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Abstract

Within object-oriented systems there are different meaningful dependencies between different objects.
These dependencies revealcontracts, collaborationsand relationshipsbetween classes, methods, pack-
ages and any development unit in the systems. In most of the cases, these dependencies are not explicit
in the code. This problem is due to inadequate or out-of-date documentation and mechanisms such as
dynamic binding, inheritance and polymorphism that obscure the presence of existing dependencies.

These dependencies play an important part in implicit contracts between the various software artifacts of
the system. It is therefore essential that a developer, who has to make changes or extensions to an object-
oriented system, understands the dependencies among the classes. Lack of understanding increases the risk
that seemingly innocuous changes break the implicit existing contracts in the system. In short, implicit,
undocumented dependencies lead tofragile systemsthat are difficult to extend or modify correctly.

In this thesis we develop an approach – based on a methodology and a tool support – to recover this
implicit information and generatehigh-level views of a system at different abstraction levels, using a
formal clustering technique called Formal Concept Analysis (FCA). With theseviews, we help to build the
first mental model of a system. Thus the implicit or lost information is made explicit and we are able to find
uses of coding styles, possible bottlenecks and weakpoints of a system, identify eventual contracts between
the entities,patternsbased on the dependencies and – if possible – propose possible solutions to correct
problems in the code. With this approach we also evaluate which are the advantages and disadvantages of
using a clustering technique in software reverse engineering.
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Chapter 1

Introduction

Today large organizations are not only faced with the problem of replacing their information systems
with completely new ones, but they have to maintain or gain control over their legacy systems [DDN02].
During the maintenance phase of the software lifecycle, developers must constantly cope with evolving
requirements, such as new platforms, new technologies, new users’ needs or new functionalities. These
changes are inevitable in the software lifecycle [Par94].

When the developer must face with these changes, the first step is reverse engineering the system. Ac-
cording to Chikofsky’s definition [CC92]“reverse engineering is the process of analyzing a subject system
to (1) identify the system’s components and their interrelationships and (2) create representations of the
system in another form or at a higher level of abstraction”.The main goal in this step of a reengineering
process of a software is to generate a mental model of the system [SFM99]. This mental model must be
the first step in analyzing a software. In any software this mental model is the first fingerprints of the sys-
tem identifying components and relationships between them at different abstraction levels. Specifically, in
object-oriented systems, the components can be methods, variables, classes, or a set of classes, the interre-
lationships can be inheritance, methods calls, etc, and the abstraction levels identified then are class-, class
hierarchy- or application-levels.

Unfortunately building this mental model is not a trivial task because not all the relationships are explicit
at the source code level. Besides that if we want to detect them using any kind of documentation – such
as manuals about design in case of industrial projects or simple code comments –, most of the cases it is
out-of-date or insufficient. These relationships are important because they reveal meaningful dependencies
between different components of the system. When this knowledge is not explicit or is lost, any change in
the system is complex and can break the current functionalities or introduce new unexpected relationships
increasing the complexity of the system to be understood.

Summarizing from these issues, we state that the main problem is:

Without precise and updated documentation, a system is like apuzzle, where the pieces
have no order at all. Thus, the software engineer is not able to infer what is implemented,
what are the imposed constraints and how the system is working. The software engineer
needs an approach to cope with this problem to be able to analyze a system.

In this thesis we develop an approach where we recover thisimplicit information and generatehigh-level
views of a system using a formal clustering technique called Formal Concept Analysis (FCA) [GW99].
With theseviews, we help to build the first mental model of a system. Thus the implicit or lost information
is made explicit and we are able to find uses of coding styles, possible bottlenecks and weakpoints of a
system, identify eventual contracts [SLMD96] between the entities,patternsbased on the dependencies
and – if possible – propose possible solutions to correct problems in the code.
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1.1 The Problem

In Introduction we state that the main problem in building a mental model is that the system has hidden
information that must be explicit to understand how the system is working.

To cope with this problem, this thesis is focused on two research directions based on the following ques-
tions:

• How we can identify and detect implicit dependencies between the objects in a system?

• What is the adequate tool support to provide an infrastructure to the dependencies detection ?

Let’s analyze in detail which are the different problems in these two research directions.

Identification of Dependencies: In object-oriented systems there are different meaningful dependencies
between different objects. These dependencies reveal contracts, collaborations and relationships between
classes, methods, packages and any development unit in the system. These dependencies are determined
by different building mechanisms of object-oriented systems:reuse, delegation, data encapsulation, dy-
namic binding, inheritanceandpolymorphism. Although these mechanisms represent advantages of object-
oriented systems, the maintainers of object-oriented systems must cope with several problems. The most
important is that not all these dependencies are explicit in the system. Some examples are following:

• Example 1:In Smalltalk, there exists theCollection class hierarchy that defines all the classes
responsible for managing any kind of collections. Let’s take only the subhierarchy whose root is the
OrderedCollection class. We also consider in this subhierarchy theSequeanceableCollection class
which is the superclass ofOrderedCollection.
OrderedCollection has six subclasses defined in two inheritance levels. This class defines the method
size that calculates the amount of elements contained in the collection, and the method is inherited
(and not overriden) by six subclasses. If we modify the behavior of the methodsize , or if we
remove it from the class, we are breaking the functionalities of the subclasses [MS98]. In case of
removal, a bug appears because the methodsize in SequenceableCollection is abstract.

• Example 2:A design pattern (such as Composite Pattern [GHJV95]) is implemented in a system, and
the developer did not use the right names to identify the components. Then we add a new method that
determine a new collaboration between the three classes of the pattern. By adding this new method
we are hiding the existence of the pattern in the code, and we are breaking the current functionalities
of the pattern.

• Example 3:One of the salient features ofSmalltalk is the fully reified compilation process. The devel-
oper may extendSmalltalk semantics providing new compile-time features by extending the classes
hierarchies whose roots areParser, ProgramNodeBuilder, ProgramNode, CodeStream, Compiled-
Method, NameScope, Compiler, CompilerErrorHandler andDecompiler [Riv96]. If the developer is
not aware of the relationships between all these class hierarchies, he can break the existing language
semantics or create a wrong one.

The existence of these implicit dependencies is followed by undesirable characteristics such as a poorly
structured source code, missing or incomplete design specifications, non-existing or out of date documen-
tation, high level of redundancy or extremely complex modules. Several examples, like ones mentioned
before, are enough to see that discovering these dependencies is important if we want to perform any
change in the code. These dependencies have three main features:

• The dependencies are not constrained to a specific development unit. They appear at the class-, class
hierarchy- or application-level of a system.Example 1is a case of dependencies introduced at the
class hierarchy-level.Examples 2and3 are cases of dependencies at the application-level

• The dependencies do not appear isolated in the system.Example 1shows us the use of inheritance
and behavior reuse between classes.
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• The dependencies appear as recurring situations in the system. For example, the case of hook meth-
ods [WBWW90] can appear several times in a class hierarchy.

We see that when a developer must reengineer a system, these problems make the task complex to manage
because any kind of unstructured changes in the system can either break existing dependencies or duplicate
information including existing dependencies among several objects.

Tool Support: Within the context of software tools, approaches such as Godin et. al. [GMM+95] and
Dekel [Dek03] cope partially with these problems using also Formal Concept Analysis. But their main
drawbacks are that they use explicit dependencies (such as inheritance or method calls), and they do not
discover implicit dependencies. Besides that, the interpretation of the results is based on some knowledge
about the mathematical background of FCA.

In this thesis we propose an approach composed of a methodology and a tool support to
detect implicit dependencies. Using FCA as a base tool, we build three different tools to an-
alyze an object-oriented system at different abstraction levels: class-level, class-hierarchy
level and application level. In each level, we providehigh-level viewsthat allow to discover
which are the implicit information at each level, and analyze the application.

Our research is driven by the following questions:

• Do we understand how the system is implemented? What are the constraints or limits imposed in the
system?

• How can we detect implicit unanticipated dependencies?

• How are the mechanisms such as polymorphism and inheritance used in the system?

• How can we discover defects introduced in the systems?

• How can we discover recurring situations (patterns-like) of dependencies in the systems?

• Is the mental model generated byhigh-level viewsmeaningful enough (in terms of information) to
understand the system?

• Which are the advantages and disadvantages of using a clustering technique such FCA as a metatool?

1.2 Our Approach: Formal Concept Analysis in Object-Oriented
Systems

Formal Concept Analysis provides a formal framework for recognizing groups of elements sharing com-
mon properties. Based on FCA, our approach consists of a methodology and atool to support the depen-
dencies detection. In the methodology, we characterize the software relationships as FCA properties and
the software artifacts as FCA elements. The group of elements and properties (named asconcepts) reveals
existing implicit and explicit dependencies in the system. With these concepts we buildhigh-level viewson
the code to get the first mental model of the system. Thesehigh-level viewshelp the maintainer to discover
the internal workings of a system, possible constraints and defects introduced in the system. Thesehigh-
level viewsare defined in three different abstraction levels:XRay viewsat class level,hierarchy schemas
at class hierarchy level andcollaboration patternsat application level.

• XRay Views on Classes:Analyzing the state and behavior of a class, we generateXRay views to
show us which are the different dependencies between methods and variables in a class.
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• Hierarchy Schemas:Analyzing the state and behavior of all the classes in a hierarchy, we identify
the different recurrent dependencies between the classes. They help the developer to understand
which are the common and irregular design decisions when the hierarchy was built, and eventual
refactoring cases (if any) that can be applied.

• Collaboration Patterns: Analyzing structural relationships between classes in a system, we dis-
coverpossible patternsthat appear in the system. With them, we analyze how the system was built
and which were the main constraints imposed in it.

Based on a generic system, Figures 1.1, 1.2 and 1.3 show the ideas of grouping software artifacts to gen-
erateXRay Viewsat class level,Hierarchy Schemasat class hierarchy level andCollaboration Patternsat
application level.

Class A

Class B Class C

Class D

Class E

Class F Class G Class H

Class I
Class J

Class J
Attributes: a,b,c,d
Methods
m1 { ... a, b, c ... }

m2 {.... a, b ... }

m3 { ... a, b ....}

m4 { ..........  self m1, self m3 ...}

m5 { self m4, self m1, self m3....}

Collaborating Attributes

Collaborating Methods

1

 View 1

S
Y
S
T
E
M

Figure 1.1:XRay views applied on a class

The three different high-level views are complementary. If we discover a collaboration pattern that involves
sub-hierarchy, and we are interested in analyzing it, we generate the hierarchical schemas on that sub-
hierarchy. Or if we discover a hierarchical schema that involves aGod class, and we are interested in
analyzing it, we generate theXRay views on the class. But this does not mean that a high-level view is
included in another high-level view of a different abstraction level. For example, aXRay view will not
appear in a hierarchy schema, and this is because the different high-level views are defined with different
information in each abstraction level.

The tool support consists of a tool namedConAn implemented in VisualWorks [Vis03]. It is composed of
4 components: abase frameworkis the implementation of FCA basics (definition of elements, properties
and incidence table, algorithms, and visualization and navigation capabilities of the lattice). The other 3
components are implemented on top of the base framework that allows the application of FCA and analysis
of a system at three different abstraction levels.

1.3 Contributions

The main contributions of this thesis comprise:

• Introduction of three different high-level views based on FCA:XRay Viewson classes,Hierarchy
Schemason class hierarchies andCollaboration Patternson applications.
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Class A

Class B Class C

Class D

Class E

Class F Class G Class H

Class I
Class J

Class E
Attributes: x, y, z
Methods
m1 { ........}
m2 { ....... }
m3 { ....... }

Class G

Methods

m4 {self m2, self m3 }

m6 { .. self m1, self m2 }

Class H

Methods

m7 { .... }

m5 { .. self m1, self m2 }

Reuse of superclass 
behavior

2

View 2

S
Y
S
T
E
M

Figure 1.2: Hierarchy Schemas on a Class Hierarchy

Class A

Class B Class C

Class D

Class E

Class F Class G Class H

Class I
Class J

Class A 

Methods
operation { ... }

Class B

Methods
operation { .... }

Class C

Methods 
operation { }
addChild: { }
removeChild: { }
getChildAt: { }Group of Classes 

A, B and C 
Candidate of a 

Composite 
Pattern

3

View 3

S
Y
S
T
E
M

Figure 1.3: Collaboration Pattern identified in the application

5



Introduction Chapter 1

• Development of a methodology to analyze object-oriented system usingFormal Concept Analysis.

• Development of a tool framework calledConAnthat allows us to define three different tools where
we apply the methodology mentioned previously at class-, class hierarchy-, and application level.

• Analysis of the advantages and constraints of using Formal Concept Analysis in building high-level
views to reverse engineer a system, and in building support tools to generate and analyze the high-
level views.

• Interpretation of results of the high-level views without having any knowledge of mathematical back-
ground of FCA.

1.4 Thesis Outline

This thesis is outlined as follows:

• Chapter 2 introduces the concept ofimplicit dependencies and we identify the different problems
we find in object-oriented code, and we explain why we need three different high-level views. We
also show how the classical reverse engineering and clustering techniques cope with the different
problems.

• Chapter 3 introduces in detail the approach based on Formal Concept Analysis identifying the dif-
ferent issues to take into account when using this approach at three different abstraction levels. We
also summarize how Formal Concept Analysis is used in different reverse engineering problems.

• Chapter 4, 5 and 6 introduce the different high-level views we have developed:XRay Viewsapplied
on classes,Hierarchy Schemasapplied on class hierarchies andCollaboration Patternson applica-
tions. In the three cases, we explain in detail how FCA is applied in classes, class hierarchies and
application respectively. Then we explain how the high-level views are generated based on the results
provided by FCA, and how we interpret the information we have in the high-level views. All cases
are validated with case studies and we also show those results. Finally, we analyze how the issues
of the methodology –mentioned in general in the Chapter 3– affect the generation of the high-level
views.

• Chapter 7 presents the lessons learned developing a FCA-based approach, conclusions and future
work.

• Appendix A presents details about the tool framework namedConAn

• Appendix B is a complement to the thesis and explains in detail the mathematical background and
algorithms of Formal Concept Analysis.
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Chapter 2

Dependencies in Object-Oriented
Systems

This thesis is about the application of a conceptual clustering technique called Formal Concept Analysis to
generatehigh-level viewsto detect implicit contracts determined by different dependencies between objects
in object-oriented systems. In this chapter, we explain the main context of our approach and which are the
different problems that object-oriented systems present. We also show how existing reverse engineering
and clustering approaches cope with these problems.

2.1 Introduction

All software systems1 are exposed to changes during their lifecycle [Par94]. Any change in the systems
implies an evolution at large or small scale. Manny Lehman and Les Belady [LB85] have identified two
main laws of software evolution:

• Law of continuing change:A program that is used in a real-world environmentmustchange, or
become progressively less useful in that environment.

• Law of increasing complexity:As a program evolves, it becomes morecomplex, and extra resources
are needed to preserve and simplify its structure.

From these two laws we conclude that the changes are inevitable [Par94] and are not free, the maintainer
has to pay a price in terms ofcomplexity.

When a system must be changed, it must follow areengineeringprocess. According to Chikofsky et. al.
[CC92],

Reengineeringis the examination and the alteration of a subject system to reconstitute it in a
new form and the subsequent implementation of a new form.

As stated by the definition,Reengineeringconsists of two main activities, namely theexaminationand the
alterationof a subject system. More formal terms for these activities areReverse EngineeringandForward
Engineering. Chikofsky et. al. [CC92] define these terms as follows,

Reverse Engineeringis the process of analysing a subject system to (i) identify the system’s
components and their relationships and (ii) create representations of the system in another
form or at a higher level of abstraction.

1When we use the termsystemswe refer to industrial projects and development tools implemented in any language.
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Forward Engineeringis the traditional process of moving from high-level abstractions and
logical, implementation-independent designs to the physical implementation of a system.

This thesis is within the context of the reverse engineering of object-oriented systems. Our goal is to
generatehigh-level viewson object-oriented systems at different abstraction levels. We state that,

A developer making changes or extensions to an object-oriented system must therefore
understand the relationships among the classes or risk that seemingly innocuous changes
break the implicit dependencies they play a part in.

In short, any unstructured change leads tofragile systems[MS98] that are difficult to extend or modify
correctly.

2.2 Problems in Object-Oriented Systems

The goal of our approach is to identify and understand different dependencies among classes with the static
analysis of object-oriented code. This is not a trivial task because in most of the cases either documentation
is outdated or insufficient or the code presents implicit information or the code is implemented using bad
styles of code programming. Before diving into these different problems that we find in the source code,
we need to define the main terms used in our approach. It is important to remark that these definitions are
constrained to the context of our work.

2.2.1 Terminology

The main terms we define aredependencyandexplicit andimplicit dependency.

Dependency. An object A depends upon another object B, if it is possible that a change to B implies that
A is affected or also needs to be changed,i.e., dependency between a client and a server.

Explicit Dependency. A dependencybetween two or more objects isexplicit when it is precisely and
clearly expressed without ambiguity in the source code,i.e., definition of a direct subclass (in Smalltalk we
use the keywordsuperclass or in Java we use the keywordextends ).

Implicit Dependency. A dependencybetween two or more objects isimplicit when it can be implied
from the source code though is not directly expressed,i.e., chain of superclasses of a new defined class.

2.2.2 Common Problems in Object-Oriented Code

When reverse-engineering an object-oriented system, the first step a developer must perform is to get a
mental model of the source code [SFM99]. With this first contact, he should be able to understand which
are the different objects and different collaborations and relationships that determine the dependencies
between them. The dependencies play a part in implicit contracts imposed in the system [SLMD96]. Thus
any change in the source code should not break any of these contracts or add new unexpected ones.

Unfortunately building this mental model is not a trivial task because in most of the cases not all the de-
pendencies between the objects are explicit in the system. These meaningful dependencies are determined
by different building mechanisms, such asreuse, delegation, data encapsulation, dynamic binding, inher-
itanceandpolymorphism. Let’s see briefly how these building mechanisms work and —when possible—
identify some examples when they represent anexplicit or implicit dependency between objects.
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• Class inheritanceis the mechanism to define a new class in terms of one or more parent classes.
It means that the behavior and data associated with child classes are always an extension of the
properties associated with parent classes. A subclass has all the properties of the parent class, and
others as well.

Example:The definition of a class in terms of one or more superclasses is anexplicit dependency
meanwhile all the chain of superclasses and inherited behavior and state of a class is animplicit
dependency.

• Delegationis the mechanism that lets an object delegate to another object whatever behavior the first
can not handle.

Example: The delegation of a behavior in a method is anexplicit dependency meanwhile all the
chain of delegates is aimplicit dependency.

• Dynamic binding is the mechanism to select lately the method until execution time. It has two main
aspects: determine the object (and the type), and look up in the chain of superclass for the method.

Example:The method lookup made by a chain of superclasses is animplicit dependency.

• Data encapsulation,sometimes referred to as data hiding, is the mechanism whereby the imple-
mentation details of a class are kept hidden from the user. The user can only perform a restricted set
of operations on the hidden members of the class by executing special functions commonly called
methods.

• Polymorphism is used to describe a variable that may refer to objects whose class is not known at
compile time and which respond at run time according to the actual class of the object to which they
refer. The polymorphism is shown as: (1) a variable holding a value drawn from a group of types, (2)
a name associated with several different method bodies, and (3) a single method with polymorphic
variables2 as parameters

As we see each of these building mechanisms defines different kinds of dependencies. Even when these
mechanisms are used correctly, several problems can appear [WH92]:

• Although dynamic binding is one of the most flexible mechanisms in object-oriented systems, the
tracing of dependencies is difficult to grasp.

• The code for any given task is usually dispersed in several methods [NR89]. When using delegation,
understanding a single line of code requires tracing a chain of method invocations through several
different object classes and up and down the object hierarchy.

• When using inheritance, it has been observed that it may be difficult to find, for example, the right
class to use for a group of objects out of Smalltalk’s different classes of Collection [NR89]. Thus
the developer may have some problems in finding where different functions are carried out, either to
reuse them or to modify them.

Apart from these problems, other ones are identified and are due to misuse or overuse of the different
mechanisms [Bud91]. In these cases, either unnecessary or complex dependencies are created or the de-
pendencies do not exist at all.

• Classes that make direct modifications to other classes:Behavior that leads to the modification of
data contained in another class are a violation of the encapsulation. This violation leads to unneces-
sary hidden dependencies between classes.

• Classes with too much responsibility:Classes with too much responsibility need to learn to delegate
some of their responsibility to subordinate or helper Classes. Often a portion of the class behavior
can be abstracted out and assigned to a helper class [BMMM98].

• Classes with no responsibility:A class with no responsibility serves no function, and usually can be
eliminated in a manner that improves the design [FBB+99].

2A polymorphic variableis a variable declared as one class that can hold values from subclasses
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• Classes with unused responsibility:A class with responsibilities that are not used serves no function
either.

• Misleading names:This problem can be provoked by the wrong use of polymorphism. If a system
contains several implementation of the same message with significantly different effects, a developer
can be misled in interpreting the code, and eventually introduce errors when changes are made.

• Unconnected responsibilities:This problem occurs when a class has a collection of responsibilities
that are not connected by data, functionality, or any other obvious binding.

• Inappropriate use of inheritance:This problem occurs when the relationships between class and
superclass is not “is-a”, or when the class can not inherit useful behavior from the superclass.

• Repeated functionality:This problem occurs when code is duplicated in two or more classes, instead
of being abstracted into a common superclass.

From our experience in analyzing the source code [Aré03, ADN03, ABN04], we have identified five main
features of these problems:

1. The presence of dependencies is obscure when we have overuse or misuse of the building mecha-
nisms in object-oriented systems.

2. The problems occur several times in a system,i.e., repeated functionality can appear in different
parts of software in a system.

3. The problems do not occur isolated in a system,i.e., a class can have too much responsibilities and
does not inherit useful behavior from the superclass.

4. The problems can appear at different levels in the code,i.e., repeated functionality is a problem at
the application level, inappropriate use of inheritance is a problem at the class hierarchy level and
unconnected responsibilities is a problem at the class level.

5. No tool is able to detect the recurring occurrences of these dependencies.

These features define which are the different constraints that we must solve to be able to build a mental
model of the source code.

2.3 Goals of our Approach

Based on the characteristics of the problems in source code, the goals of our approach are the following
ones:

• Identify dependencies that are implicit and make them explicit to analyze the source code.

• Show that the dependencies are not isolated in the system, and there are dependencies occurring with
other ones.

• Show that the groups of dependencies occur several times in a system, and they can be identified as
patternsin the system.

• Show that the dependencies occur at different abstraction levels. In the specific context of our work,
we analyze applications at class-level, class hierarchy-level and complete application level.

• Generatehigh-level viewsat different abstraction levels that help the software engineers cope with
the complexity of software development.

• Show that thehigh-level viewsare interconnected views between the abstraction levels

• Develop three analysis tools based on a conceptual clustering technique calledFormal Concept Anal-
ysisto generate and analyze the high-level views.

The evaluation of this approach is driven by the following questions:
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General Goals - Considering the use of FCA

• Is FCA an easy-to-use clustering technique in software reengineering?

• Is FCA scalable considering the amount of information we could have in big systems?

• What is the complexity time of the FCA?

• Is any limit in the use of the technique?

• Is the interpretation of the results an automatic process ?

• Does FCA identify known and unknown dependencies?

Specific Goals depending on Abstraction level of Analysis

• Class-Based Approach

– How does the technique help in understanding the inner workings of a class?

– Is there a limited number of X-Ray Views in a class?

– Does FCA discover new dependencies in the class?

• Hierarchy-Based Approach

– How does the technique help in discovering schemas introduced in a class hierarchy?

– Do the schemas show new dependencies in the class hierarchy?

– Can FCA help to identify situations where the developer could apply reverse engineering tasks?

• Application-Based Approach

– How does the technique help in discovering patterns introduced in a complete system?

– Does the technique discover know and unknown patterns?

– How do the patterns help to understand a system ?

2.4 Reverse Engineering: State of the Art

Some reverse engineering approaches cope with the problem of buildinghigh-level viewsto generate the
initial mental model of the system. Following we describe some of them, and we identify some limitations
appearing in each case.

• Reading existing documentation and source code[Dek03][HCIM02][DDN02]. This task is fea-
sible when the systems are small or for small pieces of software. In large applications, this task is
impossible because only code reading can take weeks considering we have a well-designed system.
Regarding existing documentation, in most of the cases it is out-of-date or obsolete.

• Analyzing Execution Traces[Ric02], [JR97]. The use of dynamic analysis in a system can reveal
which is the behavior of a system when it is running. However, it has some important drawbacks
in terms of scalability and interpretation. Regarding the scalability, it is impossible to generate all
the execution traces produced by a system. Regarding the interpretation, if the developer does not
choose the right execution traces to analyze, he can lose important information about the system.

• Interviewing users and developers.This task can be important to reveal domain knowledge im-
plemented and not explicit in the system. But the information can be subjective and difficult to
formalize. Additionally, a system is implemented during several years and in a group of developers.
It is difficult to find a developer that participated in all the project development. And thus, some
knowledge is lost when the developers leave the organizations.
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• Tool support. The tool support is basically the most important issue in reverse engineering. Any
tool that can abstract the developer from the source code helps. Depending on the information he
wants to obtain, the support used can be visual one such as Rigi [Mül86], ShrimpViews [SM95] and
CodeCrawler [Lan03], or just code analyzers such as query engines or slicers.

• Analysis of Version History [GDL04] [JGR99]. This is still a young research field, where the
developers analyze the changes made in the software to predict future changes and avoid bad-design
practices in the future versions.

• Use of metrics[FP96]. In most of the cases, metrics are used to assess the quality of source code by
computing various metrics to detect specific characteristics, such as cohesive classes, coupling with
other parts of the system.

We see that all the approaches are useful in identifying the initial fingerprints (mental model) of a system.
But they introduce some limitations. Some of them aread-hocapproaches, such as interviewing users and
developers or reading documentation and source code. In both cases, some knowledge about the system is
lost. In all the approaches, the maintainers work with already known dependencies in the system. They do
not identify new or implicit dependencies, or grouping of them. The clustering techniques are an alternative
to cope with the grouping of characteristics of a system and buildinghigh-level views. We describe them
in detail in the next section.

2.5 Software Clustering

Clustering techniques have been used in many disciplines to support grouping of similar objects of a sys-
tem. The definition given in Sharma [Sha96] is:Clustering analysis is a technique used for combining
observations into groups or clusters such that:

• Each group or cluster is homogeneous or compact with respect to certain characteristics. That is,
observations in each group are similar to each other

• Each group should be different from other groups with respect to the same characteristics; that is
observations of one group should be different from the observations of other groups

Therefore the primary objective is to take a set of objects and characteristics with no apparent structure and
impose a structure upon them with respect to a characteristic.

2.5.1 Common Problems for Clustering Techniques

To apply any clustering techniques, we need to address the following problems:

• Data Representation Extraction: This is a process to extract the most important properties from
the data that we are analyzing. This process may need to transform some existing data to a new
calculated data and feed it as input to a particular clustering technique.

• Calculate the data similarities: This is a process to calculate which attributes are fulfilled or not by
the data.

• Grouping: Depending on a chosen technique, data will be grouped to create clusters.

2.5.2 Requirements for Clustering Techniques

A good clustering technique need to satisfy [HK00]:

12



Section 2.5 Software Clustering

• Scalability: The algorithm should be able to deal with big sets of data. A good clustering technique
will allow new data be inserted and it will dynamically allocate that new data into an appropriate
cluster.

• Minimum input from user: Partitioning algorithms require different input from the user (i.e., num-
ber of clusters). A good clustering technique may need to eliminate some inputs from users

• Handling noise data:A good clustering technique can eliminate most noise data or outliners during
clustering processing.

• Acceptable computation time: If a technique takes too much time to finish on a large data set, it
may make no sense to apply the clustering result anymore.

• Sensitivity to the order of data objects:Some techniques require the data must be in order.

• Interpretability: Users must be able to understand the clustering result and be able to use it. That
is, the clusters should have semantical meaning.

2.5.3 State of the Art

Clustering techniques can be applied to software during various life-cycles phases. Most of the approaches
attempt to provide solutions in restructuring legacy systems. The existing literature can be divided in
(1) applications of a specific clustering algorithm in a system, and (2) comparison of different clustering
approaches and evaluate them based on specific characteristics. In spite that FCA is a clustering technique,
in this state of the art we do not consider it in our analysis. We have made a detailed state of the art about
applications of FCA in software engineering in Chapter 3, because this technique is one of thecornerstones
of our approach.

Within the first category“Application of a specific clustering algorithm”we have found that:

• Belady et al. [BE81] present an approach that automatically clusters a software system in order to
reduce its complexity. In addition, they provided a measure for the complexity of a a system after it
has been clustered. All the information is extracted from the system’s documentation.

• Hutchens et al. [HB85] perform clustering based ondata bindings. A data binding was defined as
an interaction between two procedures based on the location of variables that are within the static
scope of both procedures. Based on the data bindings, a hierarchy is constructed from which a
partition could be derived. Another additional features are (1) they compared their structures with
the developer’s mental model with satisfactory results; and (2) they evaluated thestability of the
system, focusing on what happened with the clustering when changes are done.

• Schwanke et al. [SAP89][SP89][Sch91] work on the “classic” low-coupling and high-cohesion
heuristics by introducing the “shared neighbors” technique, in order to capture patterns that appear
commonly in software systems. His “maverick analysis” enabled him to refine a partition by identi-
fying components that happened to belong to the wrong subsystem, and placing them in the correct
one. However, his approach was never tested against a large software system.

• Choi et al. [CS90] present an approach to finding subsystem hierarchies based on resources ex-
changes between modules. The approach ability to scale up was questionable because of complexity
of their algorithm.

• Müller [MU90] [Mül93] introduces a semi-automatic approach to help a designer perform clustering
on a software system. He introduces the important principles ofsmall interfaces(the number of
elements of a subsystem that interface with other subsystems should be small compared to the total
number of elements in the subsystem) and offew interfaces(a given subsystem should interface only
with a small number of the other subsystems).

• Neighbors [Nei96] attempts to identify subsystems with the ultimate goal of manual extraction of
reusable components. He looked at compile-time and link-time interconnections between compo-
nents and tried different approaches. The approaches were based on naming and on reference con-
text.
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• Anquetil et al. [AL97] look at the names of the resources of the system to produce a clustered system.
But this approach has a drawback relying on the developers’ consistency with the naming of their
resources.

• Mancoridis et al. [MM98] treat clustering as an opitmization problem and use genetic algorithms
to overcome the local optima problem of “hill-climbing” algorithms, which are commonly used in
clustering problems. They implemented a tool called Bunch [MMCG99] that can generate better
results faster when users are able to integrate their knowledge into the clustering problems. They
also show how the subsystem structure of a system can be maintained incrementally after the original
structure has been produced.

• Lung [Lun98] shows two examples of how the clustering technique is used to support software
architecture restructuring to minimize coupling. The first example is an empirical study of a legacy
system where the restructuring is based on use cases. The second example is an initiative idea of
identifying possible addition of design patterns in the system.

• Xu et al. [XLZS04] present an approach to program restructuring at the functional level based on
the clustering technique with cohesion as the main concern. The approach focuses on automated
support for identifying ill-structured or low cohesive functions and providing heuristic advice in
both development and evolution phases. The empirical observations show that the heuristic advice
provided by the approach can help software designers make better decision of why and how to
restructure a program.

Within the second category“Comparison of existing clustering techniques”we have found that:

• Wiggerts [Wig97] presents a general overview of how clustering algorithms are a good starting point
for the remodularization of software. In his work, he evaluates two main issues that imposes a struc-
ture which will satisfy the constraints of a good modularization: the choice of an algorithm and the
criteria of classifying for good clusterings (known assimilarity). From the categorization of the al-
gorithms in: graph theoretical algorithms([Gor81], [vR79], [Rog71], [Ros69], [vL93], [BS91]),
construction algorithms([vL93], [Wis69], [GL70]), optimization algorithms([And73], [Eve74],
[AB84], [Mac67], [KR90], [BH65]) andhierarchical algorithms([KR90], [Ste92]), he chooses the
most suitable characteristics from the different categories to build algorithms which are suited for
the remodularization of legacy systems and the classification of their components. Within the classi-
fication criteria, he introduces the idea offeaturesthat characterize an object and evaluates different
similarity measures which compute the similarity between objects based on the scores on selected
features:distance measures[Eve74],association coefficients[SS73], [And73], [KR90],correlation
coefficients[AB84], [KR90] andprobabilistic similarity measures[AB84],[SS73].

• Tzerpos et al. [TH98] propose a survey of approaches to the clustering problem from researchers
in the software engineering community. They present clustering techniques in other disciplines, and
argue that their usage in a software context [JD88] could lead to better solutions to the software
clustering problems.

• Anquetil et al. [AL99] present a comparative study of different hierarchical clustering algorithms
and analyze their properties with regard to software remodularization: how the entities aredescribed,
how couplingbetween the entities is computed and whatalgorithm is used. From their experiments
in file clustering, they found that these kinds of algorithms can be used to get different partitioning
of the system at different level of abstraction.

• Koschke [Kos00] presents a framework to evaluate different clustering techniques for component
recovery in systems to analyze their strengths and weaknesses in comparison with other techniques.
The main goal is to establish an accepted benchmark suite and standard evaluation method of com-
paring different techniques.

• Mitchell et al. [MM01] propose a comparison of different clustering approaches applied on a same
system. He measures the differences between the results using two similarity measurements. They
also provide some suggestions on how to identify and deal with source code components that tend to
contribute to poor similarity results.
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Most of these techniques search for identifyinghighly cohesiveandloosely coupledgroups based on pieces
of software. Although the grouping of objects is a feature fulfilled by these approaches, they only show
how grouping can be done, but any semantical meaning for the groups is inferred with the results of the
clusters. With Formal Concept Analysis, we cope with this drawback, and we show how to perform it in
each application of our approach in the following chapters.

2.6 Conclusions

In this chapter, we have cited which are the different problems that source code presents when several
object-oriented building mechanisms are used. We have identified the main features of these problems. In
most of the cases,

1. The dependencies are implicit,

2. The dependencies do not appear isolated in the system,

3. The dependencies appear several times in the system,

4. The dependencies appear at different abstraction levels of a system, and

5. No tool exists to detect these dependencies.

We have also show how reverse engineering and clustering approaches solve partially the problem of gen-
eratinghigh-level viewsto have the first contact with a system. We have seen that,

1. In the case of reverse engineering approaches some of them aread-hocand all of them work with
already known dependencies in the system. They do not identify new or implicit ones, or grouping
them.

2. Software clustering is an alternative to get groups of dependencies, but in all the cases the approaches
show how grouping can be done, but a semantical meaning for the groups is missing.
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Chapter 3

Formal Concept Analysis in High-Level
Views

This thesis is about development of an approach to analyze object-oriented source code based on identifying
implicit dependencies and generatehigh-level viewsat different abstraction levels. This approach is sup-
ported by a methodology and a framework tool over which we have built three tools to analyze the source
code at class-, class hierarchy- and application levels. In this chapter we introduce in detail the basics of
our approach based on Formal Concept Analysis, and what are the different issues that the developer must
take into account when using the approach to generate thehigh-level views. We also summarize which
are the existing FCA approaches developed to cope different problems at lifecycle process of a system.
The mathematical background of FCA is not included in this chapter. The reader interested in knowing the
formal features of FCA should consult Appendix B.

3.1 Introduction

Formal Concept Analysis is a clustering technique for discovering conceptual structures in data. These
structures allow the discovery and analysis of (complex) dependencies within the data. We have developed
our approach and the tool support based on FCA.

3.2 Overview of the Approach

In this section we describe the methodology of a general approach to use FCA to build tools that identify
recurring sets of dependencies in the context of object-oriented software reengineering. Our approach con-
forms to a pipeline architecture [BMR+96] in which the analysis is carried out by a sequence of processing
steps. The output of each step provides the input to the next step. We have implemented the approach as
an extension of theMoosereengineering environment [DGLD04].

This methodology is supported byConAn framework, a tool implemented in VisualWorks [Vis03]. The
reader interested in details about this tool should consult the Appendix A.

The processing steps are illustrated in Figure A.2. We can briefly summarize the goal of each step as
follows:

• Model Import:A model of the software is constructed from the source code.

• FCA Mapping: A FCA Context (Elements, Properties, Incidence Table) is built, mapping from
metamodel entities to FCA elements (referred asobjectsin FCA literature) and properties (referred
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Figure 3.1: The overall approach

asattributesin FCA literature)1.

• ConAn Engine:The concepts and the lattice are generated by theConAn tool.

• Post-Filtering: Concepts that are not useful for the analysis are filtered out.

• Analysis:The concepts are used to build the high-level views

A key aspect of our approach is that one must iterate over the modeling and the interpretation phases (see
Figure 3.1). Themodelingphase entails a process of experimentation with smaller case studies to find a
suitable mapping from the source code model to FCA elements and properties. A particular challenge is to
find a mapping that is efficient in terms of identifying meaningful concepts while minimizing the quantity
of data that must be processed.

Theinterpretationphase is the other iterative process in which the output of the modeling phase is analyzed
in order to interpret the resulting concepts in the context of the application domain. The useful concepts can
then be flagged so that future occurrences can be automatically detected. As more case studies are analyzed,
the set of identifiably useful concepts typically increases up to a certain point, and then stabilizes.

From our experiences, there are two main participants in the approach: thetool builder andthe software
engineer. The tool builder builds the FCA-based tool to generate the high-level views, and thesoftware
engineeruses the results provided by the tool to analyze a piece of software. Both of them work together
in themodelingandinterpretationphase of the approach, becausesoftware engineerhas the knowledge of
analyzing a system and thetool buildercan represent this knowledge in the tool.

1We prefer to use the termselementandpropertyinstead of the termsobjectandattribute in this thesis because the termsobject
andattributehave a very specific meaning in the object oriented programming paradigm.

18



Section 3.3 FCA Applied in Software Engineering

3.3 FCA Applied in Software Engineering

FCA has been used in different phases of the process of software engineering. In Tilley et al. [TCBE03]
the authors present a broad overview by describing and classifying different approaches in this field. The
classification comprises two main categories: approaches used inEarly Phase Activitiesand inSoftware
Maintenance. In this section we complement the approaches mentioned in Tilley et al. [TCBE03] with new
publications appeared in 2004. We give more details about approaches introduced in the second category
because they are closer to the work developed in this thesis.

Early Phase Activitiesare all the activities that occur before the system is implemented

• Requirement Analysis
FCA approaches in this category support the user by gathering and organize (semi) automatically
the requirements. D̈uwel et al. [DH98][D̈uw99][DH00] and B̈ottger et. al. [BSR+01] develop
an FCA-approach to reconcile differences in viewpoints of same use cases described in different
ways by stakeholders requirements. Lattices allow to compute the closeness between viewpoints
and to test when they are moving towards a shared viewpoint. Similarly, Richards et. al. [RB02a]
[RB02b][RBF02a][RB02c][RBF02b] develop an approach to identify objects and classes based on
use cases. They consider that FCA is an useful tool to structure and formalise conceptual thinking. In
all the cases they consider that the approach is semi-automatic and help the communication between
developers and customers of the system.

• Component Retrieval Software
Lindig describes a retrieval system that could be used for retrieving software components from a
library indexed by keywords [Lin95].

• Formal Specification
Fischer builds on the component retrieval work of Lindig, however, instead of using keywords, a
formal specification that captures the behavior of a software component is used [Fis98].

• Visualizing Z Specification via FCA
Z is a state based formal method that exploits the theory and first order predicate logic [Spi89]. In
Tilley et. al. [Til03] they use ToscanaJ to conceptually navigate and explore a Z specification using
FCA and retrieve relevant parts.

• Generalization Level in UML Models
Dao et. al. [DHHaV04] propose aniterative cross generalization(a FCA-based methodology) which
processes several mutually related formal contexts and sketches its application to UML class diagram
restructuring.

All the publications aroundSoftware Maintenancehave a common thread – extracting understandable
structures that organize the artifacts of software systems. The found categories are:

• Dynamic analysis
Ball [Bal99] examines test coverage while Bojic et al. [BV00] and Eisenbarth et. al. [EKS01a]
[EKS01b] [EKS03] recover software architectures related to use cases identifying features scattered
in different parts of the code. In Tonella et. al. [TC04] they identify possible candidates aspects
relating execution traces and computational units (procedures, class methods) in a system.

• Application to legacy systems
Snelting et al. [Sne96][KS94][FLS95] used FCA to analyze the preprocessor commands in legacy C
programs in order to examine the configuration structure. van Deursen et. al. [vDK99] and Kuipers
et. al. [KM00] compare the use of FCA for grouping fields within a large legacy COBOL program
to that of hierarchical clustering. In both approaches they combine the use of type inference with
FCA. Canfora et. al. [CCLL99] follow a similar approach but are interested in organizing a legacy
COBOL system into components suitable for distribution via CORBA. Linding et al. [LY97] develop
also the idea of identifying candidates modules in Modula-2, Fortran and COBOL. The task deriving
object-oriented models from legacy systems written in C has been considered by Sahraoui et. al.
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[SMLD97], Siff et. al. [SR97] and Tonella et. al. [Ton01]. The general approach is to consider C
functions as formal elements and the properties as either commonly accessed data structures or fields
within commonly used structures.

• Reengineering class hierarchies
In reengineering class hierarchies, Godin et al. [GHRV02] categorize the existing works according
to the structure of the output hierarchy of the approaches. Missikoff et. al. [MS89], Rundensteiner
[Run92], Yahia et. al. [AYLCB96] and Snelting et. al. [ST97][ST98][Sne98] useGalois (concept)
lattice as a final result of their analysis. Godin et. al. [GM93] [GMM+98], Dicky et. al. [DDHL95]
[DDHL96], Huchard et. al. [HDL00], Cook [Coo92], Moore [Moo96] and Chen et. al. [CL96] use
Galois sub-hierarchy2 as a final results of their hierarchy.
The result of all these approaches is again a class hierarchy built from the concept lattice in the for-
mer cases, and directly inferred from Galois sub-hierarchy in the last cases. This new class hierarchy
is guaranteed to be behaviorally equivalent to the original hierarchy, but in which each object only
contains the members that are required. In all the approaches, the algorithm to build the output hier-
archy can be proved correct as it is done for CERES in Leblanc [Leb00]. They aim at improving the
factorization while preserving the specialization relationships. They converge toward a normalized
model of a class hierarchy. The methods are primarily intended as a tool for finding imperfections
in the design of class hierarchies, and can be used as the basis for tools that largely automate the
process of reengineering such hierarchies.

• Analysis of classes
Analyzing how the fields are used by the methods in a JAVA class, Dekel et al. [Dek03] uses a lattice
to reason about the interface and structure of the class and find errors in the absence of source code.
They claim that their technique serves as a heuristic for automatic feature categorization, enabling it
to assist efforts of re-documentation.

• Conceptual analysis of software structure
Tonella et. al. [TA99] attempt to recover the structure of design patterns in source code using a
context in which the formal elements are tuples of classes and the properties are relations among
those classes.

• Software Testing
Sampath et. al. [SMSP04] cluster user sessions and maintain and update a reduced test suite for
user session based testing of web applications. With these clusters, they avoid collecting large user
sessions data and provide some scability for the approach.

3.4 Our Approach in Depth

In Section 3.2 we have introduced briefly the different steps of the architecture of our approach. We will
now describe each processing step in detail and outline the key issues that must be addressed in order to
apply the approach.

2By analogy with normalization for database design, the concept lattice can be considered as a kind of normal form for the
design of class hierarchies. The lattice shows all potentially useful generalizations. Some of the generalizations of the concept
lattice are empty in that they do not possess their own attributes or objects: all their attributes appear in at least one super-concept
(inheritance) and dually, all their objects appear in a sub-concept (extension inclusion). These concepts could be eliminated without
loss of information thus leading to a structure called a Galois sub-hierarchy which corresponds to the union of what is called the sets
of attribute concepts and object concepts of the concept lattice. This structure is not necessarily a lattice but, when interpreting its
nodes as classes, it is maximally factored, consistent with specialization, while defining a minimal number of classes. It could also
be considered as another kind of normal form. As for normalization, in practice, there might be reasons to introduce deviations from
these ideal structures but the decision process should be made in a controlled manner by using the normal forms as a conceptual
framework [GHRV02].
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Model Import

Description: Our first step is to build amodelof the application from the source code. For this purpose
we use theMoosereengineering platform, a research vehicle for reverse and reengineering object-oriented
software [DGLD04]. Software models inMooseconform to the FAMIX metamodel [TDDN00], a language-
independent metamodel for reengineering.Moosefunctions both as a software repository for these models,
and as a platform for implementing language-independent tools that query and manipulate the models.

Issues: In this step the most important issue is how to map the source code to metamodel entities. The
main goal of this step is to have a language-independent representation of the software. In our specific
case, we use the FAMIX metamodel, which includes critical information such as method invocations and
attributes accesses. The tool builder can, however, choose any suitable metamodel.

FCA Mapping

Description: In the second step, we need to map the model entities toelementsand properties, and
we need to produce anincidence tablethat records which elements fullfil which property. The choice of
elements and properties depends on the view we want to obtain.

Issues:This is a critical step because several issues must be considered. Each of these issues is part of the
iterativemodelingprocess.

• Choice of Elements:First we must decide which metamodel entities are mapped to FCA elements.
This is normally straightforward. In most cases there are some particular metamodel entities that
are directly adopted as FCA elements (e.g., classes, methods in case ofXRay Views(Chapter 4) and
Hierarchy Schemas(Chapter 5)). Alternatively, a FCA element may correspond to a set of entities
(e.g., a set of collaborating classes in case ofCollaboration Patterns(Chapter 6)).

• Compact Representation of Data:In some cases, a naı̈ve mapping from metamodel entities to FCA
elements may result in the generation of massive amounts of data. In such cases, it may well be
that many elements are in fact redundant. For example, if method invocations are chosen as FCA
elements, it may be that multiple invocations of the same method do not add any new information
for the purpose of applying FCA. By taking care in how FCA elements are generated from the
metamodel, we can not only reduce noise, but we can also reduce the cost of computing the concepts.

• Choice of Properties:Once the issue of modeling FCA elements is decided, the next step is to choose
suitable properties. Well-chosen properties achieve the goal of distinguishing groups of similar ele-
ments. This means that they should neither be too general (so that most elements fulfill them) nor be
too specific (so only few elements fulfill them).

• Use of negative properties:Nevertheless, in some cases the developer needs still more properties to
distinguish the elements. But simply adding more properties may only increase the complexity of
the approach. The use of “negative” information (built by negating existing properties) may help.

• Single or Multiple FCA Contexts:In some cases, multiple FCA contexts may be required to analyze
the same set of software artifacts from different viewpoints.

• Computation of properties or elements:When building the FCA context of a system to analyze,
there are two alternatives of FCA mapping. In anone-to-onemapping, the developer directly adopts
metamodel entities and metamodel relationships as FCA elements and properties respectively. In a
many-to-onemapping the developer builds more complex FCA elements and properties by comput-
ing them from the metamodel entities and relationships, meaning for example that a FCA element
can be composed of several metamodel entities, or a FCA property must be calculated based on
metamodel relationships between different entities. This issue is one of the bottlenecks in the total
computation time of the approach, because the incidence table must be computed in this step and if
the FCA property must be calculated, this time can also compromise the total computation time.
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ConAn Engine

Description: Once the elements and properties are defined, we run theConAn engine. TheConAn
engine is a black-box component implemented in VisualWorks 7 which runs the FCA algorithms to build
the concepts and the lattice.ConAn applies the Ganter algorithm [GW99] to build the concepts and our
own algorithm to build the lattice. Both algorithms are specified in the Appendix B.

Issues:In this step, there are three main issues to consider

• Performance of Ganter algorithm:Given an FCA ContextC = (E,P, I), the Ganter algorithm has
a time complexity ofO(|E|2|P |). This is the second bottleneck of the approach because in our case
studies the number of FCA elements is large due to the size of the applications. We consider that|P|
is not a critical factor because in our case studies the maximum number of properties is 15.

• Performance of Lattice Building Algorithm:Our algorithm is the simplest algorithm to build the
lattice but the time complexity isO(n3) wheren is the number of concepts calculated by Ganter
algorithm. This is the last bottleneck of the approach.

• Unnecessary properties:It may happen that certain properties are not held by any element. Such
properties just increase noise, since they will percolate to the bottom concept of the lattice, where we
have no elements and all properties of the context.

Post-Filtering

Description: Once the concepts and the lattice are built, each concept constitutes a potentialcandidate
for analysis. But not all the concepts are relevant. Thus we have apost-filteringprocess, which is the last
step performed by the tool. In this way we filter out meaningless concepts.

Issues:In this step, there are two main issues to consider:

• Removal of Top and Bottom Concepts:The first step inpost-filteringis to remove thetopandbottom
concepts. Neither provides useful information for our analysis when each contains an empty set.
(The intent is empty in the top concept and the extent is empty in the bottom concept).

• Removal of meaningless concepts:This step depends on the interpretation we give to the concepts.
Usually concepts with only a single element or property are candidates for removal because the
interesting characteristic of the approach is to findgroupsof elements sharingcommoncharacteris-
tics. Concepts with only a single element occur typically in nodes next to the bottom of the lattice,
whereas concepts with only one property are usually next to the top of the lattice.

Analysis

Description: In this step, the software engineer examines the candidate concepts resulting from the
previous steps and uses them to explore the differentimplicit dependencies between the software entities
and how they determine or affect the behavior of the system

Issues:In this step, there are several issues to consider. All of them are related to how the software engineer
interprets the concepts to get meaningful or useful results.

• Concept Interpretation based on Elements or Properties:Once the lattice is calculated, we can
interpret each conceptC = ({E1 . . . En}, {P1 . . . Pm}) using either its elements or its properties.
If we use the properties, we try to associate a meaning to the conjunction of the properties. On the
other hand, if we focus on the elements, we essentially discard the properties and instead search for a
domain specific association between the elements (for example, classes being related by inheritance).

• Equivalent Concepts:When we interpret the concepts based on their properties, we can find that the
meaning of several concepts can be the same. This means that for our analysis, the same meaning
can be associated to different sets of properties and different concepts.
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• Supporting End-users:If the results must be read by end-users (rather than by software engineers)
then it may be necessary to introduce an additional abstraction level over that of the concept lattice
in order to present the results in a form more appropriate to the user domain.

• Automated Concept Interpretation:The interpretation of concepts can be transformed into an auto-
matic process. Once the software engineer establishes a meaning for a given concept, this correspon-
dence can be stored in a database. The next time the analysis is performed on another case study,
the established interpretations can be retrieved and automatically applied to the concepts identified.
Once this process is finished, the software engineer must still check those concepts whose meaning
has not been identified automatically.

• Using Partial Order in the Lattice:The concepts in the lattice are related by a partial order. During
analysis, the software engineer should evaluate if it is possible to interpret the partial order of the
lattice in terms of software relationships. This means that the software engineer should only not
interpret the concepts but also the relationships between them.

• Limit of using FCA as a grouping technique:When additional case studies fail to reveal new mean-
ingful concepts, then the application of FCA has reached its limit. At this point, the set of recognized
concepts and their interpretations can be encoded in a fixed way, for example, as logical predicates
over the model entities, thus fully automating the recognition process and bypassing the use of FCA.

3.5 Conclusions

3.5.1 Research Questions

Based on the approach, we are able to answer some of the research questions proposed in Chapter 2:

• Is FCA an easy-to-use clustering technique in software reengineering ?

As we have seen in this chapter, FCA is an useful technique but it is not trivial to use. In each step,
there arecritical issuesthat determine how meaningful results will be in the final step:Analysis. The
issues about building the FCA context(s) inFCA Mappingaffect the performances of the algorithms
(in the stepConAn Engine), filters and interpretation of the results (issues in the stepsPost-Filtering
and Analysis). According to our experience, when the choice of elements and properties is not
the adequate one, the results are meaningless. It is the main reason that we have in our approach
two iterative processes:ModellingandInterpretation. These two iterative processes help in finding
a suitable mapping to reducenoisein the results and obtainmeaningfulconcepts that are used in
building thehigh-level viewsof a system.

• Is FCA scalable considering the amount of information we could have in big systems ?

Based on our 3 abstraction levels of analysis (introduced in Chapters 4, 5 and 6) we believe that FCA
is scalable and can be used with big amount of information (when we have acceptable computation
times). We confirm this answer in the different analysis shown in the following chapters.

• What is the time complexity of the FCA ?

In the stepConAn Enginewe have indicated the complexity time of Ganter andlattice-building
algorithms. We see that they represent two bottlenecks of our approach. If we do not restrict our
analysis about complexity to the algorithms, we also consider that the total complexity time can be
compromised when the FCA elements and properties must be calculated in terms of information
provided by software artifacts (issue named asComputation of Properties and Elementsin the step
FCA Mapping).

• Is there any limit in the use of the technique ?

So far, we do not believe that we have reached the limit in using the technique. We consider it
as an issue in the stepAnalysis. When additional case studies in each approach fail to reveal new
meaningful concepts, then the application of FCA has reached its limit.
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• Is the interpretation of the results an automatic process ?

The interpretation of the results is not automatic. We consider it as an issue in the stepAnalysis. The
transformation can be transformed into an automatic process. Once the software engineer establishes
a meaning for a given concept, this correspondence can be stored in a database. This process is
followed in each application of case studies with all concepts that are not identified automatically
by the database. The database increments its number of correspondences until no new meaningful
concepts are identified. This is also an indication of the limit in using the approach.

• Does FCA identify known and unknown dependencies ?

The answer to this question is detailed in the Chapters 4, 5 and 6.

3.5.2 Summary

In this chapter we have explained the details of our methodology and which are the different key issues
the developer must take into when applying the approach. The methodology (supported by a tool named
ConAn) can be considered as a general one because it can reproduced in any other tool that has FCA as a
base tool. This methodology is the result of our experiments applied in three different abstraction levels.
But it is applicable in other abstraction levels.

We have also summarized how existing FCA-based approaches are applied in different lifecycle of a sys-
tem. The approaches show that FCA is a promising technique used in different lifecycles of a system. In all
the cases, the main drawback is a lack of a methodology about how to build the context of the case studies
to apply FCA. As we have seen in this chapter, it is not a trivial task.
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Chapter 4

XRay Views: Supporting Class
Understanding

Supporting classes understanding is a key task in software reverse engineering as classes are the cornerstone
of the object-oriented paradigm and the primary abstraction from which applications are built. In this
chapter we focus on the first abstraction level of a system: a class. We develop a methodology focused on
understanding a class as an isolated development unit. Our analysis is based on the internal structure of a
class and focus on how the methods call each other and access attributes. Instead of requiring the engineer
to read code line-by-line, we provide three logically connected “XRay views” of classes: STATE USAGE,
EXTERNAL /INTERNAL CALLS and BEHAVIOURAL SKELETON. Each of theseXRay views is composed
out of elementary dependencies between a set of methods and a set of attributes. Thus, these relationships
show us theinternal contractsof the state and the behavior of a class. In this way we supportopportunistic
understanding [LPLS96] in which the engineer understands a class iteratively by exploring the views and
reading code.

4.1 Problems in Understanding Classes

Classes are the cornerstone of the object-oriented paradigm. They act as factories of objects and define the
behavior of their instances. However, they are harder to understand due to several reasons [Dek03, LD01]:

1. Contrary to procedural languages, the method definition order in a file is not important [Dek03].
There is no simple and apparent top-down call decomposition, even if some languages propose the
visibility notion (private, protected, and public). This drawback makes code understanding a difficult
task because there is no predefined order to follow the method call graph.

2. The presence of late-binding leads to “yoyo effects” when walking through a hierarchy and trying to
follow the call-flow [WH92].

3. Dynamic binding and polymorphism increase the number of potential dependencies within a pro-
gram. Thus, the associations created through the use of polymorphism and dynamic binding usually
mean that more than one class needs to be looked at (especially in the case of a class which is part
of a deep inheritance hierarchy) to fully understand how the code works [DRW00]. Soloway et al.
[SLL+88] has termed this phenomena asdelocalizationof the code.

4. Classes define state and the methods that act on this state. It is important to understand how the state
is accessed, presented, if at all, to the class’s clients, and how subclasses access this state.
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4.2 Goals ofXRay Views

Different features are important to understand the inner workings of a class. Some of this kind of informa-
tion that an engineer would typically like to know about a class is:

• Which methods access any attribute, directly or indirectly

• Which groups of methods access directly or indirectly all the attributes or some subset of the at-
tributes,

• Which methods are only called internally,

• Which methods/attributes are heavily used and accessed,

• How the methods and attributes collaborate.

Unfortunately all this information is implicit in the source code, and therefore cannot easily be teased out
by a straightforward reading of the source. Our goal is to analyze groups of methods and attributes that
collaborate together. But if we consider the number of attributes and methods we can find in a class,mining
these elements –without clear criteria— can lead to an exponential number of groups that only makes the
analysis more difficult. For this reason we generate a dedicated graph representation of the source code
with the attributes’ accesses and methods’ calls of a class. With this graph, we analyze the class using FCA
to detect different dependencies between sets of methods and attributes and we run our toolConAn. Thus,
conceptsgenerated by FCA algorithm, are composed to build theXRay Views. We limit our approach
to understanding a single class, without taking into account relationships to subclasses, superclasses, or
peer classes. The reason to impose this limitation is that we want to explore the idea in small scenarios
(before using it in complete applications) and analyze the impact of the methodology in the analysis. To
help in the visualization and analysis of the results, we useClass Blueprints[LD01] as a complement to
ConAn. A Class Blueprintis a semantically augmented visualization of the internal structure of a class,
which displays an enriched call-graph with a semantics-based layouti.e., methods are categorized based on
simple heuristics and form layers grouping methods in the context of a call-graph starting from the public
interface of a class.

Structure of the Chapter. This chapter is structured as follows: Section 4.3 provides a brief example of
how FCA is applied in a class defining elements and properties based on attributes and methods of a class.
We also show how we interpret the concepts of the lattice. Section 4.4 introduces the different case studies
used to validate theXRay views and we present the 3XRay views: STATE USAGE, EXTERNAL /INTER-
NAL CALLS and BEHAVIOURAL SKELETON in a pattern-likeformat. Section 4.5 analyzes several issues
(introduced in Chapter 3) related to the application of the approach in class understanding. Section 4.6
provides some discussion points based on the experiments of generatingXRay Views. Section 4.7 presents
some related work to class understanding using other techniques. And final Section 4.8 we conclude the
chapter and outline some future work.

4.3 Formal Concept Analysis in Class Understanding

At the class level, we apply FCA to identify concepts that correspond to the dependencies between the state
and the behavior within a single class. We therefore build 4 CA contexts where we have:

• 2 FCA contexts withmethodsas elements andattributesas properties and the binary relation is the
direct and indirectaccessesrelationships respectively.

• 2 FCA contexts withmethodsas elements and properties and the binary relation is the direct and
indirect invocationsrelationships respectively
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Figure 4.1: Attribute accesses and method invocations and the identified groups.

Let us see then which are the different properties between attributes and methods in a class we extract from
the source code. These properties help us to identify the groups that we use to build the differentXRay
views.

4.3.1 Elements and Properties of Classes

Suppose a class has a set of methodsM and a set of attributesA. The basic properties we use are extracted
from the source code as follows:

• m accessesx means that the methodm ∈ M either directly reads/updates the value of attributes
x ∈ A or uses a “getter/setter” method to access/modify the value ofx.

• m callsn means that the methodm calls the methodn explicitly via aself-call1.

In Figure 4.1 we see a graphical representation of a class with methodsM = {m,n, o, p, q, r, s, t} and
attributesA = {a, b, c, d}. Here we have, for example,m calls q, r calls p, o accessesc, and they are
represented withm → q ando → c respectively.

These properties express direct dependencies between entities. We are also interested inindirect depen-
dencies, for example,m accessesd indirectly (which we write “m accesses∗ d”). Indirect dependencies
are important in revealing dependencies between methods and attributes, and are helpful in assessing the
impact of changes in the class. We therefore define as well the following derived properties:

• m calls∗ n if m callsm′ and eitherm′ callsn or m′ calls∗ n (i.e., calls∗ = ∪i≥2 calls i)

• m accesses∗ x if m callsm′ orm calls∗ m′, andm′ accessesx (i.e., accesses∗ = ∪i≥1 callsi· accesses)

In the example, we see thatp callss ands accessesa, and consequentlyp accesses∗ a.

Finally, we are sometimes interested to know when elements donot exhibit a certain property, so we
introduce the following notation to express the negation of a relation:

1We do not focus on pointer analysis
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• e ¬R p if it is not true thate R p.

For example,m ¬ accessesc.

4.3.2 Properties among Groups

Since we are interested in dependencies occurring betweensetsof methods and attributes, we extend our
properties to sets in the obvious way. Suppose thatF andG are arbitrary subsets of the set of elementsE.
We define:

• F R G means that each entity inF is related with each one inG, i.e., ∀e ∈ F, e′ ∈ G, e R e′.

• F R G means that the entities inF are related exclusivelywith those inG, i.e., ∀e ∈ E, e′ ∈
G, e R e′, =⇒ e ∈ F and conversely,∀e ∈ E, e′ ∈ F, e′ R e =⇒ e ∈ G.

4.3.3 Interpretation

We introduce now the elementary groups based on whichXRay views are built. Note that in each case
we are interested inall of the participants of a given group. For example, below we defineCollaborating
Attributes, but we are interested not only in the attributes themselves, but also in the set of methods that
access them. This holds for each example group listed below. We must remark that each group is a mapping
of the concepts resulting from the 4 FCA contexts described previously. We illustrate each case with the
example shown in Figure 4.1.

Direct Accessors : Direct accessors, readers or writersM ⊆ M of an attributea are defined by non-
exclusive relationships:

• M accesses{a}

This group provides us with a simple classification of the methods according to which attributes they use.
In our example,{s, t} accesses{a}.

Exclusive Direct Accessors : A methodm is an exclusive direct accessorof a when m is the only
method to accessa directly. We are interested in the sets of exclusive direct accessors of an attribute:

• M accesses{a}

In our example, we see that{q} accesses{d}.

Exclusive Indirect Accessors : We consider a methodm as anexclusive indirect accessorwhen it is
the only method that accesses an instance variable using adirect accessormethod of a specific attribute
or calling a method that calls adirect accessorof an instance variable. It is represented as an exclusive
relationship:

• M accesses∗ {a}

This group distinguishes those methods that define the behaviour of a class without using at all the state
from those that use the state of the class. In our example, we have{m,n} accesses∗ {d}.
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Collaborating Attributes : This group expresses which attributes are used exclusively by a set of meth-
ods:

• M accesses∗ A

This group identifies groups of attributes working together in the class, and also which are the methods that
work together using part of the state of the class.

In the example, we have only one set of collaborating attributes{t} accesses{a, b}.

Stateful Core Methods : This group is a special case ofcollaborating attributesand expresses which
methods accessall the state of a class:

• M accessesA

This group is interesting because it provides a guideline if all the attributes are being used in the core of
the class, and providing a functionality to the class through a set of methods. In the example, there are no
methods accessing the entire state of the class.

Collaborating Methods : This group expresses which methods uses the behaviour defined in the class. It
is represented by anexclusive dependency:

• M calls M ′

• M calls∗ M ′

This group helps us to identify the direct and indirect collaborations between groups of methods inside the
class. In the example,{r} calls {p}, {p} calls {s, t}, {r} calls∗ {s, t} and{m,n} calls {q}.

Interface Methods : This group expresses which methods are not used at all inside the class. They are
pure Interface Methods 2. It is represented with anexclusive dependencyas:

• M¬ calls M

M is the complete set of interface methods since there is no method inM that calls them, and there exist
no other such methods.M ¬ calls {r, o, m, n} identifies the interface methods of our example class in
Figure 4.1.

Externally Used State : This dependency expresses which interface methods aredirect accessors:

• M¬ calls M andM accesses{a}

This group helps us to determine which methods are used as interface to the class and access directly
the state of the class. In the example, onlyo provides externally used state, sinceM ¬ calls {o} and
{o} accesses{c}.

2In Smalltalk, there is no concept ofinterfacecompared to C++ or Java. All the methods are public and can be interface. It is
possible to group the methods that behave aspublic interfacein a method protocol. But the class clients can still call thenon-interface
methods. In typed object-oriented languages such as C++ or Java, it is possible to define a “pure interface” artifact consisting only
of abstract method declarations — enabling a variable, typed to the pure interface, to reference objects belonging to any conforming
classes — not restricted to any one part of the class hierarchy. In C++ such a pure interface is aspecification classcomposed only
of pure virtual functions, theclassconstruct still being used as if it were a normal class. Multiple inheritance in C++ allows a
specification class to act as a pure interface for a class anywhere in the class hierarchy. In Java a special language constructinterface
is provided consisting only of abstract methods. Although a class in Java can inherit from only one other class, it can additionally
implement multiple interfaces [RHM00].
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Stateless Methods : This group expresses which methods complement thecollaboratingones,i.e., which
methods provides a service without calling any other methods or accessing the state of the class:

• M = M1 ∩M2, whereM1 ¬ calls M andM2 ¬ accessesA

There are no stateless methods in the example, since every method either calls another method or accesses
some state.

4.4 XRay Views

An XRay view is acombinationof groups that exposes specific aspects of a class. Based on the groups
specified above, we now define three complementaryXRay views: STATE USAGE, EXTERNAL /INTERNAL

CALLS, and BEHAVIOURAL SKELETON. These three views address different, but logically related aspects
of the behaviour of a class. STATE USAGE focuses on the way in which the state of a class is accessed by the
methods, and exposes, for example, how cohesive the class is. EXTERNAL /INTERNAL CALLS categorizes
methods according to whether they are internally or externally used, while BEHAVIOURAL SKELETON

focuses on the way methods invoke each other internally.

To illustrate our approach, we present three Smalltalk classes —OrderedCollection, Scanner andUIBuilder
— from the VisualWorks Smalltalk distribution [Vis03]. We chose these particular three classes because
they are different enough in terms of size (shown in Table 4.1 and functionality, they address a well-
known domain that the reader is certainly familiar with, and they show characteristic results ofXRay view
application. Here follows a brief description of these classes:

OrderedCollection represents a collection of elements explicitly ordered by the sequence in which objects
are added and removed. The elements are accessible by external keys that serve as indices. This
class has attributesfirstIndex and lastIndex that index the first and last elements in the collection.
MoreoverOrderedCollection has an anonymous array-like attribute. Its behaviour is defined by 56
methods from which 24 redefine methods inherited from the superclass.

UIBuilder implements the Builder design pattern [GHJV95]. It is a complex class that is used to build user
interfaces (windows and their subcomponents) according to declarative specifications provided by its
clients. AUIBuilder is created and used at interface opening time by the client’s interface opening
method. UIBuilders use a special library of user interface components tailored for automatic user
interface generation such as radio buttons, action buttons, and check boxes.UIBuilders can build and
install composites of these components to any desired level of nesting. This class has 18 attributes
and its behaviour is defined in 122 methods.

Scanner represents a traditional language scanner for the Smalltalk language. It scans a stream of
Smalltalk tokens with a single look ahead. This class has ten attributes which refer to the source, to
the current character, current token, current token type, a type table, and comments. Its behaviour is
defined with just 24 methods which are procedurally-coded.

Class HNL Attributes Methods
OrderedCollection 3 3 56

UIBuilder 1 19 122
Scanner 1 10 24

Table 4.1: Data about the classes (HNL indicates the level of inheritance)

We describe the threeXRay views according to a common pattern: first we provide adescription, then the
groupsused to build the view, and finally arationale indicating the key aspects that the view can reveal.
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For each view, we ran our analysis toolConAn on the three classes. Then, we examined the resulting
views by looking at and combining the groups presented in the “Used and Shown Groups” section of the
view definition. We validated our findings by reading the source code opportunistically, and usingClass
Blueprints[LD01] as a complementary tool to visualize and annotate information about the found groups.
As we said previously, aClass Blueprintvisualizes the internal structure of a class with an enriched call
graph. In the right pane of the Figure 4.2, we see theClass Blueprintof OrderedCollection. The nodes
represent methods except the two rightmost ones representing attributes. The edges represent method
invocations except the edges pointing to the rightmost nodes that represent accesses to the attributes.

Figure 4.2: GroupCollaborating Attributesof theXRay view STATE USAGE in OrderedCollection

4.4.1 XRay View: STATE USAGE

Description: Clusters attributes and methods according to the way methods access the attributes.

Used and Shown Groups: Exclusive Direct Accessors, Exclusive Indirect Accessors, Collaborating At-
tributes, andStateful Core Methods.

Rationale: Objects bundle behaviour and state. To understand the design of a class, it is important to gain
insight into how the behaviour accesses the state, and what dependencies exist between groups of methods
and attributes. This view helps us to measure the cohesion of the class [BDW98] revealing if there are
methods using the state partially or totally and if there are attributes working together providing different
functionalities of the class.

Validation with OrderedCollection : Some of the groups used in STATE USAGEare the following ones:.
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• {before, removeAtIndex:, add:beforeIndex:, first, removeFirst, removeFirst:, addFirst} accesses
{firstIndex} represents theExclusive Direct Accessors of firstIndex.

• {addLast:, copyWithout:, select:, trim, add:, representBinaryOn:, add:before:, increaseCapacity, col-
lect:, grow, after:, add:after:, addAllLast:, addAll:, addAllFirst:, removeLast: } accesses∗ {firstIndex }
represents theExclusive Indirect Accessors of firstIndex

• {makeRoomAtFirst, changeSizeTo:, removeAllSuchThat:, makeRoomAtLast, do:, notEmpty:, keysAnd-
ValuesDo:, detect:ifNone:, changeCapacityTo:, isEmpty, size, remove:ifAbsent:, includes:, reverseDo:,
find:, setIndices, insert: before:, at:, at:put:, includes: } accesses {firstIndex, lastIndex } represents
theCollaborating Attributes

• Stateful Core Methods = the same set asCollaborating Attributes

Similarly to the first two groups, we have groups ofExclusive Direct Accessors and Exclusive Indirect
Accessors of lastIndex. In the Figure 4.2 we see the group ofCollaborating Attributesas a concept and
using Class Blueprintsapplied inOrderedCollection. In grey, we highlight the elements of the group
Collaborating Attributeslisted in the left part of the figure. The nodes in white are those accessing either
firstIndex or lastIndex, but not both of them. As we can see each group determines asubgraphof theClass
Blueprintof the class.

Before analysing the groups identified by this view, we posed the hypothesis that the two attributes maintain
an invariant representing a memory zone in the third anonymous attribute. From the analysis we obtain the
following points:

• We note that the attributesfirstIndex andlastIndex have no getters or setters, so the state of the class
is not exposed to clients.

• By browsingExclusive Direct Accessors methods, we confirm that the naming conventions used help
the maintainer to understand how the methods work with the instance variables, because we see that
the methodremoveFirst accessesfirstIndex andremoveLast: accesseslastIndex respectively.

• The numbers of methods that exclusively access each attribute are very similar, however, we discover
(by inspecting the code) thatfirstIndex is mostly accessed by readers, whereaslastIndex, is mostly
accessed by writers.

• It is worth noting thatCollaborating Attributes are accessed by the same methods that are identified
asStateful Core Methods. This situation is not common even for classes with a small number of
attributes, and reveals a cohesive collaboration between the attributes when the class is well-designed
and gives a specific functionality, in this specific case, dealing with collections.

• We identified 20 over 56 methods in total that access systematicallyall the state of the class. By
further inspection, we learned that most of the accessors are readers. There are only five methods,
makeRoomAtFirst, makeRoomAtLast, setIndices, insert:before:, andsetIndicesFrom:, that read and
write the state at the same time. More than half of the methods (33 over 56) directly and indirectly
access both attributes. This confirms the hypothesis that the class maintains a strong correlation
between the two attributes and the anonymous attribute of the class.

Validation with UIBuilder : The results are quite different compared to those obtained forOrderedCol-
lection.

• We find getters and setters for each attribute.

• If we consider only the methods that access directly the attributes, we can classify the attributes
into two groups: (a) attributes that are accessed by their getter and setter, and one or two additional
methods (converterClass, windowSpec, spec, decorator, cacheWhileEditing); and (b) attributes that
are accessed by several methods. Note that the view EXTERNAL /INTERNAL CALLS helps us to
refine our understanding of these differences.
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• We also learned that most accessors are readers, and there are only very few writers. Most of the
writer methods are setters. This means that most of the attributes either are initialized when instances
are created or are initialized and modified outside the class scope.

• If we consider the group ofcollaborating attributestaking into account only the direct accessors,
we find that there are groups of two and three attributes, such as(wrapper, component), (bindings,
window), (stack, composite), (policy, window), (source, bindings), (component, decorator, wrapper),
(isEditing, labels, source). In the most of the cases, only 1 or 2 methods are accessing the groups
of attributes by reading them. There are 3 attributes that are used alone in different methods. These
facts reveal that the class is grouping several functionalities and could be split using the set of non-
collaborating and collaborating attributes. This kind of hypothesis can be refined using the BE-
HAVIOURAL SKELETON view.

• In this specific case, we do not have any stateful core methods, which is not surprising as the class
has a lot of attributes.

Validation with Scanner : The results forScanner are completely different from those obtained for the
other two classes. We find that we cannot partition the attributes into groups that are exclusively used
by certain sets of methods. Instead, each method typically uses some subset of attributes that overlaps
in arbitrary ways with those used by other methods. This means that every attribute offers some specific
functionality that is complemented by the functionality offered by other attributes. None of the attributes
have setters and getters,i.e., the state is internal and it is not exported outside the scope of the class.

4.4.2 XRay View: EXTERNAL /I NTERNAL CALLS

Description: Clusters methods according to their participation in internal or external invocations.

Used and Shown Groups: Interface Methods andExternally Used State.

Rationale: This view reveals the overall shape of the class in terms of its internal reuse of functionality.
This is especially important for understanding framework classes that subclasses will extend. Interface
methods, for example, are often generic template methods, and internal methods are often hook methods
that should be overridden or extended by subclasses.

Validation with OrderedCollection : From the analysis ofOrderedCollection, we obtain the following
results:

• The interfaceis composed of 37 external methods. There are 22 methods (of those 37) that directly
access attributes. Therefore the classOrderedCollection has a flat call-flow which means that there is
little internal reuse of its own behaviour.

• The groups also reveal that on one hand we have methods such asadd:, remove: that are part of the
public class interface but are also used internally but they are not calledvia a self-call, and on the
other hand we have pure, public methods such aschangeSizeTo: andrepresentBinaryOn:, meaning
that they are not used at all in the class.

In VisualWorks [Vis03], the classOrderedCollection has 6 subclasses. However, each of these subclasses
only addsextra behaviour and does not change the internal behaviour of the class. This confirms our
expectations, since the absence of internal reuse of methods inOrderedCollection is also a sign that there is
little behaviour to be reused or extended by subclasses.
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Validation with UIBuilder : From the analysis of the classUIBuilder, the results show that:

• 89 of 124UIBuilder methods are not invoked by the class itself.

• 35 methods define the internal behaviour of the class. This fact fits well with the intent of the Builder
design pattern and the fact thatUIBuilder offers not only a lot of functionality to build complex user
interface but also offers several ways to query its internal state via methods such ascomponentAt:,
listAt:, andmenuAt:.

• We checked how the accessor methods identified by the STATE USAGE are classified as external
and internal methods. For example,policy anddecorator are external, as they allow the client of the
builder to specify the look and feel policy used for the window.cacheWhileEditing is purely internal,
as its name suggests. Note that this is a typical example how different views like STATE USAGE and
EXTERNAL /INTERNAL CALLS complement each other in the process of understanding a class.

4.4.3 XRay View: BEHAVIOURAL SKELETON

Description: Clusters methods according to whether or not they work together with other methods de-
fined in the class or whether or not they access the state of the class.

Used and Shown Groups: Collaborating Methods andStateless Methods.

Rationale: Ideally an object should be cohesive. In reality, this is not always the case. For example user
interface classes usually act as a glue between the domain objects and the widgets. The way methods form
clusters of methods that work together indicates whether a class is cohesive or not [BDW98].

Validation with OrderedCollection : From our analysis we observe that we do not have much groups of
collaborating methods. Let’s see which are the characteristics we find in this class:

• If we have a look at the directcollaborating methods, i.e. methods that call directly other methods
via self we find only groups of methods of no more than 4 methods that calls at most 2 methods.
This means that there is no communication between groups of methods.

• There are severalcalls∗ meaning that we have different groups of methods that call indirectly other
methods. But in this specific case, we discover that theindirect called methodsare subsets of the
{lastIndex, changeCapacityTo:, increaseCapacity, size, firstIndex, makeRoomAtFirst }. In most of
cases, these methods areaccessorsof the state of the class. We conclude then that most of the
methods finally calls thiscore of methods, and as we said before, we confirmed that there is no
communication between groups of methods.

• The two facts mentioned previously allow us to confirm what we saw in the STATE USAGEview that
most of the methods access the attributes of the class, and what we saw in EXTERNAL /INTERNAL

CALLS views that we have a flat method call-flow pattern for this class.

• One interesting feature of the groupsCollaborating Methodsis that the groups we found have a
namingrelationship, for example, in one group we have{add:, addAll:, addAllLast: } (a subset of the
methods using in theaddinginterface of the class that have a common group ofcalledmethods).

• In the stateless methods, we identify two main groups:

– methodsinspectorClass and inspectorClasses that access three system global variables:Or-
deredCollectionInspector, BasicInspector andSequenceInspector 3.

– methods that invoke methods, such aserror:, inherited from the superclass.

3These global variables are used to identify the right class that can inspect an instance ofOrderedCollection when debugging
code
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Validation with UIBuilder : In the EXTERNAL /INTERNAL CALLS view we see thatUIBuilder has 35
methods that constitute the internal behaviour. We see that the call-flow is a complicated structure but the
internal behavioral structure reveal the following issues:

• Each group of directcollaborating methodsis reduced to, at most, 7calledmethods callingvia self
1 or 2accessorsmethods of an attribute of the class;

• Groups of indirectcollaborating methodsare larger than the groups of direct ones, but finally in the
most of the casescalledmethods are alsoaccessorsmethods of an attribute of the class.

• From the two facts mentioned previously, we conclude that this confirms that most of the methods
defined in the class are used as interface of the class and the state is exposed through the interface
(as we saw in the EXTERNAL /INTERNAL CALLS view).

• Not as often as in the classOrderedCollection but in this case, we have also found that some methods
in the groups were related by their names,i.e., methods of theopeninginterface of a class.

• We have also identified 6 stateless methods. By inspecting the code, we see that these methods are
not providing any specific functionality of the class and could be removed. By inspecting their code,
we saw that one is catching an exception, one is returning a global variable, one does nothing, one
is returning nil, one is returning the variableself and the last one is returning a boolean variable.
By inspecting the code, we see that these methods are not so often used in the class so they are
candidates to be removed.

Validation with Scanner : In this class, we identify a situation similar to that withOrderedCollection.
The collaboration between the methods occurs in pairs, and there are no groups of methods collaborating
with other groups. SinceScanner is a small class, it is not surprising that the internal collaborations are
simple.

4.5 Application of the Approach: Analysis

In Chapter 3, we have discussed the approach in general terms. We have also mentioned different issues that
the user must take into account when applying the approach. Here following we list the issues concerning
XRay views on classes.

• Choice of elements and properties.Elements and properties are mapped directly from the meta-
model: elements are attributes and methods, and properties are accesses to attributes and calls to
methods.

• Compact representation of data.Supposing you have two methodsm andn and one attributea, if
we have several calls to the methodn or accesses to the attributea in the method body ofm, we just
keep one representative ofn anda related to the methodm. So far, the number of calls and accesses
appearing in the methodm is not an analysis factor.

• Limits of theXRay views.In this high level view, we consider that all the possibleXRay views are
generated without considering inheritance relationships with other classes. We think that the limit
with this specific set of properties is reached in this specifichigh-level views, and that more analysis
in new classes will not generate newXRay Views.

• Multiple FCA contexts.In this case, we have used four lattices grouped in two. The first two ones are
to analyze the state of the class directly and indirectly. The second ones are to analyze the invocations
of the class directly and indirectly. We did not combine this information in a single lattice because
we consider them to be completely different aspects of the class.

• Unnecessary properties.In some classes, the following propertiesis Abstract, isStateless, isInterface
are discarded. This is normal because in any given class, it commonly occurs that all methods are
concrete, or that all the method access the state, or that most methods are called inside the class .
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• Meaningless concepts.We discarded concepts with a single method in the set of elements, because
we were more focused on groups of methods (represented in the elements) collaborating with another
group of methods (represented in the properties).

• Mapping Partial Order of the Lattice.We did not find a relationship that could be mapped to the
partial order of the lattice.

4.6 Discussion

Use of FCA.The main advantage of using FCA is the possibility of specifying simple properties between
the elements we need to analyze. Based on these simple properties, the FCA algorithm implemented
in ConAn provides us with all the possible combinations of the elements with a set of properties that
they have in common. Thismining forms the groups we used to build theXRay views. The key issue
is that we find groups of related entities that show us known andunpredictablerelationships between
the different elements. For example, we could detect (without using FCA)all the methods accessing
one specific instance variablebut FCA offers more than this information. We are able to identify all the
possible groups of methods using groups of attributes and these groups are generated automatically by the
FCA algorithm. However, not all the groups are meaningful for us. We need to perform post-processing to
filter those groups that provide useful information about the class.

Overlap of Information. The results provided by different views will often overlap, as the views provide
different perspectives of the same class using the same elements. For example, in the classUIBuilder the
methodspolicy anddecorator areDirect Accessors andExternally Used State. This means that these two
methods appear in twoXRay views: STATE USAGEand EXTERNAL /INTERNAL CALLS. This information
redundancy is useful because we see that theXRay views are complementary ones, and reinforce each
other.

Partial Information of the Concepts. Firstly when looking at the results of the groups to generate the
XRay views, we see only partial information about the class. For example, when we analyze the group of
Collaborating Attributeswe see the group of methods that are accessing groups of attributes, but you can
also have methods that are accessing each attribute, but not together. This means that in fact each group is
determining a subgraph of the supergraph of all the calls/accesses of the class represented with theClass
Blueprint of the analyzed class. This fact confirms that an analysis of each group in isolation provides
incomplete results. We need to analyse the impact of the group in all the chosen class. To circumvent this
problem we display the group under analysis in aClass Blueprintas shown in Figure 4.2, in this way we
use the visualization of the complete call graph to provide a context to the group.

Opportunistic Code Reading. Using onlyXRay views, we are not able to analyze all the information
about the class. To understand the class, the developer has to go iteratively between the views and reading
the code. TheXRay views show only the main skeleton of the class, but the opportunistic code reading is
needed for an analysis.

Class functionality. We have seen that the results withstatelessmethods are not so interesting in the three
analyzed classes. This does not mean that in all the classes we find the same situation, because it depends
on the functionalities provided by the class. For example, in EJB [MH00] there is the idea ofstatelessand
statefulsession bean. An instance of astatefulbean is associated with one client. There is a one:one corre-
spondence between session objects and the (stateful) instances of the session bean class. The EJB container
always delegates requests from a given client to the same session bean instance. However, the stateless ses-
sion objects do not retain any client-specific state between invocations. The EJB container maintains pool
of instances of the session bean class and delegates clients’ requests to any available instance. Then, we
see that with other classes we can discover other system features based on the use (or not) of the state.
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4.7 Related Work

Among the applications for understanding object-oriented systems at the class level using FCA, we only
found Dekel work [Dek03]. Dekel uses FCA to visualize the structure of the class in Java and to select
an effective order for reading the methods. He calculates all the accesseses to fields that each method
makes. In our approach, we also calculate the access to the instance variables of a class, but in contrast
to our approach, he does not provide information about the interaction between the methods, nor does it
reveal whether a method accesses a combination of fields directly, by accessing their values, or indirectly,
by invoking methods that access them directly. To detect all the mentioned features, he superimposes the
method call-graphonto the concept lattice and obtains aembedded call-graph.

There is also some relevant work to support the understanding of object-oriented systems at the class
level that is not based on FCA. GraphTrace [KG88] visualizes concurrent animated views to understand
the way a system behaves. Program Explorer [LN95] uses both dynamic and static information that the
reengineer can query and visualize function invocation, object instantiation, and attribute access via simple
graphs. The views show class and instance relationships (usually focused on a particular instance or class),
and short method-invocation histories. Using basic graph visualizations to represent various relationships,
Mendelzon and Sametinger [MS95] show that they can express metrics, verify constraints, and identify
design patterns. Crosset al., in the context of procedural languages, have proposed and investigated new
control structure diagrams to support the reading of the applications’ control flow [CIMH98]. Lanza and
Ducasse have proposedClass Blueprints, which are structured call flows enriched with semantical infor-
mation and metrics [LD01]. Finally, program slicing [GL91] is also used to support the understanding of
programs. Based on slices, CodeSurfer [AT01] supports understanding by using hypertext facilities. In all
these approaches, the visualization of call graph of a class is the main source of the analysis, they combine
static and dynamic information of a system, and they focus partially on a class. In our approach, the visual-
ization is used as a secondary tool to analyze the class based on the generatedXRay Views, and we restrict
ourselves to static information of a system and we analyze the complete class.

4.8 Conclusions

This section summarizes theviewson understanding a class, a discussion about the approach, the answers
to the research questions proposed in Chapter 2 and future work.

4.8.1 Summary

In this chapter we have introduced one approach based on FCA to help in the understanding of object-
oriented classes. The identified concepts show dependencies between groups of methods and attributes
of a single class. Using them, we have defined a number of usefulXRay views which correspond to
related groups that expose specific aspects of a class, and they are particularly useful for understanding the
behaviour of a class. We have validated the technique by applying it to a number of Smalltalk classes using
ConAn, a tool we have developed to automatically generate the groups that compose theXRay views.

In our first experiences we can observe the following:

• eachXRay view has a clear focus, and identifies a group of methods exhibiting some key properties,

• the views do not stand on their own, but complement and reinforce each other, because they analyze
the class from different viewpoints but with the same elements,

• although the generation of groups and the views is fully automatic, their interpretation entails itera-
tive application of views and opportunistic code reading,

• the user has to know the semantics of the groups he is using so a learning phase is necessary, and

• the current approach does not take inheritance into account, which can be an impediment to under-
standing.
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4.8.2 Research Questions

Based on the approach, we are able to answer some of the research questions proposed in Chapter 2:

• How does the technique help in understanding the inner workings of a class ?

In this approach, we have seen that FCA is an useful technique in understanding a class. Using
the attributes and methods as FCA elements and mapping the accesses and invocations as FCA
properties, we have built three differentXRay views that help us to focus on different characteristics
implemented in a class. The threeXRay views do not stand on their own, but complement and
reinforce each other. The interesting characteristic of the approach is the possibility to discover
known and unknown groups of attributes and methods revealingimplicit contracts. These contracts
are shown in the differentXRay views.

• Is there a limited number ofXRay views in a class ?

We consider that the number ofXRay views is not limited. We have defined only threeXRay views
analyzing the class as a sole development unit. If we consider the inheritance relationships with
its subclasses and superclasses, and how the clients classes use the class, the class will reveal new
implicit contracts and also newXRay views will appear.

• Does FCA discover new dependencies in the class ?

Our FCA-based methodology applied in understanding a class discovered new dependencies in the
class. Two concrete examples are groups of methods using groups of attributes, and also indirect
accesses and invocations in the class. These two cases are not trivial to detect in the classic code-
reading technique.

4.8.3 Future Work

Our next steps consists of:

• Use of repeated information (we would not apply the issue ofCompact representation of data) and
measurement the frequency of accesses of attributes and calls to methods in the concepts of the
lattice.

• Extraction of new kinds of views considering possible relationships in a context of a class hierarchy
and also the possible relationships with other class -not necessarily presented in the class hierarchies.

• Controlled experiment with developers to evaluate the advantages and drawbacks of the application
of XRay Views.

• Refinement of the used properties and definition of new complex ones.

• Definition of filters to remove more non-meaningful information from the lattice.
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Chapter 5

Hierarchy Schemas: Discovering
Unanticipated Dependencies in Class
Hierarchies

Inheritance is the cornerstone of object-oriented development, enabling conceptual modeling, subtype poly-
morphism and software reuse. But inheritance can be used in subtle ways that make complex systems hard
to understand and extend [DDN02]. In particular, a developer making changes or extensions to an object-
oriented system must understand the implicit contracts and dependencies between a class and its subclasses,
or risk that seemingly innocuous changes break these contracts [SLMD96]. In this chapter we focus on the
second abstraction level of a system: a class hierarchy. We develop a methodology focused on identifying
undocumented hierarchical dependencies in a hierarchy only taking into account the existing collaborations
between classes and subclasses. Our analysis is based on the internal structure of each class, and focus on
how the class define and use local behavior and state, and define and use superclass behavior and state.
We provide a catalog ofHierarchy Schemas, each composed of a set of dependencies over methods and
attributes in a class hierarchy. Each of these schemas shows thehidden contractsof the classes in the class
hierarchy. These schemas identify different design features of the class hierarchy:Classical Schemasrep-
resent common styles that are used to build and extend a class hierarchy,“Bad Smell” Schemasrepresent
doutbul design decisions that should be completely changed, andIrregularities Schemasrepresent often
implementation that could be improved using minimal changes.

5.1 Problems in Understanding Class Hierarchies

Class hierarchies are another cornerstone of the object-oriented development, enabling conceptual mod-
elling, subtype polymorphism and software reuse [DDN02]. However, several building mechanisms make
them difficult to understand. Let’s mention some of them:

• One programming practice is the use of subtyping or subclassing. The semantics associated with
inheritance may be inconsistent within a single hierarchy. Thesubclassingpushes reuse to its limits
and makes understanding more difficult as the concepts are not related and understanding a subclass
requires to understand how theimplementationof the superclass is reused. It forces the developer
to cancel inherited methods or to invoke hidden methods with different names to literally jump over
methods implemented in the class [KST96].

• The presence of late-binding leads to “yoyo effects” when walking through a hierarchy and trying to
follow the call-flow [WH92].

• Classes define state and the methods that act on this state. It is important to understand how the state
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is accessed, presented, if at all, to the class’s clients, and how subclasses access this state.

5.2 Goals of Hierarchy Schemas

The identified dependency schemas on class hierarchies help us to answer such questions as:

• Which classes define and use (or not) their own state and behavior

• Which classes use the state defined in their superclasses

• Which classes usetemplate and hook methodsand define behavior for their subclasses

• Which classes reuse or extend (or not) the behavior of their superclasses

• Which classes cancel the behavior of their superclasses

Furthermore, the approach is entirely neutral. Uncovered dependency schemas may correspond either to
well-known best practice in object-oriented design, or they may be signs of degenerated design. Once
dependency schemas are classified, they are a good basis for identifying which parts of a system are in
need of repair. The approach thus provides us not only with aglobal view of the system and which kinds
of dependencies and practices occur, but it also providesdetailedinformation about how specific classes
are related to others in their hierarchy, and how that hierarchy can be modified and extended.

Structure of the Chapter. This chapter is structured as follows: In Section 5.3 we present our mapping
of object-oriented dependencies to the framework of FCA. In Section 5.4 we provide an overview of the
results obtained by applying our approach to theSmalltalk Collectionhierarchy and by showing howSort-
edCollection fits into this hierarchy. Section 5.5 analyzes several issues (introduced in Chapter 3) related
to the application of the approach in class hierarchies.Section 5.6 provides a brief discussion of various
technical issues. Section 5.7 presents some related work. Finally, we conclude and outline about the future
work.

5.3 Formal Concept Analysis in Analyzing Class Hierarchies

In order to apply FCA to detect dependencies schemas, we must cast models of OO software systems in
terms of an FCA context, that is, we must define the elements and properties of interest. We will first
describe this context, and then show how recurring combinations of properties lead to the dependency
schemas of interest.

5.3.1 Elements and Properties of Classes

We choose as elements theinvocationsof methods via aself or asupersend andaccessesto the attributes
of a class. We choose as properties of invocations whether the call is aself or a supersend and the
relationships between the class thatdefinesand the one thatinvokesthe methods. In case of accesses, we
are interested in the relationships between the class that defines the attribute and the one that accesses it.

To this end, we define the following predicates with the obvious meanings, wherem is a method,a an
attribute,i is an invoked method or accessed attribute, andC, C1, C2 are classes:

• i is an invoked method inC

• i is an accessed attribute inC

• C invokesi via self

• C invokesi via super
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• C definesi

• C1 is ancestor ofC2

• C1 is descendant ofC2

• m is abstractin C

• m is concretein C

• m is cancelledin C

We now combine these predicates in the obvious way to obtain the following list of 15 properties:

• i accesses{ local state, state in AncestorC1, state in DescendantC1 } (3 properties)

• i is defined{ locally, in ancestorC1 of C , in descendantC1 of C } (3 properties)

• i { is abstract, is concrete, is cancelled} { locally, in ancestorC1 of xC, in descendantC1 of C }
(3× 3 = 9 properties)

For example, the propertyi accesses local stateis trivially obtained by combiningi is an accessed attribute
in C andC definesi.

We also directly adopt the following 2 predicates as properties, leading to 17 properties considered in total:

• C invokesi via self

• C invokesi via super

5.3.2 Interpretation of the Properties in Concepts

By applying FCA to this context, we obtain certain recurring sets of properties as “concepts”. Certain of
these concepts correspond to interesting dependency schemas, as reported in Section 5.4. Let us briefly
consider two examples.

The schemaReuse of Superclass Behavioris composed of the following properties:

• C invokesi via self: {copyEmpty, insert:before:, reverseDo:, asArray, isEmpty, notFoundError} are
self-calledin SortedCollection

• i is concrete in ancestorC1 of C : {copyEmpty, insert:before:, isEmpty} hasconcrete behavior in
ancestorOrderedCollection; and{reverseDo:, asArray} hasconcrete behavior in ancestorSequence-
ableCollection; and{notFoundError} hasconcrete behavior in ancestorCollection

Within the“Bad Smell” category, we have the schemaBrokensupersend Chainand it is composed of the
following groups:

• C invokesi via super: {representBinaryOn:, =} aresuper-calledin SortedCollection

• i is concrete locally: {representBinaryOn:, =} hasconcrete behavior in ancestorSortedCollection

• i is concrete in ancestorC1 of C : {representBinaryOn:, =} hasconcrete behavior in ancestorSe-
quenceableCollection

• i is concrete in descendantC1 of C : {representBinaryOn:, =} hasconcrete behavior in descendant
SortedCollectionWithPolicy
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5.4 Detected Dependency Schemas

We present here the results of our analysis of the SmalltalkCollection hierarchy. This hierarchy is espe-
cially interesting because (i) it is an essential part of the Smalltalk system, and (ii) it makes heavy use of
subclassing for a variety of purposes. It is an industrial quality class hierarchy that has evolved over 15
years, and has been studied by other researchers [GMM+98] [Coo92]. It has also influenced the design of
current C++ and Java collection hierarchies. The SmalltalkCollection hierarchy is composed of 104 classes
distributed over 8 levels of inheritance. There are 2162 defined methods in all the classes, with 3117 invo-
cations of these methods within the hierarchy and 1146 accesses to the state of the classes defined in the
hierarchy.

We will first provide aglobal overview of the schemas discovered, and then we will focus on the role of
the classSortedCollection within the collection.

5.4.1 Global View onCollection Hierarchy

By applying FCA to theCollection hierarchy, we discovered 451 instances of 16 different dependency
schemas. We were then able to manually categorize these into three groups:Classical, “Bad Smell” and
Irregularities.

• ClassicalSchemas representcommonidioms/styles that are used to build and extend a class hierar-
chy, i.e., best practices.

• “Bad Smell” Schemas represent doubtful designs decisions used to build the hierarchy. They are
frequently a sign that some parts should be completely changed or even rewritten from scratch.

• Irregularities Schemas representirregular situations used to build the hierarchy. Often the imple-
mentation can be improved using minimal changes. They are less serious than“Bad Smell” schemas.

Table 5.1 provides an overview of the three groups, together with the total number of detected instances of
each schema.

Classical: Local Direct State Access. This schema identifies classes that define and use their own state
directly (using or not the accessors). InCollection hierarchy, there are 55 classes contained in this schema.
Most of the classes are leaves in the class hierarchy represented as a tree, and it shows that this hier-
archy is built based onsubclassingprinciple, because each class is extending behavior inherited from
the superclasses and providing specific functionality. Only in the subhierarchies starting fromString and
WeakDictionary have no leaves classes that fullfil this form, meaning that eventually these classes either
use state of the superclasses or only extend the behavior of the superclasses without extending the state of
the superclasses.

“Bad Smell”: Ancestor Direct State Access. This schema identifies classes that access (read or modify
the values of) the state of an ancestor class without using the accessors defined in the ancestor classes.
We identified 19 classes that are part of the subhierarchies determined byGeneralNameSpace, Dictionary,
OrderedCollection, LinkedList. In most of the cases, the classes are accessing state of the immediate super-
class, but in the subhierarchy ofOrderedCollection we detected several classes that access state of ancestors
higher up in the chain of their superclasses. This is a not good coding practice since it introduces an unnec-
essary dependency on the internal representation of ancestor classes, and thereby violates encapsulation.
Figure 5.1 illustrates this schema.

“Bad Smell”: Cancelled Local or Inherited Behavior. This schema identifies concrete or local in-
herited methods that are invoked via aself send in a class or its superclasses but are then cancelled in
subclasses. Method cancellation is a sign that inheritance is being applied purely for purposes of code
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Name Description Nr.

Classical
Local Direct State Access Identifies methods that directly access the class state.Variations: using

or not using accessors.
72

Local Behavior Identifies methods defined and used in the class and that are not over-
ridden in the subclasses. Often represent internal class behavior.

69

Template And Hook Identifies methods that define template and hook methods.Variations:
default hooks are abstract or represent a default behavior.

17

Redefined Concrete Behav-
ior

Identifies concrete inherited methods that are redefined in the class or
in the subclasses.

43

Extended Concrete Behav-
ior

Identifies concrete inherited methods that are extended in the class (only
supersend).

37

Reuse of Superclass Behav-
ior

Identifies concrete methods that invoke superclass methods byself or
supersends.Variation: method that invokes super method of the same
name.

111

Local Behavior overridden
in Subclasses

Identifies methods that are overridden in subclasses 29

Abstract and Concrete
Chain

Identifies an abstract method, and a chain of subclasses that override it
with a concrete implementation.

10

Bad Smells
Ancestor Direct State Ac-
cess

Identifies methods that directly access the state of an ancestor, bypass-
ing any accessors.

19

Cancelled Local Behavior
but Superclass Reuse

Identifies concrete inherited methods whose behavior iscancelledin the
class but whose corresponding superclass behavior is invokedi.e., via
a supersend from a different method. This workaround is a common
sign of difficulty improperly factoring out common behaviour.

1

Abstracting Concrete Meth-
ods

Identifies abstract methods overriding concrete ones. 8

Cancelled Local or Inherited
Behavior

Identifies concrete or local inherited methods that are invokedi.e., via
self send in a class or its superclasses, but are cancelled in subclasses.
Method cancellation is a sign of inheritance for code reuse without re-
gard for subtyping.

6

Brokensupersend Chain Identifies methods that are extended (i.e., via a supersend) at some
point in the hierarchy, but are then simply overridden lower in the hier-
archy. This can be the sign of a broken subclassing contract.

7

Irregularities
Inherited and Local Invoca-
tions

Identifies methods that are invoked by bothself andsupersends within
the same class. This may be a problem if the super sends are invoked
from a method with a different name.

15

Unused Local Behavior but
Superclass Reuse

Identifies concrete inherited methods whose behavior isoverriddenbut
unused in the class, and whose corresponding superclass behavior is
invokedi.e., via asupersend from a different method.

3

Accessor Redefinition Identifies methods that are accessors in a class but are redefined in the
subclass as non-accessor methods.

4

Table 5.1: Commonly Identified Schemas.
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Set
tally: Integer

WeakDictionary
noCheckAt:put: 
       { ... tally ... }

Figure 5.1: Ancestor Direct State Access.

reuse, without regard for subtyping. Since methods of the superclass calling the cancelled methods can
still be called on the cancelling class, this may lead to runtime errors. In the Collection hierarchy it occurs
in the subhierarchies ofSequenceableCollection andOrderedCollection. Figure 5.2 illustrates this schema.

OrderedCollection
add: 
   { ... self addLast: ... }

addLast: 
        { <concrete> }

FontDescription
Bundle

addLast:
      { <concrete> }

Sorted
Collection

addLast:
      { <cancelled> }

Figure 5.2: Cancelled Inherited Behavior.

Irregularities: Inherited and Local Invocations. This schema shows methods that are invoked by both
self andsupersends within the same class. Initially this schema is agood practicecoding (as shown in
Figure 5.3), but a problem occurs when thesupersends are invoked from a method with a different name.
This special case of the schema occurs in the classesLinkedOrderedCollection, LinkedWeakAssociationDic-
tionary andXMainChangeSet. All these classes have a special form: the class overrides a methodm andm
invokes a method namedown-m via self send, and this last method callsm via asupersend implemented in
the superclass. Figure 5.4 illustrates this schema. This is anirregular case of the schema Redefined Con-
crete Behavior because the class is overriding the superclass behavior but is indirectly using the superclass
behavior.

5.4.2 “Class-Based” View onSortedCollection

With theglobal viewwe analyze a class hierarchy, but our approach helps also us to analyze how a class is
built in the context of its superclasses and subclasses.

We chose to analyze the classSortedCollection (a subclass ofOrderedCollection). A SortedCollection is
an ordered collection of elements, using a sorting function for the elements. The class has one attribute
sortBlock which holds the sorting function; has one class variable (static variable in Java)DefaultSortBlock
that holds the default sorting function. As a subclass ofOrderedCollection, it inherits two instance variables
firstIndex andlastIndex and an indexed variableobjects. Regarding its methods, it defines 10 methods and
overrides 19 methods from the 403 inherited.
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ColorPreferences
Collection

matchAt:ifAbsent: 
     { <concrete>  }

ColorPreferences
Dictionary

bindConstantCodeArray
     { ... self matchAt:ifAbsent: ... }

matchAt:ifAbsent:
    { ... super matchAt:ifAbsent: ... } 

Figure 5.3: Inherited and Local
Invocations - Case 1

Ordered
Collection

isEmpty 
     { <concrete> }

LinkedOrdered
Collection

ownIsEmpty 
      { ... super isEmpty ... }

isEmpty
     { ... self ownIsEmpty ... }

notEmpty
     { self isEmpty not }

Figure 5.4: Inherited and Local
Invocations - Case 2

In this class we identify 12 different schemas that involves this class.

Within theClassicalcategory we report 1 case.

• Reuse of Superclass Behavior:This schema shows us that the classSortedCollection calls viaself
the methodscopyEmpty, insert:before:, reverseDo:, asArray, isEmpty, notFoundError and they are
not defined in the class but different superclasses define their behavior. Specifically, we see that
the methodscopyEmpty, insert:before: and isEmpty are defined in the classOrderedCollection, re-
verseDo: andasArray are defined in the classSequenceableCollection; andnotFoundError is captured
in the classCollection. Thus, we see which are the superclasses that determine the behavior of the
class. Figure 5.5 illustrates this schema. In Figure 5.6 we see how our visual tool shows this schema.

Collection
notFoundError
   { <concrete> }

Sequenceable
Collection

reverseDo:
    { <concrete> }

Ordered
Collection

isEmpty
   { <concrete> }

Sorted
Collection

add:
     { ... self isEmpty ... }

reverse 
     { ... self reverseDo: ... }

copyFrom: to:
    { ... self notFoundError ... }

Figure 5.5: Reuse of Superclass Behavior.

Within “Bad Smell”, we report 2 cases:
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Figure 5.6: Dependency Schemas identified inSortedCollection. All the classes are listed in the left pane.
The schema Reuse of Superclass Behavior is visualized in the right pane identifying the classes related to
SortedCollection in gray
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• Broken supersend Chain: This schema identifies methods that are extended (i.e., performing asu-
per send) in a class but redefined in their subclasses without calling the overridden behavior, hence
giving the impression to break the original extension logic. InSortedCollection the methods= and
representBinaryOn: are invoking superclass hidden methods. But the definition of these methods
in the subclassSortedCollectionWithPolicy does not invoke the method defined inSortedCollection.
Such a behavior can lead to unexpected results when the classes are extended without a deep know-
ledge of them. Figure 5.8 illustrates this schema.

• Cancelled Local Behavior but Superclass Reuse:This schema shows that the methodaddLast: is
calledvia a super sendand this method is defined in the immediate superclassOrderedCollection,
meaning that the class is reusing the behavior of the superclass. But this method is also implemented
in the classSortedCollection but the behavior iscancelled. Although it is not a good practice, it
seems a normal situation because the elements in asorted collectioncannot be added in the end of
the collection, but in a predefined position defined by the sorting function of the class. As we said
previously, this is a case where the inheritance is used as code reuse without regardingsubtyping.
Specifically, this means thatSortedCollection is a kind ofOrderedCollection but not all the inherited
methods can be applied. Figure 5.7 illustrates this schema.

Ordered
Collection

addAll:
    { <concrete> }

Sorted
Collection

addAllWithoutSorting
    { ... super addAll: ... }

addAll: 
    { <cancelled> }

Figure 5.7: Cancelled Local Behavior and Behavior
Reuse of Superclasses

Sequenceable
Collection

representBinaryOn: 
     { <concrete> }

Sorted
Collection

representBinaryOn:
   { ... super representBinaryOn: ... }

SortedCollection
WithPolicy

representBinaryOn:
     { <concrete> }

Figure 5.8: Brokensupersend Chain

Within theIrregularities, we only found one case:

• Inherited and Local Invocations: This schema shows that the methodcopyEmpty is used withself
sends andsupersends in the classSortedCollection. It is implemented in the class itself, has an
implementation in the superclassCollection and an implementation in the subclassSortedCollection-
WithPolicy. When checking the code, we see that the most of the calls areself sends and in the
method calledcopyEmpty, we have asupersend to a method with the same name. This means that,
in spite of a local implementation ofcopyEmpty, finally the behavior of this method is determined
by the superclasses, showing a heavy reuse of the superclass code. Figure 5.9 illustrates this schema.

The identified schemas in our approach provides another view on the class. They present some anticipated
dependencies between the methods of the classes and their relationships in the hierarchy. Our experience
confirms to us that the Collection hierarchy is a rich but difficult to extend hierarchy since it is based on
a heavy use of subclassing and aggressive code sharing. It relies on some internal knowledge and often
contains coding manner that leads to fragile design.
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Sorted
Collection

copyEmpty
     { ... super copyEmpty ... }

copyFrom: to: 
    { ... self copyEmpty ... }

SortedCollection
WithPolicy

copyEmpty 
      { ... super copyEmpty ... }

Collection
copyEmpty
    { <concrete> }

Figure 5.9: Inherited and Local Invocations.

5.5 Application of the Approach: Analysis

In Chapter 3, we have discussed the approach in general terms. We have also mentioned different issues that
the user must take into account when applying the approach. Here following we list the issues concerning
Hierarchy Schemason class hierarchies.

• Choice of Elements and Properties.We map the attributes accesses and methods calls directly from
the metamodel. The choice of properties requires some analysis, because we need to cover the
different possible inheritance relationships of the elements. The propertiesC invokesi via self and
C invokesi via superare mapped directly from the metamodel the rest of the properties are calculated
based on the relationships expressed in the metamodel.

• Compact representation of data.Supposing you have one methodm and one attributea in a classC,
if we have several calls to the methodn or accesses to the attributea in several methods of the class
C, we just keep one representative ofn anda related to the classC.

• Use negative properties.We define three negative properties because they help us to complement
the information of the elements considering the three inheritance relationships used in the approach:
local, ancestoranddescendantdefinitions.

• Single context.In this case, we just use only one lattice, because we analyze only one aspect of
classes: inheritance relationships.

• Meaningless concepts.All the meaningful concepts must show either a positive or negative informa-
tion about the 3 relationships:local, ancestoranddescendant, and have at least one property of the
set{C invokesi via self, C invokesi via super}. The rest of the concepts are discarded.

• Mapping Partial Order of the Lattice.We did not find a relationship that could be mapped to the
partial order of the lattice.

• Equivalent Concepts.We have said before that each concept is a candidate to be a schema. In this
case study, we found that several concepts could represent the same schema, meaning that a schema
can be expressed with different group of properties.
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5.6 Discussion

Performance of the Algorithm: In Chapter 3, we saw that we need to map the model entities (in our
specific case, the invocations and accesses) toFCA elementsand build different properties based on them.
Due to a limitation imposed by FCA algorithm in performance measurements [KO01], we reduce the
amount of FCA elements to compute the concepts and the lattice without losing information about the
class hierarchies. Thus, if we have several invocations of the same method or several accesses to attributes
in the same class, we keep only one invocation or one access per class as a representative, and we reduce
dramatically the number of FCA elements used byConAn, and reduces the computing time from around
1 hour to 10 min compared to the approach presented in a previous work [Aré03].

Analysis of State and Behavior:There are two main differences with regard to our previous work [Aré03].
First, in the current approach we take dependencies to state into account, whereas our earlier work con-
sidered only behaviour. This yields more concepts, and hence more schemas of interest than when only
behaviour is considered. Secondly, we are able to categorize schemas into those that representgood, irreg-
ular andbaddesign decisions in the class hierarchies.

Partial Usage of Lattice: We pointed out that once the concepts and the corresponding lattice are built,
each concept represents a group of invocations and accesses that relate a group of classes. But not all
the concepts are relevant, and we keep only the meaningful concepts. There are main three points worth
mentioning. Firstly, if we analyze the position of those concepts in the lattice, we see that most of them are
located in the lower part in the lattice, and we filter out the concepts located in the middle and upper part of
the lattice. This is because the concepts in the lower part of the lattice contain more properties (inversely,
few elements with those commonalities) than concepts higher up in the lattice (inversely, more elements
with less commonalities). Thus, the lower concepts provides more “interesting” information (based on
the combination of properties) and allow us to map them to non-trivial schemas of classes in a hierarchy.
Secondly, we only use 64 of 174 concepts in total, meaning that the 1/3 of the lattice is used. Finally, we
must note that, in this particular application of FCA, we do not use thepartial order of the concepts in the
lattice. This means that we do not exploit the possible relationships between the schemas (mapped from
the concepts).

Mapping from Concepts to Schemas:Of the 64 concepts we identify as “interesting”, we derive 16
dependency schemas. This means that in most of cases, a schema is represented in several concepts,
meaning that a schema can be described by different combinations of properties. But the policy of mapping
is arbitrary so far, meaning that when we interpret the contents of the concepts, we decide which are
concepts corresponding to the different schemas. For example, the schemaLocal Direct State Accessis
represented in 5 concepts because each concept shows different ways that the state of the class is accessed.
On the other hand, the schemaLocal Behavior is represented by just one concept. In other cases, one
schema could represent agoodor anirregular design practice. In this specific case, we see that the schema
Inherited and Local Invocationsis irregular only when thesupersends are invoked from a method with a
different name.

“Non-invoked” Methods: Our approach is limited to analyzing methods and attributes that are effectively
used in the context of the class hierarchy. If there are methods that are defined in any class but are not
invoked in the class itself or in any subclasses or in any superclasses, those methods are not included in our
analysis. Clearly, we lose some information about the classes in the hierarchy, because we only concentrate
on usage of behavior and state of the class.

FCA vs. Logic Engine: One of the main results of this approach is acatalogof schemas to characterize a
class hierarchy. As we see in Section 5.3, each schema is the interpretation of aconjunctionof properties
in the concepts. Then, each schema can be expressed as a logic predicate (mapped from the properties)
and a logic engine can be run in a class hierarchy to identify the occurrences of the different schemas.
Thus, the main difference between the use of FCA and a logic engine is that, in the former case, we do
not know in advance which are the possible schemas occurring in the class hierarchies, and consequently
we do not know the combination of properties that characterize them. FCA helps us mainly to discover
unpredictableschemas introduced in a class hierarchy. In the case of the use of a logic approach, we need
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to know which are the different properties that characterize a schema. We consider that both approaches
are complementary ones, because the catalog of schemas can be complete after the analysis of several class
hierarchies, and in that case, the application of logic engine is most suitable than FCA.

5.7 Related Work

Various researchers have explored techniques to support the understanding and evolution of class hierar-
chies. We briefly survey a small selection.

Steyaert et al. introduce the concept ofreuse contractsto capture the specialization interface between a
class and its subclasses [SLMD96]. Reuse Contracts can be used to identify conflicts during the evolution
of a hierarchy.

Program Explorer[LN95] enables a software engineer to query and visualize both dynamic and static infor-
mation via simple graphs to understand and verify hypotheses about function invocations, object instantia-
tion and attribute accesses. Using basic graph visualizations to represent various relationships, Mendelzon
and Sametinger [MS95] show that they can express metrics, constraints verification, and design schema
identification.

However, few approaches have focused on understanding complete class hierarchies. Ducasse and Lanza
[LD01] introduce the notion of aClass Blueprint, a semantically augmented visualization of the internal
structure of a class, which displays an enriched call-graph with a semantics-based layout. With this ap-
proach the reader can perform the analysis and browse the code to validate his hypotheses. Keller et al.
[SRMK99] focus on the identification of hook and template methods.

Several researchers have also applied FCA to the problem of understanding object-oriented software. Godin
and Mili [GMM+98] uses FCA to maintain, understand and detect inconsistencies in the SmalltalkCollec-
tion hierarchy. They show how Cook’s [Coo92] earlier manual attempt to build a better interface hierarchy
for this class hierarchy (based on interface conformance) could be automated. In C++, Snelting and Tip
[ST98] analysed a class hierarchy making the relationship between class members and variables explicit.
They were able to detect design anomalies such as class members that are redundant or that can be moved
into a derived class. As a result, they propose a new class hierarchy that is behaviorally equivalent to the
original one. Similarly, Huchard [HDL00] and Leblanc [Leb00] applied concept analysis to improve the
generalization/specialization of classes in a hierarchy. Based on this approach, Roume [Rou02] and Dao
et. al. [DHL+02] defined metrics to measure the impact of refactorings to the class hierarchies.

All the above approaches only take into account which selectors are implemented by which classes. They
do not consider behavioral information (i.e., based onself andsupersends) or usage of the state defined
in the classes. As shown in this thesis, this information in static analysis helps us to identify different
behavioralandstate dependency schemas. With these schemas, we evaluate the reuse of the methods and
state defined in the classes, and we discover differentdesigndecisions used in building the class hierarchies.

5.8 Conclusions

This section summarizes this approach with a summary, a discussion, the answers to the research questions
proposed in Chapter 2 and future work.

5.8.1 Summary

In this chapter, we show how the automatic generation of schemas using FCA helps us to discover different
implicit and undocumented dependencies in class hierarchies in terms of the behavior and state usage. The
categorization of these schemas intogood, irregular andbaddesign decisions helps us to:

• Generate the first mental model of a hierarchy.
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• Localize where different irregularities or problems occur in the implementation of a class hierarchy.

• Identify which are the main constraints that a specific class has in the context of a hierarchy. When a
developer wants to use or extend a class, he needs to understand which are the different dependencies
a class has regarding its subclasses and superclasses. These dependencies include if the class is
overriding or reusing the behavior inherited from the superclasses or if the class has template methods
and hooks that its subclasses should implement.

The large number of concepts to be mapped as schemas was the main drawback in the first application of
this approach. In spite of that, we believe that the catalog of schemas shows us useful information about
class hierarchy specially in cases such asSmalltalk Collection that have evolved with different building
principles and show different coding styles in the complete hierarchy.

5.8.2 Research Questions

Based on the approach, we are able to answer some of the research questions proposed in Chapter 2:

• How does the technique help in discovering schemas introduced in a class hierarchy ?

In this approach, we have seen that FCA can also be used in analyzing class hierarchies (our second
abstraction level in a system). In this case, we use accesses of attributes and method calls in a class
hierarchy as FCA elements, and we define properties based on where the attributes and methods are
defined. With this information we build a catalog of recurring situations named asschemas. Each
schema is classified asgood, irregular or bad smellaccording to the kind of design decision they
represent. These schemas clearly help the developer to identify good coding situations, pieces of
code that could be improved with minimal changes and cases where a design from scratch is needed.

• Do the schemas show new dependencies in the class hierarchy ?

The irregular andbad smellschemas reveal us that the class hierarchy presents new unexpected de-
pendencies. In those situations, we think that FCA is an useful technique.Classicaldesign decisions
in a class hierarchy are expected because they show known and often used building mechanisms.
Meanwhile,Irregularitiesand“Bad Smell” schemas show that the code was changed without taking
into account existing contracts between the classes. Thesehiddencontract are difficult to grasp when
the developer is not aware of them. Any change break the existing collaborations in these situations.

• Can FCA help to identify situations where the developer could apply reverse engineering tasks ?

This question is related to the second one.Irregularities and“Bad Smell” schemas represent in all
the identified cases opportunities to apply refactorings in the code. We are only able to identify those
situations. So far, we did not evaluate if the needed refactoring are costly in terms of changed code.

5.8.3 Future Work

Our next steps consist of:

• Application of the approach to other class hierarchies to check if the catalog of schemas identified
thus far covers all the interesting possible cases or if we discover new cases of implicit contracts.

• Extended analysis comprising methods that are invoked and those that are not invoked but are de-
clared in the classes. This kind of approach can measure how much information defined in the class
hierarchy is used or not.

• Refinement of properties to get a mapping 1 to 1 from concept to schema, and thus, reduce the
complexity of the lattice in terms of number of concepts.

• Analysis of relationships given by thepartial orderbetween the different schemas -mapped from the
concepts in the lattice- to find a possible mapping in terms of software reengineering.
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Chapter 6

Collaboration Patterns: Detecting
Implicit Dependencies in Applications

One of the key difficulties faced by developers who must maintain and extend complex software systems,
is to identify what are theimplicit contractsin the system. Such contracts are typically manifested as
recurring patterns of software artifacts, which may represent design patterns, architectural constraints, or
simply idioms and conventions adopted for the project. We introduce the termCollaboration Patternto
cover all these cases.

In most applications, the implicit contracts may be recovered by recognizing occurrences of collaboration
patterns in the source code [CC92] [NSW+02]. However this task is anything but trivial in medium-sized
to large applications. In most cases, the documentation of the systems is out-of-date, and the information
we are looking for is not explicit in the code [DDN02], [SLMD96], [LRP95].

In this chapter, we explore an approach for detecting collaboration patterns that refines and extends that
proposed by Tonella and Antoniol [TA99] for detecting classical design patterns. We focus on the third
abstraction level of a system: a complete application. We take the source code of an object-oriented
application as our main information source and extract structural relationships between classes. We then
apply Formal Concept Analysis (FCA) to identify recurring “concepts” (i.e., patterns) in the software.

6.1 Goals of Collaboration Patterns

Our approach consists of:

• improvements to the pattern detection algorithm used by Tonella and Antoniol to avoid redundancy
in the representation of structural relationships and improve the time performance of calculating
concepts,

• generalization of the technique to a language-independent approach,

• the introduction of a filtering phase to narrow the scope of candidate patterns.

Based on the results from our experiments, the main contributions of this chapter are:

• the detection of both classical and non-classical patterns in various applications using simple struc-
tural relationships between classes. We are not limited to known design patterns but can detectany
recurring collaboration between classes in the analyzed applications.

• the possibility of establishing relationships, calledpattern neighborhoods, over detected patterns.
With theneighborsof the patterns, we can detect either missing relationships between classes needed
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to complete a pattern, or excess relationships between classes that extend apattern. We can also
analyze the connections of the identified patterns with the classes implemented in the analyzed ap-
plication.

• the incremental construction of a pattern library to match candidates against known design patterns
and detected patterns after each case study.

For the sake of conciseness, we use the termpattern to refer tocollaboration patternsin the rest of the
chapter.

Structure of the Chapter. The chapter is structured as follows: We describe in detail the steps of the
pattern detection approach in section 6.2. We describe and evaluate our experimental results in sections
6.3. Section 6.4 analyzes several issues (introduced in Chapter 3) related to the application of the approach
in analyzing an application. Section 6.5 we provide some discussion points based on the experiments of
generating collaboration patterns. Section 6.6 presents some related work to detection of patterns using
other techniques. And final Section 6.7 we conclude the chapter and outline some future work.

6.2 Formal Concept Analysis in Analyzing an Application

In this section we outline in detail the three processing steps we have to deal with to get the concepts
meaningful enough that will interpreted asCollaboration Patterns.

6.2.1 FCA Mapping: Setup of the Formal Context

In order to use FCA, we need to define the elements and properties of a contextC. TheelementsEo are
tuples of classes from the analyzed application. The length of these tuples is defined as theorder o. The
properties Po are relations inside one class tuple. Whenever such a relationpi ∈ Po within the tuple
ej ∈ Eo is fulfilled we add the relation(pi, ej) to the incidence tableI.

We use a simple example to clarify the terms and the definitions. Figure 6.1 introduces an example con-
sisting of seven classes.

The key information of interest to us is the relationships that hold among classes. We have two kinds of
class relationships:

• Binary relationsRB . These relations can be represented by a labeled pair(Ci, Cj)Label, whereCi

andCj ∈ C, andC is the set of all the classes of the application. Considering the class diagram in
Figure 6.1,e.g., (B,A)Sub ∈ RB is the relationisSubclassbetweenB andA, and(P,A)Acc is the
relationaccessesbetweenP andA.

• Unary relationsRU . These relations can be represented by a labeled class(Ci)Label, e.g., isAbstract:
(A)Abs, (X)Abs ∈ RU .

Incidence Table 6.1 shows all the existing relations of ordero = 3 in the example of Figure 6.1. Let’s see
briefly how the elements and properties are built.

Elements: Permutation of Classes.

We have said that the elements are tuples of classes. We build the elements as all the permutations of the
classes with the length of ordero:

Eo = {(x1, · · · , xo) | xi ∈ C, 1 ≤ i ≤ o}
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<Abstract>
X

Y Z
<Abstract>

A

B C

P

Figure 6.1: Example class diagram

(1, 2)Sub (3, 1)Sub (3, 2)Sub (2, 1)Acc (1, 2)Acc (3, 2)Acc (2, 3)Acc (1)Abs (2)Abs (3)Abs

{C A P} × × × ×
{C A B} × × × ×
{Z X Y} × × × ×
{Z X P} × × × ×
{A P B} × × ×
{A P X} × × × ×
{Y X P} × × ×

Table 6.1: Order 3 context for the example in Figure 6.1

We use our variation of the algorithm proposed by Tonella and Antoniol [TA99]. It is an inductive context
construction algorithm that avoids the combinatorial explosion which results when generating all possible
tuples of classes. The underlying hypothesis is that the patterns consist of classes which areall connected
together by their relations (unrelated classes are not interesting). In the initial step of the algorithm, all
pairs of related classes are collected. In the inductive step, the class sequence from the previous iteration is
augmented with all the classes having some relation with the classes in the sequence.

Our variation in the algorithm is that, in all the steps, when we generate new class sequences we eliminate
those class sequences that were already generated but with the classes names in different positions. For
example, if the tuple{C A P} was generated, and we generate{A P C} or {C P A}, we only keep one
of these as being representative of the three alternatives. We reduce the amount of tuples to minimize
the amount of elements to be analyzed with theConAn engine and also to reduce the redundancy of
information between the elements. If we identify properties for the tuples{C A P}, the same properties are
valid for the tuples{A P C} and{C P A} with minimal variations in the indices (See how the properties
are built).

In case of Figure 6.1 all possible combinations of the class tuples of ordero = 3 would lead to 210 el-
ements1, while the inductively constructed context contains only seven elements. The reduction in the
number of elements is due to the elimination of repeated combinations of classes, the presence of discon-
nected subgraphs in the class diagram, and the partial connectivity inside each connected graph. Avoiding
the combinations of a tuple makes the algorithm faster because we have even fewer elements as input.

Properties: Class Relations and Characteristics.

The properties are all the possible combinations of a relationC ×C inside a tupleet ∈ E together with the
unary relations of each single classC:

Po = {(i, j)t | (xi, xj)t ∈ RB , 1 ≤ i, j ≤ o}∪
{(i)t | (xi)t ∈ RU , 1 ≤ i ≤ o}

1

(
7
3

)
3! = 210
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Each property has one or two indices that refer to the position of the class to be analyzed inside the tuple,
and a subindext to indicate the name of the property. For example, the property(3, 2)Sub applied to the
element{C A B}means that the class B is a subclass of the class A. Using indices instead of names allows
disjunct tuples to share common properties. In the example result (Table 6.2) the tuples{C A B} and{Z X
Y} have the common properties(1, 2)Sub, (2)Abs, (1, 2)Acc and(3, 2)Sub.

top ( all elementsG, ∅ )
8 ( { {C A P}, {Z X P}, {C A B}, {Z X Y}, {Y X P} }, { (1, 2)Sub, (2)Abs })
7 ( { {A P X}, {A P B} }, {(2, 1)Acc, (1)Abs } )
6 ( { {C A P}, {Z X P}, {C A B}, {Z X Y} }, { (1, 2)Sub, (2)Abs, (1, 2)Acc } )
5 ( { {C A P}, {Z X P}, {Y X P} }, { (1, 2)Sub, (2)Abs, (3, 2)Acc } )
4 ( { {A P B} }, { (3, 1)Sub, (1)Abs, (2, 1)Acc } )
3 ( { {A P X} }, { (2, 1)Acc, (1)Abs, (3)Abs, (2, 3)Acc} )
2 ( { {C A B}, {Z X Y} }, { (1, 2)Sub, (2)Abs, (1, 2)Acc, (3, 2)Sub } )
1 ({ {C A P}, {Z X P } }, { (1, 2)Sub, (2)Abs, (1, 2)Acc, (3, 2)Acc } )

bottom (∅, all propertiesM )

Table 6.2: Concepts of the example in Figure 6.1

6.2.2 ConAn Engine: Calculation of the Concepts

So far we specified all the prerequisites to start the calculation process of the concepts and lattice. There are
several algorithms to calculate the concepts and its lattice [SR97]. We use the Ganter algorithm [GW99],
because it is one of the most efficient in terms of time performance [KO01].

The example of Figure 6.1 yields ten concepts for the ordero = 3. They are listed in Table 6.2.

To make the explanation easier, let’s see the specific case of a known pattern, such asComposite Pattern
[GHJV95]. We can reduce and generalize the structural information to the relationshipsisSubclass, isAb-
stractandaccessesand see it as in Figure 6.2. This simplified Composite Pattern is detected twice in the
example of Figure 6.1:{C A B} and{Z X Y} as concept 2.

<Abstract>
1

2 n3 . . . . . . .

Figure 6.2: Structural relationships of the Composite Pattern

6.2.3 Concept Lattice: Post Filtering

Once the concepts are calculated, each concept is acandidatefor a pattern. But not all concepts are
relevant. Therefore a post processing of the concepts collection is needed to filter out concepts that are not
meaningful. Let’s look at the different filters.

Graph Representation of the Concept Intent.

To clarify the definitions, we introduce the graph representation of the intent of a concept. This graph is
specific to our domain and cannot be applied to general FCA.
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Intent relation graph: An intent relation graphis a graph whose nodes are the indices of the properties
of the binary relationRB and whose edges are binary relationsRB between the indices.

Nodes = {ni | 1 ≤ i ≤ o}

Edges = {(ni, nj) | (i, j) ∈ RB}

Considering Table 6.2, the binary relations of concept 2 are(1, 2)Sub, (1, 2)Acc and(3, 2)Sub, of concept
4 are(3, 1)Sub and (2, 1)Acc; and of the concept 8 is(1, 2)Sub. Thus, the intent graphs of concepts 2,
4 and 8 are shown in Figure 6.3. Considering the first diagramc2, the edge between node 1 and node
2 represents the property(1, 2)Sub or (1, 2)Acc and the second edge between node 2 and 3 is from the
property(3, 2)Sub. Similarly, we build the graph of concepts 4 and 8. The edges are unlabeled and have
no weights. As soon as at least one relation between two nodes holds, the edge exists. Note that the edges
from the intent relation graph are not related to the lattice edges.

1

2

3

1

2

3

1

2

3

c2 c4 c5

Figure 6.3: The intent graph of concepts 2, 4 and 8 of Table 6.2

Removing Disconnected Patterns.

A concept is meaningful when the intent (all properties which are true for this concept) is a set of struc-
turally connected nodes.

Connected Pattern:A connected patternis a pattern whoseintent relation graphis connected.

Disconnected patterns are determined by a lower order context. A context of the ordero is computed, when
ordero patterns are looked for, whileo − 1, o − 2, · · · order contexts suffice for lower order patterns. In
the example result (Table 6.2) the following concepts are disconnected: 6, 7, 8 and the top concept.

Merging Equivalent Patterns.

Suppose we have a system with the classes as shown in Figure 6.4. It might then happen that during the
concepts and lattice calculation, we find the two concepts shown in Table 6.3.

D

E F

S

T U

Figure 6.4: Adapter Pattern with two sets of classes

c1 ({ {D E F} }, { (2, 1)Sub, (3, 2)Acc} )
c2 ( { {T U S} }, {(1, 3)Sub, (2, 1)Acc } )

Table 6.3: Concepts of the example in Figure 6.4
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Even though{D E F} and{T U S} are exactly the same pattern, the algorithm treats them separately. This
happens because when generating the class sequences, we just keep one representative of each possible
combination of classes. This means we just look at{D E F} which represents the class sequence{{D F
E}, {E D F}, {E F D}, {F D E}, {F E D}}.
Equivalent Patterns: Two concepts, representing collaboration patterns, areequivalentif a permutation of
the indices of the intent properties exists such that each property from the first concept can be transformed
into a property of the second concept by that permutation, and vice versa [TA99].

In our example we find a permutationα = {3 7→ 1, 1 7→ 2, 2 7→ 3}, which transforms the tuple:{T U S}
α7−→ {S T U}. Conceptc2 (from Table 6.3) can now be removed when the translated extent of this concept

is added on conceptc1. We call this process asmerging equivalent patterns.
In the main example (Table 6.2) concepts 4 and 5 are equivalent: The permutationα = {3 7→ 1, 2 7→
1, 3 7→ 2} translates the properties of concept 5 into those of concept 4.

Applying these two filters (removing disconnected patternsandmerging equivalent patterns) on the main
example leads to the four patterns presented in Table 6.4. The first three patterns are directly taken from the
first three concepts. Patternp4 is merged from concepts 4 and 5. The elements of concept 5 are translated
into {P C A}, {P Z X} and{P Y X}, and are appended to{A P B}.

p4 ( { {A P B}, {P C A}, {P Z X}, {P Y X}}, { (3, 1)Sub, (1)Abstr, (2, 1)Acc } )
p3 ( { {A P X} }, { (2, 1)Acc, (1)Abstr, (3)Abstr, (2, 3)Acc} )
p2 ( { {C A B}, {Z X Y} }, { (1, 2)Sub, (2)Abstr, (1, 2)Acc, (3, 2)Sub } )
p1 ({ {C A P}, {Z X P } }, { (1, 2)Sub, (2)Abstr, (1, 2)Acc, (3, 2)Acc } )

Table 6.4: Resulting Patterns after the merging of equivalent patterns from the concepts of Table 6.2

Guessing Names for Patterns.

Some of the detected patterns might structurally match known Design Patterns. To check this, we need a
library of named reference patterns. In our approach, we provide this library by programming concrete
instances of patterns. For the Composite Pattern an instance with the properties(1, 2)Sub, (2)Abs, (3, 2)Acc

and(3, 2)Sub for the ordero = 3 is stored as a reference pattern (compare Figure 6.2). Thus patternp2

from our example is recognized as an instance of the Composite Pattern.

6.2.4 Pattern Neighborhood

One of the advantages of the FCA approach is that the generated concepts are related within acomplete
partial order. Thus given a conceptc, we can identify thecover conceptandsubordinate conceptof c. A
cover conceptin the lattice has less properties thanc; and asubordinate conceptin the lattice has more
properties. Looking at the lattice, if a conceptc has a cover conceptsp, sp is higher up thanc. Similarly,
if a conceptc has a subordinate conceptsb, sb is lower thanc in the lattice. With these two definitions, we
define the idea ofneighborhood. We define two kinds of neighbours. Considering that each conceptc is a
potential pattern, we define:

Almost pattern: An almost pattern Xof a patternY is a patternX which is contained in the cover concept
of the patternY in the lattice.

Overloaded pattern: An overloaded pattern Xof a patternY is a patternX which is contained in the
subordinate of a patternY in the lattice.

As a generic example, Figure 6.5 shows the structure ofalmostand overloadedpatterns of a concept
representing the structure of aComposite Pattern.

In the lattice of the example (shown in Figure 6.6), we see that concept 5 is an almost pattern of concept 1.
For example, tuple{Y X P} is missing the property(1, 2)Acc, so belongs to concept 5 instead of concept 1.
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3

<Abstract>
2

1

{ C A B }

O = 3

3

<Abstract>
2

1

3

2

1

Figure 6.5: Almost and overloaded patterns of a Composite Pattern

87

3 4 65

21

Bottom

Top

{C A B}
{Z X Y}

{C A P}
{Z X P}

{Y X P}

{A P B}

{A P X}

2 accesses 1
1 isAbstract

1 isSubclassOf 2
2 isAbstract

3 accesses 2

1 accesses 2

3 isSubclassOf 2

3 isSubclassOf 1

3 isAbstract
2 accesses 3

Figure 6.6: Resulting lattice of Incidence Table 6.1

But the problem with our concrete approach is that the side-effect of havingequivalent patternshas to be
taken into account here as well. As we have seen concept 4 is equivalent to concept 5. This new concept
(from the union of concepts 4 and 5) has two main consequences:

• the union of concepts 4 and 5 is now an almost pattern of concept 1

• new connections with other concepts can appear. In this specific case, if we translate the properties
of concept 2 with the permutationα = {1 7→ 3, 2 7→ 1, 3 7→ 2}, we see that this transforms the
unionof the concepts 4 and 5 in an almost pattern of thenewconcept 2 considering the intents of the
concepts. But the union of the concepts 4 and 5 have to add thetransformedelements of the extent
of concept 2. Thus the elements ofp2 have to be added inp4: {C A B} α7−→ {A C B} and{Z X Y}

α7−→ {X Z Y}.

After the post-filtering process, where we modify the extent of some concepts, findingequivalent patterns
and removingdisconnected patterns, we no longer have a valid lattice, but simply apartial order [DP02].
Now the patterns have reached their final state and are listed in Table 6.5.
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p4 ( { {A P B}, {P C A}, {P Z X}, {P Y X}, {A C B}, {X Z Y}},
{ (3, 1)Sub, (1)Abstr, (2, 1)Acc } )

p3 ( { {A P X} }, { (2, 1)Acc, (1)Abstr, (3)Abstr, (2, 3)Acc} )
p2 ( { {C A B}, {Z X Y} }, { (1, 2)Sub, (2)Abstr, (1, 2)Acc, (3, 2)Sub } )
p1 ({ {C A P}, {Z X P } }, { (1, 2)Sub, (2)Abstr, (1, 2)Acc, (3, 2)Acc } )

Table 6.5: Final Patterns after applying the post filters to the concepts from Table 6.2

Linking Different Orders.

Almost and overloaded patterns remain in the same ordero. There are as well related patterns when we
calculate the lattice for the ordero−1 and the ordero+1. Patterns in a higher order have subpatterns from
the lower order. They can be detected by subgraph matching techniques.

Cover pattern: C2 is a cover patternof the patternc1, if the intent relation graphof the patternc1 is a
subgraph of the intent relation graph ofc2.

Cover patterns are the connection links to the patterns in the ordero + 1.

Subpattern: C2 is asubpatternof the patternc1, if the intent relation graphof the patternc2 is a subgraph
of the intent relation graph ofc1.

Subpatterns are the connection links to the patterns in the ordero − 1. Linking the different orders of the
patterns is madeafter applying the post processing filter.
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Sub Patterns

Figure 6.7: Sub and cover patterns of the Composite Pattern (p2)

Figure 6.7 show the subpatterns of the Composite Patternp2 in the lower ordero = 2, and the cover pattern
in ordero = 4.

The pattern neighborhood is now the union of all the above mentioned sets:

Pattern Neighborhood: A pattern neighborhoodof a patternc is the union of the almost, overloaded,
cover and subpatterns of the patternc.
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The approach of Antoniol and Tonella [TA99] deals with patterns as isolated entities. With our approach we
relate the patterns within the same lattice and also with other patterns calculated in higher and lower orders.
Thus, we are able to analyze not only the detected patterns but also the relationships to other patterns in the
applications.

6.3 Validation: Case Studies

We have validated our approach by applying the tool we have implemented calledConAn PaDito three
mid-sized Smalltalk applications: ADvance, SmallWiki and CodeCrawler.

• ADvance2 is a system round-trip engineering tool from IC&C. It is a multidimensional OOAD-tool
for supporting object-oriented analysis and design, reverse engineering and documentation. AD-
vance is as well integrated in our toolConAn PaDito show the structure of the found patterns visu-
ally.

• SmallWiki 3 is a new and fully object-oriented wiki implementation in Smalltalk. It is highly cus-
tomizable and easily extensible with new components, appearances, servers, storage, etc.

• CodeCrawler is a language independent software visualization tool4. CodeCrawler supports reverse
engineering through the combination of metrics and software visualization [Lan03].

Table 6.6 gives an overview of the size and processing time for each case study. We have applied the
approach as outline in section 6.2 to each case study. After the concepts have been generated, we need
a way to classify the patterns to analyze the applications. Thus we classify the patterns in terms of the
properties that are used to describe them. We have built twoClassifiers AandB. TheClassifier Acontains
three properties:isSubclass , hasAsAttribute , isAbstract and theClassifier Bcontains two
properties:isSubclass , hasAsAttribute (Table 6.7).

Thus, for example, we take theClassifier Band we get all the patterns that can be described with a set
of properties that includeisSubclass or hasAsAttribute . In the specific case of CodeCrawler in
order= 3, we get 14 patterns which are distributed in 300 tuples of classes in total (Table 6.8). This means
thatClassifier Bgives us an average of 21 tuples per pattern (300 / 14).

ADvance SmallWiki CodeCrawler
Classes 167 100 81
Methods 2719 1072 1077
Lines of code 14466 4347 4868
Computation time ∼2 days ∼2 hours ∼30 min

Table 6.6: Statistical overview of the cases

Classifier A Classifier B
isSubclass isSubclass

hasAsAttribute hasAsAttribute
isAbstract

Table 6.7: Used Classifiers

The complete analysis of the quantitative impact of the classifiers is shown in the Table 6.8. A classifier
with less properties gives a clearer image of the situation. ApplyingClassifier Bwith less properties
heavily reduces the number of different patterns whereas the found patterns in total are much less reduced.

2http://www.io.com/∼icc/
3http://c2.com/cgi/wiki?SmallWiki
4http://www.iam.unibe.ch/∼scg
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This leads to patterns which have more tuples as elements. The patterns ofClassifier Aare too “noisy”.
Comparing again the case of CodeCrawler in order=3, we get that theClassifier Ahas an average of 13
tuples per pattern (431 / 32) meanwhile theClassifier Bhas an average of 21 tuples per pattern (300 / 14).

ADvance SmallWiki CodeCrawler
Classifier Classifier Classifier

o A B A B A B

2 # different patterns 12 5 8 4 7 3
# patterns in total 215 181 138 114 116 85

3 # different patterns 57 32 37 17 32 14
# patterns in total 1103 907 471 402 431 300

4 # different patterns 329 218 190 93 110 58
# patterns in total 7521 6093 2293 2039 1423 983

Table 6.8: Classifier statistics

With 34 core classes of CodeCrawler we analyzed patterns of higher ordero > 4. The statistics are in
Table 6.9. Unfortunately this calculation takes one week on a PC.

ordero 2 3 4 5 6 7

# different patterns 6 24 64 157 335 650
# patterns in total 45 94 209 461 954 1850

Table 6.9: Patterns of higher order of a set of core classes from CodeCrawler

To better compare the three cases we selected eight reference patterns which are introduced in Table 6.10.
Subclass Staris a tuple where one class has all the others as subclass. In theSubclass Chainthe classes
form an inheritance chain, whereas in theAttribute Chainthe classes form an access chain.Attribute Staris
a pattern with a class which is used as attribute in all the other classes from the tuple. The next four patterns
(Facade, Composite, AdapterandBridge) have all names from the collection of Gamma et. al.[GHJV95].
It is important to see that they are simplified to the used structural definitions of inheritance, aggregation
and abstractness of a class. If our tool identifies a found pattern with such a reference pattern it just means
that itcouldbe a candidate for this pattern. The letter A in a box means that the class should be abstract.

Table 6.11 shows all the found patterns of those eight references for the ordero = 2, 3, 4. Most of the
patterns appear twice: Once in the first line (e.g.,, Composite) where the reference pattern lacks the property
isAbstract; whereas in the second line theisAbstractproperty is taken into consideration. As Classifier B
has no propertyisAbstractit is obvious that no patterns containing anisAbstractproperty can be found.

One interesting observation is the two zeros marked with a star:Subclass ChainandAttribute Chainof
ordero = 4 of the CodeCrawler application. Applying Classifier A noSubclass ChainnorAttribute Chain
of ordero = 4 is found. Nevertheless Classifier B detects 12 instances ofSubclass Chainand 15 instances
of Attribute Chain. Classifier A does not detect those patterns because CodeCrawler has no chain with an
abstract classexactlyat the beginning and the rest of the chain consisting of non abstract classes. Just one
representative with an abstract class on top would be enough that the FCA approach would detect the rest
of the 12 (resp. 15) patterns. This effect shows that having too many properties can be counterproductive
and the basic patterns cannot be detected because there is too much noise.

6.4 Application of the Approach: Analysis

In Chapter 3, we have discussed the approach in general terms. We have also mentioned different issues that
the user must take into account when applying the approach. Here following we list the issues concerning
Collaboration Patternson complete applications.

• Choice of Elements and Properties.Elements are tuples of classes built from the metamodel. As
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o = 3 o = 4
Subclass Star

A A

Subclass Chain

A A

Attribute Chain

A A

Attribute Star

A
A

Facade

A
A

Composite

A A

Adapter
A

Bridge

A A

Table 6.10: Structure of investigated patterns

our case study refines the work of Tonella and Antoniol [TA99] we use the same idea to build the
elements. The choice of properties is the set of the structural relationships to characterizeStructural
Design Patterns[GHJV95]. Except the propertiesis subclass ofand is abstractthat are mapped
directly from the metamodel, the rest of properties are computed from the metamodel.

• Compact Representation of Data.This issue is related to how the tuples of classes are generated. We
avoid generating all permutations of class sequences in the tuples. For example, if the tuple{C A P}
is generated, and we subsequently generate{A P C} or {C P A}, we only keep one of these as being
representative of all three alternatives.
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ADvance SmallWiki CodeCrawler
Classifier Classifier Classifier

o Pattern A B A B A B

2 Subclasses 95 95 84 84 57 57
Attributes 80 80 28 28 26 26

3 Subclass Star 271 271 118 118 140 140
Abstract Subclass Star 46 - 12 - 22 -

Subclass Chain 44 44 62 62 28 28
Abstract Subclass Chain 10 - 10 - 11 -

Attribute Chain 108 108 39 39 25 25
Facade 214 214 23 23 42 42

Abstract Facade 0 - 0 - 15 -
Attribute Star 44 44 24 24 9 9

Abstract Attribute Star 3 - 3 - 1 -
Composite 6 6 0 0 0 0

Abstract Composite 2 - 0 - 0 -
Adapter 32 32 13 13 4 4

Abstract Adapter 13 - 1 - 1 -
Bridge 37 37 44 44 19 19

Abstract Bridge 6 - 5 - 12 -
4 Subclass Star 1073 1073 135 135 313 313

Abstract Subclass Star 87 - 5 - 15 -
Subclass Chain 12 12 31 31 0∗ 12

Abstract Subclass Chain 1 - 10 - 3 -
Attribute Chain 137 137 46 46 0∗ 15

Facade 627 627 13 13 56 56
Abstract Facade 0 - 0 - 20 -
Attribute Star 15 15 22 22 0 0

Abstract Attribute Star 1 - 3 - 0 -
Composite 3 3 0 0 0 0

Abstract Composite 1 - 0 - 0 -
Bridge 20 20 43 43 6 6

Table 6.11: Investigated Patterns

• Multiple Contexts.In this case, we have used 3 lattices. Each lattice is for one order of the elements:
2, 3 and 4. All of them use the same set of properties.

• Performance of the Algorithm.With the tuples of classes of order more than 4, we are not able to
have a reasonable computation time of the algorithm. With one of the applications using tuples of
classes of order 4, the computation time took around 2 days and this is not acceptable time from our
viewpoint to software engineering.

• Meaningless Concepts.As we said previously, each concept is a candidate for a pattern. In this case,
each concept represents a graph in which the set of the elements is the set of nodes, and the set of
properties define the edges that should connect the nodes,e.g., if (A P C) has the propertiesA is
subclass of PandP uses C, then we have a graph of 3 nodes with edges from A to P and from P to
C. Thus we discarded all the concepts that represent graphs in which one or several nodes are not
connected at all with any node in the graph.

• Mapping Partial Order of the Lattice.In this case, we map the partial order of the lattice to the
definition of neighborsof a pattern. We can detect either missing relationships between classes
needed to complete a pattern, or excess relationships between classes that extend a pattern.

• Limits of Collaboration Patterns. In this high level view, we consider that there are still possible new
collaboration patterns to detect when applying the approach in other applications.
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6.5 Discussion

Based on the results, we are able to evaluate our approach from different viewpoints:

Locate and understand relations such as inheritance, accesses and invocations:The filtering possibil-
ities ofConAn PaDiare useful to have a look at one single class or a set of classes. Our tool is adequate to
find out the relations of those filtered classes. For example we have a look at the CodeCrawler application:
Just looking at the patterns containing the classCCNodePlugin we see that the following classes are
related with this class:CCItemPlugin , CCCompositeNodePlugin , CCFAMIXNodePlugin are
inheritance relations. There are no attribute relations.

Detect class dependencies:As all the different relations (inheritance, access, invocation) are shown, the
dependencies derived from those relations are then available. Looking again at CodeCrawler, we see that
e.g.,, the classCCTool cannot have a lot of dependencies because this class is in none of the patterns,
whereasCCNodePlugin is in 47 patterns up to ordero = 4 and must therefore have several dependencies.

Identify the possible presence of classical design patterns:Candidates for classical design patterns are
found. Some of these turn out to befalse candidates, i.e., structural patterns which superficially resemble
design patterns, but are not in fact instances of those design patterns. The reasons for the misinterpretation
are:

• Not all the properties are absolutely reliable. For example, the extraction of the type of an attribute
is based on a heuristic [Aeb03], because we work with Smalltalk, which is a dynamically typed
language

• The collaborations of the detected structural patterns match that of the known design pattern, but not
its intent. This happens mainly with theFacade, AdapterandBridge patterns in our case studies.
Consider, for instance, theBridgepattern of ordero = 3 in Table 6.10. A class that has a subclass
and accesses another class is acandidatefor a Bridge, but there is no guarantee that such a class is
actually serving the purpose of aBridge.

To decide which are real classical design patterns, detailed knowledge about the application is needed. It
cannot be decided with the information provided byConAn PaDi. We were just able to detect structural
Design Patterns such as:Adapter, Bridge, Composite, or Facade. We could just detect these patterns
because we have primarilystructural information about the entities (classes, methods, attributes,etc).
Extracting only structural information is not enough to infer behavioral patterns [TA99].

Identify the neighborhood of a pattern: The neighborhood can be analyzed by navigating through the
almost, overloaded, sub and cover pattern. This can be important to detect all candidates for a classical pat-
tern. For example, we consider theAbstract Compositepattern of ordero = 3 of the ADvance application.
Applying Filter A ConAn PaDidetects twoAbstract Compositepatterns, but in the neighborhood we find
four moreCompositepatterns without an abstract composite root.

Find candidate classes for restructuring:In our case studies we could not find a candidate for restructur-
ing, because our analysis was made using only structural information. In general, control flow information
and detailed information about the method bodies is needed to detect candidates for restructuring [Tic01].
Furthermore a lot of domain specific knowledge is needed. Nevertheless we believe that future investi-
gation with our tool such a detection is possible, when the above mentioned information is available and
taken into consideration.

Mining patterns: As our approach with FCA detectsany kind of patterns we found plenty of “new”
patterns, meaning that they are not referred to in the literature. Whether those patterns are useful and make
sense as Design Patterns is another issue. If we see in Table 6.8 the case study ADvance for the ordero = 4,
we detect 329 different patterns. The frequency of several patterns is shown in Table 6.11. We see that the
Facadeis detected 627 times and theBridgeonly 20 times. The accumulated elements of the pattern are
shown again in Table 6.8. All the elements of all the patterns for ordero = 4 of the ADvance application
is 7521. A reason for this high amount of patterns is: if we consider that an application has a classC0 with
five subclassesC1..5. In the ordero = 5 aSubclass Starwill be detected once. But for example in the order
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o = 3, our approach detects 10 subclass stars:{C0C1C2}, {C0C1C3}, {C0C1C4}, · · · , {C0C4C5}.

CCItem

CCNode CCEdge

CCItemPlugin

CCNodePlugin CCEdgePlugin

CCItemFigureModel

CCNodeFigureModel CCEdgeFigureModel

Figure 6.8: ThreeSubclass Starsof CodeCrawler

Understand the class roles:Using the information gained about the class relations it is possible to guess
its role. In CodeCrawler we detect in the ordero = 3 threeSubclass Starsshown in Figure 6.8. The
assumption that these are three parallel structures cooperating together are proved by future investigation.

Identify coding styles: We have seen that frequency and the existence of a pattern in a system is besides
domain specific issues, as well an issue of coding style. In our case studies we have seen that CodeCrawler
has a lot ofSubclass StarandFacade, whereas SmallWiki has a lot ofAttribute ChainandAttribute Stars.
ADvance is the only application with theCompositepattern.

6.6 Related Work

The starting point for our work was the approach of Tonella and Antoniol [TA99], and we have summarized
our improvements to their approach in Section 6.2. Other related work focuses on the detection of design
patterns̀a la Gammaas opposed to more generalsoftwarepatterns. We cite some of these approaches.

Brown [Bro96] presents in his Masters thesis a tool to detect design patterns in Smalltalk environments. He
explains how to deal with the typeless language Smalltalk. The detection itself is then based on Corman’s
cycle-detection technique [CLR90]. There is no general abstraction proposed to encode patterns. In par-
ticular, Brown does not demonstrate a clearly generalizable approach to detect patterns: for each pattern, a
specialized detection algorithm must be developed.

Seemann et. al. [SvG98] use a compiler to generate graphs from the source code. This graph acts as the
initial graph of a graph grammar that describes the design recovery process. The validation is made with
respect to well-known design patterns such asCompositeandStrategyin the Java AWT package.

Keller et al. [KSRP99] present an environment for the reverse engineering of design components based on
the structural descriptions of design patterns. Their validation is made with SPOOL on three large-scale
C++ software systems. They store the Meta-Model as UML/CDIF and query then this model for patterns.

Niere et al. [NSW+02] provide a method and a corresponding tool which assist in design recovery and
program understanding by recognizing instances of design patterns semi-automatically. The algorithm
works incrementally and needs the domain and context knowledge given by a reverse engineer. To detect
the patterns they use a special form of annotated abstract syntax graph (ASG). Using a subgraph matching
algorithm allows them as well to define a pattern neighborhood as we gain out of the lattice. An evaluation
of the approach is made with the Java AWT and JGL libraries.

In Krämer and Prechtel’s approach[KP96], the patterns are stored as Prolog rules. Their Pat tool takes the
meta-informa–tion directly from the C++ header files and queries them. The validation on the C++ libraries
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shows that the precision is around 40 percent.

Albin-Amiot et al. [AACGJ01] show how to automate the instantiation and detection of design patterns. To
cope with these objectives, they define aPattern Description Languageto describe design patterns as first-
class entities. Thus they can manipulate and adapt design patterns models to generate source code. With the
same language, and a Constraint Satisfaction Problem formalism to detect complete and distorted versions
of design patterns, and with the toolJavaXL(their own tool) they are able to make the distorted versions
compliant with the design patterns models. With this approach, they help OO software practitioners design,
understand, and re-engineer a piece of software, using design patterns.

6.7 Conclusions

This section summarizes this approach with a summary, a discussion, the answers to the research questions
proposed in Chapter 2 and future work.

6.7.1 Summary

The complete description of the approach including the analysis of the cases studies and the tool imple-
mented to support it is described in [Buc03]. Although our work is based on that of Tonella and Antoniol,
there are some notable differences:

• According to our measurements of Tonella and Antoniol’s algorithm, the performance with our data
was a critical issue. We propose an improvement to their algorithm to make it faster. We eliminate the
redundancy in the sets of elements considered to reduce the calculation time for the formal context
generation. Using as example Figure 6.1 (Section 6.2.1) where there are 7 classes and running on
the same platform, we have made a comparison (shown in Table 6.12) in terms of time performance.

our approach [TA99]
order Number

of Tuples
time [s] Number

of Tuples
time [s]

2 6 0.1 8 0.1
3 7 0.1 18 0.2
4 6 0.1 34 0.4
5 6 0.1 70 2.4
6 4 0.1 140 17.6
7 1 0.1 140 27.5

total 30 0.6 410 48.2

Table 6.12: Comparison between our inductive approach and the inductive approach from Tonella

In Table 6.12, we see that if we compare our approach to that of Tonella and Antoniol, the calcu-
lation time in the different orders is uniform, whereas in their approach it increases for each order.
The number of tuples also increase with each order in their approach, whereas it remains relatively
constant in ours.

• With our improvement in the algorithm where we keep one representative of the set of possible
combinations of a class sequence, we avoid repeated information and we avoid removingequivalent
instances[TA99] inside the concepts.

• With our approach, we are not constrained to the detection ofdesignpatterns. We are focused on the
larger scope of detecting recurring collaborations patterns implicit in the code, which we refer to as
collaboration patterns. These collaborations may represent design patterns, architectural constraints,
or simply idioms and conventions adopted for the system.
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• In contrast to Tonella and Antoniol’s approach, we relate the patterns to each other using the connec-
tions between the concepts given by the partial order in the lattice, and the lattices calculated with
the differentorders. This is what we namedPattern Neigborhoods. For example, it is possible to
detect patterns which arealmostlike another pattern.

• We propose to take the information from a language independent Meta-Model instead from the
source code itself. This makes the approach more general because it can be applied to applica-
tions in different programming languages. In contrast, Tonella and Antoniol focus on experiments
done with C++ applications.

• We separate the calculation of the patterns from the analysis process. This allows us to separate
the time-consuming calculation of the patterns from their analysis. The patterns are stored in a
repository, and can be analyzed by applying different classifiers to the results.

• To gain an overview more quickly, as a starting point, we compare the detected patterns against a
reference library of well-known design patterns in the post-processing phase. This library is incre-
mented with new detected patterns with each application we analyze.

6.7.2 Research Questions

Based on the approach, we are able to answer some of the research questions proposed in Chapter 2:

• How does the technique help in discovering patterns introduced in the system ?

In this last approach, we confirm again that the application of FCA is scalable because in this third
abstraction level we analyze a complete application. Using classes as FCA elements and structural
relationships as FCA properties, we have identified recurring situations (named asCollaboration
Patterns) in a complete application. TheseCollaboration Patternsreveal existing design patterns,
coding styles or architectural patterns implemented in the system. With this information, we have a
complete mental model (from the structural viewpoint) of a system, complemented with additional
issues such as classes that are used in all the system, presence of design patterns and classes roles.

• Does the technique discover known and unknown patterns ?

Both kinds of patterns are discovered. The detected design patterns are considered as known patterns
and the architectural patterns and coding styles are considered as unknown patterns in our work
context. The last ones are considered as unknown because in the most of the cases they are not
documented, and the name of methods of involved classes do not provide useful information. In the
case of design patterns, in spite that it can be implemented without following naming convention,
they can be characterized by a specific set of properties.

• How do the patterns help to understand a system ?

This question is related to the first one. As we have said previously, with the identified patterns we get
a complete mental model (from the structural viewpoint) of a system complemented with additional
issues such as related patterns, classes that do not participate in any pattern and used coding styles.

6.7.3 Future Work

Enhance the model with information at a higher abstraction level.Instead of only using the structural
information, we could use properties of an higher abstraction level. Such higher-level information could
include properties like: isLeaf, isComponent, isFacade. Among the resulting patterns, behavioral patterns
might be inferred.

Solve the scalability problem. In an industrial environmentConAn PaDiwould be considered to be too
slow. Results should be available in real time or at least within seconds, otherwise the developer will not
use this tool. One idea to improve the speed is not to take all orders into consideration. Figure 6.9 shows
approximately the expected found patterns in correlation with the order. We suppose that we just calculate
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Figure 6.9: Unproblematic orders for calculation

the patterns before and after the peak of the curve. We expect that the patterns for the lower orders are
interesting to analyze the dependencies and those for bigger orders are interesting to understand the roles
and gain an overview of an application.

Improved name guessing.Use a better reference library to detect well-known patterns and improve the
matching algorithm,i.e., make the matching algorithm more fuzzy.
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Chapter 7

Conclusions

The last chapter summarizes the main features, the answers to the research questions proposed in Chapter 1,
the main lessons learned, and future work related to the approaches developed in this thesis.

7.1 Summary

In this thesis we present a general approach for applying FCA in reverse engineering of object-oriented
software. We also evaluate the advantages and drawbacks of using FCA as a metatool for our reverse
engineering approaches.

We also identify the different bottlenecks of the approach. Thus, we are able to focus clearly on solving
which and where the limitations appear (if there are some possible solutions) to draw the maximum benefit
offered by FCA.

From our tool builder viewpoint, we have proven that FCA is an useful technique to identifygroupsof
software entities with hidden dependencies in a system. With FCA, we have built different software en-
gineering tools that help us to generatehigh level viewsat different levels of abstraction of a system. We
generate thehigh level viewsbecause without them, thesoftware engineershould be obliged to read the
lattice. This can represent a problem because in most of the cases, besides the useful information, the
lattice can also have useless information that can introducenoisein analyzing a system.

7.2 Research Questions

Based on the approach, we are able to answer some of the research questions proposed in Chapter 1:

• Do we understand how the system is implemented? What are the constraints or limits imposed in the
system?

We have shown in this thesis that the differenthigh-level views (XRay viewsat class-level,Hi-
erarchy Schemasat class hierarchy-level andCollaboration Patternsat system-level) makehidden
dependencies asexplicitones. These dependencies reveal the different existing contracts between the
different (groups of) software artifacts in a system. Depending on the abstraction level of the system
we analyze, with the high-level views we identify different characteristics in a system. Just to men-
tion some of them, for example, we identify group of collaborating methods at class-level, misuse of
inheritance mechanisms at class-hierarchy or use of patterns at the application level. We believe that
each view provides enough (but not yet complete) information to generate the first fingerprints of a
system.
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• How can we detect implicit unanticipated dependencies?

When defining adequate properties in a FCA context (in the iterativemodellingprocess of elements
and properties shown in Chapter 3), the combination of them (intents of concepts) are the potential
sources of information to detect implicit dependencies. Once we have applied thePost-Filtering
process (shown in Chapter 3), the resulting concepts are those that show meaningful implicit unan-
ticipated dependencies.

• How are the mechanisms such as polymorphism and inheritance used in the system?

In Hierarchy SchemasandCollaboration Patterns, we have analyzed inheritance as a building mech-
anisms in a system. In Hierarchy Schemas we have shown we can identifygood, badandirregular
situations of the use of inheritance relationship. In spite that this relationship defines a contract be-
tween several classes in terms of ais-a relationship, we have seen that the misuse of this mechanism
can producenoisein a class hierarchy. Thebadandirregular cases reveal us for example, violation
of class encapsulation or bad reuse of behavior of parent classes. In the case ofCollaboration Pat-
terns, the inheritance mechanism was used in combination of other properties to identify patterns.
Half of the identified patterns included the inheritance relationship, meaning that it represents an
often-used mechanism in a system.

In the case of polymorphism, this characteristic was not a main aspect in our analysis, meaning that
we did not use it as a defined property in our contexts. The use of polymorphism is part of the
analysis of systems in future work.

• How can we discover defects introduced in the systems?

Discovering defects in systems in our approach depends also in identifying adequate properties. The
combination of properties in all the approaches helps us to reveal good as well as bad situations in
a system. This case is proven in the case of hierarchy schemas where we identify classes that were
using the state of superclasses without using the accessors, and consequently violating the superclass
encapsulation.

• How can we discover recurring situations (“patterns-like”) of dependencies in the systems?

When using FCA, a concept reveals us a set of elements that share a set of properties. The most
meaningful concepts are those that have a significant number of elements. These concepts then show
that we have a number of software artifacts that share some commonalities, that we consider them as
patterns. They represent recurring situations appearing in a system.

• Is the mental model generated by “high-level views ” meaningful enough (in terms of information)
to understand the system?

As we have said in the first answer, we believe that each view provides enough (but not yet complete)
information to generate the first fingerprints of a system. We think that we still need more case studies
in each approach to identify which are the missing characteristics in a system to get a more complete
first mental model of a system.

• Which are the advantages and disadvantages of using a clustering technique such FCA as a meta-
tool?

In the next section of this chapter, we have summarized which are the advantages and disadvantages
of using FCA as a metatool. Among the main issues, we consider that there are three ones worth
mentioning:

– The different bottlenecks produced by the computation times of the algorithms and building the
FCA elements and properties can compromise the success or fail of an experiment.

– The noise produced by the amount of concepts can bring useless information for our ap-
proaches.

– The combination of properties help us detect unanticipated dependencies revealinghiddencon-
tracts between different software artifacts. This was the most valuable information in our ap-
proaches.
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7.3 Lessons Learned

In general terms, we have seen that Formal Concept Analysis is a useful technique in reverse engineering.
From our experiencies [Aré03, ABN04, ADN03] in developing this approach, several lessons learned are
worthwhile mentioning.

Lack of a general methodology.The main problem we have found in the state of the art is the lack of a
general methodology for applying FCA to the analysis of software. In most publications related to
software analysis, the authors only mention the FCA mapping as a trivial task, and how they interpret
the concepts. With our approach, we achieved not only to identify clear steps for applying FCA to a
piece of software but where we have identified different bottlenecks in using the technique.

Modelling software entities as FCA components.The process of modelling software entities as FCA
components is one of most difficult tasks and we consider it as one of the critical steps in the ap-
proach. Modelling is an iterative process in which we map software entities to FCA components,
and we test whether they are useful enough to provide meaningful results. This task is not trivial at
all, because it entails testing at least 5 small case studies (which should be representative of larger
case studies) in each developed approach. Each case study should help to refine the building of
FCA components to obtain meaningful concepts. Thus, this process can be considered as incremen-
tal step-by-step one. Obviously, we can conclude after the initial experiments that the chosen FCA
components are not the most adequate and discard the complete FCA mapping, and start the process
from the scratch.

Performance of FCA algorithms. Computation Time The performance of the algorithms (to build the
concepts and lattice) was one of main bottlenecks. In small case studies, this factor can be ignored
because the computation time is insignificant. But in large case studies this factor can cause the
complete approach to fail because computing the concepts and the lattice may take several hours
(eventually days) and this is not a acceptable time to do some software analysis.

Performance of FCA algorithms. Implementation The computation time of the FCA algorithms is also
affected by how they are implemented in a chosen language. A direct mapping of the algorithms (in
pseudo-code, as they are presented in books) to a concrete programming language is not advisable.
In our specific case, we took advantage of efficient data structures inSmalltalklanguage to represent
the data and improve the performance of the algorithms.

Supporting Software Engineers.The result of our experiences must be read by software engineers. One
positive issue in this point is that with the high level views the software engineer is not obliged to
read the concept lattices , meaning that he needs not be a FCA expert. Our approach is not focused on
end-users. We would need a new abstraction level over the approach with a more friendly software
interface.

Interpretation of the concepts. Although we can have an adequate choice of FCA elements and proper-
ties, the interpretation of the concepts is a difficult and consuming-time task to achieve. In most of
the cases, we have tried to associate a meaning (a name) to each concept based on the conjunction of
its properties. This task must be done by a software engineer applyingopportunistic code readingto
get meaningful interpretations. It is difficult to discover which combination of properties are or not
useful. This process is completely subjective because it depends on the knowledge and experience
of the software engineer.

Use of the Complete Lattice.Not all the concepts have a meaning in our approach, so we do not use the
complete lattice in our analysis. In most of the cases, we remove meaningless concepts because
from software engineering viewpoint they did not provide enough information for the analysis. We
hypothesize that in certain cases it may be possible to use the complete lattice, but we did not find
any.
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Use of the Partial Order. Another critical factor is the interpretation of the partial order of the lattice in
terms of software relationships. Only inCollaboration Patternswe were able to obtain a satisfactory
interpretation of the partial order. Thus we can conclude that the interpretation is not a trivial task.

Metamodel Information. The results can only be good and complete as the information from the meta-
model is. When the input for FCA is already not complete or reliable, the percentage of useless
results can be higher.

7.4 Future Work

The future work is focused on several research directions, that consist mainly of:

• Analysis of a system using other abstraction levels to analyze how useful the developed approach is.

• Refinements and improvements in the approach to adapt it to new abstraction levels of analysis of a
system.

• Tests with other concept and lattice building algorithms to compare (and eventually improve) the
existing computation time of theConAn engine.

• Development of a measurements framework to measure the different concept and lattice building
algorithms based on the used data in our approach.

• Analysis of the partial order of resulting lattices to get possible mappings in terms of software engi-
neering relationships.

• Adding more domain information to the existing approaches to evaluate if they can provide more
information about the analyzed applications.
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ConAn Framework

A.1 Introduction

To validate the application of Formal Concept Analysis in generatingHigh Level Views, we have built three
tools based on a framework named asConAn. The name is an acronym forConceptAnalysis. In this
appendix, we explain in detail which are the different components of the framework.

A.2 The Meta-Model: Moose

The meta information is taken from the FAMIX Meta-Model. This section gives an introduction toMoose,
a reengineering environment, implemented in Smalltalk.

In the past few years the Software Composition Group (SCG) at the University of Bern has been involved
in a number of research projects in the field of software re- and reverse engineering. In the FAMOOS1

project European partners came together to build a number of tool prototypes to support object-oriented
reengineering.

To avoid equipping the tool prototypes with parsing technology for different programming languages, a
common information exchange model with language specific extensions is specified. This model is named
FAMIX (FAM OOSInformation EXchange Model) [DGLD04][Tic01].

Mooseis a reengineering research platform implemented in VisualWorks [DGLD04][Tic01]. It has been
developed during the FAMOOS project to reverse engineer and re-engineer object-oriented systems. It
consists of a repository to store models of source code. The models are stored based on the entities defined
in FAMIX . The software analysis functionality ofMooseis language independent. The FAMIX models
can be loaded from and stored to files. Apart from the repository, there are other features implemented to
support reverse engineering activities:

• a parser for Smalltalk code

• an interface to load and store information exchange files

• a software metrics calculation engine

• an interface for additional tools to browse and visualize stored entities

1http://www.iam.unibe.ch/ ∼famoos/
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Figure A.1:Moosearchitecture.

A.3 ConAn: a Framework for FCA

ConAn is a general, extensible framework for FCA implemented in VisualWorks 7.0 [Vis03]. Its name
is an acronym forConcept Analysis. It allows the user to define any kind of elements and properties,
and calculate the concepts and the lattice. The user can analyze the results provided by the framework.
Four GUI tools in this framework support the user:Formal Context Editor, Concepts Viewer, Concept
Crawler andFish Eye Viewer. The framework can be used as a ready-to-use tool with an interactive GUI
or as a white-box framework. The second alternative focuses on users who want to integrate FCA in their
applications. Thus, automated or semi-automated analysis is possible.

A.3.1 Features ofConAn

Two main features distinguish this framework:extensibilityandencapsulation of the mathematical theory.

Regarding theextensibility,

• The framework can be applied to any domain, and it is not limited only to software understanding.

• Any Smalltalk objects can be used as elements or properties. This makes the framework easy to
adapt on a specific domain, where the input can be a result from a pre-process.

• New algorithms can be implemented and easily incorporated in the framework

• The user can develop new post-process filters to be able to better analyze the results

• The user is not obliged to restrict himself to the existing tools, new tools can be developed on top of
the framework.

Regarding theencapsulation of the mathematical theory, the user is never concerned with the mathematical
background of the lattice theory, which is the basis of this framework, and is implemented as ablack box
inside the framework. The user only has to know the public interfaces of two classes: the application facade
and the class representing the concepts.

A.3.2 Components ofConAn

The process from the input to the output provided by this framework is defined by 5 phases defined in the
Figure A.2 (introduced in Chapter 3)
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Source code

Source code model

Elements and Properties
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Inheritance

Magnitude isAbstract
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High Level Views
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= = =

Concept lattice

Model import

FCA Mapping

ConAn Engine

Post-Filtering

Modelling

Interpretation
Analysis

Meaningful Concepts

Figure A.2: The overall approach

We limit our explanation to the phase that are (semi)automatic processes. The phaseModel Importare not
part of our framework. It is provided by MOOSEframework (explained in Section A.2).

• FCA Mapping

– Definition of the elements and properties
The user has to define which are the elements and the properties of the context. This task can be
done using theFormal Context Editoror by programming it. In the first case, the user interacts
with an empty table where the elements and the properties are defined as labels. In the second
case, the user has to provide the Smalltalk objects that represent elements and properties.

– Building the incidence relation table
The specific domain knowledge of the user is needed in this phase. The user has to define the
incidence relation table using theFormal Context Editoror using the framework interface.

• ConAn Engine

– Calculation of Concepts
In this phase, the concepts are calculated with the algorithm that the user has previously chosen.
So far, the framework provides two possible choices:Bottom-up algorithm[SR97] andGanter
algorithm[GW99].

– Calculation of Lattice
The lattice is built according to the complete partial order of the concepts. So far, the framework
only provides one algorithm. This phase is optional, meaning that for some case studies, the
concepts without their lattice are sufficient to analyze the results. Obviously, all the support-
tools based on the lattice information cannot be used in the next phase.

• Analysis of the Results
The framework provides three tools which might help the user to analyze the results.
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The following paragraphs introduce the three tools from theConAn framework which support the user in
analyzing the results:

• Concepts Viewer
This tool allows the user to see the elements and the corresponding properties. It is also possible to
see the intent and the extent of each concept, and its subordinates and cover concepts.

• Concept Crawler
This tool allows the user to display the lattice as a graph. The user can see the intent and extent of
each concept, or a reduced version where all the elements and properties are just appearing once.
One additional feature of this tool is the possibility of applying some metrics to the nodes (graphical
representation of the concepts). This tool is built on top of CodeCrawler2 [Lan99].

• Fish Eye View
If we showed to the user thecompletelattice, he or she would be sometimes overwhelmed by the
information. The idea is to have something like a hyperbolic browser [LRP95]. To cope with this
problem the ConAn framework provides a special view called theFish Eye View. The nameFish
Eyecomes from the special fish eye camera lenses which focuses on the center and marginalizes
the rest [Fur86]. This tool gives the focused view on only one concept. The lattice edges are used
as navigation links to browse the whole lattice. The results provided by the framework are not
necessarily the final ones, this means that in this phase we can also have a domain-specific post-
processing shaping the results.

A.4 Fish Eye View

This section explains how theFish Eye Viewis applied inConAn. This part of the tool was used mainly in
detectingCollaboration Patterns.

TheFish Eye Viewconsists of four lists.

• Extent:All the elements of a concept.

• Intent: All the properties of a concept.

• Generalization:The upper edges in the lattice from the concept.

• Specialization:The lower edges in the lattice from the concept.

<Abstract>
X

Y Z
<Abstract>

A

B C

P

Figure A.3: Example class diagram

If we take as an example the concept 5 of the lattice shown in the Figure A.4, we will see the concepts as
in Figure A.5

The two lists in the middle are the extent (elements) and intent (properties) of the concept five. The item in
the top list is the edge to concept one. This is a specialization, because it adds the property(1, 2)Acc. The
highlighted elements{C A P} and{Z X P} are the elements which remain by this specialization. The item

2http://www.iam.unibe.ch/∼scg
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(1, 2)Sub (3, 1)Sub (3, 2)Sub (2, 1)Acc (1, 2)Acc (3, 2)Acc (2, 3)Acc (1)Abs (2)Abs (3)Abs

{C A P} × × × ×
{C A B} × × × ×
{Z X Y} × × × ×
{Z X P} × × × ×
{A P B} × × ×
{A P X} × × × ×
{Y X P} × × ×

Table A.1: Order 3 context for the example in Figure A.3

87

3 4 65

21

Bottom

Top

{C A B}
{Z X Y}

{C A P}
{Z X P}

{Y X P}

{A P B}

{A P X}

2 accesses 1
1 isAbstract

1 isSubclassOf 2
2 isAbstract

3 accesses 2

1 accesses 2

3 isSubclassOf 2

3 isSubclassOf 1

3 isAbstract
2 accesses 3

Figure A.4: Resulting lattice of Incidence Table A.1

in the bottom list is the edge to concept number eight. It removes the property(3, 2)Acc. The remaining
properties(2)Abstr and(1, 2)Sub are highlighted.

Clicking on an item of the generalization or specialization list, jumps to the respective clicked concept.
Thus the user can navigate through the concept lattice.

Having more navigation dimensions (sub and cover patterns) and the merging of equivalent pattern requires
an enhancement of this view. This done by adding two more lists for the sub and cover pattern shown in
Figure A.6.

A.5 User Interface

ConAn provides three tools to analyze theXRay Views, Hierarchy SchemasandCollaboration Patterns. In
each case, the tool is composed of two main parts:Importer(that allows the user load class(es) to analyze)
andVisualizer(that allows the user analyze the results).

A.5.1 User Interface ofXRay Views

Importer

TheXRay views analyzes a class as a sole development unit. To analyze a class, we need to import it to
the metamodel. Figure A.7 shows the importer of classes forXRay views. It is worth mentioning that the
importer is adapted to load Smalltalk classes, but it can be adapted to read any object-oriented languages.

In (1) all VisualWorks packages are listed. The user selects the package in which the class is contained
in. Once the package name is selected (in this specific case,Collections is selected), in (2) all the classes
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Figure A.5: Implementation of theFish Eye Viewin ConAn

Figure A.6: ConAn PaDiwith the result from the classes of Figure A.3
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1 2

3

4

5

Figure A.7: Importer of classes inXRay Views

contained in the package are listed. In this window, the user can choose to see the classes as a list (Flat View
is selected (3)) or to see the class ordered in the respective class hierarchy which the class is contained in
(Flat View is not selected (3)). Once the class is selected (in this specific caseSortedCollection), the user
chooses in (4) if the analysis is focused on direct and/or indirect attributes’ accesses and/or methods’ calls.
Then the buttonImport now is selected to import the class, to generate the concepts and the lattice. Then
the buttonBrowse X-Rays is selected to open the visualizer with the groups ofXRay views. The button
Cancel cancels all the described processes and closes the window.

Visualizer

The visualizer is composed of two main windows shown in the Figure A.8. In (1) all the identified concepts
are listed. They are classified according to the functionality they represent in the class (e.g., Collaborating
Attributes or Stateful Core Methods). When the concept is selected, theElementsand thePropertiesare
listed (in this specific case the elements areDefaultSortBlock andsortBlock and the properties areisUsedEx-
ternally, isUsedIn: SortedCollection → representBinaryOn: andisUsedIn: SortedCollection → initialize).

Then the graph of all the method calls and attributes accesses of the class is generated. Then the subgraph,
where the elements and the parameters of the properties are contained in, is generated and shown in (2).
The methods and attributes named in the selected concept are represented as colored nodes in the subgraph.

A.5.2 User Interface of Hierarchy Schemas

Importer

TheHierarchy Schemasanalyze a complete hierarchy. Thus we need to import it to the metamodel. Figure
A.9 shows the importer of class hierarchies forHierarchy Schemas. It is worth mentioning that the importer
is adapted to load Smalltalk classes, but it can be adapted to read any object-oriented languages.

In (1) all VisualWorks packages are listed. The user selects the package in which the class root of the class
hierarchy is contained in. Once the package name is selected (in this specific case,Collections is selected),
in (2) all the classes contained in the package are listed. In this window, the user can choose to see the
classes as a list (Flat View is selected (3)) or to see the class root ordered in the respective class hierarchy
which it is contained in (Flat View is not selected (3)). Once the class root is selected, the buttonImport now
is selected to import all the classes of a hierarchy that has the selected class as a root. Then the concepts
and the lattice are generated. Then the buttonBrowse Hierarchy Schemas is selected to open the visualizer
with the identified schemas. The buttonCancel cancels all the described processes and closes the window.
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1 2

Figure A.8: Visualizer ofXRay Views

1

2

3

4

Figure A.9: Importer of Class Hierarchies in Hierarchy Schemas
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Visualizer

The visualizer is composed of two main windows shown in the Figure A.10. In (1) all the identified schemas
are listed. In each schema, all the classes where the schema appear are listed. Once the user selects a
class (in this specific caseSortedCollection), the elements and properties of the schema are listed (in this
specific case, the elements arefirstIndex andlastIndex and the properties areaccessStateDefinedInAncestor:
OrderedCollection, not-isDefinedInDescendant andnot-isDefinedLocally).

1 2

Figure A.10: Visualizer of Hierarchy Schemas

Once the class is selected and the elements and properties are listed, in (2) a graph with all the class
hierarchy is generated. Then, all the classes contained in the selected concept (listed as elements and as
parameters of the properties) are colored in the visualized class hierarchy.

A.5.3 User Interface of Collaboration Patterns

Importer

Before the patterns can be explored they have to be loaded in the repository. TheConAn PaDiImporter
(Figure A.11) provides this functionality. It needs as prerequisite a loadedMooseMeta-Model of the source
code to analyze.

The desired properties can be selected and a first preselection based on class names can be made. Classes
can be rejected or selected giving a string pattern like “PackageX*”. The order maximum can be entered
as well.
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Figure A.11: Importer of classes of Collaboration Patterns

Visualizer

Once the classes have been imported, all the patterns are calculated, the user visualizes the results in the
Pattern Browser shown in Figure A.6.

The list of all the patterns (1) shows their names followed by three numbers. The first number shows from
which ordero they are. The second number indicates the number of elements the pattern contains and
the last number is the number of properties the pattern has.noname means that the pattern could not be
identified as to a pattern from the reference library. The list with the tuples (2) shows all the elements of the
pattern. If exactly one tuple is highlighted, the structure of this tuple is shown the middle (5) as an UML
[OMG99] diagram using ADvance [IC 01][Buc02]. In the list with the properties (3) the indexes are then
replaced by the concrete class names. The name of the selected pattern (4) can be changed by the user.

The four top lists in the middle enable navigation through the patterns, using the pattern neighborhood.
Clicking on an overloaded pattern (6), all the remaining tuples in the element list (2) are highlighted.
Clicking on an almost pattern (7), the remaining properties (3) are highlighted. Behind the name of the
almost pattern we see how many elements this pattern will gain by reducing some properties. Clicking on a
sub pattern (8) highlights as well the remaining properties (3). The last list is the link to the cover patterns
(9).

The user can define filters to obtain a refined view,e.g. concentrate on a set of classes or hide some
properties. The filters can be defined in the remaining lists. The filters have several criteria:

• RejectClasses
If a tuple has any class of this collection, the tuple is rejected. Note: In the user interface the
complement of this collection is shown as selected (10a).
Example:If the class P is in the set ofrejectClasses, then for ordero = 3 the remaining tuples are:
{C A B} and{Z X Y}. All the others ({C A P}, {Z X P}, {A P B}, {A P X} and{Y X P}) are
rejected, because they have the class P in the tuple. In the user interface all tuples except P would be
selected.

• MustClasses
Classes which are in this collection must be in a tuple in order that the tuple pass the filter. (10b).
Example:Is the class A in the set ofmustClasses, then for ordero = 3 the remaining tuples are:{C
A P}, {C A B}, {A P B} and{A P X}. All the others ({Z X Y}, {Z X P} and{Y X P}) are rejected,
because they do not have the class A in the tuple.

• Orders
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Only the selected orders are displayed (11).

• Properties
Only properties of this collection pass the filter (12). In Figure A.6isAbstractis not marked, thus
this property is not taken in consideration.

• Methods
If a property is dependent on method, likehasLocalDefinedMethod(X, m)lMeth wherelMeth is a
method name, only properties with the selected methods are taken into account (13).
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Introduction to Formal Concept
Analysis

B.1 Introduction

This appendix is an introduction to the main terminology of Formal Concept Analysis. It is attempted to
give a global overview in this mathematical discipline to understand how FCA works, how it can be applied
in different case studies and and to get the idea how the ConAn framework was developed. It is a summary
of the definitions given in [SR97], [ST98] and [GW99].

Formal Concept Analysis (FCA) [Bir40], [BM70] [GW99](also known as Galois lattices [Wil81]) is a
branch of lattice theory that allows us identify meaningful groupings ofelements(referred to asobjectsin
FCA literature) that have commonproperties(referred to asattributesin FCA literature)1.

In all the extent of this report, we use one illustrative example about a crude classification of a group of
mammals:cats, gibbons, dolphins, humans,and whales, and we consider five possible characteristics:
four-legged, hair-covered, intelligent, marine,andthumbed. Table B.1 shows the relationships between the
mammals and its characteristics.

P
four-legged hair-covered intelligent marine thumbed

Cats × ×
Dogs × ×

E Dolphins × ×
Gibbons × × ×
Humans × ×
Whales × ×

Table B.1: Mammal example: TableT represents the binary relations

But first of all, we need to understand a few definitions to see how we analyze the information provided by
this technique. The symbols∩, ∪, \ ∈, ⊂, ⊆ (used in the rest of the chapter) represent the classical
operations on sets:intersection, union, complement, belongs to, restrictive inclusion, inclusion. The rest
of the symbols that have a specific meaning in this context are introduced in the text.

1We prefer to use the termselementandpropertyinstead ofobjectandattributebecause the latter terms have a specific meaning
in the object-oriented paradigm

87



Introduction to Formal Concept Analysis Appendix B

B.2 Context and Concepts

The initial starting point in using FCA is setting up acontext. A context is a triple:

C = (E ,P, I).

E is a finite set ofelements, P is a finite set ofpropertiesandI is a binary relation betweenE andP:
I ⊆ E × P and is usually represented as a cross-tableT . The binary relation in our example is shown in
the Table B.1, where we see that ourelementsare the animals andpropertiesare its characteristics. Then
we see that the tuple(whales, marine)is in I but (cats, intelligent)is not.

Let X ⊆ E andY ⊆ P. The mappings:

σ(X) = {p ∈ P | ∀e ∈ X : (p, e) ∈ I},

thecommon propertiesof X, and

τ(Y ) = {e ∈ E | ∀p ∈ Y : (p, e) ∈ I},

thecommon elementsof Y , form aGalois connection. That is, the mappings areantimonotone:

X1 ⊆ X2 → σ(X2) ⊆ σ(X1)

Y1 ⊆ Y2 → τ(Y2) ⊆ τ(Y1)

and their composition isextensive:

X ⊆ τ(σ(X)) and Y ⊆ σ(τ(Y )).

In the mammal example:

σ({Cats,Gibbons}) = {hair-covered} andτ({marine}) = {dolphins, whales}

Based on the previous definitions, we define the term of concept. Aconcept is a pair of sets: a set of
elements (theextent) and a set of properties (theintent) (X, Y ) such that2:

Y = σ(X) and X = τ(Y ).

Therefore a concept is a maximal collection of elements sharing common properties. Informally, such a
concept corresponds to a maximal rectangle in the cross-tableT : anye ∈ E has all properties inP, and all
propertiesp ∈ P fit to all elements inE .

In the mammal example,({Cats,Dogs}, {four-legged, hair-covered}) is a concept, whereas
({Cats,Gibbons}, {hair-covered}) is not a concept. Althoughσ({Cats,Gibbons}) = {hair-covered}),
τ({hair-covered}) = {Cats,Dogs,Gibbons} shows that it is not a concept. Table B.2 shows the com-
plete list of concepts. It is important to note that concepts are invariant against row or column permutations
in the cross-tableT .

2The notation in [GMM+98] and [GW99] is different to denote theσ or theτ . They are defined in the following way. Given a
contextC = (E,P, I), and two setsX ⊆ E andY ⊆ P:

X′ = {p ∈ P|∀e ∈ X : (p, e) ∈ I}
Y ′ = {e ∈ E|∀p ∈ Y : (p, e) ∈ I}

Thus using this notation, [GW99] summarizes the naive possibilities of generating all concepts as:Each concept of a contextC =
(E,P, I) has the form(X′′, X′) for some subsetX ⊆ E and the form(Y ′, Y ′′) for some subsetY ⊆ P. Conversely, all such pairs
are concepts. Every extent is the intersection of property extents and every intent is the intersection of element intents. We use in the
report the notation withσ andτ because it helps us to distinguish between the set of elements and properties.
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top ( { Cats, Gibbons, Dogs, Dolphins, Humans, Whales}, ∅ )
c6 ( { Gibbons, Dolphins, Humans, Whales} , { intelligent} )
c5 ( { Cats, Gibbons, Dogs} , { hair-covered} )
c4 ( { Dolphins, Whales} , { intelligent, marine} )
c3 ( { Gibbons, Humans} , { intelligent, thumbed} )
c2 ( { Cats, Dogs} , { hair-covered, four-legged} )
c1 ( { Gibbons} , { hair-covered, intelligent, thumbed} )

bottom ( ∅ , { four-legged, hair-covered, intelligent, marine, thumbed} )

Table B.2: Concepts of the mammal example

B.3 Concept Lattice

The set of all the concepts of a given context forms acomplete partial order. Thus we define that a con-
cept(X0, Y0) is a subconceptof concept(X1, Y1), denoted by(X0, Y0) ≤ (X1, Y1), if X0 ⊆ X1 (or,
equivalently,Y1 ⊆ Y0). For instance,({Dolphin, Whales}, {intelligent,marine}) is a subconcept of
({Gibbons,Dolphins, Humans, Whales}, {intelligent}). Thus the set of concepts constitutes acon-
cept latticeL(T ) [Bir40]. The concept lattice for the mammal example is shown in Figure B.1

Figure B.1: The lattice of the mammals example with classical notation.

Each node in the lattice represents a concept and they are shown in Table B.2. Given two elements(E1, P1)
and(E2, P2) in the concept lattice, theirinfimumor meetis defined as:

(E1, P2) u (E2, P2) = (E1 ∩ E2, σ(E1 ∩ E2)),

and theirsupremumor join as

(E1, P2) t (E2, P2) = (τ(P1 ∩ P2), P1 ∩ P2),

Following our mammal example, let’s see the results ofc3 u c5 andc1 t c2 when we compute them:

c3 u c5 = ({gibbons, humans}, {intelligent, thumbed})
u({cats, gibbons, dogs}, {hair-covered})

= ({gibbons}, σ({gibbons}))
= ({gibbons}, {hair-covered, intelligent, thumbed})
= c1
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Figure B.2: The lattice of the mammals example with complete notation.

c1 t c2 = ({gibbons}, {hair-covered, intelligent, thumbed})
t({cats, dogs}, {hair-covered, four-legged})

= (τ({hair-covered}), {hair-covered})
= ({cats, dogs, gibbons}, {hair-covered})
= c5

Generalizing, the fundamental theorem for concept lattices [Wil81] relates sub-concepts and super-concepts
as follows:

⊔
i∈I

(Xi, Yi) =

(
τ

(⋂
i∈I

Yi

)
,
⋂
i∈I

Yi

)
.

The significance of the theorem is that the least common superconcept (orjoin) of a set of concepts can be
computed by intersecting their intents, and by finding the common elements of the resulting intersection.
Equivalently we have defined themeet:

i∈I
(Xi, Yi) =

(⋂
i∈I

Xi, σ

(⋂
i∈I

Xi

))
.

In [SR97], there is a restrictive definition based on subsets of superconcepts and subconcepts. They define
coversand subordinates. A conceptd coversconceptc if c ≤ d and there is no concepte such that
c ≤ e ≤ d. If d coversc, we say “c is covered byd”. The set of covers of conceptc, denoted bycovs(c), is
the set of conceptsd such thatd coversc, meaning a subset of superconcepts ofc.
Inversely, a conceptc subordinatesconceptd if d ≤ c and there is no concepte such thatd ≤ e ≤ c.
If c subordinatesd, we say “d is subordinated byc”. The set of subordinates of conceptc, denoted by
subordinates(c), is the set of conceptsd such thatc subordinatesd, meaning a subset of subconcepts ofc.
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From the computation of the concepts, twospecialconcepts are also introduced in the concept lattice.
Given a contextC = (E ,P, I), the two following concepts are calculated:

top = (τ(∅), σ(τ(∅)))
bottom = (τ(σ(∅)), σ(∅))

Thetop conceptreflects the properties that fit toall elements, and thebottom conceptreflects the elements
that fit toall properties. If there are not properties that fit all elements and/or there are not elements that fit
all properties, the definitions are reduced to the following expressions:

top = (E , ∅)
bottom = (∅,P)

This means that in the case oftop concept, there is no column with crosses for all the elements in the table
T ; and in the case ofbottom concept, there is no row with crosses for all the properties in the tableT .

B.4 Concepts Labels in the Concept Lattice

There are two alternatives for labeling the concepts. Given a conceptc = (E,P ), the labell(c) can be
defined as:

• l(c) = (extent(c), intent(c)) = (E,P ). This means that we label with all the elements and prop-
erties calculated for the concept. The figure B.2 shows the lattice of the mammal example with this
notation.

• l(c) = (En, Pm), if c is the largest concept (w.r.t.≤) with p(∈ Pm) in its intent, andc is the
smallestconcept (w.r.t≤) with e(∈ En) in its extent. The (unique) lattice node labeled withp is
denotedγ(p) =

∨
{c ∈ L(C) | p ∈ int(c)}, and the (unique) lattice node labeled withe is denoted

µ(e) =
∧
{c ∈ L(K) | e ∈ ext(c)}. The figure B.1 shows the lattice of the mammal example with

this notation.

Both notations are useful, and the choice which of the two should be used depends on the case study to
analyze. In the first case, where you haveextentandintentof each concept, every node has all the related
information. Differently in the second case, where you haveγ(c) andµ(c), the exclusive information about
the concept is highlighted but if we want to see the complete information, we have tonavigatethrough all
the lattice.

B.5 Concepts Builder Algorithms

There are several algorithms for computing the concepts for a given context, such as Siff et. al. [SR97],
Godin et. al. [GMM+98] or Snelting et. al. [ST98]. We describe two main algorithms: a simple bottom-
up one introduced in Siff et. al. [SR97] -just to understand easily how the concepts are built- and the
most efficient one introduced in Ganter et. al. [GW99]. Although there are a set of algorithms available
depending on the needs of the case studies to analyze, we introduced these two ones because they are ones
implemented inConAnframework.

B.5.1 Bottom-up Algorithm

Given a set of elementsE , the smallest concept with extent containingE is (τ(σ(E)), σ(E)). Thus, the
bottom of the concept lattice is (τ(σ(∅)), σ(∅)) - the concept consisting of all elements (often the empty
set) that have all the attributes in the context relation.
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The initial step of the algorithm is to compute the bottom of the concept lattice. The next step is to compute
atomicconcepts -smallest concepts with extent containing each of the elements treated as a singleton set. If
we want to see the computation of the atomic concepts in the mammal example, the result is the following
list:

τ(σ({cats}) = τ({four-legged, hair-covered}) = {cats, dogs}
τ(σ({dogs})) = τ({four-legged, hair-covered}) = {cats, dogs}

τ(σ({dolphins}) = τ({intelligent,marine}) = {dolphins, whales}
τ(σ({gibbons}) = τ({hair-covered, intelligent, thumbed}) = {gibbons}

τ(σ({humans}) = τ({intelligent, thumbed}) = {humans, gibbons}
τ(σ({whales}) = τ({intelligent,marine}) = {dolphins, whales}

It is clear that several calculations result in the same set of elements, meaning that these elements form the
extentof the same concept, for example the elementscatsanddogsin the first two calculations.

The algorithm then closes the set of atomic concepts under join: Initially, a worklist is formed containing
all pairs of atomic concepts (c’, c) such thatc 6≤ c′ andc′ 6≤ c. While the worklist is not empty, remove an
element of the worklist(c0, c1) and computec′′ = c0tc1. If c′′ is a concept that is yet to be discovered then
add all pairs of concepts(c′′, c) such thatc 6≤ c′′ andc′′ 6≤ c to the worklist. The process is repeated until
the worklist is empty. The iterative process of the concept-building algorithm for our mammal examples is
the following one:

c0 = ({cats, dogs}, {hair-covered, four-legged})
c1 = ({gibbons}, {hair-covered, intelligent, thumbed})
c2 = ({dolphins, whales}, {intelligent,marine})
c3 = ({gibbons, humans}, {intelligent, thumbed})

Worklist = [(c0, c1), (c0, c2), (c0, c3), (c1, c2), (c2, c3)]
c4 = c0 t c1 = ({cats, gibbons, dogs}, {hair-covered})

Worklist = [(c0, c2), (c0, c3), (c1, c2), (c2, c3), (c2, c4), (c3, c4)]
c0 t c2 = ᵀ = ({cats, gibbons, dogs, dolphins, humans,whales}, ∅)

Worklist = [(c0, c3), (c1, c2), (c2, c3), (c2, c4), (c3, c4)]
c0 t c3 = ᵀ

Worklist = [(c1, c2), (c2, c3), (c2, c4), (c3, c4)]
c5 = c1 t c2 = ({gibbons, dolphins, humans, whales}, {intelligent})

Worklist = [(c2, c3), (c2, c4), (c3, c4), (c0, c5), (c4, c5)]
c2 t c3 = c5

Worklist = [(c2, c4), (c3, c4), (c0, c5), (c4, c5)]
c2 t c4 = ᵀ

Worklist = [(c3, c4), (c0, c5), (c4, c5)]
c3 t c4 = ᵀ

Worklist = [(c0, c5), (c4, c5)]
c0 t c5 = ᵀ

Worklist = [(c4, c5)]
c4 t c5 = ᵀ

Worklist = ∅
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B.5.2 Ganter Algorithm

Thebottom-up algorithmbecomes awkward for larger contexts, since it requires consulting the list again
and again. We describe theGanter algorithm[GW99] which is faster for generating all the extents. This
algorithm only uses the closure operatorA → A′′ of the context, i.e. it is analgorithm for the generation
of all closures of a given closure operator. Following with the notation used in this report, the closure
operator ofA ⊆ E = τ(σ(A)).

First of all we consider the set of all subsets ofE to bein lexicographical order. In our specific example, the
set of animals ordered lexicographically is{Cats,Dogs,Dolphins,Gibbons,Humans, Whales}. For
sake of simplicity we assume thatE = {1, 2, ..., n}. A subsetA ⊆ E is calledlectically smaller than a
subsetB 6= A if the smallest element which distinguishesA andB belongs to B. Formally:

A < B :⇔ ∃i∈B\A A ∩ {1, 2, ....i− 1} = B ∩ {1, 2, ....i− 1}

This defines a linear strict order on the powerset (P(E)), i.e., for subsetsA 6= B always holdsA < B or
B < A. The aim of the following is to find for an arbitrary given setA ⊆ E the extent that is smallest
afterA with respect to this lectic order. If we have solved this, we can obviously generate all extents as
follows: The lectically smallest concept extent isτ(σ(∅)). The other extents are found incrementally by
determining the one which is lectically closest to the last extent found. In the end, we obtain the lectically
largest extent, namelyE .

To make this precise, we define forA,B ⊆ E , i ∈ E ,

A <i B : ⇔ i ∈ B\A and A ∩ {1, 2, .....i− 1} = B ∩ {1, 2, ....i− 1}
A⊕ i := τ(σ((A ∩ {1, 2, ...i− 1}) ∪ {i}))

It is easy to verify the following statements:

1. A < B ⇔ A <i B for onei ∈ E

2. A <i B andA <j C with i < j ⇒ C <i B

3. i /∈ A⇒ A < A⊕ i

4. A <i B andB extent⇒ A⊕ i ⊆ B, d.h.A⊕ i ≤ B

5. A <i B andB extent⇒ A <i A⊕ i

The following theorem shows how we can find the concept extent we are looking for

Theorem 5. The smallest concept extent larger than a given setA ⊂ E (with respect to the lectic order)
is

A⊕ i,

i being the largest element ofE with A <i A⊕ i.

Algorithm for generating all extents of a given context(E ,P, I): The lectically smallest extent is
τ(σ(∅)). For a given setA ⊂ E we find the lectically next extent by checking all elementsi ∈ E\A,
starting from the largest one and continuing in a descending order until for the first timeA <i A ⊕ i.
A⊕ i then is the “next” extent we have been looking for. Following with our mammal example, Table B.3
shows the application of the algorithm to calculate the extents. For sake of simplicity, we consider that each
number 1..6 represents a mammal, following the same correspondence:{1: Cats, 2: Dogs, 3: Dolphins, 4:
Gibbons, 5: Humans, 6: Whales}.
Because of the duality between elements and properties, the algorithm can be transferred without changes
to the intents; we only have to replace the setE byP
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Step i New Extent Set of Extents
1 ∅
2 4 {4} ∅, {4}
3 5 {4,5} ∅, {4},{4,5}
4 3 {3,6} ∅, {4},{4,5},{3,6}
5 4 {3,4,5,6} ∅, {4},{4,5}, {3,6},{3,4,5,6}
6 1 {1,2} ∅,{4},{4,5}, {3,6},{3,4,5,6},{1,2}
7 4 {1,2,4} ∅,{4},{4,5}, {3,6}, {3,4,5,6},{1,2},{1,2,4}
8 3 {1,2,3,4,5,6} ∅,{4},{4,5},{3,6},{3,4,5,6},{1,2},{1,2,4},{1,2,3,4,5,6}

Table B.3: Calculation of the extents of the mammal example using Ganter algorithm

B.6 Lattice Builder Algorithm

So far, we have described two possible algorithms to build the concepts. But the concepts have acomplete
partial orderand they form alattice. Algorithm B.1 shows the simplest algorithm that ConAn uses to build
the lattice.

Algorithm B.1: Algorithm to build the lattice.
(1) C ← (E ,P, I)
(2) edges← ∅
(3) S ← concepts(C)
(4) for each c1 ∈ S
(5) for each c2 ∈ S − {c1}
(6) if c1 < c2 and (@c3 ∈ S − {c1, c2} : c1 < c3 andc3 < c2)
(7) edges← edges ∪ {c1 → c2}
(8) endif
(9) endfor
(10) endfor

The algorithm is not the most efficient one because we have tovisit each concept several times in the list
of concepts. But it is the simplest one to build the lattice.

B.7 Concept Partitions

Given a contextC = (E ,P, I), aconcept partition is a set of concepts whose extents form a partition ofE .
That is,T = {(X0, Y0), ...(Xk−1, Yk−1)} is aconcept partitioniff the union of the extents of the concepts
is the element set (i.e.

⋃
Xi = E) and are pairwise disjoint (Xi

⋂
Xj = ∅ for i 6= j andXi, Xj ∈ E).

An atomic partition of a concept lattice consisting of exactly the atomic concepts. A concept lattice need
not have an atomic partition. For example, the lattice in Figure B.1 does not have an atomic partition. The
atomic concepts arec0, c1, c2 andc3; however,c1 andc3 overlap - the elementgibbonsis in the extent of
both concepts.

In order to develop tools to work with concept partitions, it is useful to be able to guarantee the existence
of atomic partitions. Contexts that result in atomic concepts that, in turn, form a concept partition can be
characterized precisely by the following definition: a context(E ,P, I) is well-formedif and only if, for
every pair of elementsx, y ∈ E , σ({x}) ⊆ σ({y}) impliesσ({x}) = σ({y}).
While not every context results in a concept lattice that has an atomic partition, we canextend any context
–by adding additional attributes–to make it well-formed. Informally, acontext extensionis another context
over the same set of elements (but a possibly augmented set of properties) whose concept lattice offers as
least as many ways of grouping the elements as did the lattice derivable from the original context. More
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formally, a context(E ,P ′, I ′) is an extension of context(E ,P, I) if and only ifP ⊆ P ′ andI ⊆ I ′.
There are several ways in which a non-well-formed context can be extended into a well-formed context.
The important step in any such process is to identify theoffendingpairs of objectsx and y for which
σ({x}) ( σ({y}). This inequity may be counterbalanced by the addition of a property such that, in
the resulting context,σ({x}) 6⊆ σ({y}) Two such ways to extend a context to well-formed context are
described below:

• A context can be extended via the addition ofunique identification properties3 for each pair of
elements,x, y such thatσ({x}) ( σ({y}), a new propertypx that uniquely identifiesx is added
to the extended property set.x becomes theonly element that has the propertypx in the extended
context relation (i.e.,τ({px}) = {x}.
As an example, consider the mammal context shown in Table B.1. The context is not well-formed
because the properties ofhumanare a proper subset of the properties ofgibbons. To make a extension
with unique properties, we augment the property set to include the propertyphuman. The resulting
context is shown in the Table B.4. The resulting concept lattice is shown in Figure B.3 and the
Table B.5 shows the extent and intent corresponding to the nodes in the lattice. Table B.6 shows the
partitions of the lattice. PartitionT1 is the atomic partition

Figure B.3: The lattice for the mammals example with unique properties.

four-legged hair-covered intelligent marine thumbed phuman

Cats × ×
Dogs × ×

Dolphins × ×
Gibbons × × ×
Humans × × ×
Whales × ×

Table B.4: The extension with unique properties of mammal context

3In [SR97], the use the nameunique identification attributes. We changed it to keep our terminology of properties consistent
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top ( { Cats, Gibbons, Dogs, Dolphins, Humans, Whales} , ∅ )
c8 ( { Gibbons, Dolphins, Humans, Whales} , { intelligent} )
c7 ( { Cats, Gibbons, Dogs} , { hair-covered} )
c6 ( { Cats, Dogs} , { hair-covered, four-legged} )
c5 ( { Dolphins, Whales} , { intelligent, marine} )
c4 ( { Gibbons, Humans} , { intelligent, thumbed} )
c3 ( { Gibbons} , { hair-covered, intelligent, thumbed} )
c2 ( { Human}, {intelligent, thumbed,phuman } )

bottom ( ∅ , { four-legged, hair-covered, intelligent, marine, thumbed,phuman } )

Table B.5: Concepts of the mammal example

T1 {c2, c3, c5, c6}
T2 {c2, c5, c7}
T3 {c4, c5, c6}
T4 {c6, c8}
T5 {top}

Table B.6: Concept partitions of the mammal concept extended with unique properties

• A context can be extended to a well-formed context by augmenting a context withnegative informa-
tion. Given a contextC = (E ,P, I), a complementof a propertyp ∈ P is a propertyp̄ such that
τ({p̄}) = {x ∈ E|(x, a) /∈ I}. That is, p̄ is an property of exactly the objects that do not have
property p. Thecomplemented extensionof a contextC = (E ,P, I) is a new context(E ,P ′, I ′)
formed by the algorithm introduced in Algorithm B.2:

Algorithm B.2: Algorithm to calculate the complemented extension of a context
(1) P ′ ← P
(2) I ′ ← I
(3) while (E ,P ′, I ′) is not well formed do
(4) letx, y ∈ E be such thatσ({x}) ( σ({y})
(5) letp ∈ P ′ be such thata /∈ σ({x}), p /∈ σ({y})
(6) P ′ ← P ′∪ {p}, wherep is a new property
(7) I ′ ← I ′∪ {(x, p)|(x, p) /∈ I ′}
(8) endwhile

For example, we can form a different well-formed extension of the mammal context shown in Table
B.1 by creating the complemented extension. To make the complemented extension, we augment the
property set to include the complementary propertynot hair-covered. The resulting context is shown
in Table B.7. The resulting concept lattice is shown in B.4 and Table B.8 shows the intent and extent
corresponding to the nodes in the lattice. Table B.9 shows the partitions of the lattice. PartitionT1 is
the atomic partition.

It should be clear that both forms of extension result in well-formed contexts.

Both uniquely-attributed extensions and complemented extensions result in a concept lattice with at least
as many (and frequently many more) nodes than the lattice derived from the original context. We say
that a concept latticeL′ derived from aC′ = (E ,P ′, I ′) is anextensionof a concept latticeL derived
from aC = (E ,P, I) if P ⊆ P ′, and for every conceptc in L, there is a conceptc′ in L′ with the same
extent. More formally, ifX ⊆ E such thatτ(σ(X)) = X, thenτ ′(σ′(X)) = X whereτ ′ andσ′ are the
common-element and common-property relations, respectively, for contextC ′.

Given a contextC, both uniquely-attributed extensions and complemented extensions ofC result in concept
lattices that are the extensions of the lattice derived fromC. In both cases, properties are added to the

96



Section B.7 Concept Partitions

Figure B.4: The lattice of the complemented mammals example.

four-legged hair-covered intelligent marine thumbed not hair-covered
Cats × ×
Dogs × ×

Dolphins × × ×
Gibbons × ×
Humans × × ×
Whales × × ×

Table B.7: The extension with complemented extension mammal context

top ( { Cats, Gibbons, Dogs, Dolphins, Humans, Whales} , ∅ )
c9 ( { Gibbons, Dolphins, Humans, Whales} , { intelligent} )
c8 ( { Cats, Gibbons, Dogs} , { hair-covered} )
c7 ( { Dolphins, Human, Whales}, {not hair-covered} )
c6 ( { Cats, Dogs} , { hair-covered, four-legged} )
c5 ( { Gibbons, Humans} , { intelligent, thumbed} )
c4 ( { Dolphins, Whales} , { intelligent, marine, not hair-covered} )
c3 ( { Gibbons} , { hair-covered, intelligent, thumbed} )
c2 ( { Human}, {intelligent, thumbed, not hair-covered} )

bottom ( ∅ , { four-legged, hair-covered, intelligent, marine, thumbed, not hair-covered} )

Table B.8: Concepts of the mammal example
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T1 {c2, c3, c4, c6}
T2 {c2, c4, c8}
T3 {c3, c6, c7}
T4 { c4, c5, c6}
T5 {c7, c8}
T5 {top}

Table B.9: Concept partitions of the mammal concept extended with complemented properties

extended context to make in easier to distinguish elements. For example, ifσ{x} ( σ{y} then there is at
least one property which is a property ofy that is not a property ofx. Whether adding unique attributes or
complementary attributes, negative information is represented in a positive form in the extended context to
help distinguish suchx andy.

B.8 Finding Partitions in a Concept Lattice

We say that concept lattice derived from a well-formed context is a well-formed concept lattice. Once
the context is well-formed, we are able to find the different partitions with the algorithm introduced in
Algorithm B.3.

Algorithm B.3: Algorithm to find the partitions of a well-formed concept lattice.
(1) A← covs(⊥)
(2) T ← {A}
(3) W ← {A}
(4) while W 6= ∅ do
(5) remove somet from W
(6) for each c ∈ t
(7) for each c′ ∈ covers(c)
(8) t′ ← t− subs(c′)
(9) if (∪t′) ∩ c′ = ∅
(10) t′′ ← t′ ∪ {c′}
(11) if t′′ /∈ T
(12) T ← T ∪ {t′′}
(13) W ←W ∪ {t′′}
(14) endif
(15) endif
(16) endfor
(17) endfor
(18) endwhile

The algorithm builds up a collection of all the partitions of a concept lattice. LetT the collection of
partitions we are forming. LetW be a worklist of partitions. We begin with the atomic partitions, which
is thecoversof thebottomconcept of the concept lattice.T andW are both initialized to the singleton set
containing the atomic partition.

The algorithm works by considering partitions from WorklistW until W is empty. For each partition re-
moved fromW , new partitions are formed (when possible by selecting a concept of the partition, choosing
a cover of that concept, adding it to the partition, and removing overlapping concepts.

As an example, consider the atomic partition of the concept lattice derived from the uniquely-attributed
mammal context (B.3). The algorithm begins with the atomic partition (consisting of conceptc2, c3, c5 and
c6) as the sole member of the worklist. The algorithm removes the atomic partition from the worklist, ast
in line (5). Suppose that in the first iteration of the for loop in line (6),c refers toc6. the covering set ofc6
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is the singleton set consisting ofc7, soc′ is assignedc7 in line (7). In line (8),t′ is assigned the value ofp
minus the subordinate concepts ofc7 (i.e., c3, c6 andbottom, sot′ is {c2, c5}). In line (9), the union of the
extents ofc2 andc5 is disjoint with the extent ofc7; thus, in line (10), the partitionp′′ = {c5, c2} ∪ {c7} is
formed.p′′ is added to the set of partitions and to the worklist in line (12) and line (13).

In the worst case, the number of partitions can be exponential in the number of concepts. Furthermore,
the techniques for making contexts well-formed, discussed so far, only exacerbate the problem: More
precise means of distinguishing sets of elements translates to more concepts. This is turns leads to more
possibilities for partitions.

If the number of concepts in a concept lattice is large, it may be impractical to consider every possible
partitions of the concepts. In such a case, it is possible to adapt the algorithm to work interactively, with
guidance from the user. Before attempting to find a new partition, the algorithm would pause for the user
to specifyseed setsof concepts , which would be used to force the algorithm to find only coarser partitions
than the seed sets (i.e., partitions that do not subdivide the seed sets).
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[GDL04] Tudor Ĝırba, St́ephane Ducasse, and Michele Lanza. Yesterday’s Weather: Guiding Early
Reverse Engineering Efforts by Summarizing the Evolution of Changes. InProceedings of
ICSM ’04 (International Conference on Software Maintenance), pages 40–49. IEEE Com-
puter Society Press, 2004.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley, Reading, Mass., 1995.

[GHRV02] Robert Godin, Marianne Huchard, Cyrill Roume, and Petko Valtchev. Inheritance and Au-
tomation: Where Are We Now? In Andrew Black, Erik Ernst, Peter Grogono, and Markky
Sakkinen, editors,ECOOP 2002: Proceedings of the Inheritance Workshop, pages 58–64.
University of Jyv̈askyl̈a, June 2002.

[GL70] I. Gitman and M. D. Levine. An Algorithm for Detecting Unimodal Fuzzy Sets and Its
Application as a Clustering Technique.IEEE Transactions on Computers, CE-19:583–593,
July 1970.

[GL91] Keith Brian Gallagher and James R. Lyle. Using Program Slicing in Software Maintenance.
Transactions on Software Engineering, 17(18):751–761, August 1991.

[GM93] Robert Godin and Hafedh Mili. Building and Maintaining Analysis-Level Class Hierarchies
using Galois Lattices. InProceedings OOPSLA ’93 (8th Conference on Object-Oriented
Programming Systems, Languages, and Applications), volume 28, pages 394–410, October
1993.

[GMM+95] Robert Godin, Guy Mineau, Rokia Missaoui, Marc St-Germain, and Najib Faraj. Apply-
ing Concept Formation Methods to Software Reuse.International Journal of Knowledge
Engineering and Software Engineering, 5(1):119–142, 1995.

104



BIBLIOGRAPHY

[GMM+98] Robert Godin, Hafedh Mili, Guy W. Mineau, Rokia Missaoui, Amina Arfi, and Thuy-Tien
Chau. Design of Class Hierarchies based on Concept (Galois) Lattices.Theory and Appli-
cation of Object Systems, 4(2):117–134, 1998.

[Gor81] A. D. Gordon.Classification: Methods for the Exploratory Analysis of Multivariate Data.
Chapman & Hall Ltd., London, 1981.

[GW99] Bernhard Ganter and Rudolf Wille.Formal Concept Analysis: Mathematical Foundations.
Springer Verlag, 1999.

[HB85] David H. Hutchens and Victor R. Basili. System Structure Analysis: Clustering with Data
Bindings. IEEE Transactions on Software Engineering, 11(8):749–757, August 1985.

[HCIM02] Dean Hendrix, James H. Cross II, and Saeed Maghsoodloo. The Effectiveness of Control
Structure Diagrams in Source Code Comprehension Activities.IEEE Transactions on Soft-
ware Engineering, 28(5):463–477, May 2002.

[HDL00] Marianne Huchard, Herv́e Dicky, and Herv́e Leblanc. Galois Lattice as a Framework to
specify Algorithms Building Class Hierarchies.Theoretical Informatics and Applications,
34:521–548, 2000.

[HK00] Jiawei Han and Micheline Kamber.Data Mining: Concept and Techniques. Morgan Kauf-
mann, 2000.

[IC 01] IC & C GmBH Software Foundations, Papenhoehe 14, D-25335 Elmshorn/Hamburg, Ger-
many.ADvance User’s Guide, August 2001.

[JD88] Anil K. Jain and Richard C. Dubes.Algorithms for Clustering Data. Prentice Hall, Engle-
wood Cliffs, 1988.

[JGR99] Mehdi Jazayeri, Harald Gall, and Claudio Riva. Visualizing Software Release Histories: The
Use of Color and Third Dimension. InProceedings of ICSM ’99 (International Conference
on Software Maintenance), pages 99–108. IEEE Computer Society Press, 1999.

[JR97] Dean Jerding and Spencer Rugaber. Using Visualization for Architectural Localization and
Extraction. In Ira Baxter, Alex Quilici, and Chris Verhoef, editors,Proceedings of WCRE ’97
(4th Working Conference on Reverse Engineering), pages 56 – 65. IEEE Computer Society
Press, 1997.

[KG88] Michael F. Kleyn and Paul C. Gingrich. GraphTrace – Understanding Object-Oriented Sys-
tems using Concurrently Animated Views. InProceedings OOPSLA ’88 (International
Conference on Object-Oriented Programming Systems, Languages, and Applications, vol-
ume 23, pages 191–205. ACM Press, November 1988.

[KM00] Tobias Kuipers and Leon Moonen. Types and Concept Analysis for Legacy Systems. Tech-
nical Report SEN-R0017, Centrum voor Wiskunde en Informatica, July 2000.
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[Lin95] Christian Lindig. Concept-Based Component Retrieval. In J. Köhler, F. Giunchiglia,
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