooperate with others that are
independently developed? As software engineers we are, more often than we like, faced
with the fact that merely assembling components with the expected functionality does not
immediately yield the desired system. Components make assumptions about the environ-
ment in which they are deployed. If those assumptions are not met, compositional or archi-
tectural mismatch [GAO95] occurs and the system will not work as expected. In order to be
able to detect and fix mismatches as early as possible we need a way to rigorously express
these assumptions.

The object-oriented paradigm builds on the ideas of information-hiding and decompos-
ing problems. While object-oriented languages are good for implementing software compo-
nents, they have not yet shined in the construction of component-based applications. This
is mainly due to the restricted set of composition mechanisms that is available in object-
oriented languages, namely message send and inheritance. Object-oriented development
principles are not in line with some of the goals of component based software development:

• Instead of focusing on reuse, object-oriented analysis and design is domain driven. This
leads to designs based on domain objects and non-standard architectures.

1

2 CHAPTER 1. INTRODUCTION

• Instead of adhering to small, restricted and plug-compatible protocols, inheritance leads to
rich object interfaces. This makes it hard to isolate the objects from their environments
and use them in other contexts.

• Instead of exposing the object interaction, the source code exposes the inheritance hi-
erarchy. How objects are connected is typically distributed among the objects them-
selves. This requires detailed analysis to adapt an application or to effectively use
object-oriented frameworks.

• Instead of providing reusable abstractions for object collaborations, object composition
is often implemented by following design patterns. While we can (and should) reuse
design, we often cannot reuse the actual code.

These problems have not only to do with the way how object-oriented languages are
used. They are also a symptom that object-oriented abstraction mechanisms are not adequate
to express and implement certain composition abstractions as reusable code.

1.2 Approach and Contributions

Instead of adding additional features to object-oriented languages to better support the def-
inition of composition abstractions, we propose a different approach. We advocate a com-
position language that builds on a minimal set of abstraction mechanisms as a tool to study
and express composition abstractions. In this thesis we claim that

Extensible composition abstractions can be defined and implemented on a foundation of
forms, agents and channels. A set of plug-compatible components is captured by a
composition style.

In order to validate this claim we must be precise about what it means:

• An architectural style defines a family of systems in terms of a pattern of structural or-
ganization. It defines a vocabulary of components and connector types, and a set of
rules that constrain composition [SG96]. The style determines the plugs each compo-
nents must have so that they can be connected. Scripts define a specific connection.
Implementing and defining composition abstractions means to implement connectors as
first-class abstraction in a programming language.

• Forms are extensible records unified with services. A record contains bindings from
labels to nested forms. The service of a form can be invoked. Forms are immutable.

Forms are composed by form extension and label hiding. Form extension denotes a
new form where the bindings and the service either can be overwritten or added as
defaults. We can inspect forms and find out what labels they contain. Bindings of a
form associate names with services and nested forms — forms represent structure.

• Agents are autonomous entities that communicate with each other. The only observable
effect of a running agent is communicating with its environment. Agents do something
— they represent behaviour.

1.2. APPROACH AND CONTRIBUTIONS 3

• Channels are the locations along which agents exchange forms. Channels are asyn-
chronous. We can consider a channel as a bag or multiset. We can always add a form
to a bag, i.e., send the form to the channel. Receiving from an empty channel blocks
unless there is at least one form available. If the channel is not empty, an arbitrary form
that was sent to it and that is not yet received gets returned. Channels can store values
— they represent state.

To validate our thesis, we present the composition language Piccola. A composition language is
a generic scripting language. A scripting language offers a high-level view of services imple-
mented in more lower-level languages. The language supports composition following this
view. While a scripting language offers a fixed paradigm for composing, a composition lan-
guage supports the implementation of different composition styles tuned with respect to the
application domain. A composition language allows the programmer to specify applications
as a high-level composition of components.

Components are either external entities that are accessed via a bridging interface or they
are scripted from simpler components. Piccola is a pure composition language as all compu-
tation is eventually performed by external components. A component is accessible through
a form as its interface. Piccola defines composition abstractions by composing the forms.
Glue abstractions are implemented by using channels and agents.

The language has the expressive power to model composition abstractions. It can embed
composition styles as domain specific languages. Moreover, it is based on a simple semantic
model that facilitates reasoning about composition. The technical contributions of this thesis
are as follows:

• We define the Piccola calculus based on the core concepts of forms, agents and chan-
nels. We present an operational semantics of the calculus and define an equivalence
relation based on barbed congruence [MS92].

• The calculus is a higher-order variant of the well known π-calculus introduced by
Milner et al. [MPW89]. We demonstrate that forms add the needed expressive power
to express safe and extensible composition abstractions. We give an encoding of the
Piccola calculus into the π calculus and show that the encoding is sound.

• We define the composition language Piccola in terms of the calculus. The language has
a minimal syntax and supports scripting of external components. We define a language
bridge for accessing host components from Piccola. The bridge does not require adap-
tion of these host components in the host language. The components can be adapted
inside Piccola and composed seamlessly with other host services. The necessary adap-
tion is transparent to Piccola and the host language. Piccola is a pure composition lan-
guage as eventually every computation is performed by external components. Com-
ponents can be adapted to particular composition styles by adapters written within
Piccola.

• We present a partial evaluation algorithm for Piccola. This algorithm separates side-
effects from referentially transparent computation. Side-effects are executed in the
right order and referentially transparent services are inlined. This optimisation elim-
inates the performance costs of generic glue wrappers. We prove correctness of the
algorithm with respect to the Piccola calculus.

4 CHAPTER 1. INTRODUCTION

• We capture a set of components and connectors into a composition style. The style
supports a high-level and declarative way to compose. We present the embedding of a
nontrivial object-oriented framework into Piccola and wrap the framework as a com-
position style. As an example we chose a framework whose composition mechanism
are procedural or wiring-based. Wires are the gotos of component based software de-
velopment. We demonstrate that plugging an application by using the style simplifies
composition. It helps to understand the code as it is more declarative and makes the
architecture explicit in the code.

• We show that channels, agents and the generalization of forms into namespaces al-
lows us to define control and coordination abstractions as reusable abstractions. In
conventional programming languages such abstractions are often defined as language
primitives or are implemented by mechanisms such as meta-programming, macros or
continuation-passing. The approach of using agents and channels is more direct.

• We present how to derive the states and transitions a Piccola program can have directly
from the code. The resulting model is simple enough so that we can detect composition
mismatches. We use model checking to derive algebraic properties of composition
abstractions.

• We present an approach that uses wrappers to formalize the assumptions a compo-
nent makes about its environment. If we can assert that these assumptions hold, the
wrapper is not needed. Otherwise, we apply the wrapper to the component in order
to protect the component from bad usage and to overcome compositional mismatch
[GAO95]. We can decide whether a composition with a wrapped component has the
same behaviour as the composition without the wrapper. If this is the case the envi-
ronment fulfills the assumptions of the component.

1.3 Thesis Outline

This thesis is structured as follows.

• In Chapter 2 we present the requirements for a composition language, discuss related
work and motivate our approach. We introduce the necessary terms used throughout
this work.

• Chapter 3 is devoted to the development of the Piccola calculus. The calculus is a
higher-order variant of Milner’s π-calculus where forms are the communicated val-
ues. The calculus has explicit namespaces that are reified as forms. It is a higher-order
calculus that communicates abstractions as first-class values. Since values play such a
central part we define the value, i.e., the result of a parallel composition. As a conse-
quence parallel composition is not commutative as in traditional process algebras. The
parallel composition operator has the flavour of spawning off a parallel agent from the
main thread of control.

We present the syntax and reduction semantics of the Piccola calculus and define a
notion of equivalence based on barbed congruence.

1.3. THESIS OUTLINE 5

• In Chapter 4 we introduce the π-calculus, more specifically a restricted variant of it
where agents may only send but not receive values along channels that they have not
created themselves. They can only read from local channels. This localized π-calculus
has recently been proposed by Sangiorgi and Merro [Mer00, MS98]. It turns out that the
Lπ-calculus is powerful enough to embed the Piccola calculus. We present an encoding
of Piccola into the Lπ-calculus and prove soundness of the encoding. This property
says that whenever two translated agents are equivalent in the Lπ-calculus, then they
are also equivalent in the Piccola calculus. This allows us to use proof techniques from
the π-calculus for reasoning about Piccola agents.

• The language Piccola is defined by adding some syntactic sugar on top of our composi-
tion calculus. We present the language in Chapter 5 and give a denotational semantics
in terms of the calculus. In order to keep the language small we adhere to the principle
that everything is a form. The language contains the notion of the dynamic context and
simplifies the definition of recursive forms. An explicit handle on the dynamic context
turns out to be useful to model context dependent abstractions. Recursive forms are
essential for defining recursive services and for modeling the self reference of objects.
The semantics of recursive forms is given by channels and we show that recursive
services can equally be defined by a lazy fixed-point combinator from the λ-calculus.

In this chapter, we also present the language bridge from Piccola to external compo-
nents by describing the Java-Piccola bridge. The bridge allows us to seamlessly inte-
grate components and services composed from Piccola and external components and
services, respectively.

• Chapter 6 presents a partial evaluation algorithm for Piccola. We focus on the func-
tional subset of Piccola and treat channel creation and spawning of new agents as
external services that contain a side-effect. The chapter proves correctness of the al-
gorithm. Although it is feasible to run a partially evaluated expression in a standard
Piccola interpreter, a specialized expression has properties that allow for much faster
execution. Partial evaluation removes much of the overhead introduced by generic
glue wrappers. It inlines all indirection caused by renaming or the specification of
default values.

• In Chapter 7 we demonstrate the expressive power of Piccola to define extensible com-
position abstractions. First, we present reusable connectors to declaratively script com-
ponents in a composition style. Second, we present control and coordination abstrac-
tions used to implement these styles. Third, we present extensible wrappers that add
the connectors to bare components which offer the functionality so that they fit the
style.

As a running example we develop a scripting language for composing GUI dialogs em-
bedded into Piccola. We present the difference between procedural wiring and declar-
ative plugging using the familiar example of a pipes-and-filters style. We evolve this
style so that events are the data elements processed and we combine this style with a
style for doing GUI layout. The layout style consists of external components from the
Java AWT framework that are adapted in Piccola.

• In Chapter 8 we show how to reason about composition abstractions at the Piccola
language level. We show how to derive the states and their possible transitions to do

6 CHAPTER 1. INTRODUCTION

model checking almost directly on the code. This allows us to detect and overcome
compositional mismatches. As examples, we introduce generic glue code wrappers
that bridge composition styles.

It turns out that these wrappers also help formalizing the assumptions a component
makes about its run-time environment. If these assumptions hold for a particular com-
position, the glue code wrapper is not necessary. Otherwise, we apply the wrapper so
that it protects the component from illegal use.

• Chapter 9 concludes this thesis and discusses future work.

If the reader is mainly interested in seeing Piccola at work, he should browse Chapter 5 to get
an overview of the language. Chapter 7 demonstrates the implementation of composition
styles and Chapter 8 shows how to safely glue styles together. The formal foundation of
Piccola is defined in Chapter 3. The calculus is embedded into the π-calculus in Chapter 4
and used in Chapter 6.

Chapter 2

Software Composition

A lot of work has been done regarding the composition of software components. In this
chapter we give an overview of this work and motivate our approach using Piccola. We first
define the notion of a software component. We state our requirements for a composition
language and review how these requirement are met in existing approaches and explain our
approach.

2.1 Components and their Environment

A software component cannot be differentiated from any other software element only by
the programming language that implements the component. A piece of software becomes a
component when it can be deployed and used in component framework. Heinemann et al.
[HC01] define the terms component, component model, and infrastructure as follows:

”A software component is a software element that conforms to a component model
and can be independently deployed and composed without modification accord-
ing to a composition standard.

A component model defines specific interaction and composition standards. A com-
ponent model implementation is the dedicated set of executable software elements
required to support the execution of components that conform to the model.

A software component infrastructure is a set of interacting software components de-
signed to ensure that a software system or subsystem constructed using those
components and interfaces will satisfy clearly defined performance specifica-
tions.”

This definition makes it clear that a component cannot be considered in isolation, but that it
only makes sense if there is a supporting environment to host it. To put it more compactly:
A component is designed to be composed [ND95]. Composition is the combination of two or more
components yielding a new component behaviour. The characteristics of the composite are
determined by its parts and the way they are combined.

There are other aspects of components as well. Szyperski argues that they have no state
and are binary deployable [Szy98]. The distinction between stateless component factories
and stateful component instances is blurred. The confusion is caused as components, like

7

8 CHAPTER 2. SOFTWARE COMPOSITION

buttons or windows, often do have state. We are thus not working with the abstract com-
ponent classes, but with their instances. It is therefore useful to distinguish between design-
time and run-time of a component. At design-time the developer chooses the properties that
are set when the component is instantiated. The requirement for binary packaging of com-
ponents does not mean that a component must be delivered in some compiled format. It
specifies that a programmer can readily access the component without the need to manually
adapt either the component or its environment.

2.2 Requirements and Related Work

Open applications are characterized by three key requirements [NM95]: applications are in-
herently concurrent and distributed, they run on a variety of software platforms, and appli-
cations requirements evolve during the lifetime of a software. A composition language ad-
dresses these requirements by supporting a view in which applications are built by scripting
components. A composition language must therefore address the following requirements:

1. Expressiveness: A composition language must support the definition of components
and abstractions to compose them as first-class citizens. This makes the relations be-
tween the components and the architecture explicit in the code.

2. Formal model: Formal reasoning techniques validate that applications ensure specified
properties. A formal model is also needed to bridge between different component
models.

3. External components: Applications are composed from components that may be imple-
mented in different languages and run on a variety of systems.

In the rest of this section we give an overview of related work that addresses all or some of
the above requirements. We consider the following areas: In the first subsection we look at
how to implement component frameworks. We consider the expressiveness of object-oriented
languages to support the definition of such frameworks. Second, we consider how the archi-
tecture of an application can be made explicit and how we can reason about properties at this
level. Third, we have a brief look at domain-specific and scripting languages and define the no-
tion of embedding such languages into host languages. Scripting languages give a high-level
view to components and the services they offer. Finally, for addressing our last requirement
we take heterogeneous systems into account.

2.2.1 Frameworks

As mentioned, a piece of software only becomes a component if it may be hosted by a com-
ponent integration framework. It is the framework that establishes and ensures the assump-
tions required by the component.

A framework is a structure or skeleton for a project. In the following we consider object-
oriented languages since these languages are the latest incarnation of software engineering
principles like encapsulation and separation of concern [Cle95]. In the context of object-
oriented languages, a framework is a set of cooperating classes that makes a reusable design
[FS97, JF88]. Some of the classes may be abstract. They must be subclassed by the application
developer.

2.2. REQUIREMENTS AND RELATED WORK 9

A white-box framework supports specialisation by subclassing. The hot-spots are the
locations where application specific code can be provided [Pre95]. The framework code calls
the application code. This principle is known as the Hollywood principle, i.e., don’t call us,
we’ll call you [Vli96]. Frameworks must evolve: from a set of a few examples to a white-box
framework, to pluggable objects, and finally to a black-box or component-oriented frame-
work [RJ97]. At this most mature stage the domain knowledge is sufficiently stable to merit
a domain-specific language to script the framework. Examples include GUI frameworks
where the application code is generated by 4GL GUI-builders. We will consider this point
again in Section 2.2.3.

The component framework consists of sets of components together with an architecture
that defines the interfaces of the components. The framework also defines rules governing
composition [SG96].

The problem with object-oriented frameworks is that the code often does not make the
architecture or the composition rules explicit. This is caused by the fact that the framework
uses certain composition abstractions which are not expressed as first-class entities. As a re-
sult, these abstractions are split throughout the framework code. Such abstractions are typi-
cally recorded as design patterns. Design patterns are used to record experience of successful
object-oriented designs and architectures. A pattern represents a composition abstraction
implemented in an object-oriented language [GHJV95].

The fact that design patterns and composition abstractions in general cannot be imple-
mented as first-class citizens in many object oriented languages stimulated research to im-
prove the expressiveness of those languages. In the following we list these extensions and
techniques.

• Implementations of design patterns as reusable code go beyond the classical paradigm
of object-oriented languages. Such implementations use reflection [Duc97], macros
[Sou95], or generators to produce the pattern specific code [BFVY96].

Reflection is the ability of a program to manipulate the state of the running program as
data. There are two aspects of reflection: Introspection allows a program to observe and
read its own executing state whereas intercession is the ability to change its own state
as well [BGW93]. Intercession changes the semantics of certain language constructs.

• Mixins [Bra92, BPS99] specify behaviour orthogonal to the inheritance relation. Mixins
are abstract subclasses, i.e., classes with an unspecified parent class. Mixins allow
much more flexibility than static subclassing. Ernst [Ern99] has demonstrated that
mixins with a richer set of combinators have equal expressiveness as AOP or SOP (see
next items) and are statically type-checkable.

• In the last years, Aspect-Oriented Programming (AOP) has emerged as a methodology for
overcoming reduced expressiveness of (object-oriented) programming languages. An
aspect is a feature of a system that cannot be isolated and implemented at a single point
in the source code [KLM+97]. Aspects are implemented by weaving them into the
source code. The join-points are the locations where an aspect is coordinated with the
base components. Examples of join-points are the enter or exit of a method. An AOP-
language specifies the functionality of an aspect and join-points at which the aspect
should be merged with the class. The join-points allow finer control than inheritance
which only supports overriding of methods.

10 CHAPTER 2. SOFTWARE COMPOSITION

A recent proposal is to make join-points dependent on dynamic context information.
For instance, depending on what the sender will do with result, we can associate dif-
ferent behaviour to a join-point [CKFS01]. AspectJ [KHH+01] is the aspect weaver for
the Java language.

• Subject-Oriented Programming (SOP) [HO93, OKH+95, TOHS99] is similar to AOP. In
SOP, disparate class hierarchies, i.e. subjects, representing different concerns are com-
posed. Subject composition operators have richer semantics than just overwriting
methods has. SOP supports slicing concerns and recomposing them.

• In the work on Composition Filters, Aksit et al. [AWB+94, BAW93] propose a layered
object model in which the layers control message passing. The object itself encapsu-
lates only its state. In the layered model, the programmer can control message send at
the caller side as well as at the client side. Bosch illustrates how this model allows the
implementation of many design patterns as first-class abstractions [Bos97].

• In his work on the Demeter methods, Lieberherr proposes the use of adaptive techniques
to make object-oriented programs more reusable [LSLX94]. In this approach, class
structures are allowed to change by separating the relationship of a class with other
classes out of the classes themselves. Only constraints on the class structure are de-
fined [SPL98]. The final program is generated by applying propagation patterns that
describe how to carry out a specific task while traversing the object structure.

• Nested classes remove the restriction of traditional object-oriented languages that only
allow methods and members inside classes. This allows the programmer to encapsu-
late whole frameworks as a single class and to have several instantiations of the same
framework inside a single application. This has several advantages. For each frame-
work instantiation of the same application, the global variables can be instantiated
differently. Under the classical (flat) class regime, global framework variables have
a unique instantiation for the framework. Furthermore, the framework is not encap-
sulated as a whole leading to framework composition problems [MB97]. An example
where specializing a framework several times is useful is given in the class Simulation
from Simula [DMN70]. This class consists of a framework for discrete simulation pro-
cesses and multiple different processes are normally active in one application.

Batory et al. use Java’s inner classes to define mixin layers. Such mixins layers specify
a refinement for product-line architectures (see Section 2.2.3) [BO92, SB98]. Seiter et
al. use the enhanced expressiveness of inner classes to support dynamic framework
instantiation [SML99].

Anonymous classes support the definition of a class with an immediate instantiation
of an object of this class. Anonymous classes can be used to create singleton objects,
i.e., classes from which there is only one instance in an application. Hedin [HK99]
demonstrates the usefulness of anonymous classes for adapting frameworks and for
the specification of pluggable objects [KP88].

• Generalized inheritance allows subclasses to specialize parts of methods. The language
BETA [MMPN93] provides the inner construct for this purpose. With outer inheritance
we have to use the template method pattern to define and specialize sub-methods,

2.2. REQUIREMENTS AND RELATED WORK 11

leading to a proliferation of the messages understood by a class. Using inner inheri-
tance, we can specialize the same method several times with different signatures in-
side the same subclass. For instance, this allows us to implement a generic monitor
in BETA [MMPN93] which is not possible in languages that use outer inheritance like
Smalltalk or Java. In Java we have to describe a monitor as a pattern [Lea99]. The
problem with outer inheritance is that we have to fix the signature up front and can-
not reuse the same synchronization schema for different methods in the same class.
BETA’s inner construct is similar to the call-next-method construct for around methods in
CLOS [Kee89]. Agerbo et al. demonstrate that many of the classical design patterns can
be implemented as reusable, first-class abstractions due to BETA’s generalized block
structure and inheritance [AC97].

A formal semantics is needed in order to combine components written in these different
models and to support reasoning about these models.

2.2.2 Software Architecture

The architecture and the rules defined by a component framework should be explicit. An
architecture describes a software system in terms of computational elements and interactions
among these element [BCK98, PW92, SG96]. The goal is to make the process of architect-
ing more rigorous and to build systems with a more reliable and reusable architecture. In
the field of software architecture this can be achieved by using (formal) specification lan-
guages, called architectural description languages (ADL) and by using corresponding analysis
techniques. The associated theory influences the ADL’s ability for modeling particular kinds
of systems.

Architectures can be classified into architectural styles. A style is an abstraction over a
set of related software architectures. It defines a vocabulary of component and connector
types and constraints how they can be composed. We can classify architectures and associate
properties with different styles [SC96].

Components embody assumptions about the environment in which they operate. At
composition time, the engineer is faced with the problem of uncovering and avoiding archi-
tectural or compositional mismatch [GAO95, Sam97]. A mismatch occurs whenever it is im-
possible to successfully interconnect components with existing connectors. Compositional
mismatch is fixed by replacing or rewriting the components or applying glue code. Glue code
adapts components from one component model to another one and therefore overcomes
compositional mismatches [DW99]. Wrappers [BW00, Höl93], Bridges, Proxies and Media-
tors [GHJV95] are some techniques to implement glue code.

Mismatches arise from conflicts at two levels of interaction. One problem is the compati-
bility of the data exchanged among the components. Such mismatches are usually captured
by the type of information present in the interfaces. Type analysis is used to detect those
mismatches and data-conversion is used to overcome them. The other, more difficult com-
patibility problem is the dynamic interaction and communication behaviour between the
components [CIW99, GAO95].

An ADL can focus on different aspects: While some ADL’s (like CHAM, Wright or
Rapide) focus on formal analysis methods, others focus on formally specifying the archi-
tecture to make it explicit.

12 CHAPTER 2. SOFTWARE COMPOSITION

• Inverardi and Wolf use the chemical machine metaphor (CHAM) to specify and anal-
yse architectures [IW95]. The CHAM formalism was developed by Berry and Boudol
[BB92] as a general computational framework. It works by defining molecules as terms
of a syntactic algebra and solutions, i.e., multisets of molecules. The state of a CHAM
are its solutions. The machine specification consists of a set of transformation rules
of one multiset into another. The transformation rules define the behaviour, i.e., how
state evolves. Analysis is done by model checking.

• The Wright specification language [AG94, All97] specifies the behaviour of connectors
in terms of a subset of CSP [Hoa85]. As long as the specification of the connectors is sat-
isfied, the connections between the components can be reconfigured. Formal analysis
of Wright focuses on two properties: the first is deadlock freedom which is extensively
studied in the context of CSP. The second guarantees that the ports of the connectors
and the roles played by components match. This is specified by requiring identical
protocols on both sides or one being a refinement of the other.

• Rapide [LKA+95] is based on specifying the order in which events occur in a system.
An event is a very flexible and abstract notion that allows for arbitrary detailed speci-
fication, depending on the particular events of interest. A simulation is used to check
consistency of interfaces and connections and to verify the systems overall communi-
cation structure. Event patterns are specified as partially ordered event sets. Analysis
in Rapide amounts to checking for proper orderings of events and causality among
them.

• In Darwin [EP93, MDEK95, RE94] the interface of a component is described as a collec-
tion of provided and required services. Configurations are developed by component
instantiation declarations and bindings between required and provided services. Dar-
win provides semantics for its structural aspects through the π-calculus and supports
the definition of an architectural style through the description of a parameterized con-
figuration. The connector type of Darwin is asymmetric due to the underlying differ-
entiation of provided and required services.

• The language UniCon [SDK+95] provides a richer set of connectors than Darwin. Each
connector has a collection of roles that define what a participant can expect in a given
interaction.

• Le Métayer [Mét96, Mét98] proposes the use of graphs to model software architecture.
The approach makes a distinction between the specification of a single component and
the overall structure. A graph represents the architecture by interpreting nodes as
components and the edges as connectors. A style is expressed as a graph grammar. The
evolution of a system is governed by a coordinator component who performs graph
rewritings. In this approach it is possible to check if a coordinator follows the style.

Other examples of ADL’s are given by Abowd et al. who uses Z [Spi89] for specifying
architectural styles [AAG93] or the language LILEANNA [Tra93] that is based on the alge-
braic formalism OBJ [DF98]. For a broader classification of ADL’s we refer to the survey of
Medvidovic [MT97].

Each ADL addresses a different set of properties that can be detected. It is necessary to
combine the findings of the different tools. A step in that direction is done by Garlan et al.

2.2. REQUIREMENTS AND RELATED WORK 13

with their work on Acme. Acme is a generic ADL that serves as a common representation of
architectures and that permits the integration of architectural analysis tools [GMW00].

2.2.3 Domain-specific Scripting Languages

Program families are collections of software elements related by their commonalities [Par76].
Different family members are differentiated by their variations. A product-line architecture is
a design for a program family or product-line that identifies the underlying components.
It enables the composition of these components to instantiate different applications of the
same domain [LHB01].

A domain-specific language is a small, usually declarative, language specially designed for
a particular domain. Domain-specific or little languages, as they are also called, enhance
quality, flexibility and timely delivery of software because they take advantage of specific
properties of the domain [vDKV00].

A domain-specific language packs the engineering effort that went into the development
of the product-line architecture and the implementation of the components into a high-level
language. This language allows casual users to script their own applications. A scripting
language is a high-level language to create, customize and assemble components into a pre-
defined architecture [SN99]. A scripting language typically embodies a specific composition
style together with features for general programming. For instance, Perl [WCO00] provides
regular expressions to work on a number of string buffers whereas the Unix shell languages
are designed around the pipe-and-filter style.

2.2.4 Embedding Languages

There are two approaches to the implementation of a language. One approach is to im-
plement a language from scratch, involving tasks like defining a syntax and semantics and
implementing the required software. The other approach is to embed the little language by
extending another language with just the constructs needed. Implementing from scratch
uses but hides the available technology; embedding shares and reuses technology from the
host language [CGKF01]. Embedding has the advantage that the programmer can focus
on the domain specific aspects, whereas general programming elements like variables and
loops are handled by the host language. Embedding leverages the learning effort needed by
new users: they only have to know the base language and the additional domain specific
abstractions.

Hudak introduced the notion of embedding a little language into a (functional) host lan-
guage [Hud96]. A composition language is a generic scripting language. It should be pos-
sible to wrap component frameworks as little languages embedded into the composition
language. The component frameworks may be written within the composition language or
may be external to it.

In functional languages, a function is the generalized abstraction mechanism [ASS91].
Some functional languages like Haskell support infix operators as higher-order functions.
Such operators make it possible to embed little language as grammars, similar to arithmetic
expressions. A particular advantage when embedding a little language into statically typed
languages like Haskell or ML is the reuse of the strong type system for the domain to be
modeled [JML98]. This form of composition is widely applied in functional languages like
Haskell or ML [CH98, Fai87, Hud98, MSC99].

14 CHAPTER 2. SOFTWARE COMPOSITION

However, certain wiring abstractions cannot be easily expressed in a functional setting.
Examples are abstractions that introduce variable bindings or affect the flow of control in a
non-standard way. Kamin et al. have embedded FPIC, a variant of PIC [Ben86] which is a
language to represent two-dimensional pictures into ML [KH97]. They illustrate the problem
of name bindings. When one picture refers to points defined in another picture and the two
pictures are composed, then the user has to use strings instead of variables to refer to those
external points.

To overcome these restrictions, macros and monads extend the expressiveness of the
(functional) language. Shivers embedded AWK into Scheme using Scheme’s macro facil-
ities and reports that his system is more powerful than the original using one tenth of the
originals size and was implemented in a few days [Shi96]. Other examples of little languages
embedded into Scheme can be found in [CGKF01, WR99].

Monads [Mog89, Wad95] are used to model state in a language without side-effects. A
monad encapsulates and hides the global state and allows functions to modify the state in
a disciplined way. Monads can be used to model variables, exception handling, output and
non-determinism. Liang et al. have demonstrated how monad transformers can be used to
build components and connectors for the construction of a modular compiler [LHJ95].

2.2.5 Heterogeneous Systems

Middleware is the software that enables different languages to cooperate. In the area of
component based software development, component models are most important. The most
commonly used component models are COM [Rog97] with several incarnations (OLE, Ac-
tiveX, COM, DCOM, COM+, .NET), Java (Enterprise) Beans [Mor97, MH00], and the Corba
Component Model that is part of Corba 3.0 [CCM]. We include Java and the older Microsoft
variants in this list, since there exists standard mappings for these components to make them
cross-platform. A detailed overview and comparison of these models is beyond the scope of
this work. We refer the reader to the literature [Lon01].

The basic idea of these component models is to make the location of a component trans-
parent. The location may be on a different platform on a different system. A component is
described by an interface which specifies the services offered by the component. Further-
more, the interface may describe what events the component can generate.

IBM’s System Object Model (SOM) [Lau94] allows programmers to access objects writ-
ten in separate languages. Object are distributed in binary form and, in addition, can be
subclassed across different languages. As such, SOM is based on an advanced object model
and an object-oriented runtime engine that supports this model.

In the CHAIMS project [SBMW99, KMF01] services have additional parameters like their
reliability or performance. Composite services can call different services with different pa-
rameters and, for instance, terminate pending requests when the first service has returned.
Such composition mechanisms are also studied in the context of web-scripting [CD99].

2.3 Forms, Agents and Channels

We have collected a number of requirements a composition language must fulfill: It must
be expressive enough to implement components and high-level composition abstractions, it

2.3. FORMS, AGENTS AND CHANNELS 15

Applications Components + Scripts
Composition styles Streams, GUI composition, ...

Standard libraries
Coordination abstractions, control
structures, ...

Piccola language
Host components, user-defined
operators, dynamic namespace

Composition primitives forms, agents and channels

Table 2.1: Piccola Composition Layers

must support reasoning at the language level, and it must support the accessing of external
components.

Coplien [Cop99] argues that a pure object-oriented paradigm does not offer enough flex-
ibility to define composition abstractions. He claims that other language features as found in
C++ like template methods, overloaded operators, or procedural programming are needed
to have enough expressive power to implement composition abstractions.

Instead of making the union of paradigms — we claim — we should seek the minimal
kernel that allows us to embed composition styles, while not giving up a simple semantic
model for the language. In this way we will be able to reason at the language level. Our
thesis is that a foundation for a composition language should be given in terms of forms,
agents and channels. To validate this claim we designed the composition language Piccola
that builds on the ideas of forms, agents and channels. We use forms as unifying concept for
component interfaces, abstractions, arguments, and namespaces.

Similar approaches are taken in the languages Funnel and Oz. Funnel [Ode00] is a pro-
gramming language based on the generalization idea of functional nets. A functional net is
the combination of functional languages and join-patterns from the join calculus [FG96]. The
language Oz [Smo95] subsumes functional, object-oriented, and logic programming aspects
into a coherent system.

2.3.1 Design Guidelines for Piccola

We design Piccola according to the following guidelines: A layered approach is used to
bridge the gap between the foundation of forms, agents and channels and high-level scripts;
A simple semantic model supports formal reasoning techniques; The idea of generalization
ensures expressiveness.

Piccola composition layers. The gap between a high-level script in Piccola and the founda-
tions given by forms, agents and channels is closed by a set of layers. These layers are given
in Table 2.1. Using the composition primitives of forms, agents and channels we define the
Piccola language. The language has additional syntactical sugar and defines basic data-types
as host components. In the language we define control and coordination abstractions. Exam-
ples of such abstractions are the if-then-else or the try-catch abstractions or generic adapters
for wrapping forms.

Using these abstractions we define composition styles. A style defines component algebras
where a component is of a particular sort, and composition corresponds to operations in the

16 CHAPTER 2. SOFTWARE COMPOSITION

algebra. Using these styles, we propose a compositional approach for building applications.
Scripts are expressions of the underlying style(s) that can easily be re-composed. The lay-
ers are transparent since we embed the styles on top of Piccola instead of building isolated
domain-specific languages. Thus the programmer can combine styles or extend them inside
Piccola.

Simple Model. Forms are much simpler than objects. Their primary difference is that
they do not have an identity and that they are immutable. The composition operators for
forms are extension and label hiding. We can inspect a forms and learn about its services at
runtime. This allows us to define generic wrappers to adapt forms.

External components are embedded into Piccola as forms. In our current implementation
we use reflection of the host language (Java or Squeak) to wrap host objects as a form. We ar-
gue that other component models can equally be integrated. For instance, a Unix process can
be embedded as a component that requires standard input and output streams and provides
services to send signals. External components must seamlessly integrate with the composi-
tion language. This means that we want to uniformly manipulate components whether they
are written in Piccola or in external languages. Expressions that include services written in
Piccola and external services should transparently wrap or unwrap external components.
By using nested forms, this requirement can be achieved almost for free as we will show in
Section 5.8.

Apart from forms Piccola uses agents and channels. The π-calculus has considerably
firmed our understanding of parallel composition and of scope extrusion to generate and
use private resources. Channels and agents can be used to define abstractions that modify
the flow of control and they can bridge compositional mismatches.

Generalizing. We can learn from functional languages or the language BETA that much
expressive power is gained when certain concepts are generalized and applied uniformly.
One of the cornerstones of Piccola’s expressive power is the ubiquitous use of forms.

• Forms are interfaces to components. Components may be scripted inside Piccola or they
may be adapted, external components.

• Abstractions over forms are unified with forms. This leads to higher-order forms and
services.

• Forms are arguments in applications. This supports keyword based arguments passing
and default arguments.

• The environment or scope at each point in a program is explicitly available as a form
that can be read or modified. This allows a script to learn about new services at run-
time. Agents can receive scripts and execute them inside a sandbox. A script is just an
abstraction that considers its argument to be the environment, i.e., the argument must
contain bindings for all free variables in the script.

In the rest of this work we present the model of forms, agents and channels in detail,
show that it has the required expressive power and supports reasoning at the language level.

Chapter 3

A Composition Calculus

In this chapter we present the Piccola calculus. The calculus defines the notion of forms,
agents and channels. These composition primitives are at the heart of Piccola’s composition
layers. The calculus combines ideas from the asynchronous π-calculus and from lambda-
calculi with explicit substitution. We first present the ingredients of the calculus in Section
3.1. In Section 3.2 we introduce the Piccola calculus and define syntax and semantics of it. In
Section 3.3 we demonstrate how to specify recursive services in the Piccola calculus. Section
3.4 shows a few example reductions in the calculus to get a feeling for its expressiveness. In
Section 3.5 we define an equivalence relation for agents. Section 3.6 discusses how to avoid
erroneous agents in Piccola. In Section 3.7 we define a canonical form for agent expressions
and in Section 3.8 we prove that the beta reduction is a valid law. In Section 3.9 we explain
the differences between the Piccola calculus and the Form- and the πL-calculus. Section 3.10
summarizes and concludes the chapter.

3.1 Requirements and Related Work

The Piccola calculus is a combination of the asynchronous π-calculus with higher-order ab-
stractions. It uses asymmetric parallel composition and contains records as first-class envi-
ronments.

π-calculus. The π-calculus is a calculus of communicating systems in which one can nat-
urally express processes with a changing structure. Communication between neighbors can
carry arbitrary information including how to change the topology [MPW89, Mil91]. The π-
calculus can be seen as the reference calculus for concurrent computation. Many important
properties of concurrent and distributed systems can be studied within this framework. Its
theory has been thoroughly studied and many results relate other formalisms or implemen-
tations to it (e.g. [Mil92, Smo94, Wal95, SW01]).

Many different variants of π-calculi have been introduced. Some of the differences are
minor choices of notation and style, other are important choices that are driven by a par-
ticular application. There are two different areas where the π-calculus is applied: Modeling
and Programming. The difference is manifested by different operators that are defined in the
calculus. For modeling or specification we need a richer set of operators. An example is the
non-deterministic or internal choice operator to specify that a component may exhibit dif-
ferent behaviour depending on its internal state. From a programming and implementation

17

18 CHAPTER 3. A COMPOSITION CALCULUS

point of view it is preferred to omit such operators to make the language simpler. The Pict
experiment has shown that the π-calculus is a suitable basis for programming many high-
level construct by encodings [PT00]. For example, Pict does not contain primitives for choice
or matching.

Piccola adopts from the π-calculus the concept of lexical scopes for channels. These
scopes are widened implicitly on communication, a principle called scope extrusion. The
term (νa.P) | Q denotes two processes P and Q in parallel and P has a local channel a. The
scope of channel a is P. If Q does not contain a free we can widen the scope of the channel to
include Q. The parallel process is the same as νa.(P | Q), i.e., where the scope of a includes
process Q. This is what happens when process P sends a to Q.

Asynchronous channels. The amount of synchronization provided by the communication
primitives is an important aspect to distinguish between different paradigms of message
passing. The basic issue is whether communication is synchronous or asynchronous. If it is
synchronous, the sender of a message knows that the message has been consumed. Sending
messages blocks. In an asynchronous world, the sender has no implicit knowledge whether
a message sent is already consumed by a receiver. For programming and implementation
purposes, synchronous communication seems uncommon and can generally be encoded
by using explicit acknowledgments (c.f. [HT91, Bou92, Pal97]). Moreover, asynchronous
communication has a closer correspondence to distributed computing [Woj00].

Furthermore, in the π-calculus the asynchronous variant has the pleasant property that
equivalences are simpler than for the synchronous case [FG98]. Input-guarded choice can be
encoded and is fully abstract [NP96]. For these reasons we adopt asynchronous channels in
Piccola.

Higher-order abstractions. Programming directly in the π-calculus is often considered like
programming a concurrent assembler. When comparing programs written in the π-calculus
with the lambda-calculus it seems like lambda abstractions scale up, whereas sending and
receiving messages does not scale well. There are two possible solutions proposed to this
problem: We can change the metaphor of communication or we can introduce abstractions
as first-class values.

The first approach is advocated by the Join-calculus [FGL+96, Fou98]. Communication
does not happen between a sender and a receiver, instead a join pattern triggers a process on
consumption of several pending messages. Such join patterns have a close similarity with
an encoding of lambda terms using a continuation-passing style. The resulting encoding of
the lambda calculus is simpler than encodings into the π-calculus [FG96]. Another example
of changing the channel metaphor is the Update calculus of Parrow et al. [PV97]. In this
calculus, the asymmetry of non-blocking send and blocking receive is resolved and both
primitives are non-blocking. In Odersky’s applied π-calculus, processes return a channel
name [Ode95]. The Blue calculus of Boudol [Bou97] changes the receive primitive into a
definition which is defined for a scope. By that change, the Blue calculus is more closely
related to functions and provides a better notion for higher-order abstraction. Boudol calls
it a continuation-passing calculus.

The other idea is used by Sangiorgi in the HOπ-calculus. Instead of communicating
channels or tuples of channels, processes can be communicated as well. Surprisingly, the
higher-order variant has the same expressive power as the first-order version [San93, San01].

3.1. REQUIREMENTS AND RELATED WORK 19

In Piccola we take the second approach and reuse existing encodings of functions into
the π-calculus as in Pict. The motivation for this comes from the fact that the HOπ-calculus
itself can be encoded in the first-order calculus.

Asymmetric parallel composition. The classical way to describe concurrent systems is by
giving a sequence of configurations or by prescribing how a configuration may evolve. This
model uses a formalism based on processes, i.e., mere computations that do not return a
result. An expression, on the other side is a term that returns a value as its result. Models of
objects and functions in the π-calculus like in any process calculus translate an expression
into a process that sends a message on a result channel using continuations. Such encod-
ings are important to show the expressiveness of the calculus. However, such encodings
also obscure the understanding of a program. We argue that expressions with a result are
such a fundamental aspect of composition that they deserve a semantics in their own right.
We directly describe the semantics of Piccola expressions rather than giving them via an
encoding.

When expressions play such a central role we abandon the concept of a symmetric par-
allel composition operator. The parallel composition A | B of two expressions A and B is an
expression that runs A and B in parallel. Any result returned by B is returned as the result of
the whole expression. The result returned by A is discarded. As a consequence, unlike in the
π-calculus, the effects of A | B and B | A are different. Running A | B can be implemented by
forking off A as a new thread and then running B. The semantics of asynchronous parallel
composition is used in the concurrent object calculus of Gordon and Hankin [GH98] or the
(asymmetric) Blue calculus studied by Dal-Zilio [DZ99]. The same concept is also present by
Ferreira et al. [FHJ96] to give a compositional semantics to CML [Rep91].

In the higher-order π-calculus the evaluation order is orthogonal to the communication
semantics [San01]. In Piccola, evaluation strategy interferes with communication, therefore
we have to fix one for meaningful terms. For Piccola, we define strict evaluation which
seems appropriate and more common for concurrent computing.

Record calculus. When working with components and interfaces, a record based approach
is the obvious choice. We use Forms [Lum99, LAN00] as an explicit notion for extensible
records. Record calculi are studied in more detail for example in [CM93, Rém94]. A record
has fields which are accessed by projection. Extensible records support a concatenation op-
eration. Records can be modeled in two different ways. On one hand, we can compile the
records away and use offsets and arrays and model records as syntactic sugar. On the other
hand, we can keep the records as explicit runtime objects. For efficiency reasons one might
prefer the first approach, for highest flexibility one might prefer the latter. However, the
dictionary approach normally makes reasoning very hard, since a program may arbitrarily
change its methods.

The forms used in Piccola are somewhat in between. They support some introspection
but not intercession. It is possible to inspect a form. Form inspection returns arbitrary label
bound in the form. A label is reified as a form with three services: one to project, one to
hide, and one to bind a new form using the encoded label. Such an operation is necessary
to define agents that learn new capabilities at runtime. Furthermore, this allows us to iterate
over the labels of a form and specify generic wrappers.

In the λ-calculus with names of Dami [Dam94] arguments to functions are named. The

20 CHAPTER 3. A COMPOSITION CALCULUS

resulting system supports records as arguments instead of tuples as in the classical calculus.
The λN-calculus was one of the main inspiration for our work on forms without introspec-
tion.

An issue omitted in our approach is record typing. It is not clear how far record types
with subtyping and runtime acquisition of new names can be combined. An overview of
record typing and the problems involved can be found for example in [CM93, Car93].

Explicit environments. An environment is a set of variable-value pairs. In most languages,
the environment gets compiled away and is not available for inspection or modification at
runtime. However, many scripting languages like Perl or Python provide a built-in service
eval which evaluates dynamically created code. This is often referred to as the eval-feature
[Ous98]. It gives the programmer the expressive power needed to express what he could
not — or not so compactly — program otherwise. For example this is needed to acquaint
new components at run-time and plug them in correctly. From a foundational standpoint
however, such an abstraction is rather ad-hoc and lacks a well-defined semantics [SN99].

An explicit environment generalizes the concept of explicit substitution [ACCL91] by
using a record like structure for the environment. We claim that many of the uses of an eval-
feature can be expressed by explicit environments. In the environment calculus of Nishizaki,
there is an operation to get the current environment as a record and an operator to evaluate
an expression using a record as environment [Nis00, SSB99]. Projection of a label x in a
record R then corresponds to evaluating the script x in an environment denoted by R. The
reader may note that explicit environments subsume records. This is the reason why we call
them forms in Piccola instead of just records.

Handling the environment as a first-class entity allows us to define concepts like mod-
ules, interfaces and implementation for programming in the large within the framework. To
our knowledge, the language Pebble of Burstall and Lampson was the first to formally show
how to build modules, interfaces and implementation, abstract data types and generics on
a typed lambda calculus with bindings, declarations and types as first-class values [BL84].
Postscript [Ado90] is another language that includes first-class environments.

Ferrari et al. show a π-calculus with explicit substitution [FMQ96]. However, they do
not use it for explicit namespaces, but to define a structured operational semantics (SOS)
[Plo81] for the π-calculus. The explicit approach makes it possible to use different name
instantiation schemas for early and late semantics.

3.2 The Piccola Calculus

Before defining the syntax, we have a look at an example that demonstrates the explicit envi-
ronments of Piccola. The Piccola calculus provides a notation for specifying agent expressions
A and forms F. The reduction relation A → B means that the agent A reduces in one atomic
step to agent B.

Agent expressions can reduce to forms, which are a subset of agents. Intuitively, forms
are collections of bindings and services. The following form F contains two bindings x 7→F1
and z 7→F2 that are concatenated by extension:

F = x 7→F1 · z 7→F2

3.2. THE PICCOLA CALCULUS 21

Abstractions are written as lambda abstractions like λy.(R · y; x). A sandbox expression A; B
denotes an agent B which is evaluated in the environment denoted by A. If B is a variable
we say that the sandbox expression is a projection. The body of the abstraction is thus a
projection on x in the term R · y which denotes the current root context R extended with
the formal argument y. An abstraction put into a sandbox where the environment is a form
denotes a closure which can be invoked. The environment of the following closure S consists
of the form x 7→ε:

S = x 7→ε; λy.(R · y; x)

Applying service S to F denotes the following agent:

SF = (x 7→ε; λy.(R · y; x))F

An application of a closure to a form reduces to a sandbox expression, where the environ-
ment is extended with a binding y 7→F, i.e., a binding containing the actual argument. Now
SF reduces to:

→ x 7→ε · y 7→F; R · y; x

Next, we evaluate R · y in its environment. We distribute the environment and replace R
with it. The projection x 7→ε · y 7→F; y reduces to F. This gives:

→ x 7→ε · y 7→F · (x 7→F1 · z 7→F2); x

Finally, the value of x is looked up in the environment. Extension · overwrites bindings with
the same labels, thus projection for x finds the binding x 7→F1:

→ F1

The agent expression SF has reduced to F1, written SF ⇒ F1. We can say that the service S
projects on the label x. If, however, the argument to S does not contain a binding for x, then
the empty form ε is returned as default. Formally this is expressed by Sε ⇒ ε.

The example we have presented demonstrates how forms act as explicit environments.
The other aspect of Piccola are agents and channels for which more examples are given in
Section 3.4.

3.2.1 Design Rationale

The semantics of Piccola we will give is based on a structural congruence ≡ and a reduction
relation→ between agents. Structural rules are reversible. They define syntactical rearrange-
ments on agent terms. They do not correspond to an actual computation. We have not used
structural rules in our introduction example. They define, for instance, how we distribute
the environment and reorder forms so that projections can look up values. Reduction rules
rewrite (and simplify) terms. They correspond to the basic computation steps and are not
reversible. This style of giving semantics was used by Milner [Mil91] and is inspired by the
Chemical Abstract Machine (CHAM) of Berry and Boudol [BB92].

22 CHAPTER 3. A COMPOSITION CALCULUS

One of the main difference between Piccola and the π-calculus is the big number of struc-
tural rules. The main reason for this is that we not only have parallel composition, but also
application, extension, and sandbox expressions in order give a direct semantics for compo-
sition abstractions.

When defining the semantics of forms we can either relate expressions by structural con-
gruence or by reduction. As an example, we want to say that extension overwrites bindings
with equal labels. This can be specified by the axiom x 7→F1 · x 7→F2 ≡ x 7→F2 or by the reduction
rule x 7→F1 · x 7→F2 → x 7→F2. We have chosen to give the semantics of forms as an equational
theory where the equations are structural rules.

Our guidelines for using congruence rules and reduction relations are as follows:

• We want the set of forms to be closed under the congruence rules. The congruences de-
fine the semantics of a form independent of any reduction semantics and equivalence
predicate.

• We want that the congruence rules allow us to rewrite any agent into a canonical form.
This canonical form (see Definition 3.11) makes it explicit whether the agent is a barb
or not, and how it can reduce.

Once we have defined the syntax and semantics we will give some more examples how
computation works in our calculus. Then we will explain what it means to say that two
agents are equivalent: two agents are equivalent when no context can ever detect a difference
between the two. While this definition is intuitive it is hard to prove that two agents are
equivalent. The problem is that the definition includes a quantification over all contexts. In
the rest of the chapter we will therefore establish a more technical characterization of how
agents may reduce and how this reduction capabilities are preserved when the agent is put
into a context. For this characterization we write agents in a canonical representation so that
we can formulate a decision process how the agent may reduce. This allow us to characterize
stuck agents, i.e., agents that do not reduce further but are not forms. We will also see that
beta-reduction is a valid law, i.e., that a beta-reduction step is not a visible reduction.

3.2.2 Syntax

The Piccola calculus is given by agents A, B, C that range over the set of agents A in Table
3.1. There are two categories of identifiers: labels and channels. The set of labels L is ranged
over by x, y, z. We often use the term variables and labels interchangeably. Specific labels are
also written in the italic text font. Channels are denoted by a, b, c, d ∈ N . Labels are bound
with bindings and λ-abstractions, and channels are bound by ν-restrictions.

Agent expressions are reduced to static form values or simply forms. Forms are ranged
over by F, G, H, see Table 3.1. Notice that the set of forms is a subset of all agents. Forms are
the first-class citizens of the Piccola calculus, i.e., they are the values that get communicated
between agents and are used to invoke services. Forms are collections of bindings and ser-
vices. The set of forms is denoted by F . Certain forms play the role of services. We use S
to range over services. User-defined services are closures. Primitive services are inspect, the
bind and hide primitive, and the output service.

In the following, we give an informal description of the different agent expressions and
how they reduce.

3.2. THE PICCOLA CALCULUS 23

A, B, C ::= ε empty form | R current root
| A; B sandbox | x variable
| x 7→ bind | hidex hide
| L inspect | A · B extension
| λx.A abstraction | AB application
| νc.A restriction | A | B parallel
| c? input | c output

F, G, H ::= ε empty form | S service
| x 7→F binding | F · G extension

S ::= F; λx.A closure | L inspect
| x 7→ bind | hidex hide
| c output

Table 3.1: Agents and Forms

• The empty form does not reduce further. It denotes a form without any binding.

• The current root agent denotes the current lexical scope. The lexical scope is explicitly
set using a sandbox.

• A sandbox A; B evaluates the agent B in the root context given by A. Agent B is evalu-
ated in a controlled environment. The sandbox provides all resources needed by B. If
B is a variable x, we say that A; x is a projection on x in A.

• A variable denotes the value bound by the variable in the current root context.

• The primitive service bind creates bindings. If A evaluates to F, then x 7→A evaluates
to the binding x 7→F. The bind primitive x 7→ is equivalent to the closure ε; λy.x 7→y, i.e.,
a service that takes a form y and returns the binding x 7→y. We have taken x 7→ as a
primitive service instead of the primitive expression x 7→A in the grammar for agents.
This reduces the number of congruence rules in the next section.

• The primitive service hidex hides the visibility of bindings. If A evaluates to F with no
binding for the label x in F, then hidex A evaluates to F. If A evaluates to a form with a
binding for x, then hidex A evaluates to a form where this binding is hidden.

• The inspect service is the primitive service for inspecting forms. Applying inspect to a
form that contains some bindings returns a first-class encoding of some arbitrary label
in the form. Inspect is also used to check for the empty form or if a form consists only
of a service.

• The values of two agents are concatenated by extension. In the value of A · B the bind-
ings of B override those for the same label in A. Extension was originally introduced as
polymorphic form extension [Lum99, LAN00] distinguished from binding extension.
In the Piccola calculus, both extensions are unified into a single construct.

• An abstraction λx.A abstracts x in A.

24 CHAPTER 3. A COMPOSITION CALCULUS

• Application AB denotes the result of applying A to B. Piccola uses a call-by-value re-
duction order. In order to reduce AB, A must evaluate to a service and B to a form.
If A evaluates to the closure F; λx.A′ and B evaluates to G, then AB evaluates to the
sandbox expression F · x 7→G; A′, i.e., the agent A′ is evaluated in the root context that
consists of the form F extended with a binding x 7→G. If A evaluates to a bind primitive
then AB evaluates to a binding.

• The expression νc.A restricts the visibility of the channel name c to the agent expression
A. A is the scope of channel c.

• The parallel agent A | B evaluates A and B concurrently. The value of A | B is the value
of agent B. The parallel composition operator is not commutative (c.f. Section 3.1).
Evaluating A | B spawns off the agent A asynchronously and yields the value of B.

• The agent c? inputs a form from channel c and reduces to that value. The reader familiar
with the π-calculus will notice a difference with the input prefix. Since we have explicit
substitution in our calculus it is simpler to specify the input by c? and use the context to
bind the received value instead of defining a prefix syntax c(X).A as in the π-calculus.

• The channel c is a primitive output service. If A evaluates to F, then cA evaluates to the
message cF. The value of a message is the empty form ε.

Observe that a single channel c is an output service, i.e., a form. On the other hand, input
c? is not a form. This reflects the fact that a channel stands for a primitive sending service.
Receiving from a channel is an agent that evaluates to any form sent along the channel.

It should be noted that forms may contain free channel names. This is necessary so that
agents can communicate channels. An agent may create a local channel and communicate
this channel. One can think of this communication like giving the address of the channel.
An agent that receives the address can communicate using this channel.

We define the null agent 0 to be the agent νc.c?. We will see that 0 6≡ ε. The null agent
creates a restricted channel c and tries to read from it. Since the channel is restricted no other
agent can ever write to it and the null agent is blocked forever.

The free channels fc(A) of an agent A are inductively defined in Table 3.2. α-conversion (of
channels) is defined in the usual sense. We identify agents expressions up to α-conversion.
We allow ourselves some freedom in the use of α-conversion on channels. We furthermore
assume that the substitution of channels does not affect bound channels. In a statement, we
say that a channel name is fresh to mean that it is different from any other name which occurs
in the statement.

We omit a definition of free variables. Since Piccola is a calculus with explicit environ-
ments, we cannot easily define α-conversion on variables. Such a definition would have to
include the special nature of R. Instead, we define a closed agent where all variables, root
expressions, and abstractions occur beneath a sandbox.

Definition 3.1 The following agents A are closed:

• ε, x 7→, hidex, L, c and c? are closed agents.

• If A and B are closed then also A · B, AB, A | B and νc.A.

• If A is closed, then also A; B for any agent B.

3.2. THE PICCOLA CALCULUS 25

fc(ε) = ∅ fc(R) = ∅
fc(x) = ∅ fc(L) = ∅

fc(x 7→) = ∅ fc(hidex) = ∅
fc(A; B) = fc(A) ∪ fc(B) fc(A · B) = fc(A) ∪ fc(B)

fc(λx.A) = fc(A) fc(AB) = fc(A) ∪ fc(B)
fc(νc.A) = fc(A)\{c} fc(A | B) = fc(A) ∪ fc(B)

fc(c?) = {c} fc(c) = {c}

Table 3.2: Free Channels

Observe that any form F is closed by the above definition. An agent is open if it is not
closed. Open agents are R, variables x, abstractions λx.A and compositions thereof. Any
agent can be closed when we put it into a sandbox with a closed context. Sandbox agents are
closed if the root context is closed. In Lemma 3.4 we show that the property of being closed
is maintained by reduction.

The following defines the set of labels of a form.

Definition 3.2 For each form F, the set of labels(F) ⊂ L is given by:

labels(ε) = ∅ labels(S) = ∅
labels(x 7→G) = {x} labels(F · G) = labels(F) ∪ labels(G)

3.2.3 Syntactic Conventions

The operators of agent expressions have the following precedence: Application is stronger
than extension and associates to the left. Extension is stronger than ν- and λ-abstraction,
which are stronger than sandbox. Sandbox is stronger than parallel composition. Extension
and sandbox operators are associative thus we omit parentheses. For example:

x 7→y · A; R | B is ((((x 7→)y) · A); R) | B
νc.A | B is (νc.A) | B

y 7→λx.B; C is (y 7→(λx.B)); C

We use a single ν or λ binder to scope several channels or define higher-order abstractions.
For instance

νcd.A is νc.(νd.A)

We often write the empty form as () when it is the argument in an application thus we write
F() instead of Fε.

3.2.4 Structural Congruence

We now define a structural congruence ≡ on agents expressions. This approach builds on
the Chemical Abstract Machine Ideas of Berry and Boudol [BB92], and the π semantics of
Milner [Mil91, Mil92]. The idea is that two agents can be considered equivalent even if they

26 CHAPTER 3. A COMPOSITION CALCULUS

are syntactically different. In the π-calculus this allows us to rewrite expressions to bring
communicating partners in juxtaposition.

We extend this idea and define the semantics of operators like sandbox or hide by struc-
tural congruence. This corresponds to the algebraic specification approach of using con-
ditional equations [Wir90]. For instance the rule ext service commute S · x 7→F ≡ x 7→F · S is
read as: If there are agents A, B such that A is a service and B is a form then it holds that
A · x 7→B ≡ x 7→B · A.

A congruence relation ≡ obeys the following laws:

A ≡ A (reflexive)
A ≡ B implies B ≡ A (symmetric)

A ≡ B and B ≡ C implies A ≡ C (transitive)
A ≡ B implies C[A] ≡ C[B] (congruence)

We write C for a context. A context is an agent expression with one or several holes. Filling
these holes with an agent A is written C[A]. The rule congruence thus says that we can replace
any sub-agent with a congruent one.

We present the congruence rules in three groups. The first group deals with congruence
on forms. It specifies that extension is idempotent and associative on forms. The second
group defines preforms. Those are agents expressions that are congruent to a form. The
rules in this group define the semantics of certain sandbox expressions and of the extension
and hide operators. The last group defines the semantics of parallel composition and of
communication, those are the rules for communicating agents.

The set of preforms F≡ is a subset of the set of agent expressions A. Some agent expres-
sions are congruent to a form using the ≡ relation. The intention is that the agent A can be
restructured to a form F without actually performing a computation. For instance, the agent
hidexε is equivalent to the empty form ε. The set of all preforms is defined by:

F≡ = {A|∃F ∈ F with F ≡ A} (3.1)

Clearly, all forms are preforms.

Form Congruences

This set of congruence rules specify the properties of the extension operator when used to
compose forms.

F · ε ≡ F (ext empty right)
ε · F ≡ F (ext empty left)

(F · G) · H ≡ F · (G · H) (ext assoc)
S · x 7→F ≡ x 7→F · S (ext service commute)

x 6= y implies x 7→F · y 7→G ≡ y 7→G · x 7→F (ext bind commute)
x 7→F · x 7→G ≡ x 7→G (single binding)

S · S′ ≡ S′ (single service)

The first three rules require · to be an associative operator with the empty form as neutral el-
ement. The rules ext service commute and ext bind commute allow us to rearrange the bindings

3.2. THE PICCOLA CALCULUS 27

in a form. We use these rules to bring the required binding or service at the end of a form for
the reduction rules.

The rules single service and single binding specify that extension overwrites services and
bindings with the same label. Using these form congruences, we can rewrite any form F into
one of the following three cases:

F ≡ ε

F ≡ S
F ≡ F′ · x 7→G where x 6∈ labels(F′)

This is proven by structural induction over forms. It formalizes our idea that forms are
extensible records unified with services. A form has at most one binding for a given label.

Preform Congruences

A sandbox expression A; B denotes an agent B being evaluated in the environment given by
the value of A. The following set of rules rewrite sandbox expressions when the environment
is evaluated to a form F.

F; A · B ≡ (F; A) · (F; B) (sandbox ext)
F; AB ≡ (F; A)(F; B) (sandbox app)

A; (B; C) ≡ (A; B); C (sandbox assoc)
F; G ≡ G (sandbox value)
F; R ≡ F (sandbox root)

The sandbox operator is associative and distributive over extension and application. A sand-
box expression over a form value is the same as the form value. A sandbox over root yields
the sandbox form. Note that these last two rules convert a preform into a form.

The rules distribute the environment. The subagents may be variables which are looked
up in F. The reader may note that the rules build on the fact that the evaluation strategy is
fixed from left to right. The environment is evaluated to a form F and will thus not enjoy
any further reductions. Had we specified:

C; A · B ?≡ (C; A) · (C; B)

we could rewrite S(); A · B into (S(); A) · (S(); B) which would mean that the application S()
which might cause some side-effects would get invoked twice. With the above rules, such
duplications are not possible.

The next set of congruence rules define the semantics of label hiding. Applications of
hidexF are recursively defined over F.

hidex(F · x 7→G) ≡ hidexF (hide select)
x 6= y implies hidey(F · x 7→G) ≡ hideyF · x 7→G (hide over)

hidexε ≡ ε (hide empty)
hidexS ≡ S (hide service)

28 CHAPTER 3. A COMPOSITION CALCULUS

Observe that label hiding does not allow us to drop one binding and fetch an “older” bind-
ing. Forms do not have a history. The label hiding semantics is the same as in the form
calculus [Sch99].

The following rule specifies that the important part of a form is the service when used as
a functor. We can drop additional bindings F in this case.

(F · S)G ≡ SG (use service)

Agent Operators

We intend that the result of a concurrent expression be returned from the right-hand side
of its topmost parallel composition. This topmost, right-hand side agent is called the main
agent. Therefore, in contexts expecting a result, parallel composition is not commutative.
On the other hand, in contexts immediately to the left of a parallel composition, parallel
composition is commutative since its result is discarded. The main agent C can spawn off
sub-agents during its lifetime. The final value of C is available even when sub-agents A or
B are still alive. This semantics has a close relation to concurrent programming languages
where a thread may spawn off sub-threads. The rules

(A | B) | C ≡ A | (B | C) (par assoc)
(A | B) | C ≡ (B | A) | C (par left commute)

state that parallel composition is associative and commutative to the left. This allows us to
arbitrarily exchange concurrent agents as long as the main agent is not changed. The rules
are similar to the rules given in the calculus concςm of Gordon et al. [GH98].

There are a number of structural rules that allow the left component of a parallel com-
position to migrate freely in the soup of agents. The ability to do so reflects the fact that the
value of a parallel composition is specified by its right component. Consider for instance the
two rules for extension:

(A | B) · C ≡ A | B · C (par ext left)
F · (A | B) ≡ A | F · B (par ext right)

The rule par ext left says that the communication capabilities of (A | B) · C are that of A and
B, no matter the structure of C. However, the symmetric rule par ext right has the additional
constraint that its left part is evaluated to a form value F. This guarantees left to right eval-
uation. For example in the term S() · S′() the application S() gets evaluated strictly before
S′().

The other par rules are:

(A | B)C ≡ A | BC (par app left)
F(A | B) ≡ A | FB (par app right)

(A | B); C ≡ A | (B; C) (par sandbox left)
F; (A | B) ≡ (F; A) | (F; B) (par sandbox right)

The rules for distributing application and parallel composition follow the same patterns as
the rules for extension. The rule par sandbox left exploits the fact that the value of A | B is the

3.2. THE PICCOLA CALCULUS 29

value of B for sandbox expressions. The rule par sandbox right distributes the environment
F for both agents A and B. This rule is similar to the rules sandbox ext and sandbox app we
presented in the previous paragraph.

The next rule says that the left part of a parallel composition can be discarded once it is
evaluated to a form.

F | A ≡ A (discard zombie)

This rule is motivated by the fact that a form is a fully evaluated agent. The form F will
neither reduce nor communicate anymore.

An output service c applied to a form F is a message. The following rule allows us to
rewrite a message as the parallel composition of the message and the empty form as its
value:

cF ≡ cF | ε (emit)

The specification of the empty form as the value of a message (its main agent) is somewhat
arbitrary. We could also define the value to be F without changing much.

Rule emit enables messages to move around freely. For instance in

x 7→c() ≡ x 7→(c() | ε) by rule emit
≡ c() | x 7→ε by rule par ext right

the message c() escapes the binding.
It is helpful to compare the structure of the rules discard zombie and emit. Both rules elim-

inate or introduce a parallel composition. In fact, rule discard zombie neutralizes unnecessary
applications of rule emit. Consider

cF ≡ cF | ε by rule emit
≡ (cF | ε) | ε by rule emit
≡ (ε | cF) | ε by rule par left commute
≡ cF | ε by rule discard zombie

The rule discard zombie eliminates the parallel composition introduced by the second appli-
cation of rule emit.

The rule commute channels specifies that the order of channel declarations does not matter.
This rule is a classical rule known from the π-calculus.

νcd.A ≡ νdc.A (commute channels)

We also adopt from the π-calculus the scope extrusion rules. These rules are necessary
in order to communicate channels. The scope extrusion rules have a side condition which
ensures that no free channel names are captured when the agent enters a channel scope. For
instance in

c /∈ fc(A) implies A | νc.B ≡ νc.(A | B) (scope par left)

the agent A migrates in and out of the channel scope νc. The side condition ensures that A
does not contain free channel names c. This means that A will not use the channel c. Note
that we may apply α-conversion and rename c in B to a name not free in A.

30 CHAPTER 3. A COMPOSITION CALCULUS

Since there are many (asymmetric) operators we also need many scope extrusion rules.
For simplicity, we omit the precondition c /∈ fc(A) in the following rules:

(νc.B) | A ≡ νc.(B | A) (scope par right)
(νc.B) · A ≡ νc.(B · A) (scope ext left)

A · νc.B ≡ νc.(A · B) (scope ext right)
A; νc.B ≡ νc.(A; B) (scope sandbox right)

(νc.B); A ≡ νc.(B; A) (scope sandbox left)
(νc.B)A ≡ νc.BA (scope app left)
A(νc.B) ≡ νc.AB (scope app right)

3.2.5 Reduction Relation

We define the reduction relation→ on agent expressions to reduce applications, communi-
cation and projections.

The rule reduce beta defines beta reduction. The rule does not substitute G for x in the
agent A as in the classical λ-calculus. Instead, it extends the environment in which A is
evaluated. This is the beta-reduction rule found in calculi for explicit substitution [ACCL91,
Nis00]:

(F; λx.A)G → F · x 7→G; A (reduce beta)

This rule defines how to reduce an application of the closure F; λx.A with an argument
G. The application reduces to a sandbox expression where the agent A is evaluated in the
environment F · x 7→G. The binding x 7→G ensures the variable x in A yields G.

The rule reduce comm defines communication over a channel:

cF | c? → F (reduce comm)

The agent c? reduces to the value F if there is a message cF available. Note that the message
gets consumed by this reduction.

There is no need for a symmetric variant of the above rule, even though parallel com-
position is not commutative. Using rule emit, rule par left commute, and rule discard zombie it
holds:

c? | cF ≡ c? | cF | ε ≡ cF | c? | ε → F | ε ≡ ε

The value of the parallel composition will be the value of the message cF which is the empty
form. The main agent is cF whose value is the empty form.

The following rule removes a projection and replaces it by the value of binding:

F · x 7→G; x → G (reduce project)

The reader should note that rule ext bind commute may be used to bring the necessary
binding at the end of the context form in order to trigger rule reduce project. For instance:

x 7→F · y 7→G; x ≡ y 7→G · x 7→F; x → F

3.2. THE PICCOLA CALCULUS 31

The following are the rules for reducing applications of inspect:

Lε → ε; λx.(x; isEmpty)ε (reduce inspect empty)
LS → ε; λx.(x; isService)ε (reduce inspect service)

L(F · x 7→G) → ε; λx.(x; isLabel)labelx (reduce inspect label)

where labelx = project 7→(ε; λx.(x; x)) · hide 7→hidex · bind 7→(x 7→).
We use L to inspect a form F. If F is the empty form, rule reduce inspect empty applies.

If F consists of a service and has no bindings rule reduce inspect service applies. Otherwise F
contains at least a binding x 7→G for x and G appropriate. The value form labelx is a first-class
encoding of the label x. A label has three capabilities: to be projected in a form, to hide the
visibility, and to create a new binding with this label. These three capabilities are reified by
the two primitive services hidex and x 7→ and the projection service.

L is not deterministic if the inspected form contains several labels. Let F = x 7→ε · y 7→ε. It
holds LF → ε; λx.(x; isLabel)labelx as well as LF → ε; λx.(x; isLabel)labely due to the structural
rule ext bind commute that allow reordering of bindings. Applications of L can be found in
Section 3.4.4.

In order to reduce subexpressions we use evaluation contexts. An evaluation context
E has a single hole, written []. Filling this hole with an agent expression A denotes the
expression E [A]. The evaluation context states where reduction may happen. The evaluation
context defines strict evaluation strategy:

Definition 3.3 An evaluation context is generated by the following grammar:

E ::= []
∣∣ νc.E∣∣ E · A
∣∣ F · E∣∣ E ; A
∣∣ F; E∣∣ EA
∣∣ FE∣∣ A|E
∣∣ E|A

Notice that two symmetric variants for extension are not the same: E · A says that we
can reduce a term in the left side of an extension no matter the structure of the right-hand
side. The variant F · E states that we only reduce the right-hand side if the left side is a form
value, i.e., it is fully reduced. The same applies for sandbox expressions and applications.
Reduction is always possible under a parallel composition and channel restriction operator.
Note also that λx.E is not an evaluation context. The body of abstractions does not reduce.

The following rules combine structural congruence and evaluation contexts with reduc-
tion. They allow us to reduce subterms, provided they are in a valid evaluation context:

A ≡ A′ A′ → B′ B′ ≡ B
A → B

(reduce struct)

A → B
E [A] → E [B]

(reduce propagate)

We denote by⇒ the reflexive and transitive closure of→. This concludes the reduction
semantics of the Piccola calculus. The congruence and reduction rules are summarized in
Appendix A.

The property of being closed is respected by reduction:

32 CHAPTER 3. A COMPOSITION CALCULUS

Lemma 3.4 If A is a closed agent and A → B or A ≡ B then B is closed as well.
Proof. Easily checked by induction over the formal proof for A → B. �

3.3 Recursive Services

Since Piccola contains lambda abstraction it contains fixed point combinators as they are
known from the classical lambda calculus [Bar84]. In order to use a fixed-point combinator
to specify mutually recursive services, we have to keep in mind that that reduction is eager.
Consider the fixed point combinator Y:

Y = λ f .(λx. f (xx))(λx. f (xx))

This combinator has the property that it finds a fixed point for every lambda term f , for-
mally: Y f = f (Y f). Since reduction in Piccola is strict, we cannot directly use ε; Y since
this combinator would lead to a nonterminating calculation. Let S = ε; λx.A and S′ =
f 7→S; λx. f (xx). It holds that:

(ε; YS) ⇒ S′S′

→ f 7→S · x 7→S′; f (xx)
⇒ f 7→S · x 7→S′; f (S′S′) → ...

We add an additional formal argument y to prevent the eager evaluation of S′. Let:

fix def= ε; λ f .(λxy. f (xx)y)(λxy. f (xx)y) (3.2)

In order to simplify reading of recursive services, we define services f as:

f (y) = A

instead of f = fix(ε; λ f y.A). The agent A may refer to the arguments y and to f for recursive
calls. The root context of the agent A will contain the variables f and y. To see how f works,
consider fp = ε; λ f y.A. Now, fix fp reduces to:

f = fix fp → f 7→ fp; (λxy. f (xx)y)(λxy. f (xx)y)
→ f 7→ fp · x 7→G; λy. f (xx)y = Fp

Let G = f 7→ fp; λxy. f (xx)y. The invocation f H reduces to

f H = (fix fp)H → (f 7→ fp · x 7→G; λy. f (xx)y)H
→ f 7→ fp · x 7→G · y 7→H; f (xx)y by rule reduce beta

Now xx ⇒ GG by projecting the variables x. Reducing this by rule reduce beta leads to
xx ⇒ f 7→ fp · x 7→G; λy. f (xx)y = Fp. Thus

f H ⇒ f 7→Fp · y 7→H; A

and f = fix fp is a fixed point of the abstraction A specified by f (y) = A. In Section 5.7 we
will use the same combinator to define recursive services within the Piccola language.

3.4. EXAMPLES 33

3.4 Examples

In order to illustrate the expressiveness of the Piccola calculus, we present a few examples
in this section. For this purpose we extend the notions of forms with constants numbers and
the corresponding arithmetic operations.

3.4.1 Encoding Booleans

We can encode booleans by services that either project on the labels true or false depending
on the boolean value they are supposed to model.

True def= ε; λx.(x; true) (3.3)

False def= ε; λx.(x; false) (3.4)

Consider now:

True(true 7→1 · false 7→2) = (ε; λx.(x; true))(true 7→1 · false 7→2)
→ ε · x 7→(true 7→1 · false 7→2); (x; true) by rule reduce beta
≡ (ε · x 7→(true 7→1 · false 7→2); x); true by rule sandbox assoc
→ (true 7→1 · false 7→2); true by rule reduce project
≡ (false 7→2 · true 7→1); true by rule ext bind commute
→ 1 by rule reduce project

Note the swapping of bindings required to project on true in the last step. A similar reduction
would show False(true 7→1 · false 7→2) ⇒ 2.

One of the key points of forms is that a client can provide additional bindings which are
ignored when they are not used. For instance we can use True and provide an additional
binding notused 7→F for arbitrary form F:

True(true 7→1 · false 7→2 · notused 7→F)
⇒ (true 7→1 · false 7→2 · notused 7→F); true
≡ (false 7→2 · true 7→1 · notused 7→F); true by rule ext bind commute
≡ (false 7→2 · notused 7→F · true 7→1); true by rule ext bind commute
→ 1 by rule reduce project

Extending forms can also be used to overwrite existing bindings. For instance instead of the
variable notused a client may override true:

True(true 7→1 · false 7→2 · true 7→3) ⇒ 3

Instead of overwriting bindings we can also overwrite services in Piccola. The word “over-
writing” should not be understood in the object-oriented sense. The reader should keep in
mind that forms are immutable. Overwriting means form extension with the same binding.

A conditional expression is encoded as a curried service that takes a boolean and a case
form. When invoked, it selects the service in the case form and invokes it:

if def= ε; λbc.b(true 7→(c; then) · false 7→(c; else))ε (3.5)

34 CHAPTER 3. A COMPOSITION CALCULUS

Observe that the definition of if uses b, c as variables instead of channels. In examples we
often use arbitrary letters for labels where this does not cause confusion. Now consider:

if True (then 7→(F; λx.A) · else 7→(G; λx.B))
⇒ ε · b 7→T · c 7→(then 7→(F; λx.A) · else 7→(G; λx.B)); b(true 7→(c; then) · false 7→(c; else))ε

⇒ T(true 7→(F; λx.A) · false 7→(G; λx.B))ε

⇒ (F; λx.A)ε

→ F · x 7→ε; A by rule reduce beta

The expression if True has triggered the agent A.
The contract of the conditional service is that it expects the cases bound by labels then

and else. We can relax this contract and provide default services if those bindings are not
provided by the client. To do so, we replace in the definition of if the sandbox expression
c; else with a default service. This service gets triggered when the case form does not contain
an else binding:

ifd
def= ε; λbc.b(true 7→(c; then) · false 7→(else 7→(λx.ε) · c; else))ε (3.6)

Now the false branch in ifd False(then 7→(F; λx.A)) reduces as

false 7→(else 7→(ε; λx.ε) · c; else)
⇒ false 7→(else 7→(ε; λx.ε) · then 7→(F; λx.A); else)
≡ false 7→(then 7→(F; λx.A) · else 7→(ε; λx.ε); else) by rule ext bind commute
→ false 7→(ε; λx.ε) by rule reduce project

and ifd False(then 7→(F; λx.A)) ⇒ ε.

3.4.2 Communication

The following example illustrates the emission of a message aF and shows how this message
floats to its receiver a?:

y 7→(aF) · x 7→a? ≡ y 7→(aF | ε) · x 7→a? by rule emit
≡ aF | y 7→ε · x 7→a? by rule par app right
≡ y 7→ε · (aF | x 7→a?) by rule par ext right
≡ y 7→ε · x 7→(aF | a?) by rule par app right

By rule reduce comm it holds that aF | a? → F and with the evaluation context y 7→ε · x 7→[] and
rule reduce propagate

→ y 7→ε · x 7→F

When we change the order of the bindings in the agent, the term will not reduce since
the message aF cannot float to the receiver:

x 7→a? · y 7→aF 6→ x 7→F · y 7→ε

3.4. EXAMPLES 35

The binding x 7→a? blocks the extension. There is no evaluation context that would permit
the reduction of aF beneath x 7→a? · [].

The above example is independent from the extension operator. For instance if the ex-
tension was a sandbox operator we have:

y 7→aF; x 7→a? → x 7→F
x 7→a?; y 7→aF 6→ y 7→ε

If the two expressions where composed in parallel, then reduction is of course possible:

y 7→aF | x 7→a? → x 7→F
x 7→a? | y 7→aF → x 7→F | y 7→ε ≡ y 7→ε

The last congruence is due to rule discard zombie.

3.4.3 Replication

Even though the Piccola calculus has no explicit replication operator, it is enough to write
agents with infinite behaviour. Consider the service s = F; λx.A | xx. It holds:

ss → F · x 7→s; (A | xx) by rule reduce beta
≡ (F · x 7→s; A) | (F · x 7→s; xx) by rule par sandbox right
≡ (F · x 7→s; A) | (F · x 7→s; x)(F · x 7→s; x) by rule sandbox app
→ (F · x 7→s; A) | s(F · x 7→s; x) by rule reduce project
→ (F · x 7→s; A) | ss by rule reduce project
⇒ (F · x 7→s; A) | (F · x 7→s; A) | ss
⇒ · · ·

which means that the reduction will lead to infinitely many instantiations of (F · x 7→s; A). If
the agent A was another sandbox expression G; A′ then we would have:

F · x 7→s; A = F · x 7→s; (G; A′)
≡ (F · x 7→s; G); A′ by rule sandbox assoc
≡ G; A′ by rule sandbox value

thus
ss ⇒ G; A′ | ss ⇒ G; A′ | G; A′ | ss → · · ·

The term ss reduces to infinitely many instances of G; A′. In the π-calculus there is a special
operator !P to create arbitrary many instances of a process P. In Piccola, infinitely many
instantiations of an agent can be programmed and do not have to be made primitive. In the
higher-order π-calculus replication can be modeled in a similar way [San01].

3.4.4 Form Inspection

This section demonstrates the use of L to inspect a given form. We show how to check if
a form is the empty form. Furthermore we can decide if a form contains a given label. We

36 CHAPTER 3. A COMPOSITION CALCULUS

extend the encoding of first-class labels to contain a generic exists service. Last but not least,
we use L to iterate over all the labels of a form.

The service isEmpty returns true if the argument is the empty form and isPlainService
returns true if the argument is a service. A form is a plain service if it is a service not extended
with any bindings. In order to simplify reading we also define aTrue and aFalse which are
services that return true and false respectively (see Definitions 3.3 and 3.4).

aTrue def= ε; λx.True (3.7)

aFalse def= ε; λx.False (3.8)

isEmpty def= ε; λx.Lx(isEmpty 7→aTrue · isService 7→aFalse · isLabel 7→aFalse) (3.9)

isPlainService def= ε; λx.Lx(isEmpty 7→aFalse · isService 7→aTrue · isLabel 7→aFalse) (3.10)

We can now decide if a form F contains a binding for label x. This is the case, when
x 7→ε · F; x is the empty form and x 7→L · F; x is a plain service. The idea is to provide different
default bindings for x and check if projection yields these defaults. We use L as a prototype
for a plain service.

existsx
def= ε; λ f .if (isEmpty(x 7→ε · f ; x))

(then 7→(λy.if (isPlainService(x 7→L · f ; x))
(then 7→aFalse · else 7→aTrue))·

else 7→aTrue)

It holds that existsx(F) ⇒ True if x ∈ labels(F) and existsx(F) ⇒ False otherwise.
Instead of having a single service existsx we prefer to extend the notion of first-class labels

with an exists predicate. The following service label extracts a label and returns a first class
label bound in its argument. If the argument is a plain service or the empty form, the empty
form is returned:

label def= ε; λ f .L f
isEmpty 7→(λx.ε)·
isService 7→(λx.ε)·
isLabel 7→(λl.

l·
exists 7→(λ f .if (isEmpty((l; project)((l; bind)ε · f)))

(then 7→(λy.if (isPlainService(l; project)((l; bind)L · f)))
(then 7→aTrue
else 7→aFalse)·

else 7→aFalse))))

We extend the first-class label l in the isLabel service with the exists service. We use l in
the exists service. For instance in the expression x 7→ε · f ; x that is passed to isEmpty, the
binding x 7→ε gets replaced by (l; bind)ε and the projection A; x is replaced by an application
(l; project)A. Thus (x 7→ε · f); x becomes (l; project)((l; bind)ε · f).

The term label(x 7→ε) denotes a form reifying x with services bind, project, hide and exists.

3.5. EQUIVALENCE FOR AGENTS 37

The following service iterates over all the bindings of a form. It uses inspect as its con-
ditional statement. If the inspected form is the empty form or a service, it is returned. If the
inspected form contains a binding, a recursive call is performed with the binding hidden.
The resulting form extended with the binding itself. Thus, visit F ⇒ F.

visit(f) def= L f (isEmpty 7→(λx. f)·
isService 7→(λx. f)·
isLabel 7→(λl.visit((l; hide) f) · (l; bind)((l; project) f)))

In order to make uniform modification to a form F, we adapt the service visit. For in-
stance, the following service “replaces” all the bindings x 7→F with a binding to the empty
form x 7→ε and removes the service.

nullify(f) def= L f (isEmpty 7→(λx.ε)·
isService 7→(λx.ε)·
isLabel 7→(λl.nullify((l; hide) f) · (l; bind)ε))

For instance it holds that nullify(L · x 7→G) ⇒ x 7→ε.

3.5 Equivalence for Agents

In this section we define an equivalence relation for agents. The reduction relation we have
presented is very intensional. It does not give us a feeling how two different agents might
reduce. It keeps the algebraic structure of agent terms. We can abstract from the internal
states of agents by quotienting by an operational congruence.

Recall the last example of the previous section. We want to say that nullify(L · x 7→G)
and x 7→ε are the same which allows us to replace in a program the first expression with
the second. Two agents are equivalent if they exhibit the same behaviour, i.e., they enjoy the
same reductions. Milner and Sangiorgi have defined the notion of barbed bisimulation [MS92].
The idea is that an agent A is barbed similar to B if A can exhibit any reduction that B does
and if B is a barb, then A is a barb, too. If A and B are similar to each other they are bisimilar.
The advantage of this bisimulation is that it can be readily be given for any calculus that
contains barbs or values.

For the asynchronous π-calculus, barbs are usually defined as having the capability of
doing an output on a channel. Since Piccola has the notion of forms we extend them to barbs
by including parallel composition and close them by channel restriction and the congruence
relation. This is due to the fact that an agent, while reducing to a form value, may spawn
new subagents that are still active when the main agent is already fully evaluated to a form.

Definition 3.5 A barb V is an agent expression A that is congruent to an agent generated by the
the following grammar:

V ::= F
∣∣ A|V

∣∣ νc.V

We write A↓ for the fact that A is a barb, and A⇓ when a barb V exists such that A ⇒ V.

The following lemma relates forms, barbs and agents:

38 CHAPTER 3. A COMPOSITION CALCULUS

Lemma 3.6 The following inclusion holds and is strict:

F ⊂ F≡ ⊂ {A|A↓} ⊂ A
Proof. The inclusions hold by definition. To see that the inclusion are strict, consider the
empty form ε, the agent hidexε, the barb 0 | hidexε and the agent 0. �

Definition 3.5 does not give a syntactical characterization of barbs. Instead, it is enough
that the agent A is structural congruent to a syntactically characterized term. The following
lemma gives a syntactical characterization of barbs.

Lemma 3.7 For any form F, agent A, and label x, the following terms are barbs, given V1 and V2
are barbs.

V1 ·V2 νc.V1

V1; V2 A | V1

x 7→V1

Proof. By definition we have V ≡ νc̃.A | F. The claim follows by induction over F. �

We now define barbed bisimulation and the induced congruence:

Definition 3.8 A relationR is a (weak) barbed bisimulation, if AR B, i.e., (A, B) ∈ R implies:

• If A → A′ then there exists an agent B′ with B ⇒ B′ and A′ R B′.

• If B → B′ then there exists an agent A′ with A ⇒ A′ and A′ R B′.

• If A↓ then B⇓.

• If B↓ then A⇓.

Two agents are (weakly) barbed bisimilar, written A ≈̇ B, if there is some (weak) barbed bisimulation
R with A R B. Two agents are (weakly) barbed congruent, written A ≈ B, if for all contexts C we
have C[A] ≈̇ C[B].

We define behavioural equality using the notion of barbed congruence. As usual we can
define strong and weak versions of barbed bisimulation. The strong versions are obtained in
the standard way by replacing⇒with→ and ⇓with ↓ in Definition 3.8. We only concentrate
on the weak case since it abstracts internal computation.

The following diagram may help the reader to understand the concept of similarity. If A
and B are barbed bisimilar and A reduces to A′ then we know that there exists a B′ and we
can complete the diagram

A ≈̇ By
A′

to

A ≈̇ By w�
A′ ≈̇ B′

Barbed bisimulation per se cannot serve as a congruence since it is not preserved by
parallel composition. For instance, 0 ≈̇ a? and aε ≈̇ 0 since neither expression reduces and
neither is a barb. But aε | a? → ε. The discriminating power of the barbed congruence
comes from the fact that we quantify over all contexts. Intuitively, this means that we cannot

3.6. ERRONEOUS REDUCTIONS 39

distinguish between A and B by putting them into any context C, since C[A] and C[B] behave
the same. We cannot program a context that would be able to distinguish between A and B.

Definition 3.8 does not give us much intuition on what expressions are barbed bisimi-
lar. Clearly, congruent terms are barbed congruent, since congruent terms cannot be distin-
guished by definition. In order to show that something is not barbed congruent we have to
give a discriminating context. For example:

x 7→ε 6≈ y 7→ε (3.11)
ε 6≈ 0 (3.12)

The context []; x distinguishes the first two agents. It holds that (x 7→ε); x → ε but (y 7→ε); x 6→
A for all agents A. For the second example it is enough to see that both agents do not reduce
further, but only the empty form is a barb.

3.6 Erroneous Reductions

Not all agents reduce to forms. Some agents enjoy an infinite reduction like the agent ss in
Section 3.4.3. Other agents are stuck. An agent is stuck if it is not a barb and cannot reduce
further.

Definition 3.9 An agent A is stuck, written A ↑, if A is not a barb and there is no agent B such
that A → B.

Clearly it holds that 0 ↑ and R ↑. The property of being stuck is not compositional. For
instance c? ↑ but obviously, c() | c? can reduce to ε. We can put R into a context so that it
becomes a barb, for instance F; R ≡ F. Note that if an agent is stuck it is not a preform:
F≡ ∩ {A|A↑} = ∅ by definition.

One might argue that the null agent is stuck by intention. But there are other stuck agents
where we prefer to say that an error appeared. Those agents are sandbox expressions where
the variable is not defined and applications where the functor does not actually reduce to
a service, or — more precisely — to a form containing a service. Proposition 3.15 in the
following section contains a complete characterization of stuck agents.

Piccola considers illegal projections and application as runtime errors. It is possible to
avoid those errors. With first-class labels and exists it is possible to detect unbound variables.
We can introduce run-time checks by masking every variable x with a check if x is bound in
the root context. If x is not bound we can signal an exception. For instance, if we replace all
x by

if ((label(x 7→ε); exists)R)(then 7→(λy.x) · else 7→(λy.0)) (3.13)

we block using the null agent when an x is not defined in the root context.
Detecting illegal service application is simpler. We replace any application AB by

((ε; λy.0) · A)B (3.14)

and this ensures that the functor contains a service. Invoking the default service blocks, thus
the original application AB blocks unless A contains a service.

Of course it makes more sense to call a global error handler in case an illegal projection is
performed or a form without a service is used as a functor than blocking with the null-agent.

40 CHAPTER 3. A COMPOSITION CALCULUS

Instead of replacing all occurrences of variables and applications, we can use a type sys-
tem to infer knowledge about the current root. With a type system, we could reduce the
number of actual run-time type checks needed. However, we have not further explored this
idea.

3.7 Canonical Terms

In this section we define a canonical representation for agent expressions. This representa-
tion allows us to identify where reduction happens. In general it is not obvious how an agent
A can reduce since we have to consider all agents B congruent to A and see if we can write
B as the composition of a evaluation context and a reduction head. We have to check all
possibilities to write A as the composition of a evaluation context and a left-hand side of one
of the reduction rules. The canonical representation helps us discover all possible reductions
of an agent expression.

The main result of this section is that we can write any agent A in the following format:

A ≡ νc1...cn.(M1 | ... | Mm | A1 | ... | Ak)

where all the Mi are messages and all the agents Aj are agents that do not contain parallel
composition operators nor channel restrictions except in locations, where they are not visible,
i.e., beneath a closure. For any agent Aj for j < k there is exactly one reduction possible. The
main agent Ak can reduce like any Aj or it is a form. In that case the agent A is a barb, A↓.

In order to make the possible reduction of Aj more explicit, we introduce the notion of
threads and thread contexts.

A thread context Ê is a evaluation context where parallel composition and restriction
appears only to the right of a thread context. A thread context can be understood as the
context of a single thread. The thread context exposes the only possible next reduction.

Definition 3.10 A thread context Ê is generated by the following grammar:

Ê ::= []
∣∣ Ê · A ∣∣ F · Ê

∣∣ Ê ; A
∣∣ ÊA

∣∣ FÊ

Examples of thread contexts are x 7→[] or x 7→ε · []. In contrast, x 7→c? · [] is not a thread context,
since c? and thus x 7→c? are not forms.

Definition 3.11 (Thread) An agent A is a thread if there is a thread context Ê and A can be written
as one of the following:

1. an open thread Ê [R], Ê [x], or Ê [λx.A],

2. an application Ê [GH] where G is either a closure, L, or a form without a service,

3. a projection Ê [F; x], or

4. a receiver Ê [c?] or Ê [F; c?].

If we can write an agent as a thread, we immediately see what the next step of the agent
can be. For instance the agent A = Ê [SF] is going to beta reduce and the agent Ê [c?] is
waiting to fetch a message from channel c. This will be formalized in Proposition 3.15.

3.7. CANONICAL TERMS 41

Notice the side condition for case 2 which requires that the functor of the application
may not be a output service, a label hide or bind service. The semantics of these applications
is captured by congruence rules. If the functor is, for instance, an output service we apply
rule emit and cannot determine the possible next reduction of the thread.

Note that F; Ê is not a thread context. Consider for instance the context Ê = (F; [])(A | B)
and a stuck agent R. It holds Ê [R] ≡ A | FB and we have no control over the possible
reductions of A and thus of Ê [R]. The following lemma says that a thread context does not
contain any internal reductions nor can it enable a reduction to a stuck agent.

Lemma 3.12 If A↑ then Ê [A]↑.
Proof. This is proved inductively over the grammar of thread contexts. We only consider
the case for bindings. Assume A↑. We have to show that also (x 7→A)↑. Obviously we cannot
use rule reduce propagate to reduce x 7→A since A is stuck. We also cannot use any of the struct
rules to rewrite x 7→A. This is due to the fact that if A = A1 | A2 then both Ai ↑. �

In general the property of being stuck is not compositional. The lemma says that this
property is preserved by thread contexts. The converse of this lemma can be used to infer
reduction. If Ê [A] → B then we know that there is an agent C such that A → C and B ≡ Ê [C].
Furthermore, and more important, if we have a thread Ê [A] where the agent A is one of the
cases in Definition 3.11, then there is exactly one possible reduction A and thus Ê [A] can
participate.

Every agent can be written in the following canonical form. We will use this fact to char-
acterize the possible reductions of an agent.

Proposition 3.13 Each agent A is congruent to a canonical agent:

A ≡ νc1...cn.(M1 | ... | Mm | A1 | ... | Ak)

for messages Mi and threads Aj for 0 ≤ i ≤ m, 0 ≤ j < k and Ak is a thread or a form for k ≥ 1.
Furthermore, if A is closed then all Aj are either application, projection, or receiver threads.

An agent A has a thread B if A can be written as νc1...cn.(M1 | ... | Mm | A1 | ... | Ak) and
one of the Aj = B. An agent contains a message M if M = Mi for some i.

The proof for this proposition is rather long but not difficult. It requires a technical lemma
that restricts the claim of the proposition to closed agents. The advantage of closed agents is
that the environment is available. For such agents we can do an inductive proof over A and
bring the agent into the canonical form.

Lemma 3.14 Every closed agent is congruent to a canonical term where all the threads are either
application, projection, or receiver threads.

The property that every agent of the form F; A can be written as a canonical agent is
used for the sandbox agent A; B for an inductive proof over the structure of all agents which
proves the proposition. We recursively convert both A and B into canonical agents and com-
pose the canonical agents. The difficult case is when A is a barb. In this case the composition
leads to a term F; Ê [...] which is handled by the lemma. The technical details are in Appendix
B.

The following proposition formalizes our intuition of threads. Basically, an agent reduces
if it contains a thread that is an application or it contains a thread that is a receiver on a
channel where a message is available.

42 CHAPTER 3. A COMPOSITION CALCULUS

Proposition 3.15 For any agent A it holds that A → B if and only if one of the following is true:

• A contains a thread Ê [GH] and G is either a closure, or the primitive inspect or project service,
or

• A contains a thread Ê [c?] or Ê [F; c?] and a message cG for any channel c.

Proof. We assume that A → B. From this it follows that that A must contain a thread Ê [A′]
and A′ is an application or a receiver. We only have to see that the message can float through
the thread context of the receiver by the appropriate parallel congruence rules.

For the other direction, assume that A consists only of threads Ê [R], Ê [λx.B], Ê [GF] with
G has no service, or Ê [c?], Ê [F; c?] and A does not contain a message cG. By Lemma 3.12 the
agent A is then the parallel composition of stuck threads and the main agent and thus A↑ or
the main agent of A is a form. In both cases, A cannot evolve anymore and thus A 6→ B. �

3.8 Proving the Beta Equivalence

In this section we show that reduction induced by rule reduce beta is in fact a valid law, i.e.,
that is:

(F; λx.A) G ≈ F · x 7→G; A (3.15)

This proof is interesting for two reasons. First, it is an application of the canonical rep-
resentation established in the previous section. Second, it shows that the reduction induced
by rule reduce beta is transparent. In general it is not the case that reduction induction is
transparent. Consider the reduction cε | c? → ε but the terms are not congruent: cε | c? 6≈ ε.
A discriminating context is c(x 7→ε) | []; x might reduce to the empty form if we receive x 7→ε
from c and gets stuck if we receive the empty form.

Given that law 3.15 holds we can replace any application (F; λx.A)G with the above
sandbox expression. In order to prove the law we have to give a barbed bisimulation and
show that it is closed for all contexts. To reason about all context we first have to establish
some properties about contexts and barbs and their possible interaction.

The definition of barbs is extended to contexts:

Definition 3.16 A context C is a barb, written C ↓, if C[0]↓.

Clearly, C ↓ implies C[A] ↓ for all agents A, since all the holes in C are either in the left
component of a parallel composition or inside an abstraction.

Lemma 3.17 C[(F; λx.A)G]↓ implies that C ↓ and C is not an evaluation context.

Proof. Assume C[0] 6↓. In that case C[(F; λx.A)G] would reduce as well which contradicts
the assumption. If C was an evaluation context we could reduce C[(F; λx.A)G]. �

The next lemma states that a redex SG that appears in a context C either gets reduced in
one step, or that the context reduces on its own. In the first case, C is an evaluation context.
In the latter case however, the reduction does not depend on the fact that there is a subterm
SG. We may replace it by any agent D and are still able to reduce it further.

3.8. PROVING THE BETA EQUIVALENCE 43

Lemma 3.18 Assume a context C with C[(F; λx.A)G] → B. Then exactly one of the following
holds:

• The reduction comes from the beta reduction. That is B ≡ C[F · x 7→G; A].

• The reduction comes from the surrounding context. In that case there exists a context C ′ and
B ≡ C ′[(F; λx.A)G]. Furthermore for all agents D it holds: C[D] → C ′[D].

Proof. Let S = F; λx.A. Consider the prooftree that infers the reduction C[SG] → B. By
rule reduce struct and Proposition 3.13 we can also derive:

C[SG] ≡ νc1...cn.(M1 | ... | Mm | A1 | ... | Ak)

...

C[SG] → B

νc1...cn.(M1 | ... | Mm | A1 | ... | Ak) → B

Now there are two cases, either there is a thread Aj = Ê [SG] or the application is part of
a thread where it is not enabled, Aj = C1[SG] = Ê [A′] where SG 6= A′.

In the first case, it might be that Aj reduces and the reduction comes from the beta re-
duction. If another thread than Aj reduces or we have the second case, then the reduction
comes from the surrounding context. The interesting case is when Aj = C1[SG] reduces. We
have ÊA′ → ÊA′′ and the application SG is still visible. �

Observe that the main work for proving the previous lemma has been done in Section
3.7. Now we are ready to prove the main result of this section.

Proposition 3.19 For any form F, G, agent A, and label x it holds that:

(F; λx.A)G ≈ F · x 7→G; A
Proof. Let R be the relation defined by:

R = Id ∪ {(C[(F; λx.A)G], C[F · x 7→G; A]) | for all C , F, G, A}

where Id is the identity relation.
Now let S = F; λx.A, A1 = C[SG] and A2 = C[F · x 7→G; A]. We have to consider 4 cases:

• Assume A1 → A′1. We have to show that there exists a A′2 with A2 ⇒ A′2 and
(A′1, A′2) ∈ R. By Lemma 3.18 there are two possibilities for the reduction A1 → A′1.
If the reduction comes from the beta reduction, we have A′2 = A2. If, on the other
hand, the reduction comes from the context, there exists a context D and we have
C[D] → D[D] for any agent D and thus A′2 = D[F · x 7→G; A].

• Assume A2 → A′2. We have to show that there exists a A′1 with A1 ⇒ A′1. If C is an
evaluation context we have A1 → A2 → A′2. If the reduction comes from the context
by Lemma 3.18 there exists a context D and A1 → D[SG].

• Assume A1 ↓. We have to show that A2⇓. By Lemma 3.17 C[SG]↓ implies C ↓ and thus
also A2 ↓.

• Assume A2 ↓. Similar to the above. If C ↓ then A1 ↓ holds trivially. Otherwise, C is an
evaluation context and we have A1 → A2 ↓.

This shows that R is a barbed bisimulation. Since R is closed for all context this proves
barbed equivalence. �

44 CHAPTER 3. A COMPOSITION CALCULUS

We have shown that beta reduction is a valid law. There are other reductions that gen-
erate laws, like projections or inspecting the empty form, a service, or a form with a single
binding:

F · x 7→G; x ≈ G (3.16)
Lε ≈ ε; λx.(x; isEmpty)ε (3.17)
LS ≈ ε; λx.(x; isService)ε (3.18)

L(x 7→G) ≈ ε; λx.(x; isLabel)labelx (3.19)

We conjecture that similar proofs like the one presented in this section can be given to show
these equivalences.

Below are some other laws that hold in the Piccola calculus.

νc.(cF | Ê [c?]) ≈ νc.Ê [F] (3.20)
A; R ≈ A (3.21)
F; c? ≈ c? (3.22)

A · (B · C) ≈ (A · B) · C (3.23)
A; FB ≈ F(A; B) (3.24)

Law 3.20 is the deterministic communication law. Since there is at most one message cF
available this will be the message consumed by c?. The remaining laws remove unnecessary
sandbox expressions. Instead of proving these laws directly we present a faithful encoding of
the Piccola calculus in the Lπ-calculus [San00] and use proof techniques from the π-calculus.
This will allow us to derive laws as the ones above more mechanically. This is the main
program for Chapter 4. In Section 4.6 we will give proofs for law 3.16 and 3.20.

3.9 Comparison with the Form- and the πL-calculus

In our earlier work on the foundations of Piccola, we specified the semantics of Piccola in
terms of translations to πL [Lum99, LAN00] or to the Form calculus [Sch99]. The difference
between πL (i.e., the π calculus with labels) and the Form calculus is that the latter allows
hiding of labels and forms and contains a testing primitive for labels.

The Piccola calculus is better suited to give a direct semantics of the Piccola language we
present in Chapter 5. The enhanced expressiveness of the Piccola calculus with respect to
the Form- and the πL-calculus are as follows:

• Form extension. In πL and the form calculus we have two primitives to extend a form:
(i) Binding or normal extension written F〈l=V〉 where F denotes a form, l a label, V a
channel name or a projection expression Xl with X a form variable. In addition in the
form calculus, V can be E . In that case, the binding l gets removed or hidden in the
form F〈l=E〉. (ii) Polymorphic extension written F · X which concatenates the form F
with the bindings in the form variable X. In the Piccola calculus there is only a single
extension operator · for asymmetric form concatenation. The form calculus and πL
differ in the semantics for polymorphic form extension when the right hand side form
contains empty bindings (see [Sch99] Section 7.4 for details).

3.10. DISCUSSION 45

• Label hiding. Modification of an existing form by removing the visibility of labels is
not supported in πL. In the form calculus, the extension with E can be used to hide
a single label. E is formally constructed as a projection on a label that is not defined,
i.e., 〈〉l . In addition, polymorphic form restriction, written F\X can be used to hide
all labels in F that are bindings in the form denoted by the form variable X. In the
Piccola calculus label hiding is available as a primitive service. Hiding several labels is
modeled by using inspection.

• Nested forms. The syntax for binding is simplified in the Piccola calculus since nested
forms are primitive. In the form calculus and πL nested forms must be encoded as
constant services.

• Label matching. The form calculus provides a matching construct that allows an agent
to check whether a given form contains a label. In the Piccola calculus we do not
need this primitive since inspect is more expressive and allows us to build a checking
predicate within the language. In contrast, we cannot iterate over all the labels in a
form in the form calculus nor in πL. However, we can encode a label testing service in
πL and the Form calculus in the same way like in Section 3.4.4.

• Higher-order abstractions. In Piccola, lambda abstractions are specified as user ser-
vices. Neither πL nor the form-calculus allow us to specify lambda abstractions di-
rectly. Services are encoded by channels together with a replicated receiver agent. A
drawback of such an encoding is that the reply channels are visible in the resulting pro-
gram and can be misused, either accidently or by intention. A law similar to the beta
equivalence law in Section 3.8 must therefore require much stronger preconditions.

• Value semantics. In the Piccola calculus we have value expressions as the basic prin-
ciple. In πL and in the form calculus, a (parallel) process does not denote a value. In
our calculus we only have form expressions.

3.10 Discussion

We have presented the syntax and semantics of the Piccola calculus. The calculus unifies
concurrency and values as forms. It contains first-class environments. We have presented a
few examples to illustrate its expressiveness, defined an equivalence and given an example
of how one can prove that two agents are equivalent.

We summarize the features of the Piccola calculus and how they support composition
abstractions.

• Form extension allows us to overwrite bindings or to provide defaults. This is illus-
trated with the encoding of booleans in Section 3.4.

• Form introspection and the fact that forms are finitary allows us to iterate over all the
labels of a form. This is illustrated with visit and nullify in Section 3.4.4.

• Forms are immutable values. In Chapter 6 we use this fact to remove the additional
indirection associated with the generic adaption of components.

• Piccola supports higher-order services similar to the λ-calculus with eager evaluation
strategy.

46 CHAPTER 3. A COMPOSITION CALCULUS

• The runtime model consists of agents and channels. This will be used to overcome
compositional mismatches and to define coordination abstractions.

For some of the features, we have not yet seen how they contribute to the validation of this
thesis. This will be the main topic of Chapters 7 and 8. Through the design principle of
generalization, the Piccola calculus unifies services and forms. Forms are arguments in ap-
plications, the explicit environment, and they serve as basis for Piccola’s simple component
model.

There are some design issues of the calculus that can trigger further work:

Classical input prefix. This would mean that we have c(x).A instead of only c?. Intention-
ally, on receiving a value F from c, the agent A[x/F] is evaluated. However, we also have to
take the explicit environment into account which leads to the following rule

cG | F; c(x).A → F · x 7→G; A

with a similar structure as rule reduce beta.

Unify forms and abstractions. It is tempting to say that a form is a finite function from
labels to values. Since we have first-class labels, we might try to unify the syntax for sandbox
A; B and application AB.

However, this unification comes at a great cost. First, we complicate the evaluation strat-
egy since we distinguish on the functor if we invoke a service or evaluate a term inside a
sandbox. Second, we give up the assumption that forms are finite and that we can iterate
over all the labels of a form. However, this assumption is crucial to define wrappers and
glue code in general. For that reason we have not explored this idea further.

Labeled transition system. We could also investigate a labeled transition system for the
Piccola calculus and adopt one of the classical bisimulation (early, late, open). This would
require to prove that the chosen bisimulation coincides or subsumes the barbed bisimulation.
We have not chosen this approach since it seems preferable for our task to reuse foundational
work on the π-calculus to provide a proof system for barbed equivalence. In the next chapter
we present a sound encoding of Piccola into the π-calculus for that purpose.

Chapter 4

Pi semantics of Piccola

In this chapter we show that the Piccola calculus can be faithfully embedded into the asyn-
chronous π-calculus. We present an encoding of Piccola into the π calculus that is sound
and preserves reductions. We do not require a fully abstract encoding. A fully abstract en-
coding would mean that equivalent Piccola agents translated into the π-calculus cannot be
distinguished by any π-processes. Our milder requirement means that we consider only
π-processes which are translations of Piccola agents themselves and state that they cannot
distinguish similar agents. Such processes do not break our encoding protocol.

4.1 The Localized π-calculus

We use the localized π-calculus Lπ of Merro and Sangiorgi [Mer00, MS98, San01]. This is the
asynchronous π-calculus first introduced by Honda and Tokoro [HT92] with the restriction
that the recipient of a channel may only use it in output actions. Only the output capability
of channels is transmitted. This restriction also forbids the introduction of a matching con-
struct, since testing the identity of channels requires more than output capability. In any
case, matching was not defined in the original asynchronous variant. More information on
the asynchronous π-calculus can be found in [ACS96, Bou92, FG98, HHK95, San00].

The Lπ-calculus has some important laws that do not hold in the asynchronous case. For
example the laws

(νc)a〈c〉 = (νc)a〈c〉 | c(x) (4.1)
(νc)a〈c〉 = (νc)a〈c〉 | c〈b〉 (4.2)

may seem surprising at first sight. However, all processes can make at first an output of a
fresh channel c along a. After that, the derivatives of observables are very different in the
classical asynchronous case. In (4.1) a value sent along c is consumed. This is only observable
as long as the observer has the input capability on c. A capability he is not granted in Lπ
thus he cannot observe a difference. Similar for equation (4.2). An observer cannot receive
the communicated value b along c, since he cannot read from c.

4.1.1 Syntax

We use a polyadic calculus which we extend with countably many constants. For the con-
stants we have a matching operation. We communicate the constants but will not use them

47

48 CHAPTER 4. PI SEMANTICS OF PICCOLA

P, Q ::= 0 inaction | a(ṽ).P input prefix
| a〈ṽ〉 output | !a(ṽ).P replicated input
| (νa)P restriction | P | Q parallel
| [x = y]P, Q match

Table 4.1: The Lπ-calculus

as channels (See Section 4.1.3).
The grammar of Lπ is given in Table 4.1. In input patterns all the names in ṽ must be

distinct. Input processes a(ṽ).P and !a(ṽ).P have the restriction that none of the vi may occur
free in P in input subject position, see below.

We introduce a few syntactic categories: the set of all variables is the union of the two
disjoint sets C of channels or names and K of constants. We use the letters v, w to range over
variables, the letters a, b, c, s, p, q to range over channels, and the letters x, y, z to range over
constants. We use the terms names, channels and locations interchangeably. We use tilde
to denote tuples: ṽ is v1, . . . , vn for n ≥ 0 and n is the length of the tuple. When n = 0,
the tuple is empty. We normally omit the brackets. The terms a and a.P stand for a〈〉 and
a().P, respectively. We write vi ∈ ṽ when 0 < i ≤ n for ṽ = v1, . . . vn. (νã)P abbreviates
(νa1) . . . (νan)P. Here are the rules for scoping variables and channels. Restriction (νa)P
binds the channel a in P. Input and replicated input a(ṽ).P bind all the vi ∈ ṽ in P. The set
of free channels fc(P) and bound channels bc(P) of a process P are defined in the usual way. We
identify processes up to α-conversion. By P{ṽ/w̃} with all vi distinct we denote the process
which results from a name-capture avoiding parallel substitution of ṽ for w̃ in P.

To avoid writing too many parentheses, we give ν a higher precedence than parallel
composition and make the bodies of input and testing expressions extend as far to the right
as possible. For instance x(y).(νz)y〈z〉 | z.P means x(y).(νz)(y〈z〉 | z.P).

In an input a(ṽ).P and an output a〈ṽ〉 we say that the channel a is the subject part, the
tuple v are the object parts.

4.1.2 Labeled Transition Semantics

We now give the operational semantics of the Lπ-calculus by means of a labeled transition
system (LTS). An LTS has the advantage over a reduction relation that it can express both: the
internal actions a process can make and the (possible) communications with other processes.
The price we have to pay for this expressiveness is that the rules are not so intuitive as the
plain reduction semantics.

Transitions are of the form P
µ−→ P′, where the label µ ranges over actions of the following

forms:
τ interaction (or reduction)

a[ṽ] input of ṽ at a
(νb̃)a〈ṽ〉 output of ṽ at a, extruding bound names b̃ with b̃ ⊂ ṽ.

In an output action (νb̃)a〈ṽ〉 the part (νb̃) is used to record those channels in ṽ that were
created and are not yet known to the environment. If b̃ is empty, then (νb̃)a〈ṽ〉 is a〈ṽ〉. The
bound and free names of actions are defined in the obvious way. We also say that a is the
subject, and ṽ the object of the action.

4.1. THE LOCALIZED π-CALCULUS 49

Inp
a(x̃).P

a[ṽ]−→ P{ṽ/x̃}
Rep

!a(x̃).P
a[ṽ]−→ P{ṽ/x̃} | !a(x̃).P

Out
a〈ṽ〉 a〈ṽ〉−→ 0

P
(νb̃)a〈ṽ〉−→ P′ c ∈ fc(ṽ)− b̃

Open
(νc)P

(νb̃, c)a〈ṽ〉−→ P′

P1
µ−→ P′1 bc(µ) ∩ fc(P2) = ∅

Par
P1 | P2

µ−→ P′1 | P2

P
µ−→ P′ c /∈ (fc(µ) ∪ bc(µ))

Res
(νc)P

µ−→ (νc)P′

P1
(νb̃)a〈ṽ〉−→ P′1 P2

a[ṽ]−→ P′2 b̃ ∩ fc(P2) = ∅
Com

P1 | P2
τ−→ (νb̃)P′1 | P′2

P
µ−→ P′

TestT

[x = x]P, Q
µ−→ P′

Q
µ−→ Q′ x 6= y

TestF

[x = y]P, Q
µ−→ Q′

Table 4.2: Labeled Transition System for the Lπ-calculus

The set of rules for the LTS of Lπ is given in Table 4.2. The symmetric rules of (Com) and
(Par) are omitted. This is the standard transition system for the π-calculus extended with
straightforward rules for testing constants. Weak transitions are defined as usual: =⇒ is the
reflexive and transitive closure of τ−→;

µ
=⇒ stands for the relation composition =⇒ µ−→=⇒.

Two relations R ∈ A× B and R′ ∈ B × C are composed to RR′ = {(a, c) ∈ A× C | ∃b ∈ B :
(a, b) ∈ R and (b, c) ∈ R′} where A,B and C are any sets.

An important fact relating the LTS and the reduction relation are that the τ reductions
coincide with the ordinary reduction relation. For a formal proof see for instance [ACS96] or
[Mil99].

4.1.3 Sorting

As usual we only consider well-sorted terms. In such terms, the length of output and input
prefix match as well as the type of variables with concrete values communicated. E.g., a
variable that is used in a matching expression cannot be substituted with a channel and vice
versa. A sorting is an assignment of sorts to names. It specifies the arity of each channel and,
by recursion, of the names carried by that name. We write a : s if channel a has sort s. The
formal presentation of a sorting system is not a technical contribution here and we refer the
reader to the standard literature [Mil91, Mil99, SW01]. A typed version of the polyadic Lπ
extended with variants, tuples, and constants is used by Merro et al. to give a semantics to
Obliq [Mer00, MKN00].

50 CHAPTER 4. PI SEMANTICS OF PICCOLA

4.2 Behavioural Equivalence

We define behavioural equality using the notion of barbed congruence [MS92]. As in the last
chapter we first have to define barbs as our observability predicate.

Definition 4.1 (asynchronous observability) For a process P the predicate P ↓a holds if there is
a derivative Q and an output action µ with subject a such that P

µ−→ Q. We write P⇓a if there is a
Q such that P =⇒ Q and Q↓a.

Then barbed congruence is defined as:

Definition 4.2 (Barbed congruence) A symmetric relation S is a (weak) barbed bisimulation
if P S Q implies:

1. If P τ−→ P′ then there is a Q′ with Q =⇒ Q′ and P′ S Q′

2. If P↓a then Q⇓a.

Two processes P and Q are (weakly) barbed bisimilar, written P ∼̇=Q if P S Q for some barbed
bisimulation S . Two processes are (weakly) barbed congruent, written P ∼= Q if for each context
C, we have C[P]∼̇=C[Q].

Barbed congruence is the equality we are mainly interested in. It says that an observer
cannot distinguish two processes because they both have the same output capabilities. How-
ever proving directly that two agents are barbed congruent is often hard since it requires us
to exhibit a bisimulation and to show that it is closed under all contexts. In the π-calculus
literature there is a large body of proof techniques. In the following we will present those
needed for the proofs in the rest of this chapter.

4.2.1 Proof Techniques

Barbed congruence suffers from the universal quantification on contexts. This quantification
makes it very hard to prove process equalities and makes mechanical checking impossible.
It is therefore important to find simpler proof techniques that do not use universal context
quantification. Such formulations should ideally coincide with, or imply barbed congruence.

In the asynchronous π-calculus, ground bisimilarity is such a technique [San00]. The key
idea is that for input actions, we can assume that all the received names are fresh.

Definition 4.3 (Ground bisimiliarity) A symmetric relation S is a strong ground bisimula-
tion if P S Q implies:

1. If P
µ−→ P′ then there is a Q′ with Q

µ−→ Q′ and P′ S Q′ if µ is τ or an output action.

2. If P
a[ṽ]−→ P′ and ṽ ∩ fv(P, Q) ⊂ K then there is a Q′ with Q

a[ṽ]−→ Q′.

Two processes P and Q are strong ground bisimilar, written P ∼ Q if P S Q for some strong
ground bisimulation S . The weak versions of the relations are defined in the usual way by replacing
Q

µ−→ Q′ with Q
µ

=⇒ Q′. Weak ground bisimilarity is indicated by ≈.

4.2. BEHAVIOURAL EQUIVALENCE 51

The side condition for input actions means that the channels received must be fresh.
Thus no channel instantiation is required in the clause for input actions. To check whether
two processes a(ṽ).P and b(ṽ).Q are equivalent it is enough to compare Q and P.

The following proposition states that ground bisimulation is a congruence and that it
implies barbed congruence.

Proposition 4.4 P ≈ Q implies

1. C[P] ≈ C[Q], and

2. P ∼= Q.

(1) is proved in [San00]. (2) is proved like analogous results for the asynchronous π-
calculus, see [ACS96, San01, San00].

To prove bisimulation, it is helpful to reduce the size of the necessary relation to exhibit.
One such technique is bisimulation up to expansion [AKH92, SM92]. The expansion relation
is a preorder derived from ground congruence by comparing the number of silent actions
performed. Intuitively, P . Q implies P ≈ Q and that P is at least as fast as Q, i.e., Q may
have more internal actions than P.

We write P τ̂−→ Q for P = Q or P → Q, and P
µ̂−→ Q for P

µ−→ Q when µ 6= τ.

Definition 4.5 (Expansion) A relation S on processes is an expansion if P S Q implies:

1. If P
µ−→ P′ then there is a Q′ such that Q

µ
=⇒ Q′ and P′ S Q′ if µ is τ or an output action,

2. If Q
µ−→ Q′ then there is a P′ such that P

µ̂−→ P′ and P′ S Q′ if µ is τ or an output action.

3. If P
a[ṽ]−→ P′ and ṽ ∩ fv(P, Q) ⊂ K then there is a Q′ such that Q

a[ṽ]
=⇒ Q′ and P′ S Q′.

4. If Q
a[ṽ]−→ Q′ and ṽ ∩ fv(P, Q) ⊂ K then there is a P′ such that P

â[ṽ]−→ P′ and P′ S Q′.

A process Q expands P, written P . Q, if P S Q for some expansion S .

The expansion relation was originally defined for CCS [Mil89] by Arun-Kumar and Hen-
nessy [AKH92]. They showed that it is a preorder and preserved by all CCS contexts except
summation. In the asynchronous π-calculus, expansion is strictly in the middle of strong
and weak and ground bisimilar: ∼⊂.⊂≈.

The expansion relation can be used for so called “up-to” proof techniques. For showing
a relation S to be a bisimulation we have to show that P

µ−→ P′ implies that there is a Q′

with Q
µ−→ Q′ and P′ S Q′. An up-to proof technique relaxes the requirement of P′ S Q′ to a

weaker form. The technique we use allows us to consider P′ S Q′ only up to a static context
and to expansion.

Definition 4.6 (Static context) A static context has the form (νã)[] | P.

Static contexts ensure the locality principle of Lπ. They ensure that we cannot put a
process which does input on a free name into the context that binds that name in an input
prefix. For instance, a(c).[] is not a static context, since, if we replace [] by c(x).P is not a
process of Lπ anymore.

52 CHAPTER 4. PI SEMANTICS OF PICCOLA

Definition 4.7 (Bisimulation up-to context and &) A symmetric relation S is a bisimulation
up-to & and context if P S Q implies:

1. If P
µ−→ P′′ then there is a static context C and processes P′ and Q′ such that P′′ & C[P′],

Q
µ̂

=⇒& C[Q′], and P′ S Q′ for µ is τ or an output transition,

2. If P
a[ṽ]−→ P′′ and ṽ∩ fv(P, Q) ⊂ K then there is a static context C and processes P′ and Q′ such

that P′′ & C[P′], Q
â[ṽ]
=⇒& C[Q′], and P′ S Q′.

The following lemma states that we can use the up-to context and expansion technique
for proving ground congruence which is included in barbed congruence [SM92]:

Lemma 4.8 If S is a bisimulation up to context and & then it holds that S ⊆≈.

In order to show that S is a bisimulation up to context and expansion we have to com-
plete the diagram

P S Q

µ
y

P′′
to

P S Q

µ
y w�µ̂

P′′ & C[P′] Q′′ & C[Q′]
P′ S Q′.

4.2.2 Some Laws for Lπ

In this section we collect important laws of Lπ. We will use them in the rest of this chapter.
The first law states that deterministic communication is an expansion:

Lemma 4.9 For all a, P, and ṽ, x̃ it holds:

(νa)a〈ṽ〉 | a(x̃).P & (νa)P{ṽ/x̃}

This lemma is one of the most basic laws. The left hand side makes a single τ transition and
becomes the right-hand side. The only transition the process a(x̃).P can make is inputing a
tuple from channel a. The sorting regime restricts the above lemma to a, ṽ, and x̃ of matching
sorts.

The replication theorems [Mil99] express important properties of replicated processes. The
idea is that we can distribute — this means duplicate — a replicated processes over parallel
composition as long as these processes are “used correctly”. The words “using correctly”
mean that the channels from which the replicated processes input are only used for sending
values and not for other communication.

Lemma 4.10 Let R, P, Q be processes not containing the name a in input position. Then:

1. !a(ṽ).S ≈ (!a(ṽ).S) | !a(ṽ).S

2. (νa)P | Q | a(x̃).R ≈ ((νa)P | a(x̃).R) | (νa)Q | a(x̃).R

4.3. RECURSIVE DEFINITIONS 53

The first law is a classical result valid for the π-calculus [Mil99]. The second law is shown
by Milner [Mil91] for the π-calculus with the restriction that a occurs free in P, Q, R only in
output subject position. The stronger variant without the side condition for the Lπ is shown
in [Mer00].

The standard replication lemma requires the precondition that a occurs free in P, Q, R
only in output subject position. Otherwise P and Q may communicate along a in the left-
hand side, whereas such a communication is not possible in the right-hand side where a
are two distinct channels. Pierce and Sangiorgi [PS96] showed that the precondition can
be relaxed using a type system with input and output capabilities and requiring that the
processes P, Q, R only have the output capability on a.

4.3 Recursive Definitions

Our encodings of forms make use of processes that are defined parametrically. We define a
process abstraction as:

A(ṽ) def= PA,

where A is a process identifier and PA is a process that may contain “processes” of the form
A〈w̃〉. It is standard to translate such process definitions into plain π processes using repli-
cation [Mil92]. The translation works as follows.

Suppose the process PA is PA = ...A〈w̃〉..., and we have a process Q = ...A〈ũ〉.... Now
we can translate Q into a π process as follows:

1. Invent a fresh name, e.g. a to stand for A. Fresh means that a should not be used
anywhere in PA and Q.

2. Replace any process A〈w̃〉 in PA and Q with a “call” or sending process a〈w̃〉. The
resulting processes are P̂A and Q̂, respectively.

3. The translated process Q is:
(νa)Q̂ | !a(ṽ).P̂A

Observe that this translation generalizes directly to the case of several processes defined
by mutual recursion.

The difference between the original process and the translated is that the latter has more
τ transitions. The encoding uses a communication to instantiate the process A〈ṽ〉. Since we
are mainly concerned with weak observability this is not an issue.

Special care is needed to ensure that we do not violate the locality constraint of Lπ by
the translation. Merro [Mer00] shows how to ensure that all vi are not used in subject input
position.

4.4 Encoding Piccola in Lπ

In this section we present an encoding of the Piccola calculus of Chapter 3 into the Lπ-
calculus. We split the encoding into two parts. In Section 4.4.2 we define some helper abbre-
viations that end up being an encoding of form values. In Section 4.4.3 we give the encoding
of Piccola to π.

54 CHAPTER 4. PI SEMANTICS OF PICCOLA

4.4.1 Terminology

It is sometimes cumbersome to discuss the behaviour of processes in terms of sending and
receiving. The intuition behind our encodings is better understood when we use terms like
invoking a function and returning a result. We now explain some idioms to simplify the
explanations of processes.

We use replicated processes to model functions [Mil92] using a continuation passing style.
The invocation of a function is done by sending a request along the channel on which the
replicated process listens. The request consists of the argument for the function and a reply
channel and optionally an error channel. The reply or error channel triggers the continuation
of the function. The process modeling the function then either sends the result back along
the reply channel from where the client depicts it or triggers an error by sending the empty
tuple along the error channel. We say that a process invokes a function to describe a process
sending a request along the service channel and in parallel waiting on the reply or error
channel for the result. The input prefixed processes on the reply or error channel are the
continuation of the invocation.

We model a form as the composition of four functions. The semantics of theses functions
is explained in the following section. When we say a form is sent along a channel we actually
mean that the replicated processes encoding the form are instantiated and the quadruple of
names that give access to these functions is sent along the channel.

4.4.2 Encoding of Forms

We use the following conventions for variables for forms and tuples. A Piccola form F is en-
coded by four functions on the channels f̃ = 〈 fp, fi, fh, fs〉. Similar, the form G corresponds
to g̃ etc. The names f̃ give access to the following functions: projection, invocation, hiding, and
selection.

Projection is modeled by the process ! fp(x, p, q).P where x is the label to be looked up. If
F contains a binding for x then the form F; x — or more precisely its encoding — is
returned along p. If the form F does not contain the label x, an empty tuple is returned
on the error channel q. The process P ensures that precisely either a form is sent along
p or the empty tuple along q.

Invocation is modeled by the process ! fi(p, q).P. If the form F contains a service, the channel
giving access to the service is returned along p. If the form does not contain a service,
an empty tuple is sent along q to signal the absence. The agent P ensures that precisely
either a channel is sent along p or the empty tuple along q.

Hiding is modeled by the process ! fh(x, p).P where x represents the label to be hidden. P
sends the form hidexF along p. Note that the form hidexF is always defined, there is no
need for an error channel.

Selection is modeled by the process ! fs(p, q).P. If the form F contains a binding for arbitrary
label x the label x is returned along p. If F does not contain any bindings we send the
empty tuple along q. The agent P ensures that precisely either a label x is sent along p
or the empty tuple along q.

4.4. ENCODING PICCOLA IN Lπ 55

empty(f̃) def= (! fp(x, p, q).q) | (! fi(p, q).q)

| (! fh(x, p).p〈 f̃ 〉) | (! fs(p, q).q)

fun(f̃ , s) def= (! fp(x, p, q).q) | (! fi(p, q).p〈s〉)
| (! fh(x, p).p〈 f̃ 〉) | (! fs(p, q).q)

bind(f̃ , y, g̃) def= (! fp(x, p, q).[y = x]pg̃, q) | (! fi(p, q).q)

| (! fh(x, p).[y = x](νh̃)p〈h̃〉 | empty〈h̃〉, p〈 f̃ 〉) | (! fs(p, q).p〈y〉)

ext(f̃ , g̃, h̃) def= (! fp(x, p, q).(νr)hp〈x, p, r〉 | r.gp〈x, p, q〉)
| (! fi(p, q).(νr)hi〈r, r〉 | r.gi〈p, q〉)
| (! fh(x, p).(νr1, r2)gh〈x, r1〉 | hh〈x, r2〉 | r1(g̃).r2(h̃).(ν f̃)p〈 f̃ 〉 | ext〈 f̃ , g̃, h̃〉)
| (! fs(p, q).(νr1, r2)gs〈r1, r2〉 | hs〈r1, r2〉 | (r1(x).p〈x〉) | r2.r2.q)

Table 4.3: Encoding Forms

Table 4.3 defines a set of process abstractions. We use them as basic building blocks to
encode forms. Informally, they are used to instantiate the empty form, bindings and service
forms, and to compose forms by extension. It is important to note that these abbreviations
are only in Lπ when defined on channel names f̃ that are bound by restriction and not
received. For instance the following term is not a valid process expression:

a(f̃).empty〈 f̃ 〉
since it violates the locality constraint of the Lπ-calculus. We have to ensure that all occur-
rences of the above abbreviations happen in scopes as:

a(g̃).(ν f̃)P | bind〈 f̃ , l, g̃〉

Of course, this restriction applies only for the first “argument” part, i.e., for f̃ and not for g̃
in the example. We now explain the individual form encodings.

Empty Form. The process empty〈 f̃ 〉 installs the empty form on the channels of f̃ . The process
! fp(x, p, q).q serves requests for projections on a label x. Since the empty form does not
contain any bindings, the error process q signals that no binding (for label x) is defined.
The invocation function fi has a similar behaviour: it signals that there is no invocation
channel. The selection function on fs signals that there is no label in the form. The
hiding process ! fh(y, p).p〈 f̃ 〉 sends the form f̃ back along the return channel p as result
for the empty form with label y hidden. This is the empty form as defined by the hide
empty structural rule: hidex ε ≡ ε.

Abstraction. The encoding of a user defined service is straightforward given a service chan-
nel s. Essentially fun〈 f̃ , s〉 corresponds to encoding of the empty form. The only differ-
ence is the invocation process fi(p, q).p〈s〉 which returns the service channel s instead
of signaling the absence of a service on the error channel.

56 CHAPTER 4. PI SEMANTICS OF PICCOLA

Binding. The process bind〈 f̃ , y, g̃〉 defines the binding y 7→G. The process ! fp(x, p, q).P serves
request for projections. If a client projects on y, the tuple g̃ is returned on the result
channel p by the process p〈g̃〉. Otherwise — a projection on a label different than y is
made — the error process q signals the absence of the label. The process ! fi(p, q).P sig-
nals on q that there is no service available. The process serving hide requests is the most
complicated. If the hide request is to hide the label x then an empty form is instanti-
ated at fresh channels h̃ and returned along the result channel p by (νh̃)p〈h̃〉 | empty〈h̃〉.
Otherwise the tuple f̃ is returned. Finally the select label process returns the label x.

Extension. This encoding is the most complicated one. It relies on the encodings of g̃ and h̃
to model the form F = G · H. However, the processes are easy to read and understand
once we are familiar with the continuation passing style necessary for the π-calculus.
The process handling projections on label x is:

(νr)hp〈x, p, r〉 | r.gp〈x, p, q〉

It creates a private channel r and runs two parallel processes. The first calls a projection
on hp with p as the result channel and r as the error channel. The other process waits
on r and forwards the projection request to gp. Now two cases may occur: (1) either
H contains a binding for label x. In this case the result is returned on p and there will
never be a sender on r. (2) If H does not contain a binding for the label x this gets
signaled on r and hp (or, to be more precise, the replicated process that reads on it) will
not use r anymore. In this case the process r.gp〈x, p, q〉 forwards the projection request
to gp. The process handling invocation requests is similar.

The process handling hiding recursively forwards the hiding request to gh and hh. Both
these processes are expected to return forms along r1 and r2, respectively. These forms
are concatenated and returned.

The selection function works as follows: It makes use of two private channels r1 and r2.
Now both sub-forms are requested to send either a label on r1 or to signal the absence
of any label on r2. If a label is present in either g̃ or h̃ then at least one label is sent
along r1 and forwarded to p. If both forms g̃ and h̃ do not contain any label the process
r2.r2.q receives both inputs and signals the absence along q. When both forms return a
label, arbitrary is returned by p〈x〉. Such an encoding of internal choice [NP96] is only
valid since the processes on gs and hs make a strict boolean use of p and q, i.e., they
exactly either send on p or on q.

Using these encodings we define form processes up to strong ground congruence. The idea
is that we require for any process P that models a form that it can be constructed by finitely
many applications of the basic abstractions.

Definition 4.11 (Form process) Let FP be the set of processes closed under the following rules and
strong ground congruence.

1. empty〈 f̃ 〉 ∈ FP .

2. fun〈 f̃ , s〉 ∈ FP .

3. if P ∈ FP with g̃ ∈ fv(P) and f̃ /∈ fv(P) then (νg̃)P | bind〈 f̃ , x, g̃〉 ∈ FP .

4. if P ∈ FP with g̃, h̃ ∈ fv(P) and f̃ /∈ fv(P) then (νg̃, h̃)P | ext〈 f̃ , g̃, h̃〉 ∈ FP .

4.4. ENCODING PICCOLA IN Lπ 57

The form processes are processes that encode forms. By construction, a form process has
one quadruple of free names f̃ . We say that the process makes the form available at f̃ . In
addition a form process may have free names s that come from fun〈 f̃ , s〉. The side conditions
in the last two rules of Definition 4.11 ensure that we do not define cyclic forms. Such forms
would have non-terminating behaviour. For example assume the following process.

P = empty〈ẽ〉 | ext〈 f̃ , ẽ, f̃ 〉

Intuitively the process P stands for the recursive form x = ε · x, i.e., a form which is the
extension of the empty form with itself. Projection on any label y leads to a nonterminating
communication:

P
fp〈y, p, q〉
−→ P | (νr1) fp〈y, p, r1〉 | r1.ep〈y, p, q〉

(νr1) fp〈y, p, r1〉−→ ...

The following lemma states that for any form process, the projection function determin-
istically either returns a result or signals the absence of an appropriate binding on the error
channel. The hiding service always returns a form. The selection function either signals the
absence of any label binding in the form or randomly returns one. In the correctness proofs
of the encoding of Piccola agents later on we rely on these properties of form processes. We
use this lemma for up-to expansion proofs and replace form projection by its result.

Lemma 4.12 For any P ∈ FP with f̃ ∈ fv(P) and p, q /∈ fv(P) the following holds:

1. Projection: For any x constant P
fp [x, p, q]
−→ P′ implies

(a) either P′ & P | (νg̃)p〈g̃〉 | P′′) and P′′ ∈ FP with g̃ ∈ fv(P′′)

(b) or P′ & P | q.

2. Invocation: P
fi [p, q]−→ P′ implies

(a) either P′ & P | p〈s〉
(b) or P′ & P | q

3. Hiding: P
fh [x, p]−→ P′ with P′ & P | (νg̃)P′′ | p〈g̃〉, P′′ ∈ FP , and g ∈ fc(P′′)

4. Selection: P
fs [p, q]−→ P′ implies

(a) either P′
p[x]
=⇒ P for some x

(b) or P′ & P | q.

Proof. See Appendix C.1. �
We give an informal explanation of the four parts of the lemma. Assume we have a

form process P that encodes form F at f̃ . Part (1) says that we can interact along fp with
the process to project on a label. Sending the tuple 〈x, p, q〉 along fp either returns along p
a tuple g̃ encoding another form or signals the absence of the label x by sending the empty
tuple along q. Note that the answer given for a projection request is deterministic.

Part (2) says that we can interact along fi to get the service channel s or to receive the
absence of any service in the form F along channel q.

58 CHAPTER 4. PI SEMANTICS OF PICCOLA

Part (3) defines how to hide a label. When we send the request fh〈x, p〉we receive a form
g̃ along p.

Part (4) explains how form inspection works. When we interact with P by sending the
tuple 〈p, q〉 along fs, we either get a label x back along p or we get the empty tuple along q.
Notice that the second case is deterministic, i.e., we always receive the empty tuple along q.
On the other hand the first alternative is non-deterministic: we can receive different labels x
for each invocation fs〈p, q〉.

4.4.3 Encoding Agents

In Table 4.4 we define an encoding of a Piccola agent A into the π-process [[A]]ẽ
a. The process

[[A]]ẽ
a sends the value of A along channel a and uses the environment form ẽ. The process

[[A]]a evaluates A in the environment given by the empty form. We assume that the helper
channels r and ri are fresh.

The encoding works as follows:

• The empty form is translated by the form process for the empty form and a sender
process that emits the accessors names for the empty form.

• A variable x is translated to a process that uses the environment’s project function ep
to project on the label x. If the environment contains a binding for x then this value is
sent along the result channel a. Otherwise an empty tuple is sent on the dummy error
channel r. The agent is stuck. See Section 3.6 how to detect illegal projections within
the Piccola agents.

• There are several primitive services that are all encoded using the same schema:

[[A]]ẽ
a = (ν f̃ , s)a〈 f̃ 〉 | fun〈 f̃ , s〉 | !s(g̃, r).P

The encoding instantiates a fresh service form fun〈 f̃ , s〉 and sends its names along chan-
nel a. The service body itself is represented by the replicated process !s(g̃, r).P. Thus,
in the process P the argument is available at the names g̃ and the result has to be sent
along r.

– The process P for the primitive hiding service hidex calls the hiding function of
the passed form g̃ and returns the new form with the label x hidden.

– The process P for the primitive bind service (x 7→) creates a new binding form
with the help of process bind〈h̃, x, g̃〉 and returns the names h̃ back along the reply
channel r.

– The process P for user defined abstractions λx.A is recursively defined by [[A]]ẽ′
r

where ẽ′ is the environment ẽ extended with the binding x 7→G.

– For the primitive inspect L the associated process P looks more complicated. It
uses the inspection facility encoded by gs to either fetch a label x or to know
that the passed form G does not contain any bindings. If G has a label a con-
stant x is sent along r1. In that case we return along r the encoding of the service
λx.(x; isLabel)labelx. If G has no labels the empty tuple is received from r2. In that
case P tries to fetch the invocation channel by using gi. If there is a service channel
s we return along r the encoding of λx.(x; isService)ε. Otherwise the inspected

4.4. ENCODING PICCOLA IN Lπ 59

[[A]]a = (νẽ)empty〈ẽ〉 | [[A]]ẽ
a

[[ε]]ẽ
a = (ν f̃)a〈 f̃ 〉 | empty〈 f̃ 〉

[[x]]ẽ
a = (νr)ep〈x, a, r〉

[[hidex]]ẽ
a = (ν f̃ , s)a〈 f̃ 〉 | fun〈 f̃ , s〉 | !s(g̃, r).gh〈x, r〉

[[x 7→]]ẽ
a = (ν f̃ , s)a〈 f̃ 〉 | fun〈 f̃ , s〉 | !s(g̃, r).(νh̃)r〈h̃〉 | bind〈h̃, x, g̃〉

[[R]]ẽ
a = a〈ẽ〉

[[A; B]]ẽ
a = (νr)[[A]]ẽ

r | r(f̃).[[B]] f̃
a

[[A · B]]ẽ
a = (νr1...2)[[A]]ẽ

r1
| r1(f̃).[[B]]ẽ

r2
| r2(g̃).(νh̃)a〈h̃〉 | ext〈h̃, f̃ , g̃〉

[[λx.A]]ẽ
a = (ν f̃ , s)a〈 f̃ 〉 | fun〈 f̃ , s〉

| !s(g̃, r).(νh̃, ẽ′)[[A]]ẽ′
r | bind〈h̃, x, g̃〉 | ext〈ẽ′, ẽ, h̃〉

[[AB]]ẽ
a = (νr1...4)[[A]]ẽ

r1
| r1(f̃).[[B]]ẽ

r2
| r2(g̃). fi〈r3, r4〉 | r3(s).s〈g̃, a〉

[[L]]ẽ
a = (ν f̃ , s)a〈 f̃ 〉 | fun〈 f̃ , s〉

| !s(g̃, r).(νr1...4)gs〈r1, r2〉 | (r1(x).[[λx.(x; isLabel)labelx]]r)
| (r2.gi〈r3, r4〉)
| (r3(s).[[λx.(x; isService)ε]]r)
| (r4.[[λx.(x; isEmpty)ε]]r)

[[A | B]]ẽ
a = ((νr)[[A]]ẽ

r) | [[B]]ẽ
a

[[νc.A]]ẽ
a = (νc)[[A]]ẽ

a

[[c]]ẽ
a = (ν f̃ , s)a〈 f̃ 〉 | fun〈 f̃ , s〉 | !s(g̃, r).c〈g̃〉 | (νh̃)r〈h̃〉 | empty〈h̃〉

[[c?]]ẽ
a = c(f̃).a〈 f̃ 〉

where labelx is the Piccola agent to encode a first-class label for x

labelx = project 7→(ε; λx.x; x) · hide 7→hidex · bind 7→(x 7→)

Table 4.4: Encoding of Piccola in Lπ

60 CHAPTER 4. PI SEMANTICS OF PICCOLA

form G is the empty form and we return λx.(x; isEmpty)ε. Note that the helper
names r1...4 are restricted. If a tuple is sent along r1, the other names are not used
and the associated receiver processes can be garbage collected.

– The last primitive service is sending a form. The process P sends the tuple g̃ along
c and returns the empty form along r.

• The translation of an application AB is done in three steps: First the value f̃ of A is
communicated along a private helper channel r1. Then the value g̃ of B is communi-
cated along another helper channel r2. Finally, the service channel s is fetched from the
form f̃ . If there is no service channel, the error is signaled along r4 which is a restricted
channel. As for projection, the application is stuck. If there is a service channel s the
associated service is invoked by sending the argument g̃ and the reply channel a along
s. Note that the translation enforces the evaluation order as specified by the evaluation
contexts of Piccola: first agent A is evaluated, then agent B is evaluated, then if the
value of A has a service, the service is invoked.

• Translation of the sandbox term A; B is very similar. First we communicate the value f̃
of agent A along a private channel r. Then we evaluate B in the context f̃ .

• Extension A · B is translated similar. The values f̃ and g̃ are made available in sequence.
We construct a form h̃ with the process ext〈h̃, f̃ , g̃〉 and return h̃ along a.

• Translation of the static root context R returns the tuple ẽ along a.

• A parallel agent A | B is translated by the parallel composition of A and B which
returns its value along a. The value of A is returned along a helper channel r. Once A
is fully evaluated and emits a form f̃ along r, the process r〈 f̃ 〉 can be garbage collected.

• The translation of channel restriction νc.A is transparent since the channel c is a free
name within the translation of A.

• Finally, receiving a form f̃ from channel c is done by the corresponding Lπ prefix and
forwarding f̃ along a.

The encoding relies on an correct use of continuation channels. We always pass the reply
channel when we invoke another process. Such an approach in general violates fully abstract
encodings of functions into processes. There might be a malicious client that uses the reply
channel several times or that tries to read from it. In Lπ, a client cannot read from a received
channel. Furthermore, we know by construction that reply channels are used at most once.
This could be enforced by linear types [KPT96]. However, we do not enforce this on service
channels.

4.5 Soundness of the Encoding

In this section we show that the encoding [[.]] is sound. We let it open to construct a complete
encoding of Piccola into the Lπ calculus. Most of the lemmas are stated for processes [[A]]a
instead of [[A]]ẽ

a. Technically, this simplifies many of the proofs because we do not have
to consider the environment. The only drawback is that [[A]]a ≈ [[ε; A]]a thus any agent is
assumed to live in a sandbox with the empty root. Our soundness theorem will therefore

4.5. SOUNDNESS OF THE ENCODING 61

be stated with respect to closed agents. However, open agents are recovered by turning
them into root abstractions, i.e., abstractions that expect the root context to be the argument:
ε; λx.(x; A).

Lemma 4.13 The free names of translated forms and agents are:

• fc([[A]] f̃
a) ⊆ {a, f̃ } ∪ fc(A)

• fc([[A]]a) = {a} ∪ fc(A)

• fc([[F]] f̃
a) = {a} ∪ fc(F)

• fc([[F]]a) = {a} ∪ fc(F)
Proof. Checked by structural induction over A and F. �

The following lemma gives some evidence of how forms are encoded. The encoding of a
form F instantiates a form process P that models F.

Lemma 4.14 For any F ∈ F there exists a process P ∈ FP with fc(P) = fc(F) ∪ { f̃ }

[[F]]a & (ν f̃)a〈 f̃ 〉 | P.
Proof. By structural induction on F and using expansion. �

For the process P we usually write PF〈 f̃ 〉 to indicate that the process P makes the form F
available at the channels f̃ . We say that PF〈 f̃ 〉models the form F.

We are now going to show that congruence is adequately encoded. If A ≡ B then the
corresponding encoding of agents are equivalent. We need some technical lemmas to mod-
ularize the proof for Lemma 4.17 which states the adequacy of congruence.

Lemma 4.15 is an adapted version of Lemma 4.10 of the Lπ calculus. Lemma 4.15(1) says
that in the input prefixed process a(f̃).P | Q where only process Q “needs”, the form f̃ the
process P can be factored out. Lemma 4.15(2) is similar but now both processes P and Q
require the value of the form F. In that case, we duplicate the process that encodes the form.
Lemma 4.15(3) shows that the parallel composition operator of Piccola is transparent to Lπ.

Lemma 4.15 For a /∈ fc(P | Q), f̃ /∈ fc(P), and g̃ only free in output subject position in P and Q,
we have:

1. (νa)[[F]]a | a(f̃).P | Q ≈ P | (νa)[[F]]a | a(f̃).Q

2. (νa)[[F]]a | a(g̃).P | Q ≈ ((νa)[[F]]a | a(g̃).P) | ((νa)[[F]]a | a(g̃).Q)

3. [[A | B]]a | a(g̃).P ≡ ((νr)[[A]]r) | [[B]]a | a(g̃).P
Proof. (1) The proof uses the fact that forms are immediately available:

(νa)[[F]]a | a(f̃).P | Q & (by Lemma 4.14 PF exists)

(νa, g̃)a〈g̃〉 | PF | a(f̃).P | Q & (expand a)

(νg̃)PF | (P | Q){ f̃ /g̃} ≡ (a /∈ fv(P))

(νg̃)P | PF | Q{ f̃ /g̃} . (introduce a)

(νa, g̃)P | PF | a〈g̃〉 | a(f̃).Q .

(νa)P | [[F]]a | a(f̃).Q ≡
P | (νa)[[F]]a | a(f̃).Q

62 CHAPTER 4. PI SEMANTICS OF PICCOLA

(2) By Lemma 4.14, F is modeled by PF〈g̃〉, we have a /∈ fv(PF) and we have:

(νa)[[F]]a | a(g̃).P | Q &
(νa, g̃)a〈g̃〉 | PF〈g̃〉 | a(g̃).P | Q & (expand a)

(νg̃)PF〈g̃〉 | P | Q ≈ (by Lemma 4.10(1))
((νg̃)PF〈g̃〉 | P) | ((νg̃)PF〈g̃〉 | Q) .

((νa, g̃)a〈g̃〉 | PF〈g̃〉 | a(g̃).P) | ((νa, g̃)a〈g̃〉 | PF〈g̃〉 | a(g̃).Q) =
((νa)[[F]]a | a(g̃).P) | ((νa)[[F]]a | a(g̃).Q)

(3) Apply the definition of [[A | B]]a. �

The next lemma shows some important properties of the extension operator. For short
Lemma 4.16(1) says that extending a form to the right with the empty form does not change
its behaviour. Part 2 says the corresponding for left extension. Part 3 proves that extension is
associative. Lemma 4.16(4) confirms that the process bind〈g̃, x, f̃ 〉 indeed builds up the form
x 7→F as expected. Part 5 shows how to construct the root context for an agent A. The last
part shows that an unnecessary form can be garbage collected. In the Piccola calculus, this
is expressed by rule discard zombie.

Lemma 4.16 For any form F let PF be the process that models it.

1. (νg̃, h̃)ext〈 f̃ , h̃, g̃〉 | empty〈g̃〉 | PF〈h̃〉 ≈ PF〈 f̃ 〉

2. (νg̃, h̃)ext〈 f̃ , g̃, h̃〉 | empty〈g̃〉 | PF〈h̃〉 ≈ PF〈 f̃ 〉

3. For R = PF〈 f̃ 〉 | PG〈g̃〉 | PH〈h̃〉 with f̃ ′, g̃′, ẽ /∈ fv(R) it holds:

(ν f̃ , f̃ ′, g̃, h̃)R | ext〈 f̃ ′, f̃ , g̃〉 | ext〈ẽ, f̃ ′, h̃〉 ≈ (ν f̃ , g̃, g̃′, h̃)R | ext〈g̃′, g̃, h̃〉 | ext〈ẽ, f̃ , g̃′〉

4. [[x 7→F]]a ≈ (ν f̃ , g̃)a〈g̃〉 | bind〈g̃, x, f̃ 〉 | PF〈 f̃ 〉

5. [[F; A]]a ≈ (ν f̃)PF〈 f̃ 〉 | [[A]] f̃
a

6. (νa)[[F]]a ≈ 0
Proof. 1 – 3 are proved by exhibiting an appropriate bisimulation up-to context and ex-
pansion. 4 – 6 are straightforward calculations. The complete proof is in Appendix C.2. �

We now prove correctness of the encoding with respect to structural congruence:

Lemma 4.17 A ≡ B implies [[A]]a ≈ [[B]]a

This is proved by structural induction on the derivation of A ≡ B. See Appendix C.3 for
details. Notice that the translation [[A]]a corresponds to [[ε; A]]a thus we assume both agents
A and B live in an empty sandbox.

The following lemma states that thread contexts (see Definition 3.10) do not modify the
reduction possibilities. In order to state the lemma we first define [[.]] to work on contexts
as well. [[.]] is the extension of the definition given in Table 4.4 where a hole is translated to
a hole. Thus [[.]] can be seen as a function from Piccola contexts to Lπ-contexts. We write
[[C[P]]]a for the term ([[C[]]]a)[P], thus we apply [[.]] as usual and in the translated context we
replace the hole with process P. Notice that the fresh helper channels that are introduced
may not occur in P.

4.5. SOUNDNESS OF THE ENCODING 63

Lemma 4.18 If P
µ−→ Q then there is a Q′ with

[[
Ê [P]

]]
a
&

µ−→ Q′ and
[[
Ê [0]

]]
a
& 0.

Proof. By structural induction over Ê and using expansion for the cases F · Ê and FÊ . �

We are now going to prove operational correspondence. This correspondence says that
whenever an agent A reduces to B, then the corresponding translation of A can also reduce
to a process P which is congruent to the translation of B. It shows that a reduction of an
agent A corresponds to one or several reductions of its translated process.

Lemma 4.19 For any agent A, B ∈ A: A → B implies [[A]]a →⇒≈ [[B]]a.
Proof. By Proposition 3.13 and Lemma 4.17 there exists a canonical agent A′ such that:

[[A]]a ≈ P =
[[

A′
]]

a

and the process P has the structure:

νc1...cn.PM1 | ... | PMm | PA1 | ... | PAk

where PMi are translated messages and PAj are translated threads (See Definition 3.11). Thus
PMi = (νr)[[Mi]]r and PAj = (νr)

[[
Aj
]]

r for j < k and PAk = [[Ak]]a. Using the previous lemma
and Proposition 3.15 there are two cases to consider:

• one of the threads is an application with a closure or the inspect or the project primitive.
We only consider a closure. Now we have (Q is the body of the abstraction):

[[(F; λx.A)G]]a & (νs, r1, r2, f̃ , g̃, ẽ)PF〈ẽ〉 | fun〈 f̃ , s〉 | PG〈g̃〉 | fi〈r1, r2〉 | r1(s).s〈g̃, a〉 |
!s(g̃, r).Q

& (νs, g̃, ẽ)PF〈ẽ〉 | PG〈g̃〉 | s〈g̃, a〉 | !s(g̃, r).Q
→ (νs, g̃, ẽ)PF〈ẽ〉 | PG〈g̃〉 | (νh̃, ẽ′)[[A]]a | bind〈h̃, x, g̃〉 | ext〈ẽ′, ẽ, h̃〉
≈ [[F · x 7→G; A]]a

• one of the threads is a receiver Ê [c?] and one of the messages is cF. For simplicity, we
assume there is only one message. We have that:

(νr)[[cF]]r | [[c?]]a & (ν f̃)PF〈 f̃ 〉 | c〈 f̃ 〉c(f̃).a〈 f̃ 〉
→ (ν f̃)PF〈 f̃ 〉 | a〈 f̃ 〉
≈ [[F]]a

A similar calculation shows the same result for F; c?. �

The following lemma states the other direction of the above lemma. Whenever a process
[[A]]a reduces to a process P, it is either the case that P is congruent to [[A]]a or that the
reduction reflects a reduction on the agent side. In the first case, the reduction is an internal
bookkeeping action that can be expanded. In the latter case, the agent A reduces to some
agent B and [[B]]a is congruent to P.

Lemma 4.20 For any closed agent A: [[A]]a → P implies one of the following

1. B exists with: A ≡ B and P ≈ [[B]]a.

2. B exists with: A → B and P ⇒ [[B]]a.
Proof. Case 1 is Lemma 4.17. Case 2 is shown by using a contradiction. Assume A is
stuck and is written in canonical format. By Proposition 3.15 there are only threads of the
following structure:

64 CHAPTER 4. PI SEMANTICS OF PICCOLA

• Ê [R] or Ê [λx.A]. This case is not possible since A is closed by assumption.

• Ê [FG] where F is a form without a service. If F is a form without a service, then the
service selection feature of its encoding yields an error:

PF〈 f̃ 〉 | fi〈p, q〉 ⇒ PF〈 f̃ 〉 | q

Thus [[FG]]a ≈ 0 and the term P cannot evolve.

• Ê [c?] and no message cF is in A. The only possible transition for Ê [c?] is an input action
along c by Lemma 4.18. Since there are no matching output reductions, Ê [c?] is stuck.
The same argument can be made for Ê [G; c?].

All cases contradict our assumption, therefore there must be a B with the required be-
haviour. �

Notice that the lemma is only stated for closed agents (see Definition 3.1). The lemma is
not true for arbitrary agents. For instance

[[ε ·R]]a → (νh̃g̃ f̃)empty〈g̃〉 | empty〈g̃〉 | ext〈h̃, g̃, f̃ 〉 | a〈g̃〉

but this process is congruent to [[ε]]a. Thus [[ε]]a and [[ε ·R]]a are equivalent. This is not
surprising since the translation [[A]] puts the agent A into a context equivalent to the empty
form. And in fact it holds ε; ε ·R ≡ ε.

Whereas the previous lemmas show the adequacy of reduction we also have to show
the adequacy of barbs. The fact that an agent is a barb must also be characterized on its
translation.

Lemma 4.21 For any agent A ∈ A: A↓ implies [[A]]a⇓a.
Proof. A is a barb. The translation of a barb is a process of the form:

νc1...cn.PM1 | ... | PMm | PA1 | ... | PAk−1 | [[F]]a

where PMi are translated messages and PAj are processes of the form (νr)
[[

Aj
]]

r. By Lemma
4.14 the conclusion holds. �

The following lemma states the converse:

Lemma 4.22 For any A closed, [[A]]a⇓a implies A⇓.
Proof. Let P ↓a such that [[A]]a ⇒ P. By Lemma 4.20 there is a B with P ≈ [[B]]a and either
A ≡ B or A ⇒ B. Assume B is written in canonical form. Since P ↓ a the main agent of B
must be a form, thus B ↓. If the main agent is not a form it is either a thread Ê [FG] where F
has no service or it is a thread Ê [c?] and there is no message cF. In both cases we have P6↓a.�

We now prove soundness. Soundness means that if the translations of two closed agents
are congruent in the Lπ-calculus, then the agents are congruent themselves. If the translation
is not sound, it cannot serve as an implementation of Piccola agents in terms of Lπ. The
implementation is wrong since it might yield the same behaviour for different agents.

Proposition 4.23 (Soundness) For closed agents A, B and channel a the congruence [[A]]a ≈ [[B]]a
implies A ≈ B.

4.5. SOUNDNESS OF THE ENCODING 65

Proof. Let S = {(A, B)with A and B closed, and [[A]]a ≈ [[B]]b}. We show that S is a
barbed bisimulation:

• Assume A → A′. We show that there is a B′ with A′ ≈ B′ and B ⇒ B′. By Lemma 4.19
we have [[A]]a →⇒ [[A′]]a. Since [[A]]a ≈ [[B]]a there exists a P with [[B]]a ⇒ P and since
≈ is an equality we have P ≈ [[A′]]a. Now there are two cases for [[B]]a ⇒ P:

– [[B]]a ≡ P. In this case we simply take B′ = B for the required B′.

– [[B]]a →⇒ P. By Lemma 4.20 we know that there is a B′ with B → B′ or B′ ≡ B.

• Assume A ↓. We show that this implies B ⇓. By Lemma 4.21 we know that [[A]]a ⇓a,
which implies [[B]]a⇓a. By Lemma 4.22 this implies B⇓.

Since S is symmetric the converse for the above holds trivially and S is a barbed bisim-
ulation. Furthermore, by definition S is closed for any context. �

Soundness gives a proof technique for showing that certain closed agents are congruent.
We will give a few example proofs in the following section.

An encoding is fully abstract if it is sound and complete [Mil75]. Our encoding is not
fully abstract since it is not complete. Completeness would mean that if A ≈ B then also
[[A]]a ≈ [[B]]a. However, this is not the case for our encoding. The reason is that we can
construct a context in Lπ that can distinguish agents which are congruent in the Piccola cal-
culus. The reason is that an observer can provide tuples as forms that implement malicious
forms.

As an example, consider the agents:

A = L c? (isEmpty 7→S · isService 7→S · isLabel 7→S)
B = c?; ε

where S is the service ε; λx.ε, i.e., a service that always returns the empty form. Both agents
make first an input on channel c and then yield the empty form. However, A inspects the
received form. Thus an observer can provide a malicious form along c and detect a difference
between A and B although they are congruent. An context that distinguishes between A and
B provides a form along c and does not implement the inspect facility correctly. Consider
the Lπ context:

C = [] | (ν f̃)c〈 f̃ 〉

Now C[[[B]]a] ⇓a but C[[[A]]a] ⇓6 a since the inspection process fs〈p, q〉 that appears within the
translation of A does not lead to a continuation along neither p nor q.

For our purpose it is sufficient to have a sound encoding of Piccola agents. Since the
encoding is compositional, we have a milder form of completeness: A ≈ B implies that its
translations cannot be distinguished by contexts that are themselves translations of agents.
Thus we can use the encoding to derive equalities of Piccola agents. But we cannot use the
encoding to show properties of the Lπ calculus, since we cannot arbitrarily switch between
Piccola and Lπ.

66 CHAPTER 4. PI SEMANTICS OF PICCOLA

4.6 Proving Laws for the Piccola Calculus

We use the encoding to prove laws for the Piccola calculus. As examples we show some of
the laws mentioned at the end of Chapter 3.

Lemma 4.24 For any forms F, G and label x it holds:

F · x 7→G; x ≈ G
Proof. Since both expressions are closed agents we can compare their respective encoding
in the π-calculus. We have:

[[F · x 7→G]]a & (ν f̃ , g̃, h̃, f̃ ′).PF〈 f̃ 〉 | PG〈g̃〉 | bind〈h̃, x, g̃〉 | ext〈 f̃ ′, f̃ , h̃〉 | a〈 f̃ ′〉
[[F · x 7→G; x]]a′ ≈ [[F · x 7→G]]a | a(f̃). fp〈x, a′, r〉

≈ PG〈g̃〉 | a′〈g̃〉
≈ [[G]]a′

and the conclusion follows by Proposition 4.23. �

The following law is the Piccola variant of deterministic communication. Since there is
exactly one receiver of the message, we can replace

Lemma 4.25 For any form F and thread context Ê it holds

νc.cF | Ê [c?] ≈ νc.Ê [F]
Proof. By induction over the thread context. The anchor is given by the expansion lemma
of the π-calculus. The process [[c?]]a has the format c(f̃).P and the message cF is the process
(ν f̃)PF〈 f̃ 〉 | c〈 f̃ 〉 thus νc.cF | c? ≈ νc.F. The induction step follows from Lemma 4.17. �

4.7 Discussion

In this chapter we have presented a sound encoding of the Piccola calculus into the π calcu-
lus. The encoding can be used to propagate properties from the π calculus to Piccola. These
properties include laws that specify, for instance, when an agent is blocked on receiving from
a channel and the channel is private, we can garbage collect the agent.

The encoding is also useful to reason about invariants of components encoded in Piccola.
Consider the case of a reference cell. We can ensure the invariant that there is always one
form stored in the private channel of the reference cell. We use this property for the encoding
of fixed point in Piccola, see Section 5.5 in the following chapter.

Finally, it should be mentioned that working on the encoding gave feedback for defin-
ing the semantics of the Piccola calculus. In fact, in an early version of the Piccola calculus
we have defined assignments as a binding-scope pair. The value of the assignment was the
binding extended with the value of the scope. The scope was evaluated in a extended root
context. It was due to the encoding of Piccola into the π calculus that we found the similar-
ities that allowed us to remove assignment from the calculus and see it as a composition of
sandbox, binding, and extension expression.

Chapter 5

A Small Composition Language

In this chapter we define the composition language Piccola on top of the calculus defined in
Chapter 3. The language sits at the second Piccola composition layer (see Table 2.1). Speak-
ing about “Piccola” we are often lazy and assume that the context makes it clear whether
we mean the calculus or the language. The main difference of the Piccola language with
respect to other programming languages is that Piccola does not contain any primitive or
built-in data-types except forms and channels. The semantics of other values (for instance
for arithmetic computation) is defined by external components.

With respect to the Piccola calculus, the language provides the following changes to ease
programming:

• Parallel composition, channel restriction as well as sending and receiving along chan-
nels are available in the language via predefined services. This simplifies the syntactical
structure of programs and makes the language more uniform.

• The definition of recursive forms is directly supported.

• Piccola provides user-defined operators constructed by special characters. Operators are
either defined on individual forms or they can be specified for a given context. Infix
and prefix operators are useful to support an algebraic notation for plugging compo-
nents in a composition style.

• Piccola defines syntax for user-defined collections. It is more convenient to build collec-
tions surrounded by brackets than to assemble them by a purely functional notation.

• Service invocations carry a dynamic namespace where the concrete argument form is just
one part of it. This makes it possible to introduce dynamically scoped contexts.

• An expression in Piccola is a sequence of form expressions and bindings. Bindings not
only define a binding, but they also extend the root context for subsequent expres-
sions. This allows the programmer to use bindings as assignments and simplifies the
definition of services. Parentheses and indentation group expressions.

• Nested form bindings can be simplified to a single binding.

• The language provides syntax for projections with a high precedence whereas sandbox
expressions have low precedence.

67

68 CHAPTER 5. A SMALL COMPOSITION LANGUAGE

The following diagram helps to structure the rest of this chapter:

Piccola Language, Terms, Section 5.2y Abbreviation, Section 5.3
Simplified Languagey [[.]]-semantics, Section 5.5

Functional agents, Section 5.4
and Forms, Chapter 3

In Section 5.1 we give an introduction to the programming model that is behind Pic-
cola. In Section 5.2 we define the syntax of the language. In Section 5.3 we present a set of
syntactical sugar features, for instance to define operators and collections. This leads to a
simplified language. In Section 5.4 we define functional Piccola agents. Functional agents
are a subset of agents with primitive services to create channels and span new agents. In Sec-
tion 5.5, the semantics of Piccola is given by a translation of simplified terms to functional
agents. In Section 5.6 we define the initial root context containing services to create channels,
inspect forms, and spawn off agents. In Section 5.7 we present an alternative encoding of
fixed points by using combinators known from the lambda-calculus. In Section 5.8 we dis-
cuss how external components are accessed from Piccola. In Section 5.9 we briefly discuss
aspects of the design rational for the Piccola language.

5.1 Programming with Explicit Environments

One of the surprising things when programming in a language with explicit environments
is that the notion of a variable gets somewhat blurred. The reason is that variables and
environments are not only a question of scopes but they are values that can be manipulated.
The same happens in meta-programming when we have access to the state of the running
program.

To understand programming with explicit environments we contrast the situation with
the language C where the term a = 1 is a statement and an expression. The value of the
expression is 1. The effect of the statement is that the value 1 is assigned to the variable a. A
statement b = a = 1 assigns the value 1 to a and b.

In Piccola statements do not exist. The term a = 1 has the value of the singleton binding
a 7→1. The flavour of a statement is achieved by extending the current root context with
the binding and evaluating subsequent expressions in the extended root context. We say
“extending the root” for this process. Consequently, the expression b = a = 1 denotes the
form with a binding b 7→(a 7→1). We write Piccola language terms in typewriter font and
values as agent expressions (see Table 3.1).

We can think of Piccola as a two slot machine. One slot keeps the value to be returned
as the value of the expression being evaluated; the other slot stores the current root context.
There are three distinguished ways how the value of an expression is used. (1) If the machine
encounters a binding it extends the current value and the root context, (2) if it encounters a
quoted expression the root context only is extended, and (3) if it encounters any other expression
the current value only is extended. All lookups of variables are projections in the current root
context. Unless the form expression is completely evaluated, the machine cannot read the

5.2. THE LANGUAGE 69

actual value. When a new expression is evaluated, we start with the empty form as initial
value and inherit the root context from the lexical scope.

As an example consider the following script.

a =
’x = 1
y = x

b =
y = 2
z = y

a
b

When we evaluate this script in an initially empty root context we get:

expression value root
a = ε ε
’x = 1 # quoted ε x 7→1
y = x # binding y 7→1 x 7→1, y 7→1

a 7→(y 7→1) a 7→(y 7→1)
b = ε a 7→(y 7→1)
y = 2 y 7→2 a 7→(y 7→1) · y 7→2
z = y y 7→2 · z 7→2 a 7→(y 7→1) · y 7→2 · z 7→2

a 7→(y 7→1) · b 7→(y 7→2 · z 7→2) a 7→(y 7→1) · b 7→(y 7→2 · z 7→2)
a # expression a 7→(y 7→1) · b 7→(...) · y 7→1 a 7→(y 7→1) · b 7→(y 7→2 · z 7→2)
b a 7→(y 7→1) · b 7→(...) · y 7→2 · z 7→2 a 7→(y 7→1) · b 7→(y 7→2 · z 7→2)

Thus the value denoted by the above script is a 7→(y 7→1) · b 7→(y 7→2 · z 7→2) · y 7→2 · z 7→2.
When we evaluate a binding the label is not yet captured by the value. For instance in

x = 1
x = x + 1

the second binding yields x 7→2 which is also the value of the whole expression. If we need
to specify recursive services and forms, we can prefix the binding with the keyword def.

5.2 The Language

We now define the syntax of the Piccola language. The language does not contain syntactical
primitives for communication along channels, for spawning off new agents, and for hiding
labels. These features are made available as predefined services in the initial root context.

5.2.1 Abstract Syntax

The abstract syntax of Piccola is given in Table 5.1. The grammar is a set of productions that
describes how form expressions are constructed.

The piccola keywords def and root, the symbols backslash (\), colon (:), dot (.), round
parentheses (()), comma (,), equal (=), and the quote sign (’) are terminal symbols. Nonter-
minal symbols are shown in Italic. Optional parts are written in square brackets [...].

70 CHAPTER 5. A SMALL COMPOSITION LANGUAGE

Form ::=
root current namespace
identifier label
literal constant literal
\ [Param] : Form anonymous service
Form . identifier projection
Form Form application
Form op Form infix application
op Form prefix application
Form , Form extension
op{ [FormList] op} collection
([Form]) parentheses
root = Form [, Form] sandbox
[def] Label [Param] : Form [, Form] service binding
[def] Label = Form [, Form] binding
’ Form [, Form] quote

FormList ::=
[FormList ,] Form collection composition

Param ::=
identifier [Param]
([identifier]) [Param]

Label ::=
identifier simple label
Label . identifier nested label

Table 5.1: Piccola Language Syntax

5.2. THE LANGUAGE 71

Precedence Category Concrete Syntax
9R prefix op Form
8L projection Form . identifier

tight invocation Form(Form)
7L arithmetic high Form op Form
6L arithmetic low Form op Form
5L comparison Form op Form
4L other op Form op Form
3L invocation Form Form
2R service \[Param] : Form

binding [def] Label = Form
service binding [def] Label [Param] : Form
sandbox root = Form
quote ’ Form

1L collection composition FormList , Form
1R binding sequence [def] Label = Form , Form

service binding sequence [def] Label [Param] : Form , Form
sandbox sequence root = Form , Form
quote sequence ’ Form , Form
extension Form , Form

Table 5.2: Precedence Rules

The most important class of terms are Piccola form expressions. These expressions evalu-
ate to a form. Constant literals are numbers and strings. Strings are enclosed in double quotes
(”) or in triple douple quotes. The first version interprets escaped character, the second ver-
sion does not. Normal identifiers start with an alphanumeric character and are followed by
a sequences of numeric, alphanumeric and underscore characters. Special identifiers start
with an underscore or an operator character, are followed by a sequence of alphanumeric,
numeric and operator characters, and end with an underscore possibly followed by a se-
quence of alphanumeric characters. User-defined operators are denoted by special identi-
fiers. The idea is that the underscore is a placeholder for an expression. For instance, the
identifier for the + infix operator is _+_, its default label _+_default. User-defined operators
are sequences of the characters: * / + - = < > ! % : ; ~ ^ $ | ? & and @. Alternatively, an
operator can be an identifier written in backquotes, like ‘mod‘. Collections are encloded by
tokens op{ and op} that match. These tokens are sequences of { or [and } or], respectively.
They match if their individual characters match in reverse order. For instance, [{{ matches
with }}].

5.2.2 Precedence Rules

The precedence rules for Piccola are given in Table 5.2. Each syntactical category has a
precedence and an associativity. For instance the application “a b” has precedence 3 and
is left-associative. Subterms may only have higher precedence. The precedence of an in-
fix expression is given by the first character of the infix operator. There are four groups of

72 CHAPTER 5. A SMALL COMPOSITION LANGUAGE

precedence:

Group First character
7L Arithmetic high * /
6L Arithmetic low + -
5L Comparison = < > !
4L Other % : ; ~ ^ $ | ? & @ identifier

As an example, the expression “a b +> c” is parsed as “a (b +> c)” because arithmetic
low (defined by the + character) has a precedence of 6 which is higher than the precedence of
invocation which in turn is 3. If the precedence is left or right associative, then the left or right
subterm may have the same precedence. The expression “a b c” is parsed as “(a b) c”
because invocation is left associative.

Note that infix operators have higher precedence than invocation. Therefore the expres-
sion “a + b” is read as infix arithmetic expression and not as “a (+ b)”.

There are two different precedence for invocation: tight invocation (8L) and normal in-
vocation (3L). For tight invocation, the argument must be enclosed in parentheses or col-
lection brackets and must immediately follow the functor with no whitespace in between.
For instance the expression “a b(c)” is parsed as “a (b c)”, whereas “a b (c)” is parsed
as “(a b) c”. The motivation to distinguish normal and tight invocation is driven by the
desire to write code as

a().b(c = x).d instead of ((a()).b(c = x)).d and
a b c instead of a(b)(c).

The precedence rules are strict. This means that they do not only rule out ambiguities but
they also forbid certain constructs and force the programmer to use parentheses or indenta-
tion. For instance the expression “a b=()” is syntactically valid when parsed as “a (b=())”.
However, such a parse is not permitted as the expression “b=()” has precedence 2 which
cannot be a subterm of invocation with precedence 3. Such an expression must be entered
using parentheses or indentation.

The associativity induced by a comma is different when the comma appears as top-level
operator in an expression sequence or within collection brackets.

Collection. A comma appearing top-level inside collection brackets denotes an expression
FormList, Form with precedence 1L. For instance, the expression “[a, b = x, c]” is
parsed as “[(a, (b = x)), c]”. This means that the collection will contain three ele-
ments: the value of “a”, of “b = x”, and that of “c”.

Note that by using parentheses the meaning of the comma changes: The collection
“[a, (b = x, c)]” contains two elements, namely “a” and the term “b = x, c”.

Sequence. A comma appearing in a sequence of form expressions has precedence 1R. If
the left hand side of a comma is a binding, a service binding, a sandbox or a quote
expression, then the right-hand side is the scope of the left hand side. In these cases the
value of the left-hand side extends the current root context for the scope. For instance
the expression

a = 1, ’b, c

is parsed as “(a = 1, (’b, c))”, i.e., the expression “’b, c” is in the scope of the
binding “a = 1” and the expression “c” is in the scope of “b”.

5.2. THE LANGUAGE 73

5.2.3 Indentation

Piccola supports indentation and newlines instead of parentheses and commas to group
form expressions. For example the term “x = f(a = (), b = a), y” is normally written
as

x = f
a = ()
b = a

y

When a line starts at a higher or lower indentation than the previous line, an opening
parentheses (indent) or a closing parentheses (dedent) is inserted, respectively. If the new
line starts on the same indentation level, a comma is inserted. Inserted dedents may not mix
matching parentheses, brackets or other indent-dedent pairs. Therefore, one or multiple de-
dent tokens are inserted before any closing parentheses, bracket or dedent, if a correspond-
ing indent was inserted but not closed between the matching pairs. The precise rules are as
follows. Assume line n has indentation level d. The following line has indentation level d′.

Indent. If d < d′ an indent with indentation level d′ is inserted unless line n ends with an
opening parentheses or bracket or the following line starts with a dot.

Comma. If d = d′, a comma is inserted unless line n ends with a comma, an operator, an
opening parentheses or bracket, or the following line starts with a dot.

Dedent. If d > d′ and the following line does not start with a closing parentheses or bracket
then closing dedents to match previously inserted indents are inserted until there is a
remaining unmatched opening parentheses, bracket, or an indent with a lower inden-
tation level. A comma is inserted unless the following line starts with a dot.

Closing. Dedents are inserted before any closing parentheses or bracket if there are un-
matched indents inserted after the matching parentheses or bracket that gets closed. If
dedents are inserted, the next line must not have an indentation level higher than the
last inserted dedent.

End. At the end of an input, as many dedents are inserted as there are remaining unmatched
indents inserted.

The precedence of invocations with an indented argument have normal precedence (8L).
For example

a b
c

is parsed as “(a b) c”.
The indentation restricts the programmers freedom to insert newlines at will. For in-

stance a newline cannot occur after an equals sign unless the value of the binding is indented
or put into parentheses. For instance

a =
b
c

is tokenized as “a = , b , c” which is syntactically wrong.

74 CHAPTER 5. A SMALL COMPOSITION LANGUAGE

[def] L [P] : T ≡ [def] L = \[P] : T (abb-sd)
\I P : T ≡ \I : \P : T (abb-curry1)

\([I]) P : T ≡ \([I]) : \P : T (abb-curry2)
\I : T ≡ \(I) : T (abb-paren)
\: T ≡ \() : T (abb-void)

[def] L . I = T ≡ L = (L , [def] I = T) (abb-nest)
[def]I = T1, T2 ≡ ’ ([def]I = T1), (I = I), T2 (abb-assign)

’ T1 [, T2] ≡ root = (root, T1) [, T2] (abb-quote)
root = T ≡ root = T, () (abb-sandbox)

T1 op T2 ≡ (’(x = T1), opinfix (y): (opdefaultinfix x y), x).opinfix T2 (abb-infix)

op T ≡ (’(x = T), opprefix (): (opdefaultprefix x), x).opprefix () (abb-prefix)

op{ op} ≡ op{} () (coll-empty)

op{ [T1,] T2 op} ≡ (op{ [T1] op}) . add T2 (coll-add)

Table 5.3: Piccola Language Abbreviations

Note that no indents are inserted if the previous line ends with an opening bracket. For
example the code

a = [
1
2]

is read as “a = [1, 2]”. This collection has two elements, whereas “a = [(1, 2)]” denotes
a collection with one element, namely 1 extended with 2.

5.3 Abbreviations

Many of the features of the Piccola language are syntactical sugar. In Table 5.3 the expansion
for these features are given. We use T to range over form expressions, P to range over
parameter expressions and L to range over label expressions. Amongst other simplifications,
the abbreviations define the semantics for user-defined operators and collections.

5.3.1 Services

The rule abb-sd allows the programmer to define abstractions and bind them to an identifier
in a single expression. For example

id x: x

is syntactic sugar for: id = \x: x. Observe that the name of the service id is not visible in
the body of its binding. For recursive services we use the def keyword.

5.3. ABBREVIATIONS 75

The rules abb-curry1 and abb-curry2 allow the programmer to write curried functions
more user friendly. Instead of

\l: \r: l + r

we usually write

\l r: l + r

The rules abb-paren and abb-void allow us to omit parentheses and formal parameters in
parameter expressions. For instance in the example

if n < 2
then: 1
else: n * fac(n - 1)

the bindings for label then and else expand to:

if n < 2
then = \(): 1
else = \(): n * fac(n - 1)

5.3.2 Nested Bindings

The rule abb-nest specifies the semantics of bindings with a nested label. A nested binding
“a.b = c” extends the form denoted by a with the binding “b = c”. This is achieved by
writing “a = (a, b = c)”. This process can be repeated to unfold the complete structure of
the nested label.

Observe that an expression Label.x = T is only valid when the current root context con-
tains a binding for Label. This is due to the fact that the nested binding is translated to a
binding where the right-hand side value is an extension of Label with a normal binding. For
instance the following code is invalid

a = () # a will be the empty form
a.b.c = ... # wrong!

since the form a.b is not defined.
The rule abb-nest defines an inner fixed point when used with the def keyword. The term

“def f.b = c” is equivalent to

f =
f
def b = c

whereas an outer fixed point would be:

def f =
f # f used while being defined. Wrong!
b = c

Such a code is illegal since it would denote an infinite form (refer to Section 5.5.2 for more
details on fixed points).

76 CHAPTER 5. A SMALL COMPOSITION LANGUAGE

5.3.3 Assignment

The rule abb-assign allows us to rewrite binding assignments with a nonempty scope. The
behaviour of an assignment “l = a, b” is that the resulting value will contain a binding l 7→a
(where a is the value of “a”) extended with the value of “b”. The term “b” is evaluated in a
context which contains l 7→a. This is achieved by writing

’(l = a)
(l = l)
b

Note that the quoted expression evaluates “a” and extends the root context. The following
example illustrates the difference between assignment and extension:

a =
l = 1 # assignment
println l # prints 1
(l = 2) # extension, does not change the root environment
println l # still prints 1

println a # prints (l = 2)

5.3.4 Quoted Expressions

We extend the root context with the value of an expression “a” by:

root = (root, a)
...

Since such constructs are very frequent we have a special notation using quotes. By rule
abb-quote the above code is abbreviated as:

’a
...

The quote construct is often used for local definitions. Its bindings are not exported.
The rule abb-sandbox defines the empty form as the scope for sandbox expressions with-

out scope. The value of a quoted expressions is the empty form. For instance:

x = ’a

is syntactic sugar for “x = (root = (root, a), ())”. The value of the whole expression is
the binding x 7→ε.

These rules explain the behaviour of the following idiom of using two quotes in Piccola.
For instance, “’’extern(), ...” is an abbreviation for

root =
root
(root = (root, extern()), ())

...

This code evaluates extern() and extends the root context with the empty form. This means
that the result of extern() is not used, the application is evaluated for its side effect only.
We also use this idiom if the application is known to return the empty form to make the code
more self-documenting.

5.3. ABBREVIATIONS 77

5.3.5 User Defined Operators

The infix expression “a + b” is syntactic sugar for

(
’(x = a)
(_+_ y: DefaultOp._+_default x y) # default +
x

)._+_ b

The behaviour of this term is as follows. Assume the expression “a” evaluates to a form
a that contains a binding + 7→S. In this case the projection on the last line denotes the service
S and the expression is equivalent to

a._+_ b

The infix operator is dispatched on its left-hand expression.
Now, assume a has no binding for the label _+_. In this case the projection sees the service

defined as default and the infix-expression is equivalent to

DefaultOp._+_default a b

The order of evaluation is in both cases the same: First the left-hand expression is eval-
uated then the right-hand expression is evaluated and finally the service of the operator is
applied. We use the label DefaultOp to contain global defaults for user-defined operators.

A similar expansion works for prefix operators. The term “+a” behaves as “a.+_()”
when the form a contains the label +_ and as “DefaultOp.+_default a” otherwise.

5.3.6 Collections

The semantics of user-defined collections in Piccola is specified by the rules coll-empty and
coll-add. They work as follows. For each user defined collection there is a global factory in
DefaultOp. The code “x = { }” is syntactic sugar for

x = DefaultOp.{_}()

It should be noted that DefaultOp.{_} is not a collection itself, but a factory to create
new (empty) collections. Individual elements are added to such a collection using its add
service. The term “{a, b, c}” is syntactic sugar for

DefaultOp.{_}().add(a).add(b).add(c)

Observe that a collection, i.e., the form returned by the factory must contain a service add
which in turn returns the collection with the added element. In Section 6.1 we will see an
example of an external component that is wrapped to fit the collection notation.

Recall from Section 5.2.2 that the comma separates the elements of the collection. As
such, the bindings do not behave like assignments. For instance

a = 1 # Assignment
x = [[

a = 2 # inside collection
b = a]]

78 CHAPTER 5. A SMALL COMPOSITION LANGUAGE

A, B, C ::= L inspect | new new Channel
| run run | hidex hide
| ε empty form | R (static) root
| A; B sandbox | A · B extension
| x variable | x 7→A binding
| λx.A abstraction | AB application

Table 5.4: Functional Piccola Agents

[[new]] f = ε; λx.νc.send 7→c · receive 7→(λy.c?) [[run]] f = ε; λx.(x() | ε)

[[L]] f = L [[hidex]] f = hidex

[[ε]] f = ε [[R]] f = R

[[A; B]] f = [[A]] f ; [[B]] f [[A · B]] f = [[A]] f · [[B]] f

[[AB]] f = [[A]] f [[B]] f [[x]] f = x

[[x 7→A]] f = x 7→[[A]] f [[λx.A]] f = λx.[[A]] f

Table 5.5: Embedding functional agents

is syntactic sugar for

a = 1
x = DefaultOp.[[_]]().add(a = 2).add(b = a)

The root context is the same for both elements that are added to the new collection. The
collection x contains the bindings a 7→2 and b 7→1.

5.4 Functional Piccola Agents

The abbreviations rules of Section 5.3 allow us to rewrite Piccola terms into terms of a simpler
language. With respect to the syntax of Table 5.1, we do not have to deal with user defined
operators and collections, with curried services, quotes, assignments, and nested labels.

In order to give the semantics of the Piccola language we use an intermediate represen-
tation of terms called functional Agents see Table 5.4. We use the letters A, B, C to range over
functional agents. They are called agents because they can be trivially embedded into agent
expressions of the Piccola calculus. They are called functional because the functional subset
of agents is considered only. The concurrent facet of Piccola is reified by the primitive ser-
vices run and new. Finally, to simplify reading and writing the functional agents, we have
singleton bindings as agents. To omit writing parentheses, binding has stronger precedence
than application.

The embedding of functional Piccola agents A into the Piccola calculus is given by the
semantical function [[.]] f as in Table 5.5. The interpretation [[A]] f is compositional. Primi-
tive services are encoded appropriately. We normally omit the writing of [[A]] f and identify

5.5. SEMANTICS 79

functional and normal agents. This is why we use the same meta-variables A for both. The
primitives run and new can then be considered syntactic sugar for agents.

Invoking the service new returns a form with two services send and receive. The two
services share a restricted channel c. Applying the send service on a form F sends the value
F along the channel. The result of the application send F is the empty form. This is due to
the structural rule emit:

cF ≡ cF | ε

The receive service receives a value from c. Invoking receive blocks unless a value is sent
along c. Arbitrary form is returned when multiple values are sent along the channel.

The channel c is restricted. As a consequence, the following term is equivalent to the null
agent:

[[new(); receive()]] f ≈ 0

since no agent ever gets access to c.
Invoking the primitive service run with an argument x yields in the creation of a new

running agent executing x(). The empty form ε is returned by run x.

5.5 Semantics

The differences between functional Piccola agents and the simplified Piccola language are
the fixed-point construct and the dynamic namespace. In this section we give the denota-
tional encoding of (simplified) Piccola terms into agents. The semantics of Piccola is given
by a mapping [[.]] from language terms to agents. The agent A corresponding to a Form
expression T is:

A =
[[

[[T]] f
]]

or simply A = [[T]].
The function [[.]] is recursively defined for all Piccola language terms, see Table 5.6. The

semantics of fixed points (by the def) requires a reference cell Fix and a helper function
lookup[x].A. The fixed-point cell Fix stores the value of the fixed point and lookup[x].A is the
agent A where all references x are replaced by lookup-calls to get the value of the fixed point.
Observe that the range of [[.]] consists of functional agents only. Thus it is enough to define
lookup[x].A only for functional agents A.

In the rest of this section we discuss the definition of dynamic namespaces and of fixed
point in more detail.

5.5.1 Dynamic Namespace

The dynamic namespace is a form that is passed on service invocations from the caller to
the callee. The form is bound with the label dynamic. An important part of the dynamic
namespace is the actual argument. By rule sem inv we convert all actual arguments T into
dynamic · arg 7→[[T]]. Thus the client always passes its dynamic context together with the actual
value bound by arg to the server.

Contrary, any service definition has to conform to this protocol. We translate service def-
initions (rule sem abs and rule sem void) into abstractions that expect the dynamic context.
When the service contains a formal argument, we extend the root context with an appropri-
ate binding for the actual argument.

80 CHAPTER 5. A SMALL COMPOSITION LANGUAGE

[[root]] = R (sem root)
[[T, T]] = [[T]] · [[T]] (sem ext)

[[root = T1, T2]] = [[T1]]; [[T2]] (sem sandbox)
[[I = T]] = I 7→[[T]] (sem bind)
[[T1 T2]] = [[T1]](dynamic · arg 7→[[T2]]) (sem inv)
[[\(): T]] = λ dynamic.[[T]] (sem void)

[[\(I): T]] = λ dynamic.(R · I 7→(dynamic; arg); [[T]]) (sem abs)
[[def I = T]] = R · I 7→Fix; (I; set)(I 7→lookup[I].[[T]]) (sem def)

where Fix is

Fix =
new(); send()· set 7→λx.(R · d 7→receive(); (send x) · x)·

λx.(R · d 7→receive(); (send d) · d)

and lookup[x].A is inductively defined for any expression as follows. We assume that x 6= y
in the tagged equations (*).

lookup[x].x = x(); x lookup[x].y = y (*)
lookup[x].λx.A = λx.A lookup[x].λy.A = λy.(R · x 7→lookup[x].x; A) (*)

lookup[x].ε = ε lookup[x].L = L
lookup[x].new = new lookup[x].run = run
lookup[x].hidey = hidey lookup[x].A · B = (lookup[x].A) · (lookup[x].B)

lookup[x].(y 7→A) = y 7→(lookup[x].A) lookup[x].(AB) = (lookup[x].A) (lookup[x].B)
lookup[x].(A; B) = r 7→lookup[x].A · x 7→x; lookup[x].R = hidexR

r · x 7→λd.x() · r;
lookup[x].B

Table 5.6: Translating simplified Piccola terms to expressions

5.5. SEMANTICS 81

Services with no formal parameter may access the concrete argument by looking at the
value of dynamic.arg. For instance, the following script prints out the number 5:

f: println dynamic.arg # the service f prints its argument
f 5 # invoke f

The nested form dynamic.arg is not forwarded when a service is invoked with the empty
form as argument. This is due to the fact that the argument binding is overwritten by every
invocation.

Observe that the primitive services must be consistent with this protocol. We have to
wrap those services accordingly (see Section 5.6). For instance in

new(); mySend 7→λd.send(d; arg); mySend(arg 7→F) ≈ νc.(cF | ε)

we use mySend as the sender service to send the value F along the newly created channel.

5.5.2 Fixed Points

Forms can be thought of as finite trees. It is not possible do specify a form which contains
itself as a nested form. However, we can specify a form that has a service containing itself.
Examples are recursive services and methods in objects that refer to self. In the following
we explain the semantics of def expressions that is used to simplify the definition of fixed
points. We expect that such fixed points permit the following:

Mutual recursion. Fixed points may be used for writing mutually recursive services.

Object encodings. The fixed point construct must be useful for directly specifying an object
model that supports inheritance.

These are pragmatic requirements. It may be possible that a fixed point is needed to meet
certain other criterion. In this case fixed points may be constructed manually by using chan-
nels. In Section 5.7.3 we give an example how this might be done. In Section 7.8 we present
mixin-composition to demonstrate the usefulness of the fixed point to model inheritance.
We now explain the behaviour of Fix and then the transformation lookup[x].A.

Fixed-point Cell

The fixed point cell Fix creates a local channel c. Initially we send the empty form ε along
the channel. This is done by the expression send(). The value of Fix consists of two services:
A setter method available by set and a getter method. The body of the set is as follows. We
first receive a form from the local channel c and bind it to a dummy variable d. Then we
send the new value along the channel and return the same value. The getter service works
as follows: We receive a form d from c and send d along the channel and return it.

The behaviour of Fix is that of a reference cell initialized with the empty form. We can
set it to a new value. Invoking the getter service always returns the most recently set value.
There is always one value written on the local channel c. This is due to the fact that receiving
and sending occur only in pairs after the channel is initialized.

82 CHAPTER 5. A SMALL COMPOSITION LANGUAGE

The following expression illustrates the protocol of Fix:

y 7→Fix; initialize cell and bind it to y
a 7→y()· the value of a is the empty form
b 7→(y; set)x· initialze the cell with x, the value of b is x
c 7→y() the value of c will be x

We use this cell to store the value of the fixed point. The idea is to set the cell exactly once
with the result of the fixed point. Inside the fixed point we use the getter service and do not
change the value of the fixed point after it has been set.

Using the Fixed Point

The agent lookup[x].A denotes the agent A where all occurrences of the variable x are re-
placed by a call to the getter service of the cell. The only complicating factor is the appropri-
ate treatment of sandbox expressions inside A.

Consider the agent of a def binding:

[[def x = T]] = R · x 7→Fix; (x; set)(x 7→lookup[x].A)

where A = [[T]]. Thus lookup[x].A is evaluated in a context given by R extended with the
binding x 7→Fix. We set the Fix cell with the binding x 7→F where F is the value of the agent
lookup[x].A. Thus the value of the def binding is x 7→F.

What is the behaviour of agent lookup[x].A? It has the same behaviour as A but looks up
x in the cell instead of in the root context. The predicate lookup[x] is transparent for any agent
except variables, the root context, abstractions and the sandbox expression. For instance, the
binding b 7→ε remains the same:

lookup[x].(b 7→ε) = b 7→ε

For any other agent, lookup[x].A is as follows.

Variables. If x 6= y we have lookup[x].y = y. The semantics of any y appearing in an agent
A is not changed when we put the agent into lookup[x].A.

We have lookup[x].x = x(); x. Thus the value of x is constructed by projecting onto x in
the result of the getter service of the Fix cell. If the cell is initialized, we will get the form F
where F the value of lookup[x].A. If the cell is not initialized, x() will return the empty form
and the projection onto x blocks or raises an exception, respectively.

For instance consider the term “def x = x”. It holds that:

[[def x = x]] = R · x 7→Fix; (x; set)(x 7→lookup[x].[[x]])
= R · x 7→Fix; (x; set)(x 7→(x(); x))

since the fixed point cell is initially empty we have x() ≈ ε

≈ R · x 7→Fix; (x; set)(x 7→(ε; x))

Thus we cannot evaluate “def x = x” since it contains an illegal lookup ε; x. Such behaviour
was intended since such a (recursive) form would be the infinite form x 7→x 7→x 7→ · · · .

5.5. SEMANTICS 83

Root context. We have lookup[x].R = hidexR. Thus if we explicitly refer to the current
root context we get it without access to the Fix cell. This prevents us from accidently or
maliciously accessing the cell of the fixed point.

We should keep in mind that we cannot store the root context in a binding and access the
fixed point from there. The following example illustrates this:

def x =
myroot = root # myroot binds a form without x
self: x

a = x.self() # OK! yields x
b = x.myroot.x # wrong since x.myroot has no x!

Services. It holds that lookup[x].λx.A = λx.A. Within the body of the abstraction, x binds
the concrete argument as usual. As such, the inductive definition of lookup[.] is not applied
inside the body of the abstraction. For instance it holds that:

[[def x = \x.x]] = R · x 7→Fix; (x; set)(x 7→lookup[x].λx.x)
= R · x 7→Fix; (x; set)(x 7→λx.x)
≈ R · x 7→Fix; x 7→λx.x
≈ x 7→λx.x
= [[x = \x.x]]

The first congruence comes from evaluating the set method of the fixed point: it returns the
argument. Since the fixed point cell is not used anymore, we can discard it.

The reader should keep in mind that service definitions correspond to services with
dynamic as formal argument. The case just discussed only occurs in artificial examples like

def dynamic =
f: dynamic # returns the dynamic context

where we define a fixed point for the identifier dynamic. To our experience, such code never
appears, since dynamic denotes the dynamic context and is not an ordinary identifier.

In most of the cases, the formal argument is different from the fixed point variable. Con-
sider the recursive service “def x: x”. It holds that (writing y for dynamic):

[[def x: x]] = R · x 7→Fix; (x; set)(x 7→lookup[x].λy.x)
= R · x 7→Fix; (x; set)(x 7→λy.R · x 7→(x(); x); x)

We write this agent in canonical format with the closure S = ε; λy.(R · d 7→c?; cd · d; x):

≈ νc.(c(x 7→S) | x 7→S)

One can think of this expression as if the binding x 7→S is stored in the channel c. The
channel c represents the state and the service S contains the getter method of the fixed point
cell. When we interact with x 7→S by projection on x and invoke the service we get S back
again.

84 CHAPTER 5. A SMALL COMPOSITION LANGUAGE

Sandbox. The sandbox expression is the most complex one. The problem is that we do not
know if the expression A in A; B evaluates to a form where x is bound or not. The expression

lookup[x].(A; B) = r 7→(lookup[x].A) · x 7→x;
r · x 7→λd.x() · r;
lookup[x].B

can be read in three steps :

1. First, the context r 7→lookup[x].A · x 7→x evaluates to a form with two labels r and x. The
binding for r contains the new root environment lookup[x].A. The binding for x con-
tains the fixed point cell.

2. Then, the context r · x 7→λd.x() · r evaluates to r extended with x bound to a new ser-
vice. This new service fakes the fixed point getter method. On invocation, the original
content of the cell x() extended with r is returned.

3. Finally, the expression lookup[x].B is evaluated in the root context constructed in the
second step.

The central thing happens in the body of the faked getter service λd.x() · r in the second
step. Assume the agent B refers to x, thus lookup[x].B will contain the term x(); x. If r contains
a binding for x, say x 7→F then x in B will evaluate to F. If, however, r does not contain a
binding for x, the client sees the content of the fixed point cell. Provided the fixed point
cell is initialized, this content will contain a binding x 7→F′ for some form F′. The term x(); x
evaluates either to F or F′. If r does not contain x and the cell is not initialized, x(); x evaluates
to ε; x which means that the fixed point cannot be used because it is not set yet.

We present two examples, one where A overwrites x and one where x is not overwritten.
First consider the term:

def x =
x = ()
self: x

We show that x.self() evaluates to the empty form. We have:

A = [[x = (), self: x]]
= [[’(x = ()), (x = x), (self: x)]]
= R · x 7→ε; x 7→x · self 7→λy.x

We abbreviate the dynamic namespace by y. It is of no concern here anyhow. Now we have:

lookup[x].A =
(
r 7→(lookup[x].(R · x 7→ε)) · x 7→x;
r · x 7→(λd.x() · r);
lookup[x].(x 7→x · self 7→λy.x)

)
by using hidex A · x 7→B ≈ A · x 7→B we get lookup[x].(R · x 7→ε ≈ R · x 7→ε) and thus:

≈
(
r 7→(R · x 7→ε) · x 7→x;
r · x 7→(λd.x() · r);
x 7→(x(); x) · self 7→λy.R · x = (x(); x); x

)

5.5. SEMANTICS 85

lookup[x].A is evaluated in a context where x() ≈ F for some F:

≈
(
R · x 7→(λd.F ·R · x 7→ε);
x 7→(x(); x) · self 7→λy.x(); x

)
≈ x 7→ε · self 7→λy.ε

Since “def x = ...” evaluates lookup[x].A in contexts where x() denotes a form (either the
empty form or the value of the fixed point) we conclude that the above def keyword was
not necessary at all. The label x is overwritten immediately, and x.self() returns the empty
form.

Consider now the following program where the binding does not overwrite x:

def x =
z = ()
self: x

We have:

A = [[z = (), self: x]] = [[’(z = ()), (z = z), (self: x)]]
= R · (z 7→ε); z 7→z · self 7→λy.x

Like before we calculate:

lookup[x].A =
(
r 7→(hidexR · z 7→ε) · z 7→z;
r · x 7→(λd.x() · r);
z 7→z · self 7→λy.x(); x

)
≈
(
R · z 7→ε · x 7→(λd.x() · hidexR · z 7→ε);
z 7→z · self 7→λy.x(); x

)
≈ z 7→ε · self 7→λy.(x() · hidexR · z 7→ε); x
≈ z 7→ε · self 7→λy.x(); x

The last simplification is due to the fact that hidexR and z 7→ε do not contain a binding for x.
The statement “def x = ...” denotes a form F where z is bound to the empty form and self
is a service that returns F as expected.

A consequence of the sandbox semantics within fixed points is that a user cannot hide
the fixed point being defined:

def x =
root = () # root is now the empty form extended with x bound to the faked getter
self: x

Such code is valid and the service x.self returns the fixed point x when invoked.
Finally, it is also worthwhile to consider the expression

R; x

86 CHAPTER 5. A SMALL COMPOSITION LANGUAGE

When put in a fixed point, we have:

lookup[x].(R; x) = r 7→lookup[x].R · x 7→x; r · x 7→(λd.x() · r); lookup[x].x
= r 7→hidexR · x 7→x; r · x 7→(λd.x() · r); x(); x
≈ r 7→hidexR · x 7→x; (λd.x() · r)(); x
≈ r 7→hidexR · x 7→x; x() · r; x
≡ r 7→hidexR · x 7→x; x(); x
≈ lookup[x].x

This example gives us confidence that the definition of lookup[.] and of the sandbox operator
in particular makes sense. Although explicit references to the root context hide the fixed
point cell, the sandbox operator re-establishes it again.

5.6 Initial Root

When programming in Piccola, we assume that there are predefined services that give access
to the Piccola primitives.

The initial root context where every Piccola program is executed contains these services.
Let

C =

newChannel 7→(λd.new; R · send 7→λd.send(d; arg))
· run 7→(λd.run(d; arg; do))
· inspect 7→λd.λe.L(d; arg)(

isEmpty 7→(λx.(e; arg; isEmpty)(e · arg 7→ε))
·isService 7→(λx.(e; arg; isService)(e · arg 7→ε))
·isLabel 7→(λl.(e; arg; isService)(e · arg 7→(

project 7→(λd.(l; project)(d; arg))
·hide 7→(λd.(l; hide)(d; arg))
·bind 7→(λd.(l; bind)(d; arg))))))

The behaviour of a Piccola script is given by C; [[script]].
The initial context wraps the built-in services so that they comply to the protocol of the

dynamic namespace. There is no label-hide primitive since first-class labels can be encoded
within Piccola using inspect as we have seen in Section 3.4.4.

Giving access to the primitives via predefinied services allows the programmer to over-
write these services.

This concludes the syntax and semantics of the Piccola language.

5.7 More on Fixed Points

In this section we present a purely functional encoding of fixed points and compare it with
our encoding of def for recursive forms. We also give an example how to encode fixed points
directly by using channels.

5.7.1 A Lazy Fixed-Point Combinator

In Section 3.3 we presented a fixed-point combinator in the Piccola calculus. Here is how
this combinator is written in the Piccola language:

5.7. MORE ON FIXED POINTS 87

fix = \f: (\x: \a: f (x x) a) (\x: \a: f (x x) a)

or written more compactly as:

fix f:
’self x a: f (x x) a
self self

As an example we encode the factorial function as follows:

rfact fact n: # Assume the factorial to be the first arg
if n < 2

then: 1
else: n * fact(n - 1)

fact = fix rfact # Make the fixed point
println fact 5 # Use it!

To avoid cluttering the namespace with the non-recursive rfact, we can also write:

fact = fix (\fact n:
if n < 2

then: 1
else: n * fact(n - 1))

5.7.2 Comparing the Lazy Combinator and Def

The fixed-point combinator has the same behaviour as our encoding of fixed points using
channels for recursive services. Assume, a Piccola term T which is the body of a recur-
sive service. The term uses s for itself and a for the argument. Now consider the term
“fix (\s a: T)” in the context G. Let A = [[T]]. We have:

G; [[fix (\s a: T)]] = fix(G; λsa.A)

with S = (ε; λxa.G; λsa.A)(xx)a this expression is equivalent to

≈ SS
≈ x 7→S; λa.(G; λsa.A)(xx)a

This service only interacts with the environment is when it is invoked with an argument F.
In this case we have:

(SS)F ≈ x 7→S · a 7→F; (G; λsa.A)(xx)a
≈ G · s 7→SS · a 7→F; A

Thus any invocation of the recursive service leads to the agent A in a sandbox consisting of
the original context G extended with s and the argument a.

Let us consider how the same term T behaves beneath a def binding and put into the
same context G.

G; [[(def s = \a.T).s]] = (G · s 7→Fix; (s; set)(s 7→λa.R · s 7→(s(); s); A)); s

88 CHAPTER 5. A SMALL COMPOSITION LANGUAGE

Let the service S = G · s 7→Fixc; λa.R · s 7→(s(); s); A. This service looks up s and then executes
A. The channel c is created by evaluating Fix. Fixc is the form with the getter and setter
method of the fixed-point cell that give access to c, i.e., Fixc = (set 7→(ε; λx.(R · d 7→c?; cx | x)) ·
(ε; λx.(R · d 7→c?; cd | d))). With S the above term is equivalent to

≈ νc.c(s 7→S) | S

As before, this service is applied to F and it holds that:

(νc.c(s 7→S) | S)F ≡ νc.c(s 7→S) | SF
≈ νc.c(s 7→S) | G · s 7→Fixc · a 7→F · s 7→(s(); s); A
≈ νc.c(s 7→S) | G · a 7→F · s 7→S; A

Thus the def fixed point leads to the agent A that is executed inside the sandbox con-
sisting of G extended with a and s. The additional message c(..) that is floating around is
important for two reasons: it stores S for further invocations and it cannot be accessed di-
rectly from inside A other than by invoking s. Thus both terms reduce to A inside the context
G extended with s and a and have thus equivalent behaviour.

In the rest of this section we show the difference between the functional fixed point com-
binator and the def encoding. If we want to construct a fixed point for several bindings,
we have to convert those bindings into an abstraction taking a dummy argument. The
lazy fixed-point combinator invokes the dummy abstraction each time the fixed point is
unfolded, i.e., accessed. If all our bindings were abstractions, the def encoding and the func-
tional encoding are bisimilar.

However, there is a difference if we have side-effects within the dummy abstraction.
This is the case, for instance, when we use fixed points for the self reference of objects. The
following example illustrates the problem. It contains a factory newPoint to create simple
point objects with an x and y part stored in different variables (see Appendix E).

newPoint I: # initial argument I
fix (\self dummy:

myAsString:
"(x = " + *(self().x) + # pretty print
", y = " + *(self().y) + ")"

x = newVar I.x
y = newVar I.y

) ()

Self is encoded as a constant function. We can create a new point and print its value:

p = newPoint(x = 4, y = 5)
println p # Prints: (x = 4, y = 5)

However, when we change the value of one variable, this change is not reflected as expected:

p.x <- 15 # change the x component to 15
println p # Oops, prints: (x = 4, y = 5)

The reason is that each time we call self() a new fixed point containing two fresh variables
x and y is created. The variables are initialized with the values passed on the initial creation.

With the def encoding, this problem does of course not occur since the fixed-point code
is exactly executed once and the result is stored in the fixed-point cell.

5.8. EXTERNAL COMPONENTS 89

5.7.3 Fixed Point Combinator using Channels

In this section, we give a simple and direct way to encode fixed points using channels. Con-
sider the following service self bound in x that always returns itself:

x =
’ch = newReadChannel() # Non destructive read from the channel
’’ch.send # store the following form (in ch)

self = ch.read # self reads the value of the channel
a = 7

ch.read() # return the stored value

The code works as follows: The local channel ch stores the form. It has a non-destructive
read, i.e., this service receives a form r from the local channel, sends the form back along the
same channel and returns the form r. The service read blocks when the channel is empty,
i.e., there is no value sent along it yet. The channel is initialized by the ch.send service
invocation. The form sent along the channel has two bindings: one is the service self which
is the same as the read service. The other is the binding a = 7. The service ch.read is
invoked and the value returned by this invocation is bound to the label x.

The form x has two labels: a and self. The form self is the same as returned by a call
to x.self(), which is the same form as x.self().self() which is again the same. There is
no access to the local channel ch. Thus we cannot change the state of the channel from the
outside, as always the same form is written on it.

5.8 External Components

Piccola is a pure composition language. There are no predefined primitives for any com-
putation. Instead, every computation is performed by external or host components. In this
section we explain how host components are accessed in general and in particular how Java
objects are used in JPiccola. JPiccola is the implementation of Piccola in Java.

Peer Forms. The general schema works as follows. Assume we have two systems, Piccola
on one side and external components on the other side. We assume that we can access the
external component as a form. We call this form the peer form. We denote the peer form
for any external component c by p(c). All services provided by the external component are
services of the peer form. When we invoke from Piccola a service in a peer form p(c), the
provided service of c will be invoked and the argument (which is a form) must be converted
to an external component. Therefore we also need a function e to convert every form F into
an external component e(F). If the form F is a peer form p(c) then converting this form back
to a component must be the original external component, written e(p(c)) = c. If the form is
not peer form the behaviour is language specific (see below).

In order to integrate external components seamlessly we need to adapt them inside Pic-
cola to a given style. Thus we want to extend their interface with certain bindings. The
difficulty is that we still want to be able to identify the external component with the adapted
Piccola form [Höl93]. Assume we have an external component that gets wrapped by Pic-
cola. When we send this component back to another external service, the external service
must not see the adapted, but the original, i.e., the unwrapped component.

90 CHAPTER 5. A SMALL COMPOSITION LANGUAGE

Extensibility of forms solves this problem. Let us define two functions up and down
[DM98]. Those two functions describe the effect of up-ing an external component into a
form, and down-ing a form into an external component. The idea is that we keep the peer
form in a distinct label peer in order to prevent unexpected overwriting. Let

Up(c) def= p(c) · peer 7→p(c) (5.1)

Down(F) def= e((peer 7→F · F); peer) (5.2)

By this schema it holds:

Down(Up(c) · F) = o

provided F denotes a form without the label peer. Thus we can modify any up-ed compo-
nent. As long as we keep the peer binding, we can invoke an external service with this form
and the external service receives the original component.

The general scheme is the specification for any implementation of Piccola. It is also used
in SPiccola [Sch01], the Piccola implementation in Squeak [IKM+97].

Java–Piccola Bridge. We now explain how in particular Java objects can be accessed from
within JPiccola. We assume that components written in yet another language, for instance
C++ objects or Corba Components, are accessed either directly from Java or via Java’s native
interface. If these components are accessible from Java, they are also accessible from JPic-
cola. As explained above, a peer form gives access to the provided services of an external
component. If this component is a Java object, the form has services providing access to all
public methods of it. Host objects are instantiated via peer classes. Peer classes give access
to all static methods and fields of a class and they contain a factory service to create peer
objects. Peer classes are created in JPiccola with the predefined service Host.class with the
name of the class as argument. For instance

Host.class "java.lang.System"

creates the peer class for the Java System class.
Method dispatch works as follows. Assume we invoke a service ser on a peer object o

with the argument form F. The following steps are used to find the appropriate message to
send to the object in Java. We first construct a form-tuple from the argument, then we create
an tuple of Java objects, and finally we associate a type-tuple in order to resolve overloaded
methods.

1. If the form F has bindings val1, val2 up to valn, then we create the tuple

(F.val1, F.val2, ..., F.valn)

If the form has no binding val1 we create the 1-tuple (F). If the form is the empty
form, we create the empty tuple ().

2. Next we convert the form tuple into a tuple of objects (o1, ..., on) by applying Down on
each component of the tuple.

5.8. EXTERNAL COMPONENTS 91

3. Finally, we construct a tuple of types in order to resolve overloaded methods. For each
Java object oi of the tuple, the type ti is the class of the corresponding object. If however
the form F has a binding typei, then the type ti is F.typei.

The Java method that corresponds to the service has the signature ser(t1, t2, ...tn). If such a
method does not exist, an exception is thrown.

Primitive data-types of Java are handled by their associated classes, e.g., the type int is
an object of instance java.lang.Integer. The JPiccola system offers static methods to do
the arithmetic for such values since the Java language framework does not provide methods
that do arithmetic operations.

Dispatch for the constructor in peer classes happens by the same schema like method
dispatch.

Finally, externalizing a form that is not a peer form, returns the implementation object
that is used inside JPiccola to model forms. This allows us to reify the Piccola runtime en-
vironment. We have not explored what can be achieved by accessing and modifying the
runtime environment from Piccola as this would make Piccola a reflective system.

Protecting Forms. Host components and their services can be separated into two cate-
gories: clients and containers. Client services use the arguments passed as required services.
For client services it is important that the adaption from Piccola does not change the identity.
This is ensured by using the peer binding.

In contrast, container services store their arguments without invoking any service on them.
Typically, containers have other services to retrieve stored elements. As an example consider
the following list which is a host object of type ArrayList. We use the Java methods void
add(int index, Object element) to store an element and Object get(int index) to get
the element back. We store the adapted peer object obj:

obj = Host.class("java.lang.Object").new() # create a new object
obj.tag = "anAdaptedObject" # adapt from Piccola
list = Host.class("java.util.ArrayList").new() # cerate a collection
’’list.add(val1 = 1, val2 = obj) # add adapted object
obj = list.get 1 # get element back
’’println obj.tag # fails! tag not defined

When we add the form obj we down it and thus add the Java object (which does not
contain tag). When we (later) retrieve this element the adaption is lost.

We protect forms from loosing their adaption by putting them into a peer binding. We
define the service protect as follows and change the above code to protect the added ele-
ment:

protect Form: peer = Form
’’list.add(val1 = 1, val2 = protect obj) # protect the form

When we pass the form obj down to Java, the value of the peer binding, which is not an
upped object, is added. The adaption is not lost. In Section 6.1 we will see an example of
how an ArrayList of Java is adapted by a wrapper.

92 CHAPTER 5. A SMALL COMPOSITION LANGUAGE

5.9 Language Design

Piccola is a composition language based on the idea of forms. Adhering to our principle of
generalization we basically only define form-expressions in the syntax. In this section we
explain the most important language decisions we took.

Quotes. In earlier versions of Piccola we had a keyword return to denote the form to be
returned. The example below defines a channel that contains an additional non-destructive
read service. To the left, it is written in Piccola and to the right in the old syntax using return.

newReadChannel:
’ch = newChannel()
ch
read:

’r = ch.receive()
’’ch.send r
r

newReadChannel:
ch = newChannel()
return

ch
read:

r = ch.receive()
ch.send r
return r

We found two drawbacks with the return keyword. First, too many return keywords
confuse the reader, especially, when we use them in nested forms, which is syntactically
correct. Second, return was not doing what users expected when it was used, for example
inside an if-then-else expression. In fact, return does not have the semantics of blocks that
return to the home-context of the block, as in Smalltalk. In Section 7.10.1 we will give such
an encoding of blocks.

It turned out that return was used only to keep binding local. However, local bindings
can also be modeled by simply extending the current root with these bindings. This is exactly
what can be achieved with quotes. The language with the return-keyword is described and
used in earlier papers about Piccola [AN00, AKN00, ALSN01, AN01].

Indentation. We have adopted the use of indentation for structuring code from Haskell
and Python. It turns out that indentation is helpful when the expressions are not too deeply
nested. In fact, we often refactored code when it was too much indented and found useful
high-level abstractions through the refactoring. Deep indentation indicates that too many
things are going on at the same place. In Chapter 8 we see this deep indentation when we
compose glue code wrappers with their respective components (see Figure 8.14).

When a form expression has many bindings they all have to be on the same indentation
level. Writing and reading such code sometimes is awkward. We expect that a composi-
tion environment could alleviate this problem to a certain degree. The goal would be that
each form expression should fit on a single page. Longer forms are broken into pieces and
managed by the composition environment.

User Defined Operators. Operator overloading is common in many object-oriented and
functional languages. The idea is that the service associated with, for instance, the plus
in a + b is not globally determined but specified by the types of a and b. Python uses the
following schema to dispatch the expression A + B: If object A understands the message

5.9. LANGUAGE DESIGN 93

__add__, this message is sent with B as argument. Otherwise, if object B understands the
message __radd__ (the right-hand side operator) we send this message with A as argument.
Otherwise a exception is thrown [Lut96].

We use the left-hand expression in infix terms do the dispatch. However, Piccola addi-
tionally supports global operators. This allows us, for instance, to define form equality as
a global operator. Forms can define their own equality by defining _==_. The global form
equality checks if all bindings are mutually equal.

Piccola can also model Python’s dispatch. The following definition delegates plus calls
to the right-hand side.

DefaultOp._+_default L R: R.radd L

Thus, when the left-hand side in a plus-expression does not contain a binding for _+_,
the call is handled by the right-hand side. For instance, the expression “() + A” becomes
“A.radd()” since the empty form has no label _+_.

With the translation for user-defined collections, Piccola allows the collections associated
with brackets to be changed. In contrast, languages like Prolog or Haskell provide syntactic
sugar for lists, but the concrete implementation for lists cannot be changed.

Special Form Abstractions. Lisp supports so-called special form abstractions [Pit80]. The
idea of these abstractions is that the order of evaluation can be defined as part of the abstrac-
tion. The abstraction receives the unevaluated expressions as argument. As an example this
allows the programmer to define an if-then-else abstraction as a ternary function. The first
argument is a boolean value and the other two are the unevaluated then- and else-branch.
If the boolean is true we evaluate the then-branch otherwise the else-branch. With stan-
dard eager evaluation, such an abstraction cannot be defined since both branches would be
evaluated before invoking if.

In Piccola all arguments are passed by value. A similar effect to special form abstractions
is achieved by using service definitions instead of nested forms. As an example, booleans
have a service select:

true = (select X: X.true)
false = (select X: X.false)

We define the global service if:

if Bool Cases:
’Cases = (then: (), else: (), Cases) # provide defaults
Bool.select(true = Cases.then, false = Cases.else)()

Invoking if we pass a boolean and a Cases form. The boolean selects either the then or
the else service and invokes it. The result of invoking if is the value returned by the case
branch. For instance:

if true
then: println "then branch"
else: println "else branch"

prints out “then branch”. The abstraction if creates the illusion of a keyword due to inden-
tation and the fact that we create an ad-hoc form containing the then and the else branch.

94 CHAPTER 5. A SMALL COMPOSITION LANGUAGE

5.10 Discussion

We have added a layer of expressive power on top of the Piccola calculus. This expressive
power is needed to efficiently use Piccola as a composition language. Many of the features
are syntactical sugar for Piccola. For instance we have introduced an abbreviatation for user-
defined infix operators that support polymorphism in their left component. Contrarily, a
user may also want to define global operators, like generic form comparison. The possibility
to define the semantics of Piccola operators as syntactic sugar gives us confidence that the
expressive power of the calculus is appropriate. Of course, an efficient implementation of
Piccola may choose to treat infix operators as primitive instead of expanding them according
to the abbreviation rule abb-infix.

The semantics of the language contains dynamic namespaces and fixed points in addi-
tion to the Piccola calculus. The definition of fixed points is based on channels. We demon-
strate how to encode mutual recursive services using a purely functional sub-language, i.e.,
without using channels and explicit agents and we have shown that both encodings are
equivalent for service definitions.

An alternative approach that avoids the complexity of the lookup[.] operator is to define
recursive forms as primitive in the calculus and give an observational characterization. We
have not chosen this approach since it may violate our assumption that forms are finite trees.

We argue that finitary forms have a closer relation with interfaces and environments
used in component based programming. By assuming finite forms we can specify generic
glue wrappers that iterate over forms. With recursive forms, applying generic glue wrappers
may lead to nontermination. Further work is needed to investigate whether one can define
a type system that guarantees the necessary finiteness of forms while still enabling recursive
values.

Another approach would be to give up the expressiveness of the inspect operator and
replace it with a general wrapper. The semantics of this wrapper can be thought of as a map
service over forms. In fact, from our programming experience it seems enough to have first
class labels, a comparison operator for those labels, and a map function. Our proposal with
the inspection operator is more powerful as it allows us to encode the needed composition
abstraction. However, it may turn out that a smaller set of composition abstractions would
be sufficient for defining composition abstractions. In that case, one could drop inspect,
replace it with weaker operators that would not be based on finitary assumptions anymore.

Chapter 6

Partial Evaluation

In this chapter we present a partial evaluation algorithm for Piccola. This algorithm uses
the fact that forms are immutable. We replace references to forms by the forms referred
to. We can then specialize projections and replace applications of referentially transparent
services by their results. However, most services in Piccola are not referentially transparent
and cannot be inlined since that would change the order in which side-effects are executed.
We need to separate the referentially transparent part from the non-transparent part in order
to replace an application with its result and to ensure that the order in which the side-effects
are evaluated is preserved.

The algorithm separates functional Piccola agents into side-effect terms and lazy forms ex-
pressions. Side-effect terms contain applications that may cause side-effects and projections
that may be undefined. For side-effect terms the order of evaluation is important. In contrast,
lazy forms are referentially transparent. As subexpressions they contain deferred projec-
tions, bindings, and hidden forms. Dropping unnecessary subexpressions does not change
the semantics of the lazy form. We call these expressions lazy since the bindings can be
evaluated on demand.

This chapter is structured as follows. In Section 6.1 we present a wrapper that adapts
host components. We consider when this wrapper is used and motivate the need for the
partial evaluator. In Section 6.2 we give an overview of the algorithm, which is formally
defined in Section 6.3. In Section 6.4 we prove correctness and termination of the algorithm.
In Section 6.5 we extend the algorithm. We consider services that have a side-effect and
services that just introduce new state. Applying new-state services can be deferred but such
applications are not referentially transparent. We improve the results of specialization by
treating new-state services differently than side-effects. In Section 6.6 we show how to ex-
tend the algorithm with constant folding. In Section 6.7 we describe possible enhancements
to the algorithm and issues when implementing it.

6.1 A typical Example

In Figure 6.1 (part of) the adapter for Java lists is given. The service wrapList adapts a form
list that gives access to a Java object of java.util.ArrayList so that it can be used with
Piccola’s collection notation. In particular, a collection must support the add service that
adds an element and returns the collection in order to be used with the bracket notation (see
Section 5.3).

95

96 CHAPTER 6. PARTIAL EVALUATION

def wrapList list:
peer = list.peer # keep peer binding
add X: # add X and return wrapped list

’’list.add(protect X) # protect X when downing the form
wrapList list

isEmpty: wrapBoolean(list.isEmpty())
size: wrapNumber(list.size()) # return the size
clone: wrapList(list.clone())
+ Elem: clone().add Elem # clone and add to the close
forEach X: # iterate over all elements

’is = wrapIterator list.iterator()
’def loop:

if is.hasNext()
then:

X.do is.next() # and invoke X.do
loop()

’’loop()
reduce F Init: # reduce by using F

’res = newVar Init
’’forEach

do Elem: res <- (F (*res) Elem)
*res

DefaultOp.[_]: wrapList # make a new list
Host.class("java.util.ArrayList").new()

Figure 6.1: Wrapper for a List

6.2. OVERVIEW 97

Some services defined by the adapter have a corresponding Java method. For instance
size and isEmpty call the corresponding method and wrap the results as Piccola numbers
or boolean, respectively. The service add uses the underlying Java method to add an ele-
ment and returns the wrapped list. Other services are implemented by helper routines, for
instance the service forEach creates an iterator for the object and iterates over the elements.
Observe that there are dependencies between the defined services. For instance the service
+ uses clone and the service reduce depends on forEach.

In order to motivate the partial evaluation, let us consider what happens when we evalu-
ate the expression “[1,2].forEach(do: ...)”. Recall that this expression is syntactic sugar
for “DefaultOp.[_]().add(1).add(2).forEach(do: ...)”. The following actions are trig-
gered when we evaluate the expression:

1. The host object for a new empty list is wrapped by wrapList.

2. The adapted service add is invoked. This leads to a call on the host list.

3. The list is wrapped again as a result of the add service.

4. The same is done for adding the element 2.

5. The adapted service forEach is invoked. This leads to the creation of an iterator on the
host list.

Now the iterator visits all stored elements in the list. The wrapList wrapper is invoked
several times, but only one service it defines is used each time. The following code has the
same behaviour but uses no wrapper:

’list = Host.class("java.util.ArrayList").new() # new list
’’list.add (peer = 1) # protect inlined
’’list.add (peer = 2)
’iterator = list.iterator()
... # use the iterator

Here we directly call the associated methods of the external component. Of course, the
second code example runs more efficiently.

Such situations occur frequently in Piccola. Adapting components normally does not
cause a side-effect and we would like to inline such adapters. In the following we present a
partial evaluation algorithm that inlines referentially transparent services and separates the
side-effect.

6.2 Overview

Partial evaluation [AMY97, JGS93, CD93] is a program transformation technique which,
given a program and parts of its arguments, produces a specialized program with respect to
those arguments.

Partially evaluating programs that may contain side-effects has to take into account the
evaluation strategy. Because partial evaluators perform non-standard eager evaluation, we
need to know which services have side-effects. In pure, functional languages the property
of referential transparency assures that any data structure created at partial evaluation time

98 CHAPTER 6. PARTIAL EVALUATION

has the same value throughout the specialization. With side-effects this assumption does not
hold anymore.

Before presenting the algorithm in detail, we give an informal account of the main idea.
We separate each service s into two services sp and sr. The first service, sp, is the side-effect
part of the service. When we apply sp on a form F, the side-effects of sF are evaluated. We
refer to the result of spF as the side-effect. The service sr is referentially transparent. It takes
the side-effect and the argument F and returns the value of sF. Thus the service s is split into
sp and sr such that the following holds:

sF = sr(spF)F

As an example, consider the service wrapRec:

wrapRec ch:
received = ch.receive() # side-effect
value = wrap received # wrap is referentially transparent
channel = ch # return ch as part of the result

The service receives a value from the channel ch and wraps the received form using a service
for which we assume that it is referentially transparent. The services wrapRecp and wrapRecs
are now:

wrapRecp ch: ch.receive()
wrapRecr side ch:

received = side
value = wrapped side
channel = ch

The trick is that we can now defer invocation of the referentially transparent service.
Assume we use the result of an invocation of wrapRec and project on the received label. In
that case, the invocation of wrapped is not necessary anymore. The code

a = (wrapRec ch).received

is the same as “a = wrapRecr (wrapRecp ch) ch” which is the same as

a = ch.receive()

when we inline the referentially transparent service.
For the algorithm we not only split services but any functional agent (see Section 5.4).

Furthermore, we do not represent the lazy part as curried services. Instead the root context
consists of the side-effects bound by unique labels.

For simplicity, we first do not consider the hide primitive and treat it as a service with a
side-effect. In Section 6.5 we show how to handle hide more effectively.

The partial evaluation algorithm partial : A → A is expressed in two steps. First an
agent A is split into a side-effect term and a lazy form expression. Then, the side-effect term
and the lazy form are combined back into a specialized agent. The set of side-effect terms is
denoted by P and ranged over by P. The set of lazy formsR ranged over by R. Some helper
predicates are defined over lazy forms and side-effects. In that case we use Q to range over
of P ∪R. The grammar for lazy forms and side-effect terms is given in Table 6.1. We adopt
the same precedence as for functional agents: Projection is stronger than binding which is
stronger than application.

6.3. THE ALGORITHM 99

P ::= ε empty form | x 7→P nested side-effect
| P · P extension | x 7→R.x projection
| x 7→RR side-effect application

R ::= ε empty form | x variable
| R · R extension | x 7→R binding
| R.x projection | λx.P ? R lazy abstraction
| side(A) side-effect service

Table 6.1: Lazy Forms

The two functions of the algorithm are split and combine:

• The function split : (A×R) → (P ×R) separates a functional agent into a side-effect
and a lazy form. We split the agent A in the context given by the lazy form R′ and get
a side-effect term P and a lazy form R, written split(A, R′) = (P, R).

• The function combine(P × R) → A combines the side-effect and the lazy form back
into a functional agent.

The partial evaluation algorithm partial : A → A is defined as:

partial(A) = combine(split(A, ε)) (6.1)

Observe that we assume the empty form as initial context for specializing an agent A.
Lazy form expressions are referentially transparent. As we will see, they contain uneval-

uated projections that are guaranteed to succeed. Evaluating lazy forms can be deferred.
Lazy forms contain references to side-effects or to formal parameters. Lazy abstractions
λx.P ? R contain their side-effect P and referentially transparent result R.

Side-effect services are arbitrary agents A. Partial evaluation does not specialize them.
The primitive services new, run, and L are side-effect services. Side-effect terms contain
applications and projections that may fail. Side-effect terms have a specific structure. Atomic
side-effects are bound by unique labels, side-effect terms can be nested and sequentially be
composed. In P1 · P2 we may refer to side-effects of P1 from P2.

6.3 The Algorithm

We present and discuss the functions split and combine in detail. We assume that · is associa-
tive and ε is the neutral element. This allows us to reduce the number of defining equations.
For instance, when defining projection in Table 6.6 we write project(R · x 7→R1, x) = R1 assum-
ing that we can rewrite any form with several bindings into a form extended with a single
binding.

We need some helper predicates for the free and bound variables and we define substi-
tution.

The set of free variables in a lazy or side-effect term, fv(Q) is defined in Table 6.2. Note
that the definition of free labels of an ordinary Piccola agent is meaningless as the free labels
of R are undefined. For lazy forms and side-effects, a recursive definition can be given since

100 CHAPTER 6. PARTIAL EVALUATION

fv(ε) = ∅ fv(x) = {x}
fv(R1R2) = fv(R1) ∪ fv(R2) fv(R.x) = fv(R)

fv(Q1 ·Q2) = fv(Q1) ∪ fv(Q2) fv(x 7→Q) = fv(Q)
fv(λx.P ? R) = (fv(P) ∪ fv(R))\(labels(P) ∪ {x}) fv(side(A)) = ∅

labels(ε) = ∅ labels(x) = ∅
labels(x 7→Q) = {x} labels(R.x) = ∅

labels(Q1 ·Q2) = labels(Q1) ∪ labels(Q2) labels(side(A)) = ∅
labels(R1R2) = ∅ labels(λx.P ? R) = ∅

Table 6.2: Free variables and defined labels

sandbox expression are inlined and lazy forms do not contain R. The interesting case is the
free variables for abstractions λx.P ? Q. They are constructed by taking the free variables of
P and R and by removing x and the labels that are defined by P. This definition reflects the
fact that R will be evaluated in a context defined by P as we will see.

The predicate labels(Q) denotes the set of labels that are bound by Q. The label of a bind-
ing x 7→Q is the set {x}. The set of labels of an extension is the union of the subexpressions.
We are conservative with the set of labels when the labels cannot be inferred straightforward.
For instance, the set of labels of any application or projection is empty.

The expression Q[x/R] denotes the expression Q where all free x are replaced by R. Sub-
stitution is defined in Table 6.3. Note that there is no special definition for the side-effect
y 7→R1R2. This case is defined by the binding and by the application, thus (y 7→R1R2)[x/R] =
y 7→(R1R2)[x/R] = R1[x/R] R2[x/R]. Note that R[x/R]′ ∈ R and P[x/R] ∈ P . This means
that a substitution on a lazy form denotes a lazy form, and a substitution on a side-effect
term denotes a side-effect term. As usual we replace bound variables to avoid name capture
[HS86].

Notice that substitution on a projection is defined in terms of the helper predicate project
which is defined later.

6.3.1 Combining Side-effects and Lazy Forms

The function combine gives a denotational semantics to pairs of side-effects and lazy forms.
It does so by translating them to Piccola agents. The function combine is defined as:

combine(P, R) = combine′(P); embed(R) (6.2)

A side-effect and a lazy form are combined to a sandbox expression where the root context
is the combined side-effect and the value is the embedded lazy form. The functions embed
and combine′ are given in Table 6.4. The embedding is compositional except for abstractions
that respect the special nature of lazy closures. Since an abstraction λx.P ? R itself contains a
side-effect part and a lazy form value, the embedding is λx.combine(P, R).

The function combine′(P) translates a side-effect into a functional agent. It replaces the
sequential composition operator of the side-effect with a sandbox. Nested side-effects, ap-

6.3. THE ALGORITHM 101

ε[x/R] = ε

(P ·Q)[x/R] = P[x/R] ·Q[x/R]
x[x/R] = R
y[x/R] = y where x 6= y

(y 7→Q)[x/R] = y 7→Q[x/R]
(R1R2)[x/R] = R1[x/R] R2[x/R]

side(A)[x/R] = side(A)
(λx.P ? R1)[x/R] = λx.P ? R1

(λy.P ? R1)[x/R] = λy.P[x/R] ? R1[x/R] where x 6= y, and
y 6∈ fv(R) or x 6∈ fv(P, R1)

(λy.P ? R1)[x/R] = λz.P[x/z][x/R] ? R1[x/z][x/R] where x 6= y and
y ∈ fv(R) and x ∈ fv(P, R1)

(R1.y)[x/R] = project(R1[x/R], y)

Table 6.3: Substitution

embed(ε) = ε embed(x) = x
embed(R1 · R2) = embed(R1) · embed(R2) embed(side(A)) = A

embed(x 7→R) = x 7→embed(R) embed(P.x) = embed(P); x
embed(λx.P ? R) = λx.combine(P, R)

combine′(P1 · P2) = combine′(P1); combine′(P2) combine′(ε) = R
combine′(x 7→R1R2) = R · x 7→embed(R1)embed(R2) combine′(x 7→R.x) = R · x 7→embed(R.x)

combine′(x 7→P) = R · x 7→combine′(P)

Table 6.4: Embedding side-effects and lazy terms

102 CHAPTER 6. PARTIAL EVALUATION

plications and projections are combined to extensions of R with the embedded expression.
Recall from the introduction that the root context R will contain the side-effects.

The following agent A illustrates how combine works. The agent defines two services
f and g that both contain a side-effect by calling unknown services c and d respectively.
Furthermore, g calls f .

A = R · f 7→(λx.resultf 7→c(argf 7→x));
R · g 7→(λy.resultg 7→d(f y));
a 7→g()

We expect that the side-effect of g must be the composition of the side-effects of f and d
and that the argument passed to d is the resulting value of f y. In the following subsection
we will see that splitting A in the context c 7→c · d 7→d yields a side-effect P and a lazy form R
as follows:

P = y4 7→(y2 7→y1 7→c(argf 7→ε) · y3 7→d(resultf 7→y2.y1))
R = a 7→resultg 7→y4.y3

Observe that the side-effect y4 is a nested side-effect that consists of y2 and y3. The right-
hand side of y3 uses the side-effect y2.y1 to refer to the side-effect of c(argf 7→ε). When com-
bining this tuple into a functional agent, we have to make sure that side-effect identifiers are
correctly bound. This is achieved by transforming any side-effect binding into an extension
of the root context with this binding:

combine(P, R) = R · y4 7→(
R · y2 7→(R · y1 7→c(argf 7→ε));
R · y3 7→d(resultf 7→(y2; y1)));

a 7→resultg 7→(y4; y3)

We can think of the combination of side-effect terms as if each side-effect binding was a
quoted binding:

’y4 =
’y2 =

’y1 = c(argf = ())
root

’y3 = d(resultf = y2.y1)
root

a = resultg = y4.y3

6.3.2 Separating Side-effects

We discuss splitting of agents which is the heart of the specialization algorithm. The function
split(A, R) is defined in Table 6.5. The first set of definitions (6.3 – 6.5) split primitive services
into their corresponding lazy forms. The side-effect part is empty since the construction of
a service has no side-effect. The lazy forms are the primitive services marked as side-effect
services.

6.3. THE ALGORITHM 103

split(L, R′) = (ε, side(L)) (6.3)
split(new, R′) = (ε, side(new)) (6.4)
split(run, R′) = (ε, side(run)) (6.5)

split(hidex, R′) = (ε, side(hidex)) (6.6)
split(ε, R′) = (ε, ε) (6.7)
split(R, R′) = (ε, R′) (6.8)

split(x 7→A, R′) = (P, x 7→R) where split(A, R′) = (P, R) (6.9)
split(A; B, R′) = (P1 · P2, R2) where split(A, R′) = (P1, R1)

and split(B, R1) = (P2, R2) (6.10)
split(A · B, R′) = (P1 · P2, R1 · R2) where split(A, R′) = (P1, R1)

and split(B, R′) = (P2, R2) (6.11)
split(λx.A, R′) = (ε, λx.P ? R) where split(A, R′ · x 7→x) = (P, R) (6.12)

and

split(x, R′) =

{
(ε, project(R′, x)) if x ∈ labels(R′)
(y 7→project(R′, x), y) otherwise

(6.13)

split(AB, R′) =



(P1 · P2, R3[x/R2]) if service(R1) = λx.ε ? R3

(P1 · P2 · y 7→P3[x/R2], if service(R1) = λx.P3 ? R3

nest(R3, y, P3)[x/R2]) and P3 6= ε

(P1 · P2 · y 7→service(R1)R2, y) otherwise

(6.14)

where (P1, R1) = split(A, R′), (P2, R2) = split(B, R′) and y denotes a unique identifier.

Table 6.5: Split Function

104 CHAPTER 6. PARTIAL EVALUATION

The side-effect of evaluating the empty form (6.7) is the empty form and the result is the
empty form. The result of evaluating R (6.8) is the current context R′ and the side-effect is
empty.

Splitting a binding (6.9) works as follows: We first split A which yields a side-effect P and
a result R. The side-effects are propagated and the resulting lazy form is the lazy binding
x 7→R.

Sandbox expressions A; B are split into side-effect terms and lazy forms as follows (6.10):
First the agent A is split in the context R′. This yields a side-effect P1 and an intermediate
context R1. Then, expression B is split in the intermediate context R1 into a side-effect P2
and a lazy form R2. The side-effects are composed to P1 · P2. The resulting lazy form is R2.
Observe that R1 does not occur in the final result. The equation 6.11 for splitting A · B is
similar. The difference is that we evaluate both subterms in the same root context R′ and
that the resulting lazy form is the extension of the respective lazy forms.

Specializing an abstraction λx.A (6.12) yields no side-effects and splits the body of the
abstraction in the context R′ extended with a binding x 7→x. This extension reflects the fact
that the root context for A will contain a binding x. Observe that we do not infer anything
about what binding x contains.

Evaluation of x (6.13) is done by projecting x in the current root context R′. There are
two distinct cases. If it is known that R′ has a binding for x, i.e., x ∈ labels(R′), projection
is guaranteed to succeed and has no side-effects. In the other case — if we cannot ensure
that R will contain a binding for x — the projection is part of the side-effect. The projected
value project(R, x) is bound by a unique identifier y. The lazy form is the variable y. This
case reflects the fact that looking up a variable in a context where it is not defined cannot be
reduced further or raises an exception which is a side-effect.

The helper predicate project : (R× L) → Q denotes the value bound by a label. If the
projection can be performed at specialize time, we do the actual lookup. If the value of
the projection is not known, an unevaluated projection is returned. For instance project(R1 ·
x 7→R2, x) = R2 and project(y, x) = y.x. The term project(R, x) is recursively defined on R
in Table 6.6. If R is the empty form then projection on it will never succeed. In that case
we might warn that a type error will occur at runtime. Formally, we define error to be the
projection ε.x.

If the form is extended to its right with a binding x 7→R, projection on x returns R. This
is the important case that simplifies a projection expression. If the form is an extension with
a service or an extension with a binding with a different label, projection proceeds recur-
sively. In any other case, projection cannot be determined at specialize time and project(R, x)
denotes the projection R.x. Note that R.x is a lazy form if x ∈ labels(R), for instance (x 7→ε ·
y).x ∈ R.

Before we discuss the case of an application, we present a few examples to get an idea
how split separates functional agents. For instance:

split(λx.x, ε) = (ε, λx.ε ? x) (6.15)
split(λx.(y 7→x; y), ε) = (ε, λx.ε ? x) (6.16)

split(λx.(y 7→ε · x; y), ε) = (ε, λx.ε ? (y 7→ε · x).y) (6.17)
split(λx.(x; y), ε) = (ε, λx.y1 7→x.y ? y1) (6.18)

The first two abstractions are identity services. Splitting those services removes the sandbox
expression in the second example. Both abstractions have an empty side-effect. For the

6.3. THE ALGORITHM 105

project(ε, x) = error ≡ ε.x
project(R · x 7→R1, x) = R1

project(R · y 7→R1, x) = project(R, x) if x 6= y
project(R · (λy.P ? R1), x) = project(R, x)

project(R · side(A), x) = project(R, x)
project(R, x) = R.x otherwise

Table 6.6: Projection

service(ε) = error
service(R · λx.P ? R1) = λx.P ? R1

service(R · side(A)) = side(A)
service(R · x 7→R1) = service(R)

service(R, x) = R otherwise

Table 6.7: Service Selection

third example, the side-effect is also empty. We return the value bound by y in x. If x does
not contain the required binding, the empty form is returned as default value. Thus, the
projection on y will never fail. In contrast, applying the service of equation 6.18 on a form
that does not contain a binding for y raises an exception.

Let us now consider the most interesting case of specializing an application (equation
6.14 on Table 6.5). First — as is with extension — we split the agents A and B in the context
of R′. This gives us two side-effects P1 and P2 and two lazy forms R1 and R2, respectively.
The side-effects are composed in the right order, first P1 then P2.

The predicate service : R → R is used to determine the service of a lazy form. The term
service(R) denotes the service bound in a term R. For instance, service(y 7→R1 · λx.P ? R) is
the abstraction λx.P ? R. Determining the service that is associated with a lazy form R is
similar to project. The recursive definition is given in Table 6.7. If R is the empty form we
raise an error. If the lazy form is an extension of any form R extended with a service, service
selection yields this service. If the lazy form is an extension with a binding, service selection
recursively proceeds. In any other case, we cannot determine the abstraction and service(R)
denotes R.

Now, there are three possibilities depending on the functor of the application: The func-
tor may be a referentially transparent service, it may be unknown, or it may be a service
containing side-effects.

1. The functor is a referentially transparent service λx.ε ? R3, i.e., its side-effect is empty.
We inline the application by replacing it with the body R3 where all x are replaced by
the concrete argument R2. The lazy form is R3[x/R2].

106 CHAPTER 6. PARTIAL EVALUATION

As an example consider the service of example 6.17 which we invoke with the binding
(y 7→a). We split the application in a context that binds a:

split((λx.(y 7→ε · x; y)︸ ︷︷ ︸
R3

)(y 7→a)︸ ︷︷ ︸
R2

, a 7→a) = (ε, ((y 7→ε · x).y)[x/y 7→a])

= (ε, a)

The split function has specialized the application.

2. When the functor of the application cannot be determined at specialization time we
proceed as follows. Consider the application f () where we know nothing about f . We
have:

split(f (), f 7→ f) = (y1 7→ f (), y1)

Since we know nothing about the functor, we put the application into the side-effect
and bind it to a unique label y1. The lazy-form of the application refers to the side
effect y1. Splitting the application explicitly states that f () may contain a side-effect.

3. We consider the last case which is the most important one. We use an example to ex-
plain what happens. Assume the application f () appears within an abstraction where
f is the passed argument. We have:

split(λ f . f (), ε) = (ε, λ f .y1 7→ f () ? y1) (6.19)

Now we apply this abstraction on a form F. In the side effect and the lazy form we
have to replace the variable f with the concrete argument F. The substitution yields
y1 7→F() and y1.

We need to ensure that we can refer to the result of this application even if we invoke
the same abstraction several times. For that we nest the side-effects for each application
with a unique label. Consequently, the lazy form has to lookup the result in the nested
form by using a projection. Using such a unique label y2, the side effect of the above
application is y2 7→(y1 7→F()) and the lazy form y2.y1.

The function nest does the nesting of side-effects. The term nest(R, x, P) is R where all
y that are defined in P are replaced by the projection x.y. For instance, if P is the side-
effect y1 7→P′ · y2 7→P′′ then nest(R, x, P) = R[y1/x.y1][y2/x.y2]. Since the labels in P are
distinct, the order of the substitution does not matter. The predicate nest is recursively
defined on P:

nest(R, x, ε) = R
nest(R, x, P · y 7→Q) = nest(R[x/x.y], x, P)

Consider the following agent A. It defines a service f which calls a service g. The
service f is applied twice, once on the empty form and once on the form u.

A = R · f 7→λx.(c 7→(g(a 7→x)︸ ︷︷ ︸)
y1

); a 7→ f ()︸︷︷︸
y2

· b 7→ f u︸︷︷︸
y3

6.4. CORRECTNESS 107

The agent A contains three static applications. We associate unique identifier y1...3 with
each invocation. Let r be the initial context that contains the bindings for the unknown
forms r = g 7→g · u 7→u. Splitting the three applications yields:

split(g(a 7→x), r · x 7→x) = (y1 7→g(a 7→x), c 7→y1)
split(f (), r · f 7→(...) = (y2 7→(y1 7→g(a 7→ε)), c 7→y2.y1)
split(f u, r · f 7→(...) = (y3 7→(y1 7→g(a 7→u)), c 7→y3.y1)

which gives

split(A, r) = (y2 7→(y1 7→g(a 7→ε)) · y3 7→(y1 7→g(a 7→u)),
a 7→(c 7→y2.y1) · b 7→(c 7→y3.y1))

The partial evaluation inlined f and binds the side-effects to y2 and y3, respectively.

Observe that the nesting of side-effects ensures that we can access the side-effects from
within the lazy form expression. If we apply the partial evaluation algorithm twice on
the above expression, the nested side effects and projection are specialized:

split(combine(split(A, r)), r) = (y1 7→g(a 7→ε) · y2 7→g(a 7→u), a 7→(c 7→y1) · b 7→(c 7→y2))

However, applying split twice does not linearize all nested side-effects since recur-
sive service applications would introduce new nested side-effects at each specializa-
tion step.

This concludes the predicate split and the partial evaluation algorithm.

6.4 Correctness

We show that the partial evaluation algorithm is correct and terminates for all expressions.
While termination is straightforward to show, correctness requires a bit of work. The impor-
tant definition is that of referential transparency.

Termination. We can readily verify by structural induction on the domains for A,P and
R that the algorithm terminates. The important aspect for termination is the definition of
the substitution given in Table 6.3. Consider the application xR1 where we replace x with a
user defined abstraction. For example

(xR1)[x/λz.P ? R] = (λz.P ? R)R1[x/λz.P ? R]

It might be tempting to define the result of such a substitution as the result of splitting the
application, as we have done for projection.

However, as the following example shows, this may lead to an infinite loop during the
specialization process. Consider the term xx where we substitute the service λy.y1 7→yy ? y1
for x. When we split the substitute term, the process loops since the substitute contains
another instance of the same expression.

108 CHAPTER 6. PARTIAL EVALUATION

Correctness. This property specifies that any closed agent is behaviourally equivalent to
its specialized agent. This means:

partial(A) ≈ A for A closed (6.20)

In order to prove this equation, we show by induction over A that for all functional agents
A and lazy form expressions R, the following holds

combine(split(A, R)) ≈ embed(R); A (6.21)

Then, equation 6.20 is a special case of equation 6.21 where R is the empty form. However,
in order to prove the induction steps for this equation we need a stronger property, namely
that for all A and R, there are two agents A1 and A2 such that:

combine(split(A, R)) ≈ A1; A2

and all free labels in A2 are defined by A1 and A2 does not contain any applications which
cause side-effects or undefined projections. Whenever A1 reduces to a barb with value F,
there exists a form value G such that the expression F; A2 is equivalent to G. The formal
definition of this property is that A2 is referentially transparent in A1.

Definition 6.1 A Piccola agent B is referentially transparent in an agent A, if for any agent C
and names c̃ with νc̃.C | A⇓, written as canonical agent:

νc̃.(C | A) ⇒ νc̃′.(M1 | ... | Mn | A1 | ... | Ak−1 | F)

there exists a form G such that:
F; B ≈ G

The fact that B is referentially transparent within A is written A ` B. ε ` B is written as ` B.

Referential transparency formalizes the idea behind lazy forms. Whenever A is reduced
to a barb with value F, the agent F; B is equivalent to a form G. In other words, when A
reduces to F then A; B reduces to G. This notion rules out the possibility of B containing a
side-effect. It also guarantees that all required labels of B are defined by A.

The word all in the above definition is important. It is not enough to find an equivalent
G just for some possible reductions. For instance c(x 7→ε) | c() | c?; x → c() | x 7→(); x ≈ c() | ε.
But c(x 7→ε) | c() | c? 6` x.

Obviously, all forms are referentially transparent, thus ` F for any form F. We can
prove by induction on A that split(A, R) generates tuples that are referentially transparent.
If split(A, R) = (P, R) then combine′(P) ` embed(R). The formal proof is in Appendix D.

6.5 New-state Services

In this section we present an enhancement to the partial evaluation algorithm. The enhance-
ment adds special splitting rules for new-state services. A new-state service is not referen-
tially transparent but it can be deferred, since its evaluation has no direct side-effect. In-
voking the new-state service returns a different result each time it is invoked. Examples of
new-state services are new and L.

6.5. NEW-STATE SERVICES 109

Consider the program

a =
’ch = newChannel() # neither used nor returned
b = 7

This program has the same behaviour as “a = b = 7” since the channel is never used. In the
rest of this section we extend the partial evaluation algorithm so that it is capable to perform
specializations of this kind.

We first extend the grammar for lazy forms with new-state services:

R ::= ... | newState(A)

and change the predicates embed and split as follows:

embed(newState(A)) = A
split(L, R) = (ε, newState(L))

split(new, R) = (ε, newState(new))

We extend the notions of free variables and substitution accordingly.
The equation for splitting applications, equation 6.14 on Table 6.5, does not need to be

changed. We split applications with new-state services in the same way as unknown func-
tors. For instance:

split(new(), R) = (y 7→newState(new)(), y)

The enhanced partial evaluation algorithm partial′ : A → A is then defined as:

partial′(A) = combine(strip(split(A, ε))) (6.22)

The function strip removes applications of new-state services that are not needed. In
order to explain strip, consider the splitting of the following agent A:

A = R · a 7→new();
R · b 7→new();
result 7→(a; send)()

Evaluating A creates two fresh channels by using the new-state service new and binds them
to a and b, respectively. It returns the result of invoking the send service of the channel a.

Splitting A yields:
split(A) = y1 7→newState(new)()·

y2 7→newState(new)()·
y3 7→y1.send(),
result 7→y3

Observe that we never refer to y2 in the expression, which will always have the form
y 7→newState(A)R.

The function strip : (P ×R) → (P ×R) is defined in Table 6.8. The technical difficulty is
to ensure proper working of strip with nested side-effects. For that purpose the function strip
uses a helper predicate strip′ which carries an additional argument Q denoting the scope of

110 CHAPTER 6. PARTIAL EVALUATION

strip(P, R) = strip′(P, R), R

strip′ : P ×Q → P
strip′(ε, Q) = ε

strip′(P · x 7→R1R2), Q) = strip′(P, Q · R1 · R2) · x 7→R1R2

strip′(P · x 7→R.y), Q) = strip′(P, Q · R) · x 7→R.y
strip′(P · x 7→P′), Q) = strip′(P, P′ ·Q) · x 7→strip′(P′, undo(Q, x))

strip′(P · x 7→newState(A)R, Q) =

{
strip′(P, Q · R) · x 7→newState(A)R if x ∈ fv(Q)
strip′(P, Q) otherwise

undo : Q×L → Q
undo(x.y, x) = y

undo(y, x) = y if x 6= y
undo(ε, x) = ε

undo(R.y, x) = undo(R, x).y if R 6= x
undo(R1R2, x) = undo(R1, x) undo(R2, x)

undo(R1 · R2, x) = undo(R1, x) · undo(R2, x)
undo(y 7→R, x) = y 7→undo(R, x)

undo(λy.P ? R, x) = λy.undo(P, x) ? undo(R, x)
undo(newState(A), x) = newState(A)

undo(side(A), x) = side(A)

Table 6.8: Stripping new-state services

6.6. CONSTANT FOLDING 111

the side-effect. The function strip′ is recursively defined for side-effect terms. The scope
Q is the term where the effect might be looked up. Consider the stripping of a side-effect
extended with a binding x 7→newState(A)R. If the scope Q does not contain x free, then we
can drop the binding and continue recursively. If the scope refers to x, then we must keep
the binding and continue recursively. In this latter case, we have to add R to the scope where
side-effects may be used.

The purpose of undo is to undo nesting of side-effects by replacing x.y by y when travers-
ing a nested binding x 7→Q. The predicate undo is transparent except for projection, i.e.,
undo(x.y, x) = y. In this case the projection x.y is replaced by y since we have to undo
the nesting of the label x.

As expected, strip removes the binding y2 in our example:

strip(split(A)) = y1 7→newState(new)()·
y3 7→y1.send(),
result 7→y3

6.6 Constant Folding

Constant folding is an optimisation technique that replaces a call of a function with known
arguments with the result of that call. In this section we demonstrate this technique by
presenting an extension to the partial evaluation algorithm. We show how to improve it with
respect to deterministic applications of form inspection. An application of L is deterministic,
if the argument is the empty form, a single service, or a binding. In these cases we know
the result of the application and can replace the application with its result. Other constant
applications like arithmetic or string operations can be integrated into the partial evaluation
framework in a similar way.

In order to inline the result of, say L(x 7→R), we need to extend the grammar for lazy forms
in Table 6.1 with the service hidex for hiding a label x. Consequently we extend the grammar
for lazy forms with a variant where a label is hidden: hidden(R, x) denotes the form R
with the label x hidden. This is necessary in order to be able to write the result of L(x 7→R)
as a lazy form expression. When R contains a variable we cannot evaluate the hiding of a
label at specialization time. The semantics of projection and service selection from a hidden
form is implemented by the helper functions project and service which have to be extended
accordingly.

We extend the domains of lazy forms with hidden forms

R ::= ... | hidden(R, x)

and adjust the notion of free variables and substitution accordingly:

fv(hidden(R, x)) = fv(R)
labels(hidden(R, x)) = labels(R)\{x}
hidden(R, y)[x/R′] = hidden(R[x/R′], y)

Label hiding is transparent for the free labels and for substitution. The predicate labels
respects the semantics of label hiding and removes x from the set of provided labels.

112 CHAPTER 6. PARTIAL EVALUATION

The helper predicates project and service are extended in the obvious way:

project(hidden(R, x), x) = error
project(hidden(R, y), x) = project(R, x) if x 6= y

service(hidden(R, x)) = service(R)

Looking up a label x in a form where x is hidden yields an error. In any other case (if the
hidden label is not the same as the projected label) projection and service selection proceeds
recursively.

The function embed is extended to include hidden forms:

embed(hidden(R, x)) = hidex embed(R)

The predicate split is modified in order to consider the primitive hide service. We add a
new case to equation 6.14 in Table 6.5:

split(AB, R) = (P1 · P2, hidden(R2, x)) if service(R1) = hidex (6.23)

where (P1, R1) = split(A, R) and (P2, R2) = split(B, R)
Finally, we provide more cases for applications of inspect, depending on the value in-

spected:

split(AB, R) =


(P1 · P2, λx.split((x; isEmpty)ε, x 7→x)) if R2 = ε

(P1 · P2, λx.split((x; isService)ε, x 7→x)) if R2 is a service
(P1 · P2, λx.split((x; isLabel)E(y), x 7→x)) if R2 = (y 7→R3) for any R3 and y
(P1 · P2, y = newState(L)R2, y) otherwise

(6.24)

where (P1, R1) = split(A, R), (P2, R2) = split(B, R) and service(R1) = L. The first-class label
E(y) is the expression:

project 7→(ε; λx.(x; x)) · hide 7→hidex · bind 7→(ε; λx.x 7→x)

Observe that we define the service for projection since x 7→ is not a functional agent (see Table
5.4).

With this extension to the partial evaluation algorithm we achieve better results when
working with first class labels.

6.7 Discussion

We conclude the chapter and describe further applications of the partial evaluation algo-
rithm and issues related to its implementation that are open for future work. The presen-
tation of the algorithm in this chapter focussed on its correctness proof. We have omitted
the aspect of code duplication, efficient implementation of the specialized code, code anno-
tations for inlining, and using the information in a composition environment.

6.7. DISCUSSION 113

Code duplication and Efficiency. We have not discussed the effect of code duplication that
is relevant in the context of partial evaluation. Assume a referentially transparent service
that requires a lot of computation, like calculating the factorial. When we have an invocation
of this service, say s() this invocation may get duplicated during specialization.

Instead of duplicating, we can turn the application into a once function. A once function
gets evaluated at most once — hence its name [Mey92]. When a once function is evaluated
the first time, its result is cached and reused by later invocations. For more details on the
implementation we refer the reader to [Sch01].

Using once functions also makes the special treatment of new-state services superfluous.
In fact, once functions already defer the invocation as long as possible (and may omit them
if not needed) and cache the result. Thus we can add referential transparent service applica-
tions to the grammar of lazy forms. Their implementation as once-functions guarantees that
the resulting expression is correctly specialized.

In the implementation we may not implement combine as presented here. In fact, instead
of taking unique labels for each application that may contain a side-effect and putting them
into the root context, it is more appropriate to use arrays of a data-structure for forms and
offset values to store the result of side-effect invocations and use the same (pre-calculated)
offsets to fetch those values back.

Annotations. In the presentation of the algorithm in this chapter we inline any applica-
tion. However, inlining duplicates the code. In order to keep storage consumption low we
need a way to decide which services to inline and which not. Furthermore, we need annota-
tions for host services to indicate whether they are referentially transparent or whether they
are new-state services.

More work is required to see how one can optimize communication along channels, i.e.,
by inferring that a channel always contains the same value.

Composition environment. The partial evaluation algorithm can be used as a simple type
checker for Piccola expressions. Although the associated type system is not complete, i.e.,
there may still be some runtime type errors, it can detect many mistakes that occur during
programming.

Here is an example how to define the interface of a service. Define newChannel as

newChannel 7→ε; λx.
(new();
send 7→λx.(send(x); ε)
receive 7→λx.receive())

Any application of newChannel can then be specialized to:

• a form with exactly two services send and receive,

• applying the send service denotes the empty form.

Such an annotation can be considered as a type-declaration for the newChannel service.
We expect that the information provided by the algorithm should be explored in the

context of an integrated composition environment. For instance, consider the following code
fragment:

114 CHAPTER 6. PARTIAL EVALUATION

’size = newVar 17 # create a local variable
’initialize() # call initialize and extend root
size.get() # which size to use?

The problem here is as follows. If initialize() returns a form containing a binding for
size, we will refer to this binding in the last line. However, if in all contexts the service
initialize() does not return a binding containing size, it is guaranteed that size on the
last line refers to the local variable. If we know the implementation of initialize we can
often give this guarantee. In fact, the partial evaluation algorithm infers the value of size
in the last line. An integrated composition environment can refer to the value of that label.
Such situations often occur when we use, for instance, wrappers that add default bindings.

Summary. We have presented a partial evaluation algorithm for Piccola. The algorithm
separates expressions into side-effect terms and referentially transparent forms. We use this
optimisation technique to remove the overhead associated with wrappers.

A key feature of the algorithm is that it removes the explicit namespaces of Piccola. The
specialized code only depends on an initial root context. The same applies for the dynamic
context that is passed around.

We have used the semantics of Piccola to prove correctness of the optimisation. How-
ever, more work is needed to know when to apply the optimisation to improve overall per-
formance with respect to the code size.

The algorithm as presented here duplicates terms and as such costly computation. In a
real implementation, duplication must be prohibited and links used to decrease the gener-
ated code size. Furthermore, we should cache the results and eliminate duplicated compu-
tation using once functions [Mey92].

Chapter 7

Composition Styles in Piccola

In the previous chapters we have defined the composition language Piccola. In this and
the next chapter we see Piccola at work. The purpose of this chapter is to demonstrate the
expressive power of Piccola and of forms in particular to model composition abstractions
as first-class entities. We present composition and coordination abstractions that cannot be
defined as pure functions. This validates our claim that agents, channels and forms support
the definition of such abstractions. We also define composition styles as a declarative and
high-level notion to express composition. The key requirement to implement styles is that
we can express connectors as first-class abstractions. The two kinds of composition abstrac-
tions correspond to Piccola’s composition layers (see Table 2.1) for library abstractions and
composition styles, respectively.

An architectural style defines a vocabulary of components, connectors and rules gov-
erning composition. A composition style does the same, but not only at the architectural
but also at the implementation level. A composition style defines a set of plug-compatible
components, connectors to compose them and rules governing the composition. Not all ar-
chitectural styles naturally map to a set of components-types and connectors. For instance
we cannot define a generic connector for layered architectures.

We advocate the use of component algebras to capture the notion of a composition style.
The component-types are the sorts, the connectors are the operators, and the rules governing
the connection are represented by the signature of the algebra. The signature of a composi-
tion style defines a domain specific language. Defining and presenting a composition style
as a grammar helps to communicate the expressiveness and constraints of the style.

This chapter is organized in three parts: First we define the notion of a composition style,
then we present a longer example implementing a non-trivial composition style, and finally
we present how inheritance and coordination abstractions are defined using forms, agents
and channels. In Section 7.1 we contrast the low-level wiring view with the plugging view
of composition abstractions. We illustrate the difference with the well understood style for
push-flow filters in Section 7.2. We give two approaches to implement this style in Section
7.3. While one approach uses higher-order functions , the other approach uses explicit wires.
In Section 7.4 we show that event notification can be implemented by using specific wires.
This section starts our longer example that culminates in the implementation of a GUI-style
in Piccola. By wrapping the GUI framework of Java into a domain specific language. In
Section 7.5 we define an enhancement to the push-stream style by adding multiplexers, the
merging of streams, and distributive filters. We combine this merge-stream style with a style

115

116 CHAPTER 7. COMPOSITION STYLES IN PICCOLA

for GUI composition in Section 7.6 and Section 7.7. This example validates our that forms
support the definition of extensible composition abstractions. In Section 7.8 we define and
show a style for mixin composition. Finally, in Section 7.9 we show how to make an aspect a
first-class abstraction and in Section 7.10 we present how to encode control and coordination
abstraction within Piccola.

7.1 Plugging versus Wiring

Software components are black-box abstractions that not only provide but also require ser-
vices in order to function correctly. Building an application from components should then
be a simple matter of wiring components, i.e., of connecting provided to required services.
So — what is the problem?

The problem is that wiring is an inherently low-level activity that can lead to configura-
tion errors. It does not scale up well. Wires are the gotos of component based programming.
It is more natural to plug components. A plug is a set of unconnected wires. The wires of
a plug are connected to a compatible socket in a single step. Composite components hide
their connected interfaces and thus yield a new composite component.

We argue that a composition style can most naturally be captured by the signature of a
many-sorted algebra [Wir90]. The component types are the sorts of the algebra. The oper-
ators are the connectors, and the rules are expressed by the signature. Let S be a set whose
elements are called sorts. A signature Σ is a set of operation symbols σ of an arity s1, s2, ..., sn
where si ∈ S for i ≤ n and a rank s. An operation symbol is written σ(s1, s2, ..., sn) → s. If
n = 0 then σ is called a constant symbol. A many-sorted algebra consists of a signature plus
an interpretation of the signature into a set of elements, called the carrier. The interpretation
associates each σ of the signature an actual operation on the set of the algebra.

Consider the following Unix script.

ls | grep test

The plugging-view declaratively says that the output of ls is further processed by grep. We
are most of the time not so much concerned about the fact that there are two concurrent pro-
cesses connected via buffer. The terms “ls” and “grep test” are constants of the algebra,
the pipe symbol corresponds to the actual operation that connects two filters and denotes
a new element of the algebra, i.e., a filter. In contrast, in a wiring view, this expression de-
scribes two processes “ls” and “grep test”. The output stream of “ls” is the input stream
of the grep process. The input stream of the whole expression is the input stream of “ls”.
The output stream of the grep process is the output stream of the whole script.

The plugging view is what is eminent from the script.

• Scripts are high-level specifications that make the composition of components explicit.

• Scripts are constraint by the grammar. Only well defined expressions are allowed. For
instance, we cannot connect files in a Unix shell script with the pipe symbol.

The script makes it easier to reason about properties of the resulting configuration and it
simplifies program understanding as the complexity of the underlying wires is hidden.

A signature is essentially a grammar for a domain specific language. The elements of
the algebra are the actual components that are describable in the grammar. In fact, when

7.2. A PUSH-FLOW STYLE 117

provided services required services
Source push E: push element downstream

close: signal end of stream
Filter push E: push element downstream push E: push element downstream

close: signal end of stream close: signal end of stream
Sink push E: push element downstream

close: signal end of stream

Table 7.1: Provided and required services for the push-stream style

defining a composition style we actually design a specialized language. Such languages are
also called little languages [Ben86].

In the following section we will present a simple composition style and contrast its wiring
view with its plugging view.

7.2 A Push-Flow Style

In a pipe-and-filter architecture, each component has a set of inputs and a set of outputs. A
component reads data on its inputs and produces output. We call these components filters.
The connectors of this style connect an output of one filter to an input of another filter. They
are called pipes [AAG93, SG96]. The rules for the style specify that filters are independent
entities and may not share state with other filters. They may not know the identity of their
respective upstream and downstream filters. A variant of the pipe-and-filter architecture is
when each filter has at most one input and one output port. Components with no input port
are called sources, components with no output port are called sinks. Filters in the narrow
sense have one input and one output port. Such components can only be assembled in a
linear sequence called a pipeline.

There are many examples of successful pipe-and-filter architectures: The best known are
UNIX-processes connected by pipes and scripted by shell scripts [KP84]1. Other usages are
in compiling technology [ASU86], or distributed programming [BMR+96, KBH+01].

We use the pipe-and-filter style to explain the difference between wiring and plugging.
One can classify filters whether they provide or require services for their input or output
ports. In Unix, a filter process requires both services from the environment. We use a pas-
sive push filter providing an upstream push service and requiring a downstream push ser-
vice. We also have a close operation to tear the stream down, flushing cached values and
releasing allocated sources.

Sources, filters and sinks are distinguished by the different services they provide and
require as shown in Table 7.1. Basically, filters and sinks provide push and close services
to upstream components which use them to push data and to signal the end of the stream.
Sources and filters require push and close services from downstream components to which
they are connected (Figure 7.1).

1Most UNIX environments degenerate from the pure style. For instance, the “ls” command often behaves
differently depending on whether the output stream is bound to a process or to the standard output. In the latter
case, the output is formatted to multiple columns.

118 CHAPTER 7. COMPOSITION STYLES IN PICCOLA

provided Service

required Serivce

Legend:

Filter

Dataflow DownstreamUpstream

Figure 7.1: Wiring Streams

Arity → Rank
Filter >> Filter → Filter
Filter >> Sink → Sink
Source >> Filter→ Source
Source >> Sink → Void

Table 7.2: Signature for the Push-flow Style

We wire such components together by binding the provided services of a sink to the
corresponding required services of a filter. Using a binding-oriented notation, as for instance
in Darwin [EP93], this is written as:

bind aSink.push -- aFilter.push
bind aSink.close -- aFilter.close

This approach has the following limitations: First it does not scale up, since we may only
wire one connection at the time. Second, it is error-prone as we might forget some bindings.
Finally, the composite is not a component, i.e., a first-class value of the language.

A component algebra for the push-stream style is defined as follows. The sorts are Filter,
Source, Sink, and Void. The signature consists of four overloaded operation symbols, see
Table 7.2.

The operation symbol Filter >> Sink → Sink specifies that a composition of a filter with a
sink denotes a sink. The operation symbol Source >> Sink→ Void says that the connection of
a source and a sink denotes a component of sort Void. As there are no operations defined on
this sort, we cannot further compose it.

Properties of the algebra are imposed by equational specifications. For our style, we want
that the >> -operator is associative, thus (F1 >> F2) >> F3 denotes a component with the same
behaviour as F1 >> (F2 >> F3).

The signature of a style is a level of abstraction above the notion of provided and re-
quired services. Instead of wiring provided and required services of filters at a low level, we
have defined a little language to compose streams. In this language we can compose streams
without paying attention to the individual services of the components. The high-level op-
erators of the stream-language ensure that the services are bound correctly. The signature
forbids bad configurations like composing two sinks.

7.3. IMPLEMENTING STYLES 119

An implementation of this style must provide the carrier and the operations to conform
to the signature of Table 7.2. The components we have characterized with provided and
required services are made consistent with the signature by associating with the >>-plug in
F1 >> F2 the operation that wires the provided services of F2 with the required services of F1
and denotes the component with the unbound wires of both F1 and F2.

The signature hides the following implementation details:

• It abstracts the fact that the required push and close services of the left-hand side filter
are bound by the provided services of the other filter.

• It abstracts the fact that the required and provided services of the composite filter are
the unbound wires of the individual components.

Note that these details are far from being unimportant. In fact, in Chapter 8 we will see that
these details may cause compositional mismatch. We will demonstrate how Piccola can be
used to detect and repair these mismatches by using glue code.

The signature is an level above the provided and required services. It is possible to evolve
the underlying component algebra without modifying scripts that use the style, for instance
it might be necessary to add an initialize service that is connected when wiring. In later
sections, we evolve the style be extending its composition behaviour, i.e. by defining richer
wiring semantics for the same plugs.

7.3 Implementing Styles

We demonstrate how to evolve a wiring based implementation of components into a com-
ponent algebra of the desired style. Remember that the design rational for Piccola is to be
a generic scripting language. We want to encapsulate a set of components into a little lan-
guage with the grammar given by the signature of the composition style. We want to provide
a shallow embedding of this little language into Piccola, instead of implementing it as a new
language from scratch.

There are two ways to perform a wiring: the functional and the first-class wire way. The
functional way works by invoking services. When we invoke an abstraction or a service, we
wire the required services of the component to the argument and we receive the provided
services as result. In this approach composition means functional composition. The second
approach uses first-class wires. A wire can be connected or unconnected. If attached to a
provided service, invoking the wire invokes the connected service. Invoking an unconnected
wire may block, do nothing, or raise an exception depending on the type of the wire.

In order to present these two approaches in detail, we first discuss the difference of com-
ponent factories and instances.

7.3.1 Component Factories and Instances

When we speak about components we are often not so much concerned whether we work
with instances or the factories to create them. With objects and classes the distinction is
much more important. Classes are used to instantiate objects. In object-oriented languages,
classes are often not first-class citizen. A composition language must support the creation of
component factories as well as their instantiation.

120 CHAPTER 7. COMPOSITION STYLES IN PICCOLA

In order to implement an algebra we have to know whether the elements of the algebra
are instances or factories. Assuming that the elements are instances and we connect a filter
and a sink, the composite denotes a new instance of a sink according to the signature. The
underlying instances have changed their state from unconnected to connected. We cannot
wire their sockets with other components, unless we first detach them.

In contrast, assume we have factories for sinks and filters. A composition defines a new
composite factory. We can use the same factories over and over again.

At last, it is also useful to compose factories and instances. In the following subsection,
we define the composition of a filter factory with a sink instance to be a new sink instance.

7.3.2 The Functional Way

We present an implementation of the push-stream style defined above. For our style, a sink
does not have any required services. A sink instance is a form with a push and a close service.
A filter factory is a form with an apply service. Invoking apply with a sink instantiates the
filter and returns the provided services of a filter, i.e., a new sink. A source factory is modeled
as a service bindSink that requires a sink and returns a Void component type. We use the
empty form for void types, since no further composition is necessary for such types in the
style.

Below is the definition of an output sink which prints all pushed data-elements and does
noting on close, a filter that counts all pushed elements and prefixes each with its counter,
and a source which emits “Hello” and “World”.

Stdout =
push S: println S # use println service
close: () # do nothing when the stream gets closed

CountFilter =
apply Sink:

’c = newCounter() # instantiate local counter
Sink
push S: Sink.push

asString(c.inc()) + ": " + S

HelloWorldSource =
bindSink Sink:

’’Sink.push "Hello"
’’Sink.push "World"
’’Sink.close()

Observe that we use form extension to construct the new sink in the filter CountFilter. The
form returned by apply is the form Sink extended with a binding for push. The new binding
overwrites the existing binding for push in the sink. The service close is inherited.

These components are composed using functional composition. The following script
prints out the lines “1: Hello” and “2: World”.

Counted = CountFilter.apply Stdout
HelloWorldSource.bindSink Counted

Observe that a sink is an instance, while filters and sources are factories. We can use the
filter several times, and get a new counter each time it is applied to a sink.

7.3. IMPLEMENTING STYLES 121

We wrap these components to support the style according to the signature of Table 7.2.
The difficulty is that the >>-operator is overloaded. Since Piccola is dynamically typed, we
cannot depend on the static type to resolve the overloading like in statically typed languages.
We present two approaches to implement overloaded operators, the first uses run-time type
checks, the second uses double dispatch.

Type checks. We use explicit type checks for the dispatch. As an example, we add the
>> binding to a filter. When invoked, we check whether the argument is a sink or another
filter. It is a filter if it has a service apply. The following recursive service addPlugToFilter
adds the >> binding to a filter. We use it to wrap the CountFilter of above:

applyLabel = label(apply = ()) # first-class label
def addPlugToFilter Filter:

Filter
>> Other:

if (applyLabel.exists Other) # explicit type check
then: addPlugToFilter

apply Sink: Filter.apply(Other.apply Sink)
else: Filter.apply Other

CountFilter1 = addPlugToFilter CountFilter

The component CountFilter1 can now be used according to the signature. For instance,
CountFilter1 >> Stdout denotes a new sink component that counts pushed data-elements.
Adaption of the other component types is similar.

Performing run-time checks is considered bad practice since it makes the code brittle for
changes. Therefore, we present a better approach in the next paragraph.

Double Dispatch. By using double dispatch we can avoid the run-time type checks
[Bec97, Ing86]. Double dispatch works by delegating a >> call to a service of the right-
hand side argument. The delegate service contains the type of of the left-hand side as part
of its name.

Thus, the protocol for our three component types must look like:

aSink =
close: ... # as before
push S: ... # as before
prefixSource Source: Source.bindSink(close = close, push = push)
prefixFilter Filter: Filter.apply(close = close, push = push)

aFilter =
apply Sink: ... # as before
>> Other: Other.prefixFilter (apply = apply)
prefixSource Source: # return new composite source
prefixFilter Filter: # return new composite filter

aSource =
bindSink Sink: ... # as before
>> Other: Other.prefixSource (bindSink = bindSink)

122 CHAPTER 7. COMPOSITION STYLES IN PICCOLA

asSink Sink:
prefixFilter Filter: Filter.apply Sink
prefixSource Source: Source.bindSink Sink # Source >> Sink
Sink

def asFilter Filter:
apply Sink: asSink

Filter.apply Sink # Filter >> Sink
prefixFilter FilterL: asFilter

apply Sink: # Filter >> Filter
FilterL.apply(apply Sink)

>> R: R.prefixFilter (apply = apply)
prefixSource Source: asSource # Source >> Filter

bindSink Sink: Source.bindSink(Filter.apply Sink)
Filter
apply = apply

asSource Source:
>> R: R.prefixSource Source
Source

Figure 7.2: Double dispatch for Push-stream style

For instance, assume we compose the filter with the sink by writing “aFilter >> aSink”.
In that case, the service aSink.prefixFilter(apply = ...) gets called. The sink invokes
apply and passes itself, i.e., the form that consists of the push and close service to the filter.
Similar, we call the service bindSink on the source when the sink is prefixed with a source.

Instead of manually adding this double dispatch protocol to each component, which
would be clumsy, we can use the genericity of forms and define wrappers that add it to any
given component. The wrappers are given in Figure 7.2. The wrapper asSink adds the
needed prefixSource and prefixFilter bindings to a bare sink. A bare sink is a form that
provides the close and push services but does not necessarily contain bindings to support
the composition style. The wrapper asFilter adds the >>-plug and the needed prefix-
bindings to a bare filter, and asSource adds the >>-plug to a bare source.

When we say add a binding to, for instance, a sink this can mean two different things.
Consider the wrapper asSink. It returns the form

prefixFilter Filter: Filter.apply Sink
prefixSource Source: Source.bindSink Sink
Sink

If Sink does not have a binding prefixFilter or prefixSource, these two bindings
are provided as a default. If Sink contains bindings with these names the bindings in Sink
overwrite the default bindings. Default bindings support (later) evolution of the style. In
Section 7.7 we will make use of this possibility.

7.3. IMPLEMENTING STYLES 123

In contrast the following wrapper:

asSink1 Sink:
Sink
prefixFilter Filter: Filter.apply Sink
prefixSource Source: Source.bindSink Sink

overwrites existing bindings for the two prefix-services. If the form Sink contains bindings
with these names, we see the ones defined in the asSink1 wrapper. If neither prefixFilter
nor prefixSource are defined, then both asSink-wrappers behave the same.

In object-oriented modeling, an overwriting wrapper is analogous to a subclass that over-
writes prefixFilter. The defaulting wrapper corresponds to a superclass that provides de-
fault methods for prefixFilter and prefixSource which can be specialized in subclasses.

Observe that the wrapper asFilter defines default bindings to the passed Filter and
overrides apply. The reason for this is that we want to extend the protocol later on, but
we also want to ensure that apply gets modified by the generic wrapper. The new apply
service uses asSink to ensure that the returned sink from the original apply service fits the
double-dispatch protocol and thus the composition style.

We can implement the style with three wrappers, one for each sort in the composition
style. We do not need to modify the underlying components. Note that no wrapper is
needed for the Void sort.

Connecting Filters is Associative. We have imposed that >> is associative for any com-
ponent types. By using the fact that beta-reduction is a valid law (see Section 3.8) we in-
line functional applications. We assume that Fi are components wrapped with one of the
above wrappers, and that their bare component does not contain bindings that interfere
with the double-dispatch protocol. For instance, a bare sink may not contain prefixSource
or prefixFilter bindings.

First we consider instances. The term F1 >> F2 >> F3 is an instance provided F3 is sink. To
be a valid term, F1 is either a source or a filter, F2 must be a filter in any case. Assume F1 is a
source. Then the expression F1 >> F2 >> F3 is

F1.bindSink(F2.apply F3)

independent of the order of parentheses. If F1 is a filter, then the whole expression becomes

asSink(F1.apply(F2.apply F3))

and is again independent of how we put parentheses.
Now, consider the case where we have factories. In that case, F3 must be a filter. Again,

we have two possibilities depending on the type of F1. If F1 is a filter, then the filter denoted
by F1 >> F2 >> F3 is:

asFilter(apply Sink: F1.apply(F2.apply(F3.apply Sink))

and if F1 is a source, the composite source is:

asSource(bindSink Sink: F1.bindSink(F2.apply(F3.apply Sink))

124 CHAPTER 7. COMPOSITION STYLES IN PICCOLA

and both composite are independent of the parentheses. The operator is >> is associative
and our implementation fulfills the laws imposed by the specified composition style.

In Section 7.5 we will reuse these wrappers for a style which supports the merging of
sources. There, the precondition that the bare filters may not contain bindings that interfere
with the protocol does not hold and the filters are not associative. If we need to ensure
associativity we must change the wrappers so that they overwrite bindings.

7.3.3 First-Class Wiring

For the push-stream style we could use functions to bind the required services. Two neces-
sary conditions must hold to do so:

• The topology of the architecture is not changed at runtime. Thus we do not need to
dynamically re-bind any wiring.

• We can give an order in which the instances are created. In our style, we start with
a sink that provides push and close and we then apply the filters to this stream and
finally bind the resulting sink to a source.

However, these conditions are not always met. When the functional approach is not
appropriate to establish the wirings, we use first-class wires. This approach allows us to
incrementally wire instances or to change the wiring at runtime.

A simple first-class wire allows us to use the required service bound to it. It works anal-
ogous to a future: invoking a connected wire invokes the service it has been bound to; in-
voking a free wire delays the client until the connection is established. An implementation
of a wire is based on a single channel:

newWire:
’ch = newReadChannel() # A channel with a non-destructive read
bind = ch.send # Bind a service
\Argument: ch.read() Argument # Invoke service

The channel will store the provided service. This implementation is not safe since mul-
tiple bindings are allowed, but it is enough for explanatory purposes. We assume that bind
is called at most once. In Chapter 8 we will use generic glue to formalize and enforce this
requirement.

In Piccola, we use forms as interfaces to components. However, a form does only expose
a set of services as bindings that are provided by the component. We propose the use of
the following convention how a form can give access to the required services of a component
instance: the provided services of a component are the bindings in the form, the required
service are available in a nested form bound by required. The task of a connector is to create
a new form that contains the unbound wires of both components and hides the connected
services.

The script in Figure 7.3 defines a push-stream source and a counter filter following this
convention. A source does not provide any services (see Table 7.1), the value of the form
mySource contains the single binding required with two free wires available in the nested
form. Note that invoking the service run returns the empty form, and the quoted required
statement makes the required services available in the local context. The wires bound in the
nested required form need to be connected in order for the source to operate properly.

7.3. IMPLEMENTING STYLES 125

’requiredSink: # service to create the wires
push = newWire() # required push
close = newWire() # required close

mySource =
required = requiredSink()
’required # make required namespace available
’’run

do: # run main agent
push "Hello"
close ()

myFilter =
required = requiredSink()
’required
’c = newCounter()
push S: push (asString c.inc()) + ": " + S
close: close()

Figure 7.3: Pushfilters with first-class wires

What is the behaviour of the mySource instance? The agent representing it is specified
as a do block and passed to run. It calls required.push to invoke the required push service.
But this service blocks, unless the wiring is established. Thus, the agent representing the
behaviour of mySource blocks until a sink or a filter is connected to it. Once connected, the
agent writes “Hello” to the stream and closes the stream.

Note that we use the fact that the set of required services is available as a nested form.
In the main agent of the component we extend the current namespace with all the required
services and then use them as if they were defined as normal services in the context.

The filter myFilter provides a push service that, when invoked, uses the required push
to forward any data-element and to prefix it with the current count.

Wiring mySource to the filter myFilter means binding the provided services of the filter
to the required services of the source:

mySource.required.push.bind myFilter.push
mySource.required.close.bind myFilter.close

In order to abstract from the low-level wiring we extend any source or filter instance by
adding the >>-plug. The adding is done by the following addInstancePlug wrapper:

def addInstancePlug Source:
Source
>> Right: # define the >> connector

’Source.required.push.bind Right.push
’Source.required.push.close Right.close
if (isEmpty (required = (), Right).required)

then: ()
else: addInstancePlug Right

126 CHAPTER 7. COMPOSITION STYLES IN PICCOLA

The >>-plug performs the wiring and returns the composite. If the Right component does
not require any services, i.e., it is a sink, the composite is the empty form. Otherwise, Right
is a filter and we wrap the composite in turn so that it contains the >>-plug.

The following composition connects mySource with myFilter:

connected = addInstancePlug(mySource) >> myFilter

Thanks to the uniformity of the operator, we do not need operator overloading in the case
of explicit wiring. In fact, the >>-operator always needs to wire the provided services of the
right-hand side with the required services of the left hand side and returns the extension of
the provided and required services with the connected wires removed. If we design a gram-
mar and that uses double dispatch in combination with explicit wires, this indicates that the
grammar is too overloaded and we should introduce more operation symbols. However, we
do not see a technical reason to forbid the use of explicit wires and double dispatch for one
style.

When using first-class wires, we naturally connect instances. This is manifested in the
above example since there is only a single counter. In the functional approach, the factory
service apply was a natural hook to allocate and initialize the counter for the new filter
instance. With the wire approach we introduce factories explicitly.

In order to lift from instance connectors to component factory connectors we use functional
abstraction. In our example, we convert mySource and myFilter into abstractions that create
an instance when invoked. Consequently, the >>-plug builds up a new factory which, when
invoked, instantiates both components and connects the instances appropriately.

def addPlug MyFactory:
MyFactory
>> OtherFactory: addPlug

new:
’me = MyFactory.new()
’other = (required = (), OtherFactory.new())
’’me.required.close.bind other.close
’’me.required.push.bind other.push
me # my provided services
required = other.required # required of the other component

HelloSource = addPlug(new: ...) # as before
CounterFilter = addPlug(new: ...)

Notice that we use new to instantiate filters. The wrapper addPlug adds the >>-plug to a
source- or a filter-factory. Invoking the >>-plug creates a new composite factory. When we
instantiate the composite factory, we instantiate both sub-instances, i.e., me and other and
wire their services.

The factories are composed and used as follows:

(HelloSource >> CounterFilter >> output).new()

Using the explicit wiring approach, we can instantiate components in arbitrary order as
illustrated by the following diagram. The upper part composes factories, the lower part

7.3. IMPLEMENTING STYLES 127

composes instances. Composition takes place from left to right.

Factory1 >> Factory2 −→ CompositeFactoryy y
Instance1 >> Instance2 −→ CompositeInstance

This diagram commutes if the connectors for instances, i.e., addInstancePlug and for
factories perform the same wiring. In our case, the following expressions denote the same
composite source instance:

(HelloSource >> CountedFilter).new()
addInstancePlug(HelloSource.new()) >> CountedFilter.new()

7.3.4 Discussion

We have presented two ways to implement first-class connectors in Piccola. The two ap-
proaches have different strength and weaknesses:

• The functional view separates component instances and factories. A factory is a func-
tion that takes a set of provided services, instantiates and returns a new component.
Creating composites corresponds to functional composition.

• Not all topologies can be decomposed into a functional wiring. We can’t express loops
and feedback with the functional way. First-class wires are more expressive.

• With first-class wires, we naturally plug instances. However, we can lift the plugs to
factories.

• First-class wiring supports dynamic re-binding.

The reader should note that it is also possible to combine both approaches. An example will
be given in Section 7.5.

We summarize how the definition of first-class connectors rely on the features of Piccola:

• We use higher-order services for functional composition.

• First-class wires are unified functions and forms. Invoking a first-class wire invokes
the attached service. Nested bindings support attaching the provided service. Richer
models of wires offer more services, e.g., to detach wires.

• The implementation of wires uses channels to represent the state of the wire, i.e.,
whether it is connected or not.

• User-defined operators capture the algebraic flavour of the component algebra. Notice
that operators are syntactic sugar of the Piccola language.

In an object-oriented language we use objects as component instances. We can implement
signatures by message sending and operator-overloading. However, we cannot smoothly
move to factories, since classes are often not first-class elements of the language and they do
not support higher-order functional composition.

128 CHAPTER 7. COMPOSITION STYLES IN PICCOLA

To overcome this drawback, composition has to be implemented by object-oriented com-
position techniques. For instance, we can consider a subclass of a sink as a filter. The filter
overwrites the corresponding push method and uses super.push() to push data-elements
downstream. The disadvantage of subclasses is that they are static. A more flexible approach
is supported by mixins. A filter is a mixin that eventually is composed with a sink. In both
cases however, the inheritance hierarchy obscures the data-flow of the stream. The architec-
ture is less explicit in the code compared with a script that uses the algebraic composition
style.

7.4 Event Wiring

In the previous section we used a simple wire that supports the connection of a single ser-
vice. Event notification [BCTW96] is a richer variant of first-class wiring. Using the event
notification schema, one or more participants transmit and receive messages in response to
events. An event might be: ’the user pressed a button’. The participant that transmits the
message is called the informer. The component that receives the event is called a listener. The
listener registers itself on a registrar, and the informer notifies the registrar when the event
occurred. The registrar forwards the event notification to all registered listeners. This pat-
tern of interaction is known as the observer or publish-subscribe pattern and the registrar
facility is also referred to as a bus [GHJV95].

Wiring is the process of registering a listener to an informer. While the listener provides
a service to be called by the informer as a response to the event, the informer requires a
service. But different to the push-stream style, the informer is also operational when no or
several services are wired.

In many frameworks for GUI composition the informer behaves differently depending
on the number of registered listeners. For instance Microsoft’s Foundation class library
MFC[Kru97] grays out buttons and menu-items when no listener is attached. The Java Beans
model [Mor97] supports an upper bound (often equals to one) to the number of registered
listeners.

A first-class wire is a registrar component. It is created by:

newRegistrar:
’listeners = []
bind Listener: ’’listeners.add Listener
\Event:

listeners.forEach(do Listener: Listener Event)

We assume that [] returns a new mutable list which has an add and a forEach service. When
the event is raised it is forwarded to all registered listeners in turn.

As an example, an observable point is created by:

newObservablePoint X:
required = changed = newRegistrar() # required service
’x = newVar (x = 0, X).x # Defaults to 0
getX = x.get
setX nx:

’’x <- nx # change x element
’’required.changed (arg = nx, event = "X Changed") # notify event

...

7.5. A MERGE-PUSH STYLE 129

We wire a listener to a point by binding a service to the required changed service. The
newObservablePoint is a factory for observable points.

In the following sections we will use this wiring and encapsulate it inside a GUI com-
position style. In Section 7.9 we will present a wrapper that adds the observable aspect to
arbitrary instances.

7.5 A Merge-Push Style

In this section we extend the push-stream style with a new filter sort DistFilter and with an
operator to merge sources. We will use these special filters for our GUI-composition style
in Section 7.7. This section demonstrates that the connectors for the push-style are truly
extensible. As we will show, unifying defaults and overwriting as form extension is the key
enabling feature for extensibility.

We add the following operators to the signature of the push-flow style in Table 7.2:

newMultiplexer () → Source
merge Source Source → Source
distributive Filter→ DistFilter

We want that distributive filters distribute over merged sources. When we compose such
a filter with a merged source, it gets composed with the sub-sources and the corresponding
composite sources are merged again:

(merge Soure1 Source2) >> DistFilter =
merge (Soure1 >> DistFilter) (Soure2 >> DistFilter)

Note that this law does not hold for arbitrary filters. Assume a filter that counts each
element. In the first case, the filter knows the total sum of all element pushed so far, in
the second case, both filters only know how many data elements were pushed from the
individual source. If the filter is specified by a referentially transparent service however,
then the above equation is valid. In this case, the filter has no state and it cannot have a
notion of history.

We present the implementation of these operators.

Multiplexers. Recall from Section 7.2 that a push source does not provide any services
and that it requires push and close. We cannot create an instance of a source from scratch
without providing the required services in the functional way. We can, however, create a
stream multiplexer that uses explicit wirings. A multiplexer provides push and close — thus
it is a sink; it also allows sinks to be connected — thus it is also a source.

When we use the multiplexer as a sink and no other sinks are attached to it, the multi-
plexer multiplexes to nowhere and looses all data-elements.

The service newMultiplexer on Figure 7.4 creates multiplexers. A multiplexer provides
push and close as discussed. We use the asSink wrapper of Figure 7.2 to add the double
dispatch protocol for sinks. We implement the protocol for sources, i.e., the >>-plug manu-
ally.

130 CHAPTER 7. COMPOSITION STYLES IN PICCOLA

newMultiplexer X: asSink
X
close = newRegistrar()
push = newRegistrar()
bindSink Sink:

close.bind Sink.close
push.bind Sink.push

>> R: R.prefixSource (X, bindSink = bindSink)

Figure 7.4: A Multiplexer for Push-Streams

Distributive Filters. Recall that a filter has the service prefixSource needed for the dou-
ble dispatch. This service is called when a filter is composed with a source. A distributive
filter however must behave differently when composed with a source. Therefore, we add an
additional binding to the filter that provides this specific behaviour:

def distributive Filter: asFilter
Filter # inherit Filter operations
prefixMergedSource X: # compose with a merged source

’Filter = distributive Filter
merge (X.s1 >> Filter) (X.s2 >> Filter)

A distributive filter inherits the provided services of its bare filter and adds the service
prefixMergedSource. When calling this service, we distribute the filter and attach it to both
sources and merge the resulting two sources. We apply distributive recursively in case
one of the sources X.s1 or X.s2 is also merged.

Merging sources is implemented by calling prefixMergedSource on distributive filters
and prefixSource on normal filters and on sinks.

merge s1 s2:
bindSink Stream: # wire both streams

s1.bindSink Stream
s2.bindSink Stream

>> R:
’default: R.prefixSource(bindSink = bindSink)
(prefixMergedSource = default, R).prefixMergedSource

s1 = s1
s2 = s2

The >>-plug works as follows. If the component R does have a prefixMergedSource service,
we call this service and pass both sources s1 and s2 as arguments. Otherwise, we use the
default and call prefixSource by passing the bindSink service so that the sink or the filter
can attach itself to the source.

Discussion. We have added a new sort DistFilter to the stream signature. Basically, we
did not need to adapt the double-dispatch protocol. Changing the type of filters and streams
would imply changing the wrappers asFilter and asSink given in Figure 7.2. The extensi-
bility of forms allows us to add additional bindings to a filter and therefore assume default

7.6. GUI COMPOSITION 131

bindings if these bindings are absent. We can evolve the push-stream style without adapting
existing components. The connectors implemented for the original push-style are extensible
and can be reused without change.

Contrast the situation using object-oriented modeling: we would experience a type-reuse
problem. On one hand, distributive filters are a subclass of filters, since they have additional
methods. On the other hand, filters must also provide prefixMergedSource so that ordinary
sources can prefix the filter. This means that we either have to modify the filter class or
that we have to type cast in the merging source code. Furthermore, note that extending
the interface of the filters with prefixMergedSource makes the interface richer leading to a
proliferation of messages understood.

The solution offered by forms is that the merge service can provide a default if the
plugged filter does not have a prefixMergedSource. We use form extension to specify this
default.

7.6 GUI Composition

There are many languages that include expressions for doing graphical layout like PIC, or
TeX. These languages support the composition paradigm of shapes which are composed
into bigger shapes. Two or more shapes are composed to yield a larger shape in a single
operation.

There are also many object-oriented frameworks that contain classes to define a graphical
layout. The paradigm offered, for instance by GUI frameworks like Java Swing, however is
more procedural and wiring based. The user creates a container element and then adds
individual elements to the container. This paradigm makes it hard to visualize the final
layout from the code. The wiring paradigm is supported by visual GUI builders. An empty
area is created and then individual elements are dragged into the container. While the wiring
approach may be suitable for visual environments, a composition style is more appropriate
for the code.

This and the next section demonstrates how to wrap an existing object-oriented frame-
work into a little language. We wrap parts of the Java GUI framework into a little language.
This validates that Piccola is a generic scripting language: we can script the host components
from the high-level scripting view defined by our imposed style. The little language itself
will be a combination of an extended push-stream style for the event handling and a GUI
composition style to be presented in this section. We define the GUI composition style in two
steps. We first present a simple variant that only does layout. Then we combine the layout
part with the merge-stream style.

Although we focus on some particular aspects of the Java GUI framework, similar ideas
apply when dealing with other frameworks for different domains. The reason we choose the
GUI framework of Java is because we assume that many are familiar with it, it is a non-trivial
framework, and finally, we think that wrapping the framework as a little language makes
the framework more accessible to novel-users. The little language is declarative whereas the
object-oriented framework only provides procedural abstractions to do the wiring.

132 CHAPTER 7. COMPOSITION STYLES IN PICCOLA

center

north

south

eastwest

Figure 7.5: Regions of a Borderlayout

7.6.1 Simple GUI Layout

A family of layouts is specified by a so-called layout manager. The manager determines the
location and the size of the contained components depending on the available space. For
instance, a flow layout arranges components in a left-to-right, top-to-bottom flow, much like
lines of text in a paragraph. A border layout lays out at most five components according
to the five predefined regions north, south, east, west and center as shown in Figure 7.5.
If the container is stretched, the height of the north and south and the width of the west
and east region remains whereas the other areas are stretched equally. Complex layouts are
implemented by nesting containers.

We focus on these two layouts and omit the other layouts of the Java framework for
simplicity reasons. We define the signature for the layout as follows:

Arity → Rank
flow [Gui, . . .] → Gui
border(region = Gui, . . .)→ Gui

where region is any of north, south, center, west or east. The sorts are Gui for a GUI
component, lists thereof, written [Gui, ...], and configuration maps that associate regions
to Guis, written (north = Gui, center = Gui, ...).

We have deliberately chosen the signature so that implementing it by forms is straight-
forward. Clearly, a configuration map is a form where Gui elements are bound by the labels
north, south, etc. For lists of Guis we use the available list defined in the core library in
Piccola.

The GUI composition style is implemented by two connectors flow and border. The
service flow takes a list of GUI components and returns a new flow layout component con-
taining the elements. It creates the container, does the wiring, i.e., the adding of the com-
ponents, and returns the container as new composite. In Java, the container is an instance
of java.awt.Panel with the appropriate layout manager. The service border lays out the
passed GUI components according to the regions specified into a border layout

Figure 7.6 compares an expression using the composition style with the explicit wiring
paradigm. Both expressions define the same layout: three buttons on top, a text-area in the
middle, and a status bar on the bottom, see Figure 7.7. While the component plugged uses
the style, the component wired does the wiring manually, looking very similar to a raw Java
implementation.

7.6. GUI COMPOSITION 133

plugged = border
north = flow [

newButton(Label = "New", Name = "newButton")
newButton(Label = "Run", Name = "runButton")
newButton(Label = "Quit", Name = "quitButton")]

center = newTextArea(Name = "inputArea")
south = newTextField(Name = "statusBar")

wired =
’panel1 = newFlowPanel() # creates the panel and sets the manager
’’panel1.add newButton(Label = "New", Name = "newButton")
’’panel1.add newButton(Label = "Run", Name = "runButton")
’’panel1.add newButton(Label = "Quit", Name = "quitButton")
’panel2 = newBorderPanel()
’’panel2.addCenter newTextArea(Name = "inputArea")
’’panel2.addSouth newTextField(Name = "statusBar")
’’panel2.addNorth panel1
panel2

Figure 7.6: Plugging a GUI

Figure 7.7: The Generated Layout

134 CHAPTER 7. COMPOSITION STYLES IN PICCOLA

The differences are as follows:

• The layout of the plugged composite is specified as a single, declarative expression.
In contrast, the code for adding the components for the wired composite is split into
several statements. This is dangerous as things might be forgotten or elements added
twice. For instance, in the Java framework, when we add several components to the
same area in a border layout only the most recent one is visible in the composite.

• The wiring paradigm allows us to change the GUI at runtime, for instance, by replacing
a button. The plugged expression does not support the change of the GUI at runtime.
Of course this is possible, if we give access to the external Java components that im-
plement the layout. However, changing a GUI at runtime is considered bad practice
[Joh00].

• An expression of the little GUI language gives an idea of how the final output will
look. Guessing the layout from the wired composite requires more analysis.

7.6.2 Using Default Arguments

We extend the GUI composition style to support the specification of additional properties for
the individual sub-layouts. The extension validates our claim that generalizing arguments
into forms supports extensible composition abstractions. A service assuming additional pa-
rameters can specify them as defaults or by overriding.

In our case we would like to change the default gap between the buttons. In the explicitly
wired code we can set the horizontal gap by setting the property Hgap of the layout-manager
for panel1 as follows:

panel1.getLayout().setHgap 10

Here, the service getLayout returns the layout manager object associated with the panel. A
flow layout manager accepts the method setHgap to set the horizontal gap.

In order to support properties we extend the signature of the GUI composition style. The
properties are specified as an additional parameter to the flow and border services. We add
a sort P for these properties. The new signature is:

Arity → Rank
flow([Gui, . . .] , property = P) → Gui
border(region = Gui, . . . , property = P)→ Gui
propertyName = Value, . . . → P

where propertyName is a valid property for the layout manager and Value is its corresponding
value. Often these values are strings and integers.

Handling these properties relies on the fact that arguments are encoded as forms. We
define a default argument for the service flow. If the argument contains a nested form called
properties we set these properties on the underlying layout manager. The default value for
properties is the empty form, i.e., all properties should have their default value. Below is a
fragment of Piccola code to set the properties of the local panel used in the service flow. The
service is invoked by passing a list of Gui elements. The form list might contain a binding
for properties as explained. The complete service flow is presented later in Figure 7.8.

7.6. GUI COMPOSITION 135

’panel = newPanel()
’’setProperties

panel.getLayout()
properties = (properties = (), List).properties # default is empty

The service newPanel creates a host object instance of the Java class java.awt.Panel and
wraps it using the Piccola bridge. We set the properties in panel.getLayout() using the
helper service setProperties.

7.6.3 Using First-class Labels

The service setProperties uses form inspection and first-class labels to call a different setter
service on the underlying component for each binding in the form property. If we encounter
a binding Hgap = 10, then the corresponding property must be set in the component, i.e., in
the layout manager by calling the service setHgap.

We use a dispatch form to associate the setter services with a given property, or more
precisely, with its name.

dispatchSet =
Hgap = label(setHgap = ())
Alignment = label(setAlignment = ())
...

The setProperties service iterates over the property form, looks up the setter service name
in the dispatch form and invokes the service on the underlying component.

setProperties component: forEachLabel # Iterate over all labels
form = component.properties # in the form
do Label: # and do

setter = Label.project dispatchSet # e.g., setter = setHgap
value = Label.project component.properties # the value to be bound
setter.project component value # invoke setter with the value

The reader familiar with the Java Beans model knows the convention how to encode
properties of Beans. For each property Prop supported by a Java Bean, there is a setter
method setProp(Value) and a getter method getProp() in the corresponding Bean class.
If there is no setter method, then the property is read-only2. With the dispatchSet we can
effectively follow this convention since there are only finitely many properties in the GUI
framework defined. We do not need a service to create a label from a string.

Additional checks ensure that only valid properties for the underlying component are
specified. If illegal properties are specified we can raise an exception or ignore them [BG97].
For our example, only the properties Alignment, Vgap and Hgap are valid for flow layouts,
and only Vgap and Hgap are valid for border layouts.

2In the Java Beans Model, this is called a design pattern. In fact, for each Bean there is a corresponding
Bean-Info class that defines the properties and the setter and getter methods. If a user sticks to the Java naming
convention, the Bean-Info class can be automatically generated [Mor97].

136 CHAPTER 7. COMPOSITION STYLES IN PICCOLA

7.7 Combining Styles

In this section we combine the merge-stream style and the GUI composition style into a
little language for specifying graphical user interface dialogs. Due to form extension we
can combine components of different styles into a coherent one. The key idea is to add the
component of one style as a nested form to a component of another style.

We associate with each Gui a nested form events which is the source of events of the cor-
responding Gui element. When composing GUI elements we also merge the corresponding
event sources. At the end a composite GUI, like, for instance the one defined in Figure 7.6 is
a single event source of the merge-stream style. We can attach filters and sinks to this source
and specify the behaviour of the GUI element in a high-level and declarative way.

As an example, we compose the plugged element into a dialog and define the behaviour
of this dialog:

dialog = newFrame # puts the component into a frame
properties =

Title = "Demo"
Name = "Demo"

component = plugged
’’dialog.events >> WindowClosing >>

newPushStream(\X: X.getSource().dispose())
’’dialog.events >> Action >> debugOut

The first stream disposes the frame when the window is closing. The second stream prints a
debug output for all action events generated by the dialog. Observe that the behaviour and
layout of the dialog is specified declaratively using the high-level composition styles defined
in the previous sections.

While this gives a little language to define graphical user interfaces, the mapping to the
concrete Java framework is not ideal. There is a big overhead if we register a listener for all
events a component can raise and push all these events into the corresponding event source
— maybe only to filter out those events later in the downstream.

Distributive filters overcome this bottleneck. They can ”walk up” to the individual
stream sources. We can compose the filter and the source and we remove unnecessary
source-filter compositions. This is possible if the filter decides that it will remove all events
generated by that component. Furthermore, instead of attaching the filter to the event
source, we generate a listener object and attach it directly to the underlying Java object.
Ideally, we fetch only those events that are actually needed, i.e., that have a sink attached.
This speeds up the resulting application as if the events were manually low-level wired.

This section is structured as follows. In Section 7.7.1 we show how to merge GUI ele-
ments and their associated event-sources. In Section 7.7.2 we present the technical details
necessary to create Java listeners and add them to Java GUI components. In Section 7.7.3 we
give a coordination abstraction to adapt services as once-services. In Section 7.7.4 we give
another example demonstrating the extensibility of the >>-plug. Finally, in Section 7.7.5 we
summarize the lessons learned from the implementation of the GUI-stream combination.

7.7.1 Composing GUI elements

Having defined the merge operator for sources, we can use it when composing GUI ele-
ments. For that purpose, the connectors of the GUI composition style (e.g. flow) do not only

7.7. COMBINING STYLES 137

flow X:
’panel = newPanel()
’’setProperties # set specified properties

panel.getLayout()
properties = (properties = (), X).properties

’wire events Component:
’’panel.add(Component, type = "java.awt.Component")
merge events Component.events # return a new merged push-source

panel
events = X.reduce wire panel.events

Figure 7.8: Creating a Flow Layout

layout the GUI components, but also reduce all event sources to a single source by merging
them. The code for flow is given in Figure 7.8

We assume that the elements of the list passed to flow are GUI components and have a
nested form events that is the source for events raised in the component. The GUI compo-
nent are laid out and a new source is created by merging the individual event sources.

The function reduce is often used in functional programming. Reducing a list applies a
binary service to each element in the list. The binary service is invoked once for each element
of the list. The first argument is the result of the previous call, the second argument is the
current list component. For instance, we can use reduce to compute the sum of a list:

println ([1, 2, 3].reduce (\x y: x + y) 0) # prints 6

7.7.2 Adding Listeners

The Piccola-Java bridge defines a set of event-type listeners classes. These classes implement
the necessary event type listener interface and forward the event method to Piccola. For
instance, an action listener is created from Piccola as:

listener = Host.class("pi.piccola.bridge.GenericActionListener").new
val1 = dynamic
val2 = actionPerformed Event: ... # the handler service

This code creates a Java object implementing the java.awt.ActionListener interface and
makes it available as a form. The method actionPerformed is specified as the handler ser-
vice from Piccola. This listener is added to a GUI component, e.g., to a button, by calling the
appropriate add-method: “button.addActionListener listener”.

In order to associate a push source with a GUI component, we create the appropriate
listener object and add it to the Java GUI component. The required service for the listener
is the push service of the multiplexer. For instance, the following Piccola code creates a
multiplexer events and an action listener and attaches the listener to a given button object:

events = newMultiplexer()
’’button.addActionListener

Host.class("pi.piccola.bridge.GenericActionListener").new
val1 = dynamic
val2 = actionPerformed = events.push

138 CHAPTER 7. COMPOSITION STYLES IN PICCOLA

We instantiate a listener for each event type the component understands and use the same
push service for all listeners. Thus all events a component generates are pushed downstream
starting at the same source.

7.7.3 Deferring the Wiring with Once Functions

It is important that we only add those listeners that are actually needed. Adding listeners to
all events a component can raise would make the final application unacceptably slow. Nor-
mally only a few events are “interesting” to an application. For instance, every component
supports the low-level mouse events but we are often not interested in these and would only
like, for instance, a notification when the user clicked on a button.

We defer the adding of the listeners by attaching them lazily. This means that we in-
stantiate and attach a listener only when the service events.bindSink is called, i.e., a sink is
attached to the event source.

A once function is a function that is only evaluated the first time it is used and its result
is then cached. Eiffel provides a special notion for once-functions [Mey92]. With channels
we define a wrapper for services to make them once services.

once Service:
’evaluated = newInitChannel false
’cache = newReadChannel()
\X: if (evaluated.receive(), ’’evaluated.send true)

then: cache.read()
else:

’’cache.send(Service X) # set cache with the result of the invocation
cache.read() # return the cached value

The once function has two local channels. Initially, the channel evaluated is set to false.
When the service is invoked for the first time, the wrapped service is invoked and the result
cached by sending it along the cache channel. Observe that we send the value true to the
channel evaluated thus preventing more evaluations. In case two concurrent invocations
of the once functions occur, only one is evaluated, and the other is blocked on the cache
channel until a value is available.

Using the once function, we defer instantiation and adding of the listener. The listeners
are needed only if a sink is attached to the source associated with the GUI component. Thus
all we need to do is to redefine the bindSink service so that it not only binds the stream to
the source but also invokes the once function for adding all the listeners.

7.7.4 Specific Filter-GUI Composition

An event-filter is a filter that removes all pushed data-elements unless they are of a given
kind. Instead of removing all elements at run-time, the filter can statically detect whether
it is going to remove all events to be pushed downstream or not. If the filter will remove
all elements, the composition of the source and the filter denotes a null source that never
pushes any data.

There are two kinds of event-filters where the composition with GUI sources may yield
a null source. A sourceSelector selects only the components that come from a particular
GUI element. This allows us to select, for instance, one or several specific buttons inside
a composite GUI. An eventTypeSelector selects only those components that are capable

7.7. COMBINING STYLES 139

Component is a wrapped Java awt Component, extended with registerAll
asAwtComponent Component:

’def self =
Component
events = newMultiplexer() # event source
’registerAllListeners = once # once service

\Component.registerAll # to add all listeners
do = events.push
component = Component

events.bindSink Stream: # defer adding the listeners
registerAllListeners()
events.bindSink Stream

events._>>_ R: # allow static filters to register
’default: R.prefixSource self.events
(register = default, R).register (self)

set P: setProperties(Component, properties = P) # generic set
self

Action = distributive # distributive, event-filter
apply Sink: # apply filter at runtime

Sink
push Elem: if (Elem.getID() == ActionEvent.ID)

then: Sink.push Elem
register Comp: # register at compose time

if isEmpty (addActionListener = (), Comp).addActionListener
then: nullPushSource # return null push source
else: # return a new source associated with the component

’newComponent = asAwtComponent
component
registerAll X: X.component.addActionListener

newActionListener X.do
newComponent.events

Figure 7.9: Wrapping GUI components

140 CHAPTER 7. COMPOSITION STYLES IN PICCOLA

of generating the specific event type. Such a filter allows us to receive, for instance, only
action events. In addition, an event type selector also knows how to create and add its own
listener thus circumventing the invocation of the once service that would register all listeners
supported by the GUI component.

Such a specific composition is implemented by a similar extension that we have al-
ready encountered in Section 7.5. There, we wanted a specific composition between merged
sources and distributive filters. Now we need a specific composition between GUI event
sources and static event-filters. For that purpose we overwrite the >>-plug of the event
source and call register on the filter or sink being attached. If this component is not an
event-filter, then we invoke the service prefixSource as usual for the double dispatch.

As an example, consider the event-filter Action shown in Figure 7.9. It provides a
register service in addition to the apply service that all filters must have. The register ser-
vice defines the composition behaviour when composed with event sources and the apply
service defines the run-time behaviour.

The register service works as follows. We return a new AWT component with an event
source when the event-filter decides that the GUI component it registers on can generate
events of the required type. The ‘new’ component is simply the wrapped ‘old’ component
with a more specific registerAll service. This specific service only adds the action listener
interface when needed, i.e., when a sink will be added later on.

The filters for selecting components based on their names are similar.
The service asAwtComponent wraps any external GUI component of the AWT framework.

It adds bindings for the event source and bindings for setting properties, as discussed in
Section 7.6. Note that we assume that the component being wrapped is extended with a
binding registerAll that instantiates and adds all listeners supported by that particular
GUI component.

Finally, it should be noted that we have not implemented event-filter Action as pre-
sented in Figure 7.9. In fact, we abstract the information how to instantiate, add a specific
listener, and detect whether the GUI component can generate such events. We do, however,
not show this abstraction here since it does not give more insight into the definition and
implementation of our little GUI language.

7.7.5 Summary

We have defined a little language that composes GUI elements and associates a single event
source with each GUI. Composing GUI elements yields larger GUI structures and merged
event sources. This style allows the programmer to separate the GUI layout from the be-
haviour. The behaviour does not need to be wired in terms of event listeners, but it can be
declaratively specified by push streams.

While seeing a composite GUI as a single source of events is conceptually nice, we cannot
directly map this style to the underlying Java framework. For that purpose we extended the
push-stream style with distributive event-filters that find their way to the GUI components.
Connecting an event-filter to a GUI component is scripted in the style efficiently wired in the
underlying framework.

The composition abstractions presented in this and earlier sections are either connectors,
wrappers, or coordination abstractions.

• Connectors plug components by performing the low-level wiring and constructing

7.8. MIXINS AND INHERITANCE 141

composite components. They are implemented using higher-order functions or explicit
wires.

• Generic wrappers adapt components. In Piccola wrappers are services taking a form
and, using form extension, provide default bindings or overwrite bindings. The wrap-
pers we have presented add the connectors to bare components.

• We have seen the coordination abstraction once to adapt any service into a once ser-
vice. The once service uses channels to store the state of the coordinated service, i.e.,
whether it has already been executed or not.

7.8 Mixins and Inheritance

In this section we demonstrate that inheritance can also be considered as a composition style.
We do this by defining a mixin composition style. A mixin [Bra92, vLM96] is regarded as an
abstract subclass, i.e., a class with an unspecified parent class. Applying a mixin to a class
results in a new class which combines the methods of the class and the mixin. Mixin compo-
sition composes two mixins and denotes a new mixin. We consider a class as a degenerated
mixin that does not refer to its parent mixin and use the word complete mixin as an acronym
for a class.

Let us define a signature with the sort Mixin and the operator * to compose mixins:

Mixin * Mixin→ Mixin

In order to implement mixins we need a factory for mixins. A mixin is created by invok-
ing the global service Mixin with the name of the mixin and a service delta that defines the
methods of the mixin as bindings. The service delta is invoked from the Mixin abstraction
with a parameter bind that in turn gives access to self, super, and the class. The class is
the complete mixin being instantiated. Here is a complete mixin defining a Point class:

Point = Mixin
name = "Point"
delta P:

X = newVar() # public variables
Y = newVar()
myAsString: # pretty Print

’P.bind()
"x = " + X.get() + ", y = " + Y.get()

rep: # print debug info
’P.bind()
println(class.name + ".new(" + self + ")")

initialize Init: # initialize
X.set Init.x
Y.set Init.y

The members of the Pointmixin are two variables X and Y, and the methods myAsString,
rep and initialize. These members are defined as bindings in the body of the delta pa-
rameter of the mixin.

Consider the method definition myAsString. First of all, observe that the parameter P
provides a service bind. We invoke this service inside any method and add it to the current

142 CHAPTER 7. COMPOSITION STYLES IN PICCOLA

root context using quotes. The method myAsString returns a pretty printed representation
of the state of the point object. Note that X refers to a binding defined in self. We could also
have written self.X.get(). The form self is returned by P.bind() and extends the current
context.

The method rep prints the class name followed by a formatted representation of self. The
identifier self refers to self which is a form containing a binding for myAsString. In Piccola
any form can be converted to a String. If the form has a myAsString binding this service is
invoked to get a string representation, otherwise a generic representation of all bindings is
made.

Finally, the method initialize initializes the slots. Observe that we do not extend the
current namespace with self, thus X and Y are statically bound.

The mixin ColorMixin defines the method myAsString and defines a variable for storing
the color.

ColorMixin = Mixin
name = "Colored"
delta P:

color = newVar()
myAsString: # overwrite

’P.bind()
asString(super) + ", color = " + color.get()

initialize Init:
’P.bind()
super.initialize Init
color.set((color = "Black", Init).color)

We use a default color if none is specified in the initialization parameter.
We compose both mixins and instantiate the composite mixin to get a color point object:

aColorPoint = (ColorMixin * Point).new
x = 1
y = 1
color = "Yellow"

aColorPoint.rep() # prints: ”ColoredPoint.new(x = 1, y = 1, color = Yellow)

The mixin style demonstrates that we can model classical inheritance as a composition.
Our model has the usual semantics of a dynamic self and super that gives access the static
super-object. In Figure 7.10 the definition of the Mixin service is given.

We explain how * composes mixins and P.bind() establishes the correct self and super
bindings. Let A be the body of the delta abstraction of the Point mixin:

’Point = Mixin
name = "Point"
delta P: ... # A

aPoint = Point.new()

When we instantiate the Point mixin, A is evaluated as if it was defined in the context given
in Figure 7.11. In A, P.bind() returns a form containing self, super, and class.

When mixins are composed, we traverse the mixin-expression tree in post-order and
extend self with each bindings returned by delta. Thus, the binding of the most recently

7.8. MIXINS AND INHERITANCE 143

def MixinCompose X:
’def theMixin = # construct a composite mixin

X.mixin
name = X.mixin.name + X.parent.name
* R: MixinCompose(parent = R, mixin = theMixin)
new InitParams: # instantiate theMixin

’def self = theMixin.addDelta # define object self
self: self # a service to get self
class = theMixin
super = initialize = () # the dummy super object

’’self.initialize InitParams
self # return self

addDelta Self: # post-traversal of the composite
’superObject = X.parent.addDelta Self
superObject
X.mixin.addDelta(Self, super = superObject)

theMixin

Mixin MixinFeatures: MixinCompose
mixin =

MixinFeatures
addDelta Self: MixinFeatures.delta # add methods of this mixin

bind:
Self
Self.self() # extend with self
self = Self.self() # extend with self binding

parent =
addDelta Self: Self.super
name = ""

Figure 7.10: Mixin Abstraction

aPoint =
’def self =

initialize = ()
’P = bind:

class = ... # the complete mixin Point
super = initialize: ()
self
self = self

A # here are calls to P.bind()
’’self.initialize ()
self

Figure 7.11: Instantiating Mixins

144 CHAPTER 7. COMPOSITION STYLES IN PICCOLA

added mixin are first added to the form self that we are building up. Self denotes the
fixed-point, whereas super denotes for each addDelta call the form build up so far.

Consider the mixin ColorMixin * Point. The agents A and B denote the body of the
delta services of the Point and ColorMixin, respectively. The form aColorPoint is:

aColorPoint =
’def self =

’super =
initialize = ()
’P = bind:

class = ColorMixin * Point
super = initialize: ()
self
self = self

A
super
’P = bind:

class = ColorMixin * Point
super = super
self
self = self

B
’’self.initialize (x = 1, y = 1, color = "Yellow")
self

Observe how the result of the delta call of Point becomes the super object inside the delta
call for ColorMixin.

There are a number of extensions we can apply to the Mixin abstraction. In his work of
object encodings, Schneider presents a meta-class framework that allows to express different
inheritance schemas like inner- or outer inheritance [Sch99].

The focus of the example in this section is on the mixin composition style implemented
by the * operator and how P.bind() defines self and super objects.

Observe that the generalizing paradigm of forms gives us a very flexible mechanism for
generalized inheritance [HK99]. Due to explicit namespaces we can use static or dynamic
inheritance. The method Point.initialize binds X and Y statically, since we do not extend
the namespace with P.bind(). Furthermore, observe that we can overwrite not only meth-
ods but any binding in the delta parameter. We can, for instance, overwrite the instance
variables X and Y with another data-container.

7.9 Aspect Wrappers

In this section we demonstrate how to factor an aspect out of a component and make it a
first-class entity. An aspect cross-cuts the functionality of some base components. We cannot
implement the functionality of an aspect by adapting the component at a single or small set
of locations.

We focus on black-box components. Thus we want to define a wrapper that adds an
aspect to an existing component. As an example, assume we have a component for storing
points:

7.9. ASPECT WRAPPERS 145

def newPoint X:
’x = newVar (x = 0, X).x
’y = newVar (y = 0, X).y
setX nx: ’’x <- nx # Change x component
setY ny: ’’y <- ny
getX = x.get # Get x component
getY = y.get
+ OtherPoint: newPoint # component-wise add

x = getX() + OtherPoint.getX()
y = getY() + OtherPoint.getY()

We further assume that we want to use this point component in a context where listeners
need to be informed whenever the X or Y part changes. Thus we adapt such components
to make them observable. Listeners can register on the point and get informed, each time
either the x- or the y-component is changed.

To make a point observable, consider this ad-hoc wrapper:

def asObservablePoint Point:
Point
required.changed = newRegistrar()
setX X:

Point.setX X
’’required.changed()

setY Y:
Point.setY Y
’’required.changed()

+ OtherPoint: asObservablePoint(Point + OtherPoint)

The following adaption is defined by the wrapper:

• We add a registrar facility changed where listeners can register. Refer to Section 7.4 for
a description of the registrar facility.

• We wrap the setter services so that an event is forwarded to any registered listener.

• We adapt the +-operator so that its results is also wrapped.

Instead of making an ad-hoc wrapper just for point components we make the wrapper
generic. We cannot use a simple nested form, since we have to define a recursive wrapper
that also applies on instances returned by the +-service. For that purpose we need to specify
which labels bind services that change the state and need to raise the event, and which
services act as factory services where we have to adapt the result accordingly. In aspect-
oriented terminology, the services to be adapted are the cross-points.

In Piccola, we can use label-sets to specify such wrappers. A label-set is defined by a
form where the actual values of the bindings are of no concern. Using inspection we define
a subform with respect to the label-set that contains just the labels that are in the set. For
instance:

ls = labelSet(a = (), b = ()) # a labelset with labels a and b
println ls.subform(b = 7, c = 8) # prints b = 7

146 CHAPTER 7. COMPOSITION STYLES IN PICCOLA

def weaveObservable X:
’component = (required = (), X.component) # ensure required binding
’component.required.changed = newRegistrar() # create registrar
component
map

form = X.notify.subform X.component # wrap all notifier services
each service D:

service D # invoke original service
’’component.required.changed() # raise event

map
form = X.factories.subform X.component # wrap factories
each service D: weaveObservable

X # with the same parameter
component = service D # but a new component

newObservablePoint X: weaveObservable # weave observable
component = newPoint X
notify = labelSet(setX = (), setY = ()) # these are the notifiers
factories = labelSet(_+_ = ()) # these are the factories

Figure 7.12: A weaver for the observable aspect

The definition of the subform service for a given label-set is straightforward. We iterate over
all the labels of the label-set and return only the bindings that are defined in the second form.

We use label-sets to parameterize the weaving of the point component with the observable
aspect. We say which services are factories that have to be wrapped recursively and which
services change the state of the point-component, i.e., which services raise the event. The
weaver for the observable aspect and its parameterization are given in Figure 7.12. Observe
that we use the label-sets to create subforms of all the setters and factory services of the
component.

The global service map takes a form and a service each. It returns a form that has a
binding l = each l for each label l in the set of labels of the passed form3. The service map
uses inspect to iterate over all labels defined in a form (see Section 3.4.4).

The example presented here is necessarily simple. However, it illustrates the key con-
cept of weaving. Forms allow us to parameterize services in a form and merge them with
additional functionality. It should be noted that our weaver cannot use white-box adaption
of the component. Thus, if someone later adapts the newPoint component, e.g., by adding
a initialize service that sets both components to 0, this service must also be adapted. In
our case self-sends are not captured. A richer style would be obtained by making mixins the
base components.

The language AspectJ [KHH+01] allows sets of cross-points to be specified generically.
For instance, we could define all setter methods to be of the name set* where the * acts as
a wild-card. Using forms, we have to use explicit labels-sets since the Piccola calculus does
not associate any structure with labels.

3In fact the service mapSerivce adapts only those bindings in the form that are actual services. We assume
that the form consists of service bindings only and use the simpler service map (see Appendix E).

7.10. CONTROL ABSTRACTIONS 147

7.10 Control Abstractions

We have used the combination of higher-order functions and the unifying concept of forms
to define compositional abstraction. In this section we demonstrate how the concepts of
agents and channels allow the specification of abstractions that cross and encompass the
flow of control of services.

The computational power needed to implement such abstractions comes from the un-
derlying semantics that is rooted in the π-calculus. The π-calculus is designed for modeling
evolving systems. The important thing to understand is that we can use channels to model
the continuation of the flow of control. Instead of returning at the end of a service, an agent
can send something along a channel and then stop. This mechanism is best illustrated if we
implement service bodies as servers that have their own thread of control. When a client
calls the server it also sends a reply channel on which the server can return its result. The
client does some work in parallel to the request being handled or it immediately waits on
the reply channel for the result. Using this schema we can implement a service as:

handle X:
’result = ... # calculate the result
X.replyChannel.send result # and return it along the replyChannel

invoke Argument:
’replyChannel = newChannel() # a new reply channel
’’run(do: handle (X, replyChannel = replyChannel))# invoke handler
replyChannel.receive() # wait for the result

This is the schema applied when modeling functions and eager evaluation in the π-
calculus. Making the reply channel explicit allows us to model various abstractions that
change the flow of control. In the rest of this section we present two examples. In Section
7.10.1 we use an explicit continuation channel to model blocks. In Section 7.10.2 we not only
have explicit continuation channels but also a context dependent policy. As an example we
define an abstraction for exception handling.

7.10.1 Blocks

Consider a service that searches for a specific element in a collection. The collections provide
abstractions to iterate over all elements. We can iterate over these elements and analyze each
element. If we find what we were looking for, we would like to return this element but we
first have to finish the loop over all elements. It would be more economic to jump out of the
loop as soon as the desired element is found.

The following code is executed inside a block call:

block
do break:

collection.forEach
do Elem: if (hasProperty Elem) (then: break Elem)

The global service block executes the passed do break service. It provides the do block with
a service to break out of the block. When we call break inside the do block the main block
returns.

148 CHAPTER 7. COMPOSITION STYLES IN PICCOLA

stop: newChannel().receive()

block doBlock:
’done = newChannel()
’break X: # define local break abstraction

done.send X # signal termination
stop()

run
do:

doBlock.do break # call Block.do with break
break() # if not stopped so far

done.receive()

Figure 7.13: Definition of the block abstraction

main agent

Block.do()

done.send()

newChannel().receive()

done.receive()

run() block agent

Figure 7.14: Sequence Diagram for a loop

7.10. CONTROL ABSTRACTIONS 149

OrJoin X:
’receptor = newChannel()
’’run (do: receptor.send X.left())
’’run (do: receptor.send X.right())
receptor.receive()

try Block:
’exception = newChannel()
OrJoin

left: B.catch exception.receive()
right:

’dynamic.raise e: # define a raise abstraction
exception.send(e)
stop()

Block.do()

raise E: dynamic.raise E

Figure 7.15: Defining a try-catch Abstraction

Figure 7.13 shows the definition of the block abstraction and Figure 7.14 visualizes which
agent is active at which time. Essentially the main agent is immediately blocked after run-
ning the doBlock agent when it tries to receive a value from the done channel. Similar, the
block-agent immediately stops after sending a result along the done channel. For an external
observer, the code cannot be distinguished from a single threaded implementation of the
block.

7.10.2 Exception Handling

Another example of an abstraction that crosscuts the normal flow of computation is excep-
tion handling as provided in most modern object-oriented languages. The client sets up
an exception context and this context is implicitly passed down the invocation stack when
calling methods. If one of the methods raises an error the error is propagated upwards the
calling stack until an appropriate handler is defined. If such a handler is found, the handler
takes over control.

In Piccola, we can implement a try-catch abstraction without access to the invocation
stack. The idea is similar to the generic block construct. The only difficulty is to make sure
that the correct raise abstraction gets passed down the invocation stack and is invoked
when the user wants to raise an exception. This is precisely what the dynamic namespace
is for. The code for defining an exception handler is given in Figure 7.15 and Figure 7.16
visualizes the events when an exception is raised.

The OrJoin service takes two services and executes them concurrently. It returns the
result of whatever service first terminates.

First, consider the case when no exception is raised during execution of the block. In
this case, the second agent, i.e., the exception handler agent immediately blocks while trying
to read from the exception channel. Since there is no exception raised, Block.do() and
consequently the OrJoin invocation finally return. No other agents may have access to the

150 CHAPTER 7. COMPOSITION STYLES IN PICCOLA

main Agent

do Block exception handler

stop()

exception.send()

receptor.send()

Figure 7.16: Sequence Diagram for Throwing an Exception

exception channel, thus the (blocked) exception handler agent will get garbage collected.
If, on the other hand, an exception is raised (see Figure 7.16) then at one point during

execution of the Block.do() code the global raise abstraction is called with the dynamic
context containing the most recently defined raise abstraction. Raise gets forwarded to the
dynamic abstraction which first signals the exception and then stops by creating a fresh chan-
nel and trying to read from it. The exception handler agent will pick up the value from the
exception channel, invoke the catch service with it and return, consequently terminating
the or-join block.

7.11 Discussion

In this chapter we have demonstrated Piccola’s expressive power to implement extensible
composition abstractions. Figure 7.3 summarizes how the features of Piccola enable our abil-
ity to define reusable composition abstractions. The rows consist of the features of Piccola,
the columns contain the composition abstraction.

• Generic Wrappers are services that adapt forms by adding bindings using form exten-
sion. The key enabling feature for wrappers are forms and the fact that they unify
arguments and component interfaces. Generic wrappers may iterate over forms rely-
ing on the fact that forms are immutable and finitary. Iteration itself is defined using
first-class labels and form inspection. Adaption is specified by higher-order services.

These wrappers may prefix some bindings as defaults or overwrite bindings. The first
approach is better suited for later evolution. The overwriting approach makes the style
more closed ensuring certain composition laws. Both mechanism are available for free
by form extension.

The nature of forms as extensible records makes these abstractions extensible. We can

7.11. DISCUSSION 151

Generic
Wrap-
pers

Connec-
tors

Object
Model

Coordi-
nation
Abstrac-
tions

Context
depen-
dent
Policies

Form extension x x x
Immutable forms x x
Recursive forms x
Finitary form x
Form introspection x
Channels x x x
Agents x
Higher-order services x x x x
Operators x
Explicit namespaces x x x
Arguments as Forms x x

Table 7.3: Features for Composition

specialize the behaviour of certain connectors by connecting additional wires when
components are plugged. We have demonstrated this by evolving the push-stream
style into the merge-stream-style and combining this style with the GUI-style.

• We have demonstrated two approaches to implement first-class connectors. We either
use higher-order functions or we use explicit wires which itself are based on channels.
Wires are generic in their arguments.

Defining connectors as user-defined operators helps to make the architecture explicit
and supports a declarative plugging view

• Forms can model classical inheritance in order to define an object model on top of Pic-
cola. We have implemented a mixin composition style. Due to the nature of forms
the achieved inheritance mechanism is generalized. Not only can we overwrite meth-
ods but also instance variables. In contrast, the language Self [US87] was specifically
designed to unify the concept of methods and variables into slots.

Fixed-points allow us to dynamically bind the meta-variable self to the object being
defined. Recall from Chapter 5 that fixed-points are represented by channels.

• Coordination and control abstraction synchronize agents with each other via channels.
Piccola uses a call-by-value evaluation strategy. Since agents and channels are explicit
entities, we can model different evaluation strategies or richer models for functions like
functions that may have an early return. Modeling coordination abstractions relies on
the π-calculus foundation.

• The concept of explicit dynamic namespaces allows the programmer to define context
dependent policies. As an example, we have presented the implementation of a try-
catch abstraction.

152 CHAPTER 7. COMPOSITION STYLES IN PICCOLA

We capture a set of connectors and components into a composition style. A composition
style is a component algebra. It defines a number of sorts and operations on the sorts. The
algebra associates each component to a sort; the connectors are the operation symbols of
the signature. The signature allows us to express certain compositional rules. If the compo-
nents are stateless component factories, then composition denotes component factories. If
the components are instances then composition yields a composite instance and changes the
state of one of the instances from an unconnected to a connected instance.

We have presented a longer example of adapting an object-oriented framework into a
composition style. We argue that capturing the framework as a composition style reduces
the size of the necessary documentation of the framework for black-box reuse. Contrast
the signature of our style with the corresponding parts of the Java GUI framework that is
described as an API, i.e., by listing all public methods and describing the classes. We claim
that representing a composition style as a little language, with its compact representation
of composition, considerably reduces the steep learning curve traditionally associated with
object-oriented frameworks, due to the compact representation of composition.

In [AKN00] we have implemented a style for Actor computation [Agh86] and grouped
actors. Actors are autonomous entities that provide a receive service and require the ability
to send and broadcast messages. In the general case, actors are wired over a bus. A varia-
tion of this coordination style is when the bus itself enforces certain rules actors must obey
[MU97]. The central operation in these styles is the composition of several actors with a bus.

Scripting an application over low-level wiring improves understandability and main-
tainability of the resulting application. The composition style allows certain invariants to be
enforced at composition time. Most prominently, it forbids illegal composition, like connect-
ing a sink to a filter.

This chapter demonstrated the expressiveness of Piccola. The next chapter presents the
other requirement we have for a composition language, namely that it supports reasoning
about composition and composition abstractions.

Chapter 8

Reasoning at the Language Level

This chapter demonstrates how we can effectively reason about composition abstractions at
the Piccola language level. We do model checking on the states induced by Piccola programs.
The example abstractions we will reason about come from the domain of glue code which
is the second purpose of the chapter. We demonstrate that Piccola is expressive enough to
define reusable glue abstractions.

Glue code is used to overcome compositional mismatches. A compositional mismatch
occurs when components need to cooperate but their respective contracts do not match
[DW99]. We use the term glue in this narrower sense here: other authors use the word
glue simply for “putting things together” [Lum99].

Often, glue code is written for a particular mismatch. Due to restricted expressiveness
of the used language we often cannot abstract the glue code from the particular situation
and reuse it for similar mismatches. Consider an object for which we have to adapt many
method names so that the object implements another interface. We can use delegation for
this renaming. Although conceptually simple, writing such glue code is a tedious task, since
we always have to reinvent the wheel and reimplement it. Due to the unifying concept of
forms, we can abstract glue code in Piccola and define generic and reusable glue code.

There are various techniques to adapt a component. White-box techniques adapt a com-
ponent by changing or overriding part of its internal specification. Black-box techniques
only adapt interfaces, i.e., provided and required services [Bos99]. If the component does
not provide additional hooks for specialization, we can only use black-box adaption. A
wrapper packs the original component into a new one with a suitable interface.

In Piccola, a wrapper is a service that takes the unwrapped form, the wrappee, and returns
the wrapped form. Form extension allows the wrapper either to overwrite services or to
provide default services in the case the wrappee does not contain such bindings, as we have
discussed in Section 7.3.

We will use generic glue code wrappers for two purposes.

• First, they are used to adapt components so that the components can cooperate in a
context they were not designed for.

• Second, glue code wrappers specify the assumptions a component makes about its
environment.

The following observation motivates the second usage of wrappers. If the context can
provide the contract specified by the glue wrapper, then wrapping the component does not

153

154 CHAPTER 8. REASONING AT THE LANGUAGE LEVEL

change the interaction patterns of the wrapped component. Thus we do not have to wrap it,
since all its assumptions are already guaranteed.

In their classical paper on architectural mismatch, Garlan et al. [GAO95] describe that
conflicting assumptions of components can have their root in the nature of components, i.e.,
the components assume a different control or data model, in the nature of the connectors by
assuming a specific interaction pattern, in the global architecture, and in the order in which
components are instantiated. The control model defines which component ’has’ the main
thread of control and it defines the event model. The interaction pattern specifies which part
initiates an interaction, e.g., by an asynchronous call or by registering an event listener. In
order to detect mismatches, it is crucial to make these assumptions explicit.

The runtime model of Piccola using agents and channels is designed to make such as-
sumptions explicit. Recall the specification of a service call in Section 7.10. We can precisely
specify the events that occur when a client invokes a service, i.e., the client makes a call
and passes a restricted reply channel. Then he waits on that reply channel for the result. If
we want to specify, for instance, an asynchronous call, we can introduce an explicit agent
performing the invocation and let the main agent spawn this agent.

This chapter is structured as follows. In the first section we introduce a formalism to
reason about the states and transitions a component or a wrapped component can have.
As an example, we define a component that acts as non-blocking channel and we study its
properties in a concurrent environment. In Section 8.2 we show how to adapt the component
to make it thread safe and show how to lift this ad-hoc adaptation into reusable glue. In
Section 8.3 we present the specification of a reader-writer policy in Piccola. In Section 8.4
we combine the push-style of the previous chapter with pull-style streams. We present a
wrapper that adapts pull-style filters to work in a push-style. We then use our formalism to
analyze a wrapped filter and to detect composition mismatches. Based on this knowledge,
we then present an improved adapter.

8.1 Transition-based Reasoning

In this section we introduce a formalism to reason about Piccola programs. The formalism
is based on the states and transitions a component can have. It uses some conventions to
abbreviate the writing of these states.

Consider a component that offers a set of services that do not block, i.e., invoking a
service will always eventually return a result without any further interaction with the com-
ponent. The component assumes that its services are used in a mutually exclusive way. But
it does not protect itself from concurrent accesses and contains race conditions.

As an example consider a non-blocking channel. If the channel is empty, it returns the
empty form whenever a client tries to receive a value form it. If it is not empty, it returns
an arbitrary value that has been sent along it. As long as it is not empty it behaves like an
ordinary channel.

To implement a non-blocking channel we need a local counter and a private, blocking
channel. Figure 8.1 contains the factory code for non-blocking channels. Sending a data
element writes the data to the private channel and increments the counter. The behaviour
of receiving a value from the channel depends on the counter. If the counter is zero, i.e.,
there are currently no values available, we return the empty form. Otherwise receiving
decrements the counter and returns an element from the private, blocking channel.

8.1. TRANSITION-BASED REASONING 155

newCounter:
’c = newInitChannel 0
inc: ’’c.send c.receive() + 1
dec: ’’c.send c.receive() - 1
\:

’r = c.receive()
’’c.send r
r

newNonBlockingChannel:
’blocking = newChannel()
’count = newCounter()
send E:

’’count.inc()
’’blocking.send E

receive:
if count() == 0

then: ()
else:

’’count.dec()
blocking.receive()

Figure 8.1: Specification of a non blocking channel

The non-blocking channel contains a race condition. Assume the channel blocking con-
tains one value and the counter is 1 when two concurrent receive request are handled. Both
requests (or their handling agents) see that the counter is 1, thus they both execute the else
branch. Both decrement the counter and try to receive from the blocking channel. Obviously
only one agent receives a value and the other remains blocked.

In order to formally analyze what happens, recall from Section 3.7 that a state in Piccola
can be characterized as the set of messages (i.e., which values are written along which chan-
nels) and a set of running threads. Each thread is given by a thread context and the action it
is going to perform next.

For closed agents the actions are either applications, projections, or receiving a value
from a channel. For our purposes, we only want to consider the interesting actions. The
interesting actions are (i) receiving a value and (ii) inspecting a form, i.e., applications where
the functor is the inspect primitive and the argument is a form with more than two labels.
Receiving is a side-effect action that can cause race-conditions.

Thus most applications and all projections are not interesting, since they have an equiv-
alent expression that omits these transition. For instance, if we inspect the empty form L(),
we can replace this invocation by its result. This is permitted by the law:

L() ≈ ε; λx.(x; isEmpty)()

In fact, any application can be computed effectively or inlined. For user defined abstractions
this is proven in Section 3.8, for projections this is shown in Section 4.6. We assume here that
there are no illegal projections.

We are only interested in keeping track of the states where all threads are going to per-
form an interesting action, i.e., receiving from a channel or inspecting a form. Since the
thread context can be viewed as the program counter, we write the program counter as a
comment into the Piccola code and use the comments as thread contexts. We also omit the
writing of channel scopes and use different channel names.

156 CHAPTER 8. REASONING AT THE LANGUAGE LEVEL

To illustrate this formalism, let c be the channel c of the service readTwo:

readTwo:
c.receive()
readTwo1
c.receive()
c.send()

An invocation readTwo() in parallel with with three messages cF, cG, and cH can reduce
as follows:

cF | cG | cH | readTwo() ≈ cF | cG | cH | Ê [c? · c?]

→ cG | cH | Ê [F · c?]

→ cH | Ê [F · G]
≈ cH | c() | F · G

The thread context Ê models the continuation of the readTwo service after the two values are
received. In particular, the thread context sends the empty form along c when the term is
evaluated. When writing the above reduction, we omit the thread context:

cF | cG | cH | readTwo() → cG | cH | readTwo1
→ cH | c() | F · G

Sometimes we are only concerned with the possible state transitions and not with the con-
crete values. In this case we abstract the return values and write:

cF | cG | cH | readTwo→ cG | cH | readTwo1
→ cH | c()

We only record any internal step before any receive request on a channel. It does not
make any difference if we consider a configuration with a parallel agent that is going to send
or if we consider the configuration already with the message. This is due to the asynchrony
of the Piccola calculus [ACS96].

Analyze the Counter. We now show that the counter specified in Figure 8.1 has exactly n
states. For that we consider the possible transitions of the counter when put in parallel with
an arbitrary collection of parallel inc, dec, and λ-requests. We write λ-request for invoking
the service of the counter itself.

The initial counter in parallel with an inc request evolves as:

c0 | inc() → c1 | ()

There are no internal steps as the increment service first receives the old value from channel
c and then resends the new (incremented) value.

By induction over the number of parallel inc, dec and λ-requests we show that the
state of the counter is always cn. The induction base is established by c.send 0 in the
initialization. Each induction step consists of cn → c(n + 1) for incrementing requests, of
cn → c(n− 1) for decrement operations, and cn → cn for λ-requests.

We summarize such arguments in a statement like: “the invariant is that there is always
one number sent along the channel c”.

8.1. TRANSITION-BASED REASONING 157

Modular reasoning. Whenever we use the counter we will employ a higher-level view
on the state of component instead of looking at the (private) channels. In fact we can model
the counter as a component with the states counter(n) for any number n. The increment and
decrement service modify the internal state and return the empty form, the λ-service returns
the current value of the counter.

The following can be seen as the specification of the increment and decrement service of
our counter:

counter(n) | inc() → counter(n + 1) | ()
counter(n) | dec() → counter(n− 1) | ()

Such a higher-level view of a state abstracts the internal channels. Note that we can only use
such a higher level view, when all the channels are private. Otherwise an external agent may
disrupt the internal protocol and invalidate the model of the component.

Such a high-level description of the component behaviour looks similar to the CHAM
model [BB92] and to the join-calculus [FG96]. Left of an arrow is a soup of particles com-
posed by the parallel composition operator. The particles evolve in one step to the right-hand
side of the transition. The general CHAM rules require that the rule might be embedded in
a larger soup of particles that does not evolve and that the parallel composition operator is
commutative and associative.

In our case, these general CHAM rules are not given. The parallel composition operator
is not commutative in Piccola. The main agent, i.e., the topmost right thread, must remain
during reduction steps.

Analyze the Non-blocking Channel. We analyze the non-blocking channel. We start with
a freshly initialized channel. Its initial state is counter(0). In order to discover the different
transitions of the non-blocking counter we add program marks as explained above:

receive:
if counter() == 0

then: ()
else:

receive1
’’counter.dec()
receive2
d.receive()

We abstract the concrete values stored on the blocking channels. We write blockingn

for n parallel messages blocking Fi for 1 ≤ i ≤ n. We also abstract the arguments and the
return values when interacting with the non-blocking channels. We can infer the following
transition for invoking send on the non-blocking channel.

counter(0) | send→ counter(1) | blocking (8.1)

This transition says that the empty non-blocking channel becomes the non-blocking channel
with one value within a single step

Invoking receive reduces as follows:

counter(1) | blocking | receive→ counter(1) | blocking | receive1 (8.2)
→ counter(0) | blocking | receive2 (8.3)
→ counter(0) (8.4)

158 CHAPTER 8. REASONING AT THE LANGUAGE LEVEL

These transitions say what happens when a receive request is handled when the non-
blocking channel contains one value. Handling such a request is not atomic. We have two
intermediate steps. After the first step counter(1) | blocking | receive1 we have checked the
counter value and chosen the else branch. We can understand the action receive1 that that
there is a (pending) thread waiting to progress at this point. The second step decrements the
counter and the third receives a value from the channel blocking. After the third step the
receive invocation returns.

The sequence of steps can interfere with further send or receive requests. Here is the
reduction that uncovers the race condition informally explained above. Assume, the non-
blocking channel holds one element and two receive requests are handled concurrently.

counter(1) | blocking | receive | receive→ counter(1) | blocking | receive1 | receive
→ counter(1) | blocking | receive1 | receive1
→ counter(0) | blocking | receive1 | receive2
→ counter(0) | receive1
→ counter(−1) | receive2

This reduction leaves the second thread blocked while trying to read from the channel
blocking. Thus our intended non-blocking channel blocks! The problem is that the both
agents decided that the channel was not empty whereas when the second wants to grab the
value from blocking, the channel was empty.

8.2 Reusable Glue Code

There are several ways to fix the implementation of the non-blocking channel introduced
in the previous section. One possibility would be to use a different counter that returns its
value together with a decrement operation. However, this solution implies changing the
implementation of our non-blocking component.

A less invasive change is to adapt the non-blocking channel. In fact the channel imple-
mentation is correct assuming synchronized access. The contract required for any client of
the channel is to ensure that there are no interleaving receive requests for it.

If we want to use the non-blocking channel in a context where we cannot guarantee
synchronized access to receive we need to adapt this service by associating a lock channel
with it. Each time receive is invoked, a value is received from the lock channel and when
the receive service returns a value is written back to the lock channel. Initially one value is
written along the channel. The lock channel acts as a binary semaphore.

Here is a factory for safe non-blocking channels. This factory wraps the previous, non-
safe component and using ad-hoc glue code:

newSafeNonBlockingChannel:
’nbChannel = newNonBlockingChannel() # non-blocking channel
’lock = newInitChannel() # The lock is available
nbChannel
receive: # overwrite receive

’’lock.receive() # lock it!
nbChannel.receive() # invoke unsafe receive
’’lock.send() # release lock

We instantiate the safe non-blocking channel and invoke receive on this instance. This

8.2. REUSABLE GLUE CODE 159

leads to the following reduction. We write b for the blocking channel inside the non-blocking
channel and l is the lock channel. We write receive() for the receive-request on the safe
non-blocking channel and nbChannel.receive() for the receive-request on the underlying
non-blocking channel.

l() | counter(1) | b | receive() → counter(1) | b | nbChannel.receive()
→ counter(1) | b | nbChannel.receive1
→ counter(0) | b | nbChannel.receive2
→ l() | counter(0)

If there is an additional receive request that might infer with the internal steps this request
is blocked since it cannot grab the lock l.

We do not need to protect the service send of the non-blocking channel, since its state
transition is already atomic. Note that the bindings nbChannel and lock are private. This
means that no other agent has access to the service nbChannel.receive nor to the channel
lock. By induction on the number of concurrent requests on the safeNbChannel we can
derive that it maintains the following invariant:

safeNbChannel(n) | blockingn

where n ≥ 0. Since the channel blocking is private we omit it in the high-level description
of the behaviour:

safeNbChannel(n) | send→ safeNbChannel(n + 1)
safeNbChannel(0) | receive→ safeNbChannel(0)
safeNbChannel(n) | receive→ safeNbChannel(n− 1) for n > 0

There is no need to consider the actual values send and received in order to show that
the safeNbChannel is in fact a safe non-blocking channel. This simplification reduces the
number of states to be analyzed.

Due to the genericity of forms we can abstract the ad-hoc glue code leading to the fol-
lowing wrapper. The wrapper associates a locking channel with the wrapped service:

threadSafe Service:
’lock = newInitChannel() # The lock is available
\Argument:

’’lock.receive() # lock it!
Service Argument # invoke original service
’’lock.send() # release lock

Now, threadSafe Service is a service with a local channel lock. While an agent is exe-
cuting it, no value is written along lock. The lock is released when the invocation returns.
When the service does not return, the adapted service remains blocked.

Instead of using the ad-hoc glue we could equally specify:

newSafeNonBlockingChannel:
’nbChannel = newNonBlockingChannel()
nbChannel
receive = threadSafe nbChannel.receive

160 CHAPTER 8. REASONING AT THE LANGUAGE LEVEL

In order to apply the synchronization scheme of full synchronization to a set of services
we associate the same lock for all services. The following service wraps all the service in a
form:

synchronized F:
’lock = newInitChannel()
map

form = F
each Service Arg:

’’lock.receive(), Service Arg, ’’lock.send()

The service threadSafe is the single service version of synchronized. It holds that:

threadSafe S ≈ (synchronized(x = S).x) (8.5)

for any service S
The synchronized wrapper is idempotent, i.e.:

synchronized(synchronized F) ≈ synchronized F (8.6)

for any form F.
In the remainder of this section we prove law 8.6. Proving this law serves two purposes.

Obviously it gives us confidence in the synchronized wrapper. Second and more important,
it serves as an example for reasoning about unknown services. Reasoning about open sys-
tem requires that we can derive properties of abstractions even though we have unbound
variables, i.e., unknown services.

In the previous section it is sufficient to consider only actions in threads that receive from
a channel and form inspection applications. Now, we cannot inline applications anymore
in order to discover their internal structure and transitions because the behaviour of some
services is unknown. Instead we model the invocations of any service s to which F gives
access. For the following we write s for a service that is bound in F with a label s.

Since we know nothing about the behaviour of s we assume one of:

A | sG → A′ | H (8.7)
A | sG → A′′ | 0 (8.8)

where A is the global state when the service is called and G is the argument to s. Equation
8.7 assumes that the invocation sG returns and we receive a value H and the system stays in
state A′. If sG does not return (equation 8.8), either because it is blocked or loops, we have a
new state A′′ and a blocking result modeled by the null-agent.

Now, let A1 = synchronized(synchronized F) and A2 = synchronized F. The locking
channels are written a, b and c and they are different due to restriction from any other chan-
nel in the system. We show that (A1.s)G and (A2.s)G are bisimulations for all s in F and all
arguments G.

We first analyze the transitions of A1 and we assume that sG returns. Thus we have:

A | a() | b() | (A1.s)G → A | b() | Ê [b?]

→ A | Ê ′[F.sG]
→ A′ | a() | b() | H

8.2. REUSABLE GLUE CODE 161

where Ê is going to receive from the locking channel b , then invoking sG, and after recep-
tion of the result Ê is going to emit the messages a() and b(). The thread context Ê ′ is the
continuation of Ê after the receiving a value from channel b.

When we assume that the invocation sG does not return, the last transition of above is
not possible and we have:

A | Ê ′[F.sG] → A′′ | Ê ′[0]
≈ A′′ | 0

Assuming SG returns, we consider the transitions in agent A2:

A | c() | (A2.s)G → A | Ê [F.sG]
→ A′ | c() | H

and similarly when sG does not return. Both systems evolve bisimilar and are independent
of A. Thus the reductions are independent of any context and law 8.6 holds.

Like in the previous section, we prefer to write such reductions without considering the
global state and the thread context. We only keep track of where the thread continues when
the external invocation returns.

For instance, invoking the double synchronized service of above:

service F:
’’a.receive()
sync1
’’b.receive()
s F # sync2
’’b.send()
’’a.send()

reduces by the following atomic transitions:

a() | service() → sync1
b() | sync1→ sync2[sF]

sync2[G] → a() | b() | G

We write sync2[sF] for an invocation of an external service. Notice that such an invocation
is on the right-hand side of a reduction arrow. When the service returns, it triggers send[F].
Note that this convention is possible since there is only a single (static) invocation of the
service s. When we have multiple invocations of the service s we need to write the thread
contexts to differentiate them.

The fact that we need two actions to model an external service invocation can also be
explained by modeling the external service by an autonomous agent. In order to invoke the
service, we send a message, and we then wait on the reply channel for the result. Once the
result is available we consume the result-message and continue. This is described by the
transitions that consumes sync2[G].

162 CHAPTER 8. REASONING AT THE LANGUAGE LEVEL

newRWPolicy:
’writers = newInitChannel()
’readers = newInitReadChannel 0
preReader:

’r = readers.receive()
if r == 0 (then: writers.receive())
readers.send r + 1

postReader:
’r = readers.receive()
if r == 1 (then: writers.send())
readers.send r - 1

preWriter = writers.receive
postWriter = writers.send

Figure 8.2: A reader-writer policy

8.3 Reader-Writer Policy

In the previous section we have presented a wrapper to make components thread safe. In
this section we demonstrate how to define more complex coordination abstractions. The
reader-writer policy is a family of concurrency control designs that apply when any number
of readers can be executing simultaneously as long as there are no writers, but writers require
exclusive access.

While it is relatively straightforward to implement a reader-writer policy for a given set
of reader and writer methods it is more problematic to implement it generically. For ex-
ample, Lea [Lea99] gives a generic implementation of a reader-writer policy for Java using
an abstract class. The implementation defines pre- and post-methods for both reader and
writer methods. Using a template method [GHJV95] doRead(), the method read() executes
beforeRead(), possibly blocking until the reader is allowed to enter its critical region. The
critical region is implemented in doRead() and must be provided by a subclass. Then, a
method afterRead() does some cleanup. By subclassing, a programmer provides its own
implementation of doRead(). Unfortunately, it is not possible to subclass the read method
so that it can take arguments or to have several different reader methods. If this is necessary,
the programmer can add arbitrary new methods taking arguments, but then it is the pro-
grammer’s responsibility to correctly call beforeRead() and afterRead() for each reading
method and analogously for writer methods.

In contrast to Java which uses outer-inheritance, we may use BETA’s inner inheritance
[MMPN93] to implement the reader-writer policy. In BETA, a superclass implements the pol-
icy and reader-writer components are subclasses and specialize reader- and writer-methods
accordingly. Inner inheritance overcomes the reuse problem with the arguments, but it still is
an inheritance-based approach. It relies on correct subclassing, i.e., it is white-box reuse. The
approach we present here, is completely wrapper based. As such our solution is completely
black-box.

Figure 8.2 shows the definition for a reader-writer policy in Piccola. The reader-writer

8.4. ADAPTING FILTERS 163

...

preReader

postReader postReader postReader

preReader preReader

writing empty read 2

preWriter

read 1

postWrite

Figure 8.3: State transitions of the Reader-Writer policy

policy has at least the following states which are derived from Figure 8.3.

writing = readers(0)
empty = writers() | readers(0)

reading n = readers(n) for n > 0.

Additional states may not be reached if the reader-writer policy is correctly used. Correctly
used means that all postWriter and postReader have had their corresponding pre-service
called before. If this condition holds, there cannot be a writer and a reader or several writers
be active at the same time.

An example of incorrect usage would be the following sequence of calls:

policy = newRWPolicy()
policy.postWriter()

leading to a state writers() | writers() | readers() which would allow two writers to enter the
critical section.

In order to ensure correct usage of the policy we define a generic reader-writer wrapper
that adds the corresponding pre- and post services around the reader and writer services of
a component. As such, a client does not have access to the policy component and cannot
disturb the protocol of it. The code is given in Figure 8.4.

Observe that this glue wrapper works for arbitrary provided services that are split into
reader and writer services. Since arguments are packed as forms, the wrapper can specify
them generically, i.e., does not put any constraint on them. Furthermore, we can apply the
reader-writer adapter to arbitrary component.

More complex synchronization schemas like those based on the service-object synchroniza-
tion paradigm (SOS) [McH94] may be implemented in a similar way. The SOS paradigm spec-
ifies the events arrival, start, and termination in the lifetime of a service invocation. Starting
a service can be delayed based on the notion of guards. User defined actions are associ-
ated with the three event types. For generic synchronization policies (GSP), the programmer
defines a synchronization pattern and applies it to a set of methods.

8.4 Adapting Filters

In this section we will give more complex examples of glue code for adapting filters. We
reuse the push-style filter we have used in the previous chapter. While the focus in Section

164 CHAPTER 8. REASONING AT THE LANGUAGE LEVEL

readerWriter X:
’policy = newRWPolicy() # local policy object
map # adapt all reader services

form = X.reader
each Service Arg:

’’policy.preReader()
Service Arg
’’policy.postReader()

map # adapt all writer services
form = X.writer
each Service Arg:

’’policy.preWriter()
Service Arg
’’policy.postWriter()

Figure 8.4: Wrapping with a Reader-Writer Policy

7.2 is on wrapping the functionality of a framework as a style, the focus here is on the interac-
tion semantics of the components. The semantics is important when combining components
with the same functionality but a different control model.

The behaviour of a common class of filters is described using functions. This type of filter
maps each incoming data-element to an outgoing element. We call this a transformer filter.
The following service constructs a push-style filter:

newPushTransformer Service: asFilter # support composition style
apply Sink:

Sink
push Elem: Sink.push(Service Elem)

Notice that we use the wrapper asFilter to convert the bare component into the push-style
defined in Section 7.2.

8.4.1 Integrate Host Components

We demonstrate how a host component is adapted transparently and efficiently inside Pic-
cola. The section also demonstrates the usefulness of the partial evaluation algorithm we
have defined in Chapter 6.

Assume we have a host component that offers the functionality of a sink. In Java, this
is an instance of the class java.io.BufferedWriter. The API specifies that such instances
provide the methods:

public void write(String str) throws IOException;
public void close();

Obviously, a BufferedWriter object can play the role of a sink in a push-style. In order to
use the external object within our style, there are two mismatches that need to be solved: (i)
the method name needs to be adapted and (ii) the argument passed needs to be converted
into an (external) string object. As an example, the following code instantiates a new push-
style sink from a given (host) file object. Refer to Section 5.8 for the technical details of
instantiating the writer stream object in JPiccola.

8.4. ADAPTING FILTERS 165

newFileSink FileObject: asSink # support composition style
’filewriter = Host.class("java.io.FileWriter").new FileObject
’writer = Host.class("java.io.BufferedWriter").new filewriter
writer
push Obj: writer.write(asString Obj)

The global service asString converts an arbitrary form into a string. If Obj is already a string
then asString returns this string.

This type of glue code fixes mismatches at the level of the exchanged data. Such glue
code is removed completely by the partial evaluation algorithm presented in Chapter 6. As
an example, the program:

’output = newFileSink (Host.class("java.io.File").new "out")
’’output.push 7
’’output.close()

is specialized to:

’y1 = Host.class "java.io.File"
’y2 = y1.new "out"
’y3 = Host.class "java.io.FileWriter"
’y4 = y3.new y2
’y5 = Host.class "java.io.BufferedWriter"
’output = y5.new y4
’y6 = output.write(7.toString()) # push 7
’y7 = output.close()

The literal form 7 denotes an external number object. In JPiccola, this form has the service
toString since it denotes a instance of the Java class java.lang.Integer.

8.4.2 Pull Filter

A pull-stream style is similar in functionality to the push-stream style but different in its in-
stantiation and thread control model. In the push-style, elements are actively pushed down-
stream. In the pull-style, elements are actively pulled from upstream components.

The wiring-interface of a pull-stream consists of two services: next and close. We imple-
ment a pull filter by a service that maps a pull source to a filtered pull source. As in Chapter
7 we use functions to perform the wiring and double dispatch to compose pull-style filters.

As we will see, a subtle but important difference of the push-stream to the pull-stream
style is that the next service returns a specific air bubble value whenever the stream is empty.
In our example, the air bubble token is the empty form. In the push-stream style we are not
concerned about such tokens since we assume that only valid data is pushed downstream.

The code that wraps any service into a pull-style filter is given below.

newPullTransformer Service: asPullFilter # Define algebraic style
apply PullSource:

PullSource
next: # Overwrite pulling of next element

’e = PullSource.next()
if (isEmpty e) # Don’t apply Service on air-bubbles

then: e
else: Service e

166 CHAPTER 8. REASONING AT THE LANGUAGE LEVEL

newPullDefragmenter assemble: asPullFilter
apply PullSource:

PullSource
next:

’e1 = PullSource.next()
if (isEmpty e1)

then: e1 # forward air bubble token
else:

’e2 = PullSource.next()
if (isEmpty e2)

then: e1 # forward e1 unprocessed
else: assemble e1 e2

Figure 8.5: Pull style defragmenter

Whereas the functionality of a transformer is equally easy written in both the push- and
the pull-style, the functionality of certain other filter types is more naturally specified in a
specific style.

Consider the case of a defragmenter filter that combines two or more consecutive data
elements of the stream by a given assemble service. Using the pull style, the functionality
of a binary defragmenter is given in Figure 8.5. For each pull request, we fetch two data
elements, assemble them into a new element, and return it. The only inconvenience is caused
by the proper treatment of air bubble tokens. We only assemble real data elements. If the
upstream filter returns an empty form on pulling we forward it unchanged.

Using the push style, it is more clumsy to express the same functionality (see Figure 8.6).
We have to introduce a storedValue channel to store the pushed values and a saved channel
to decide whether there is a stored value or not. After every second push call we invoke the
service to combine the two data-elements.

In addition to storing every other pushed element, the push defragmenter is responsible
for the closing of streams. The close operation must be extended so that it flushes out any
pending stored value and forwards them downstream.

Finally, observe that the channel saved also acts as a lock for the push and close oper-
ation. While a push or a close request is being handled, the channel does not contain any
values. The push defragmenter maintains the following invariant: If it contains the message
saved true then it also contains a message storedValue F for some form. If the message is
saved false then the channel storedValue is empty.

The push-style defragmenter is more restricted than the corresponding pull-style defrag-
menter. For instance the pull-style defragmenter does not specify how several next calls in-
terleave, whereas the push-style filter ensures full synchronization between push and close
services. The pull style filter assumes synchronous calls — the push style filter enforces them.
Another difference is that the pull-style filter removes air bubble tokens, whereas the push-
style filter assumes that no such tokens are pushed altogether. In the following we will
encounter these differences again when we formally reason about the composition of pull-
and push-style filters. In fact, the reasoning will help us to detect these differences.

It should be clear that the pull style is no more convenient to use. One might ask why we
do not specify everything in terms of pull styles. The situation would be equally involved

8.4. ADAPTING FILTERS 167

newPushDefragmenter Service: asFilter
apply Sink:

’storedValue = newChannel()
’saved = newInitChannel false
Sink
push Elem:

if saved.receive()
then:

Sink.push(Service storedValue.receive() Elem)
saved.send false

else:
storedValue.send Elem
saved.send true

close:
if saved.receive()

then: Sink.push storedValue.receive() # flush
Sink.close()
saved.send false

Figure 8.6: Push style defragmenter

when we consider the functionality of a fragmenter, i.e., a filter that reads data and produces
two or more new data elements out of it. This filter is easily given as a push style component,
and it needs to buffer additional data when used in a pull context [KBH+01].

8.4.3 Adapting Pull Filter

Assume we have a black-box pull-style filter and we want to use it in a push-style context.
We now present a glue code adapter that wraps arbitrary pull-style filters to a push-style.
We adapt any pull-filter as a push-filter with a coordinator agent that does the following (see
Figure 8.7):

• The upstream filter pushes elements into a one-slot buffer slot. See Appendix E for
the definition of such a buffer. A full buffer blocks when put is called, an empty buffer
blocks if get is called. The slot is the input port of the pull filter.

• An autonomous coordinator agent pumps elements from the pull filter and pushes
them upwards.

• The coordinator stops pulling elements whenever the stream is closed.

• Whenever close is called we write an air bubble token into the slot to unblock the
coordinator. When the pull filter needs further data afterwards, it receives the empty
forms.

Adapting a pull-filter to a push-style is possible in all languages that have some way of
expressing concurrency. In the following, we analyze our adapter using the semantic model
of Piccola. In fact, the adapter in Figure 8.7 contains a race-condition as we will see. We will

168 CHAPTER 8. REASONING AT THE LANGUAGE LEVEL

wrapPullFilterAsPush PullFilter: asFilter
apply Sink:

Sink
’slot = newSlot()
’running = newVar true
’slot.get: if (*running)

then: slot.get()
else: () # return () when closed

’pullSource = PullFilter.apply(next = slot.get, close: ())
input for the pull-stream is the slot

’’run # start coordinator
do:

loop
while: *running
do: Sink.push(pullSource.next())

Sink.close()
push = slot.put # store elements in the 1-slot buffer
close:

’’running <- false # signal coordinator to stop
’’run (do: slot.put()) # unblock slot

Figure 8.7: Adapting Pull filter to a push style

also detect the under-specification we already mentioned: the treatment of air bubble tokens
and the synchrony of push calls. The other difference is that the adapted filter has built-in
concurrency and allows more parallelism.

How should we formally reason about the adapter? An obvious requirement is that
it should wrap the functionality of a pull-filter to a push-filter as if we had hand-coded
the push-filter. We expect that a service wrapped as a push-style transformer denotes a
component with the same behaviour as the service wrapped as pull-style transformer and
wrapped as a push-style filter. Formally we study the relation:

newPushTransformer S
?
≈ wrapPullFilterAsPush(newPullTransformer S) (8.9)

In order to compare these two expressions, we evaluate them as far as possible. When we
apply the first filter to a sink we get the following specification:

A = # newPushTransformer(S).apply Sink
Sink
push Elem:

’x = S Elem # a1
Sink.push x # a2

The push stream A inherits close from Sink and provides its own push service defi-
nition. Calling A.push leads to a call of the service S followed by a call of the Sink.push

8.4. ADAPTING FILTERS 169

B = # wrapPullFilterAsPush(newPullTransformer S).apply Sink
Sink
’slot = newSlot()
’running = newVar true
run # The coordinator agent:

do:
loop # co

while: *running
do: # co1

’x = slot.get()
if (isEmpty x)

then: Sink.push x
else:

’x = S x # co2
Sink.push x

Sink.close() # co3
push = slot.put
close:

’’running <- false
close1
run (do: ’’slot.put())

Figure 8.8: Comparing adapted service filters

service. When this service returns the main push service returns:

push F → a1[SF]
a1[F] → a2[Sink.push F]
a2[F] → F

Note that push calls and close requests are not interleaved. It is not specified what hap-
pens when another request for push occurs while another push request is being handled.

For the adapted sink, the situation is more complex. Figure 8.8 shows the adapted filter
B applied to a sink.

The variable running in B is either true or false. We write running when it is true and
¬running otherwise. We write slot for the empty slot, and slot F when it contains a non-
empty form, and slot() when the slot contains the empty form.

The coordinator agent co triggers the following transitions:

running | co[F] → running | co1 (8.10)
¬running | co[F] → ¬running | co3[Sink.close()] (8.11)

slot () | co1 → slot | co[Sink.push()] (8.12)
slot F | co1 → slot | co2[SF] (8.13)

co2[F] → co[Sink.push F] (8.14)

The first two transitions are derived from the while loop. We write co[F] since the coordina-
tor loop is also triggered when the external function Sink.push returns. If running is true

170 CHAPTER 8. REASONING AT THE LANGUAGE LEVEL

the then-block is executed; otherwise the while block terminates and the coordinator closes
the sink (Transition 8.11). The remaining transitions represent the while block. Observe that
we have different transitions depending whether the value in the slot is the empty form or
not. If the slot contains the empty form, i.e., an air-bubble, we invoke Sink.push (Transition
8.6). Otherwise we invoke the external service S with the value in the slot and then invoke
the Sink.push with the result of the previous invocation.

This sequence of execution is interleaved with external requests to push and close as
follows:

slot | push F → slot F | () (8.15)
¬running | close→ close1 | ¬running | () (8.16)
running | close→ close1 | ¬running | () (8.17)

slot | close1→ slot() (8.18)

A call to push immediately returns when the slot is empty, otherwise it is blocked (Tran-
sition 8.15). A call to close sets the running variable to false, no matter what its current
value is. Invoking close immediately returns, but in addition spawns an asynchronous
agent close1. This agent is specified by Transition 8.18. It stores the empty form into the slot
in order to unblock the coordinator.

These are the observable differences between the behaviour of stream A and B.

• The push-filter A returns when the external service S and the downstream push opera-
tion have returned. Contrary, the push service of filter B immediately returns whenever
the internal slot is empty. We can observe this difference by taking for S a service that
blocks on an external tick call. Consider:

channel = newChannel()
myService X:

’’channel.receive() # block on the channel
X

tick = channel.send # Used to proceed with myService

B = wrapPullFilterAsPush(newPullTransformer myService) >> Stdout
B.push "Hello" # push returns, coordinator blocked
tick() # unblock coordinator, prints output

Executing this code finally prints out “Hello”. The reason is that the coordinator and
not the main agent is blocked while executing the service myService.

In contrast, the same script blocks, when we use the single-threaded push transformer:

A = (newPushTransformer myService) >> Stdout
A.push "Hello" # blocks, since no tick is available

This scenario uncovers the fact that the adapted pull-filter introduces additional con-
currency.

• The wrapped pull filter B contains a race condition. Assume that the slot is not empty,
i.e., it contains an unprocessed data-element when the stream gets closed, i.e., the vari-
able running is set to false. Depending on the internal state, the coordinator may de-

8.4. ADAPTING FILTERS 171

cide not to proceed anymore since running is false letting the final element unpro-
cessed in the slot.

The following trace uncovers the race condition:

running | slot | co2[SF1] | push F2 | close
push−→ running | slot F2 | co2[SF1] | close
close−→ ¬running | close1 | slot F2 | co2[SF1]

SF2−→ ¬running | close1 | slot F2 | co[Sink.push F3]
co−→ ¬running | close1 | slot F2 | co3[Sink.close()]

We have written the action that reduces over the arrow. Observe that the slot still
contains the value F2 that was the most recently pushed.

• Additionally, air bubble tokens are handled differently: Filter B does not apply the
service S on empty forms that are pushed. In contrast, A applies S to all pushed forms.

The under-specification of the dynamics of our stream leads to different behaviour A race-
condition is caused by the wrong assumption that if push returns, we can call close safely.
However, with the introduced concurrency and the added buffer, this assumption does no
longer hold. An other problem is the (so far undocumented) assumption that no air-bubbles
are pushed downstream a push stream.

We now proceed as follows: We formally specify the assumptions of a push-style filter
and then present a correct version of the adapter. The main difficulty for the adapter is to
inform the coordinator when the stream gets closed allowing the coordinator to remove any
pending data-elements from the buffer. For that purpose we define a closeable slot.

8.4.4 Enforce Contextual Dependencies

In order to more rigorously specify the behaviour of a push-style we encode the assumptions
by a glue wrapper. The assumptions are:

• Push and close calls are mutually exclusive. There is only one close call at end. After
the close call, no more push calls are attempted.

• No empty forms (as air-bubbles) are pushed.

We specify a push-style filter that synchronizes access to the downstream push and close
operations and maintains a lock that it removes when the stream is closed. This prevents
duplicated calls to close and calls to push after the stream has been closed. The specification
of the filter is given in Figure 8.9. While the stream is not closed, the empty form is written
along the channel open. When the stream is closed this lock is removed. Further calls to
close and push block in the service open.read.

The other assumption that no empty forms are pushed to a push style filter is enforced
by the noAirBubble filter on Figure 8.10.

We codify the assumption of a push-style filter as:

assume Filter: safe >> noAirBubble >> Filter >> safe >> noAirBubble

172 CHAPTER 8. REASONING AT THE LANGUAGE LEVEL

safe: asFilter
apply Sink:

’open = newInitReadChannel()
Sink
synchronized

push E:
’’open.read() # check lock
Sink.push E

close:
’’open.receive() # remove lock
Sink.close()

Figure 8.9: Enforce Synchronized Access to Filters

noAirBubble: asFilter
apply Sink:

Sink
push E: if (isEmpty E)

else: Sink.push E

Figure 8.10: Remove Air Bubbles

Observe that we also apply the safe filter downstream. This prevents the wrapped filter
from pushing data-elements concurrently.

The function assume wraps any push-style filter such that the assumptions are guaran-
teed: calls to push and close are synchronized and no air bubble tokens can be pushed in
nor will not be pushed out of the stream.

8.4.5 A Closeable Slot

The main difficulty in the adaption of the pull filter to a push filter is that we must interrupt
the coordinator when it is blocked on the empty slot. In general, we cannot stop an agent
that is blocked while receiving from a channel. We have to know if there is a blocked agent
on the slot.

Instead of informing the coordinator directly, we use a closeable slot. This one-slot buffer
has a service close. If it is closed and we invoke get, it always returns the same dummy
element. As we will show, the the adapter guarantees that the slot can be closed only if it is
empty.

A closeable slot has three states: full X, empty and closed. When the closeable slot is closed,
further calls to close and put will not be possible. The high-level transitions of the slot must
be:

empty | put X→ full X | () full X | get() → empty | (true, value =X)
empty | close() → closed | () closed | get() → closed | (false, value = ())

The service get returns values as follows. If the slot is not closed, get returns the form

8.4. ADAPTING FILTERS 173

newCloseableSlot:
’value = newChannel()
’isEmpty = newInitChannel() # initially empty
get:

’open = val.receive()
’’if open

then: isEmpty.send() # enable close and put
else: val.send open # slot is closed

open
put X:

’’isEmpty.receive()
’’val.send(true, value = X)

close:
’’isEmpty.receive()
’’val.send(false, X = ())

Figure 8.11: Closeable Slot

true extended with a binding value = X where X is the form previously put into the slot. If
the slot is closed, we return false extended with value = (). Since booleans are encoded
as forms, the expression true, value = X is considered a boolean form with a value.

The implementation of the closeable slot is given in Figure 8.11. It ensures the following
invariant: When the slot is full, we have the message value(true, value = X) where X is
the value in the slot. If the slot is closed, we have the message value(false, value = ()).
Finally, when the slot is empty, we have the message isEmpty().

8.4.6 A Synchronized Adapter for Pull Filters

We use the closeable slot as a synchronizer for an improved version of the adapter. We call
this a synchronized adapter as it maintains the synchrony of push calls with interleaving
pull-filter processing. A push call does not return unless the downstream filter has returned
or the adapted pull filter decides that it needs more element. The synchronized adapter is
given in Figure 8.12.

The important synchronization channel is pushLock. This channel blocks the client of
a push call from returning until the coordinator is waiting for the next data-element or the
coordinator loop has terminated. Observe that we overwrite the slot.get service to signal
on the pushLock channel.

Termination of the stream is handled as follows: Whenever close is called, the running
flag is set to false and the slot it closed. This means that the coordinator can now grab
values from the slot and receives the empty form. At one point the pull source will return an
element. If this element is not an empty form, i.e., an air bubble, it is pushed downstream.
Now the coordinator agent sees that the running flag is set to false. It exits the while loop
and closes the push stream. Blocked push clients are released by signaling on the channel
pushLock and the done channel signals termination. The close requests returns when the
coordinator has finished its work.

174 CHAPTER 8. REASONING AT THE LANGUAGE LEVEL

wrapPullFilterAsSyncPush PullFilter: asFilter
apply Sink:

Sink
’slot = newCloseableSlot()
’pushLock = newReadChannel()
’done = newChannel()
’running = newVar true
’slot.get:

’’pushLock.send() # coordinator expects a value
slot.get().value

’pullSource = PullFilter.apply(next = slot.get, close: ())
run

do:
loop

while: *running
do:

’e = pullSource.next()
if (isEmpty e)

else: Sink.push e
Sink.close()
done.send()

push E:
pushLock.receive()
slot.put E
pushLock.read() # synchronize with coordinator

close:
’’if (*running)

then:
’’running <- false
slot.close()
done.receive()

Figure 8.12: Synchronized pull stream adapter

8.4. ADAPTING FILTERS 175

Sink = # assume(newPushDefragmenter assemble).apply(Sink)
open = newInitReadChannel()
’val = newChannel()
’saved = newChannel()
’’saved.send false
Sink
push Elem:

’’open.read()
if (isEmpty Elem)

else:
if (saved.receive())

then:
’result = assemble val.receive() Elem
if (isEmpty result)

else: Sink.push result
saved.send false

else:
val.send Elem
saved.send true

close:
open.receive()
if (saved.receive())

then: Sink.push(val.receive())
Sink.close()
saved.send false

Figure 8.13: Applying the hand-coded Push Defragmenter

Using the wrapper assume to enforce correct usage of the filter, for any service S it holds
and for any de-fragmentation service assemble:

assume(newPushTransformer S) ≈
assume(wrapPullFilterAsSyncPush(newPullDefragmenter S))

assume(newPushDefragmenter assemble) ≈
assume(wrapPullFilterAsSyncPush(newPullDefragementer assemble))

In order to convince ourselves that these equations are valid we can, as before, apply
both filters to a sink and simplify the resulting expressions by applying the beta-reduction.
The corresponding simplified expression for the handwritten defragmenter is in Figure 8.13,
the adapted pull filter in Figure 8.14.

When a push request arrives on an initialized adapted filter the following sequence of
transitions occurs. To simplify reading, we omit the state of the running variable which is
always true.

176 CHAPTER 8. REASONING AT THE LANGUAGE LEVEL

Sink = # assume(wrapPullFilterAsSyncPush(newPullDefragmenter assemble)).apply(Sink)
’lock = newInitChannel()
’slot = newCloseableSlot()
’pushLock = newReadChannel()
’done = newChannel()
’running = newVar true
’slot.get:

’’pushLock.send()
slot.get().value

run
do:

loop # co
while: *running
do:

’e1 = slot.get() # co1
if (isEmpty e1)

else:
’e2 = slot.get() # co2
if (isEmpty e2)

then: Sink.push e1
else:

’r = assemble e1 e2
if (isEmpty r) (else: Sink.push r)

Sink.close()
done.send()

Sink
push E:

lock.receive() # push1
pushLock.receive() # initialize
if (isEmpty E) (else: slot.put E) # push2
pushLock.read()
lock.send()

close:
lock.receive()
’’if *running

then:
’’running <- false # close1
slot.close() # close2
done.receive()

Figure 8.14: Applying the adapted Pull Defragmenter

8.5. DISCUSSION 177

push X | lock() | Co | slot.empty
push−→ push1 X | Co | slot.empty (8.19)

Co−→ push1 X | Co1 | pushLock() | slot.empty (8.20)
push1−→ push2 | Co1 | slot.full X
Co1−→ push2 | Co2(X) | slot.empty

push2−→ lock() | Co2(X) | slot.empty

At this point the invocation push returns. Notice that the coordinator agent is in state Co2
and it has read the pushed form X. We assume that X is not the empty form. The only
nondeterminism that can occur here is that the first reductions 8.19 and 8.20 may occur in
different order. However, this would not change the overall behaviour. While serving this
push request, additional push and close requests are blocked since the lock is not free.

We now consider what happens if at this point a close request occurs. We expect that
the form X is flushed and forwarded to the downstream sink and that close only returns
after the downstream sink returned.

close | lock() | Co2(X) | running | slot.empty
close−→ close1 | Co2(X) | ¬running | slot.empty
close1−→ close2 | Co2(X) | ¬running | slot.closed
Co2−→ close2 | Co[Sink.push X] | ¬running | slot.closed

Sink.push−→ close2 | Sink.close | ¬running | slot.closed
Sink.close−→ close2 | done() | ¬running | slot.closed
close2−→ ¬running | slot.closed

As expected, the coordinator invokes Sink.push and then Sink.close. When close finally
returns, the coordinator loop has finished. In addition, no more push and close requests are
handled since the lock is not free anymore.

The remaining transitions are similar. For instance, when the coordinator is in state
Co2(X) and an additional push request is handled, the coordinator will invoke assemble and
then forward the result to the downstream sink. This however, is only the case, if the pushed
values are not air-bubbles, i.e., different from the empty form. Thus, under the assumptions
of correct usage, the wrapped pull filter behaves like the hand written push filter.

8.5 Discussion

We have presented how to reason about Piccola programs at the language level. As non-
trivial examples we demonstrated how generic glue code wrappers overcome compositional
mismatches and how these wrappers formalize the contract between a component and its
environment.

178 CHAPTER 8. REASONING AT THE LANGUAGE LEVEL

We have studied two extended examples. First, we considered synchronization wrap-
pers that express the synchronization constraints assumed by a component. We use the
synchronization wrappers to make components safe in a multi-threaded environment. The
wrappers separate the functionality of the component from their synchronization aspects.
If the constraints assumed by the component hold in a particular composition the wrapper
is not needed. In particular the wrapper is not necessary when the component is already
wrapped. This property is formally expressed by imposing that the wrappers are idempo-
tent.

The second study compares push- and pull-flow filters. We demonstrate how to adapt
pull-filters so that they work in a push-style. We have constructed a generic adapter for this
task in two iterations. The first version contains a race-condition that may lead to data being
lost. The formal model of Piccola is used to analyze the traces of an adapted filter and to
detect this bug. To fix the problem, we specify the dynamics of a push-style filter, namely
that push and close calls are mutually exclusive, that no further push calls are attempted
after close, and that no air-bubble elements are pushed downstream. Having clarified the
interaction protocol in a wrapper, we present an improved version of the generic adapter.
We show that the adapter ensures these invariants.

We propose the use of wrappers to formalize and codify the contracts between compo-
nents and the style. Such contracts supplement a composition style. This allows us to de-
velop the style independently of the components for it. The composition abstractions ensure
that the properties of the style hold invariantly and the components establish these invari-
ants. However, more work is needed to fertilize this idea. For instance, we would like to
have assistant tools for the actual model checking. A possibility is to automatically extract
the state transitions of a Piccola program and use model checking tools such as the labeled
transition system analyzer of Magee and Kramer [MK99] for this task.

Chapter 9

Conclusion and Future Work

This chapter sums up the contributions made in the thesis, points to future work and pro-
vides some final conclusions.

9.1 Validation

In this thesis we claim that

Extensible composition abstractions can be defined and implemented on a foundation of
forms, agents and channels. A set of plug-compatible components is captured by a
composition style.

We have defined the properties of a form and introduced a calculus with explicit names-
paces that builds on forms, agents and channels. Agent-expressions and form-expressions
are unified in the sense that an agent evolves to a form. A form is a fully reduced agent.
While evolving, an agent may communicate with other agents by exchanging forms along
channels. We use the term form for the unification of services, extensible records and environ-
ments. In classical record calculi, a distinction is made between record labels and variables
of the calculus. This distinction is not present in Piccola. In Chapter 5 we present Piccola as
a composition language on top of the calculus. While the calculus gives us expressiveness
and a sound semantics, the Piccola language eases the process of programming by adding
user-defined operators, explicit dynamic namespaces and recursive forms.

Piccola is a pure composition language because all computation eventually happens in
external components and composition only is performed in Piccola. For that purpose, it is
important that external components can be integrated seamlessly. We use reflection on the
host language to access any host component as a form from Piccola. We then adapt the
interface of a host component inside Piccola. Due to the extensibility of forms, this adaption
is transparent to services defined in Piccola and external services. The adapted interface
maintains the original identity of the component. When we invoke a host service with the
adapted component as an argument, the host service will receive the original component.

We implement a number of composition abstractions as first-class citizen of Piccola. We
show that the unifying concept of forms together with the runtime model of agents and chan-
nels is expressive enough to encode generic wrappers, connectors, control and coordination
abstractions, context dependent policies, and richer object-models that support inheritance

179

180 CHAPTER 9. CONCLUSION AND FUTURE WORK

as first-class citizens of Piccola. Implementing such abstractions as first-class citizens is a
necessary feature for a composition language to make the architecture explicit in the code.

We use the simplicity of the Piccola formalism at several places. We show that the cal-
culus can safely be embedded into the more general framework given by the π-calculus.
The exercise of embedding Piccola into the π-calculus is useful for two purposes. First, it
allows us to use reasoning techniques from the π-calculus. Second, working on the encod-
ing helped us to get a better understanding of what the minimal kernel for a composition
calculus should be. In fact, the second reason turned out to be more important than the
first. We have discovered important simplifications on the Piccola calculus like the fact that
assignment can be expressed inside Piccola and does not need to be treated as primitive.

Another usage of the simplicity of the Piccola calculus is given in the partial evaluation
algorithm in Chapter 6. The algorithm separates any Piccola expression into a referentially
transparent and a side-effectful part. The fact that forms are immutable values is the key
aspect that enables specialization. We can inline projections at specialization time. The al-
gorithm is used to speed up a Piccola interpreter and it helps a composition environment to
provide information about the value of identifiers at composition time.

Finally, we present how Piccola can be used to reason about composition abstractions.
We infer the states and transitions of a program from the code and the semantics of agents
and asynchronous channels. As an example, we show how this formalism helps us to detect
composition mismatches and how we can use wrappers to formalize the contracts between
components and composition styles.

In summary, we have given evidence that Piccola meets our requirements for a composi-
tion language of Chapter 2. It is expressive enough to implement composition abstractions
as first-class entities, it supports reasoning due to the high-level semantics of forms, agents
and channels, and it supports accessing external components.

9.2 Future Work

We kept the syntax of the Piccola language minimal. As a result, Piccola code sometimes has
more the flavour of a calculus than a high-level programming language. Reading Piccola
code can be hard since the code often is very dense. This is partially due to the minimal
syntax and partially due to the lack of a proper composition environment. In the following
we discuss some enhancements to alleviate the situation.

The Piccola system is still command line based. Debugging is tedious, although the
Squeak version [SA01] of Piccola has some nice debugging features to step through code, to
halt groups of agents, and to explore the history of forms, i.e., when the form was accessed
and how it was built. We would like to extend this system and make it platform independent
by implementing a composition environment inside Piccola.

Programming Piccola, we start with form expressions that consist of only a few bind-
ings. As we add more bindings, at some point we need a fixed point since the dependencies
between the services become too complex to handle. This problem could be alleviated if
the form we are currently defining was available as an explicit form much like the current
root context. Forms would have a notion of self leading towards an object-based language.
However, to add such a notion, it is necessary to give the semantics of fixed points directly
on the calculus, instead of defining a translation.

Further work is needed to give a fully abstract encoding of Piccola into Lπ. The foun-

9.3. CONCLUDING REMARKS 181

dations of the π-calculus we choose seems appropriate for most usages. However, there
is a lot of research going on in studying calculi for secure and distributed system (e.g.,
[CG98, VC99]) that we have not considered in the current work. Such calculi allow the user
to reason about important properties like safety for open and distributed systems.

We have not considered types in our initial design for pragmatic reasons. We did not
want to be constrained by types. However, the author sometimes wished a type system
would have detected type errors earlier. Due to the explicit representation of namespaces we
can type open expressions in Piccola. In a component environment where new components
are added at runtime, we have to give up the idea of a closed system that can be type-checked
at once. We are working on a notion of types that separates provided and required types.
Both these types can be inferred from a script. A conformance relation has to assert that a
provided type conforms to a required type of another component.

The Piccola system we have implemented is a prototype. We are now at a stage where we
can start to work on an efficient implementation. The partial evaluation algorithm is a first
step in that direction. In a project that is going on we try to generate byte-code for the Java
and Squeak virtual machines directly from form expressions. It is not obvious at this point
which services we can map to classes and which services to methods. For instance, the ser-
vice newVar that creates a new Piccola variable could directly be mapped to a constructor for
a single slot class. Other services like println naturally map to a method of an appropriate
object. It is not clear where the border lies.

We have presented a language that allows the programmer to implement many design
patterns and aspects as first-class citizen. More work is needed to give methodological help
how to design a composition styles, i.e., how to find their core abstractions. The examples we
have demonstrated are obviously tiny problems and come from well understood domains.
It is challenging to apply these ideas to bigger systems.

It is also instructive to use Piccola for giving semantics to the different extensions for
object-oriented languages we mentioned in Chapter 2. This would not only improve our
understanding of the differences between these approaches, but it would also enable the
composition of components of the different paradigms, e.g., combine aspects with composi-
tion filters and context relations within a well defined semantical framework.

It would also be interesting to attach tools for the π-calculus and model checking systems
to Piccola. Garlan et al. [GMW00] introduce ACME as a generic interchange format for
architectural description languages. It should be possible to map styles to this language and
use other formalisms to infer properties of the resulting system.

9.3 Concluding Remarks

We have presented Piccola, a composition language based on the unifying principle of forms,
agents and channels. The language supports the specification and implementation of com-
position abstractions as first-class values. Using the language we propose to make frame-
works available as domain-specific languages. These little languages are packed as a com-
position styles in terms of components, connectors and connecting rules.

Ever since software engineers have built systems, they have tried to make them more
robust and flexible. The basic principles to achieve these goals are separation of concern,
encapsulation and decomposition. The object-oriented approach, now widely applied and
accepted in industry with good tool and methodological support, is the most recent incar-

182 CHAPTER 9. CONCLUSION AND FUTURE WORK

nation of these principles. Still, the approach has not achieved the goal of making objects as
composable as we would like [Ude94]. While it is probable that Piccola will not be the final
answer either, we are convinced that the notion of forms, agents and channels shows us the
direction to make systems more robust and flexible by defining high-level, declarative and
extensible composition abstractions.

Appendix A

The Piccola calculus

This appendix summarizes syntax and semantics of the Piccola calculus of Chapter 3. Agents
A, B and forms F, G, H are defines as follows:

A, B, C ::= ε empty form | R current root
| A; B sandbox | x variable
| x 7→ bind | hidex hide
| L inspect | A · B extension
| λx.A abstraction | AB application
| νc.A restriction | A | B parallel
| c? input | c output

F, G, H ::= ε empty form | S service
| x 7→F binding | F · G extension

S ::= F; λx.A closure | L inspect
| x 7→ bind | hidex hide
| c output

The following rules infer that agent A reduces to B:

(F; λx.A) G → F · x 7→G; A (reduce beta) cF | c? → F (reduce comm)
F · x 7→G; x → G (reduce project)

Lε → ε; λx.(x; isEmpty)ε (reduce inspect empty)
LS → ε; λx.(x; isService)ε (reduce inspect service)

L(F · x 7→G) → ε; λx.(x; isLabel)labelx (reduce inspect label)
A ≡ A′ A′ → B′ B′ ≡ B

A → B
(reduce struct)

A → B

E [A] → E [B]
(reduce propagate)

where labelx is the form project 7→(ε; λx.(x; x)) · hide 7→hidex · bind 7→(x 7→) and E is an evaluation
defined by the grammar:

E ::= []
∣∣ E · A ∣∣ F · E

∣∣ E ; A
∣∣ F; E

∣∣ EA
∣∣ FE

∣∣ A|E
∣∣ E|A ∣∣ νc.E

The operators have the following precedence:

application > extension > restriction, abstraction > sandbox > parallel

183

184 APPENDIX A. THE PICCOLA CALCULUS

The congruence ≡ is the smallest congruence satisfying the following axioms:

F; A · B ≡ (F; A) · (F; B) (sandbox ext)
F; AB ≡ (F; A)(F; B) (sandbox app)

A; (B; C) ≡ (A; B); C (sandbox assoc)
F; G ≡ G (sandbox value)
F; R ≡ F (sandbox root)
F · ε ≡ F (ext empty right)
ε · F ≡ F (ext empty left)

(F · G) · H ≡ F · (G · H) (ext assoc)
S · (x 7→F) ≡ (x 7→F) · S (ext service commute)

x 7→F · x 7→G ≡ x 7→G (single binding)
x 6= y implies x 7→F · y 7→G ≡ y 7→G · x 7→F (ext bind commute)

(F · S)G ≡ SG (use service)
S · S′ ≡ S′ (single service)

hidex(F · x 7→G) ≡ hidexF (hide select)
x 6= y implies hidey(F · x 7→G) ≡ hideyF · x 7→G (hide over)

hidexε ≡ ε (hide empty)
hidexS ≡ S (hide service)

(A | B) | C ≡ A | (B | C) (par assoc)
(A | B) | C ≡ (B | A) | C (par left commute)
(A | B) · C ≡ A | B · C (par ext left)
F · (A | B) ≡ A | F · B (par ext right)

(A | B)C ≡ A | BC (par app left)
F(A | B) ≡ A | FB (par app right)

(A | B); C ≡ A | B; C (par sandbox left)
F; (A | B) ≡ F; A | F; B (par sandbox right)

F | A ≡ A (discard zombie)
νcd.A ≡ νdc.A (commute channels)

c /∈ fc(A) implies A | νc.B ≡ νc.(A | B) (scope par left)
c /∈ fc(A) implies (νc.B) | A ≡ νc.(B | A) (scope par right)
c /∈ fc(A) implies (νc.B) · A ≡ νc.(B · A) (scope ext left)
c /∈ fc(A) implies A · νc.B ≡ νc.(A · B) (scope ext right)
c /∈ fc(A) implies A; νc.B ≡ νc.(A; B) (scope sandbox left)
c /∈ fc(A) implies (νc.B); A ≡ νc.(B; A) (scope sandbox right)
c /∈ fc(A) implies (νc.B)A ≡ νc.BA (scope app left)
c /∈ fc(A) implies A(νc.B) ≡ νc.AB (scope app right)

cF ≡ cF | ε (emit)

Appendix B

Proofs for Chapter 3

B.1 Proof of Proposition 3.13

In order to prove Proposition 3.13 we first show the following Lemma. Lemma 3.14 states the
same as the proposition but only for closed agents, i.e. for agents of the form F; A. Note that
all closed agents A are equivalent to ε; A which is proved by induction over closed agents
A.

Lemma B.1 Each agent F; A is congruent to a canonical agent:

F; A ≡ νc1...cn.(M1 | ... | Mm | A1 | ... | Ak)

for messages Mi and threads Aj for 0 ≤ i ≤ m, 0 ≤ j < k and Ak is a thread or a form for k ≥ 1.

Proof. We prove this by induction over A.

• A = G for a form G. The main agent is F; G ≡ G which is a form.

• A = R. The main agent is F; R ≡ F which is a form.

• A = x. The main agent is F; x which is case 3 of Definition 3.11.

• A = B; C. We have F; (B; C) ≡ (F; B); C. Using the induction hypothesis we have:

F; B ≡ νc1...cn.(M1 | ... | Mm | A1 | ... | Ak)
(F; B); C ≡ νc1...cn.(M1 | ... | Mm | A1 | ... | Ak); C

≡ νc1...cn.(M1 | ... | Mm | A1 | ... | Ak−1 | Ak; C) (B.1)

Now Ak is either a form or a thread.

– If Ak is a thread Ê [A′] for some Ê and A′, then Ê ; C is the required thread context.

– Otherwise Ak is a form G. By the induction hypothesis — note that the induction
is over A ≡ B; C — we have:

G; C ≡ νd1...dn′ .(M′1 | ... | M′m′ | A′1 | ... | A′k′) (B.2)

185

186 APPENDIX B. PROOFS FOR CHAPTER 3

Combining (B.1) and (B.2) we have:

F; B; C ≡ νc1...cnd1...dn′ .(M1 | ... | Mm | M′1 | ... | M′m′
| A1 | ... | Ak−1 | A′1 | ... | A′k′)

which is of the required form.

• A = B · C. By rule sandbox ext we have F; (B · C) ≡ (F; B) · (F; C). We apply the
induction hypothesis on both parts:

F; B ≡ νc1...cn.(M1 | ... | Mm | A1 | ... | Ak)
F; C ≡ νd1...dn′ .(M′1 | ... | M′m′ | A′1 | ... | A′k′)

As in the previous case, Ak is either a form or can be written as a thread context. Both
cases can be calculated similar to the previous case and by using the fact that F · G is
congruent to a form.

• A = λx.B. The main agent is F; λx.B which is a closure.

• A = BC. We have F; (BC) ≡ (F; B)(F; C) using rule sandbox app and the induction
hypothesis:

F; B ≡ νc1...cn.(M1 | ... | Mm | A1 | ... | Ak)
F; C ≡ νd1...dn′ .(M′1 | ... | M′m′ | A′1 | ... | A′k′)

Now, Ak is either a form or a can be written as a thread context:

– Either Ak is an agent Ê [A′] for some Ê and A′ of the required form. With Ê ′ =
Ê(M′1 | ... | M′m′ | A′1 | ... | A′k′)

νc1...cnd1...dn′ .(M1 | ... | Mm | Ê ′[A′])

is the required canonical agent.

– Otherwise Ak is a form G. Combining the two hypothesis equations yields:

F; BC ≡ νc1...cnd1...dn′ .(1 | ... | (Mm | A1 | ... | Ak−1

| G(M′1 | ... | M′m′ | A′1 | ... | A′k′))
≡ νc1...dn′ .(M1 | ... | Mm | M′1 | ... | M′m′ (by rule par app right)
| A1 | ... | Ak−1 | A′1 | ... | A′k′−1 | GA′k′)

If A′k′ is an agent Ê [A′] for some Ê and A′ in the required format, then FÊ is the
required thread context.
If, on the other hand, A′k′ is a form there are several possibilities depending on G.

- If G ≡ G′ · c for some channel c then we can apply rule emit and rule use service
to conclude GA′k′ ≡ cA′k′ | ε. The required canonical term is:

F; BC ≡ νc1...dn′ .(M1 | ... | Mm | M′1 | ... | M′m′ | cA′k′
| A1 | ... | Ak−1 | A′1 | ... | A′k′−1 | ε)

This case adds the new message cA′k′ to the final result.

B.1. PROOF OF PROPOSITION 3.13 187

- If G ≡ G′ · hidex then GA′k′ is a preform and thus congruent to a form G′′. The
required canonical term is:

F; BC ≡ νc1...dn′ .(M1 | ... | Mm | M′1 | ... | M′m′
| A1 | ... | Ak−1 | A′1 | ... | A′k′−1 | G′′)

This subcase shows that the agent F; BC is a barb.
- If G ≡ G′ · (x 7→) is similar to the previous case. GA′k′ ≡ x 7→A′k′ is the required

binding.
- Otherwise, G contains a closure, an inspection or a projection service, or is a

form without a service. In that case, GA′k′ is the required main agent and we
have an application, case 2.

• A = νc.B. The main agent is F; νc.B ≡ νc.F; B and the conclusion holds trivially by
applying the induction hypothesis on F; B.

• A = B | C. We have F; (B | C) ≡ (F; B) | (F; C) and the conclusion holds by the
induction hypothesis and the scope extrusion rules.

• A = c?. The required thread context is [] and the agent is F; c?, case 4. �

With this lemma, we can now prove Proposition 3.13. The lemma is used for the induc-
tion step with a sandbox expression.
Proof. Proposition 3.13 is proved by induction over A.

• A = F. For any form F holds by definition.

• A = R. Trivial, case 1.

• A = x. Trivial, case 1.

• A = A; B. By the induction hypothesis we have:

A ≡ νc1...cn.(M1 | ... | Mm | A1 | ... | Ak)

Now Ak is either a thread or a form. If it is a thread Ê [A′] for some Ê then Ê ; B is the
required thread context. If, on the other hand, Ak is a form F, we have:

A; B ≡ νc1...cn.(M1 | ... | Mm | A1 | ... | Ak−1 | F); B
≡ νc1...cnd1...dn′ .(M1 | ... | Mm | A1 | ... | Ak−1 | F; B) by rule par sandbox left

By Lemma B.1, (F; B) is congruent to a canonical agent.

• A = B · C. We apply the induction hypothesis on both parts:

B ≡ νc1...cn.(M1 | ... | Mm | A1 | ... | Ak)
C ≡ νd1...dn′ .(M′1 | ... | M′m′ | A′1 | ... | A′k′)

B · C is combined by applying scope extrusion and rule par ext left. Ak is either a form
or a thread. Both cases can be calculated similar to the case A ≡ B; C and by using the
fact that F · G is congruent to a form.

188 APPENDIX B. PROOFS FOR CHAPTER 3

• A = λx.B. This is case 1 of Definition 3.11.

• A = BC. This case is similar to the case BC in the proof of Lemma B.1.

• A ≡ νc.B. The conclusion holds trivially by applying the induction hypothesis.

• A ≡ B | C. The conclusion holds trivially by applying the induction hypothesis and
scope extrusion.

• A ≡ c?. The required thread context is [] and we have case 4. �

Appendix C

Proofs for Chapter 4

C.1 Proof of Lemma 4.12

Proof. The lemma is proved by structural induction on form processes. The base cases are
easy. We only show projection for P = fun〈 f̃ , s〉. By using a replication theorem we have that
P′ = q | P which is case (1b).

The induction steps require slightly more work. We show two cases:

• Assume P = bind〈 f̃ , x, g̃〉 | Q ∈ FP and y 6= x. Then P
fh [y, p]−→ P | p〈 f̃ 〉 and we have case

(3) with Q = 0. On the other hand we have P
h̃[x, p]−→ P | (νh̃)p〈h̃〉 | empty〈h̃〉 which also

fulfills case (3) with Q = empty〈h̃〉 ∈ FP .

• Assume P = ext〈 f̃ , g̃, h̃〉 | Q ∈ FP . We have

P
fs [p, q]−→ P | (νr1, r2)gs〈r1, r2〉 | hs〈r1, r2〉 | (r1(x).p〈x〉) | r2.r2.q (C.1)

By the induction hypothesis the process gs〈r1, r2〉 interacts with P in either of the fol-
lowing ways:

P | gs〈r1, r2〉 =⇒ P | r1〈x〉 for some x (C.2)
P | gs〈r1, r2〉 & P | r2 (C.3)

and the same applies for hs〈r1, r2〉. If both interactions are given by (C.2) then we have:

P | (νr1, r2)gs〈r1, r2〉 | hs〈r1, r2〉 | (r1(x).p〈x〉) | r2.r2.q & by (C.2)
P | (νr1, r2)r2 | r2〈〉 | (r1(x).p〈x〉) | r2.r2.q〈〉 & along r2

P | (νr1, r2)(r1(x).px) | q〈〉 ≡ P | q

which shows case (4b). On the other hand we assume for one interaction (C.2) applies.
We have:

P | (νr1, r2)gs〈r1, r2〉 | hs〈r1, r2〉 | (r1(x).p〈x〉) | r2.r2.q =⇒
P | (νr1, r2)r1〈l〉 | hs〈r1, r2〉 | (r1(x).p〈x〉) | r2.r2.q τ−→

P | (νr1, r2) | hs〈r1, r2〉 | p〈x〉 | r2.r2.q ≈ P | p〈x〉

189

190 APPENDIX C. PROOFS FOR CHAPTER 4

The ground congruence is given by the fact, that the remaining processes send at most
one element along r2. Therefor the process r2.q can be garbage collected and case (4a)
holds.

The other cases are similar and simpler. In fact, label selection for an extended form is the
most interesting case, since it nondeterministically chooses a label. We have to convince
ourselves that either a label is returned or the absence of any binding is signaled. �

C.2 Proof of Lemma 4.16

Proof. We show the individual cases.

(1) We show that S defined as (νg̃, h̃)ext〈 f̃ , h̃, g̃〉 | empty〈g̃〉 | PF〈h̃〉 S PF〈 f̃ 〉 is a bisimula-
tion up to expansion and context. The only interesting case is an input transition with
subject in f̃ . The other cases are simulated trivially.

– Assume PF〈 f̃ 〉
fp [x, p, q]
−→ P′′. By Lemma 4.12, one of the following holds:

P′′ & p〈g̃′〉 | PF〈 f̃ 〉 (*)
P′′ & q | PF〈 f̃ 〉

In any case there is a static context C with P′′ & C[PF〈 f̃ 〉]. For (*) it is C = p〈g̃′〉 | []
On the other hand we have the following. Let E = ext〈 f̃ , h̃, g̃〉 | empty〈g̃〉.

(νg̃, h̃)E | PF〈h̃〉
fp [x, p, q]
−→ & (expand extp)

(νg̃, h̃)E | PF〈h̃〉 | (νr1)gp〈x, p, r1〉 | r1.hp〈x, p, q〉 &
(νg̃, h̃)E | PF〈h̃〉 | hp〈x, p, q〉 &

C[(νg̃, h̃)E | PF〈h̃〉] assuming (*)

Observe that the universal quantification is handled by the static context defini-
tion according to Lemma 4.14.

– The other cases are similar.

(2) Use the same relation S as in case (1) but change the extension clause to ext〈 f̃ , g̃, h̃〉.

(3) We set P = (ν f̃ , f̃ ′, g̃, h̃)R | ext〈 f̃ ′, f̃ , g̃〉 | ext〈ẽ, f̃ ′, h̃〉 and the right-hand side Q =
(ν f̃ , g̃, g̃′, h̃)R | ext〈g̃′, g̃, h̃〉 | ext〈ẽ, f̃ , g̃′〉. We show that S = (P, Q) is a bisimulation
up-to expansion and context. Again, only the input transitions on ẽ are interesting. We
show the case µ = ẽh[x, p]. The case with ẽs[x, p, q] is similar. The other two cases are
simpler.

Assume P
µ−→ P′′. We have to show that there is a static context C and P′, Q′ such that

P′′ & C[P′], Q
µ̂

=⇒& C[Q′], and P′ S Q′.

C.3. PROOF OF LEMMA 4.17 191

We have:

P′′ & (ν f̃ , f̃ ′, g̃, h̃, r̃)R | ext〈 f̃ ′, f̃ , g̃〉 | ext〈ẽ, f̃ ′, h̃〉
| r1(f̃ ′′).r2(h̃′′).(νẽ′)p〈ẽ′〉 | ext〈ẽ′, f̃ ′′, h̃′′〉

& (ν f̃ , f̃ ′, g̃, h̃)R | ext〈 f̃ ′, f̃ , g̃〉 | ext〈ẽ, f̃ ′, h̃〉
| (νẽ′, f̃ ′′, h̃′′)P∗ | ext〈ẽ′, f̃ ′′, h̃′′〉

P∗ is constructed using Lemma 4.12(3) and the fact that PF〈 f̃ 〉 | PG〈g̃〉 | ext〈 f̃ ′, f̃ , g̃〉 ∈
FP . According to Lemma 4.12 there are now two cases: If P∗ = 0 the required context
is:

C = (ν f̃ , f̃ ′, g̃, h̃)R | []

On the other hand if P∗ ∈ FP the context becomes:

C = (ν f̃ , f̃ ′, g̃, h̃)R | ext〈 f̃ ′, f̃ , g̃〉 | ext〈ẽ, f̃ ′, h̃〉 | []

Both cases can be simulated by a similar expansion for Q.

(4) The following calculation shows the necessary result:

[[x 7→F]]a ≈ by 4.13
(νr̃)[[F]]r1

| r1(f̃).(νg̃, f̃ ′)[[()]]r2
| bind〈g̃, x, f̃ 〉 | ext〈 f̃ ′, g̃, h̃〉 | r2(h̃).a〈 f̃ ′〉 ≈ by 4.14

(ν f̃ , g̃, h̃, f̃ ′)PF〈 f̃ 〉 | empty〈h̃〉 | bind〈g̃, x, f̃ 〉 | a〈 f̃ ′〉 | ext〈 f̃ ′, g̃, h̃〉 ≈ using (1)
(ν f̃ , g̃)FP〈 f̃ 〉 | bind〈g̃, x, f̃ 〉 | a〈g̃〉

(5) Apply the definition of [[A; B]]a.

(6) The process P that models the form F is a parallel composition of replicated input
processes on private names. Thus we cannot interact with P. Note that the F does not
contain any Piccola channel. �

C.3 Proof of Lemma 4.17

Proof. Assume A ≡ B. We prove [[A]]a ≈ [[B]]a by induction on the derivation of A ≡ B.
We have to consider all congruence rules:

(reflexive) [[A]]a ≈ [[A]]a holds vacuously.

(symmetric) ≈ is symmetric by definition.

(transitive) ≈ is transitive since ≈̇ is the largest relation that includes bisimulation.

(congruence) ≈ is a congruence by definition.

(par assoc) We have [[(A | B) | C]]a = (νr̃)[[A]]r1
| [[B]]r2

| [[C]]a ≡ [[A | (B | C)]]a by structural
congruence on π-processes.

(par left commute) We have [[(A | B) | C]]a = (νr̃)[[A]]r1
| [[B]]r2

| [[C]]a ≡ [[(B | A) | C)]]a by
structural congruence on π-processes.

192 APPENDIX C. PROOFS FOR CHAPTER 4

(par ext left) The process [[(A | B) · C]]a has the form (νr̃)[[A | B]]r1
| r1(f̃).P and by Lemma

4.15(3) this is congruent to [[A | B · C]]a.

(par ext right) We have [[F · (A | B)]]a = (νr̃)[[F]]r1
| r1(f̃).([[A]]r3

| P) and f̃ /∈ fv([[A]]r3
). Thus

by Lemma 4.15(1) this is congruent to (νr̃)[[A]]r3
| [[F]]r1

| r1(f̃).P and this is the process
[[A | (F · B)]]a.

(par app left) Using Lemma 4.15(3), we have [[(A | B)C]]a = (νr̃)[[A | B]]r1
| r1(f̃).P which is

congruent to [[A | BC]]a.

(par app right) We have [[F(A | B)]]a = (νr̃)[[F]]r1
| r1(f̃).([[A]]r3

| [[B]]r2
) | r2(g̃).P and again

by Lemma 4.15(1) this is (νr̃)[[A]]r3
| [[F]]r1

| r1(f̃).[[B]]r2
| r2(g̃).P = [[A | FB]]a.

(par sandbox left) We have [[(A | B); C]]a = (νr̃)[[A]]r2
| [[B]]r1

| r1(f̃).[[C]] f̃
a . Using Lemma

4.15(3) this is congruent to [[A | B; C]]a.

(par sandbox right) [[F; (A | B)]]a = (νr̃)[[F]]r1
| r1(f̃).[[A]] f̃

r2
| [[B]] f̃

a . By Lemma 4.15(2) we can
duplicate the form F and conclude

(νr̃)[[F]]r1
| r1(f̃).[[A]] f̃

r2
| [[F]]r3

| r3(f̃).[[B]] f̃
a = [[F; A | F; B]]a

(discard zombie) We have [[F | A]]a = (νr̃)[[F]]r1
| [[A]]a. By Lemma 4.16(6) we conclude

(νr̃)[[F]]r1
| [[A]]a ≈ 0 | [[A]]a ≡ [[A]]a.

(commute channels) The property [[νc, d.A]]a ≡ [[νd, c.A]]a follows directly from the transla-
tion of scopes.

(scope par left) Follows directly from the scoping rules π. Assume c /∈ fc(A). We have
[[A | νc.B]]a = (νr1, c)[[A]]r1

| [[B]]a = [[νc.A | B]]a.

The other scope extrusion rules scope par right, scope ext left, scope ext right, scope
sandbox left, scope sandbox right, scope app right, and scope app left are similar to
this case.

(emit) A calculation yields:

[[cF]]a = (νr̃)[[c]]r1
| r1(f̃).[[F]]r2

| r2(g̃). fi〈r3, r4〉 | r3(s).s〈g̃, a〉
≈ (νr̃, f̃ , s)fun〈 f̃ , s〉 | (!s(g̃, r).(νh̃)c〈g̃〉 | p〈h̃〉 | empty〈h̃〉) | [[F]]r2

| r2(g̃).P

≈ (νr̃, f̃ , s)fun〈 f̃ , s〉 | (!s(g̃, r).c〈g̃〉 | [[ε]]r) | [[F]]r2
| r2(g̃).P

by Lemma 4.14 there exists a Q such that:

≈ (νr̃, f̃ , s)fun〈 f̃ , s〉 | (!s(g̃, r).c〈g̃〉 | [[ε]]r) | (νg̃)r2〈g̃〉 | Q | r2(g̃).P
≈ (νr̃, f̃ , s)fun〈 f̃ , s〉 | (!s(g̃, r).c〈g̃〉 | [[ε]]r) | (νg̃)Q | fi〈r3, r4〉 | r3(s).s〈g̃, a〉
≈ (νr̃, f̃ , s)fun〈 f̃ , s〉 | (!s(g̃, r).c〈g̃〉 | [[ε]]r) | (νg̃)Q | r3〈s〉 | r3(s).s〈g̃, a〉

C.3. PROOF OF LEMMA 4.17 193

The process fun〈 f̃ , s〉 is not used anymore:

≈ (νr̃, s)(!s(g̃, r).c〈g̃〉 | [[ε]]r) | (νg̃)Q | r3〈s〉 | r3(s).s〈g̃, a〉
≈ (νr̃, s)(!s(g̃, r).c〈g̃〉 | [[ε]]r) | (νg̃)Q | r3〈s〉 | r3(s).s〈g̃, a〉
≈ (νr̃, s)(!s(g̃, r).c〈g̃〉 | [[ε]]r) | (νg̃)Q | s〈g̃, a〉
≈ (νr̃, s)(!s(g̃, r).c〈g̃〉 | [[ε]]r) | (νg̃)Q | c〈g̃〉 | [[ε]]a

Thus we have [[cF | ε]]a = (νr)[[cF]]r | [[ε]]a = [[cF]]a. Observe that the calculation uses
the fact that the sent expression is available as a form F. If it was an arbitrary agent,
we could not use Lemma 4.14, thus cA 6≈ cA | ε.

(sandbox ext) Using Lemma 4.16(5) and the replication theorems we have [[F; A · B]]a ≈
[[(F; A) · (F; B)]]a.

(sandbox app) Similar to the previous case. Observe that both definition of [[A · B]]a and
[[AB]]a first make A and B available and differ only in the process that receives the
value of B.

(sandbox assoc) [[(A; B); C]]a ≈ (νr̃[[A]]r1
| (r1(f̃).[[B]] f̃

r2
) | (r2(g̃).[[C]]g̃

a) ≈ [[A; (B; C)]]a due to
the associativity of the parallel operator.

(sandbox value) [[F; G]]a = (νr)[[F]]r | r(f̃).[[G]] f̃
a . We use Lemma 4.14 for f̃ /∈ fv([[G]] f̃

a) and
that the emission of F can be rewritten as: (ν f̃)r〈 f̃ 〉 | PF. Thus the communication along
r can be optimized away: [[F; G]] ≈ (ν f̃)PF | [[G]]a ≡ [[G]]a.

(sandbox root) [[F; R]]a = (νr)[[F]]r | r(f̃).a〈 f̃ 〉. By Lemma 4.14, we have [[F]]r ≈ (ν f̃)PF | r〈 f̃ 〉.
Thus we have [[F; R]]a ≈ (ν f̃ , r)PF | r〈 f̃ 〉 | r(f̃).a〈 f̃ 〉 ≈ (ν f̃)PF | a〈 f̃ 〉 = [[F]]a.

(ext empty right) We use Lemma 4.16(1) to infer

[[F · ε]]a ≈ (ν f̃ , g̃, h̃)PF〈 f̃ 〉 | empty〈g̃〉 | ext〈h̃, f̃ , g̃〉 | a〈h̃〉
≈ (ν f̃)PF〈 f̃ 〉 | a〈 f̃ 〉
≈ [[F]]a

as desired.

(ext empty left) Similar to the previous case but use Lemma 4.16(2).

(ext assoc) Let R = PF〈 f̃ 〉 | PG〈g̃〉 | PH〈h̃〉. Now using Lemma 4.16(3) we have:

[[(F · G) · H]]a ≈ (ν f̃ , f̃ ′, g̃, h̃, ẽ) | R | ext〈 f̃ ′, f̃ , g̃〉 | ext〈ẽ, f̃ ′, h̃〉 | a〈ẽ〉
≈ (ν f̃ , f̃ ′, g̃, h̃, ẽ) | R | ext〈 f̃ ′, g̃, h̃〉 | ext〈ẽ, f̃ , f̃ ′〉 | a〈ẽ〉 ≈ [[F · (G · H)]]a

(ext service commute) To see that [[S · (x 7→F)]]a ≈ [[(x 7→F) · S]]a we have to convince our-
selves that

P = fun〈 f̃ , s〉 | bind〈g̃, x, h̃〉 | ext〈ẽ, f̃ , g̃〉, and
Q = fun〈 f̃ , s〉 | bind〈g̃, x, h̃〉 | ext〈ẽ, g̃, f̃ 〉

194 APPENDIX C. PROOFS FOR CHAPTER 4

are ground bisimilar. The only interesting cases are input on a channel of ẽ. The bisim-
ulation can be computed: Projection yields in both cases either the empty form or the
tuple h̃ if projection is done on label x. The service channel returned by requests on
ẽi is s in both cases. Hiding requests for a label different than x yield congruent pro-
cesses again. Hiding requests on the label x either return forms ε · G or G · ε which are
congruent by Lemma 4.16. Label selection returns the label x in both cases.

(ext bind commute) Similar to the previous case. The congruent processes P and Q are:

P = bind〈 f̃ , y, h̃′〉 | bind〈g̃, x, h̃〉 | ext〈ẽ, f̃ , g̃〉
Q = bind〈 f̃ , y, h̃′〉 | bind〈g̃, x, h̃〉 | ext〈ẽ, g̃, f̃ 〉

As in the previous case, projection, service selection, label hiding and inspection be-
have the same.

(use service) The process P = [[B]]ẽ
r2
| r2(g̃). fi〈r3, r4〉 | r3(s).s〈g̃, a〉 that is part of [[AB]]a only

has fi as a free name of f̃ . Thus to see that [[(F · S)A]]a ≈ [[SA]]a we have to show that
S= {(P, Q)} with

P = (ν fp, fh, fs)fun〈 f̃ , s〉 | PG〈g̃〉
Q = (ν fp, fh, fs, h̃)ext〈 f̃ , g̃, h̃〉 | fun〈h̃, s〉 | PG〈g̃〉

is a ground bisimulation. The interesting transitions are input on fi. It is readily
checked that S is a ground bisimulation.

(single service) To see that [[S · S′]]a ≈ [[S′]]a use the bisimulation S :

S def= {(fun〈 f̃ , s〉, P) with P = (νg̃, h̃)ext〈 f̃ , g̃, h̃〉 | fun〈g̃, s〉 | fun〈h̃, s′〉}

It is readily verified that S is a ground bisimulation.

(single binding) Similar to the previous case.

(hide select) The terms [[hidex(F · x 7→G)]]a and [[hidexF]]a are ground bisimilar. To see this we
first use expansion to reduce the invocation of the hide feature on the encodings of
F · x 7→G and F. By Lemma 4.12 and Lemma 4.16(2) ext〈h̃, f̃ , g̃′〉 | bind〈g̃′, xg̃〉 | hh〈x, r〉
expands to a process fh〈x, r〉 which shows the desired result.

(hide over) A similar argument like in the previous case.

(hide empty) Follows from the definition of empty〈 f̃ 〉.

(hide service) Follows from the definition of fun〈 f̃ , s〉. �

Appendix D

Proofs for Chapter 6

In this appendix we formally prove correctness of the partial evaluation algorithm. We first
show a few helper lemmas that use the notion of referential transparency. For short, with
referential transparent terms we can use distribution and substitution as derived from a
calculus with the Church-Rosser property and without explicit namespaces.

The main part of the correctness proof is then given by Lemma D.12 which is an induction
of functional agents showing correctness for the function split.

In order to simplify reading of the embedding of lazy forms R and the combining of
side-effect terms P we use the following notation:

embed(R) = bRc combine′(P) = dPe

The first lemma proves correctness for the labels predicate.

Lemma D.1 For F ` bRc with G ≈ F; bRc it holds: labels(R) ⊆ labels(G).

Proof. By induction on R. �

By this above lemma, the set of labels cannot shrink when we reduce a lazy form (or —
more precisely — its embedding) to a form. For an example where the set grows consider
R = (x 7→y · z) and F = (y 7→ε · z 7→(a 7→ε)). It holds that:

F; bRc = G ≈ (x 7→ε · a 7→ε)
labels(R) = {x}
labels(G) = {x, a}

With lazy forms, the sets of labels can grow when we evaluate the lazy form to an ordi-
nary form. In contrast, the sets of labels in a side-effect form remains the same. This is due
to the fact that all side-effects are bound by nested forms.

Lemma D.2 For any side-effect form P that reduces to a form F as follows:

A | dPe ⇒ A′ | F

it holds: labels(F) = labels(P).

Proof. By induction on the top-level reductions of dPe. �

195

196 APPENDIX D. PROOFS FOR CHAPTER 6

Disjoint labels of side effect terms and referentially transparency give rise to some pow-
erful algebraic laws:

Lemma D.3 For any A ` B it holds: A; B; F ≈ A; F
Proof. Obvious since G; F ≈ F. �

Lemma D.4 For dP1e ` bR1c and dP2e ` bR2c with labels(P1) ∩ labels(P2) = ∅ the following
holds:

(dP1e; bR1c) · (dP2e; bR2c) ≈ dP1e; dP2e; bR1c · bR2c (D.1)
(dP1e; bR1c)(dP2e; bR2c) ≈ dP1e; dP2e; bR1c · bR2c (D.2)

Proof. Diagram chasing shows that the equations are bisimulations. We only show the
first congruence.

Assume agent (dP1e; bR1c) · (dP2e; bR2c) reduces to F1; bR1c) · (dP2e; bR2c). There must
be a G1 such that F1; bR1c ≈ G1. Then G1 · (dP2e; bR2c) reduces for the same reason to G1 ·G2.
On the opposite: dP1e; dP2e; bR1c · bR2c reduces to

F1; R · F2; bR1cbR2c ≈ (F1; R · F2; bR1c) · (F1; R · F2; bR2c)

Since the labels of F1 and of F2 are disjoint this is equivalent to (F1; bR1c) · (F2; bR2c) ≈
G1 · G2. �

An important property of lazy forms is that we can distribute them over subterms. Ob-
serve that the congruence rules of the Piccola calculus distribute only forms, the following
lemma allows us to distribute lazy forms.

Lemma D.5 For any agent C with C ` bRc it holds:

C; bRc; A · B ≈ C; (bRc; A) · (bRc; B) (D.3)
C; bRc; AB ≈ C; (bRc; A)(bRc; B) (D.4)

Proof. Similar to the proof of Lemma D.4 �

The following lemma shows that we can move the context R into an abstraction. We have
to take care that no name capture occurs. Notice that the congruence is only valid for lazy
contexts which do not contain the keyword R anymore.

Lemma D.6 For F ` bRc and x 6∈ fv(R) it holds:

F; λx.(bRc · x 7→x; B) ≈ F; bRc; λx.B
Proof. Since F ` bRc there is a form F′ with F; bRc ≈ F′. Now we have:

F; bRc; λx.B ≈ F′; λx.B
≈ ε; λx.(F′ · x 7→x; B)
≈ ε; λx.(F; bRc · x 7→x; B)

since R does not contain x free

≈ ε; λx.(F · x 7→x; bRc · x 7→x; B)
≈ F; λx.(bRc · x 7→x; B)

as expected. �

197

The next lemma allows us to use some form of alpha conversion for lazy forms. Since
agents of the form dPe; bRc do not refer to R in bRc we can rename bound names.

Lemma D.7 For all labels x, y, lazy forms R and side effect terms P with y 6∈ fv(R · P) it holds:

λx.(dPe; bRc) ≈ λy.(R · x 7→y; dPe; bRc)
Proof. We show that the relation defined by putting both sides of the equation into any
context is a bisimulation. The only interesting context F is when it is put into a sandbox and
invoked with an argument G. Let A = dPe; bRc. On one side we have:

(F; λy.(R · x 7→y; A))G → F · y 7→G; R · x 7→y; A
≈ F · y 7→G · x 7→G; A

On the other side we also have:

(F; λx.A)G → F · x 7→G; A

And the two expressions on the right-hand side are bisimular, since A does not refer to y.
The important property is that lazy forms do not refer to R thus the label y can be ignored.�

The following lemma relates lazy forms and substitution.

Lemma D.8 For any form F and G and any lazy form R it holds:

F · x 7→G; bRc ≈ F; bR[x/G]c
Proof. By induction over R. �

The following lemma strengthens the beta equivalence law of the Piccola calculus. We
can substitute a lazy form provided it is embedded in the right context. Observe that we
extend F with x 7→ε. We do this because the empty form is the minimal assumption we can
make for the argument x.

Lemma D.9 For any P, R, P1, R1 and x with P · x 7→ε; dP1e ` bR1c and P ` R we have:

P; (λx.(dP1e; bR1c))R ≈ P; dP1[x/R]e; bR1[x/R]c
Proof. By induction over P1 and R1. We only show a few cases.

• Case P1 = ε, R1 = ε. We have to show that

P; (λx.(R; ε))R ≈ P; R; ε

Both terms can only reduce when P has reduced to a form F. Since P ` R there is a G
with G ≈ F; bRc. Thus we have:

F; λx.(R; ε)G ≈ F; x 7→G; ε

F; R; ε ≈ ε

• Case P1 = ε, R1 = λy.P′; R′. We have to show that

P; λx.(R; λy.dP′e; bR′c)R ≈ P; R; (λy.(P′; R′))[x/R]

Like above, we assume that P has reduced to a form F and consequently R became G.
Thus the left-hand side of the above congruence becomes:

F; (λx.(R; λy.dP′e; bR′c))F′ ≈ F · x 7→F′; λy.(dP′e; bR′c)

and the conclusion follows by Lemma D.8.

198 APPENDIX D. PROOFS FOR CHAPTER 6

• Case P1 = y 7→R2R3, R1 = y. This is the interesting case since we look up the side-effect
y in the lazy form. We have to show

P; (λx.(R · y 7→R2R3; y))R ≈ P; R · y 7→R2R3[x/R]; y

Like before the above expression can only reduce after P has reduced to a F and con-
sequently R became G. Now the left-hand side becomes

F; x 7→G · y 7→R3R4; y

and R3R4 will have a free x. By Lemma D.8 the conclusion holds. �

Finally, the following lemma relates nesting of side effects:

Lemma D.10 For any side effects terms P and lazy forms R with y fresh it holds:

dPe; bRc ≈ y 7→dPe; bnest(R, y, P)c
Proof. By induction on the length of P. �

Proposition D.11 (Correctness) For all functional agents A and forms F it holds:

partial(A, F) ≈ F; A

In order to show Proposition D.11 we show a stronger result from which the proposition
is a special case since forms are subsumed by lazy forms.

Lemma D.12 For every functional agent A, and every lazy form R′ there exists a lazy form R and
a side effect term P such that it holds:

1. partial(A, R′) ≈ bR′c; A

2. Let (P, R) = split(A, R′). For every form F with F ` bR′c it holds:

F; dPe ` bRc
Proof. By parallel structural induction over A. Both properties are needed in order to
show the induction steps.

• Case ε: It holds partial(ε, R′) = R; ε and conclusion 1 holds by Lemma D.3. Conclusion
2 holds trivially.

• Case R: We have partial(R, R′) = R; bR′c ≈ bR′c ≈ bR′c; R which is conclusion 1.
Conclusion 2 follows by Lemma D.1 and the fact that F; R ≡ F.

• Case L: We have partial(L, R) = R; L ≡ L which shows 1. Conclusion 2 holds trivially
as L is a service.

199

• run and new are similar.

• Case x: We distinguish if R′ contains the label x:

– x ∈ labels(R′). We have split(x, R′) = (ε, project(R′, x)). Conclusion 1 can be
readily verified by the definition of project. For 2 we have to show

F; R ` project(R′, x)

for any F ` bR′c. Consider the following: F ` bR′c implies F; R ` bR′c. If
project(R′, x) is a proper subterm of R′ the conclusion holds. Otherwise it has the
form R′′.x with R′′ a proper subterm of R′ and x ∈ labels(R′). The conclusion
follows from Lemma D.1 since the set of labels cannot shrink.

– x 6∈ labels(R′). We have split(x, R′) = (y 7→(R′; x), y) with y a fresh label. Conclu-
sion 1: R · y 7→(bR′c; x); y ≈ R′; x is a trivial indirection along y. For the other part
we have to show that

F; R · y 7→(bR′c; x) ` y

which is trivial since the left-hand side will always contain the unique label y.

• Case x 7→A: Let split(A, R′) = (P, R). By the induction hypothesis we assume:

dPe; bRc ≈ bR′c; A (D.5)
F; dPe ` bRc for F ` bR′c (D.6)

Now we have

bR′c; x 7→A ≈ x 7→(bR′c; A)
≈ x 7→(dPe; bRc)
≈ dPe; x 7→bRc

which shows the first claim. The second part

F; dPe ` x 7→bRc

follows directly form its induction hypothesis.

• Case A; B. Let split(A, R′) = (P1, R1) and split(B, R1) = (P2, R2). By the induction
hypothesis we assume:

dP1e; bR1c ≈ bR′c; A
dP2e; bR2c ≈ bR1c; B

F1; dP1e ` bR1c for F1 ` bR′c
F2; dP2e ` bR2c for F2 ` bR1c

Part 2: F; dP1e; dP2e ` bR2c follows directly from the hypothesis. The first part follows
readily:

partial(A; B, R′) = dP1e; dP2e; bR2c
= dP1e; partial(B; R1)
≈ dP1e; bR1c; B
= partial(A, R′); B
≈ bR′c; A; B

200 APPENDIX D. PROOFS FOR CHAPTER 6

• Case A · B. Let split(A, R′) = (P1, R1) and split(B, R′) = (P2, R2). By the induction
hypothesis we can now assume:

dP1e; bR1c ≈ bR′c; A
dP2e; bR2c ≈ bR′c; B

F; dP1e ` bR1c for F ` bR′c
F; dP2e ` bR2c

Part 2: F; dP1e; dP2e ` bR1 · R2c follows from the fact that labels(P1) ∩ labels(P2) = ∅.
This is guaranteed by choosing unique labels for binding the side effects. Part 1 uses
Lemma D.4 and Lemma D.5:

partial(A · B; R′) = dP1e; dP2e; bR1c · bR2c
≈ (dP1e; bR1c) · (dP2e; bR2c)
= (bR′c; A) · (bR′c; B)
≈ bR′c; A · B

Note that the side-conditions for these lemmas are given by the induction hypothesis
part 2.

• Case λx.A. Let split(A, R′ · x 7→x) = (P, R). By the hypothesis it holds:

dPe; bRc ≈ bR′c · x 7→x; A
F; dPe ` bRc for F · x 7→ε ` bR′c

For part 2
F; R ` λx.(dPe; bRc)

holds trivially since F; λx.A is a service.

For part 1 we assume that x does not occur free in R′. Otherwise we apply Lemma D.7.

We can then use Lemma D.6 to move bR′c out of the abstraction:

partial(λx.A, R′) = R; λx.(dPe; bRc)
≈ λx.(bR′c · x 7→x; A)
≈ bR′c; λx.A

• Case: AB. This case is the most interesting case. The induction hypothesis and vari-
ables are the same as for A · B:

split(A, R′) = (P1, R1)
split(B, R′) = (P2, R2)
dP1e; bR1c ≈ bR′c; A
dP2e; bR2c ≈ bR′c; B

F; dP1e ` bR1c for F ` bR′c
F; dP2e ` bR2c

The labels in P1 and P2 are disjoint. Now there are two main cases depending on
service(R1): For easy of reference we omit service.

201

– Case R1 = λx.(dP3e; bR3c). We have to show

bR′c; AB ≈ partial(AB, R′)
≈ dP1e; dP2e; y 7→dP3[x/R2]e; bnest(R3, y, P3)[x/R2]c (D.7)
F; dP1e; dP2e; y 7→dP3[x/R2]e ` bnest(R3, y, P3)[x/R2]c (D.8)

Calculate:

dP1e; dP2e; y 7→dP3[x/R2]e; bnest(R3, y, P3)[x/R2]c
≈ dP1e; dP2e; dP3[x/R2]e; bR3[x/R2]c by Lemma D.10
≈ dP1e; dP2e; (λx.dP3e; bR3c)bR2c by Lemma D.9
≈ (dP1e; (λx.dP3e; bR3c))(dP2e; bR2c) by Lemma D.4
≈ (R′; A)(R′; B)
≈ (R′; AB)

A special case is when P3 = ε. In that case ε[x/R2] = ε and thus the application
of Lemma D.10 can be avoided. This shows claim 1 for the first two cases of the
definition of split in Table 6.5. Part 2, i.e., (D.8) is verified by induction over the
length of P3.

– If the service of R1 is not known. We have

partial(AB, R′) = dP1e; dP2e; y 7→(R1R2); y

from which conclusion 1 and 2 follow immediately. These are all cases and con-
cludes our proof. �

An easy corollary of the above is that for all closed agents A it holds: partial(A) ≈ A.
This is due to the fact that for closed A we have A ≈ ε; A.

202 APPENDIX D. PROOFS FOR CHAPTER 6

Appendix E

Core library abstractions

Channels. The following are channels initialized with a value or with an additional, non-
destructive read service.

newReadChannel:
’ch = newChannel()
ch
read: # non-destructive read

’r = ch.receive()
’’ch.send r
r

’initialized Factory X: # NB. curried
’component = Factory()
’’component.send X
component

newInitChannel = initialized newChannel # initialize channel with X
newInitReadChannel = initialized newReadChannel # initialize and read

Containers. The following service newSlot specifies a one-slot buffer. If the slot is empty
calling get on it blocks, if the slot is full put blocks. The invariant is that exactly one value is
written on either channel:

newSlot:
’val = newChannel()
’isEmpty = newInitChannel()
get:

val.receive() # block until non-empty
’’isEmpty.send()

put X:
’’isEmpty.receive() # block until empty
’’val.send X

203

204 APPENDIX E. CORE LIBRARY ABSTRACTIONS

Variables are channels that always contain one value. Observe that variables support
operators to set and get the value.

newVar X:
’var = newInitReadChannel X
set X:

’’var.receive()
’’var.send X
X

get = var.read
*_ = get
<- = set

Mapping. The following service maps every binding in a given form with a function.

buildValue:
’slot = newInitReadChannel()
slot.read # get current value
extend V: slot.send(slot.receive(), V) # extend current value

requires a service X.f and a form X.form
map X:

’value = buildValue()
’’forEachLabel

form = X.form
do L: value.extend

L.bind X.f(L.project form)
value()

Bibliography

[AAG93] G. Abowd, R. Allen, and D. Garlan. Using style to understand descriptions
of software architecture. In Proceedings SIGSOFT 93, ACM Software Engineering
Notes, volume 18, pages 9–20, December 1993.

[AC96] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[AC97] E. Agerbo and A. Cornils. Implementing GoF design patterns in BETA. In
J. Bosch and S. Mitchell, editors, Object-Oriented Technology (ECOOP’97 Workshop
Reader), volume 1357, pages 92–95. Springer-Verlag, 1997.

[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal
of Functional Programming, 1(4):375–416, October 1991.

[ACS96] R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asyn-
chronous π-calculus. In U. Montanari and V. Sassone, editors, Proceedings of
CONCUR’96, volume 1119 of LNCS, pages 147–162. Springer-Verlag, 1996.

[Ado90] Adobe Systems Incorporated. PostScript Language Reference Manual, 1990.

[AG94] R. Allen and D. Garlan. Formal connectors. CMU-CS-94-115, Carnegie Mellon
University, March 1994.

[Agh86] G. Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, Mass., 1986.

[AKH92] S. Arun-Kumar and M. Hennessy. An efficiency preorder for processes. Acta
Informatica, 29(8):737–760, December 1992.

[AKN00] F. Achermann, S. Kneubuehl, and O. Nierstrasz. Scripting coordination styles.
In A. Porto and G.-C. Roman, editors, Coordination ’2000, volume 1906 of LNCS,
pages 19–35, Limassol, Cyprus, September 2000. Springer-Verlag.

[All97] R. J. Allen. A Formal Approach to Software Architecture. Ph.D. thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh, May 1997.

[ALSN01] F. Achermann, M. Lumpe, J.-G. Schneider, and O. Nierstrasz. Piccola – a small
composition language. In H. Bowman and J. Derrick, editors, Formal Methods
for Distributed Processing – A Survey of Object-Oriented Approaches, pages 403–426.
Cambridge University Press, 2001.

205

206 BIBLIOGRAPHY

[AMY97] K. Asai, H. Masuhara, and A. Yonezawa. Partial evaluation of call-by-value
λ-calculus with side-effects. In Proceedings of the ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-Based Program Manipulation, pages 12–21, Ams-
terdam, the Netherlands, June 1997.

[AN00] F. Achermann and O. Nierstrasz. Explicit Namespaces. In J. Gutknecht and
W. Weck, editors, Modular Programming Languages, volume 1897 of LNCS, pages
77–89, Zürich, Switzerland, September 2000. Springer-Verlag.

[AN01] F. Achermann and O. Nierstrasz. Applications = Components + Scripts – A Tour
of Piccola. In M. Aksit, editor, Software Architectures and Component Technology,
pages 261–292. Kluwer, 2001.

[ASS91] H. Abelson, G. J. Sussman, and J. Sussman. Structure and interpretation of
computer programs. MIT electrical engineering and computer science series.
McGraw-Hill, 1991.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools.
Addison Wesley, Reading, Mass., 1986.

[AWB+94] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa. Abstracting Ob-
ject Interactions Using Composition Filters. In R. Guerraoui, O. Nierstrasz,
and M. Riveill, editors, Proceedings of the ECOOP’93 Workshop on Object-Based
Distributed Programming, volume 791 of LNCS, pages 152–184. Springer-Verlag,
1994.

[Bar84] H. Barendregt. The Lambda Calculus – Its Syntax and Semantics, volume 103 of
Studies in Logic and the Foundations of Mathematics. North-Holland, revised edi-
tion, 1984.

[BAW93] L. Bergmans, M. Aksit, and K. Wakita. An object-oriented model for extensi-
ble concurrent systems: The composition-filters approach. IEEE Transactions on
Parallel and Distributed Systems, 1993.

[BB92] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer
Science, 96:217–248, 1992.

[BCK98] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison
Wesley, 1998.

[BCTW96] D. J. Barrett, L. A. Clarke, P. L. Tarr, and A. Wise. A framework for event-based
software integration. IEEE Transactions on Software Engineering, 5(4):378–421,
October 1996.

[Bec97] K. Beck. Smalltalk Best Practice Patterns. Prentice-Hall, 1997.

[Ben86] J. L. Bentley. Programming pearls: Little languages. Communications of the ACM,
29(8):711–721, August 1986.

[BFVY96] F. Budinsky, M. Finnie, J. Vlissides, and P. Yu. Automatic code generation from
design patterns. IBM Systems Journal, 35(2), 1996.

BIBLIOGRAPHY 207

[BG97] D. Batory and B. J. Geraci. Composition Validation and Subjectivity in GenVoca
Generators. IEEE Transactions on Software Engineering (special issue on Software
Reuse), pages 62–87, February 1997.

[BGW93] D. Bobrow, R. Gabriel, and J. White. Clos in context – the shape of the design.
In A. Paepcke, editor, Object-Oriented Programming: the CLOS perspective, pages
29–61. MIT Press, 1993.

[BL84] R. Burstall and B. Lampson. A kernel language for abstract data types and mod-
ules. Information and Computation, 76(2/3), 1984. Also appeared in Proceedings
of the International Symposium on Semantics of Data Types, Springer, LNCS
(1984), and as SRC Research Report 1.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stad. Pattern-
Oriented Software Architecture – A System of Patterns. Wiley, 1996.

[BO92] D. Batory and S. O’Malley. The design and implementation of hierarchical soft-
ware systems with reusable components. ACM Transactions on Software Engi-
neering and Methodology, October 1992.

[Bos97] J. Bosch. Design patterns as language constructs. Journal of Object-Oriented Pro-
gramming, November 1997.

[Bos99] J. Bosch. Superimposition: A component adaptation technique. Information and
Software Technology, 41(5):257–273, March 1999.

[Bou92] G. Boudol. Asynchrony and the π-calculus (note). Rapporte de Recherche 1702,
INRIA Sofia-Antipolis, 1992.

[Bou97] G. Boudol. The pi-calculus in direct style. In Conference Record of POPL ’97,
pages 228–241, 1997.

[BPS99] V. Bono, A. Patel, and V. Shmatikov. A core calculus of classes and mixins. In
R. Guerraoui, editor, Proceedings ECOOP’99, volume 1628 of LNCS, pages 43–66,
Lisbon, Portugal, June 1999. Springer-Verlag.

[Bra92] G. Bracha. The Programming Language Jigsaw: Mixins, Modularity and Multiple
Inheritance. Ph.D. thesis, Dept. of Computer Science, University of Utah, March
1992.

[BW00] M. Büchi and W. Weck. Generic wrappers. In E. Bertino, editor, ECOOP 2000,
14th European Conference on Object-Oriented Programming, volume 1850 of LNCS,
pages 201–225. Springer-Verlag, 2000.

[Car93] L. Cardelli. Extensible records in a pure calculus of subtyping. In C. A. Gunter
and J. C. Mitchell, editors, Theoretical Aspects of Object-Oriented Programming.
Types, Semantics and Language Design, pages 373–425. MIT Press, 1993.

[CCM] Corba Components Package, Corba Components and Scripting.
http://www.omg.org/technology/corba/corba3releaseinfo.htm.

208 BIBLIOGRAPHY

[CD93] C. Consel and O. Danvy. Tutorial notes on partial evaluation. In Conference
Record of POPL ’93, pages 493–501. ACM, January 1993.

[CD99] L. Cardelli and R. Davies. Service combinators for web computing. IEEE Trans-
actions on Software Engineering, 25(3):309–316, 1999.

[CG98] L. Cardelli and A. D. Gordon. Mobile ambients. In M. Nivat, editor, Foundations
of Software Science and Computational Structures, volume 1378 of LNCS, pages
140–155. Springer-Verlag, 1998.

[CGKF01] J. Clements, P. T. Graunke, S. Krishnamurthi, and M. Felleisen. Little languages
and their programming environments. In Proceedings of Monterey Workshop,
2001.

[CH98] M. Carlsson and T. Hallgren. Fudgets — Purely Functional Processes with applica-
tions to Graphical User Interfaces. PhD thesis, Chalmers University of Technology,
Göteborg, Sweden, 1998.

[CIW99] D. Compare, P. Inverardi, and A. L. Wolf. Uncovering architectural mismatch in
component behavior. ACM Transactions on Software Engineering and Methodology,
33(2):101–31, February 1999.

[CKFS01] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to improve
the modularity of path-specific customization in operating system code. In
V. Gruhn, editor, ESEC’01. ACM Press, 2001.

[Cle95] P. C. Clements. From subroutines to subsystems: Component-based software
development. American Programmer, 8(11), 1995.

[CM93] L. Cardelli and J. C. Mitchell. Operations on records. In C. A. Gunter and
J. C. Mitchell, editors, Theoretical Aspects of Object-Oriented Programming. Types,
Semantics and Language Design, pages 295–350. MIT Press, 1993.

[Cop99] J. O. Coplien. Multi-Paradigm Design for C++. Addison Wesley, Reading, Mass.,
1999.

[Dam94] L. Dami. Software Composition: Towards an Integration of Functional and Object-
Oriented Approaches. Ph.D. thesis, University of Geneva, 1994.

[DF98] R. Diaconescu and K. Futatsugi. CafeOBJ Report. World Scientific, Singapore,
1998.

[DM98] W. De Meuter. Agora: The story of the simplest MOP in the world — or — the
scheme of object–orientation. In J. Noble, I. Moore, and A. Taivalsaari, editors,
Prototype-based Programming. Springer-Verlag, 1998.

[DMN70] O.-J. Dahl, B. Myrhaug, and K. Nygaard. (Simula67) Common Base Language.
Technical Report N. S-22, Norsk Regnesentral (Norwegian Computing Center),
Oslo, N, October 1970.

BIBLIOGRAPHY 209

[Duc97] S. Ducasse. Message passing abstractions as elementary bricks for design pat-
tern implementation. In J. Bosch and S. Mitchell, editors, Object-Oriented Technol-
ogy (ECOOP’97 Workshop Reader), volume 1357 of LNCS, pages 96–99. Springer-
Verlag, June 1997.

[DW99] D. F. D’Souza and A. C. Wills. Objects, Components and Frameworks with UML:
The Catalysis Approach. Addison Wesley, 1999.

[DZ99] S. Dal-Zilio. Le calcul bleu: types et objects. Ph.D. thesis, Université de Nice -
Sophia Antipolis, July 1999. In french.

[EP93] S. Eisenbach and R. Paterson. Pi-calculus semantics of the concurrent config-
uration language darwin. In Proceedings of the 26th Annual Hawaii International
Conference on System Sciences, volume 2. IEEE Computer Society Press, 1993.

[Ern99] E. Ernst. Propagating class and method combination. In R. Guerraoui, editor,
Proceedings ECOOP’99, volume 1628 of LNCS, pages 67–91, Lisbon, Portugal,
June 1999. Springer-Verlag.

[Fai87] J. Fairbairn. Making form follow function: An exercise in functional program-
ming style. Software - Practice and Experience, 17(6):379–386, 1987.

[FG96] C. Fournet and G. Gonthier. The reflexive CHAM and the join-calculus. In
Proceedings of the 23rd ACM Symposium on Principles of Programming Languages,
pages 372–385. ACM Press, 1996.

[FG98] C. Fournet and G. Gonthier. A hierarchy of equivalences for asynchronous cal-
culi. In Proceedings of ICALP ’98, pages 844–855, 1998.

[FGL+96] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of
mobile agents. In Proceedings of the 7th International Conference on Concurrency
Theory (CONCUR’96), volume 1119 of LNCS, pages 406–421. Springer-Verlag,
August 1996.

[FHJ96] W. Ferreira, M. Hennessy, and A. Jeffrey. A theory of weak bisimulation for
core CML. In Proceedings of the 1996 ACM SIGPLAN International Conference on
Functional Programming, pages 201–212, Philadelphia, Pennsylvania, May 1996.

[FMQ96] G.-L. Ferrari, U. Montanari, and P. Quaglia. A π-calculus with explicit substitu-
tions. Theoretical Computer Science, 168(1):53–103, November 1996.

[Fou98] C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Programming.
Ph.D. thesis, Ecole Polytechnique, 1998.

[FS97] M. E. Fayad and D. C. Schmidt. Object-oriented application frameworks (special
issue introduction). Communications of the ACM, 40(10):39–42, October 1997.

[GAO95] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: Why reuse is
so hard. IEEE Software, 12(6):17–26, November 1995.

[GH98] A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduction and
typing. In Proceedings HLCL’98. Elsevier ENTCS, 1998.

210 BIBLIOGRAPHY

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison
Wesley, Reading, Mass., 1995.

[GMW00] D. Garlan, R. T. Monroe, and D. Wile. Acme: Architectural description of
component-based systems. In G. T. Leavens and M. Sitaraman, editors, Founda-
tions of Component-Based Systems, chapter 3, pages 47–67. Cambridge University
Press, New York, NY, 2000.

[HC01] G. T. Heineman and W. T. Councill, editors. Component-Based Software Engineer-
ing. Addison Wesley, 2001.

[HHK95] M. Hansen, H. Hüttel, and J. Kleist. Bisimulations for asynchronous mobile pro-
cesses. In I. Lee and S. A. Smolka, editors, Proceedings of 6th International Con-
ference on Concurrency Theory (CONCUR ’95, Philadelphia), volume 962 of LNCS.
Springer-Verlag, 1995.

[HK99] G. Hedin and J. L. Knudsen. Language support for application framework de-
sign. In M. E. Fayad, D.C.Schmidt, and R. Johnson, editors, Implmenting Appli-
cation Frameworks: Object-Oriented Frameworks at Work. Wiley, 1999.

[HO93] W. Harrison and H. Ossher. Subject-Oriented Programming (A Critique of Pure
Objects). In Proceedings OOPSLA ’93, ACM SIGPLAN Notices, volume 28, pages
411–428, October 1993.

[Hoa85] C. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[Höl93] U. Hölzle. Integrating independently-developed components in object-oriented
languages. In O. Nierstrasz, editor, Proceedings ECOOP’93, volume 707 of LNCS,
pages 36–56, Kaiserslautern, Germany, July 1993. Springer-Verlag.

[HS86] J. R. Hindley and J. P. Seldin. Introduction to Combinatory Logic and Lambda Cal-
culus. Cambridge University Press, 1986.

[HT91] K. Honda and M. Tokoro. An object calculus for asynchronous communication.
In P. America, editor, Proceedings ECOOP’91, volume 512 of LNCS, pages 133–
147, Geneva, Switzerland, July 15–19 1991. Springer-Verlag.

[HT92] K. Honda and M. Tokoro. On asynchronous communication semantics. In
M. Tokoro, O. Nierstrasz, and P. Wegner, editors, Proceedings of the ECOOP’91
Workshop on Object-Based Concurrent Computing, volume 612 of LNCS, pages 21–
51. Springer-Verlag, 1992.

[Hud96] P. Hudak. Building domain specic embedded languages. ACM Computing Sur-
veys, 28(4es), December 1996.

[Hud98] P. Hudak. Modular domain specific languages and tools. In P. Devanbu and
J. Poulin, editors, Proceedings: Fifth International Conference on Software Reuse,
pages 134–142. IEEE Computer Society Press, 1998.

[IKM+97] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay. Back to the future: The
story of squeak, A practical Smalltalk written in itself. In Proceedings OOPSLA
’97, ACM SIGPLAN Notices, volume 21, November 1997.

BIBLIOGRAPHY 211

[Ing86] D. H. Ingalls. A simple technique for handling multiple polymorphism. In
Proceedings OOPSLA ’86, ACM SIGPLAN Notices, volume 21, pages 347–349,
November 1986.

[IW95] P. Inverardi and A. L. Wolf. Formal specification and analysis of software ar-
chitectures using the chemical abstract machine model. IEEE Transactions on
Software Engineering, 21(4), April 1995.

[JF88] R. E. Johnson and B. Foote. Designing reusable classes. Journal of Object-Oriented
Programming, 1(2):22–35, 1988.

[JGS93] N. J. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice-Hall, 1993.

[JML98] S. P. Jones, E. Meijer, and D. Leijen. Scripting COM components in haskell. In
Fifth International Conference on Software Reuse, Victoria, British Columbia, June
1998.

[Joh00] J. Johnson. GUI Bloopers. Morgan Kaufmann, 2000.

[KBH+01] R. Koster, A. P. Black, J. Huang, J. Walpole, and C. Pu. Thread transparency
in information flow middleware. Technical Report CSE-01-004, OGI, School of
Science and Engineering, Oregon, 2001.

[KdRB91] G. Kiczales, J. des Rivières, and D. G. Bobrow. The Art of the Metaobject Protocol.
MIT Press, 1991.

[Kee89] S. E. Keene. Object-Oriented Programming in Common-Lisp. Addison Wesley, 1989.

[KH97] S. N. Kamin and D. Hyatt. A special-purpose language for picture-drawing. In
Proceedings of the Conference on Domain-Specific Languages, pages 297–310, Berke-
ley, CA, USA, October 1997. USENIX.

[KHH+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An
overview of aspectj. In Proceeding ECOOP’01, 2001.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-Oriented Programming. In M. Aksit and S. Matsuoka,
editors, Proceedings ECOOP’97, volume 1241 of LNCS, pages 220–242, Jyvaskyla,
Finland, June 1997. Springer-Verlag.

[KMF01] E. Kıcıman, L. Melloul, and A. Fox. Towards zero-code composition. Submitted
to Hot Topics in Operating Systems (HotOS VIII)., 2001.

[KP84] B. Kernighan and R. Pike. The UNIX Programming Environment. Prentice-Hall,
1984.

[KP88] G. E. Krasner and S. T. Pope. A cookbook for using the model-view-controller
user interface paradigm in Smalltalk-80. Journal of Object-Oriented Programming,
1(3):26–49, August 1988.

[KPT96] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. In
Conference Record of POPL ’96, pages 358–371. ACM Press, January 1996.

212 BIBLIOGRAPHY

[Kru97] D. J. Kruglinski. Inside Visual C++. Microsoft Press, 1997.

[LAN00] M. Lumpe, F. Achermann, and O. Nierstrasz. A Formal Language for Compo-
sition. In G. Leavens and M. Sitaraman, editors, Foundations of Component Based
Systems, pages 69–90. Cambridge University Press, 2000.

[Lau94] C. Lau. Object-Oriented Programming Using SOM and DSOM. Van Nostrand
Reinhold, March 1994.

[Lea99] D. Lea. Concurrent Programming in Java[tm], Second Edition: Design principles and
Patterns. The Java Series. Addison Wesley, 2nd edition, 1999.

[LHB01] R. E. Lopez-Herrejon and D. Batory. A standard problem for evaluating
product-line methodologies. In J. Bosch, editor, Proceedings GCSE’2001, volume
2186 of LNCS. Springer-Verlag, 2001.

[LHJ95] S. Liang, P. Hudak, and M. P. Jones. Monad transformers and modular inter-
preters. In Conference Record of POPL ’95, pages 333–343, San Francisco, Califor-
nia, 1995.

[LKA+95] D. C. Luckham, J. L. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann.
Specification and analysis of system architecture using rapide. IEEE Transactions
on Software Engineering, 21(4):336–355, April 1995.

[Lon01] A. Longshaw. Choosing between COM+, EJB, and CCM. In Component-Based
Software Engeneering, pages 621–640. Addison Wesley, 2001.

[LSLX94] K. J. Lieberherr, I. Silva-Lepe, and C. Xaio. Adaptive object-oriented program-
ming using graph-based customizations. Communications of the ACM, 37(5):94–
101, May 1994.

[Lum99] M. Lumpe. A Pi-Calculus Based Approach to Software Composition. Ph.D. thesis,
University of Bern, Institute of Computer Science and Applied Mathematics,
January 1999.

[Lut96] M. Lutz. Programming Python. O’Reilly & Associates, Inc., 1996.

[MB97] M. Mattsson and J. Bosch. Framework composition: Problems, causes and solu-
tions. In Proceedings of TOOLS USA ’97, July 1997.

[McH94] C. McHale. Synchronisation in Concurrent, Object-oriented Languages: Expressive
Power, Genericity and Inheritance. Ph.D. thesis, Department of Computer Science,
Trinity College, Dublin, 1994.

[McI69] M. McIlroy. Mass produced software components. In P. Naur and B. Randell,
editors, Software Engineering, pages 138–150. NATO Science Committee, January
1969.

[MDEK95] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software
architectures. In Proceedings ESEC ’95, volume 989 of LNCS, pages 137–153.
Springer-Verlag, September 1995.

BIBLIOGRAPHY 213

[Mer00] M. Merro. Locality in the π-calculus and applications to distributed object. PhD
thesis, Ecole de Mines de Paris, October 2000.

[Mét96] D. L. Métayer. Software architecture styles as graph grammars. In D. Garlan,
editor, SIGSOFT’96: Proceedings of the Fourth ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pages 15–23. ACM Press, 1996.

[Mét98] D. L. Métayer. Describing software architecture styles using graph grammars.
IEEE Transactions on Software Engineering, 24(7):521–533, July 1998.

[Mey92] B. Meyer. Eiffel: The Language. Prentice-Hall, 1992.

[MH00] R. Monson-Haefel. Enterprise JavaBeans. O’Reilly & Associates, Inc., 2nd edition,
2000.

[Mil75] R. Milner. Processes, a mathematical model of computing agents. In Logic Col-
loquium, Bristol 1973, pages 157–174. North Holland, Amsterdam, 1975.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Mil91] R. Milner. The polyadic π calculus: a tutorial. ECS-LFCS-91-180, Computer
Science Dept., University of Edinburgh, October 1991.

[Mil92] R. Milner. Functions as processes. Mathematical Structures in Computer Science,
2(2):119–141, 1992.

[Mil99] R. Milner. Communicating and Mobile Systems: The π-calculus. Cambridge Uni-
versity Press, 1999.

[MK99] J. Magee and J. Kramer. Concurrency: State Models & Java Programs. Wiley, 1999.

[MKN00] M. Merro, J. Kleist, and U. Nestmann. Local π-calculus at work: Mobile objects
as mobile processes. In Proceedings of TCS 2000, LNCS. Springer-Verlag, August
2000.

[MMPN93] O. L. Madsen, B. Moller-Pedersen, and K. Nygaard. Object-Oriented Program-
ming in the Beta Programming Language. Addison Wesley, Reading, Mass., 1993.

[Mog89] E. Moggi. Computational lambda-calculus and monads. In Proceedings 4th An-
nual IEEE Symp. on Logic in Computer Science, LICS’89, pages 14–23. IEEE Com-
puter Society Press, Washington, DC, June 1989.

[Mor97] M. Morrison. Presenting Java Beans. Sams net, 1997.

[MPW89] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I
and II. Reports ECS-LFCS-89-85 and -86, Computer Science Dept., University of
Edinburgh, March 1989.

[MS92] R. Milner and D. Sangiorgi. Barbed bisimulation. In Proceedings ICALP ’92,
volume 623 of LNCS, pages 685–695, Vienna, July 1992. Springer-Verlag.

214 BIBLIOGRAPHY

[MS98] M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. In K. G.
Larsen, S. Skyum, and G. Winskel, editors, 25th Colloquium on Automata, Lan-
guages and Programming (ICALP) (Aalborg, Denmark), volume 1443 of LNCS,
pages 856–867. Springer-Verlag, July 1998.

[MSC99] A. K. Moran, D. Sands, and M. Carlsson. Erratic Fudgets: A semantic theory for
an embedded coordination language. In Coordination ’99, volume 1594 of LNCS.
Springer-Verlag, April 1999.

[MT97] N. Medvidovic and R. N. Taylor. A framework for classifying and comparing
architecture description languages. In Proceedings of ESEC/FSE’97, pages 60–76,
Zürich, Switzerland, September 1997.

[MU97] N. Minsky and V. Ungureanu. Regulated coordination in open distributed sys-
tems. In D. Garlan and D. L. Mètayer, editors, Proceedings COORDINATION’97,
volume 1282 of LNCS, pages 81–97, Berlin, Germany, September 1997. Springer-
Verlag.

[ND95] O. Nierstrasz and L. Dami. Component-oriented software technology. In
O. Nierstrasz and D. Tsichritzis, editors, Object-Oriented Software Composition,
pages 3–28. Prentice-Hall, 1995.

[Nis00] S. Nishizaki. Programmable enviroment calculus as theroy of dynamic software
evolution. In Proceedings ISPSE 2000. IEEE Computer Society Press, 2000.

[NM95] O. Nierstrasz and T. D. Meijler. Requirements for a composition language. In
P. Ciancarini, O. Nierstrasz, and A. Yonezawa, editors, Object-Based Models and
Langages for Concurrent Systems, volume 924 of LNCS, pages 147–161. Springer-
Verlag, 1995.

[NP96] U. Nestmann and B. C. Pierce. Decoding choice encodings. In U. Montanari
and V. Sassone, editors, CONCUR ’96: Concurrency Theory, 7th International Con-
ference, volume 1119 of LNCS, pages 179–194, Pisa, Italy, August 1996. Springer-
Verlag.

[Ode95] M. Odersky. Applying π: Towards a basis for concurrent imperative program-
ming. In Proc. 2nd ACM SIGPLAN Workshop on State in Programming Languages,
January 1995.

[Ode00] M. Odersky. Functional nets. In Proc. European Symposium on Programming,
volume 1782 of LNCS, pages 1–25. Springer-Verlag, March 2000.

[OKH+95] H. Ossher, M. Kaplan, W. Harrison, A. Katz, and V. Kruskal. Subject-oriented
composition rules. In Proceedings of OOPSLA’95, pages 235–250, 1995.

[Ous98] J. K. Ousterhout. Scripting: Higher level programming for the 21st century.
IEEE Computer, 31(3):23–30, March 1998.

[Pal97] C. Palamidessi. Comparing the expressive power of the synchronous and the
asynchronous π-calculus. In Conference Record of POPL ’97, pages 256–265, Paris,
France, January 1997.

BIBLIOGRAPHY 215

[Par76] D. L. Parnas. On the design and development of program families. IEEE Trans-
actions on Software Engineering, 2(1):1–9, March 1976.

[Pit80] K. Pitman. Special forms in lisp. In Proceedings of the 1980 ACM Conference on
LISP and Functional Programming, pages 179–197, August 1980.

[Plo81] G. Plotkin. A structural approach to operational semantics. Technical report,
University of Aarhus, Denmark, 1981.

[Pre95] W. Pree. Framework development and reuse support. In M. M. Burnett,
A. Goldberg, and T. G. Lewis, editors, Visual Object-Oriented Programming, pages
253–268. Manning Publishing Co., 1995.

[PS96] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Mathe-
matical Structures in Computer Science, 6(5):409–454, October 1996. An extended
abstract in Proc. LICS 93, IEEE Computer Society Press.

[PT00] B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-
calculus. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language and
Interaction: Essays in Honour of Robin Milner. MIT Press, May 2000.

[PV97] J. Parrow and B. Victor. The update calculus. In M. Johnson, editor, Algebraic
Methodology and Software Technology (Proceedings of AMAST ’97), volume 1349 of
LNCS, pages 409–423, Sydney, Australia, December 1997. Springer-Verlag.

[PW92] D. E. Perry and A. L. Wolf. Foundations for the study of software architecture.
ACM SIGSOFT Software Engineering Notes, 17(4):40–52, October 1992.

[RE94] M. Radestock and S. Eisenbach. What do you get from a pi-calculus semantics?
In Proceedings of Parallel Architectures and Languages Europe (PARLE ’94), volume
817 of LNCS, pages 635–647. Springer-Verlag, 1994.

[Rém94] D. Rémy. Typing Record Concatenation for Free, chapter 10, pages 351–372. MIT
Press, April 1994.

[Rep91] J. H. Reppy. CML: A higher-order concurrent language. In ACM SIGPLAN ’91
Conference on Programming Language Design and Implementation, SIGPLAN No-
tices, volume 26, pages 293–305, Toronto, June 1991.

[RJ97] D. Roberts and R. E. Johnson. Evolving frameworks: A pattern language for
developing object-oriented frameworks. In Pattern Languages of Program Design
3. Addison Wesley, 1997.

[Rog97] D. Rogerson. Inside COM: Microsoft’s Component Object Model. Microsoft Press,
1997.

[SA01] N. Schärli and F. Achermann. Partial evaluation of inter-language wrappers. In
Workshop on Composition Languages, WCL’01, September 2001.

[Sam97] J. Sametinger. Software Engineering with Reusable Components. Springer-Verlag,
1997.

216 BIBLIOGRAPHY

[San93] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. Ph.D. thesis, Computer Science Dept., University of Edinburgh, May
1993.

[San00] D. Sangiorgi. Lazy functions and mobile processes. In G. Plotkin, C. Stirling,
and M. Tofte, editors, Proof, Language and Interaction: Essays in Honour of Robin
Milner. MIT Press, May 2000.

[San01] D. Sangiorgi. Asynchronous process calculi: the first-order and higher-order
paradigms (tutorial). Theoretical Computer Science, 253, 2001.

[SB98] Y. Smaragdakis and D. Batory. Implementing layered design with mixin layers.
In E. Jul, editor, Proceedings ECOOP’98, volume 1445 of LNCS, pages 550–570,
Brussels, Belgium, July 1998.

[SBMW99] N. Sample, D. Beringer, L. Melloul, and G. Wiederhold. CLAM: Composition
language for autonomous megamodules. In P. Ciancarini and A. L. Wolf, edi-
tors, Proceedings of Coordination’99, volume 1594 of LNCS, pages 291–306, 1999.

[SC96] M. Shaw and P. Clements. Toward boxology: Preliminary classification of archi-
tectural styles. In Joint Proceedings of the Second International Software Architecture
Workshop and International Workshop on Multiple Perspectives in Software Develop-
ment, pages 50–54, 1996.

[Sch99] J.-G. Schneider. Components, Scripts, and Glue: A conceptual framework for software
composition. Ph.D. thesis, University of Bern, Institute of Computer Science and
Applied Mathematics, October 1999.

[Sch01] N. Schärli. Supporting pure composition by inter-language bridging on the
meta-level. Diploma thesis, University of Bern, September 2001.

[SDK+95] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik. Ab-
stractions for software and architecture and tools to support them. IEEE Trans-
actions on Software Engineering, April 1995.

[SG96] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice-Hall, 1996.

[Shi96] O. Shivers. A universal scripting framework or, Lambda: the ultimate little lan-
guage. In J. Jaffer and R. Yap, editors, Concurrency and Parallelism: Programming,
Networking and Security, pages 254–265. Springer-Verlag, 1996.

[SM92] D. Sangiorgi and R. Milner. The problem of ”weak bisimulation up to”. In
W. Cleaveland, editor, Proceedings of CONCUR’92, volume 630 of LNCS, pages
32–46. Springer-Verlag, 1992.

[SML99] L. Seiter, M. Mezini, and K. Lieberherr. Dynamic component gluing. In Proc.
First International Symposium on Generative and Component-Based Software Engi-
neering, GCSE’99, LNCS, 1999.

BIBLIOGRAPHY 217

[Smo94] G. Smolka. A foundation for higher-order concurrent constraint programming.
In J.-P. Jouannaud, editor, Proceedings of Constraints in Computational Logics, vol-
ume 845 of LNCS, pages 50–72. Springer-Verlag, 1994. Available as Research
Report RR-94-16 from DFKI Kaiserslautern.

[Smo95] G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer
Science Today, volume 1000 of LNCS, pages 324–343. Springer-Verlag, Berlin,
1995.

[SN99] J.-G. Schneider and O. Nierstrasz. Components, scripts and glue. In L. Barroca,
J. Hall, and P. Hall, editors, Software Architectures – Advances and Applications,
pages 13–25. Springer-Verlag, 1999.

[Sou95] J. Soukop. Implementing patterns. In J. Coplien and D.Schmidt, editors, Pattern
Languages of Program Design, pages 395–412. Addison Wesley, 1995.

[Spi89] J. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 1989.

[SPL98] L. M. Seiter, J. Palsberg, and K. J. Lieberherr. Evolution of object behavior using
context relations. IEEE Transactions on Software Engineering, 24(1):79–92, January
1998.

[SSB99] M. Sato, T. Sakurai, and R. M. Burstall. Explicit environments. In J.-Y. Girard,
editor, Typed Lambda Calculi and Applications, volume 1581 of LNCS, pages 340–
354, L’Aquila, Italy, April 1999. Springer-Verlag.

[SW01] D. Sangiorgi and D. Walker. The Pi-Calculus - A Theory of Mobile Processes. Cam-
bridge University Press, 2001.

[Szy98] C. A. Szyperski. Component Software. Addison Wesley, 1998.

[TOHS99] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N Degrees of Separation:
Multi-dimensional Separation of Concerns. In Proceedings of ICSE’99, pages 107–
119, Los Angeles CA, USA, 1999.

[Tra93] W. Tracz. Parameterized programming in LILEANNA. In E. Deaton, K. M.
George, H. Berghel, and G. Hedrick, editors, Proceedings of the ACM/SIGAPP
Symposium on Applied Computing, pages 77–86, Indianapolis, IN, February 1993.
ACM Press.

[Ude94] J. Udell. Componentware. Byte, 19(5):46–56, May 1994.

[US87] D. Ungar and R. B. Smith. Self: The power of simplicity. In Proceedings OOPSLA
’87, ACM SIGPLAN Notices, volume 22, pages 227–242, December 1987.

[VC99] J. Vitek and G. Castagna. Seal: A framework for secure mobile computations.
In Internet Programming Languages, 1999.

[vDKV00] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An anno-
tated bibliography. ACM SIGPLAN Notices, 35(6):26–36, June 2000.

[Vli96] J. Vlissides. The hollywood principle. C++ Report, 8, February 1996.

218 BIBLIOGRAPHY

[vLM96] M. van Limberghen and T. Mens. Encapsultation and composition as orthog-
onal operators on mixins: A solution to multiple inheritance problems. Object
Oriented Systems, 3(1):1–30, 1996.

[Wad95] P. Wadler. Monads for functional programming. In J. Jeuring and E. Meijer,
editors, Advanced Functional Programming, LNCS. Springer-Verlag, 1995.

[Wal95] D. Walker. Objects in the π-calculus. Information and Computation, 116(2):253–
271, February 1995.

[WCO00] L. Wall, T. Christiansen, and J. Orwant. Programming Perl. O’Reilly & Associates,
Inc., 3rd edition, 2000.

[Wir90] M. Wirsing. Algebraic specification. In J. van Leewen, editor, Handbook of The-
oretical Computer Science, volume B: Formal Models and Semantics, chapter 13,
pages 675–788. The MIT Press, New York, NY, 1990.

[Woj00] P. T. Wojciechowski. Nomadic Pict: Language and Infrastructure Design for Mobile
Computation. PhD thesis, Wolfson College, University of Cambridge, March
2000.

[WR99] M. Wallace and C. Runciman. Haskell and XML: Generic combinators or type-
based translation? ACM SIGPLAN Notices, 34(9):148–159, September 1999. Pro-
ceedings of ICFP’99.

219

Curriculum Vitae

Name Franz Achermann

Birth Date May 20, 1969

Nationality Swiss

Education

1995 Diploma Computer Science, University of Berne

1989 Matura Typus B, Kollegium St. Fidelis, Stans

Work Experience

1997-2001 PhD. student and assistant, Institut für Informatik und angewandte Mathematik,
University of Berne

1995-1996 Application Developer, CSC Ploenzke (Schweiz) AG

1989-1995 Student of Computer Science, University of Berne

	Introduction
	The Problem
	Approach and Contributions
	Thesis Outline

	Software Composition
	Components and their Environment
	Requirements and Related Work
	Frameworks
	Software Architecture
	Domain-specific Scripting Languages
	Embedding Languages
	Heterogeneous Systems

	Forms, Agents and Channels
	Design Guidelines for Piccola

	A Composition Calculus
	Requirements and Related Work
	The Piccola Calculus
	Design Rationale
	Syntax
	Syntactic Conventions
	Structural Congruence
	Reduction Relation

	Recursive Services
	Examples
	Encoding Booleans
	Communication
	Replication
	Form Inspection

	Equivalence for Agents
	Erroneous Reductions
	Canonical Terms
	Proving the Beta Equivalence
	Comparison with the Form- and the pil-calculus
	Discussion

	Pi semantics of Piccola
	The Localized pi-calculus
	Syntax
	Labeled Transition Semantics
	Sorting

	Behavioural Equivalence
	Proof Techniques
	Some Laws for Lpi

	Recursive Definitions
	Encoding Piccola in Lpi
	Terminology
	Encoding of Forms
	Encoding Agents

	Soundness of the Encoding
	Proving Laws for the Piccola Calculus
	Discussion

	A Small Composition Language
	Programming with Explicit Environments
	The Language
	Abstract Syntax
	Precedence Rules
	Indentation

	Abbreviations
	Services
	Nested Bindings
	Assignment
	Quoted Expressions
	User Defined Operators
	Collections

	Functional Piccola Agents
	Semantics
	Dynamic Namespace
	Fixed Points

	Initial Root
	More on Fixed Points
	A Lazy Fixed-Point Combinator
	Comparing the Lazy Combinator and Def
	Fixed Point Combinator using Channels

	External Components
	Language Design
	Discussion

	Partial Evaluation
	A typical Example
	Overview
	The Algorithm
	Combining Side-effects and Lazy Forms
	Separating Side-effects

	Correctness
	New-state Services
	Constant Folding
	Discussion

	Composition Styles in Piccola
	Plugging versus Wiring
	A Push-Flow Style
	Implementing Styles
	Component Factories and Instances
	The Functional Way
	First-Class Wiring
	Discussion

	Event Wiring
	A Merge-Push Style
	GUI Composition
	Simple GUI Layout
	Using Default Arguments
	Using First-class Labels

	Combining Styles
	Composing GUI elements
	Adding Listeners
	Deferring the Wiring with Once Functions
	Specific Filter-GUI Composition
	Summary

	Mixins and Inheritance
	Aspect Wrappers
	Control Abstractions
	Blocks
	Exception Handling

	Discussion

	Reasoning at the Language Level
	Transition-based Reasoning
	Reusable Glue Code
	Reader-Writer Policy
	Adapting Filters
	Integrate Host Components
	Pull Filter
	Adapting Pull Filter
	Enforce Contextual Dependencies
	A Closeable Slot
	A Synchronized Adapter for Pull Filters

	Discussion

	Conclusion and Future Work
	Validation
	Future Work
	Concluding Remarks

	The Piccola calculus
	Proofs for Chapter 3
	Proof of Proposition 3.13

	Proofs for Chapter 4
	Proof of Lemma 4.12
	Proof of Lemma 4.16
	Proof of Lemma 4.17

	Proofs for Chapter 6
	Core library abstractions
	References

