A Group Based Approach for
Coordinating Active Objects

Inauguraldissertation
der Philosophisch-naturwissenschatftlichen Fakultat
der Universitat Bern

vorgelegt von

Juan Carlos Cruz
von Kolumbien

Leiter der Arbeit:
Prof. Dr. Oscar Nierstrasz
Prof. Dr. Stéphane Ducasse

Institut fur Informatik und angewandte Mathematik

A Group Based Approach for
Coordinating Active Objects

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultat
der Universitat Bern

vorgelegt von

Juan Carlos Cruz
von Kolumbien

Leiter der Arbeit:
Prof. Dr. Oscar Nierstrasz
Prof. Dr. Stéphane Ducasse

Institut fur Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultat angenommen.

Der Dekan:
Bern, 19 June 2006 Prof. Dr. P. Messerli

Abstract

Concurrent technology is an interesting technology to build today systems, it allows multiprocessing, itin-
creases the throughput and responsiveness of the applicationsand it provides a more appropriate structure
to applications that are naturally concurrent. Unfortunately concurrent technology is perceived in general
by software devel opers as complex and difficult to use. It is evident that the concurrent model is harder to
reason than the sequential model, but in our opinion this does not explain completely why this technology
is perceived as complex and difficult to use. We believe that the main reason why this technology is not
widely used today is that we still lack methodol ogies, models, patterns, and languages, that facilitate the
modeling, the specification, the construction and the understanding of concurrent systems.

Recent research inthe areaof software engineering have suggested to managethe complexity of building
complex systems by managing separately the different aspects that compose those systems. One approach
inthisdirection inthe domain of concurrent and distributed systemsisthat of coordination modelsand lan-
guages introduced by Gerlernter and Carriero in 1992. The coordination models and languages approach
promotes the separation of the computation and coordination aspects in the building and the specification
of concurrent and distributed systems. According to the coordination models and languages approach a
complete programming model can be built out of two separate pieces: the computation model and the coor-
dination model. The computation model concernsthe specification of the elementsthat composethose sys-
tems and the coordination model the specification of the gluethat binds all the elementstogether.

Webelieve - and thisisthemain claim of thisthesis- that the separation of the coordination and compu-
tation aspects in the specification and construction of concurrent object-oriented systems as promoted by
coordination models and languages reduces the complexity of building such kind of systems and makes
concurrent technology easier to use and to understand.

We propose in thisthesisthe use of active objectsand coordination models and languages for the speci-
fication and construction of concurrent object-oriented systems. Active objectsare objectsintegrating con-
currency and coordination models and languages are model s and languages that specify theway the active
objects composing the systemsare glued together. Our approach is based on the definition of acoordination
model and language called CoLaSfor the specification of the coordination aspect in concurrent object-ori-
ented systemsbased on active objects. The Col aS coordination model and languageintroducesahighlevel
coordination abstraction called Coordination Group that allows programmersto design, to specify, toim-
plement and to validate the coordination of groups of collaborating active objectsin concurrent object-ori-
ented systems.

What isnew in our approach isthe use of active objectsand acoordination model and language based on
thenotion of coordination groupsto manage the specification and the construction of concurrent object-ori-
ented systems. Until now few works have been donein this direction, none of them combining the idea of
groups and message i nterception to perform the coordination of the active objects.

Acknowledgments

Itisvery difficult for me to decide who to thank the first in this acknowledgments, so many persons have
participated in away or another to this adventure all along these years. Although, | believe that definitely
my mother must befirst person to thank. Unfortunately sheisnot any morewith usto read what | write. She
was the one who always motivated me all along my lifeto learn more and to try to get the best of me. She
alwayswanted to giveto her children what she did not have and what she considered wasthe most important
legacy she could leave us, knowledge. She could have been ascientist, or agreat politician, she could have
changed theworld, but she could not because shedid not have the opportunity to get educated! So shewant-
ed her children did it at her place. How many times | had to explain her that a Ph.D. work was not an easy
work, that aPh.D implied alot of effort, work and time. How many times| heard her complaining about why
| have not finished my Ph.D. (I haveto say shewasnot theonly one!). It took mealot of timeto finishit but
| didit, and | did it mainly for you mom. I missyou alot. | would have given everything | haveto have you
here with metoday.

| am also sure my father would have been extremely proud of me today. He always was! Hewas avery
simple person but very wise. Hewas confronted with adifficult life since hewasvery young. | learned from
him so many valuesthat | consider asfundamental in life: honesty, passion for work, respect and punctual -
ity. And yes! | did not learn to be punctual herein Switzerland, that is something | learned from my father.
Hedied when | wasvery young, | did not enjoy hisloveand wisdom for too long time. | had to make my life
without him, without his support. | would have loved to have him close to me all along of my life. But that
islifel suppose! I have not forgotten you dad, not asingle second of my life, | missour long sessionstalking
about life.

| am very lucky inlifel found my great love, | met him when | wasliving in France and since that first
day in 94 that we met when have been alwaystogether, Martinyou aremy life! You supported meall along
these years in this work, you always motivated me when | lost my self-confidence. This success is also
yours. | loveyou so much:-). | would alsoliketo thank your parents: Heinz and M ariewho have al so become
mine. They givemeall thelovethat | do not have anymore from mine.

In the Software Composition Group, | must start with Oscar who opened one day the doors of hisgroup
tomeandindirectly changed my life. Hehasalot of qualities, | admire hisintelligence and thequality of his
work. Thingswere not easy at the beginning, the group wastoo young at that time | believe. A lot of things
changed when Stéphane Ducasse and Serge Demeyer cameto our group. They weretwo excellent post-docs
and they did an extremely good job. Stéphane Ducasseisthe person | haveto thank the most because of this
work. We started it together, he tought me how to write papersfor conferences, he tought me how todo re-
search. And, aboveall, healwayskept faithin me, even when thingswere difficult. He waysdefended my
work, he always believed in me. Thank you, and thank you again Stéphane.

| consider myself the “living” memory of the SCG group, | know all the personsthat came to our group
al along these years. | want to thank first Tamar Richner, my office colleague. We had very good discus-
sions about al different subjects, we also suffered together and went through alot of moments of doubt. |
never considered you different because you wereawoman, never! | aman admirer of your work, for meyou
have arare quality whichisto get the point immediately. She got her Ph.D and | was so happy for her. Now,
we meet from time to timeto talk about life, like in the past. We do not share the same office anymore but

wekeep close contact. My other office colleaguewas Franz Achermann, extremely nice person, very Swiss,
respectful, good worker, intelligent, always ready to help you, we had very good exchanges. | still remem-
ber that day in which he discovered he was also doing coordination. It was very funny!

Sander Tichelaar my master student, now Ph.D. and friend. Excellent colleague, good worker, and so-
cialy intelligent. He gave me the frame maker templates | used to writethisthesis. Roel was also an excel-
lent colleague, heis also somebody who believed in me, and tried to motivate meto finish. Finally the two
Argentiniangirls: GabrielaAreval o and LauraPonisio. You can not imagine how many “caserolazos’ Gab-
rieladidtome, to pushmetofinishmy thesis. A “caserolazo” isthe Argentinian NOISY way to push people
to makethings, or at least to try!. She was also an excellent colleague and isadear friend. It is pity that she
did not cross Mr. Right in Switzerland, she would stay with ustoday. Well, there were so many personsin
thegroupwithwhich | shared so many things. My other Ph.D. colleagues: Willem, Karl, Bob, Jean-Guy, the
two Markus, Luca, Matthias, Michele, Alex, Doru and Orla; the master students | directed: Thomas and
Daniel and our office managers: |sabelle Huber and Therese Schmid. Many thanksto all of you for your
support and friendship!

Preface

Few monthsago when | wasreading the march issue of the Dr.Dobb mag-
azine, | was surprised when | found an article entitled “A Fundamental
Turn Toward Concurrency in Software"[Sutt05a] presenting concurren-
cy asafundamental turn in software today. When | started thisthesis al -
most 10 years ago, | read a similar article about the importance of
concurrency! | was definitely surprised to find that 10 years|ater concur-
rency is still considered as the next revolution about how to write soft-
ware. When you do work for your thesisfor so long time, you start to lose
confidence in what you do and doubt about the value of your work. After
reading this article | felt more confident than ever that my work in the
specification of acoordination model and language for concurrent object
-oriented systemswas still the future.

Table of Contents

CHAPTER 1: Introduction
1.1 TheProblem
1.2 The Approach
1.3 Contributions of thisThesis
1.4 ThesisOutline

CHAPTER 2: Requirementsfor a Coor dination model and language
for ActiveObjects

o O b~ W

2.1 Coordination Models and L anguages
2.2 Coordination Theory
2.2.1 Classification of Coordination Modelsand Languages

2.2.2 Importance of Coordination Models and L anguages

2.3 Coordination Problemsin Concurrent Systems
2.4 Coordination Abstractions

2.4.1 Abstract Communication Types[Aksi92a][Berg94a]
2.4.2 Activities [Kris93a][Kris974]

2.4.3 Activitiesand Environments[Arap914]

2.4.4Cast [Var99a]

2.4.5 Connectors- FLO [Duca97a][Duca98a]

2.4.6 Connectors- ArchJava[Aldr03a]

2.4.7 Contracts[Helm90a]

2.4.8. Collaborations[Yell974]

2.4.9 Coordination Contracts [Andr99a][Barr02a]

2.4.10 Coordination Environments [Mukh95a]

2.4.11 Coordination Policies[Mins974]

2.4.12 Coordination Types[Puti97a]

2.4.13 Darwin - Ports[M age954]

2.4.14 Event Notifications [Papa94a] [Papa96a] [Hern96a]
2.4.15Finesse - Bindings [Berr98a)

2.4.16 Formal Connectors[Alle94a]

1
11
14
15
16
17
17
18
19
19
20
21
21
22
22
23
24
25
25
26
27
27

2.4.17 GAMMA - Multi-Set Rewriting [Bana96a]
2.4.18 Gluons[Pint95a]
2.4.19 Linda- Tuple Spaces[Gele85a][Carr94a] + LindaExtensions: Bauhaus
Linda[Carr94a], Bonita[Rows974], Law Governed Linda[Mins94a], Objective
Linda[Kiel96a] ,JavaSpaces Sun03a]
2.4.20 Manifold - IWIM [Arba96a][Arba98a]
2.4.21 Piccola- Scripts[Ache00a]
2.4.22 Rules and Constraints[Andr96a][Andro6b]
2.4.23 Synchronizers [Frol93a]
2.4.24 Wrappers[Ciob05a]
2.4.25 Related Work - Summary
2.5 Anldeal Coordination Languagefor Active Objects
2.6 Conclusions and Contributions

CHAPTER 3: TheCoL aSCoordination M odel and L anguage
3.1 The CoL aS Coordination Model
3.1.1 The Participants
3.1.2 The Coordination Groups
3.1.3 Afirst View of CoLaS - Subject and Views[Helm90a]
3.2 The ColLaS Coordination Language - A Detailed View
3.2.1 A Case Study: The Electronic Vote [Mins97a]
3.2.2 Roles Specification
3.2.3 Coordination State
3.2.4 Coordination Rules
3.2.4.1 Cooperation Rules
3.2.4.2 Reactive Rules
3.2.4.3 Proactive Coordination Rules
3.2.4.4 Pseudo-Variables
3.2.5 Dynamic Aspects
3.2.6 Groups Composition - The Electronic Agenda
3.2.6.1 Coordination Roles
3.2.6.2 Coordination State
3.2.6.3 Reusing Existing Coordination Groups

28
28

29
30
30
31
31
32
32

37

39
41
41
41
43
46
46
48
49
51
51
53
56
58
59
61
63
63

3.2.6.4 Coordination Rules 65

3.2.7 Groups as Participants 66
3.3 Evaluation of the CoLaS model 68
3.4 Conclusions and Contributions 69

CHAPTER 4: CORODS: A Coordination Programming System for Open

Distributed Systems 72
4.1 Related Work 73
4.2 Motivation - The Administrator Pattern [Papa95g] 74
4.3 CoL aSD: Extensionsfor Distributed Object Coordination 76

4.3.1 Consistency in Distributed Object Systems 76
4.3.2 Consistency in CoLaS 78
4.3.3 The ACSProtocol 79
4.3.3.1Apply 80
4.3.3.2Call 80
4.3.3.3 Send 81
4.4 The CoL asD Coordination Model 82
4.4.1 The Participants 82
4.4.2 The Coordination Groups 82
4.4.3CoLaSD - The Administrator Pattern: A Simplified Version 82
4.5 CORODS - A Coordination Servicefor CORBA 87
4.5.1 The DST Framework 88
4.6 The CORODS Coordination Service 89
4.6.1 Coordination Groups Lifecycle Operations 89
4.6.2 Referencesto Coordination Groups 95
4.6.3 The CORODS service'sIDL 96
4.7 CORODS - The Administrator 98
4.8 CORODS implementation Requirements and Limitations 99
4.9 Conclusions and Contributions 101

CHAPTER 5: OpenColL aS:. a Coor dination Framework for CoL aS
Dialects 103
5.1 Coordination Rulesin CoLaS 104

5.1.1 Cooperation Rules
5.1.2 Reactive Rules
5.1.3 Proactive Rules
5.2 The OpenColL aS Framework
5.2.1 The Electronic Vote [Mins974]
5.2.2 Behaviora Rules
5.2.3 Reactive Rules
5.2.4 Proactive Rules
5.2.5 Evaluation of Coordination Rulesin CoLaS
5.3 Evolution of the CoL aS Coordination Model
5.3.1 Original CoL.aS model [Cruz99a]
5.3.2 Intermediate CoLaS model [Cruz014d]
5.4 Simplifying the Interception Rulesin CoLaS
5.5 Specifying CoLaSlike Coordination Modelsin OpenCoLaS
5.5.1 Moses[Mins97a]
5.5.2 Composition Filters[Berg944]
5.5.3 Synchronizers[Frol93a]
5.6 Conclusions and Contributions

CHAPTER 6: Validation
6.1 From CoL aS Groupsto Predicate-Action Petri Nets
6.1.1 The CoLaS model
6.1.2 Groups Mapping
6.1.3 Specification of aVirtual Medium
6.1.4 From Predicate-Action Petri Netsto Place-Transition Petri Nets
6.2 Case Studies
6.2.1 The“ Subject and Views’ [Helm90a]
6.2.2 The Electronic Vote[Mins974]
6.3 The Time Petri Net Analyser - TINA
6.3.1 The“ Subject And Views’ [Helm90a)
6.3.2 The Electronic Vote[Mins974]
6.4 Related Work
6.5 Conclusions and Contributions

104
104
105
105
106
107
109
112
113
115
115
117
117
118
118
121
123
125

129
130
131
132
141
142
143
143
146
150
151
154
156
158

CHAPTER 7: Case Sudies 160

7.1 A Context-Sensitive Help [Gamm95a] 162
7.2 The Dining Philosopherg Dijk68a] 168
7.3 The Vending Machine 174
7.4 The Online-Music Shop [Pric00g] 183
7.5 The Ornamental Garden [Burn93a] 192
7.6 The New Server Election 196
7.7 Conclusions 199
CHAPTER 8: Conclusions 202
8.1 Evaluation of the CoLaSModel 204
8.2 The Good, The Bad and The Ugly of the Model 206
8.2.1 TheParticipants 206
8.2.2 Role Specification 207
8.2.3 The Coordination State 207
8.2.4 The Coordination Rules 208
8.2.5 Dynamic Aspects 209
8.3 Some Implementation Concerns 209
8.3.1 The Role Concept 209
8.3.2 Coordination Enforcement 210
8.4 Future Work 211

APPENDI X A: Coordination Abstractions

A1 Abstract Communication Types [Aksi 92a][Berg94a] 213
A2 Activities [Kris93a][Kris97a] 217
A3 Activitiesand Environments [Arap91d] 218
A4 Cast [Vare99a) 221
A5 Connectors- FLO [Duca97a][Duca98a] 222
A6 Connectors - ArchJava[Aldr03a] 224
A7 Contracts[Helm90a] 226
A8 Collaborations[Yell97a] 227
A9 Coordination Contracts [Andr99a][Barr02a] 229

A10 Coordination Environments [M ukh95g] 230

A11 Coordination Policies[Mins97a] 232

A12 Coordination Types[Puti97a] 234
A13 Darwin - Ports[Mage95a] 235
A14 Event Notifications [Papa94a] [Papa96a] [Hern96a] 236
A15 Finnesse- Bindings[Berr98a] 238
A16 Formal Connectors[Alle94a] 240
A17 GAMMA - Multiset Rewriting [Bana96a) 241
A18 Gluons[Pint95a] 241
A19 Linda- Tuple Spaces[Gele85a][Carr94a) 242
A20 Manifold - IWIM [Arba96a][Arbad8a] 245
A21 Piccola-Scripts[Ache00a] 246
A22 Rules and Constraints [Andr96a][Andr96b] 248
A23 Synchronizers[Frol93a] 249
A24 Wrappers[Ciob05a] 251

APPENDI X B: Petri Nets

B1 Typel - Modeling and Semantics 255
B2 Place-Transition Petri Net 255
B3 Coloured Petri Nets 257
B4 Predicate-Action Petri Nets[Kell 76a] 258
B5 Numeric Petri-Nets [Symo80a] 259
B6 Validation [Bram83a] 259
B7 Formal Verification of Petri Nets[Mura39a] 260

BIBLIOGRAPHY 262

CHAPTER 1

Introduction

We interact today more and more with concurrent applications even without knowing it; the automatic
banking systemsthat we use to perform our banking operations, the control systems roaming and tracking
our mobile phones, theretail point-of-sal es systemswhere we buy books, thereservation systemswe useto
book the hotels and flights for our holidays and business travels, etc. are some exampl es of these kinds of
systems. And, new application domains appear every day! We need to be prepared to accept the challenge
of building those new systems.

Although concurrent technology is an interesting technology to build today systems, thistechnology is
till perceived by software engineers as complex and difficult to use. They are partially right; the program-
ming model programmers have to reason in their heads is much harder that the one for sequentia control
flow. Nevertheless, we believe that the main reason why thistechnology is not widely used today isthat we
till lack methodologies, models, patterns and languages that facilitate the modeling, the specification, the
construction and the understanding of concurrent systems. We proposein thisthesisthe use of active objects
and coordination model sand languages for the specification and construction of concurrent object-oriented
systems. Active objects are objects integrating concurrency and coordination models and languages are
model sand languagesthat specify theway the different el ementscomposing the systems are glued together.
In our case, the coordination model specifiestheway the active objectsare glued together in concurrent ob-
ject-oriented systems. We believe - and thisisthe main claim of thisthesis - that the separation of the coor-
dination and computation aspects in the specification and construction of concurrent object-oriented
systems as promoted by the coordination model s and languages approach reduces the complexity of build-
ing such kinds of systems and makes concurrent technology easier to use and to understand.

The major advantages of the usefulness of concurrent systems are [Mage99a]: performance gain from
multiprocessing software, increased application throughput, increased application responsiveness and
more appropriate structure (some programs are just naturally concurrent). Although it is evident that it
sounds advantageous to move from sequential to concurrent systems, it isclear that concurrent systemsare
more complex than sequential systems. Concurrent systemsrequire the explicit specification of synchroni-
zation to avoid data corruption and starvation of processes [Nier00a] and run time overhead isintroduced
by the creation and manipulation of the threadsin which the processes run. The benefitsintroduced by the
concurrency must beweighted against its costsin resource consumption, efficiency and program complex-
ity before deciding to build aconcurrent system [Lea99a).

Itisin general well accepted today that the object-oriented paradigm provides good foundationsfor the
new challenges of concurrent computing [Brio98a]. The concurrent object-oriented paradigm integrates
two simple concepts: objects and concurrency. The two concepts are strong enough to structure complex
computational systems. There has been alarge number of proposals about how to combine object-oriented
and concurrency features, some of them are summarized in [Papa95a][Brio98a][M cHa93a]. Not all the pro-
posal shavebeen equally successful in showing the benefits of theintegration of thetwo concepts. Themain

2

reason isthat object-oriented features and concurrency features are not orthogonal, and consequently they
cannot be combined arbitrarily [Mats944]. Therearebasically three different approachesto structureacon-
current object-based system [Papad5a)]: the orthogonal, the homogenous and the heterogeneous approach.
In the orthogonal approach concurrency execution isindependent of objects. In the homogenous approach
all objectsareconsidered as“active” entitiesthat have control over concurrent invocations. And inthe het-
erogeneous approach both active and passive objects are provided. From our point of view the most inter-
esting approach isthe active objects approach. In the active objects approach the objects themselves rather
than thethreadsthat invoketheir operations have the responsibility to schedul e concurrent requests, the ac-
tive objects remain independent self-contained computational entities.

Although the active objects approach have showed the benefits of the obj ect-oriented paradigm for con-
current computing, building and maintai ning concurrent object-oriented systemsusing active objectsistill
very difficult. From our point of view oneof themost important problemsfound in building and maintaining
those systemsisthat the functionality of the active objectsthat compose the systemsand they way they co-
operate and synchronize are mixed within the active objects code. The mixing of cooperation and synchro-
nization concerns makes the concurrent systems built difficult to understand, modify and customize. We
need concurrent object-oriented programming languages with abstractions that enforce the separation of
thetwo concerns.

People doing research in software engineering have suggested to manage the complexity of building
complex systems by managing separately the different aspects that compose those systems[Kicz97a]. One
approachinthisdirectioninthedomain of concurrent and distributed systemsisthat of coordination models
and languages [Gel€92a]. The coordination model sand languages approach promotesthe separation of the
computation and coordination aspects in the building and specification of concurrent and distributed sys-
tems. According to the coordination model and |anguages approach acompl ete programming model can be
built out of two separate pieces: the computation model and the coordination model. The computation mod-
el concerns the specification of the elements that compose those systems and the coordination model the
specification of the gluethat bindsall the elementstogether.

Although coordination is a fundamental aspect of object-oriented programming languages for concur-
rent systems, existing concurrent object-oriented programming languages provide only limited support for
its specification and abstraction [Frol93a][Aksi92a]. It isfundamental that concurrent object-oriented pro-
gramming languages help programmersto deal with the complexity of constructing concurrent object-ori-
ented systemsif wewant the* concurrency revol ution” tofinally happen. From our point of view concurrent
object-oriented programming languages must provide high level coordination abstractions supporting the
separation and specification of the coordination aspect. We proposein thisthesisto follow the coordination
model and languages approach to define a coordination model and language called CoLaSfor the specifi-
cation of the coordination aspect i n concurrent object-oriented systemsbased on active objects. The CoLaS
coordination model and language introduces a high level coordination abstraction called Coordination
Group that allows programmers to design, to specify and to implement the coordination of groups of col-
|aborating active objectsin concurrent obj ect-oriented systems.

What isnew in our approach isthe use of active objectsand the use of acoordination model and language
based on the notion of coordination groups to manage the specification and the construction of concurrent
object-oriented systems. Until now few works have been done in this direction
[Frol93a][Aksi92a] [Papad44], but none of them combining theideaof groups and message interception to
perform the coordination of the active objects.

1.1 The Problem

We already mentioned some of the problemswe believe existing object-oriented programming languages
havein supporting the specificati on, devel opment and maintenance of the coordination aspect in concurrent
object-oriented applications. We will try to summarize them here and to explain their implications.

Lack of high level coordination abstractions. Existing concurrent object-oriented languages pro-
vide only low level coordination abstractions. In Java for example, the coordination is modelled at
avery low level: threads model asynchronous activities; the synchronized keyword, the wait, notify
and notifyAll methods are used to coordinate the activities across threads. The Java 2 (Platform SE
5.0) [Sun044] includes a new package of concurrency utilities: thread pools, asynchronous execu-
tion of tasks, synchronization utilities such as counting semaphores; atomic locks; and condition
variables. While the set of provided constructs introduced recently in Java can be used to solve non
trivial coordination problems, in practice only expert programmers are able to handle them appro-
priately. Java programmers tend to rely on design patterns [Lea994] to solve common coordination
problems.

Lack of coordination abstractionsfor complex inter actions. Existing concurrent object-oriented
languages do not support the expression and abstraction of complex object interactions and large
scale synchronizations involving more that just a pair of objects [Aksi92a][Frol93a]. The message
send model used in concurrent object-oriented languages can only specify communications that in-
volve two partner objects at atime and its semantics cannot be easily extended.

L ack of separation of computation and coor dination concer ns. In most concurrent object-orient-
ed systems the coordination is hardcoded inside the objects behavior. Those systems are difficult to
understand, to customize and to evolve. The concurrent object-oriented languages used to build
those systems do not provide abstractions that enforce the separation of computation and coordina-
tion concerns. The lack of separation of computation and coordination concerns has as a conse-
guence adesign with poor potential for reuse. The concurrent objects cannot be reused independent-
ly of the way they are coordinated and the coordination patterns cannot be reused independently of
the concurrent objects they coordinate.

Lack of support for the evolution of the coor dination code. Three main changesin the coordina-
tion can impact the coordination in asystem: 1) the addition and the removal of coordinated objects
to and from the coordination, 2) the definition of new coordination patterns and 3) the modification
of the coordination policies specifying the coordination. The changes range broadly from local re-
definition and recompilation of the coordination and/or the active objects code to the overall redef-
inition and recompilation of the system.

Lack of support for the validation of the coordination code. Existing concurrent object-oriented
languages do not support the verification of the concurrent code. It isimpossibleto verify safety and
liveness properties [Andr96a] of the codeto guaranteethe* normal” execution of the concurrent pro-
grams.

4

1.2 The Approach

We proposein thisthesisto define acoordination model and |anguage called CoL aSfor the specification of
the coordination aspect in concurrent object-oriented systemsbased on active objects. CoL aSisacoordina-
tion model and language based on the notion of Coordination Group. A coordination group isan entity that
specifies, controlsand enforcesthe coordination of groups of collaborating active objects. We consider that
the primary tasks of the coordination in concurrent object-oriented systems should be: 1) to support the cre-
ation of active objects, 2) to enforce cooperation actions between active objects, 3) to synchronize the oc-
currence of those actions and 4) to enforce proactive behavior [Andr96a] on the systems based on the state
of the coordination. The coordination groupsin CoL aS supportsthe four primary tasks.

The CoL aS coordination model isbuilt out of two kinds of entities: the participants and the coordination
groups. The participants are the entities coordi nated and the coordination groups are theentitiesthat control
and enforce the coordination of the participants. The participantsin the CoL aS coordination model are ac-
tive objects. objectsthat have control over concurrent method invocations.

/9

Participants

Coordjnation Rules

Coordination Group

Figure 1.1 : A coordination group

A coordination group iscomposed of threeelements(Figure 1.1): theroles specification, the coordina-
tion state and the coordination rules. Therol es specification definesthe different rolesthat participants may
play in the group. Each role specifies the minimum reguirements it imposes to an active object to play the
role. The coordination state defines general information needed to perform the coordination, information
like: whether some action has occurred or not in the system, the number of times some action has occurred

5

inthe system. In general the coordination state specifiesinformation rel ated to the state of the coordination
group and to the participants of the coordination group. Finally, the coordination rules define the different
rules governing the coordination of the group. The coordination rules specify: cooperation actions between
participants, synchronizationson the execution of participants actionsand proactionsor actionsinitiated by
the participantsindependently of the messages exchanged.

One of the most important characteristics of the CoLaS model is its capacity to dynamically adapt the
coordination specified in the coordination groups. The CoL aSmodel supportsthreetypesof dynamic coor-
dination changes: (1) new participantscan join and leave the groupsat any time, (2) new groupscan becre-
ated and destroyed dynamically and (3) new coordination rules can be added and existing removed from the
groups

We believethe ColL aS coordination model and language tacklesthe most important problemsthat exist-
ing object-oriented programming languages have in supporting the development and maintenance of the
coordination aspect in concurrent object-oriented applications:

» Lack of high level coordination abstractions. The coordination groups are high level coordination
abstractions hiding the low level details of how the coordination is done. The programmers focus
exclusively on expressing the coordination between the different roles using the coordination rules.
The enforcement of the coordination is done transparently by the coordination groups.

» Lack of coordination abstractionsfor complex inter actions. The coordination groups specify the
coordination independently of the number of roles and the number of participants playing theroles.
Also, the coordination specified in the coordination rules allows programmers to specify complex
coordination protocolsincluding message exchanges and synchronization constraints among multi-
ple participants.

» Lack of separation of computation and coordination concerns. The coordination groups are
specified independently of the internal representation of their participants: the coordination groups
do not know which participants will play their roles, neither the participants know in which coordi-
nation groups arethey playing arole. Thisallowsaclear separation of computation and coordination
concerns in a concurrent object-oriented system. The separation of coordination and computation
concerns promotes design of concurrent object-oriented applications with greater potential of reuse:
the coordinated entities can be reused independently of how they are coordinated and the coordina-
tion can be reused independently of the coordinated entities.

» Lack of support for the evolution of the coor dination code. The coordination groups support the
dynamic evol ution of coordination, new coordination groups can be created and destroyed, new par-
ticipants can join and leave the coordination groups and the coordination rules governing the coor-
dination can be adapted to satisfy new coordination requirements.

» Lack of support for the validation of the coordination code. We provide in this thesis an ap-
proach to validate the most important properties of the coordination code specified in the coordina-
tion groups. The approach consists of transforming the coordination groupsinto Petri Netsin which
reachability analysis techniques are used to validate formal properties. The main problem with our
approach isthat the validation processis not directly donein the coordination groups but in the Petri
Nets. It is difficult to interpret the validation results obtained in the Petri Nets in the coordination
groups.

6

1.3 Contributions of this Thesis

We consider that there are four main contributionsin thisthesis:

1.

Introduction of a group based approach for coordination of concurrent activitiesin object
systems [Cruz99a]. We introduce ColL aS, a coordination model based on the notion of coordi-
nation groups. A coordination group is a high-level coordination abstraction that supports the
specification, the control and the enforcement of groups of collaborating active objects in con-
current and distributed systems. The coordination groups enforce the separation of coordination
and computation concerns in concurrent object-oriented systems, they allow the specification of
complex interactions and support the evolution of the coordination requirements.

Introduction of a coordination service for CORBA [Cruz99b][CruzOla]. We define
CORODS, a coordination service for the CORBA (Common Object Request Broker) standard
[OMG953a] based on CoLaSD, an extension of the CoLaS model to support distribution. The
CORODS coordination service supports the creation, the reference, the modification and the de-
struction of heterogeneous groups of distributed collaborating active objects. CORBA isamid-
dleware proposed by the Object Management Group (OMG) to provide a standard for interoper-
ability between independently developed components across networks of computers. The
CORODS coordination service supports the coordination of heterogeneous distributed objects.
Introduction of a platform for experimenting with the specification of rule-based coordina-
tion models [Cruz02a]. An important family of existing coordination models and languages is
based on the idea of trapping the messages exchanged by the coordinated entities and by the def-
inition of rules governing their coordination. We define OpenColL aS a framework for experi-
menting with the specification of rule-based coordination models and languages. The OpenCo-
LaS framework allows programmers to specify new coordination rules in rule-based coordina-
tion models and languages.

A survey of coordination abstractions. We present a survey of coordination abstractionsin ex-
isting coordination model and languages. The survey includes the most important existing con-
current object-oriented languages and coordination models and languages. We consider this sur-
vey asalfirst step towardsthe specification of ataxonomy of coordination abstractionsin existing
object-oriented and coordination languages.

A methodology for the validation of formal properties of CoL aS coordination code. We
present a new methodology for the modeling and verification of formal properties of the coordi-
nation groups. The methodology consists of transforming the coordination groups in Predicate-
Action Petri Nets. Reachability analysisis then used in the Petri Nets to validate formal proper-
ties.

1.4 Thesis Outline

The goal of thisthesisisto specify acoordination model and language for concurrent object-oriented sys-
tems based on active objects. We claim that by separating the specification of the coordination aspect from
the computation aspect in those systemswe simplify their specification, understanding, construction, evo-
lution and validation of properties. We have a ready identified inthisintroducti on the most important prob-
lems that existing concurrent object-oriented languages have in supporting the specification of the
coordination aspect: they are: 1) thelack of high-level coordination abstractions, 2) thelack of coordination
abstractionsfor complex interactions, 3) the lack of separation of computation and coordination concerns,

7

4) thelack of support for the evol ution of the coordination code and 5) the lack of support for the validation
of the coordination code. For usthese are the five big challengesto overcomein the specification of acoor-
dination model and language for concurrent object-oriented systems. We propose in thisthesis acoordina-
tion model and language called CoL aS based on the notion of coordination groups. A coordination groupis
an entity that encapsulates and enforces the coordination of groups of collaborating active objects. The pri-
mary tasks of the coordination group are: 1) to support the creation of active objects, 2) to enforce coopera-
tion actions between active objects, 3) to synchronize the occurrence of those actions and 4) to enforce
proactive behavior in the group of active objects.

We have organi zed the presentation of thisthesisin thefollowing way:

Chapter 2 definesthe requirementsfor anideal coordination model and language for concurrent object-
oriented systems. In thefirst part of the chapter we provide an introduction to the coordination domain. We
provide answersto some fundamental questionsrelated to the understanding of the coordination like: Why
we need to coordinate? What should be coordinated? Which are possible waysto coordinate? We addition-
ally identify alist of coordination problemsin concurrent systems and we propose a simple approach to
identify themin general. In the second part of the chapter we present our analysisof theadvantagesand dis-
advantages that coordination abstractions in existing coordination models and language have in the speci-
fication of an ideal coordination model and language for concurrent object-oriented systems. The
coordination abstractions analyzed correspond to those included in the survey of coordination abstractions
in existing coordination modelsand |anguagesincludedin Appendix A of thisthesis. We concludethe chap-
ter with the specification of thelist of requirements we consider to be fundamental for the specification of
an ideal coordination language for concurrent object-oriented systems. These requirementsareused inin
thisthesisin the evaluation of our approach.

Chapter 3 introduces CoLaS, our coordination model and language. We present the two elements that
compose the CoL aS coordination model: the participants and the coordination groups. The coordination
groups are the entities that encapsulate and enforce the coordination of the participants. The specification
of acoordination group contains: 1) the specification of therolesthat participants may play inthegroup, 2)
the specification of the coordination state of the group and 3) the specification of the coordination rulesrul-
ing the coordination behavior of the group. We use the Electronic Vote exampleintroduced in [Mins974] to
illustratethe different elementsthat compose the CoLaSmodel . We conclude the chapter with an evaluation
of the CoLaS model with respect to the list of requirementsidentified in Chapter 2 asideal for the specifi-
cation of coordination model and language for concurrent object-oriented systems.

Chapter 4 introduces CORODS, acoordination servicefor CORBA [OMG953]. In this chapter we ana-
lysethelimitations of CORBA to support the construction and evolution of Open Distributed Systems. We
proposethe use of coordination modelsand languages, in particular the ColaS coordination model to solve
some of them. Aswe already pointed out we believe that the separation of computation and coordination
concernsin systems, in particular in Open Distributed Systems facilitates their abstraction, understanding
and evolution. The CoL aS coordination model is extended in this chapter to satisfy the new requirements
imposed by thedistribution, in particular the possibility of failuresin theparticipants. Thenew coordination
model called CoLaSD isintroduced in CORBA as acoordination service named CORODS. The CORODS
coordination service supports the creation, the moving, the copying, the referencing, the modification and
the destruction of coordination groups across the network. By using the CORODS serviceit ispossible to
perform coordination in distributed object systems guaranteeing at the sametimetheir interoperabililty.

Chapter 5 introduces OpenCoL aS, aframework for experimenting with the specification of rule-based
coordination model sand languages. This chapter isdivided into two parts. thefirst partillustratesthe struc-
ture of theframework, the second part il lustrates some results obtained from the use of theframework inthe
specification of the CoLaSmodel and coordination model slike Synchronizers[Frol93a], Composition Fil-
ters [Berg94a] and Coordination Policies [Mins97a], the most related approaches to our work. We also
show inthesecond part how theframework was used to compare the semanticsof therulesspecifiedinthese
threemodel swith the semantics of therules specified in the CoLaSmodel. At theend, wetry to provide an-
swers to the following questions in the CoL aS coordination model: Why these coordination rules and not
others? Where do these coordination rules come from? Are all these coordination rules necessary?

Chapter 6 introduces amethodol ogy to formally validate properties (i.e., safety and liveness properties)
of CoLaS coordination groups. Our approach isbased on the transformation of the coordination groupsinto
Predicate-Actions Petri Nets. Structural and reachability analysistechniquesin Petri Nets are used then to
perform the verifications. A tool called TINA is used to perform the automatic validation of propertiesin
the Petri Nets. At the end of this chapter we eval uate the limitations of our approach and we point out ideas
about how to improveit.

Chapter 7 illustrates how the CoL aS coordination languageis used to specify the coordination of aset of
concurrent object-oriented systems. The examples selected cover the most important coordination prob-
lemsin concurrent systemsidentified in Chapter 2 of thisthesis: transfer of information, all ocation/access
of /to shared resources, simultaneity constraints, condition synchronizations, execution orderings, task/sub-
task dependencies, group decisionsand global constraints. The variety of systems presented and their rele-
vance as representative of the different types of coordination problemsin concurrent systems demonstrates
the expressive power of the CoLaS model. For each one of the systems specified we show the advantages
of using the CoL aS coordination model for the specification of the coordination with respect to the use of a
simple concurrent object-oriented language as Smalltalk, some of the examples additionally use Act-
ak[Brio89b], asupport library for the specification of active objects.

Chapter 8 presentsour general conclusions about thisthesi s pointing out our main contributions. We an-
alyse the advantages and disadvantages of using the CoL.aS model in the specification of the coordination
in concurrent object-oriented systems. The evaluation of ColLaS is done based on the list of requirements
identified in Chapter 2 and considered asfundament for anideal coordination model and language for con-
current object-oriented systems. At the end, we point out the limitations of the CoL aS coordination model
and language and we show some cluesfor future work.

Additionally weincludetwo Appendixes:

Appendix A presentsasurvey of coordination abstractionsin existing coordination model sand languag-
es. The coordination abstractionsweinclude are thosethat we consider to bethe most interesting, represen-
tatives and related to our work. We present their most important characteristics and we illustrate their use
with examples.

Appendix B presentsashort introduction to Petri Nets, theformalismusedinthisthesistorealizethever-
ification of formal propertiesin CoLaS coordination groups. Petri Nets are a graphical and mathematical
modeling tool used to describe and study systemsthat are characterized as concurrent, asynchronous, dis-
tributed, parallel, nondeterministic and/or stochastic. We also present different verification techniquesin
Petri Nets based on structural and reachability analysis. At the end we define the list of the most important
safety and liveness propertiesthat can beverified in Petri Nets.

CHAPTER 2

Requirements for a Coordination model
and language for Active Objects

The goal of thisthesisisto specify acoordination model and language for concurrent object-oriented sys-
tems based on active objects. We claim that by separating the specification of the coordination aspect from
the computation aspect in the concurrent object-oriented systems we simplify their specification, under-
standing, construction, evolution and validation of properties.

Thefirst step in the specification of a new coordination model and language for concurrent obj ect-ori-
ented systems based on active objects consists of understanding the problems that existing programming
languages have in supporting the specification of the coordination aspect in those systems. In the introduc-
tion of thisthesiswe haveidentified five: 1) lack of high level coordination abstractions, 2) lack of coordi-
nation abstractions for complex interactions, 3) lack of separation of computation and coordination
concerns, 4) lack of support for the evolution of the coordination code and 5) lack of support for thevalida-
tion of the coordination code.

The second step consists of studying existing approaches for the specification of the coordination in
those systems. Thelast decade has been rich in the number of coordination model s and languages proposed
[Papad8a], they differ basically in: the kinds of entitiesthey coordinate, the underlying architecture of the
model s, the coordination mediathey useto coordinate and the semanti csto which the model sadhereto. Lin-
da[Ahuj86a][Carr89a] wasthefirst coordination model and language proposed. Despite of theimportance
that the understanding of the characteristics of the existing coordination and models and languages hasin
the specification of new coordination models and languages, few works have been done until now in this
direction [Papa98a][Cian01a][Mukh95a]. From our point of view the understanding of the characteristics
of existing coordination model s and languages passesthrough the study of the coordination abstractionsin-
troduced by those model s and languages.

In Appendix A of thisthesisweinclude asurvey of coordination abstractions in existing coordination
models and languages. The coordination abstractionsincluded are those that we consider to be the most in-
teresting, representatives and closely related to our work. For each coordination abstraction we present its
most important characteristics and weillustrate its use with arepresentative example. The survey of coor-
dination abstractionsisused in this chapter for theidentification of the requirementswe consider to be fun-
damental for the specification of an ideal coordination model and language for concurrent object-oriented
systems, the goal of this thesis. For each coordination abstraction included in the survey we expose their
positive and negative aspectsfor an ideal coordination model and language.

But, before working into the specification of the requirementsfor anideal coordination model and lan-
guage for concurrent object-oriented systems, we propose to analyze some aspects of the definition of what
is coordination and which isits significance. We believe that even if most of the people working in the co-

10

ordination agree with the definition of coordination proposed by Gelernter [Gel€924] (i.e., coordination is
the “the glue that binds the separate activities of a system into an ensemble”) very few works introducing
new coordination models and languages have tried to understand what is behind this definition. From our
point of view it isimportant to have clear answersto the following fundamental questionsif wewant to de-
fineanew coordination model and language: What is coordination? Why isimportant to coordinate? What
should be coordinated? Which are different ways to coordinate? This chapter of the thesis starts with the
presentation of different works donein thedomain of coordination theory in disciplineslike: sociology, po-
litical science, management science, economicsetc. totry to provide answersto the specific questionsmen-
tioned before. All these disciplines have dealt in away or another with the same questions.

We have divided the presentation of this chapter into six parts:

Inthefirst part of thischapter weintroducethe classical definition of coordinationintroduced by Gelern-
ter [Gele924a]. We al so introduce thework done by Ciancarini [Cian96a] in the specification of the el ements
that compose a coordination model.

Inthe second part of this chapter weintroduce the work donein the area of coordination theory by Mal-
one and Crowston [Crow91a][Mal093a]. Coordination theory concernsthe study of how to represent what
entities (i.e., people, computer processes, economic markets, etc.) do to coordinate their actions when they
work in groups in order to achieve common goals and which are the different alternative approaches to
achieve those goal's. These works are not specifically related to computer science, they are the result of an
interdisciplinary study on coordination in different disciplines. We believe the work done by Malone and
Crowston in coordination theory is extremely useful for understanding the meaning, the implications and
the different approaches used to manage coordination in software systems.

In the third part of this chapter we present some coordination problemsin concurrent systems. We use
the results introduced in the second part of this chapter in coordination theory to identify these problems.
We proposeinthispart of the chapter ageneric method to identify coordination problemsin concurrent sys-
tems. The approach is based on the identification of dependencies between the activities performed by the
entitiesthat compose those systems. The coordination problemsidentified are important because they jus-
tify the case studies selected in Chapter 7 of thisthesisto show the relevance and the expression power of
our approach.

In the fourth part of this chapter we present our analysis of the characteristics of coordination abstrac-
tionsin existing coordination models and languages considering the specification of anideal coordination
model and language for concurrent object-oriented systems. We use in the analysisthe survey of coordina-
tion abstractionsincluded in Appendix A of thisthesis. For each coordination abstraction we exposeits ad-
vantages and disadvantages.

In the fifth part of this chapter we present our list of requirements for an ideal coordination model and
language for concurrent object-oriented systems. We have included in our list of requirements thirteen as-
pectsthat we consider to be fundamental and that wewill useinthisthesisto evaluate our proposal. There-
guirementswereidentified taking into account the most important problemsthat existing concurrent object-
oriented programming languages have in supporting coordination.

Finally at the end of this chapter we present our conclusions about the work presented here and we point
out the main contributions of this chapter to thethesis.

11

2.1 Coordination Models and Languages

According to Carriero and Gelernter [Gel €92a] acomplete programming model can be built out of two sep-
arate pieces: the computation and the coordination model. The computation model specifies single compu-
tational activitiesand the coordination model the gluethat bindsthe separate activitiesinto an ensemble. A
coordination language defines the lingui stic embodiment of a coordination model.

A coordination model can beviewed asatriple (E,M, L) [Cian96a] where:

» E are the coordinated entities: these are the entities which are coordinated (e.g. agents, processes,
tuples, atoms, etc.).

» M isthecoordinating media: thisisthe mediaenabling the coordination of the entities (i.e. channels,
shared variables, tuple spaces, bags, etc.)

» L arethe coordination laws. They represent the semantics framework the model adheresto (i.e. as-
sociative access, guards, synchronization constraints, etc.).

A coordination model (E,M,L) represents an abstract framework useful to study and understand prob-
lemsin designing concurrent and distributed systems. It providesthe way to expresstheinteraction of indi-
vidual entities and the constraintsimposed over their interaction.

2.2 Coordination Theory

Although most of theresearcherswaorking in the coordination areaagree with the definition of coordination
proposed by Carriero and Gelernter [Gel€92a] few works have been donein the understanding of this defi-
nition and initsimplications. What is coordination?Why isimportant to coordinate? What should be coor-
dinated? Which are different ways to coordinate? are fundamental questions that must be answered at the
beginning of any work in the specification of a new coordination model and language. We will introduce
here different works donein what is called coordination theory [Mal093a] in disciplinesincluding sociolo-
gy, political science, management science, economics, etc. We believe that even if these works were done
inareascompletely different to computer science, they can help ustofind answersfor the questionswehave
formulated before.

Coordination problemsarisein the organization of interactions of agroup of entitiesthat cooperateto ac-
complish some task and to satisfy some goals. It is because entities cooperate that they can perform more
elaborated actions, but it isalso because of their multiplicity that they must coordinate their actionsand re-
solve conflicts. Coordination theory is defined as the body of principles about how entities can be coordi-
nated to perform their tasks harmoniously.

The problem of theinteraction of agroup of entitiesnot only concernsthe description of the mechanisms
that allow entities to interact, it also concerns the study of the different forms of interaction that entities
could practice to accomplish their tasks and to satisfy their goals (i.e. cooperation, collaboration, competi-
tion etc.) [Ferb99a]. Cooperation isthe most common form of interaction. It includes the resol ution of all
the subproblems occurring during the cooperation: coordination of actions, resolution of conflicts, etc.
These subproblems are basically related with determining who makes what, when, how, which whom and
with which resources. Coordination in this context concernsthe organization in time and in space of the be-
havior of agroup of entitiesin other either toimprovetheir collectiveresults, or to reduce their conflicts. It
isinteresting to remark that thisdefinition of coordination does not specify thereasonswhy the multiple co-
operating entities need to be coordinated. According to [Jenn96a] there are basically three reasons:

12

» There are dependenci es between the activities performed by the multiple entities: interdependencies
arise either when decisions made by one entity have impact on the decisions of other entities, or
when it is possible to have harmful interactions.

e Thereisaneed to meet global constraints: global constraints are conditions imposed on the way in
which solutions must be implemented by the entities. If individual agents act in isolation trying to
exclusively optimize their local performance, then it is almost unlikely that such global constraints
will be satisfied.

* Noindividual entity has enough competence, resources or information to solve the entire problem.

Malone and Crowston [M al0932] define coordination as: the act of working together harmoniously. This
definition of coordinationimpliesthat thereiswork to be done (i.e., awork can be considered asaphysical
or mental effort or activity directed toward the production or accomplishment of something). Thework is
done by an actor of agroup of actors. Actorsthat perform activities which are directed toward some ends.
Those ends are called the goals. The word harmoniously in the definition means that the activities are not
independent and that they must be performed in such away that displeasing outcomes should be avoided.
Malone and Crowston call the goal relevant relationships between activities interdependencies. The work
of Malone and Crowston in coordination theory is basically oriented to the study of the different kinds of
interdependencies and the way to manage them. Using al the elementsintroduced before they proposed a
more precise definition of coordination:

Coordination is the act of managing interdependencies between activities per-
formed by entitiesin order to achieve some goals.

The main difference between the two definitions of coordination proposed by Malone and Crowstonis
that thefirst definition includes the organization of the behavior of the entitiesas abasic coordination activ-
ity inthe coordination, whilethe second definition concernsuniquely the activity of managing possible con-
flicts(i.e., interdependencies) that occur once the behavior of the group has been defined. Both definitions
agree on thefinal goal of the coordination which isto improve the collective results of the entities that co-
operate. Mal one and Crowston have identified the following kinds of basic interdependencies:

» Shared Resource: aresourceis required by multiple entities in different activities.
» Prerequisite: an activity must be completed before another activity can begin.

» Transfer: an activity produces something that is required by another activity.

» Usahility: something produced by an activity should be usable by another activity.
» Simultaneity: some activities need to occur (or can not occur) at the same time.

» Task/Subtask: a group of activities are all subtasks (subactivities) of an activity.

» Group Decisions:. decisions are taken collectively by a group of entities.

What it isalso interesting in the work done by Malone and Crowston isthat they do not only propose a
list of interdependencies but also the way in which these interdependencies can be managed (Figure 2.1).
For the shared resourcesinterdependency for example, they propose four different waysto managethisin-
terdependency: 1) first comefirst serve, 2) priority order, 3) managerial decisions and 4) market like bid-
ding. Inthefirst comefirst serve approach for exampl e the assignment of the shared resourceisdone onthe
basisof thearrival order of therequestsfor the use of theresource. Thefirst entity that request for the use of
theresource will bethefirst to be granted to haveit and to modify it.

13

Examples of coordination

Dependency processes for managing
dependency
Shared resources “First comeffirst serve”, priority order,
budgets, managerial decision, market-
like bidding
Task assignments (same as for “ Shared resources”)

Producer / consumer relationships

Prerequisite constraints Notification, sequencing, tracking
Transfer Inventory management (e.g. “Just In
Time", “Economic Order Quantity”)
Usability Standardization, ask users, participatory
design
Design for manufacturability Concurrent engineering
Simultaneous constraints Scheduling, synchronization
Task/subtask Goal selection, task decomposition

Figure 2.1 : Malone and Crowston’s dependencies management examples

Thelist of interdependencies presented by Malone and Crowston is not intended to be exhaustive, new
interdependencies can be defined (i.e., dependencies related with time constraints), existing can be gener-
alized and specialized (i.e., dependencies depending on the number of activitiesinvolved in the dependen-
cy); what is important about thislist is that these interdependencies can be used to propose a systematic
approach to identify coordination problems and new interdependenciesin systems. The approach can de-
fined as: 1) takethelist of interdependencies presented before, 2) identify concurrent activitiesin thesystem
you built (i.e., communication, resource management, etc.) specially activities implicating multiple enti-
ties, 3) determine the existence of interdependenciesin the system from the list of activities and 4) identify
and add to thelist possible new kinds of interdependencies. Each interdependency identified in the system
definesapotential coordination problem.

Finally, we will focus on the work made by Mintzberg [Mint924] in the specification of different ways
to handle the coordination. In thiswork Mintzberg considersthree fundamental forms of coordination:

* Mutual Adjustment: this form of coordination occurs whenever two or more entities agree to share
resources during the process of achieving some goal. The entities must exchange information to
make adjustments in their behavior depending on the behavior of other entities. In this form of co-
ordination no entity has any prior control over other entities.

 Direct Supervision: this form of coordination occurs when two or more entities have an already es-
tablished relationship in which one entity has some control over the others. Commonly thisrelation-

14

ship have been established by mutual adjustment. In this form of coordination the supervisor con-
trols the use of common resources and prescribes certain aspects of the behavior of its subordinates.

» Standardization: this form of coordination occurs when the entities follow pre-established standard
proceduresin anumber of situations. In thisform of coordination little coordination is needed, until
the procedureitself needsto change. We assume that there are not conflictsin those standard proce-
dures.

Mutual adjustment definesaform of coordination particularly well adapted to adistributed systems. The
fact that no entity hasaprior control over the others avoidsthe existence of acentralized controller suscep-
tible of failuresthat might become a performance bottleneck. Nevertheless, direct supervision has the ad-
vantage that the coordination processis simpler, less messages need to be exchanged between the entities
and no group decisions are necessary. Finally standardization can be used in both cases. The problem with
standardizationisthat it isnot well adapted to the evolution of the coordination requirements. When asys-
tems changes all the standard procedures need to be modified and adapted.

2.2.1 Classification of Coordination Models and Languages

According to Papadopoul os and Arbab [Papa98a] coordination models and languages can be classified in
two categories: data-driven and control-driven.

In data driven modelsthe state of the computation at any moment in timeis defined in terms of both the
values of the data being received or sent and the actual configuration of the coordinated components. In the
data driven model there is always a coordinator process responsible for manipulating the data being re-
ceived or sent and coordinating itself other processes. The coordination isdone by the invocation of the co-
ordination mechanismsprovided by each language. M ost of thetime, in datadriven coordination languages
the coordination primitives are mixed to the computation code, it isthe responsibility of the programmers
at least at adesign level to enforce the separation of coordination and computation concerns. Almost all of
the coordination models belonging to the data-driven category are based on the notion of a shared
dataspace. A shared dataspace isacommon, content addressable data structure. All the processesinvolved
in some computation communicate among themselves only and indirectly via the shared dataspace. Pro-
cesses post information into the shared dataspace and retrieve information by copying or removing infor-
mation from the shared dataspace. The shared dataspace representsthe coordination medium of themodels.
In this category we find coordination languages like: Linda[Carr89a], Gamma [Bana86a], LO [Andro6b]
just to mention some of them. Data-driven coordination languages tend to be used mostly to parallelise
computations problems based on their data (data-parallelism).

In control-driven model s the state of the computation at any timeis defined in terms of the coordinated
patterns of processesinvolved in some computation flow. The coordination evolves becausethe state of the
processes change, or because events are generated. In opposition to the data driven approach the data ma-
ni pulated by the processesin control driven modelsisalmost never involved inthe coordination. Inthe con-
trol driven coordination languageswe have an almost compl ete separation of coordination and computation
concerns. Processes (or program modules) can be separated into those rel ated with computation and those
with coordination. In this category we find coordination languages like ConCoord [Holz96a], Manifold
[Arba93a] just to mention some of them. Control-driven coordination languages tend to be used primarily
for modelling systems.

15

Arbab in [Arbad8b] suggested another way to classify coordination models, he suggests that coordina-
tion models and languages can be classified in two groups. endogenous and exogenous. Endogenous mod-
els and languages provide primitives that are incorporated within the computation for its coordination.
Exogenous models and languages in contrast provide primitives that support the coordination of entities
completly separate from computation. In the endogenous category we find languageslike Linda[Carr89a)
and in the exogenous category we find languages like Manifold [Arba93a).

Another interesting work on the classification of coordination models and languages is Mukhjeri and
Kafura[Mukh953a]. They suggest that coordination model s and languages can be classified in three groups
based on their architecture: centralized, decentralized and hybrid. In centralized coordination models the
coordination isperformed by acentral agent, in decentralized models the participant entities(i.e., the coor-
dinated entities) coordinate themsel vesto perform the coordination and in hybrid model sthe responsibility
of the coordination is shared between the participant entities and acentral agent.

All the classification worksintroduced before are important because they allow usto identify “ groups”
of coordination languages. Nevertheless, we believe that it will more interesting for the understanding of
existing coordination models and languages to realize a categorization based on the characteristics of the
coordination abstractionsthey introduce. We do not include here such categorization of existing coordina-
tion abstractions, but we do afirst step in such adirection: we includein this chapter a survey of coordina-
tion abstractionsin existing coordination model sand languages. For each coordinati on abstraction we show
its advantages and disadvantages for an ideal coordination model and language. At the end of the chapter,
we use this survey to define the requirements for an ideal coordination model and language specifically
adapted for the coordination of active objects - themain goal of thisthesis. In Appendix A of thisthesiswe
include the compl ete specification of the different coordination abstractionsintroduced in this chapter.

2.2.2 Importance of Coordination Models and Languages

Themain advantage of using coordination model sand languagesin building concurrent and distributed sys-
temsresultsfrom the separation of the coordination and computation aspectsin the systems. It isimportant
to understand that the coordination languages approach do not try to solve “in principle” any new problem
from the concurrency or the distribution point of view, existing concurrent object-oriented languages like
Java can be used to build concurrent systemsinstead of using a coordination language. The point isthat the
lack of separation of computation and coordination concerns, the lack of high level coordination abstrac-
tions and the lack of coordination abstractions for complex interactionsin languages like Java make diffi-
cult their use in building concurrent object-oriented systems, only experts are able to handle their
abstractions correctly and mainly relying in design patterns. What makes unique coordination models and
languagesisthat the separation of the computation and coordination concernsisdone at the language level.
The separation of computation and coordination concerns at the language level promotes:

» Reusability: both coordination patterns and coordinated entities can be reused independently from
each other. The coordination patternsthat specify the coordination of the coordinated entities can be
defined independently of the specification of the computational behavior of the coordinated entities
and vice-versa. .

* Understanding: designers and programmers can understand how systems work by studying the co-
ordination specified in the coordination abstractions. It must be clear for a designer how the coordi-
nated entities communicate and how they are synchronized even without knowing exactly the com-
putational behavior of the coordinated entities.

16

» Evolution: the way a system works can be modified by changing the coordination patterns. Pro-
grammers modify the coordination code without modifying the code of the coordinated entities.
Similarly, programmers modify the computational code of the coordinated entities without affecting
the way they are coordinated.

2.3 Coordination Problems in Concurrent Systems

In theidentification of coordination problemsin concurrent and distributed systems we use the definition
of coordination introduced by Malone and Crowston [Mal 093a]: “ coordination isthe act of managing inter-
dependenci es between activities performed by entitiesin order to achieve somegoals’. Aswealready men-
tioned thiswork is not only important because of thelist of interdependenciesit identifies but al so because
it can be used to define an approach to systematically identify coordination problemsin systems. The ap-
proach consists of the following steps. 1) take the list of interdependencies presented before, 2) identify
concurrent activities in the system (i.e. communication, resource management, etc.), specialy activities
which imply thework of multiple entities, 3) determine the existence of interdependenciesin these activi-
tiesand 4) identify and add to thelist of interdependencies possible new kinds of interdependencies. Using
this approach we haveidentified the following coordination problems:

» Transfer of information: this problem occurs when some activity needs information from other ac-
tivity (or activities) in order to continue. The information needs to be transported from an activity
to another. We can view an information transfer dependency as a producer/consumer relationship.
The coordination solution to this problem must take care of the physical transfer of the information
from one activity to another; control their synchronization; in case of replicated transfer (i.e., mul-
ticast or broadcast) control the replication and transfer of information; and if needed guarantee the
atomicity of the transfer (i.e., al or none of the entities will receive the information) and the order
of arrival of the information.

» Allocation/Access of /to shared resources: this problem occurs when agroup of entities sharing are-
source needs part or the whole resource to perform some activity. In afair system for example the
allocation/access of/to a shared resource must be coordinated to avoid the starvation of the entities
that compose those systems. The resource can be allocated for example assigning the same alloca-
tion time to each entity or the same size of the whole resource to each entity. The shared resource
can be for example: the cpu time, the system’s memory, the disk space, etc. An example of this co-
ordination problem occurs when multiple users use the same printer to print documents in a net-
worked system. The system must coordinate the allocation/access to the printer and serialize the
printing process.

» Simultaneity constraints: this problem occurs when two or more activities need to occur or cannot
occur at the sametime (i.e., mutual exclusion). Modifications to a database for example must be se-
rialized when two or more modification operations occur at the same time on the same row of ata-
ble. It iswell known that problems like operations lost may occur when concurrent modifications
are not coordinated [Coul944].

» Condition synchronizations: this problem occurs when an activity must be delayed until some con-
dition is satisfied. An example of this coordination problem occurs for example in a producer-con-
sumer problem [Andr91a] when two processes a producer and a consumer synchronize their execu-
tions through the use of a bounded buffer. The consumer can only consume if the buffer contains
data to be consumed and the producer can only produce if the buffer has space to put the produced
data.

17

» Execution orderings: this problem occurs when two or more activities need to occur in a certain or-
der in the system. An example of this coordination problem occurs when we write to afile, before
to be able to write into afile, the file must be open. The two actions must be executed in this order
to avoid potential problems, most of the time the file islock during the opening of the file to avoid
other usersto write at the same time in the file.

» Task/Subtask dependencies: this problem occurs when the activity to be done istoo big or too com-
plex to be done by only one entity. The entities composing the system may decide to decompose a
goal/task in several sub-goals/subtasksin which entities can participate according to their expertise.
Usually this coordination problem is addressed since the design phase of the systems, nevertheless
it is possible to find dynamic decomposition of goals and activities in systems that support for ex-
ample load-balancing.

» Group decisions: this problem occurs when a group of entities needs to take a decision. Group de-
cisionsare necessary when no single element has a complete view of the whole system. An example
of thiscoordination problem occurs when aserver fails and a new server must be chosen. One of the
entities that participate in the system must assume the role of new server.

Torthislist we can also add:

» Global constraints: this problem occurs when global constraints must be respected by all the entities
during the execution of their activities. An example of this coordination problem occursfor example
in amulti-user system in which different users with different execution priorities execute processes.
The operation system must respect the execution constraints imposed by the different users taking
alwaysinto consideration the global constraintsimposed over the set of all users: administrator pro-
cesses run first that user processes.

The coordination problemsidentifiedin this section are so general that they can befoundin alarge num-
ber of computer systems. We used these problemsin the specification of a coordination component frame-
work for Open Distributed Systems|[Tich974a).

2.4 Coordination Abstractions

In Appendix A of this thesis we include the specification of twenty four coordination abstractions intro-
duced by existing coordination model and language selected from the coordination literature. The coordi-
nation abstractions we include are those that we consider to be the most interesting, representatives and
related to our work. For each coordination abstraction we show its most important characteristics, pointing
out its advantages and disadvantages for an ideal coordination model and language. The coordination ab-
stractionswill beintroduced alphabetically.

2.4.1 Abstract Communication Types [Aksi92a][Berg94a]

Inthe ACT model composition filters are applied to abstract communication among objects. The basic ob-
ject model isextended to introduceinput and output composition filtersthat affect the sent and the reception
of messagesrespectively. Depending on themethod invoked, thefilterscan take actionswhich extend/mod-
ify the original semantics of the object.

Advantages:
- Itispossible to define multiparty coordination.

18

The filters used in the ACT (e.g., dispatch, meta, error, wait, etc.) alow the specification of
different communication and synchronization coordination patterns.

The ACT coordination abstraction is integrated transparently into the object-oriented model,
the enforcement of the coordination is based on the application of filters to method invoca-
tions received and sent by the participant objects. It isimportant to say that the object model
proposed in ACTSs corresponds to an extension of the basic object model including input and
output filters. We believe that an ideal coordination model for objects must be defined without
modifying the basic object model.

Disadvantages:

The ACTsare not defined completely independent of the classes of their participants. Thefil-
terswhich control the coordination are specified in the inputFilters and/or outputFilters of the
participant classes. The ACTs can not be reused to coordinate different kinds of participants,
they are attached to the participant classes where they are defined.

Itisnot possible to specialize the ACTs. Although it is possible to simul ate the specialization
using delegation.

It is not possible to compose ACTSs.

It is not possible to validate the coordination code specified in the ACTs.

It is not possible to dynamically modify the ACTs. Evolution is purely static.

The coordination is purely reactive, triggered by the reception and the sent of method invoca-
tions. It is not possible to define proactive coordination in the partici pants independent of the
reception and the sent of method invocations.

2.4.2 Activities [Kris93a][Kris97a]

Activities are abstractions to model theinterplay between groups of objects over agiven time. An activity
isdefined by specifying its participants and adirective. The partici pants specify the objectsthat participate
to the activity and the directive the actions that compose the activities.

Advantages:

It is possible to define multiparty coordination. Each activity defines the different classes of
the participants of the activity. Multiple participants of the same classes may play at the same
timein the activity.

Itis possible to specialize the activities. An activity can be defined as subclass of another ac-
tivitiy.

It is possible to compose the activities. The composed activities are called part-activities.
The activities are defined independently of the participants. The coordination specified in the
activities refers to the participants by their names. Each name corresponds to either an object
or agroup of objects of the same class.

Disadvantages:

The coordination specified in the activity’ sdirective concerns exclusively method activations.
It is not possible to define for example synchronizations.

19

The coordination specified in the activities can not be reused to coordinate objects that are not
instances of the classes specified in the participant names of the activities.

It is not possible to validate the coordination specified in the activities.

The coordination is not introduced transparently into the object model. In this approach the
activities become the execution units of the programs. From our point of view an ideal coor-
dination model for objects must define a coordination model without modifying the basic ob-
ject model. Participants must not be aware of the coordination.

2.4.3 Activities and Environments [Arap91la]

Activitiesand Environments are used to formally describe dynamic evolution of object behavior and inter-
actions of collections of cooperating objects. The activities describe interactions of collections of objects
and the environments describe the coordination of aset of activities. The notions of object, activity and en-
vironment are formally specified using the language of first-order temporal logic FTL [Abad89a].

Advantages:

The coordination specified in the activities and in the environments concerns the exchange of
messages between the group of agents (i.e., objects) and condition synchronizationsin the ex-
ecution of those messages (i.e., temporal constraints).

The coordination is specified declaratively using temporal constraints written in FTL.

It is possible and under certain assumptions to test the consistency of a given coordination
specification.

Disadvantages:

24.4

The coordination specified in the activities can not be reused to coordinate objects that are not
instances of the classes specified in the types of the activities agents.

Only one object can play an agent rolein an activity. To define the coordination of a group of
objects playing the same agent roleit is necessary to create several activities one per object.
The coordination is not transparent to the participant objectsin the activities, the coordination
is specified based on the messages received and sent to the activities. The coordinated objects
know about the coordination. The separation of computation and coordination concernsis not
respected.

It is not possible to speciaize neither the activities nor the environments.

It is not possible to compose neither the activities nor the environments.

Cast [Var99a]

A Castisahierarchical group actors. Each cast is coordinated by asingledirector. Coordination in the casts
isaccomplish by constraining the reception of messages sent to particular actors. An Actor can only receive
amessage when the coordinati on constraints associated with the reception of such amessage are satisfied

Advantages:

The coordination is separated from the computation in the cast directors.

20

According to the authors this model of hierarchical coordination avoids the need of reflective
capabilities. To their point of view coordination models that require reflective capabilities to
intercept and control base-level actors (i.e., objects, etc.) complicate the semantics of the lan-
guages and require a specialized run-time system.

Disadvantages:

The coordination is limited to customizing the communication.

According to the authors the Cast model does not support the level of transparency that can
be afforded by the definition of coordination abstractions using reflective architectures. The
hierarchical model islimited in the customization of the communication and thus lessflexible
than areflective model.

If we suppose that the kinds of constraints associated with the reception of message are the
same of those specified in synchronizers [Frol93a], this approach presents the same disadvan-
tages of this approach. The synchronizers approach is also evaluted in this survey.

2.4.5 Connectors - FLO [Duca97a][Duca98a]

A Connector isaspecial object that connects components. A connector specifies how message exchanges
influence the behavior of the connected components. The behavior of aconnector isdefined by meansof a
set of interaction ruleswhich specify how the messages received by the participant objects should be con-

trolled.

Advantages:

It is possible to determine the compatibility of a participant to participate in a connector. In-
terface compatibility in rolesisrequired to alow components participation in the connectors.
The connectors are transparently included in the object model given that they based the inter-
ception of messages.

The coordination is specified separately of the computation of the participants.

It is possible to specialize connectors to define new connectors.

What it isinteresting about thiswork is that the connectors abstraction it is not only an archi-
tectural abstraction (asin most of the related work in connectors) specifying how objects are
connected, but also as an entity in charge of enforcing the connection.

Disadvantages:

The coordination concerns exclusively the reception of messages by the components. It is hot
possibleto define coordination for example based on the coordination history of the connector
(i.e., the number of times some action has occurred or actually occurs in the system)

It is not clear which is the semantic difference between implies and corresponds operators,
both operators can be used to delegate and to propagate messages to other objects.

The coordination is purely reactive, it is not possible to specify proactive behavior indepen-
dent of the reception of the messages.

It is not possible to dynamically modify the coordination specified in the connectors.

It is not possible to formally verify the connectors specifications.

21

2.4.6 Connectors - ArchJava [Aldr03a]

ArchJavaisan extension of Javathat allowsprogrammersto specify thearchitecture of an application with-
in the source code using Connectors. ArchJava adds new language constructs to support components, con-
nections and ports.

Advantages:

Even if it is possible to define multiple participant components in the connectors, only one
component per class of component can be connected at the sametime. It other words, it is not
possible using a unique component reference to define connectors where multiple compo-
nents of the same type are connected at the same time.

The connections (i.e., coordination) specified in the connectors can be verified at compile
time. It is possible to determine connection compatibility (i.e., required methods without pro-
vides, etc.) using the default type checking of the system or atype checking defined by user.

Disadvantages:

The coordination specified in the connectors concerns exclusively how the components are
connected. It isnot possible for exampl e to define synchronizations constraints in the connec-
tor. The coordination defined in the connectors specifies simply the flow of information be-
tween components.

The connections specified in the connectors can not be modified dynamically.

Because the connectors specify the type of the components that they connect, it isimpossible
to reuse them to connect other type of components. An ideal coordination model should com-
pletely separate the specification of the coordination from the specification of the participants.
Objects participation must be defined in terms of participant interfaces and exclusivelly based
on the characteristics of the participants. It should not be based neither on their names nor on
their types.

2.4.7 Contracts [Helm90a]

A group of cooperating objectsis called abehavioral composition. Contracts are constructsfor the explicit
specification of behavioral compositions. A Contract specifies. the participantsin the behavioral composi-
tion and their contractual obligations, the invariants that participants cooperate to maintain, the precondi-
tions on the parti cipants to establish the contract and the methods which instantiate the contract.

Advantages:

It is possible to specify multiparty coordination.

It is possible to refine (i.e., to specialize) the contracts. The refines statement defines a con-
tract as an specialization of another type of contract.

It is possible to include (i.e., to compose) sub-contracts. The include statement identifies a
subset of contract participants and how they participate in the sub-contract.

Contracts are defined independently of the classes of their participants. The separation of
computation and coordination concerns is respected.

22

Type obligations allow to determine the conformance of the participants to participate in the
contracts.

Disadvantages:

The coordination specified in the contract’s casual obligations concerns exclusively the ex-
change of messages. It is not possible for example to specify synchronization constraints in
the contract.

One of the most important criticsfound in theliterature on this approach of contracts concerns
the fact that the contracts are purely design abstractions, the contracts are not enforced in the
participants. We believe that in an ideal coordination model for objects the coordination spec-
ified must be enforced by the system. If not, thereis not any guarantee that the objects will be
coordinated.

It it not possible to validate the coordination code specified in the contracts.

2.4.8 Collaborations [Yell974a]

Collaborations are enhanced interface specifications defining the rules governing message exchanges be-
tween two components.

Advantages:

It is possible to determine the compatibility of two components to be coordinated.
It is possible to define adaptors to avoid the incompatibility of two components to be coordi-
nated.

Disadvantages:

The coordination can only be specified between two components at the time.

The coordination is defined based on the states of the components. Any modification to the
states of the components affects the coordination specified in the collaborations. The separa-
tion of the coordination and the computation concerns is not respected.

The collaborations are tied to the components to which they belong. They can not be reused
to coordinate other components.

The coordination concerns exclusively the exchange of messages. It is not possible to specify
for example synchronization constraintsin the collaborations.

It is not possible to validate the coordination code specified in the collaborations.

The protocol semanticsis synchronous. Components must wait when their mates does not find
in a state that enables them to receive messages from such components. We believe an idea
coordination model for objects must support the specification of coordination with different
protocol semantics. At least it must possible to specify synchronous, asynchronous and mul-
ticast communication in the coordination.

2.4.9 Coordination Contracts [Andr99a][Barr02a]

A Coordination Contract specifies the interaction between objects. A coordination contract superposes a
behavior over the direct interaction of its partners by intercepting their interaction. The interaction is ex-

23

pressed in the form of rules, the eventsthat triggers such rules correspond to the reception of method invo-
cations.

Advantages:

- Itispossibleto specify multiparty coordination. Nevertheless, only one object of each partic-
ipant class can be coordinated at the same time by the contract. It is not possible to coordinate
within a same contract multiple objects of the same class using the same reference.

- The coordination is specified separated from the computation. The contracts encapsulate all
the coordination specification.

Disadvantages:

- Because the contracts specify the classes of the objects that they connect, it is impossible to
reuse them to connect objectsinstances of classes different to those specified in the contracts.
Anideal coordination model should completely separate the specification of the coordination
from the specification of the participants. Objects participation must be defined in terms of
participant interfaces and exclusivelly based on the characteristics of the participants. It
should not be based neither on their names nor on their types.

- Itisnot clear in thiswork what happens with method invocations when the guards are not val -
id. It seems that the method invocation isjust not executed. If thisistrue, itisnot clear if the
sender of the method invocation receives any exception.

- The coordination specified in the contracts is exclusively reactive. The behaviora rules are
trigger only by the reception of method invocations. It is not possible to define proactive co-
ordination in the participants independent of the reception of method invocations.

- Itisnot possible to validate the coordination specified in the contracts.

- Itisnot possible to dynamically modify the coordination specified in the contracts.

2.4.10 Coordination Environments [Mukh95a]

Coordination Environments specify non-intrusive coordinators that impose collaborative behavior on a set
of objects called autonomous objects. The coordinators use special methods called coordinating behavior
methods that implement and structure coordination actions. The coordination actions are triggered by the
occurrence of events related both with the acceptance of a request message and with the termination of a
method that was schedul ed by the coordinator.

Advantages:
- Coordination is defined transparently from the set of autonomous objects.
- Thecoordination actionsinclude the synchronous and asynchronous sent of messagesto other
objects.
- It possible to define coordination based on the coordination history of the group using local
variables.

24

Disadvantages:

The coordination refers exclusively to eventsrelated to the reception of amethod request (i..e,
amessage) and the termination of a scheduled method. It is not possible for example to define
coordination based on events related to the sent of request messages to other objects.

It is not possible to define synchronizations constraints in the coordination environments.
Because the coordination environments specify the classes of the objects that they connect, it
isimpossible to reuse them to connect object instances of classes different to those specified
in the coordination environments. An ideal coordination model should completely separate
the specification of the coordination from the specification of the participants. Objects partic-
ipation must be defined in terms of participant interfaces and exclusivelly based on the char-
acteristics of the participants. It should not be based neither on their names nor on their types.
It is not possible to validate the coordination specified in the coordination environments.

It is not clear whether it is possible to specialize and compose coordination environments.

2.4.11 Coordination Policies [Mins97a]

Coordination Policies establish the set of rules regulating the exchange of messages between the members
of agroup. A coordination policy determines the treatment of the messages by specifying what should be
done when such messages are sent or received by the members of the group.

Advantages:

The coordination specified in the coordination policiesis defined independently of the com-
putation specified in the agents. The set of rules regulating the exchange of P-messages spec-
ify how to coordinate the messages sent and received by the agents.

The coordination includes time obligations independent of the reception and the sent of mes-
sages by the participants. It is possible to define with the time obligations proactions in the
participants.

If we consider a coordination police to be a unit, it is not possible to reuse the coordination
policies to coordinate other participants because the coordination policies specify the group
of agents G which is coordinated. But if we consider each one of the rules that compose a co-
ordination policy asindependent, it is possible to reuse the coordination specified in the laws
of the policy to coordinate different group of agents. The rules regulating the coordination
does not specify the names of the agents they coordinate. The sender and the receiver of the
messages which appear in the rules are specified as variables which are instantiated at run
time. The sender and the receiver variablesrefer to agentsin G sending and receiving messag-
es.

Disadvantages:

It is not possible for example to define condition synchronizations on the messages received
by the agents. In the coordination policies the coordination specifies either, the deliver of the
message received by an agent, the sent to the communication media of a message sent by an
agent, or the modification of the internal state of the CS of the agent.

Although each agent hasa CS state, and evenif it is possibleto modify inthelawsthe CS state
of an agent, it is not possible to define coordination based on the coordination history of the

25

group of agents. The problem with the coordination policies approach isthat it is not possible
to have a global view of the coordination. One agent can not specify coordination actions
based on the state of other agents because it can not access the CS state of other agents.

- Thecoordination describes exclusively cooperation patterns, synchronization patterns can not
be specified.

2.4.12 Coordination Types [Puti97a]

Coordination Types define a type model for object-oriented systems based on a process calculus. A type
specifiesall possible sequences of messages accepted by an object aswell as type constraints on the mes-
sagesparameters. A type checker ensures statically that users of an object are coordinated so that only mes-
sages specified by the object’stype are sent to the object in an expected order.

Advantages:

- The main advantage of atype approach for coordination like this is that a type checker can
ensure statically that users of an object are coordinated. In other words that only messages
specified by the object’ stype are sent to the object in an expected order. Validation of the co-
ordination is thus possible.

Disadvantages:

- The main disadvantage of type approach for coordination like thisis that the coordination as-
pect is only partially specified in the type of each one of the interacting objects. The coordi-
nation specified in the coordination types specifies a one to one rel ation between an object and
aclient. Itisnot possiblein thisway to have a genera of view of the coordination of a group
of interacting objects.

- The coordination types constrain which messages are allowed to be received by an object and
when they are received, it does not defines explicitly the interaction occurring between a
group of interacting objects.

- The coordination specified in the type of the object defines the coordination from a point of
view of aclient interacting with the object. Because each object definesin its type part of the
coordination, the coordination is mixed to the computation code of the object.

- The coordination specified in the object types can not be reused separately from the object in
which it is defined.

- Itisnot possible neither to specialize the types nor to composed them to define new coordi-
nation types.

- The coordination types abstractions can not be integrated transparently in the basic object
model. A coordination types type system extension is needed.

2.4.13 Darwin - Ports [Mage95a]

Darwin isaconfiguration language that allows distributed programs to be constructed from specifications
of components instances and their interconnections. Components are defined in terms of both the services
they provide and the services they require. Composite components are defined by declaring both the in-
stances of the componentsthey contai n and the bindings between those components. The bindingsassociate
the servicesrequired by one component with the services provided by others.

26

Advantages:

- The architecture of an application is explicitly defined in Darwin. In particular the connec-
tions between the different components. It isimportant to remark that in the coordination com-
munity architectural languages are also considered as coordination languages. First because
they separate the computation from the connection aspect in the architectures and second be-
cause the connection aspect is also part of coordination.

- InDarwinit is possible to validate the connection of the components. It is possible to verify
if the components provide the methods that other require in the connections.

Disadvantages:
- The coordination refers exclusively to connections between components.
- The coordination is mixed to the computation code of the components. It is not possible to
reuse the connection specified in the components to connect other components.
- Itisnot possibleto dynamically modify the connections specified in the components.

2.4.14 Event Notifications [Papa94a][Papa96a][Hern96a]

Event Natifications synchronizetheactivity of an object withanumber of eventsoccurringinthe execution
of other objects. Each object hasassociated an object-manager that monitorsitsexecution and ensures|ocal
synchronization constraints. The object-manager istriggered by events occurringin the execution of the ob-
ject (i.e, internal events) such asthe termination of athread executing amethod and external eventssuch as
therequest for amethod execution.

Advantages:
- Itispossible to define multiparty coordination.
- It is possible to specify synchronizations based on events occurring in other objects (i.e.
changesin objects state, thread events and method execution events). The notifications can be
done synchronously or asynchronously.

Disadvantages:

- The coordination specified in the object managers concerns exclusively synchronizations
based on events occurring in other objects. It is not possible for example to define proactive
coordination independently of events occurring in other objects.

- The coordination can not be reused to coordinate other objects, the coordination is specified
within the class definitions of the participants.

- Itisnot possibleto validate the compatibility of the participants to be coordinated. The class
constructors are used to instantiate the participants of the coordination, no conditions areim-
posed on their participation.

- Itisnot possible to validate the coordination code specified in the classes.

- Itisnot possible to dynamically modify the coordination specified in the classes.

27

2.4.15 Finesse - Bindings [Berr98a]

A Binding isan abstract entity that encapsul ates communi cation between distributed software components
participating inan application. A binding describes a configuration of componentsand their allowed or ex-
pected interactions.

Advantages:

It is possible to define multiparty coordination.

A role can be played by multiple participants at the same time. Nevertheless, it is possible to
constrain the number of participant playing arole.

The coordination is specified separately from the computation. The bindings encapsulate the
specification of the communication between the different participant components.

The coordination is specified independently of the coordinated components. The role defined
in the bindings are used to abstractly refer to the participant components without precisely
specifying who they are. Furthermore, components have interfaces that allow them to interact
with their environment without exposing implementation details.

It is possible to specialize bindings defining subtype relationships.

Disadvantages:

The coordination specified in the bindings concerns exclusively execution constraints related
with events occurring inroles. It is not possible for example to specify coordination based on
the coordination history of the group (i.e., the number of times some event has occurred in the
system).

It is not clear in this work what is an event, the author mentions that there are two types of
events: input and output. It seems that the Finesse events are events related to the reception
and the sent of messages in the participants playing the roles. If thisis true, it means that the
number of eventsis very limited. It is not possible for example to define coordination based
on the end of the execution of a message in a participant.

The coordination is very reactive, trigger basically by events occurring in the participants. It
is not possible in this approach to define proactive coordination in the participants.

It is not possible to validate the coordination specified in the bindings.

It is not possible to dynamically modify the coordination specified in the bindings.

2.4.16 Formal Connectors [Alle94a]

Formal Connectorsare used in the specification of the architecture of systems. A connector isdescribed by
specifying process descriptions for each of the roles that components may play and the glue used to bind

them.

Advantages:

It is possible to validate the compatibility of components to be connected.

The connectors does not specify the type of the components they connect. Because they refer
to component by they roles, it is possible to reuse the connectors to connect different types of
components.

28

Disadvantages:

- Thisapproach suffers from the same problems that all the worksin the specification of archi-
tectural connectors. The most important is that the coordination specified in the connectors
concerns exclusively how the components are connected. The coordination defined in the
connectors specifies simply the flow of information between components. It is not possible
for example to define coordination based on the coordination history (i.e., like the number of
times some action occurred in the system) or coordination related with synchronizations.

- Another problem with connectorsin general isthat it is not clear whether the connectors are
only design abstractions. We believe that in anideal coordination model for objects the coor-
dination specified must be enforced by the system. If not, there is not any guarantee that the
objects will be coordinated.

- The coordination is purely reactive based exclusively on the events related with the reception
and the sent of messages in the components. It is not possible to define proactive coordination
in the participants.

- Itisnot possible to dynamically modify the connectors.

2.4.17 GAMMA - Multi-Set Rewriting [Bana96a]

A multi-set isaspace containing elements. A programin GAMMA iscomposed of pairsreaction-condition
-> action and its execution implies the replacing of those elements in the multiset satisfying the reaction-
condition by the products of the action.

Advantages:
- Itispossibleto specify cooperation patterns where coordination can not be specified asapre-
establish sequence of actions but as a repetitive process of reactions.

Disadvantages:

- Itisnot clear in thismodel (even if the coordination appears separated from the computation)
what will the result of the coordination. It is not possible to be sure in advance whether the
result of coordination will be the one wished. The coordination process finish when no more
reactions are possible, it could be that the coordination goals are never achieved.

- We believe that the main problem of this approach is that it does not fit into the basic object
model. The coordination in an object model concernsthe interaction between the objects. Ob-
jects interact by exchanging messages, the coordination targeted by this approach is purely
data coordination not based on the exchange of messages.

- Itisnot possible to validate the coordination code specified. It depends of the kinds of ele-
ments appearing in the multi-set at a given time.

2.4.18 Gluons [Pint95a]

Gluons are special kinds of objects responsible for the cooperation of software components. A gluonisan
object that handles afinite state automaton with output to control the execution of aprotocol’sinterplay re-
lation. Thefinite state automaton is composed of states and state transitions.

29

Advantages:
- Itispossible to define multiparty coordination.
- Itis possible to reuse the gluons to coordinated different kinds of components. The partici-
pants in the gluons are referred by the roles they play in the gluons and not by their names.

Disadvantages:

- A big problem with this approach is that the participants are not coordinated if they do not
communicate with the gluons. We believe that in an ideal coordination model for objects the
coordination specified must be enforced by the system independently of the participant ob-
jects.

- The coordination concerns exclusively the exchange of messages. It is not possible neither to
define synchronization constraintsin actions executed by the participants nor to define proac-
tive coordination in the participants.

- Statetransitions aretriggered because of messages sent to the gluons, thisimpliesthat the co-
ordinated entities must know about the existence of the gluonsto coordinate. The coordination
is not transparent to the coordinated components and the separation of computation and coor-
dination concerns is not respected.

- Itisnot possible neither to specialize nor to compose gluons to define new gluons.

- Itisnot possible to dynamically modify the gluons.

- Itisnot possible to validate the coordination specified in the gluons.

2.4.19 Linda - Tuple Spaces [Gele85a][Carr94a] + Linda Extensions:
Bauhaus Linda [Carr94a], Bonita [Rows97a], Law Governed Linda
[Mins94a], Objective Linda [Kiel96a], JavaSpaces [Sun03a]

Lindais coordination model based on the so-called generative communication paradigm. In a generative
communication paradigm processes communicate by exchanging data (tuples) through a shared dataspace
known as tuple space. Process can read from and write to the tuple space tuples. The tuples are retrieved
from the tuple space by means of pattern matching mechanism.

Advantages:
- Itispossibleto specify cooperation patterns where processes can coordinate independently of
their identity and where processes does not need to be alive at the same time.

Disadvantages:

- Thecoordination is mixed to the computation code of the coordinated entities. It is not possi-
ble to reuse coordination patterns to coordinate different entities.

- The coordination is based on the explicit exchange of data through a shared tuple space, the
coordination is not transparent for the coordinated entities.

- The coordination refers exclusively to events related with the presence of some existing data
in the tuple space. This model does not fix as a coordination model for objects, because ob-
jects communi cate exchanging messages. We believe that an ideal coordination model for ob-
jects must focus on coordinating the interaction of the objects and not the data they produce.

30

2.4.20 Manifold - IWIM [Arba96a][Arba98a]

Manifold isacoordination language based on the IWIM (ldealized Worker | dealized Manager) model. The
basic conceptsin the IWIM model are processes, events, portsand channels. A processisablack box with
well defined connection ports used to exchange information with other processes. Events are broadcasted
by their sourcein their environment as the result of the occurrence of certain events. The processes decide
which eventsthey react to.

Advantages:

- The coordination in the IWIM model is separated from the computation code. The coordina-
tionis specified in process called managers and the computation in processes called workers.
Manager processes are responsiblefor connecting worker processes (i.e., providing inputs and
directing outputs) and react to event occurrences.

- To coordinate via events the workers must raise the events. Workers do not need to know the
identity of the processes with which they exchange information, the coordination can be re-
used separately of the coordinated processes (i.e., workers).

Disadvantages:

- The broadcast of events from aworker is limited to the all the processes in its environment.
Thisimpliesthat not all theworkerswill receive al the events generated by the group of work-
€ Processes.

- Itisnot possible to dynamically modify the specified coordination.

2.4.21 Piccola - Scripts [Ache00a]

The core abstractions of the Piccolamodel areforms (i.e., immutable extensible records), agents(i.e., com-
municating processes) and channels (i.e., locations where agents asynchronously exchange forms). Forms
are used to build higher-level abstractionsto define composition and coordination styles. The coordination
styles are implemented as component algebras. A script, isan expression of the algebrathat specifies how
the components are plugged together.

Advantages:

- Itispossible to define multiparty coordination.

- Thecoordination is specified in the coordination styles separately from the computation spec-
ified within the components.

- The coordination specified in the coordination styles refers exclusively to the kinds of com-
ponents they coordinate. The behavior of the components is specified by the set of services
they provide and require. To our point of view, asuch specification of components allows one
to reuse the coordination specified in the coordination styles to coordinate different types of
components.

- Itispossibleto define different coordination styles. In other words different ways of coordi-
nate.

- Itispossible to combine coordination styles to define new coordination styles.

31

Disadvantages
- The coordination specified in the coordination style defines exclusively the composition be-
tween the components. It is not possible for example to specify synchronizations constraints.
- Itisnot possible to dynamically modify the specified coordination.

2.4.22 Rules and Constraints [Andr96a][Andr96b]

A Rule specifiesthe coordination steps needed to go from one global stateto another. Constraintsdefinere-
strictions over the domain of interpretation of therule.

Advantages:
- Itispossible to define multiparty coordination.
- Itispossible to specify synchronizations based on messages received by participant objects.
- Itispossibleto specify pro-active coordination behavior to make tokens appear in the pool of
tokens.
- Thecoordinationisspecified in rules separately of the computation code of the participant ob-
jects.

Disadvantages:

- The coordination specified in the object managers concerns exclusively synchronizations
based on messages received by the participant objects. It is not possible for example to define
coordination based on the history of the coordination (i.e., events which have happened).

- The coordination is not transparent for the participant objects, they know of the existence of
the coordinator because they participate to inquiry-reservation-confirmation/cancel lation pro-
tocols used by the coordinator to realize coordination.

- Isnot clear in this approach how objects do to propose the sequences of actions necessary to
make tokens appear in the pool of tokens. The capacity to determine the sequence of actions
implies some basic “intelligent” capacities which make the active objects more than simpler
objects.

- Itisnot possibleto dynamically modify the coordination specified in the rules and in the con-
straints.

2.4.23 Synchronizers [Frol93a]

Synchronizersare specia objectsthat specify multi-object constraints. A synchronizer observesand limits
the messageinvocationsaccepted by aset of objects, whether or not an object processamessageinvocation
dependson the current status and invocation history of the group of constrained objects.

Advantages:

- Itispossible to define multiparty coordination.

- The coordination specified in the synchronizers includes conditional (i.e.,disable constraint)
and mutual exclusion (i.e.,atomic constraint) synchronizations. Additionally the coordination
alows to refer to the coordination state of the participants and to the coordination history of
the synchronizer.

32

The synchronizer coordination abstraction is integrated transparently to the object-oriented
model, the enforcement of the coordination is based on the constraint of the method invoca
tions received by the participant objects.

The synchronizers observe and enforce the coordination.

The coordination is specified declaratively using rules and pattern matching.

Disadvantages:

The coordination is based exclusively on the constraint of the methods invocations received
by the participants of the synchronizer and on the messages sent by the participants to other
objects are coordinated. It is not possible to define coordination based on the state of the co-
ordination history.

It is not possible to specialize the synchronizers.

It is not possible to compose existing synchronizers to specify new synchronizers.

The coordination is defined exclusively based on the reception of method invocations re-
ceived by the participants of the synchronizers, it is not possible to define proactive coordina-
tion independent of the method invocations.

The synchronizers can not be modified dynamically. Evolution support is very restricted.

It is not possible to validate the coordination code specified in the synchronizers.

2.4.24 Wrappers [Ciob05a]

Wrappers specify the integration of components and their coordination. Components are described as ob-
jectsand coordination isdefined asa process.

Advantages:

It is possible to validate the coordination.

It is possible to define multiparty coordination specifying different arguments in the coordi-
nation wrapper.

The coordination is specified in the coordination processes independently of the participants.
An interaction wrapper describes an implementation of a coordination process.

Disadvantages:

Itisnot possible that multiple participant objects play the same*“role” in the coordination pro-
cesses. Each argument in the interaction wrappers specifies a participant an only one.
Itisnot possible neither to dynamically modify the coordination specified in the coordination
processes nor to modify the participants playing “rol€” in the interaction wrappers.

The coordination specified exclusivelly describes the interaction of the different participants.
It is not possible neither to define synchronizations nor to define proactive coordination.

It seemsto usthat isnot possible neither to specialize nor to combine coordination processes.

2.4.25 Related Work - Summary

A large number of existing coordination models and languages specify a shared tupl e space as ameans of
coordination: Linda [Ahu86a] [Carr89a], Bauhaus Linda [Carr94a], Bonita [Rows97a], Objective Linda

33

[Kiel96a], Law-Governed Linda[Mins94a] and Laura [Told964]. Linda was the first coordination model
and language created, its coordination model isbased on the so-called generative communication paradigm
[GeleB53]. Inthe generative communi cation paradigm processes communi cate by exchanging datathrough
asharedataspace (known asatupl e space). Generative communi cation decoupl escommuni cating process-
esinspaceandintime: processes do not need to know their identitiesin order to communicate, and they do
not need to be aliveat the sametimein order to communicate. Additionally, the tuple space can also contain
active tuples representing processes which after completing their execution turn into ordinary passive tu-
ples. The Linda tuple space coordination model has been integrated in object-oriented programming lan-
guages [Kiel96a] and recently in Java™ in the form of a package (i.e., library of classes) JavaSpaces
[Sun03a]. From our point of view the main problem with a tuple space coordination approach is that the
specification of the coordination is not transparent to the coordinated entities. In atuple space coordination
model the coordinated objectsare aware of the existence of avirtual share space with whichthey must com-
municatein order to coordinate. Even more,we believe that theideaof communicating by exchanging data
through a shared communication media does not fix into the object-oriented model, in an object-oriented
model objects communicate viathe exchange of messages and not of data.

An second big group of existing coordination modelsand languages use areflective approach to manage
the coordination. Reflective coordination models perform coordination by intercepting and controlling
base operations in the system (i.e., messages exchanges by the objects in object-oriented systems): Con-
tracts[Helm90a], Synchronizerg[Frol93a], Abstract Communication Types (ACTs) [Berg94a], Coordinat-
ing Environments [Mukh95a], Rules and Constraints [Andr96a], Coordination Policies [Mins97a],
Connectors-FLO [Duca98a] and Casts[Vare99a]. The CoL aS coordination model introduced in thisthesis
belongs also to this group. In opposition to tuple space based coordination models, reflective coordination
languages support transparent specification of the coordination. Inthese model sthe coordinated entitiesare
not aware of the existence of coordination, the coordination patterns are specified independently of the co-
ordinated entities. Reflective coordination models promote reuse of both the coordinated entities and the
coordination patterns. Evenif the coordination languagesintroduced before belong to the samegroup, there
arealot of differencesbetween them. Contracts[Helm90a)] for exampleare simpledesign specifications. In
CoL aS (our approach) the coordination groups do not only constrain the treatment of messagesasin Syn-
chronizers[Frol93a] and ACTs[Berg94a] but they also enforce coordinated actionsin the participantsasin
Rulesand Contraints[Andr96a]. The enforcement of coordinated actionsisdone by reacting to certain spe-
cific messagesor by self initiating actionsin participants depending on the coordination state. In CoLaSthe
enforcement of coordinated actionsisdone at five specific moments during the processing of method invo-
cationintheactive objects: 1) at the reception of amessage, 2) when amessageis sel ected for execution, 3)
before amessage is executed, 4) before a message is sent to another object and 5) after the execution of a
message by an active object. In Coordination Policies[Mins97a] coordination actions are also enforced as
in CoLaS, but the actions can only be specified at two moments during their processing: at their reception
and beforethey are sent to other objects. Additionally in Coordination Policies[Mins97a] the policiesrefer
only to the local control state of the object who has received the message and in Synchronizers [Frol93a)
they only refer to the state of the synchronizer. In CoL aSthe coordination policiesnot only refer to the state
of the coordination group but also to the state of the participants. One of the most important differencesbe-
tween CoL aS and itsrelated coordination models and languagesisits support for dynamic evolution of the
coordination, in CoL aSacoordination group isacompl ete dynamic entity that can be created and destroyed
and in which coordination rules can be added and removed at any time. Furthermore, in CoLaS new active
objects can join the coordination groups at any time and existing parti cipants may |eave the coordination

34

group. The coordination rules only apply during the time the active objects participate in the groups. Ap-
proacheslike Synchronizers[Frol93a], ACTs[Berg94a] and Coordination Policies[Mins97a] do not man-
age full dynamic changes of the coordination.

A third group of existing coordination models and languages define the coordination within atemporal
context. The coordination abstractions composing these model s are formally specified using temporal |og-
ics. The most important advantage of coordination models and languages using temporal specification of
thecoordinationisthat it ispossibleto test the consistency of agiven coordination specification. Wefindin
this group: Activities and Environments [Arap91a]. In CoLaS we validate our coordination specifications
by transforming them into Petri Nets. The main problem with the Activities and Environments approachis
that the coordination aspect is reduced to the specification of the temporal constraints associated to the ex-
ecution of messages.

A fourth group of existing coordination model sand languages define coordinati on abstractions based on
the specification of interaction protocols. The coordination abstractions specify the set of messagesthat can
be exchanged and the set of sequencing constraints imposed on them. We find in this group: Gluons
[Pint95a], Collaborations[Yell97a], Activities[Kris93a] and Coordination Contracts[Barr02g]. In CoLaS
we al so specify the interaction protocol s but we are not limited to only this aspect of the coordination. Ad-
ditionally in CoL aS we specify synchronizations constraints on the execution of the messages exchanged.

A fifth group of existing coordination models and languages define the coordination based on events oc-
curring in the systems. We find in this group: Event Notifications [Papa94a], Manifold - IWIM[Arba96a]
and Finesse - Bindings[Berr98a]. Part of the coordination specifiedin CoL aS concernseventsrelated with
the reception of method invocations by the active objectsand by the sent of method invocationsto other ob-
jects.

A sixth group of existing coordination models and languages define coordination abstractions as archi-
tectural connectors. Most of the time the architectural connectors are specified as process descriptionsand
the componentsthey connect by thelist of servicesthey provideand they require. Wefindinthisgroup: For-
mal Connectors[Alle94a], Darwin - Ports [Magg95a], Connectors ArchJava [Aldr03a] and Connectors -
FLO [Duca984].

Finally we have two coordination models and languages which are very difficult to categorize, they are
very uniquein their approach: GAMMA - Multiset Rewriting [Bana96a] and Piccola- Scripts[Ache00a].
GAMMA specifies coordinationintheform of rulesreaction-conditions->action appliedinamultiset. The
execution of a GAMMA program implies the replacement of those elementsin the multiset satisfying the
reaction-condition by the products of the action. Thisform of coordination does not fix into the obj ect-ori-
ented model in which objects communicate viathe exchange of messages. Piccola[Ache00a] on the other
hand does not specify aspecific and unique coordination style, but aset of coordination styles. The abstrac-
tionsintroduced in Piccolaare so flexible that they can be used to specify different forms of coordination.
Furthermore, the different forms of coordination can be combined, in what they call multi-styling coordi-
nation.

2.5 An Ideal Coordination Language for Active Objects

We already mentioned in theintroduction of thisthesis some of the problemswhich webelieve existing ob-
ject-oriented programming languages have in supporting the specification and implementation of the coor-

35

dination aspect in concurrent object-oriented systems. The specification of anideal coordination language
for active objects should take these problemsinto account. They arebasically:

» Lack of high level coordination abstractions.

» Lack of coordination abstractions for complex interactions.

» Lack of separation of computation and coordination concerns.
» Lack of support for the evolution of the coordination code.

» Lack of support for the validation of the coordination code.

Requirements

Thelist of requirementsfor an ideal coordination model and language that we will introduce below corre-
spond to design decisionstaken on five aspectsof acoordination language: specification, properties, behav-
ior, evolution and validation. For each aspect we analyze different choices and we select the ones that we
consider to bethe most appropriate, alwaysjustifying our choice. Wewill always compare the chosen solu-
tion which other solutionsin coordination models and languagesincluded in our survey.

Coordination Specification: Arethe coordination policies fixed within the system? Can coordination poli-
ciesbeincrementally specified or modified? |s the coordination expressed declaratively of procedurally?

It must be possible for programmersto define new coordination policieswithin the system asin Coordi-
nation Policies [Mins97a] and their specification must be user-defined. Contrary to Synchronizers
[Frol934] that do not support incremental definition of the synchronization policies, the coordination poli-
cies must be defined incrementally from others policies like in ACTs [Aksi94a], Coordination Environ-
ments [Mukh95a], Contracts [Helm90a],and Connectors-FLO [Duca98a]. Finally, as proposed in
Synchronizers [Frol93a], Rules and Constraints [Andr96a] and Coordination PoliciegMins97a] the poli-
ciesmust be defined declaratively to avoid programmers deal with thelow-level details of how the coordi-
nation must be done.

Coordination Properties: |sthe coordination data driven or control driven [Papa98a] ? Transparently inte-
grated in the host languages? Non-intrusive? Two-party or multi-party?|sthe coordination centralized, de-
centralized or hybrid [Mukh95a] ?

Because concurrent object-oriented languages promote data encapsulation and behavior over data, the
coordination in concurrent object-oriented systems must be control driven asin Synchronizers[Frol93a],
Coordination Environments [Mukh95a], Manifold [Arba96a] and Coordination Policies[Mins97a].

Contrary to Linda based approaches like Objective Linda [Kiel96a] where the coordinated objects are
awareof thevirtual shared spaceto whichthey communicate, the coordination must betransparent fromthe
point of view of the coordinated objects as in SynchronizergFrol93a], Coordination Environments
[Mukh95a] and Coordination Policies]Mins97a]. M oreover, the coordination must be non-intrusive: based
on the public interfaces of the coordinated objectsand not relying on their internal representation.

Contrary to Collaborations[Yell97a] wherethe coordination is specified only between two components,
the coordination must allow the specification of multi-party policiesasin Synchronizers[Frol93a].

Finally, the coordination must be based on a hybrid model as in Synchronizers [Frol93a], ACTs
[Aksi94a], Coordination Environments [Mukh95a] and Coordination Policies [Mins97a]. The problem
with centralized modelslike Gluons[Pint95a], Rules and constraints[Andr96a] isthat objectsareforced to
interact with a coordinator agent and the problem with decentralized models like Event Notifications

36

[Papa964] isthat the objects must know the other objectsto perform the coordination. Thereusability of ob-
jectsand coordination islimited in both cases.

Coordination Behavior: |sthe coordination limited to the synchronization of actions? or Can actionsbeen-
forced and/or beinitiated by the system?What kind of information shoul d bereferred to by the coordination
policies?

Coordination must not be limited asin Synchronizers [Frol93a] and ACTs[Aksi944] to the synchroni-
zation of actions, it must be possible to enforce actionsin the coordinated objectsindependently of the ac-
tions occurring in the system. Moreover, it must be possible to initiate actions (i.e., proactive actions
[Andr96a][Mins97a]) as in Coordination Policies [Mins97a] based on the state of the coordination. The
state of coordination must include the state of the coordinated objects and the history of the coordination.

Coordination Evol ution: Can coordination policies be created and/or be modified dynamically? Do coordi-
nation policies support the addition and the removal of coordinated objects? Can we define new coordina-
tion patternsdynamically?

The coordination must be highly dynamic. Objects must be able to join and/or leave the coordination at
any time. It must be possible to dynamically modify existing coordination policies and to create new ones
at run-time[Andr96a). A highly dynamic system must be ableto dynamically adapt to new coordination re-
quirements.

Coordination Validation: Can we prove that the behavior of an object is compatible with the coordination
policies of the system? Can we prove that the coordination will develop correctly (i.e., safe)?

Ideally aformal model must be fully integrated to the coordination language to check the ability of the
objectsto be coordinated. Furthermore, we would like to be ableto prove certain safety and liveness prop-
erties of the coordination like deadlock free and termination. The formal model must not be limited to the
specification and the verification of the coordination asin Formal Connectors[Alle94a] but causally con-
nected to the language in the sense of an “ executabl e specification”.

We can summarize the requirementsfor anideal coordination model and languagein thefollowing list:

» The coordination policies must be defined independently of the coordinated entities: the coordina-
tion model must enforce the separation of the coordination and the computation aspects. It must be
possible to define coordination policies independently of the specification of the coordinated enti-
ties.

* It must be possible to define new coordination policies in the coordination model: the coordination
model must allow programmersto define their own coordination policies and do not constrain them
to use fixed coordination policies.

* It must be possible to incrementally define new coordination policiesin the coordination model: the
coordination model must allow programmers to use existing coordination policies in the specifica-
tion of new coordination policies.

» The coordination policies must be multi-party: the coordination model must allow the specification
of coordination policies referring to different types of coordinated entities. Furthermore, not only it
should be possible to coordinate different types of coordinated entities but also several entities of
the same type.

» The coordination policies must be declaratively defined in the coordination model: the coordination
model must allow the specification of the coordination in a declarative way avoiding the program-

37

mers the details of how the coordination must be done. High level coordination abstractions should
be used to hide the details about how the coordination is done.

» The coordination policies must be control-driven defined in the coordination model: the coordina-
tion model must respect and adapt to the basic object model to specify the coordination. No new
abstractions must be added to the object model to specify the coordination.

» The coordination model must be transparently integrated into the host language: the coordination
model must integrate into the host language without imposing any constrain to the host language.
The coordinated entities must not be aware of the existence of the coordination layer in the systems.

» The architecture of the coordination model must be hybrid: the enforcement of the coordination in
the coordination model must be shared between the coordinated entities and a central coordinator.
It must be possible to get advantage of the computing power of the entities being coordinated in the
enforcement of the coordination and do not convert the coordinator in a bottleneck for the system.

» The coordination policies must include the possibility to define proactions in participants: the coor-
dination model must not be exclusively reactive waiting for events or actions occurring in the sys-
tem. It must specify proactive coordination in the coordinated entities.

» The coordination policies must include the possibility to refer the state of the participants and to the
coordination history of the system: the coordination model must allow the specification of coordi-
nation referring to the state of the participants and the history of the coordination.

» It must be possible to dynamically modify the coordination policies: the coordination model must
allow the dynamic modification of the coordination. It must be possible to easily adapt the coordi-
nation policiesto new requirements in the systems.

» It must be possible to prove the capability of the coordinated entities to be coordinated: the coordi-
nation model must to allow the system to validate whether potential coordinated entities are capable
to participate in the coordination.

» It must be possible to validate basic safety and liveness properties of the coordination: the coordi-
nation model must allow programmers to validate formal propertiesin the coordination specified.

2.6 Conclusions and Contributions

We propose in thisthesis, the use of active objects and coordination models and languages for the specifi-
cation and construction of concurrent object-oriented systems. We believe that by separating the specifica-
tion of the coordination aspect from the computation aspect in concurrent object-oriented systems we
simplify their specification, understanding, construction, evolution and validation of properties We have
identified that the most important problems that existing programming languages have in supporting the
specification of the coordination aspect in object-oriented systems are: 1) lack of high level coordination
abstraction, 2) lack of coordination abstractionsfor complex interactions, 3) lack of separation of computa-
tion and coordination concerns, 4) lack of support for the evolution of the coordination code and 5) lack of
support for the validation of the coordination code. Our goal inthesisisto specify acoordination model and
language for concurrent object-oriented systemsthat tackles all these problems.

A largenumber of coordination modelsand languages exist [Papa98al, they differ basically in: thekinds
of entitiesthey coordinate, the underlying architecture assumed by the model s, the coordination mediathey
useto coordinate and the semanticsto which the model s adhere to. Weincludein Appendix A of thisthesis
a survey of coordination abstractions in existing coordination models and languages. From our point of
view none of the coordination modelsand languagesincluded in our survey fully satisfiesthelist of require-

38

mentswe haveidentified asfundamental for the specification of acoordination model and languagefor con-
current object-oriented systems. The requirements can be summarized inthefollowing list:

The coordination policies must be defined independently of the coordinated entities.

It must be possible to define new coordination policies in the coordination model.

It must be possible to incrementally define new coordination policies in the coordination model.
The coordination policies must be multi-party.

The coordination policies must be declaratively defined in the coordination model.

The coordination policies must be control-driven defined in the coordination model.

The coordination model must be transparently integrated into the host language.

The architecture of the coordination model must be hybrid.

The coordination policies must include the possibility to define proactions in participants.

The coordination policies must include the possibility to refer the state of the participants and to the
coordination history of the system.

It must be possible to dynamically modify the coordination policies.

It must be possible to prove the capability of the coordinated entities to be coordinated.

It must be possible to validate basic safety and liveness properties of the coordination.

We believe and we will be proveit all along thisthesis that our approach CoL aS, a coordination model
and language based on the notion of coordination groups and specially adapted to specify the coordination
inconcurrent object-oriented validatesall of these requirements. The CoL aS coordination model will bein-
troduced in the next chapter of thisthesis.

The main contributions of this chapter to thethisthesisare:

We provide an introduction to what is coordination and its significance. We provide answersto im-
portant questions about coordination: What is coordination? Why isimportant to coordinate? What
should be coordinated? Which are different ways to coordinate? I n the coordination theory coordi-
nation can be defined asthe act of managing interdependencies between activities performed by en-
tities in order to achieve some goals. The goa of the coordination is to make entities work harmo-
niously. Forms of coordination are: 1) mutual adjustment, 2) direct supervision and 3) standardiza-
tion.

We provide an approach to identify coordination problems in concurrent systems. The approach is
based on the identification of dependencies between the activities performed by the entities that
compose those systems. We have identified eight coordination problems: 1) transfer of information
2) dlocation/access of/to shared resources, 3) simultaneity constraints, 4) condition synchroniza-
tions, 4) execution orderings, 5) task/subtask constraints, 6) group decisions and 7) global con-
straints.

We provide an analysis of the advantages and disadvantages for the twenty four coordination ab-
stractionsincluded in our survey of coordination abstractionsin Appendix A of thisthesis. Theanal-
ysisis made considering the specification of anideal coordination model for concurrent object-ori-
ented systems. The coordination abstractions included in the survey are those that we consider to be
the most interesting, representatives and related to our work. The result of the analysisisused in the
specification of the requirements presented just before. We consider these requirements as funda-
mental for the specification of an ideal coordination model for coordinating concurrent object-ori-
ented systems. They will guide the specification of our coordination model and language CoLaS.

CHAPTER 3

The CoLaS Coordination Model and
Language

Intheintroduction of thisthesi swe pointed out that one the most important problemsin building and main-
taining concurrent object systemsresults from the fact that the functionality of the active objectsthat com-
pose these systems and they way they cooperate and synchronize are mixed within the objects code. The
mixing of concerns makes the concurrent object systems built difficult to understand, modify and custom-
ize. We al so pointed out that such aproblem can betackled by managing separately thetwo different aspects
as proposed by the so called coordination models and languages [Gel €924] . According to the coordination
model and languages approach acomplete programming model can be built out of two separate pieces: the
computation model and the coordination model. The computation model concerns the specification of the
elements that compose the systems and the coordination model the specification of the glue that binds all
the elementstogether.

In Chapter 1 of thisthesis, we concluded from the analysis of existing concurrent-object programming
languagesthat the most important problemsthey haveto support the specification and abstraction of the co-
ordination aspect are:

» Lack of high-level coordination abstractions.

» Lack of coordination abstractions to express complex coordination patterns.
» Lack of separation of the computation and the coordination aspects.

» Lack of support for the evolution of the coordination reguirements.

» Lack of support for the validation of the coordination code.

In Appendix A of thisthesisweinclude a survey of coordination abstractions in existing coordination
models and languages. The coordination abstractions we include come from coordination modelsand lan-
guagesthat we considered are the most interesting, representatives and related to our work. We present for
all the coordination abstractionstheir most important characteristicsillustrating their usewith examples. In
chapter 2 of thisthesiswe went through all the coordination abstractions included in our survey analyzing
their advantagesand their di sadvantageswhich respect to characteristics of anideal coordination model and
language for concurrent object-oriented systems. We identified from thiswork the list of requirementswe
consider to be fundamental for acoordination model and language for concurrent obj ect-oriented systems.
The requirements can be summarized in the following list:

» The coordination policies must be defined independently of the coordinated entities.

» It must be possible to define new coordination policies in the coordination model.

» It must be possible to incrementally define new coordination policiesin the coordination model.
» The coordination policies must be multi-party.

» The coordination policies must be declaratively defined in the coordination model.

40

* The coordination policies must be control-driven defined in the coordination model.

» The coordination model must be transparently integrated into the host language.

» The architecture of the coordination model must be hybrid.

» The coordination policies must include the possibility to define proactions in participants.

» The coordination policies must include the possibility to refer the state of the participants and to the
coordination history of the system.

» It must be possible to dynamically mofiy the coordination policies.

* It must be possible to prove the capability of the coordinated entities to be coordinated.

» It must be possible to validate basic safety and liveness properties of the coordination.

In this chapter weintroduce CoL aS, our approach to the specification of the coordination aspect in con-
current object-oriented systems. The CoLaS model is based on the notion of coordination groups. A coor-
dination group isan entity that specifies, controls and enforces the coordination of agroup of collaborating
concurrent objects. We consider that the main tasks of the coordination in concurrent object systemsare: 1)
to support the creation of the objects, 2) to enforce cooperation actions between the objects, 3) to synchro-
nize the occurrence of those actionsand 4) to enforce proactive behavior inthe objects[Andr96a] based on
the state of the coordination. The CoL aS coordination model supportsthe four types of tasksin the specifi-
cation and construction of concurrent object-oriented systems.

The CoL aS coordination model usesareflective approach to manage the coordination aspect. Reflective
coordination models perform coordination by intercepting and controlling base operations in the system.
CoL aSisbased on theinterception of the messages exchanged by the group of collaborating objectswithin
the coordination groups. Coordination rules define actions to perform when the messages are intercepted.

Webelieve, and wewill show all along thisthesis, that the Col aS coordination model and language sat-
isfiesall theregquirementswe haveidentified asideal for acoordination model and language for concurrent
object-oriented systems. Wewill use the CoLaS examplesintroduced in this thesis to illustrate concretely
how these requirements are satisfied in the coordinati on sol utions specified.

We have divided the presentation of this chapter into three parts:

Inthefirst part of this chapter weintroduce the CoL aS coordination model, using the example “ Subj ect
and Views’ [Helm90a)]. Using thisexampleweillustrate the basic el ementsthat composethe model. Wetry
toremainvery abstract in this presentation, our goal isto givethereader asimpleideaabout how ColLaScan
be used to model and specify coordination problems.

In the second part of this chapter we use the Electronic Vote [Mins97a] and the Electronic Agenda
[Bosc97a] examplesto illustrate in detail all the different elements that compose the model. During their
presentation we build step by step the specification of the coordination groups containing the coordination
specification of the two problems. Again we will explain concretely in the examples how Col aS satisfies
thelist of requirementsfor anideal coordination model and language.

Finally inthethird part of thischapter we evaluate the CoL aS coordination model and language with re-
spect to thelist of requirements identified asideal for acoordination model for concurrent object-oriented
systems. We conclude this chapter with an evaluation of the pro and the cons of the CoLaS coordination
model, pointing out its main contributions and some future work.

41

3.1 The CoLaS Coordination Model

CoL aSisacoordination model based on the notion of Coordination Groups. A coordination group speci-
fies, encapsul ates and enforcesthe coordination of agroup of collaborating participants. The CoLaSmodel
isbuilt out of two kinds of entities: the participants and the coordination groups (Figure 3.1).

Participants

4 ;
4
Coordination Group

Figure 3.1 : Entities composing the CoLaS model

3.1.1 The Participants

In ColL aS the participants are active objects. concurrent objects that have control over concurrent method
invocations. In an active object, incoming method invocations are stored into amailbox until the object is
ready to processthem. Whether an object isready or not to processamethod invocation dependson the syn-
chronization policy associated with the active object [McH&a93a]. A synchronization policy defineswhich
methods invocations can be executed concurrently by the object, its purposeisto ensure the consistency of
the object state. In CoL aS participantstreat the incoming method invocationsin asequential way (i.e., one
at thetime) following amutual exclusive synchronization policy.

In CoL as the participants communicate by exchanging messages in an asynchronous way. A message
sent from a participant to another participant represents arequest for amethod invocation in the other par-
ticipant. The fact that the communication is asynchronous implies that participants are not blocked while
their requests are processed by the other parti cipants, they may continueworking until they receivetheir re-
pliesfrom the other participants. The replies are managed using explicit futures. Every message sent to an-
other participant generatesareply, it is up to the participant who receives the future to decide to request or
not thereply to the future.

3.1.2 The Coordination Groups

A coordination group is an entity that specifies, controls and enforces coordination between groups of col-
laborating participants. The primary tasks of a coordination group are: (1) to enforce cooperation actions

42

between the participants, (2) to synchronize the occurrence of those actions and (3) to enforce proactive ac-
tions (proactionsin the following) [Andr96a] in the participants based on the state of the coordination.

Participants

Coordjnation Rules

Coordination Group

Figure 3.2 : Coordination Group

Coordination Groups Specification

Coordination Groups(i.e.,only groupsinthefollowing) are composed of thefollowing threeelements (Fig-
ure 3.2): the Roles Specification, the Coordination Sate and the Coordination Rules.

» The Roles Specification: defines the different roles that the participants may play in agroup. Partic-

ipants playing the samerolein agroup behave in the same way from the coordination point of view.
For each roleit is possible to specify arole interface with the minimum regquirements for an active
object to play the role. Role interfaces are specified by sets of method signatures.

The Coordination Sate: defines general information needed to perform the coordination. It concerns
information like: whether some action has occurred in the system (i.e., historical information), the
number of times some action has occurred or actually occursin the system (i.e., historical counters)
and in general information useful to perform the coordination and related with the state of the group
and the state of the participants. The coordination state is specified in theform of variables. The Co-
LaS model defines three types of state variables: Group Variables (i.e., variables shared by all the
participants of the group), Role Variables (i.e., variables shared by all the participants of arole) and
Role Participant Variables (i.e., private variables associated with each participant of arole).

The Coordination Rules: defines the different rules that govern the coordination of the group. They
are associated with the roles and regulate the coordination of all the participants playing the roles.
There are three different kinds of coordination rules: Cooperation Rules (i.e., specify cooperation
actions between the participants), Reactive Rules (two sub-types: Interception Rules and Synchro-
nization Rules. They specify mainly synchronizations over the occurrence of actionsin the partici-
pants) and Proactive Rules (i.e., specify proactions [Andr96a] in the participants).

43

Active Objects Group Participation

Active objects join coordination groups by joining group roles. To play arolein agroup, an active object
should at |east have the functionalitiesrequired by therole. Thefunctionalitiesrequired by aroletoits par-
ticipants are specified in theroleinterface. A role can be played by more than one participant and apartici-
pant can play more than one role. Active objects join and |eave the groups at any time without disturbing
other participants.

Coordination Enforcement

Cooperation rules defines new behaviors for the participants, they are executed by the participants when
they receive method invocation requests related to the behaviors specified in the rules. Reactive rules are
enforced at four different moments (i.e.,eval uation points) during the processing of the method invocations
received by the participants. Thereactiverulesare checked to verify whether they apply totherequest, if so,
therules are enforced (e.g., messages are sent to other participants, the execution of the request is delayed
or ignored, etc.). Thefour evaluation points defined are: at the arrival of the method invocation request, be-
foretheexecution of the method invocation, before the sent of amessage to another participant and after the
execution of the method invocation). On the other hand, Proactive rules do not depend on the messagesre-
ceived or processed by the participants but on the state of the coordination of the group. They are enforced
non deterministically by the group.

3.1.3 Afirst View of CoLaS - Subject and Views [Helm90a]

Toillustratethe basic characteristics of the CoLaS coordination model wewill usethe* Subject and Views’
coordination problem [Helm90a] . The Subject and Views coordination problem appearswhen a Subject ob-
ject containing some data and a collection of View objects which represent that data graphically (e.g., asa
dial, ahistogram, or asacounter) cooperate so that all times each View always reflectsthe current val ue of
the Subject. The “Subject and Views’ coordination problem can be solved using the Observer pattern
[Gamm95a]. The Observer pattern definesadesign solution to aone-to-many dependency rel ation between
objects so that when one object changesits state, all its dependents are notified and updated automatically.
They key objectsin this pattern arethe subject and the observers. A subject may have any number of depen-
dent observers. All the observers are notified whenever the subject undergoes a change in its state. In re-
sponse, each observer queries the subject for its state to synchronize its state. The dependency relation
specified in the Observer pattern is also known as publisher-subscriber relationship.

Coordination Problems
» Synchronization Constraints: all the different observers reflect the current value of the subject. The
state of the observer remains synchronized with the state of the subject.
» Transfer of information between entities: all the dependent observers are notified when the state of
the subject changes, the observers then request the value of the new state to the subject and update
their states.

44

Structure
-observers
Subject Observer
-Observer -
TAttach() 1 *Update()
+Dettach()
+Notify()

ConcreteSubject -subject |ConcreteObserver
-subjectState -observerState
+GetState() * * +Update()

Figure 3.3 : Observer Pattern structure

In(Figure 3.3) we show the structure of the Observer pattern [Gamm95a]. The class Subject represents a
asubject and the class Observer the observers (i.e., the views) of the subject. Any number of observer ob-
jects may observe a subject. The Subject class provides an interface for attaching and detaching observer
objects. The Observer class defines an update interface to update the observer state when the observer re-
ceivesanotification of a changein the state from the subject. The class ConcreteSubject storesthe state of
the subject and specifies the interface of a method called GetSate to request for the value of the subject’s
state. The class ConcreteObserver maintains the reference to the ConcreteSubject object and a copy of the
subject’s statein the observerState variable.

Solution

In(Figure 3.4) we createacoordination group named ObserverPattern to encapsul ate the coordination de-
scribed in the pattern. The coordination group specifiesthe two roles Subject (line 3) and Observer (line7)
representing the two types of objects subject and observersin the pattern. The role Subject constrains the
number of participants playing the roleto only one (line 4). Only one object may play therole Subjectin a
ObserverPattern coordination group. The role interface of the role Subject (line 5) specifies that only ob-
jectswho know how to react to the behaviors getObjectState and setObjectState: can play the role Subject
and the role interface of the role Observer (line 8) that only objects who know how react to the behavior
doSpecificAction: can play the role Observer. The getObjectState and setObjectState: behaviors allow to
access and to modify the state of the object playing the role Subject and the doSpecificAction: behavior to
perform any specific action in the observers related with the change in the subject’s state (i.e., to redraw a
view).

Therole Observer definestwo participant variables subject (line 9) and observerState (line 10). The sub-
ject variable is used to keep the reference to the subject in the observers and the observerState variable to
keep a copy of the current state of the subject. The value of the observerState variable in each observer is
maintai ned synchronized with the value of the subject’s state by the coordination.

The ObserverPattern coordination group specifies the following coordination rules (only Cooperation
Rulesin thiscase):

45

10

Rule 1 (line 12): specifies how observers are attached to the subject. A reference to the object play-
ing the role Subject is stored in the subject’ s variable of the observer.

Rule 2 (line 16): specifies for a subject that whenever the state of the subject changes a notify mes-
sage is synchronously sent (i.e., message send to self) to the same object (line 18).

Rule 3 (line 20): specifiesfor asubject that an update messageis sent to all the observers of the sub-
ject when a notify message is received by the object.

Rule 4 (line 23): specifiesfor asubject that the current state of the subject isreturned when agetState
message is received from a observer.

Rule5 (line 26): specifiesfor an observer that the value of the observerState variablein the observer
is updated when an update message is received from the subject. The current state of the subject is
requested directly to the subject (line 27) using the subject participant variable in the observer. The
reply to the request is received through a future (result keyword, line 27), the execution of the be-
havior update in the observer is blocked until the reply is sent by the subject and received by the
observer. The doSpecificAction: corresponds in the “Subject and Views’ problem to the redraw of
the view.

. Coordi nati onGroup createCoordi nati onG oupCl assNaned: #CbserverPattern.

. QbserverPattern defi neRol eNaned: #Subj ect.
. Subj ect maxNunParticipants: 1.
. Subj ect definelnterface: #(#get(bjectState #setbjectState:).

. ObserverPattern defi neRol eNaned: #Qbserver.
. Observer definelnterface: #(#doSpecifAction:).
. Qbserver definePartici pantVariabl e: #subject.

. Gbserver defineParticipantVariabl e: #observerState.

11.

12

13.
14.

.[1] Subject defineBehavior: 'attach: anCbserver’ as:
[Goserver addPartici pant: anCbserver.
anCbserver subject: self receiver].

15.

16.
17.
18.

[2] Subject defineBehavior: 'setState: aState’ as:
[sel f sethjectState: aState.
self notify].

19.

20.
21.

[3] Subject defineBehavior: 'notify’ as:
[Cbserver update].

22.

23.
24.

[4] Subject defineBehavior: 'getState’ as:
[*sel f getCbjectState].

25.

26.
27.
28.

[5] Observer defineBehavior: 'update’ as:
[sel f observerState: (self subject getState result).
sel f doSpecificAction: self observerState].

Figure 3.4 : Observer pattern

46

Analysis

Thisexampleillustratesclearly how the coordination aspect of the* Subject and View” problemisspecified
completely separate from the specification of the computation code of the coordinated objects(i.e., the ac-
tive objects which play the roles Subject and Observer). We can see in the example that the coordination
specified in the coordination group refersexclusively to the coordinated objects by therolethey play inthe
group and not by their names. The separation of the coordination aspect and the implementation of the par-
ticipants allowsthe coordination group to coordinate different kinds of participant objectsand to the partic-
ipant objectsto participate in different coordination groups. The only constraint imposed on the objectsfor
their participation in the groupsisthe respect of theroleinterface defined in the rolesthey will play. Inthe
exampl e, the only constraint imposed to the parti ci pants of the role Subj ect to participateisto provide meth-
odsto accessand modify their state and to the participants of the role Observer to provide amethod to per-
form the specific action related with the change in the state in the subject. Some existing coordination
models and languages constrain the participation of active objectsto only those of the type specified in the
roles like in Activities[Kris93a], Activities and Environments[Arap9la] and Coordination Con-
tractg Andr99a]. We believe that the role interface should strictly specify what is necessary for the coordi-
nation and not more, associating types to the roles unnecessarily constrains the kinds of participants that
may play therole. We believethat the way in which we specify in CoLaStherolesinterfacesistheright so-
lution because it concerns exclusively the behavior that must be known by the participantsto participatein
the coordination groups and nothing more.

Itisalso important to remark that the number of rolesinthegroupsisnot limited. It is possibleto specify
complex multiparty coordination patterns. Existing concurrent programming languageslike Javaand some
existing coordination model and languages like Collaborations [Yell973a] limit the coordination to two ob-
jectsat thetime. It is not possible to define multiparty coordination patterns. Furthermore, because in Co-
LaSthereisnolimitation inthe number of participantsthat may play aroleitispossibleto specify using the
coordination groups multi party-multi participant coordination patterns (i.e., more than one participant
playing the same role at the time). Some coordination models and languages in which the participants are
specified by their typeslikein Activities and Environments[Arap91a], Connectors-FL O[Duca97a)], Coor-
dination Contracts] Andr92a] and Gluong Pint95a] constrainthe number of participantsto only oneper role.
The possibility to define multi participant coordination patternsis definitely a plus from the point of view
of the simplicity of the specification of the coordination. In approaches where multi participant coordina-
tion can not be specified in asingle abstraction programmers areforced to specify multiple coordination re-
|ations between the multiple participants of theroles.

3.2 The ColLaS Coordination Language - A Detailed View

Toillustratein detail all the different aspects of the CoL aS coordination model we will use as examplethe
Electronic Vote [Mins97a]. We will describe in afirst time the problem and then step by step we will build
the specification of acoordination group that contai ns the specification of the coordination of the problem.

3.2.1 A Case Study: The Electronic Vote [Mins97a]

Problem Description

In the electronic vote, an open group of participantsisrequested to vote on a specific issue. Every partici-
pant in the group can initiate avoting process on any particular issue at any time. Partici pants vote by send-

47

ing their votes to the participant who initiated the voting process and only in the time frame fixed by the
initiator of the voting process. The system must guarantee that the voteisfair: (1) each participant votes at
most once and only within the period of time established, (2) that the counting is done correctly and only
votes from participants of the group are counted and (3) that the result of the vote is sent to all the partici-
pants at the end of the voting period. Initially, the counting policy applied to determinetheresult of the vote
will beconsensus (i.e., theresult of thevotewill be positiveif the number of positivevotesreceivedisequal
to the number of voters, otherwisetheresult will be negative), however other counting policiesmay also be
specified. In(Figure 3.5) wecan seethe UML classdiagram corresponding to the solution of theelectronic
vote problem.

Voter

+startVote(in issue)
+voteOn(in issue, in initiator)
+opinion(in issue)
+voteOn(in vote)
+stopVote()

+voterResult(in vote)

Figure 3.5 : The Electronic Vote - UML Class Diagram

In the Electronic Vote problem weidentify only onetype of participant: thevoter. The UML interaction
diagramin (Figure 3.6) describes the vote process for the el ectronic vote. The vote processinitiates with
astartVote message sent by avoter (a). Theinitiator of the vote then sendsthe message voteOn: (b) toal the
voters (including himself) to request for their votes. Implicitly theinitiator of the vote opensthe voting pe-
riod. Theissue of thevoteissent aspart of the voteOn: message sent to the voters. Each voter receivesthen
the request for the vote and votes according to its own opinion (c), the value of the vote isthen sent to the
initiator of the vote process (d).When theinitiator of the vote process decidesto stop the vote process(e), it
closesthevoting period and cal cul atesthe result of thevote. Theresult of the voteisthen sent to all thevot-
ers.

(a) startvote ; VoteOn

> voteon (b) #H> opinion
> opinion (C)
e @

> stopVote (e) voteResult |—:|
> voteResult (f) .

48

Figure 3.6 : The Electronic Vote - UML Interaction Diagram

The electronic vote exampleillustrates the following coordination problems:

» Transfer of information: voters communicate with other votersto initiate the voting processes. Dur-
ing a voting process voters communicate with the initiator of the vote to send their votes. Theiniti-
ator of the voting process stops the vote process, determines the result of the vote and sends the re-
sult to al the voters.

» Globa Constraints: different global constraints have to be respected: voters can vote at most once,
only votes received during the voting period must be taken into account and only one vaoting process
occurs at the same time.

» Dynamic evolution of the coordination: new voters can join the voters group and existing voters can
leave the group at any time, the counting policy applied to determine the result of the vote process
can be modified at any time by the group.

3.2.2 Roles Specification

In agroup, arole specifies a set of participants sharing the same coordination behavior. In the Electronic
Vote example only therole Voter wasidentified. Therole Voter refersto al the entities participating in the
voting process. Roles are defined by sending the message defineRoleNamed:<Role Name> to the group
with the name of roleto be created as argument. In (Figure 3.7 line 3), we show how therole Voter isde-
fined in the group ElectronicVote.

1. Coordi nati onG oup creat eCoordi nati onG oupCl assNaned: #El ectroni cVote.
2.
3. El ectroni cVot e defineRol eNaned: #Voter.
4
5

.Voter definelnterface: #(#opinion:).
Figure 3.7 : Electronic Vote - Coordination Roles

Theminimal interface that an active object should haveto play arolein agroup isspecifiedintherole's
roleinterface. Theroleinterface specifies signatures of methods that must be defined in the active objects
inorder toplay therole. Therole'sroleinterfaceis defined by sending the message definel nterface:<Meth-
od Signatures Collection> to the role with a collection of method signatures as argument.

In(Figure 3.7 line5), we show how we specify theroleinterfacefor therole Voter in the ElectronicVote
group. Theroleinterface of therole Voter iscomposed uniquely of the signature of the method opinion:. An
active object who wants to play the role Voter must know in advance how to react to the opinion: method
invocation. The method opinion: model s the opinion of a participant with respect to any particular issue.

Actually in the CoLaS model only methods selectors are specified in therole interface. It would be pos-
sibleto extend the specification of method signatureswith returned valuesand argumentstypeswithout too
much work. Theideawill be to specify as much as possible the behavior required to participate in the role
and thus to avoid possible behavior mismatches. In the example we expect for example that the value re-
turned by the method opinion: be aboolean indicating a positive or negative opinion of avoter on apartic-
ular issue, adifferent result will generate an error in the coordination.

49

In CoLaSthereisin not by default any limitation inthe number of participantsthat can play arolenorin
the number of rolesthat participants can play in agroup. Nevertheless, it is possible to constrain for arole
the number of participantsthat may play therole. To constrain the number of participantsauthorized to play
arolethe message maxNumParti cipants:<Max Number> must be sent to arole with the maximum number
of participantsasargument. In the el ectroni c vote exampl e the number of participantsthat may play therole
Voter isnot limited, the problem statement specifiesthat the group of votersmust be open and that new vot-
ersmust be allowed to join the group at any time.

Analysis

The most important requirement in the specification of a coordination model and language for concurrent
object-oriented systemsisto guarantee the separation of the coordination and the computation aspect in the
systems. In CoL aSthecoordinationis specified completely separate of the computation specification of the
participants. The only constraint imposed on the participants for their participation in the groupsisthe re-
spect of theroleinterface defined in therolesthey will play. In the example, the only constraint imposed to
the participants of the role Voter isto provide amethod opinion:. We can seein the exampl e that we do not
constrain the participation of the active objectsin therole Voter based on their typesas several coordination
model and languages do [Arap91a][Puti97a][Duca98a][Andr99a][Aldr03a]. Another requirement that the
CoLaSmodel satisfiesisthe possibility to define multi-party coordination. In CoLaS each role specifiesa
type of participant in the coordination, it is possible to define as much roles as necessary. Even moreit is
possibleto coordinate groups of participantswhere several participants play the sameroleat the sametime.
Someexi sting coordination model s and |l anguages either constrain the number of rolesto only two asin Col-
laborations[Yell97a], or constrain the number of participantsin each roleto oneasin Activitiesand Envi-
ronments [Arap9la] Connectors-FLO, [Duca98a]. With the exception of ColLaS, no other coordination
model and language allowsthe dynamic specification of new typesof participants (i.e., roles) in the coordi-
nation.

3.2.3 Coordination State

The coordination statein agroup is specified by declaring variables (state variablesin the following). The
coordination state specifies information needed to perform the coordination. It concernsinformation like:
whether some action occurred or actually occursin the system (i.e., historical information). the number of
times some action occurred or actually occursin the system (i.e., historical counters), etc.

7. El ectroni cVote defineVari abl es: #(#numyes #nunNot) initial Val ues: #(0 0).
8. El ectroni cVote defineVariabl e: #votelnProgress initial Value: false.

9. El ectroni cVote defineVariabl e: #votePeri odExpired initial Value: false.
10.

11. Vot er defineParticipantVari able: #hasVoted initial Value: false.

Figure 3.8 : Electronic Vote - Coordination State

CoL aS specify threetypes of state variables:

» Group Variables: are state variables shared by all the participants of a group. Group variables are
defined by sending the message defineVariable:<Variable Name> to a group with the name of the

50

variable as argument. In (Figure 3.8 lines 7, 8 and 9), we can see how we specify the group vari-
ables: numYes, numNot, votel nProgress and votePeriodExpired in the ElectronicVote group. The
variables numYes and numNot are used to count the number of positive and negative votes received
by the initiator of the voting process. The variable votelnProgress is used to control that only one
voting process occurs at atime in the group, when the value of the variable is true no other voting
process can be started in the group. The variable votePeriodExpired is used to control the duration
of the vote, the value of the variable remains set to false until the initiator of the voting process de-
cides to stop the process. When the voting process is stopped the value of the variable votePerio-
dExpired is set to true.

» Role Variables: are state variables associated with the roles. They are shared by all the participants
playing therole in which they are defined. Role variables can only be accessed and modified by the
participants of therole wherethey are defined and only during the timethey play therole. Role vari-
ables are defined by sending the message defineVariable:<Variable Name> to arole with the name
of the variable as argument. In the el ectronic vote example we do not specify any role variable.

» Participant Variables: are state variables associated with the participants of the roles. Each partici-

pant playing arole in which a participant variable is defined has its own instance of the participant
variable. Participant variables can only be accessed and modified by the participants in which the
variables are defined and only during the time the participants play the role in the group. Participant
variables are defined by sending the message defineParticipantVariable:<Variable Name> to arole
with the name of the variable as argument.
In (Figure 3.8 line 11), we can see how we specify the participant variable hasVoted in the Elec-
tronicVote group. The hasVoted variable is used to control that each voter votes at most once as
specified in the problem statement. When a participant votes, the value of its hasVoted participant
variableis set to true. Votes coming from participants where the hasV oted participant variable was
aready set to true are not taken into account in the counting of the vote result.

Accessing And Modifying State Variables

To refer and to modify the different state variables defined in agroup or in arole, we use directly as acces-
sorsthe name of thevariables. In (Figure 3.9) we can see how to accessand to modify group and rolevari-
ables. For the group variable we use the pseudo-variable group to access to the variable and for the role
variable the pseudo-variablerole. It isalso possibleto refer to arole variable through therole.

group <G oup Vari abl e> /* returns the value of a group variable
group <Group Variable>: <Value>/* sets the value of a group variable
rol e <Rol e-Vari abl e> /* returns the value of a role variable
role <Rol es Variable> <Value> /* sets the value of a role variable
Rol e <Rol e-Vari abl e> /* returns the value of a role variable

/* through the role Role

Figure 3.9 Accessing and Modifying State Variables

51

Analysis

The coordination statein the CoL.aS model all owsthe specification of coordination related with the state of
the participantsand with the history of the coordination. When a coordination model and |anguage does not
offer to programmersthe possibility to definethe state specifically related to the coordination in the coordi-
nation abstractions, programmers start to define the coordination state within the computation code of the
partici pants viol ating the most important coordination requirement: the separation of the coordination and
computation concerns. Most of the coordination models and languages allow the specification of the coor-
dination state in their coordination abstractions [Helm90a][Mukh95a][Mins97a][Ducad98a][Barr02a).
There are two aspectsthat are new in the specification of the coordination statein CoL aS: 1) the specifica
tion of different accessibility constraintsto the different types of variables and 2) the possibility to dynam-
ically definenew variabl esinthe coordination state. From our point of view both new aspectsareimportant,
thefirst becauseit allows programmers to define specifically who can access and modify the variable and
the second because it makes possible the evol ution of the coordination when the requirements change.

3.2.4 Coordination Rules

The coordination rules specify the different rules governing the coordination of a group. They specify co-
operation actions between partici pants, synchronizations over the occurrence of actionsin participantsand
proactionsin participants. Wedefinein CoL aSthree types of coordination rules: Cooperation Rules, Reac-
tive Rulesand Proactive Rules.

3.2.4.1 Cooperation Rules

The Cooperation Rules are rules that define implications between participant actions. They specify which
actions should be done by the participants of arole when they receive messages corresponding to the coor-
dination behaviorsspecifiedintherules. They havetheform <Role> defineBehavior: <Message> as: [<Co-
ordination Actions>]. The Cooperation Rules allow aclear separation of the coordination and computation
aspectsin asystem, the specification of the defineBehavior rules contain coordination behavior that is add-
ed “dynamically” to the participants when they join the rolesin the groups.

Inthe Electronic Vote exampl e, the problem statement (subsection 3.2.1) specifies coordination behav-
ior specifically related to the vote process: theinitiator of the voting process sends avote request to all the
voters, thevotersreturn their votesto theinitiator of the voting process, the votes are counted and the result
sent to all the voters. Active objects that want to participate in the ElectronicVote group and play therole
Voter do not needto“ know” these coordination behaviorsin advance, they will “learn” them when they will
jointheroleVoter inthegroup. In (Figure 3.10) we can see the generic specification of acooperationrule
in CoL aS. The <Role> specifiesthe roleto which the cooperation rule is associated, the <M essage> speci-
fies the signature of the behavior specified by the rule and the <Coordination Actions> corresponds to a
block of coordination statements. We will explain below all these elementsin detail.

Cooperation Rule = <Rol e> defineBehavi or: <Message> as:
[<Coordination Actions>]

Figure 3.10 Cooperation Rules BNF

52

Inthe ElectronicVote group we definefour cooperationrules(Figure 3.11 lines14, 19, 22 and 28), they
specify thevote process described in the problem statement.

14

15.
16.
17.

.[1] Voter defineBehavior: ’'startVote: anlssue’ as:
[group votel nProgress: true.

Voter voteOn: anlssue.

group votePeri odExpired: false].

18.

19.
20.

[2] Voter defineBehavior: ’voteOn:anlssue as:

21.

22.
23.
24.
25.
26.

[self sender vote:(self opinion: anlssue)].
[3] Voter defineBehavior: 'vote: aVote' as:
[aVot e
i fTrue: [group numyes++] /* vote is positive

i fFal se: [group numNot++]. /* vote is negative
sel f sender hasVoted: true].

27.

28.
29.
30.
31.

[4] Voter defineBehavior: 'stopVote' as:
[(group nunies = Voter size) /* vote result policy
ifTrue: [Voter voteResult: ’Yes’]
i fFal se: [Voter voteResult: "No']].

Figure 3.11 : Electronic Vote - behavioral Rules

Rule 1 (Figure 3.11 line 14): the vote process isinitiated with a startV ote message sent by avoter.
The startV ote: behavior specified in the rule defines that a message voteOn:<anlssue> must be sent
to all the voters. The argument <anlssue> specify the issue of the vote. Before the voteOn: message
issent to all the votersthe group variable votelnProgressis set to true to indicate that a vote process
has been started. After the message is sent the group variable votePeriodExpired is set to false to
indicate that the voting period is open.

Rule2 (Figure 3.11 line 19): the voteOn: behavior specified in the rule definesthat each voter must
send the message vote:<V ote> to theinitiator of the voting processwith theresult of itsvote <V ote>
as argument. The vote sent by the voters depend on their personal opinions about the vote' s issue.
The method opinion:<anl ssue> returns true or false depending of the opinion of the voter ontheis-
sue. It isimportant to remember that the method opinion: appears in the voters role interface. Par-
ticipants must know in advance how to react to this method in order to play the role voters.

Rule 3 (Figure 3.11 line 22): the vote behavior specified in the rule defines the counting of the
received votes. When the vote received is positive we increment the counter of positive votes (i.e.
the numY es group variable) otherwise we consider the vote as negative and we increment the
counter of negative votes (i.e. the numNot group variabl€). Once the corresponding vote counter has
been increased we set to true the value of the participant variable hasVoted for the participant who
sent the vote. The participant variable hasVoted is used to control that voters vote at most once dur-
ing the voting process.

Rule4 (Figure 3.11 line 28): the stopV ote behavior specified in the rule defines the counting police
used to calculate the result of the vote. In this case the policy used is consensus (i.e. the number of

53

positive votes should be equal to the number of voters to obtain a positive result). The result of the
voting processis sent then to all the voters.

Coordination Actions
The <Coordination Actions> that appear in the specification of the cooperation rulesinclude:

Manipulations to the coordination state: actions that access or modify the value of the state vari-
ables. In (Figure 3.11 lines 15, 17, 24, 25, 26 and 29) we can see how some state variables are ac-
cessed and modified in the ElectronicVote example. Accessto state variablesis done synchronoudly.
Synchronous recursive method invocations: actions to send messages synchronously to the same
participant who received the method invocation. Asin Actalk [Brio89a] where active objects may
send synchronous messages to themselves, CoL aS uses the pseudo-variable self to send synchro-
nous recursive method invocations. In (Figure 3.11 line 20) we can see how the method opinion:
is called using the self pseudo-variable. The method is executed synchronously in the voter who re-
ceives the voteOn: message. Coordination rules are not enforced during the execution of synchro-
nous recursive method invocations.

Method invocationsto other participants and to other roles: actionsto send messages asynchronous-
ly to other participants or to other roles (Figure 3.11 lines 16, 20, 26, 30 and 31). When messages
are sent to roles the messages are multicasted to all the participants of the role. It is not possible to
send messages to roles when areply value is expected.

M ethod invocationsinformation extraction: actionsto extract information related to the message re-
ceived by the participant like: the selector, the arguments and the identity of the sender and the re-
ceiver of the message.

Role operations: actionsin roles (i.e,. detect:<Condition> -detects the first participant that validates
some condition, select:<Condition> -select all the participants that validate some condition, etc.),
actions to verify if participants play roles (i.e., includes:<Active Object>), do: <Actions>-perform
some actions in each one of the participants, actions to determine the number of participants playing
arole (i.e, size and numParticipants) and actions to obtain the unique participant playing the role
when the role is played by a unique participant (i.e., unique).

Replies

If the cooperation rule specifies areply thisisindicated with the keyword . Aswe already mentioned be-
fore, every request for amethod invocation in another participant generatesimplicitly areply. When there-
ply valueisnot explicitly indicated inthe cooperation rulewe consider the result of theeval uation of thelast
action specified in the <Coordination Actions> in the cooperation ruleto be thereply.

3.2.4.2 Reactive Rules

Reactive Rules are rules that depend for their application on the messages exchanged by the participants.
The CoLaS model defines actually two types of Reactive Rules: Interception Rules and Synchronization
Rules. Both types of reactive rules are evaluated at specific points during the processing of the method in-
vocationsreceived by the participantsin the group. CoL aS defines four eval uation points:

atArrival: when amethod invocation is ready to be received by the participant.
atSelection: when amethod invocation is ready to be executed by the participant.

54

» atSent: when amethod invocation is ready to be sent to another participant.
+ atEnd: when a method invocation has finished to be executed by the participant.

Interception Rules

Interception Rule <Rol e> <l nterception Operator> <Message> do:
[<Coordi nati on State Actions>]

Message <Met hod Si gnat ure>

I nterception QOperator = interceptAtArrival | interceptAtSelection |

InterceptAtSent | interceptAtEnd

Figure 3.12 : Interception Rules BNF

Interception Rulesarerulesthat changethe normal processing of the method invocationsin the partici pants
to perform actions that modify the coordination state. In (Figure 3.12) we can see how | nterception rules
are specified in the CoLaS model. We define four types of interception rules: interceptAtArrival, inter-
ceptAtSelection, InterceptAtSent and interceptAtEnd. Each interception rule asindicated by itsname corre-
spondsto one of the evaluation points defined in the model.

31.[5] Voter intercepAtSelection: 'stopVote' do:

32. [group votePeri odExpired: true]

33.

34.[6] Voter interceptAtEnd: 'stopVote' do:

35. [Voter do:[:each | each hasVoted: false].
36. group votel nProgress: fal se.

37. group nunyes: O.

38. group numNot: O].

Figure 3.13 : Electronic Vote - Interception Rules

In (Figure 3.13 lines 31 and 34) we can see the specification of two interception rules defined in the
electronic vote example. Both rules are related to the stopVote behavior but they differ in the interception
point in which they are eval uated.

Rule5 (Figure 3.13 line 31): Therule specifies that the voting period is closed before the counting
processisdone. Toindicate the end of the voting period we set to true the value of the group variable
votePeriodExpired (line 32). The votePeriodExpired group variable is used to control that only
votes arrived during the voting period are counted.

Rule 6 (Figure 3.13 line 34): The rule prepares the state variables of the group for a new voting
process after the execution of the stopV ote behavior. In (Figure 3.13 line 35) the participant vari-
able hasVoted isreinitialized to false in each voter and in (Figure 3.13 lines 36, 37 and 38) all the
group variables are reinitialized: the votelnProgressis set to false to indicate that no voting process
isactually occurring, the numY es and numNot variables are reset to zero the initialize the counting
of votes.

55

Coordination Sate Actions

The<Coordination State Actions> include exclusively operationsthat modify the state variables. Asweal -
ready mentioned beforethe state variabl es can be accessed and modified using thevariablesnames. In (Fig-
ure 3.13 lines 32, 35, 36, 37 and 38) we can see how the set of group variables defined in the Electronic
Vote example are modified.

Synchronization Rules

Synchronization Rules specify synchronization constraints in the execution of the method invocations re-
ceived by the participants. The CoLaS model definestwo forms of Synchronization Rules (Figure 3.14):
Ignoreand Disable.

Synchroni zati on Rul e = <Rol e> <Synchroni zati on Operator> <Message> if:
[<Synchroni zati on Condition>]

Message = <Met hod Si gnat ure>

Synchroni zati on Qperat or = disable | ignore

Figure 3.14 : Synchronization Rules BNF

The Ignore rule specifiesthat method invocati ons corresponding to the message <M essage> must beig-
nored when received (i.e., not stored into the participant’s mailbox) if the condition specified in the <Syn-
chronization Condition> validate to true. Ignore rules are eval uated at the atArrival validation point in the
CoLaSmodel.

The Disable rule specifies that the execution of the method invocations corresponding to the message
<Message> must be delayed (i.e., reinserted in the participant’s mailbox) if the condition specified in the
<Synchronization Condition> validatesto true. It isimportant to remember that the sel ection for execution
of amethod invocation stored in the participant’smailbox depends exclusively of theinternal synchroniza-
tion policy defined in the participant. Our active objects sel ect method invocation on the basis of first come
first executed. Disablerules are evaluated at the atSel ection validation point in the CoLaS model after that
the method i nvocation associated with the rul e has been sel ected and validated against the synchronization
policy of the object. It isimportant to remark that the specification of adifferent synchronization policy in
the objects may imply that the policy takesinto account the coordination behaviors specified in the groups.
We will return later during the evaluation of the CoLaS model on this point, possibleviolationsto the sepa-
ration of the coordination and the computation in the participantsmay appear. It isalso important to remark
that we have not defined in CoLaS multi-party coordination rules, rulesthat depend for their applicability
on multiple invocation requests occurring in different participants. Multi-party coordination rulesisafu-
turework that we consider important in the CoL aS coordination model . Multi-party coordination ruleswill
alow for exampl e the specification of mutual exclusions of actionsoccurring in several participants.

56

In the el ectronic vote example we define two synchronization rules (Figure 3.15), they constrain the
execution of the vote and startVote coordination behaviorsin the Electronic Vote example.
40.[7] Voter ignore: 'vote:aVote' if:

41.
42.

[group vot ePeri odExpired or: [sender hasVoted]].

43.[8] Voter disable: 'startVote:anlssue' if:

44.

[group votel nProgress].
Figure 3.15 : Electronic Vote - Synchronization rules

Rule 7 (Figure 3.15 line 40): defines that votes received after the end of the period of vote or votes
received from voters that have already voted must be ignored. The system guarantees that the vote
isfair: votersvote at most once and only within the voting period defined by theinitiator of the vote.
The <Synchronization Condition> associated with the rule combines the values of the votePerio-
dExpired group variable and the hasV oted participant variable.

Rule 8 (Figure 3.15 line 43): defines that requests for starting new vote processes are disabled if
there is actually one voting process occurring in the system. The <Synchronization Condition> as-
sociated with the rule uses the value of the group variable votel nProgress to determine whether there
is currently avoting processin progress. The group variable votelnProgress is set to true each time
anew vote process starts (rule 1, in Figure 3.11 line 14) and set to fal se each time the vote process
isstopped (rule 6, in Figure 3.14 line 34).

Synchronization Condition

The <Synchronization Condition> corresponds to aboolean expression (i.e. and, or) referring to:

Method invocations information: the selector, the arguments, the identity of the sender and the re-
ceiver of the method invocation received by the participant. This information is accessed using the
predefined variables: selector, arguments, sender and receiver (Figure 3.15 line 41)

The coordination state: the values of the state variables (Figure 3.15 lines 41and 44).

The keyword true: always true. The true keyword is used to specify rules that always apply.

The keyword now: the current value of thetime is obtained using the keyword now. It is possible to
specify time conditions.

Role operations: actionsin roles (i.e. detect:<Condition> -detects the first participant that validates
some condition, actions to verify if participants play roles (i.e. includes:<Active Object>), actions
to determine the number of participants playing a role (i.e. size) and actions to obtain the unique
participant playing the role when therole is played by a unique participant (i.e., unique)

3.2.4.3 Proactive Coordination Rules

Until now the coordination specified in the ElectronicVote group has been purely reactive, the coordination
rules specify actionsthat must be done during the processing of the method invocations received by partic-
ipants playing the role Voter. Those actions are not beinitiated by the participants themsel ves, they depend
for their application on the messages received and exchanged by the participants. To define aricher coordi-
nation model we have introduced in CoL aS proactive behavior [Andr96a] in the form of proactive rules.
Proactive rules are rules that depend for their application exclusively in the coordination state of the group

57

and not in the method invocations received by the participants. In (Figure 3.16) we can seethe specifica-
tion of the unique proactiverulein the CoLaS model.

Proactive Rule = <G oup> validate: <Coordination State Condition>
do: [<Coordination Actions>]

Figure 3.16 : Proactive Rules BNF

Proactive rules guarantee that certain actions are carried out by the group if acertain condition concerning
mainly the coordination state validatesto true. In (Figure 3.17) weillustrate how the specification of the
ElectronicVote group presented in (Figure 3.11, Figure 3.13 and Figure 3.15) was modified to intro-
duce proactive rules. We have redefined the rule 4, eliminated the rules 5 and 6 and added anew rule Rule
9 specifying the proaction.

1.[1] Voter defineBehavior: ’'startVote:anlssue' as:

2 [group votel nProgress:true.

3. Vot er voteOn: anl ssue.

4. group Vot ePeri odExpired: false].

5.

6.[2] Voter defineBehavior: 'voteOn:anlssue’ as:

7. [sender vote:(self opinion: anlssue)].

8.

9.[3] Voter defineBehavior: ’'vote:aVote’' as:

10. [aVot e

11. i fTrue: [group nunves++] /* vote is positive
12. i fFal se: [group numNot++]. /* vote is negative
13. sender hasVoted: true].

14.

15.[4] Voter defineBehavior: ’stopVote' as:

16. [group votePeri odExpired: true].

17.

18.[7] Voter ignore: 'vote:aVote' if:

19. [group voterPeriodExpired or: [sender hasVoted]].
20.

21.[8] Voter disable: ’'startVote:anlssue if:

22. [group votel nProgress].

23.

24.[9] ElectronicVote

25. val i date: [group votel nProgress and:[group votePeri odExpired]] do:
26. [(group nuni¥es = Voter size) /* vote result policy
27. ifTrue: [Voter voteResult: ’Yes’]

28. i fFal se: [Voter voteResult: 'No'].

29. Vot er do:[:each | each hasVoted: false].

30. group votel nProgress: fal se.

31. group nunves: 0].

32. group numNot: O].

Figure 3.17 : Electronic Vote - Proactive behavior

58

Rule 4 (Figure 3.17 line 15): the rule specifies that when the initiator of the vote process decides
to stop the voting period the group variable votePeriodExpired is set to true. The votePeriodExpired
group variable is used to control that voters vote only once during the voting period.

Rule 9 (Figure 3.17 line 24): the rule specifies a proaction with a condition based on the values of
the group variables votelnProgress and votePeriodExpired. The group variable votelnProgress de-
termines whether avoting processis occurring in the system and the group variabl e votePeriodEx-
pired determines whether the voting period has expired. When both conditions in the rule are true,
the <Coordinations Actions> actions of the rule are executed. The <Coordination Actions> actions
intherule (Figure 3.17 lines 26 to 32) specify the counting process of the vote result and the sent
of the result to all the voters. The policy applied to calculate the result of the vote is consensus: the
number of positive votes must be equal to the number of voters. The <Coordination Actions> in the
example, include the reinitialization of the group variables to prepare the group for a new voting
process. The votelnProgress and the votePeriodExpired state variables are set to false to indicate
that no vote process occurs actually in the group and that a new voting period can start, the numY es
and numNot variables are set to zero the reinitialize the counted votes.

The<Coordination Actions> shown in the specification of the proactive rules correspond to the same coor-
dination actions specified in Cooperation Rulesand the <Coordination State Condition> correspondsto the
same coordination state condition specified in the Synchronization Rules (excluding of course conditions
concerning information about the received method invocations which in proactive rules do not have any
sense given that they do not depend for their application of the reception of method invocationsin the par-
ticipants).

Proactive Rules Enforcement

Theevaluation of the proactiverulesisdonein aindeterministic way by the coordination groups. Thegroup
eval uates the <Coordination State Condition> conditions associated with all the registered proaction rules,
if the evaluation of the conditions eval uate to true the group forces the execution of the <Coordination Ac-
tions> specified in the proactiverules. It is not possibleto precisely know when the proactive ruleswill be
evaluated by the coordination groups.

3.2.4.4 Pseudo-Variables

Therearefour pseudo-variablesthat can be used within the specification of the coordination rules, they are:
group, role, sender and receiver. The group pseudo-variablerefersto the group inwhich theruleis defined,
therole pseudo-variablerefersto therole to which the ruleis associated, the sender pseudo-variablerefers
tothe participant who sent the method i nvocati on associ ated with the enforced rule and the receiver pseudo-
variable to the participant actually processing the method invocation associated with the enforced rule. In
(Figure 3.11 lines 15, 17, 24, 25 and 29; Figure 3.13 lines 32, 36,37 and 38; and Figure 3.15 lines41
and 44) wefind referencesto the group pseudo-variableandin (Figure 3.11 lines20and 26, Figure 3.15
line41) wefind referencesto the sender pseudo-variable. In the ElectronicVote group we do not have refer-
encesto the pseudo-variablesrole and receiver.

Analysis

Adgain the specification of the coordination rulesin CoLaS respect the most important requirement in the
specification of acoordination model and languagefor concurrent object-oriented systemswhichisthe sep-

59

aration of the coordination and computation aspectsin the systems. In CoL aS the coordination specifiedin
the coordination rulesisindependent of the computation specification in the participants. Therulesare as-
sociated to roles and not to specific participants. They specify cooperation actions between participants
(Cooperation rules), synchronizations over the occurrence of actions in participants (Reactive rules) and
proactionsin the participants (Proactive rules). Cooperation rules define impli cations between participant
actions. Reactive rules depend for their application on the messages exchanged by the participants. And,
Proactive rules depend for their application exclusively in the coordination state of the group. The specifi-
cation of the coordination in CoLaSin the form of rules allows programmers the specification of the coor-
dination policiesin adeclarative way, as specified in the requirements of an ideal coordination model and
language for concurrent object-oriented systems. The coordination rules are high level coordination ab-
stractions encapsul ating the coordination, programmers do not care about how the coordination specified
intherulesisenforced, they focus exclusively on specifying the type of coordination they want. Addition-
ally the specification of coordination rulesin ColL aSallowsprogrammersto specify their own coordination
policies. Several existing coordination models have recognized the importance of using rulesin the speci-
fication of the coordination [Frol93a] [Berg94a] [Andr96a] [Mins97a][Duca98a] [Berr98a], most of themin-
clude some form of cooperation rules [Frol93a][Duca98a][Mins97a], other some form of synchronization
rules[Frol93a], but only CoLaS and Rules and Constraints [Andr96a] include proactive rules.

3.2.5 Dynamic Aspects

One of themost important characteristics of the CoLaS model isitscapacity to dynamically adapt the coor-
dination specified in the groups. The CoL.aS model support three types of dynamic coordination changes:
(2) new participantscanjoin and leavethe groups at any time, (2) new groups can be created and destroyed
dynamically and (3) new coordination rules can be added and removed from the groups.

Joining and Leaving Groups

New participants can join and |eave the groups at any time. To join agroup, an active object must join one
of the roles specified in the group. To join a role the message addParticipant:<Active Object> toRole-
Named: <Role Name> must be sent to agroup. The<Active Object> argument refersto the active object that
wantsto join the group and theargument <Role Name> to the name of theroleit wantsto play. Itisalso pos-
sibletojoin aroleby directly sending the message addParticipant: <Active Object>totherole.

In(Figure 3.18 line 1) we can see how aPerson active object is created. We assume the existence of a
class Person used to create personsthat will play therole Voter inthegroup. In (Figure 3.18 line 8) we can
see how the person abject ‘ Andrew Peterson’ joinstherole Voter inthe AdminVote groupinstance. Itisim-
portant to remember that only active objects satisfying therol einterface of therole Voter may play therole.
In this case we assume that the class Person defines amethod called opinion: <anl ssue> which returnstrue
or false according to his personal opinion on theissue anlssue received as argument.

We show additionally in (Figure 3.18 line 10) how the same participant isremoved | ater from the same
role Voter. To removeaparticipant from arol e the message removeParti cipant: <Active Object>fromRole:

60

<RoleName> must be sent to the group. Theargumentsin the remove of aparticipant operation correspond
to the same type of arguments specified in the addition of aparticipant operation presented before.

1. andrewPet erson : = Person
2. firstNane: 'Andrew
fam | yNane: ' Peterson’
eMai | Address: ’andrew. pet erson@ am uni be. ch’.

3
4
5.
6. adnmi nVote : = El ectroni cVote createCoordi nati onG oupNaned: #Admi nVot e.
7.
8. admi nVot e addPartici pant: andrewPet erson toRol eNaned: #Voter.

9

1

0. admi nVot e renmpvePartici pant: andrewPet erson fronRol eNanmed: #Voter

Figure 3.18 : Dynamic addition and removal of Participants

Dynamic Creation of Groups

Groupscan becreated at any time, in (Figure 3.19 lines 7 and 8) we can see how two new groups Students
and Citizens are created. Both groups are instances of the ElectronicVote group. In (Figure 3.19 lines 10
and 11) we can see how the same Person * Ral ph Stevenson’ joins both groups.

1.ral phSt evenson : = Person

2 firstName: ' Ral ph’

3 fam | yNane: ' Stevenson’

4. id: 2002013467

5. eMai | Address: 'ral ph. stevenson@s. uni be. ch’.

6.

7.students : = El ectronicVote createCoordinati onG oupNaned: #Students.
8.citizens := Electroni cVote createCoordi nati onG oupNaned: #Citizens.

9.
10. students addPartici pant: ral phStevenson toRol eNaned: #Voter.
11.citizens addParticipant: ral phStevenson toRol eNaned: #Voter.

Figure 3.19 : Dynamic creation of Groups

Modification of the Coordination behavior

The coordination behavior of the group can be modified by adding, redefining and removing coordination
rules. In the ElectronicVote group specified until now (Figure 3.17) we do not control theidentity of the
voter who decidesto stop thevote processnor wedo control that only the participantsregistered inthegroup
arethe only oneswho vote. We will modify the group specification to manage these problems.

61

1. El ectroni cVote defineVariable: #votelnitiator.

2.

3.[10] Voter interceptAtSelection ’startVote:anlssue’as:
4. [group votelnitiator: sender].

5.

6.[11] Voter ignore:’stopVote’' if:

7. [sender ~= group votelnitiator]. /* ~= neans different
8.

9.[7] Voter ignore: 'voteOn:aVote' if:

10. [(Voters includes: sender)or:

11. [group voterPeri odExpired or:

12. [sender hasVoted]]].

Figure 3.20 : Dynamic modification of the Coordination behavior

To solve the first problem, we define a new group variable called votelnitiator in the group Electron-
icVote (Figure 3.20 line 1) to keep the reference to the initiator of the vote process. We also define anew
InterceptAtSel ection interception rule associated with the startVote: behavior (Figure 3.20 line 3) to save
thereferenceto theinitiator of the voting processin the votel nitiator group variable. Additionally, we add
an Ignorereactiverule (Figure 3.20 line 6) to discard stopVote: messages received from participants dif-
ferent to theinitiator of the voting process.

To solvethe second problem weredefinetherule 7 in (Figure 3.17 line 18) to includein the <Synchro-
ni zation Condition> condition an extracondition (i.e.,Voter includes: sender) which validates whether the
sender of avoteOn: message playstherole Voter in thegroup (Figure 3.20 line 9).

Analysis

The capacity of the CoLaS coordination model to dynamically adapt the coordination specified in the
groupsmakesit particularly interesting for the specification and construction of modern concurrent object-
oriented systems. In those systems evolution is the most difficult requirement to meet since not all the ap-
plication requirements can beknownin advance. It isextremely important that the coordination model sup-
ports the modifications and thus the evolution of the coordination in those systems. The CoLaS model
support three types of dynamic coordination changes: (1) new participants can join and leave the groups at
any time, (2) new groups can be created and destroyed dynamically and (3) new coordination rules can be
added and removed from the groups. We showed in this section how the CoL aS coordination model sup-
portsthe requirement rel ated to the support of the evolution of the coordination. We showed how new users
didjoin groupsand played roles, how the coordination specified in the groupswas modified by adding new
coordination rules and how new groups were created dynamically to enforced new coordination patterns.
No other existing coordination model and language in our survey of existing coordination modelsand lan-
guages support the dynamic evol ution of the coordination.

3.2.6 Groups Composition - The Electronic Agenda

Solutionsto complex coordination patterns must be defined as the composition of small coordination solu-
tions. A model that ignores the need for composability will not be sufficiently scalable to deal with rea

62

problems[Kafu96a]. Wewill illustrate how inthe CoL.aS model existing groups specifications can be used
in the specification of new groups. We will use as example a simplified version of the electronic agenda
problem [Bosc97a].

Problem Description

The el ectronic agendaassi stsin the management of meetingsin aconferenceroom. Several usersmay view
and modify the contents of the agenda simultaneously while preventing conflicts(i.e., planning of overlap-
ping events). The el ectronic agenda supports the following operations: consult the events programmed for
aday, add anew event to the agenda and to cancel an event from the agenda. An event is composed of: the
day in which the event happens, the beginning and ending time at which the event startsand finishesand a
comment line describing the event. The only constraint imposed on the system isthat the modificationsto
the agendamust be accepted by all the members of the group.

Member

Agenda +consultAgenda(in aDay)
+addEventToAgrenda(in anEvent)

+deleteEventFromAgenda(in anEvent)
+startVote(in issue)

1 * +voteOn(in issue, in initiator)
+opinion(in issue)

+ownerld()
+consultDay(in aDay)
+addEvent(in anEvent)
+deleteEvent(in anEvent)

+voteOn(in vote)
+stopVote()
+voterResult(in vote)

Figure 3.21 : The Electronic Agenda - UML Class Diagram

In (Figure 3.21) we can see the UML class diagram corresponding to the el ectronic agenda problem.
We have identified two kinds of entities in the problem description: the agenda and the members of the
group (only membersin the following). We can seein the specification of the Agenda classthe three basic
possible operations that can be executed in the agenda: to consult the events occurring some specific day
(i.e., consultDay:), to add an event to the agenda (i.e., addEvent:) and to delete an event from the agenda
(i.e., deleteEvent:). The Member class on the other hand represents the different users of the agenda.

We propose a decentralized solution to the el ectronic agendain which each member of the group main-
tains a copy of the agenda. Each time that the agenda is modified we maodify all the copies of the agenda
maintained by the members. A decentralized solution aswe propose increases the tolerance to faults of the
system because we do not have asingle point of failure, if one of the members of the group leavesor hasa
problem the system will continue working without any problem. A decentralized approach supposes that
each time that anew member joinsthe group he or she receives acopy of the agendafrom one of the mem-
bers of the group. We will not present in the specification of the group the aspectsrelated to joining of new
participantsto the group we will focus exclusively on the specification of the operations on the agenda.

63

:Member :Member :Agenda
addEventToAgendé :
1 1

1

> startVote !

1

1

voteOn

voteOn

opinion

> vote
vote
> stopVote addEvent
| »
T

opinion

Figure 3.22 : The Electronic Vote - UML Interaction Diagram

In(Figure 3.22) we can seethe UML interaction diagram of operation addEventToAgenda:. The exe-
cution of the addEventToA gendaoperation is preceded by the vote of all the members on whether the mod-
ification must be applied to the agenda. Only if theresult of the voting processispositivethe event isadded
to the agenda. We will not show the UML interaction diagrams corresponding to the del eteEventFromA-
genda: and consultAgenda: operations, they are very similar to the addEventToAgenda: UML's diagram.
Theimportant now it isnot show acompl ete specification of the problem but to show how the composition
facilitiesin CoLaS coordination model can be used in the definition of new coordination groups.

3.2.6.1 Coordination Roles

1. Coor di nati onGroup createCoordi nati onG oupC assNanmed: #El ectroni cAgenda.
2.
3. El ectroni cAgenda defi neRol e: #Menber.

Figure 3.23 : Electronic Agenda - Roles Specification

In(Figure 3.23 line 1) we case see how anew group ElectronicAgendais created. The ElectronicAgenda
group specifiesauniquerole: Member (Figure 3.23 line 3) representing the users of the agenda.

3.2.6.2 Coordination State

The ElectronicAgenda defines a group variable named issue (Figure 3.24 line 4), thisvariable is used to
store the issue of each voting process. Theissueincludes the type of modification to be done to the agenda
(i.e., to add or to delete an event) and the specific information related to the event. The second variable de-
fined in the group specifies aparticipant variable named agenda (Figure 3.24 line 6). Each member of the
group keepsan instance of thisvariable. The participant variableagendaisinitialized with aninstance of an

64

Agendaclass. Weassumethe exi stence of an Agendaclasscontaining al themethods specifiedinthe Agen-
daclassin (Figure 3.21). The Agendaclass specifies the computation aspect of the electronic agenda.

4. El ectroni cAgenda defineVariabl e: #issue.
5.
6. Menber definePartici pantVari abl e: #agenda initial Val ue: Agenda new.

Figure 3.24 : Electronic Agenda - Coordination State

3.2.6.3 Reusing Existing Coordination Groups

7. El ectroni cAgenda i ncl udeCoor di nati onG oupSpeci fication: El ectronicVote
8. mappi ngRol es: (List with: (#Voter -> #Menber)).

Figure 3.25 : Electronic Agenda - Including Specification

The electronic agenda problem statement requires the positive vote of all the members of the group before
amodification to the agendato be done. The vote process correspondsto the behavior specifiedin the Elec-
tronicVote group (subsection 3.2.1 through 3.2.5). In (Figure 3.25 line 7) we can see how the specifica-
tion of the ElectronicVote group is used in the specification of the ElectronicAgenda group. When the
specification of an existing group is included (i.e., includeCoordinationGroupSpecification: mapping-
Roles:) in anew group all the state variables and coordination rules specified in the existing group are in-
cluded into the specification of the new group.

In the specification of the new group it ispossible to define amapping between roles namesin the exist-
ing group and rolesnamesin the new group. In (Figure 3.25 line 8) we can see how therole Voter defined
inthe ElectronicVote group ismapped to therole M ember specifiedin the ElectronicAgendagroup. All ref-
erencesto therole Voter inthe coordination rulesincluded into the ElectronicAgendagroup are replaced by
referencesto the role Member.

It isalso possible to define during the composition of coordination groups mappingsfor message signa-
tures specified in the behavioral rules. The mapping of message signaturesis specified by sending the mes-
sage includeCoordinationGroupSpecification:<Coordination Group> mappingSignatures. <Signatures
Mapping List> to the new group. Thelist of signatures mapping <Signatures Mapping List> containsalist
of the form (old-method-signature-> new-method-signature). All the referencesto old method signatures
(i.e., old-method-signature) are replaced by referencesto new method signatures (i.e., new-method-signa-
ture) in the new group.

Analysis

Theelectronic agendaexampleillustrates how the coordination aspect of the Electronic Agendaproblemis
specified completely separate from the specification of the computation code of the coordinated objects.
The coordination specified in the coordination group refers exclusively to the coordinated objects by the
role they play in the group. In the example the coordination refers to the unique role Member. Different
types of participants may play therole Member in the group. The only constraint imposed on the participa-
tion of the active objectsto thegroup isthe respect of theroleinterface defined in therolesthey will play. In

65

the exampl e, the only condition imposed to the participants of the role Member corresponds to the same
condition imposed to the role Voter inherited from the inclusion of the ElectronicVote coordination group
inthe ElectronicAgendagroup. I nthe ElectronicVote coordination group participantsplaying therole Voter
must define the behavior opinion: which model sthe opinion of avoter regarding aparticular issue.

The electronic agendaexampl eillustrates al so how the CoL aS coordination model allowsthe specifica-
tion of new coordination policies from existing coordination policies. The ElectronicVote coordination
group in the example is used in the specification of a new coordination group ElectronicAgenda. All the
rules specified originally in the ElectronicVote coordination group are included in the specification of the
ElectronicAgenda group and the role names mapped to the role names specified in the new coordination
group.

Few coordination models and languages offer the possibility to define new coordination policies from
existing coordination policies. Most of them use inheritance as a mechanism to refine the specification of
the coordination policies [Helm90a] [Kris97a][Ducad8a]. CoL aS proposes a simple inclusion mechanism
toreusethe specification of the coordination specified in exi sting coordination groups. Theinclusion mech-
anism allows oneto inherit the coordination state and the coordination rules specified in the original coor-
dination group. It is possible afterwards to modify the coordination rules and to add new policiesif needed.
A coordination model that do not support the incremental specification of the coordination policies limits
the scalability of the coordination specifications.

3.2.6.4 Coordination Rules

In(Figure 3.26) therules 1, 2 and 3 define specific coordination behavior for the electronic agenda prob-
lem, thethree rules specify the basic operationsin the el ectronic agenda: to consult the agenda, to add anew
event to the agenda and to del ete an event from the agenda. Therules4, 5, 6 complete the coordination rules
included from the specification of the electronic votegroup (Figure 3.25).

Rule 1 (Figure 3.26 line 9): the rule defines that when a member decides to consult the electronic
agenda for a particular day, the member’s agenda copy is selected and all the events scheduled for
that day are returned.

Rule 2 (Figure 3.26 line 12): the rule defines that when a member decides to add an event to the
electronic agenda, a vote process is started in that issue (i.e. the addition of the new event to the
agenda). Theinitiator of the voting process decides when to stop the voting period. The specification
of the voting process in the ElectronicAgenda group is done by the coordination rules specified in
the ElectronicVote group (Figure 3.17) and included in (Figure 3.25 line 7). The coordination
rules corresponding to the ElectronicV ote do not appear explicitly in the example but they make also
part of the specification of the ElectronicAgenda group.

Rule 3 (Figure 3.26 line 19): the rule defines that when a member decides to delete an event from
the agenda, a vote processis started in that issue (i.e. the deletion of an event from the agenda). The
initiator of the voting process decides when to stop the voting period. The specification of the voting
process in the electronic agendais done as described in the rule 2.

Rule 4 (Figure 3.26 line 25): the rule defines that when a vote process is started we store in the
issue group variable the issue of the vote. For the addition of a new event to the agenda the subject
of the issue is #addEvent and for the deletion of an event from the agenda #del eteEvent. For each
event we keep additionally to information related to the event received as argument: the subject, the
day and time of the event and a small comment about its purpose.

66

Rule 5 (Figure 3.26 line 28): the rule defines that when the members agree on the modification of
the agenda, the modification should be applied to the agendas of all the members (i.e., the contents
of al the copies must be synchronized). The value of the group variable issue determines the mod-
ification that must be done to the agendas.

Rule6 (Figure 3.26 line 37): the rule defines that when the result of the voteis negative (i.e., mem-
bers do not agree with the modification of the agenda) the actions specified in the voteResult behav-
ior are executed.

9.[1]

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

[2]

[3]

[4]

(5]

[6]

Member defi neBehavi or: ’consul t Agenda: aDay’ as:

[~sel f agenda consult:aDay].

Menber defineBehavi or: 'addEvent ToAgenda: anEvent’ as:
[| anlssue |
anl ssue : = | ssue subject:#addEvent args: anEvent.
self startVote: anlssue.
Del ay forSeconds: group MaxVotePeriod. /* wait sonme tinme
sel f stopVote]/* stops voting process

Menber defineBehavior: ’'del et eEvent FromAgenda: anEvent’ as:
[anl ssue : = | ssue subject: #del eteEvent args: anEvent.
self startVote: anlssue.

Del ay for Seconds: MaxVot ePeri od.
sel f stopVote] /* stops voting process

Menber intercept At Sel ection: 'startVote: anl ssue’ do:
[group issue: anlssue].

Menber defi neBehavi or: ’voteResult:aVote’as:
[event := group issue args.
(aVote
i fTrue:
[(group issue subject = #addEvent)
ifTrue: [self agenda addEvent: event]
(group issue subject = #del eteEvent)
ifTrue: [self agenda del eteEvent: event]]].

Menber ignore: 'voteResult:aVoteResult’ if:
[aVoteResult not].

Figure 3.26 : Electronic Agenda - Coordination Rules

3.2.7 Groups as Participants

In CoL aS groups can aso play the role of participantsin other groups. As a participant agroup is able to
receive and process method invocation requests received from other participants. To transformagroupina
participant itisnecessary to specify for thegroup afacade. A Group Facade defines an actions mapping list
<Actions Mapping List> between method signatures and coordination behaviors specified in the group.

67

<Coordi nati on G oup> defi neG oupFacade: <Mappings Actions List>

<Actions Mappings List> := List(<nmethod-signature> -> <actions-1list>)

Figure 3.27 Group Facade Specification

Each method signature <method-signature> that appearsin the <ActionsMapping List> have associated
an actions list <actions-list> that specifies what to do with the received message. The simplest action that
can be specified in the actionslist <actions-list> isto forward the received message to arole. The message
sent to theroleisthen multicasted to all its participants. It isal so possible to redefine the received message
before sending the message to the role. The only constraint imposed to the actions specified in the actions
list <actions-list> is that the group must include cooperation rules associated with the method selectors
specifiedintheactionslist.

Inthe Electronic Agendaexample only the members of the group can do operationsintheagenda. It will
beinteresting for exampleto | et other active objectsnot participating in the electronic agendato consult the
agenda for ssimple information purposes. Suppose for exampl e that there are people in charge of cleaning
the rooms in which the meeting events are programmed, they are interested in consulting the use of the
roomsin order to plantheir work. A natural way to consult the agendawithout giving the possibility to mod-
ify it (i.e, without being a member) is to define a group facade with a unique operation consult-
AgendaForCleaning:. In (Figure 3.28 line 1) we can we see how to specify a group facade for the
ElectronicAgenda coordination group. The group facade specifies that whenever the ElectronicAgenda
group receives amessage consultAgendaForCleaning:<aDay> the same messageisforwarded to one of the
members to return the agenda plan for the day aDay. The result of the execution of the consult-
AgendaForCleaning: method isreturned to the active object that requested to consult the agendafor clean-
iNng purposes.

1. El ectroni cAgenda defi neG oupFacade:

2 List with:

3. (' consul t AgendaFor Cl eani ng: aDay’

4. ->

5 [| aMenber |

6 aMenmber := Menbers sel ectAParticipant. /* randomy
7 N(aMenber consul t Agenda: aDay)result]).

Figure 3.28 : Electronic Agenda - Group Interface

Analysis

The possihility to transform coordination groups in participants in other coordination groups allows pro-
grammerstoincrementally define new coordination policies. Thisrequirement that appearsinour list of re-
quirementsfor anideal coordination model and languagefor object systems, facilitatesthe scal ability of the
coordination specifications. In coordination modelsand languagesthat do not support theincremental spec-
ification of the coordination, the specification of complex coordination policies becomes easily abig prob-
lem. The advantages of the separation of computation and coordination concernsloseswith theincreasein

68

the complexity of the specification of the coordination. Few existing coordination models and languages
support the incremental specification of the coordination, we have Contracts [Helm90a] and Connectors -
FLO [Duca984].

3.3 Evaluation of the CoLaS model

In chapter 2 of thisthesiswe identified aseries of requirementswe believe characterize anideal object-ori-
ented coordination model and language for active objects. Wewill eval uate the Col aS coordination model
and language with respect to these requirements. They are:

Clear separation of the computation and the coordination concerns: in CoL aS the coordination and
computation aspects are specified separately in two distinct entities: the coordination groups and the
participants. The coordination groups are specified independently of the participants they coordi-
nate and the participants are specified independently of the coordination groups which coordinate
them.

Encapsulation of the coordination behavior: in CoLaS the coordination of a group of collaborating
participants is encapsulated inside coordination groups. The specification of a coordination group
includes: the role specification, the coordination state and the coordination rules.

Support multi-object coordination: in CoLaS the coordination specified in the coordination groups
isnot limited to two participants but to group of participants. The coordination groups specifies ab-
stractly the coordination of groups of participantsin terms of the roles they play in the coordination
and their respective interfaces. The role abstraction allows the specification of the coordination in-
dependently of the effective number of participants participating in a group, wetalk in this case of
a coordination specified intentionally and not extensionally.

High-level coordination abstractions: in CoLaS programmers do not focus on how to perform the
coordination but on how to expressit. All the low-level details concerning how the coordination is
done are managed internally by CoLaS. For example programmers do not care about locking and
unlocking state variable to guarantee their consistency during the coordination. The coordination
groupsinternally serialize the accessto the state variables.

Support evolution of the coordination: in CoLaS the coordination behavior is not fixed. It can
change over the time. CoL aS support dynamic coordination changes in three distinct axes in coor-
dination groups: (1) new participants can join and | eave the coordination groups at any time, (2) new
coordination groups can be created and destroyed dynamically and (3) coordination rules can be
added to and removed from the coordination groups.

Promote the reuse of coordinations abstractions: in CoLaS the coordination groups are specified in-
dependently of the participants they coordinate. They can be used to coordinate different groups of
participants. Similarly, the participants can be reused in different coordination groups. The mini-
mum requirements imposed to participants to play the roles are specified in the roles interfaces.
Declarative specification of the coordination: in CoLaS the coordination isspecified in adeclarative
way using rules. The Coordination rules specify: cooperation actions between participants, synchro-
ni zations over the occurrence of actions occurring in participants and proactionsin participants. The
advantage of using rules in the specification of the coordination is that the coordination becomes
explicit.

Incremental specification of the coordination: in CoL aS existing coordination groups specifications
can be composed to specify new coordination groups. Complex coordination schemes can be built
from simpler coordination specifications.

69

» Support validation of formal properties: in CoLaS we use Petri Netsto formally validate properties
of the coordination layer. In chapter 7 of this thesis we present a methodology to transform ColL aS
coordination groups in Predicate-Action Petri Nets. Reachability analysis techniques are then used
to validate formal properties.

3.4 Conclusions and Contributions

Weproposein thisthesisto tacklethe complexity of the specification and construction of concurrent object-
oriented systemsusing acoordination model sand | anguages approach. Coordination model sand languages
promote the separation of the computation and the coordination aspect in the systems. The computation
model concernsthe specification of the active objectsthat compose the concurrent obj ect-oriented systems
and the coordination model the specification of the glue that binds all them together. Our thesisis that by
separating the specification of the coordination aspect from the computation aspect in concurrent object-
oriented systemsand by the specification of the computation in active objectswe simplify the specification,
understanding, construction, evolution and validation of propertiesin thiskinds of systems.

We presented in this chapter CoL aS a coordination model and language to perform coordination in con-
current object-oriented systems based on active objects. The CoLaS coordination model and language is
based on the notion of coordination groups, entities that control and enforce the coordination of groups of
collaborating concurrent objects. A coordination group isahigh-level coordination abstraction that speci-
fies, encapsulates and enforces the coordination of a group of collaborating participants. Coordination
groups support the dynamic evol ution of the coordination requirementsin concurrent object-oriented sys-
tems.

The CoL aS coordination model tacklesthe most important problemsthat existing concurrent object-ori-
ented programming languages have in supporting the specification of the coordination aspect in those sys-
tems: 1) lack of high level coordination abstractions, 2) lack of coordination abstractions for complex
interactions, 3) lack of separation of computation and coordination concerns, 4) lack of support for the evo-
lution of the coordination code and 5) lack of support for the validation of the coordination code.

The approach used in CoL aSto perform the coordination isthe refl ective approach. In the reflective ap-
proach messages exchanged by the participantsin the coordination groupsareintercepted at different points
during their evaluation and execution to perform coordination actions specified in form or coordination
rules. In the CoL.aS model the coordination is done on active objects, called participantsin the model. Ac-
tiveobjectsare objectsthat have control over concurrent method invocationsand which communi cate asyn-
chronously.

The Coordination Groups are composed of three elements: the Roles Specification, the Coordination
State and the Coordination Rules. The Roles Specification defines the different roles that participants may
play in the group. The Coordination State defines general information needed to perform the coordination
and the Coordination Rules defines the different rules governing the coordination of the group.

The CoL aS coordination model and languagefully satisfiesthe requirementsidentified asideal for aco-
ordination model and language introduce in Chapter 2 of thisthesis. They are:

 Clear separation of the computation and the coordination concerns: the coordination is encapsul ated
in the coordination groups and the computation in the participants.

70

Encapsulation of the coordination behavior: al the coordination behavior is specified inside the co-
ordination groups. Participants does not need to know in advance anything related to the coordina-
tion of the groups where they participate.

Support multi-object coordination: there is not limit in the number of participants that can partici-
pate in the coordination groups, the role abstraction allows one to refer to a group of participants
without specifying their number.

High-level coordination abstractions: the coordination is specified in the form of coordination rules,
programmers do not care about the details how they are enforced by the coordination group.
Support evolution of the coordination: participants join and leave groups at any time and coordina-
tion rules can be added and removed.

Promote the reuse of coordination abstractions: coordination patterns specified in coordination
groups can be reused independently of the participants they coordinate.

Declarative specification of the coordination: the coordination is specified in the coordination
groupsin the form of rules.

Incremental specification of the coordination: new coordination groups can be defined from existing
coordination groups.

Support validation of formal properties: formal properties can be verified in ColLaS coordination
groups by applying a technique which transform CoL aS coordination groups in Predicate-Action
Petri Nets. Reachability analysis are used in the obtained Petri Netsto validate safety and liveness
properties.

Contributions

The main contributions of this chapter to thethesis are:
* We introduce CoLaS a group based approach for the coordination of concurrent objects systems.

The CoL aS coordination model is based on the notion of coordination groups. A coordination group
isan entity that specifies control and enforces the coordination of groups of collaborating active ob-
jects. The primary tasks of the coordination groups are: 1) to support the creation of active objects,
2) to enforce cooperation actions between active objects, 3) to synchronize the occurrence of those
actions and 4) to enforce proactive behavior on the systems based on the state of the coordination.
The CoL &S coordination model is built out of two kinds of entities: the participants and the coordi-
nation groups. The participants are the entities to be coordinated and the coordination groups arethe
entities that control and enforce the coordination of the participants. The participants in the CoLaS
coordination model are active objects: objects that have control over concurrent method invoca-
tions. A coordination group itself is composed of three elements: the roles specification, the coordi-
nation state and the coordination rules. The roles specification defines the different roles that par-
ticipants may play in the group. Each role specifies the minimum requirements it imposes to an ac-
tive object to play the role. The coordination state defines general information needed to perform
the coordination and the coordination rules define the different rules governing the coordination of
the group. The coordination rules specify: cooperation actions between participants, synchroniza-
tions on the execution of participants actions and proactions or actions that are initiated by the par-
ticipants independently of the messages they exchange.

One of the most important characteristics of the CoL aS coordination model and language isits ca-
pacity to dynamically adapt the coordination specified in the coordination groups. No other coordi-

71

nation model and languages in our survey of existing coordination models and languages supports
the dynamic modification of the coordination. The CoL.aS model support three types of dynamic co-
ordination changes:. (1) new participants can join and leave the groups at any time, (2) new groups
can be created and destroyed dynamically and (3) new coordination rules can be added and removed
from the groups. The capacity of CoLaS to dynamically adapt the coordination specified in the
groups at run time makes it particularly interesting for the specification and construction of modern
concurrent object-oriented systems. In those systems evolution is the most difficult requirement to
meet since not all the application requirements can be known in advance.

We provide an evaluation of the CoLaS model with respect to the list of requirements we identified
asfundamental for the specification of a coordination model and language for active object systems.
From our point of view CoLaS fully support all the requirements specified in thislist:

1) Clear separation of the computation and the coordination concerns: In CoLaS the coordination is
encapsulated in the coordination groups and the computation in the participants; 2) Encapsulation
of the coordination behavior: in CoLaS all the coordination behavior is specified inside the coordi-
nation groups; 3) Support multi-object coordination: in CoLaS there is not limit in the number of
participants that can participate in the coordination groups, nor in the number of roles that can be
specified; 4) High-level coordination abstractions: the coordination is specified in the form of coor-
dination rules, it defines what to do and not how to do it; 5) Support evolution of the coordination:
participants join and leave groups at any time, coordination rules can be added and removed and
new coordination groups created on the fly; 6) Promote the reuse of coordination abstractions: co-
ordination patterns specified in coordination groups can be reused independently of the participants
they coordinate; 7) Declarative specification of the coordination: the coordination is specified in the
coordination groups in the form of rules; 8) Incremental specification of the coordination: new co-
ordination groups can be defined from existing coordination groups and coordination groups may
play therole of participantsin other coordination groups; 9) Support validation of formal properties:
formal properties can be verified in CoLaS coordination groups. We transform CoL aS coordination
groups in Predicate-Action Petri Nets where we apply reachability analysis techniques to validate
safety and liveness properties.

CHAPTER 4

CORODS: A Coordination
Programming System for Open
Distributed Systems

Software development of distributed systems has changed significantly over the last two decades. This
change has been motivated by the goal of producing Open Distributed Systems (ODS in the following)
[Crow964]. ODS are systems made of componentsthat may be obtained from adifferent number of sources
which together work as a single distributed system. OSD are basically “open” in terms of their topology,
platform and evolution: they run on networks which are continuously changing and expanding, they are
built on top of a heterogeneous platform of hardware ad software pieces and their requirements are contin-
uously evolving. Evolution is the most difficult requirement to meet since not all the application require-
ments can be known in advance. ODS are a dominating intellectual issue of the search in distributed
systems. Figuring out how to build and to maintain thosekinds of systemsisacentral issueinthedistributed
systemsresearch today.

In 1998 the International Standard Organization (1SO) began a project for preparing standards for Open
Distributed Processing (ODP). These standards have now been completed. They define the interfaces and
protocolsto be used inthe various components of an ODS. The ODP standards provide aframework within
which ODSmay bebuilt and executed. One of themost (if not the most) popul ar specification for someparts
of the ODP isthe Common Request Broker Architecture (CORBA)[OMG95a]. The CORBA middleware
provides astandard for interoperability between independently devel oped components across networks of
computers. Detail s such as the language in which components are written or the operating system in which
they runistransparent to their clients. The OM G focused on distributed objects asavehiclefor systemin-
tegration. The key benefit of building distributed systems with objects is encapsulation: dataand state are
only available through invocation of aset of defined operations. Object encapsul ation makes system inte-
gration and evolution easier: differences in data representation are hidden inside objects and new objects
can beintroduced or replaced in asystem without affecting other objects.

Although the CORBA middleware seemsto provideall the necessary support for building and executing
ODS:it only provides avery limited support for their evolution. From our point of view the main problem
with CORBA systemsis that the description of the elements from which systems are built and the way in
which they are composed are mixed within the application code. This problem makes those systems diffi-
cult to understand, modify and customize. From our point of view the introduction of the so called coordi-
nation models and languages into the CORBA model represents a possible solution to this problem. The
main goal of acoordination model and languageisto separate computation and coordination aspectsin con-
current and distributed systems. Separation of concernsfacilitates abstraction, understanding and evolution

73

of concerns. We propose in this chapter to introduce the CoLaSD [Cruz99b] coordination model into the
CORBA framework in the form of a coordination service called CORODS. The CoLaSD coordination
model isan extension of the CoL aS coordination model presented in chapter 3 of thisthesisto perform co-
ordination of distributed active objects. The CoLaSD model takesinto account the possibility of failuresin
the participants common to distributed systems. The CORODSS coordination service supportsthe creation,
the moving, the copying, the referencing, the modification and the destruction of coordination groups
acrossthe network.

We have divided the presentation of this chapter into three parts:

In thefirst part of this chapter we introduce ColLaSD, a coordination model to manage coordination in
distributed object systems. The CoL aSD coordination model correspondsto an extension of the CoL aS co-
ordinationmodel introduced in chapter 3 of thisthesisto support coordination of distributed object systems.
The CoLaSD coordination model and language is based on the notion of coordination groups, entities that
control and enforce the coordination of groups of collaborating distributed objects. Basically we show how
the basi ¢ asynchronous communication protocol used among the participants to communicate is replaced
by the ACS protocol to tackle consistency problemsintroduced by the distribution. We illustrate the Co-
LaSD model using as example asimplified version of an architectural pattern used in distributed systems
“The Administrator” [Papa95a]. The administrator isan object that usesacollection of “worker” objectsto
service requests received from clients.

In the second part of this chapter weintroduce CORODS, a coordination service for distributed objects
based on the CoLaSD coordination model. The CORODS coordination service supports the creation, the
moving, the copying, the referencing, the modification and the destruction of coordination groups across
the network. We show how the CORODS serviceisintegrated into DST (Distributed Smalltalk) [Cinc944],
amiddlewareframework that provides an advanced object oriented environment for prototyping, devel op-
ment and deploying of CORBA 2.0 applications. Wedivideinto two the presentati on of the basic operations
specifiedinthe CORODS service. First thelifecycle operations and then the reference operations. Thelife-
cycle operations concern the operations related to the creation, coping, moving and destruction of groups.
The reference operations concern operationsthat allow usersto obtain referencesto groups. The group ref-
erences are used to manipul ate and modify the specification of the groups.

Finaly in the third part of this chapter we present some related work in the definition of a coordination
servicefor CORBA, we present our conclusions and we point out the main contributions of this chapter to
thethesis.

4.1 Related Work

The idea of using object groups [Guer98a] to perform the coordination of distributed systems has been
around for long time. Object groups have proven to be very convenient for distributed programming, par-
ticularly for achieving fault-tolerance through replication. Dollimore and Coulouris[Doll92a] have pointed
out three aspectsin which the object groups and multicast invocations have proven to be useful for the con-
struction of object based platformsfor building multi-user applications. The first aspect concernsthe issue
of informing users when other users have altered shared objects. The second aspect concernsthe design of
an optimistic form of concurrency control for replicas of shared objects and the third aspect concerns the
distribution of capabilitiesto groups of users.

74

Several works have been done in the specification and construction of object groups
[Mish89a][Wo0d93a][| ONA94a][Land97a]][Guer98a][Neli0la][Baud02a]. In genera in all these works
theterm object group refersto alogical name for aset of objects whose membership may changefromtime
totime. All invocation messagesto agroup are propagated to its members. The term multicast refersto an
invocation message that is sent by one object to a group of objects. An unreliable multicast provides no
guarantee about message delivery and ordering. A reliable multicast is either received by all live members
of thegroup or by none of them. An ordered multicast isareliable multicast in which the messagesarriveto
all therecipientsin the same order.

What makes our approach different from all the approaches mentioned beforeisthat we do not focuson
CoL aS exclusively in the communication aspect of the coordination. All the worksin object groups men-
tioned before focus exclusively on providing and integrating multipoint to multipoint communication asa
way to define and coordinate parallel activitiesin distributed systems. We have also integrated group com-
munication inthe CoL. aSmodel to multicast messagesto all the participantsof arole, neverthel ess, wehave
not focus exclusively on thisaspect of the coordination, we consider that other coordination aspectslikethe
specifications of the synchronizationsin the systems, the control of thelifecyle of the coordinated entities,
etc. must al so be addressed by the coordination mechanismin asystem. Webelieve that coordination mech-
anismsfocusing exclusively in the specification of the communication (i.e., theinteraction) partialy fail in
supporting the coordination aspect. It isimportant to remember that the main advantage of using a coordi-
nation model and languageslike CoL aSfor specifying and building distributed system resultsfrom the pos-
sibility to separate the coordination and computation aspects in such systems and thus simplify their
specification, construction and evolution. Thisisalso an important aspect does not supported by the object
groups approaches mentioned before.

Concerning related work in introducing the so called coordination model s and languagesinto the COR-
BA model, our work isvery new [Cruz99a][Cruz01a]. To our knowledge the only work that could be con-
sider as related in this domain concerns the introduction of a cooperation service for CORBA based on
graph grammar techniques[Drid99a]. The main differences with respect to our approach are: (1) they coor-
dinate sequential objects(2) coordinationisspecified asgraphstransformationsand (3) they do not manage
the evolution of the coordination rulesthat are applied over the coordination graphs. Most of thework done
in coordinationin CORBA concernstheintroduction of an object group communication service. For exam-
ples, see ElectralLand97a], Orbix+Isis [IONA94a] and Object Group Service [Guer98a]. Furthermore,
group communication systems has been recently identified as a key tool for supporting fault tolerance in
CORBA: the new fault-tolerance specification [OMG00a] recommends that a view-oriented group com-
muni cation systems be used to support active object replicationin CORBA.

4.2 Motivation - The Administrator Pattern [Papa95a]

Before to present the extensions made to the CoLaS coordination model to support distribution and to
present the implementation of the CORODS coordination service in CORBA, we would like to motivate
our work with an example. Consider the architectural pattern called Administrator introduced by Papatho-
masin [Papa95a]. This patternisused in distributed systems basically to structure load balancing between
different machines. The administrator is an object that uses a collection of “workers’ objectsto servicere-
questsreceived from clients. The administrator application consistsof three kinds of entities: (1) theclients
that issue requeststo the administrator; (2) the administrator that accept the request and distributes the re-

75

gueststo the workers; and (3) the workers that handl e the administrator requests and send back the results
totheclients.

Host: Ziyal

~

\\ \\\
S SoL
[] Coordinatign State
NUVAN
A

Coordibstion Rules
< <

- N
3 ’ S ~

\\ ~
// \\\ \\
Q/ workerl . group proxy group proxy . \\O worker2

Host: Globi Host: Albert

Figure 4.1 : A Distributed Administrator Pattern

Consider now, aspecific scenario composed by one administrator and two workers, all thethreerunning
on three different machinesin alocal network: Ziyal, Albert and Globi asillustrated in (Figure 4.1). The
first worker will runin Globi, the second worker in Albert; and the administrator in Ziyal. CORBA (in our
case DST) provides the support to communicate the different participants. It is possible to specify in their
code the different remote calls and reception of replies described in the pattern. And, because of the speci-
fication of IDLsin CORBA it is possible to make the participants communicate even if they arewrittenin
different programming languages. We say in this case that CORBA guarantees the interoperability of the
systems. Aswe aready mentioned in theintroduction, CORBA providesin principleall the necessary sup-
port for building and executing asystem likethe one described before. Neverthel ess, the main problem with
CORBA isthat the description of the elements from which systems are built and the way in which they are
composed are mixed within the application code of the participants. This problem makes CORBA systems
difficult to understand, modify and customize. We propose in this chapter to tackle this problem by intro-
ducing the CoL aS coordination model in CORBA in theform of acoordination service. But, first it isnec-
essary to adapt the CoL aS coordination model to support the new requirementsimposed by thedistribution,
in particular to managethe possibility of failuresinthedistributed participants. Consider now how different
it will be the specification of the Administrator Pattern solution if it will be possible to specify separately
the coordination aspect in aCoL aS coordination group. All the coordination of the system will be specified
inasingleentity, controlling and enforcing the coordination of the distributed participants. It will besimple

76

to modify and to adapt the coordination to changes in the requirements given that all the changes will be
donein one place and not all over the participants code.

4.3 ColLaSD: Extensions for Distributed Object Coordination

Itiseasy to understand why distributed object systems are an important computing technology. They allow
the sharing of information and resources (i.e., disks, printers, files, databases, etc.), they increase the com-
puting power of the systemsbecausethey can processactivitiesin parallel, they can grow easily over alarge
range of sizesand they do not necessarily crash at once. Building distributed object systemsrequiresideally
that four main issues be addressed [Schr93a):

* Independent Failure: because there are several distinct computers involved, when one breaks the
others may continue working. It is often necessary that the system continues working after one or
more computers have failed.

* Unreliable Communication: because in most of the cases, the i nterconnections between the comput-
erscan not be kept in acontrolled environment they will not work correctly all thetime. Connections
may be unavailable, messages may be lost or garbled. One computer can not rely on being able to
communicate al the time with another, even if both are working.

* Insecure Communication: the interconnection among the computers can be exposed to unauthorized
intrusions and message modifications. It ishard to know what is being trusted and what can be trust-
ed.

* Costly Communication: the interconnections among the computers user provide lower bandwidth,
higher latency and higher cost communication that available within a single machine.

Building distributed object systemsis still difficult today, not only because they require that engineers
addressthefour i ssues exposed before, but because existing distributed obj ect-oriented languages provided
limited support for their specification, construction and evolution. We believe that coordination modelsand
languages have arole to play in the construction of distributed object-oriented systems, the separation of
concernsthey promote will allow engineersto reduce the complexity of building such systems. How to ex-
tend the CoL aS coordination model to support the coordination of distributed objectsisthe question that we
pretend to answer in this chapter. Wewill not address all the four issuesintroduced by distributed systems
and exposed before, each one of the mentioned problems will motivate athesisby itself. Wewill focus ex-
clusively on extending the CoL aS coordination model to support the consistency problemsintroduced by
thedistribution aspect in distributed object systems. Theconsistency of adistributed object system depends
on assertionsdone by the distributed objects about the state of other distributed objects, because the distrib-
uted objects execute concurrently at different places, failuresin their execution or in the communication
system may modify and thus affect the overall consistency of the system. To provide asolution to the con-
sistency problems we propose to modify the CoL.aS model introduced in chapter 3 of thisthesisand to re-
place the basi ¢ asynchronous communication model inthe model by the ACS (Apply, Call, Send) protocol
[Rach92a]. The ACS protocol isacommunication protocol designed to support reliable distributed object
applications. The ACS communication protocol merges the nested actions model proposed by [Moss814]
with the model of nested asynchronous request messages.

4.3.1 Consistency in Distributed Object Systems

Oneof themain problemsin distributed object systemsisthat their consi stency depends on assertionsdone
by the distributed objects about the state of other distributed objects, because the distributed objects execute

77

concurrently at different placesfailuresintheir execution or in the communication system may modify and
thus affect the overall consistency of the system. A well know solution to the problem of consistency con-
sists of enclosing related objects executions inside atomic actions resembling transactions [Coul94a)]. The
atomic actions have the following ACID properties:

» Atomicity: actions are either completely executed or completely undone.

» Consistency: the execution of the actions preserves the invariant properties.
* |solation: concurrent actions are isolated from each other.

 Durahility: the results of the execution of the actions are permanent.

The main problem with the atomic action model concerns the granularity of the recovery to failures. In
the atomic action model either all the object executionsinsi de the atomic action are executed completely or
none of them are executed at all. If any local failure occurs during the execution of the atomic action, the
action is aborted and its effects on all the objects related by the atomic action are discarded. Local failures
cannot be masked to take advantage of partial system availability. A powerful extension to the atomic ac-
tions model isthe nested actions model proposed by [M0ss314]. In the nested actions model an atomic ac-
tion may be broken into subactions. Theideaisto allow each subaction to fail independently of each other
without forcing its parent to abort. Both atomicity and isolation are guaranteed for the subactions.

In the concrete case of distributed object-oriented systems several solutions have been proposed, they
can be classified in two approaches [Guer92a): the explicit and theimplicit.

» Explicit approach: in the explicit approach the programmers of the distributed object systems spec-
ify logical units of computations as atomic actions using linguistic constructs defined in the object-
oriented programming languages. An example of a language using this approach is Hybrid
[Nier87a]. In Hybrid actions are specified using the atomic statement. Every time a programmer
needs to specify a set of statements as an atomic activity, he places the set of statementsinside curly
braces. In (Figure 4.2) acomplex graphic object displays its parts within a single atomic action to
guarantee that the partswill al be synchronized.

1.var n: partRange;

2.var part: array [partRange] of oid of graphicCObject;
3.n := partRange. first;

4. atomc {

5. col oop {

6. activity {

7 del egate (part[n].displaySelf);
8. }

9. if (n <? partRange.last) {n+=1;}

10. el se {break;}

11. }

Figure 4.2 Atomic actions in Hybrid

» Implicit approach: in the implicit approach the nesting of actions and the nesting of method execu-
tions are merged. Each request message issued from a client is enclosed inside an atomic action

78

whose atomicity isassured by the underlying system. If the serviceis executed successfully then the
action succeeds, otherwise the service fails and the corresponding action is aborted discarding its
effects on the affected objects. When the service is executed successfully its effects are permanent
in the system. The implicit approach gives to the message passing paradigm a powerful semantics
for reliable distributed computing. An example of a language using this approach is Argus
[Lisk83a]. In Argus a program consists of a set of Guardians. Each Guardian communicates with
another Guardian by calling the handlers (methods) associated with the Guardian through RPC (Re-
mote Method Invocation) calls. When a handler isinvoked, a new subaction is created. The subac-
tion encloses the sending of the message, the execution of the handler and the reply message. If there
isany system failure, the system replieswith afailure exception. Theinvoked handler can also abort
the subaction and terminate in a user defined exception. In (Figure 4.3) we can see how a handler
is specified in Argus.

1. <Guar di an>. <Handl er >(<ar gunent s>)
2./* specification of the handl er <Handl er> for the guardi an <Guardi an>

3

4

5.

6. except when fail ure(why: string)

7./* alternative code in a case of service failure
8
9

Figure 4.3 : Guardian specification in Argus

4.3.2 Consistency in CoLaS

In the CoL aS coordination language introduced in chapter 3 of thisthesis we guarantee the consistency of
the system using an implicit approach which combines asynchronous communication with the model of
nested actions. Every method invocati on can be seen as composed of subactionswhere each subactionisan
atomic action itself. The subactions may fail independently of each other without forcing amethod invoca-
tion to abort.

Client Server

Figure 4.4 : Asynchronous communication in CoLas

79

In(Figure 4.4) we can seethe representation of an asynchronous communication between two distrib-
uted objects, in (a) amessageis sent from the a client object to aserver object, in (b) implicitly afutureis
sent back to theclient, in (c) theresult of the method invocation (if any) isset by the server object inthefu-
tureand in (e) the client object requeststhe futurefor the result of the method invocation. If the result of the
method invocationisnot ready in (€) the client object blocks. The advantage of using an asynchronouscom-
munication with explicit futuresisthat the client object does not block whilethe server object executesthe
method invocation.

failure

Figure 4.5 : ColLaS nested atomic actions

In (Figure 4.5) we can see how a method invocation received by an object generates an atomic action
al. Theatomic action al iscomposed of two subactions all and al2 corresponding to two messages sent to
two other objects during the execution of the received method invocation. A failure during the execution of
action al1 produces the abort of the two subactions and of the main action al. The atomicity model of Co-
LaSalowsalot of flexibility to manage partial failuresin subactions. However, the main problem with the
model of nested actionsused in CoL aSisthat the subactions commit only when the parent action commits,
the permanence of the resultsis guaranteed only for the top parent action. In [Guer92a] a new communica-
tion protocol called ACS (Apply, Call, Send) isintroduced to tackl e this problem. The ACS communication
protocol is used for concurrent communication in KAROS [Guer92b] (an exploratory language designed
for reliable distributed applications).

4.3.3 The ACS Protocol

Inthe ACS protocol, distributed objects communicate through three different types of asynchronous mes-
sagepassing: Apply, Call and Send. In an asynchronous communi cation between two distributed objectswe
will call the client the distributed object that sends the message to the object and the server the distributed
object that receives the message and executes the corresponding method invocation.

80

4.3.3.1 Apply

In ACSwhen aclient object sendsan Apply message to a server object, two concurrent subactions are cre-
ated (allandal2in Figure 4.6). Thefirst subaction al2 correspondsto Apply message sent to the server.
It encapsulates the execution of the service related to the message in the server. The second subaction all

encapsul ates the client execution that startsjust after that the Apply message is sent to the other distributed
object.

Server

Apply

L

Figure 4.6 : Apply message

If afailureoccursinany of thetwo subactionsall or al2 the system abortsthe parent action al and their
effectsare discarded. In (Figure 4.7) we can see how afailure occurring during the execution of the sub-
action al2 for example producesthe abort of the parent action al.

Client

Server

Apply

failure

Figure 4.7 : Failure in Apply message

4.3.3.2 Call

InACSWhen aclient sendsaCall messageto aserver object, two similar concurrent subactionsare created
(allandal2inFigure 4.8). If afailure occursin the communication system or during the execution of the
service, the parent action al is not forced to abort like in the Apply message. The client may know that the
request hasfailed and it may choose to abort or to continueits action. Different subactionsare thusallowed

81

to fail independently of each other. A service may be considered as correct even if some of its subactions
have not been accomplished.

Server

Apply

failure

Figure 4.8 : Call Message

In(Figure 4.8) we can see how we can see how afailure occurring during the execution of the subaction
al2 for example does not causes the abort of the parent action al. The client decidesto continue the action
al evenif the subaction al2 hasfailed.

4.3.3.3 Send

To provide asimple way for safely breaking atomicity when an independent subaction has to be executed,
the ACS protocol introducesathird kind of asynchronousmessage called Send. When aclient sendsaSend
message to a server object, the client continues executing inside its current action without relying on the
server execution and without expecting any reply from the server. In (Figure 4.9) we can see how the sub-
action al2 is executed compl etely independent from the parent action al.

Client Server
Send
e H a12

Figure 4.9 : Send Message

82

4.4 The CoLasD Coordination Model

The CoLaSD model is a coordination model based on the notion of coordination groups. A coordination
group specifies, controls and enforces the coordination of groups of collaborating distributed objects. The
CoLaSD model iscomposed of two kinds of entities: the participants and the coordination groups.

4.4.1 The Participants

CoL aSD replaces the basic asynchronous communication model used by the participants in the CoLaS
model by the ACS communication protocol. Any message sent by a participant to another participant must
be preceded by an ACS protocol message indicating the ACS type of the message. There are three types of
ACS protocol messages: apply, call and send. Each ACS protocol message type specifiesits corresponding
failure semanticsin the ACS protocol. When the sender of amessage does not specify the ACStype of the
message we consider by default the message as a send message.

4.4.2 The Coordination Groups

A coordination group is an entity that specifies, controls and enforces coordination between groups of col-
laborating participants. The primary tasks of a coordination group are: (1) to enforce cooperation actions
between participants, (2) to synchronizethe occurrence of those actionsand (3) to enforce proactive actions
in the participants. The coordination groups (only groupsin the following) are composed of the following
elements: the rol es specification, the coordination state and the coordination rules. The roles specification
definesthe different rolesthat participantsmay play inagroup, the coordination state definesgeneral infor-
mation needed to perform the coordination and the coordination rules define the different rulesthat govern
the coordination of the group. The specification of the three different elementsdoes not differ to much from
the specification introduced in Chapter 3 in thisthesis. The only differenceisthat ACS protocol message
may appear now in the specification of the coordination rules, indicating specific failure semantics for the
messages sent.

4.4.3 ColLaSD - The Administrator Pattern: A Simplified Version

Toillustratethe modificationsintroduced in the CoLaSD model wewill useasexampleasimplified version
of “The Administrator” pattern [Papa95a] introduced at the beginning of this chapter. The administrator
pattern consists of three kinds of entities: (1) the clientsthat issue requests to the administrator, (2) the ad-
ministrator that accept the requests and distributes them to the workers and (3) the workersthat handle the
administrator requests and send back the results to the clients. Sometimes the administrator must split the
requests received from the clients either because the workers do not have al the expertise to manage the
wholerequest or in order to optimize responsetimes. In our example, we assumethat each worker isableto
manage all the requests received by the administrator. The work of the administrator it to pass the requests
totheworkersasit receivesthem from the clients.

:Clients :Administrator :Workers

'|_r request

request |

request

—emmeeeo

Figure 4.10 : The Administrator Pattern

The Administrator Pattern exampleillustrates the following coordination problems:

» Transfer of information between entities: clients requests received by the administrator are sent to
theworkers. The administrator decideswhich request goesto which worker. The administrator plays
the role of arouter redirecting requests to workers. The workers receive the requests and execute
them.

» Assignment of shared resources: the administrator controls the assignment of requests to workers.
The shared resource in this case is the worker processing time. The administrator may apply differ-
ent assignment poalicies. In this example we will assumethat all the workers have the same capabil -
ities. The administrator selects aworker based on simple “is-free” assignment policy: the adminis-
trator chooses in aindeterminist way a free worker between its workers. During the assignment of
requests to workers the administrator must prevent the multiple assignment of requests to workers,
aswell as the assignment of the same request to multiple workers.

« Dynamic evolution of the coordination: the system must be able to scale. New workers can be added
to the system and new clients can make requests to the administrator. The assignment policy used
by the administrator to all ocate requests to workers may also vary during thetime. It will be possible
for exampleto allocate client requests to workers based on the execution performances of the work-
ers.

84

1. Admi ni stratorPattern defineRol eNaned: #Oient.

2. Admi ni stratorPattern defineRol eNamed: #Admi nistrator.

3. Admi ni stratorPattern defineRol eNanmed: #Wrker.

4.

5. Worker definelnterface: #(#request:).

6. dient definelnterface: #(#reply:).

7.

8. Wrker defineParticipantVariable: #i sFree initial Value: true.
9.

10.[1] dient defineBehavior: 'request:args’ as:

11. [Adm ni strator apply request: args].

12.

13.[2] Admi nistrator defineBehavior: ’'request:args’ as:

14. [| wor ker |

15. wor ker := Worker detect:[:aParticipant| aParticipant isFree].
16. wor ker isFree: fal se.

17. wor ker apply request:args client: sender].

18.

19.[3] Administrator disable: 'request:args’ if:

20. [(Worker detect:[:aParticipant |aParticipant isFree])isNl].
21.

22.[4] Worker defineBehavior: 'request:args client: client’ as:
23. [client reply: (self request: args)].

24,

25.[5] Worker interceptAtEnd: 'request:args client:client’ do:
26. [receiver isFree:true].

Figure 4.11 : The Administrator Pattern

Role Specification

In the Administrator example the participants play one of the threeroles: Client, Administrator or Worker
(Figure 4.11 lines 1,2 and 3). The minimal interface that a distributed object should have in order to play
aroleinthegroupisspecified by theroleinterface of theroleit wantsto play. A roleinterface specifiessig-
natures of methods used in the specification of therole. Theroleinterface of the role Worker (line 5) speci-
fies that each potential worker must know how to react to the request: method invocation. The request:
method modelsageneric service (i.e., for example aclock service). Theinterface of therole Client (line 6)
specifiesthat each potential client must know how to react to thereply: method invocation. Thereply: meth-
od invocation is used in the pattern to return the result of the requested serviceto theclient.

Coordination State

The coordination state specifiesinformation needed to perform the coordination. It may concern informa:
tion like: whether some action occurred or actually occursin the system (i.e., historical information), the
number of times some action occurred or actually occursin the system (i.e historical counters), etc. The co-
ordination stateis specified by declaring variables. Threetypesof statevariablescan bedefinedin CoLaSD:

85

group variables, role variables and participant variables. In the Administrator example we define aunique
variable called isFree (Figure 4.11 line 8). The isFree variable is a participant variable, each participant
playing therole Worker hasaisFree variabl e associated with it. TheisFree variableisused by the adminis-
trator to control the assignment of the client requests to the workers. The isFree variable is abool ean vari-
able; when the variable validates true it indicates that the worker is free to execute requests and when the
variable validatesfalseit indicates that the worker is busy and can not execute requests. The administrator
only assignsjobsto workerswhich arefree.

Coordination Rules

In CoLaSD we define three types of coordination rules as in the CoLaS model: behavioral coordination
rules (behavioral rules), reactive coordination rules (reactive rules) and proactive coordination rules (pro-
activerules). Behavioral rulesarerulesthat defineimplications between partici pant actions. Reactive coor-
dination rules are rules that depend for their application on the messages exchanged by the partici pants of
the group. Reactiverules are evaluated at specific eval uation points during the processing of method invo-
cationsby the participants. The specification of the CoLaSD Coordination Rulesisvery similar to the spec-
ification of Coordination Rulesinthe CoL aS coordination model, the only differencefindsin the use of the
ACS communication protocol in the specification of therules.

Inthe Administrator example (Figure 4.11) we defined four coordination rules (three behavioral rules:
rules1, 2 and 4) and two reactiverules: (rules 3 and 5):

Rule1 (Figure 4.11 line 10): specifiesthat all clients requests request: are sent to the administrator
(line11). The apply ACS protocol message that appears before the request: message sent to the ad-
ministrator specifiesthat, whenever afailure occurs during the execution of the request: method in-
vocation in the administrator the execution of the request: behavior in the client is aborted.

Rule 2 (Figure 4.11 line 13): definesthat arequest: message received by the administrator triggers
arequest:sender: message in afree worker. To select afree worker the role operation detect: is used
intheroleworker. The detect: operation returnsthefirst participant playing the role worker that val-
idates the condition specified as argument (or nil if none). We can seein (Figure 4.11 line 15) that
the condition specified in the detect concernsthe value of the participant variableisFree of the work-
er. When a free worker is found the variable isFree of the worker is set to false to indicate that the
worker isnow busy. Inline (Figure 4.11 line 17), we can see how the request: client: message re-
ceived by the administrator is forwarded to the selected worker. The message includes the identity
of the client who made the request. Again, the apply ACS protocol message that appears before the
request:client: message sent to the worker specifies that, whenever a failure occurs during the exe-
cution of the request:client: method invocation in the worker the execution of the request: behavior
in the administrator is aborted

Rule 3 (Figure 4.11 line 19): defines that a request: message received by the administrator is de-
layed when there is not worker free to execute the request. To determine whether aworker isfreeto
execute a request we use the participant variable isFree. The role operation detect: is used again in
this rule to specify the synchronization condition of the disable rule.

Rule 4 (Figure 4.11 line 22): definesthat a request:sclient: message received by aworker implies
(line 23) the execution of the request by the worker and the sent of the reply to the client who sent
the request.

86

Rule 5 (Figure 4.11 line 25): when aworker finishes to execute a request:client: method invoca-
tion, the state of the participant variable isFree is updated to true. The atSent interception rule is
evaluated after the execution of the service:client: method invocation by the worker.

Pseudo-Variables

There are three pseudo-variables that can be used within the groups. They are: group, receiver and sender.
The group variable refersto the current group, the sender variable refers to the distributed object that sent
themessageand thereceiver variableto thedistributed object processing areceived message. Inthe Admin-
istrator example we refer to the sender pseudo-variable (line 17) and to the receiver pseudo-variable (line
26).

Failures

In(Figure 4.11lines11 and 17) rules1 and 3, we can seehow the ACS protocol isused intheadministrator
example: inrule1thespecia apply ACSprotocol message precedesthe request: message sent to theadmin-
istrator and in rule 3 the apply ACS protocol message precedes the request:client: message sent to the se-
lected worker. The failure semantics associated with the apply ACS protocol message specifies that
whenever asubaction composing aparent action failsthe subaction and the parent action are aborted. Inthe
example(Figure 4.12) if the execution of therequest:client: method invocation failsintheworker the sys-
tem will abort the execution request: method invocation in the administrator and in the client. The abort of
amethod invocation in aparticipant impliestheroll back of all the modifications done during the execution
of themethod invocation until the abort moment.

request:
Client Administrator Worker

apply requestclient:

abort abort failure
Figure 4.12 Failure of the Apply service:

To avoid the abort of the execution of the method invocation request: in the administrator, it is possible
to associate amoreflexiblefailure semanticsto the request: behavior. The administrator may decidefor ex-
ampleto verify whether the execution of the method invocation request:client: hasfailed in theworker and
decide to select another worker to execute the task. To validate whether the execution of a method invoca-
tion has failed we use the future received during the invocation of the request:client: method invocation. It
isimportant to remember that every method invocation in CoLaSD generates areply and that replies are

87

managed using futures. The administrator sends the message failed to the future to verify if the request:cli-
ent: method invocation hasfailed or not.

In(Figure 4.13 line 1) we show how the rule 2 can be redefined to implement a completely different
failure strategy, therequest:client: message (Figure 4.13 line7) ispreceded by the special call ACS proto-
col message. Thefailure semanticsassociated with the call ACS protocol message specifiesthat when asu-
baction composing a parent action fails the parent action should not be necessarily aborted. It isup to the
client object executing the parent action to decidewhether the parent action should be aborted or not. Tover-
ify whether the execution of the service hasfailed we request the future returned by the method invocation
(Figure 4.13 line 7). In the example if the execution of the request:client: method in the worker fails (in
CoLaSafail correspondstheraise of an error signal by a participant) we sel ect another worker and weretry
again to execute the request:client: request in the other worker. If we can not find aworker to execute the
request weraiseanexception (Figure 4.13 line 12). For the management of exceptionsweusethefacilities
of the host language in which the CoLaS model isintegrated (Smalltalk in our case).

1.[2] Adm nistrator defineBehavior:’request:args’ as:

2. [|worker result future |

3. wor ker := Workers detect:[:aWrker| aWrker isFree].

4. wor ker isFree: false.

5.

6. [wor ker notNi | and:

7. [(worker call request: args client: sender) failed]]

8. whi | eTr ue:

9. [(worker := Workers detect:[:aWrker| aWrker isFree])

10. ifNotNi I : [worker isFree: false]].

11.

12. worker ifNil:[lnsufficientConputingResourceError raiseSignal]].
Figure 4.13 : Considering failures in workers

Analysis

The example illustrates how it is possible to define a more flexible failure semantics to the coordination
specifiedinthebehavioral rulesof the AdministratorPattern group. The ACSprotocol allowsthe specifica-
tion of the communication through three different types of asynchronous message passing: Apply, Call and
Send. When using the A pply communi cation mechanismif afailure occursall the subactionsand the parent
action are discarded. When using the Call communication mechanism is used different subactions are al-
lowed to fail independently of each other without affecting the parent action. And, when using the Send
communication mechanismisused subactions are executed compl etely independent from the parent action.

4.5 CORODS - A Coordination Service for CORBA

CORODSisacoordination servicefor distributed objectsbased on the CoL aSD coordination model. A pro-
totype of CORODS was built on top of a middleware framework called DST, a CORBA 2.0 compliant
framework for Smalltalk. The CORODS coordination service supports the creation, the moving, the copy-
ing, the referencing, the modification and the destruction of coordination groups across the network. In
(Figure 4.14) we show how a coordination group created by the CORODS service coordinates partici-
pantsthat are physically distributed between different machines. The CORODS coordination serviceisin-
tegrated in DST asabasic service.

88

/9

/"' Participants

Coordination Rules

Coordination Group

DST ‘ CORODS ‘ DST ‘ CORODS ‘
= Network =
Host A HostB

Figure 4.14 : CORODS

45.1 The DST Framework

DST isamiddleware framework that provides an advanced object oriented environment for prototyping,
development and depl oyment of CORBA 2.0[OM G95a] compliant distributed applications. CORBA isthe
standard interface of the central component of the OMA (Object Management Architecture) architecture
the Object Request Broker (ORB). The CORBA standard defines common methods of communication be-
tween distributed objects on heterogeneous platforms.

Themost important function of the ORB isto enableaclient toinvoke operationson apotentially remote
object. To communicatewith aremote object, the client must i dentify the target obj ect by meansof an object
reference. The ORB isresponsiblefor locating the object, preparing it to receive the request and passing the
data needed for the request to the object. If the operation identified by the request implies somereply from
the remote object the ORB isresponsible for communicating the reply back to the client.

One of the most important features of CORBA isits IDL (Interface Description Language) language.
The IDL language is used by the other components of the OMA to specify the servicesthey offer through
the ORB. A set of common services have been defined in the OMA architecture. These services represent
ingeneral useful servicesindependent of the application domain. They are called Common Object Services
(COS) and currently they are 15. DST provides six of them: naming, lifecycle, event notification, transac-
tions, persistence, concurrency control.

From a coordination point of view DST providesall the facilities required to the implementation of the
CoLaSD model: it provides remote object interaction facilities, a distributed naming serviceto locate dis-

89

tributed objects by namesindependently of the placewherethey find, alifecycle serviceto control creation
and destruction of distributed objects, aconcurrency control serviceto mediate concurrent accessto distrib-
uted objects and atransactions serviceto control atomicity of distributed transactions.

4.6 The CORODS Coordination Service

The CORBA specification 2.0 definesthe way inwhich an application caninitializeitself inaCORBA en-
vironment. It definesinterfacesto: initialize the ORB, initialize the Object Adaptor (the OA isthe primary
mechanism for an object implementation to access ORB services [OMG954]) and to obtain initial object
references. Theinitial referencesserviceisasimplified local version of thenaming service, applicationsuse
this serviceto register and to obtain object references which are essential to an application.

To obtain initial object references CORBA defines two operations: list_initia_services and
resolve_initial_references. The operation list_initial_services allows an application to return the names of
the available abjects and the resolve initia_references operation returns the object reference associated
with anamereturned by theinitial references operation. DST providesby default referencesfor threeinitial
services: the naming service, the factory finder and theinterface repository. The naming serviceisthe serv-
ice used tolocate distributed objects by names, thefactory finder isthe servicethat allowsoneto obtain ref-
erencesto factories of aparticular class (i.e., afactory isan object that creates objectsin responseto client
service requests) and the interface repository is the place where the IDL definitions are stored. The
CORODS serviceisregistered in each ORB as an initial service. Each time the ORB is started anew in-
stance of the CORODS serviceiscreated. To obtain areference to the CORODS service aclient must send
a resolvel nitial References. message to the ORB object with the name #CORODS as argument (Figure
4.15). InDST the ORB isrepresented by the class ORBObject.

1. corods := ORBObj ect resolvelnitial References: #CORODS.

Figure 4.15 : Obtaining a reference to the CORODS service

4.6.1 Coordination Groups Lifecycle Operations

The CORODS coordination service specifies basic lifecycle operationsfor creating, deleting, copying and
moving groupslocally or remotely; operationsrequired for controlling the population and the migration of
groups acrossthe network.

Group Creation

Groupsareinstancesof coordination groups classes(group classesinthefollowing). A group classcontains
the specification of theroles, the coordination state and the coordination rulesthat specifiesagroup. Group
classes are created by sending the message createCoordinationGroupClassNamed: <Coordination Group
Class Name> to the CORODS service. The <Coordination Group Class Name> argument specifies the
name of the group class to be created. Groups instances (i.e., groups) are created by sending the message
createCoordinationGroupNamed: <Coordination Group Name> forCoordinationGroupClassNamed:
<Coordination Group Class Name> to the CORODS service. The <Coordination Group Name> argument
specifies the name of the group to be created. The two operations allows users to create group classes and
groupinstanceslocally. Two similar operations are specified in CORODSto create group classesand group

90

instances remotely (i.e., in aremote host), the name of the host (or its P address) where the group class or
group must be created should be specified asan extraargument inHost: <Host Name>. Itisimportant to pre-
cise that the names of the group classes and the names of the groups must be unique in each machine. We
usethose namesto identify uniquely group classes and groupsin machines.

In(Figure 4.16) we can see theimplementation of the two group classes creation operations (loca and
remote). Inthe local case (line 1) we use the CoordinationGroup classto create the group class. The Coor-
dinationGroup classis abasic class containing all the necessary support to specify, create and manipulate
group classes and groups. In the remote case (line 5) the creation of the group class is made through the
CORODS service in the host where the group must be created (line 10). The reference to the remote
CORODS serviceisobtained through the remote ORB (line 9). In (line 8) we obtain areferenceto there-
mote ORB in the machine named aHostName.

1. CORCDS >>cr eat eCoor di nat i onG oupCl assNaned: aCoor di nati onG oupC assNane
2. Coor di nati onG oup

3. creat eCoor di nati onG oupC ass: aCoordi nati onG oupCl assNane.

4.

5. CORODS >>cr eat eCoordi nati onGroupd assNaned: aCoor di nati onG oupd assNane
6. i nHost : aHost Nane

7. | orbProxy renpteCORCDS |

8. orbProxy := OrbResol ver generateO bProxy: aHost Name.

9. renot eCORCDS : = orbProxy resolvelnitial References: #CORODS.

10. r enot e CORODS

11. creat eCoordi nati onGroupCd assNaned: aCoordi nati onG oupC assNane.

Figure 4.16 : Group Classes creation

The CORODS serviceisagroupsfactory inthe sense of CORBA. Inthe CORBA terminology, factories
are objectsthat create objectsin responseto clients requests. Inthe DST framework, afactory isany class
that can be instantiated and has interfaces registered for creating objects in the Interface Repository
[Cinc94a). Factories objects are registered during the initialization factories phase of the ORB initiaiza-
tion. For aclassto beregister asafactory it must have aninstance method call abstractClass| D. Thismethod
returnsthe appropriate UUID-Universal Uniqueldentifier which uniquely identifiestheclass. A UUID isa
16-byte quantity that is guaranteed to be unique. It encodesthe local network |P address and atime stamp
valueindicating thetimeelapsed since January 1, 1980. One extension madeto ColL aSD to support the con-
struction of the COROD S coordination service consists of automatically associating during the creation of
group classes an abstractClass| D method with anew UUID value to each group class created. Each group
classcreatedin CoLaSD becomesinthisway apotential groupsfactory. To locate the correct factory class,
the COS specification of thelifecycle serviceintroducesthe notion of factoriesfinder. A factory finderisan
object at aspecific location that helps clientsto locate factories of aparticular class.

In(Figure 4.17) we can see theimplementation of the two group creation operations. In thefirst oper-
ationthegroupiscreated locally inthe placewherethe create operationisrequested (line 12). Inthe second
operation the group is created remotely in the machine specified as argument in the create operation (line
25). In (line 16) we can see how the Factory Finder serviceis used to obtain areference to the group class

91

factory inthelocal machine. Thereferenceto the group classfactory isthen used to create agroup through
thelifecycle service (line 18). The group created isthen register into the naming service (line 22).

In the implementation of the remote create group operation (line 25) the group is created through the
CORODS service in the remote machine. The name of the remote machine aHostName is used to obtain a
referenceto the remote ORB object (line 29) and then areferenceto theremote CORODS service (line 30).
Thereference to the remote CORODS serviceisthen used to create the group (line 31). The creation oper-
ation returns a proxy to aremote group. All the messages received by the proxy are forwarded to the group
intheremote host.

12. CORODS >>cr eat eCoor di nati onGr oupNanmed: aCoor di nati onG oupNane

13. f or Coor di nati onG oupCl assNaned: aCoor di nati onG oupCl assNane

14. | factoryFinder cgFactory cg nam ngService|

15. factoryFi nder : = ORBObj ect resol velnitial Ref erences: #Fact oryFi nder.
16. cgFactory := factoryFi nder

17. cont ext Resol ve: aCoordi nati onG oupCl assNanme asDSTNane.
18. cg : = cgFactory

19. creat eObj ect Key: aCoordi nati onG oupd assNane criteria: #().
20. cg groupNane: aCGCNane.

21. nam ngService : = ORBOhj ect resolvelnitial References: #NanmeServi ce.
22. nam ngServi ce cont ext Bi nd: aCoordi nati onG oupNane asDSTName to: cg.
23. ~cg

24,

25. CORODS >>cr eat eCoor di nati onG oupNaned: aCoor di nati onG oupNane

26. f or Coor di nati onG oupd assNaned: aCoordi nati onG oupC assNane

27. i nHost: aHost Nanme

28. | orbProxy renoteCORCDS |

29. orbProxy := OrbResol ver generateO bProxy: aHost Nane.

30. renot eCORCDS : = or bProxy resol vel nitial References: #CORODS.

31. ~r enot e CORCDS

32. creat eCoor di nati onG oupNaned: aCoor di nati onG oupNane

33. f or Coor di nati onG oupCl assNaned: aCoor di nati onG oupCl assNane

Figure 4.17 : Groups creation in CORODS

In(Figure 4.18) wecan seethe graphical representati on of the sequence of actionsthat composethere-
mote create group operation presented in (Figure 4.17 line 25). The requests for the creation of aremote
group named groupX isdonein amachine named HostB. The group requested for creation isagroup of the
classgroupClassY whose specification findsin aremote machine named HostA. In (a) the creation request
is sent to the local CORODS service in the machine HostB, the request is then forwarded to the remote
CORODS service in the machine HostA; in (b) the remote CORODS service contacts the local Factory
Finder object to obtain areferenceto the group classfactory named groupClassY, thereferenceto thegroup-
ClassY group classfactory isthen used to request the creation of the group; in (d) the newly created group
is register in the naming service in the machine HostA; finally in (€) aremote reference (a proxy) to the
group issent back to the user that requested the creation of the group in the machine HostB. Infact the user
of the group in the machine HostB does not see that the group finds in the remote machine HostA, all the
message sends to the group proxy in the machine HostB are sent automatically to the host HostA.

92

groupClassY
createRemoteCoordinationGroupNamed: groupX
createObjectKey: groupClassY forCoordinationGroupClassNamed: groupClassY
() inHost: HostA

©)

groupX-proxy @)
<> FactoryFinder

1o © N\

v

DST CORODS DST \ CORODS
— Network =
Host A Host B

Figure 4.18 : Remote creation of a group

Group Copy

We define three different operations to copy groups in CORODS: the first operation copyCoordination-
GroupNamed: <Coordination Group Name> toHost: <Host Name> (line 1) makes a copy of alocal group
to the remote machine <Host Name>. By local group we mean a group existing in the machine where the
copy request isdone. The second operation copyRemoteCoordinationGroupNamed: <Coordination Group
Name> fromHost: <Host Name> (line 11) makes acopy of aremote group from the machine <Host Name>
inthelocal machine. By local host we mean the host wherethe copy request isdone. And, thethird operation
copyCoordinationGroup: <Coordination Group>toHost: <Host Name> (line 20) makes a copy of agroup
(local or remote) to the host <Host Name>. The argument <Coordination Group Name> specifiesthe name
of agroup, <Host Name> the name of amachine (or and I P address) and <Coordination Group> specifiesa
coordination group. In (Figure 4.19) we can see theimplementation of the three copy operations.

In the implementation of the copyCoordinationGroupNamed: <Coordination Group Name> toHost:
<Host Name> operation (line 1) we obtain first areference to thelocal group named aCoordinationGroup-
Namethat we want to copy. Thereferenceto the group isobtained through thelocal CORODS service (line
4). We then obtain areference to the remote ORB object in the machine where we want to make the copy
(line5) and we use such areferenceto obtain areference to the remote Factory Finder object inthemachine
wherewewant to copy the group (line 6). Finally we call the copy lifecycle service (line 8) to create acopy
of the group in the remote machine. The copy operation returnsa proxy to the group copy created inthere-
mote host.

In the implementation of the copyRemoteCoordinationGroupNamed: <Coordination Group Name>
fromHost: <Host Name> operation (line 10) the name of the remote machine aHostName is used to obtain
areference to the remote ORB object in which the group finds (line 13). We use such areference to obtain

93

areferenceto theremote CORODS service (line 14). Thereferenceto the remote CORODS serviceisthen
used to request for aremote referenceto the group named aCoordinationGroupNamein the remote machine
(line 15). Finally we call the copy lifecycle serviceinthe local host to create a copy of the remote groupin
thelocal host (line 16). The copy operation returns alocal reference to the group copy created in the local
host.

In the implementation of the copyCoordinationGroup: <Coordination Group> toHost: <Host Name>
operation (line 18) we receive directly a group reference as an argument. The group reference aGroup can
be a proxy to aremote group or areference to alocal group. In both cases the copy operation returns aref-
erenceto agroup copy created in the machineindicated by the argument aHostName. In (line 20) the name
of themachineisused to obtainthereferenceto the ORB object wherewewant to make the group copy. The
ORB object referenceisthen used to obtain areference to the Factory Finder in that machine (line 24). Fi-
nally we call the copy lifecycle serviceto create acopy of the group (line 25).

1. CORCDS >>copyCoor di hati onG oupNaned: aCoor di nati onG oupNane

2. t oHost: aHost Name

3. | cg orbProxy renoteFactoryFi nder |

4. cg : = self get Ref erenceToCGNaned: aCoordi nati onG oupNane.

5. orbProxy := OrbResol ver generateO bProxy: aHost Nane.

6. r enot eFact or yFi nder : = orbProxy

7. resol vel ni ti al Ref er ences: #Fact or yFi nder.
8. Acg copyFactoryFi nder: renoteFactoryFinder criteria: #()

9.

10. CORODS >>copyRenot eCoor di nati onG oupNaned: aCoordi nati onG oupNane
11. fronmHost: aHost Name

12. | orbProxy renoteCORCDS cg |

13. orbProxy := OrbResol ver generateO bProxy: aHost Nane.

14. renot eCORCDS : = orbProxy resol velnitial References: #CORODS.

15. cg : = renot eCORODS get Ref er enceToCGNaned: aCoor di nati onG oupNane.
16. Acg copyFactoryFi nder: ORBObject factoryFinder criteria: #()

17.

18. CORODS >>copyCoordi nati onG oup: aG oup toHost: aHost Nane

19. | orbProxy factoryFinder |

20. orbProxy := OrbResol ver generateO bProxy: aHost Nane.

21. factoryFinder := orbProxy resol velnitial Ref erences: #FactoryFi nder.
22. NaGroup copyFactoryFinder: renoteFactoryFinder criteria: #()

Figure 4.19 : Copying groups in CORODS

Group Move

Moving a group means to move a group from one place to another across the network. Unfortunately this
service has hot been completely implemented in COROD S because the move operation is not actually sup-
ported by thelifecycle servicein DST ontop of whichwebuilt CORODS. Theoretically the move operation
implies that a copy of the group is made at a specified target destination and that the original group is re-
moved from the specified origin destination.

94

CORODS definesthree operationsto move groups (similar to those specified for copy groups): thefirst
operation moveCoordinationGroupNamed: <Coordination Group Name>toHost: <Host Name> operation
movesalocal group totheremote machine <Host Name>. The second operation moveCoordinationGroup-
Named: <Coordination Group Name> fromHost: <Host Name> operation moves aremote group from the
remote machine <Host Name> to the local machine where the reguest is done. And, the third operation
moveCoordinationGroup: <Coordination Group> toHost: <Host Name> operation movesagroup (local or
remote) to the machine <Host Name>. The argument <Coordination Group Name> specifiesthe name of a
group, <Host Name> the name of amachine (or an | P address) and <Group> specifiesagroup. Theimple-
mentation of the three move operationsisvery similar to theimplementation of the copy operations speci-
fied before, basically they differ in the lifecycle operation called by the operation: in the copy operations
copyFactoryFinder: and in the move operations moveFactoryFinder:

Group Destruction

Thedestruction of agroup impliesthe removal of the group from the system. We define a unique group de-
struction operation: destroyCoordinationGroup: <Coordination Group> in CORODS. If references (local
or remote) to the group are detected in the system the destroy operation is not executed. During the destroy
operation the group is unregistered automatically from the naming service. The group reference sent asan
argument can be alocal or aremote referenceto agroup.

. CORODS >>dest r oyCoor di nati onG oup: aG oup

| nam ngService cgName orb |

orb : = ORBObj ect.

cg i sRenote i fTrue: [orb: = OrbResol ver generateO bProxy: cg host Nane].
nam ngService := orb resolvelnitial References: #NaneServi ce.

cgNanme : = cg groupNane.

nam ngServi ce cont ext UnBi nd: cgNane asDSTNane.

Acg destroy

NN R

Figure 4.20 : Destroying groups in CORODS

In(Figure 4.20) we can see the implementation of the destroyCoordinationGroup: operation (line 1).
If the group reference is aremote reference we obtain first areference to the remote ORB object where the
group finds (line4). In this case, we use the name of the name of the machine where the group was created
to obtain areferenceto theremote ORB (line4). Each timeagroup iscreated we storein the group the name
of the machine where the group is created, thisis the reason why we send the message hostName to the
group. (line 4). In the other hand, if the group referenceislocal we use thelocal ORB object (line 3). The
reference to the ORB object isused then to obtain areference to the naming service (line 5). We unregister
thenthe group from the naming service (line 7) and we call the destroy lifecycle serviceto destroy thegroup
reference (line 8).

95

4.6.2 References to Coordination Groups

To manipulate or modify an existing group (i.e., modify the coordination state, add coordinationrules, etc.)
it is necessary to have areference the group. CORODS provides two operations to obtain referencesto ex-
isting groups: the first getReferenceToCoordinationGroupNamed: <Coordination Group Name> returns a
referencetoalocal group. By local group we mean agroup existing in the place wherethe get referencere-
guest is done. The second operation getReferenceToCoordinationGroupNamed: <Coordination Group
Name> inHost: <Host Name> returns a remote reference (a proxy) to a group existing in the host <Host
Name>. In (Figure 4.21) we can see the implementation of both operations.

1. CORCDS >>get Ref er enceToCoor di nat i onG ouNaned: aCoor di nati onG oupNane

2. | nam ngService |

3. nam ngServi ce : = ORBOhj ect resolvelnitial References: #NaneServi ce.
4. Anam ngServi ce context Resol ve: aCoor di nati onG oupNane asDSTNane.
5.

6. CORODS >>get Ref er enceToCoor di nati onG oupNaned: aCoor di nati onG oupNane

7. i nHost: aHost Nane

8. | orbProxy renoteCORCDS |

9. orbProxy := OrbResol ver generateO bProxy: aHost Nane.

10. renot eCORODS : = or bProxy resol vel nitial References: #CORODS.

11. Ar enot e CORODS

12. get Ref er enceToCoor di nati onG oupNaned: aCoor di nat i onG oupNanmeNane.

Figure 4.21 : Obtaining references to groups

In the implementation of the getReferenceToCoordinationGroupNamed: <Coordination Group Name>
operation (line 1) thereferenceto alocal groupisabtained using thelocal naming service (line3). Thename
of the group named aCoordinationGroupNameisused then toidentify the group in thenaming service (line
4). Itisimportant to remember that when the groups are created in CORODS they are registered automati-
cally inthe naming servicein the machine wherethey are created.

Intheimplementation of the getReferenceToCoordinationGroupNamed: <Coordination Group Name>:
inHost: <Host Name> operation (line 6) the name of the remote machineaHostNameisused to obtain aref-
erence to the remote ORB object (line 9). The reference to the remote ORB is used to obtain areferenceto
theremote COROD S service(line 10) intheremote machine. Thereferenceto theremote CORODS service
isthen used to request for areference to the group named aCoordinationGroupName (line 11). The opera-
tion returns a proxy to the remote group in the remote machine. Messages received by the proxy are for-
warded to the remote group in the remote machine.

In(Figure 4.22) wecan seethegraphical representation of the sequence of actionsthat composethere-
mote getReference operation. The request for the reference of the remote group named groupX isdonein
the machine named HostB. The getReference operation requests for areference to aremote coordination
group named groupX in the host HostA. In (@) the getReference request isreceived by thelocal CORODS
serviceinthehost HostB, in (b) thelocal CORODS service contactsthe remote CORODS servicein HostA
and requests for areference to the group named groupX, finally in (c) aremote reference (i.e., aproxy) to
the remote coordination group is sent back to the user that made the getReference request in the HostB.

96

Roles

getReferenceToRemoteCoordinationGroupNamed: groupX
inHost: HostA

groupX-proxy
@

groupX ‘
©\

AN
.
T

A\ 4

DST CORODS (b) DST CORODS
— Network —
Host A Host B

Figure 4.22 : Obtaining a remote reference to a group

Additionally CORODS provides two operations that can be used to locate group classesin hosts, they
are: allCoordinationGroupClassesNamesinHost: <Host Name> and all CoordinationGroupNamesl nHost:
<Host Name>. The first operation returns the names of all the existing group classes in the host named
<Host Name> and the second operation returns the names of all the existing groups created in the host
named <Host Name>.

4.6.3 The CORODS service’s IDL

TheIDL language introduced in CORBA isaneutral declarative language used to describe interfaces that
client objects call and object implementations provide. All ORBs independently of the specific language
they support (i.e., Java, Smalltalk, etc.) “speak” IDL and use| DL to defineinterfacesfor accessing remotely
objects. Theinterface definition specifies operationsthe object is prepared to perform, theinput and output
parameters required and any exception that might be generated. In the IDL |anguage the description

The main elements that constitute the CORBA IDL are [Orfa96a]: modules, interfaces, operations and
datatypes. The modules provide a name space to group aset of interfaces. An interface defines a set of op-
erationsthat aclient caninvoke on an object, like aclass definition. The IDL definesthe operations sigha-
tures: parametersand resultstypes. A parameter hasamodethat indicateswhether thevalueis passed from
theclient tothe server (in), from the server to theclient (out), or both (inout). The parameter also hasatype.
Theoperation’ssignature optionally definesthe exceptionsthat amethod raiseswhenit detectsan error. An
interface may haveal so attributes, they defineaccessorsand mutators operationsfor the object. An attribute
can be read-only, in which case the implementation only provides an accessor operation. An interface can
be derived from oneor moreinterfaces, which means1DL supports multipleinheritance. The operationsde-
note servicesthat clients can invoke

97

We will present in this section only the IDL specifications of the services related with the creation of
groupsin CORODS. Our purposeisnot to present the complete | DL specification of all the CORODS serv-
icesbut to give anideato thereader about how these servicesare specifiedinthe DL language of CORBA.

Group Creation Operations

In(Figure 4.23) we can seethe IDL specification of the operationsrelated with the creation of the coordi-
nation groups. The IDL specifications of the creation services are defined within a module named
CORODS. The CORODS module containsauniqueinterface named CORODSInterface. The IDL specifi-
cation contains the specification of the four creation operations defined in 4.6.1. The first two operations
(lines 5 and 9) specify the operations for the creation of groups classes and the last two (lines 14 and 21)
specify the operationsfor the creation of groups. The operationsfor the creation of groupsreturn asaresult
an object that implementsthe Grouplnterfaceinterface IDL. The Grouplnterfaceinterface IDL containsthe
IDL specification of all the operationsin the CoLaSD model to manipulate and modify the groups (i.e., to
definearole, to define acoordination rule, to add avariable, etc.). In the example the pragma sel ector that
appear in the specification of the creation operations indicates a mapping between a selector name and a
nameusedinthel DL specification. Inthe DST terminology thispragmaiscalled aSelector pragma. Ingen-
eral pragmas are implementation dependent messagesto the IDL compiler. The Selector pragmaisaDST
specific pragma.

1. nodul e CORODS {

2. interface CORCDSI nterface {

3.

4. #pragmasel ector createCoordi nati onG oupd assNaned

5. creat eCoor di nati onG oupC assNaned:

6. voi d creat eCoordi nati onG oupC assNamed (in synbol aG oupNane);
7.

8. #pragmasel ector createCoordinati onG oupCl assNanedl nHost

9. creat eCoordi nati onG oupd assNaned: i nHost :

10. voi d creat eCoordi nati onG oupC assNamnedl nHost

11. (in string aG oupName, in synbol aHost);
12.

13. #pragna sel ector

14. creat eCoordi nati onG oupNanmedFor Coor di nati onGr oupC assNaned
15. creat eCoordi nati onG oupNarned: f or Coor di nati onG oupd assNaned:
16. G ouplnterface

17. cr eat eCoor di nat i onG oupNamedFor Coor di nat i onG oupCl assNaned
18. (in synbol aG oupNane, in synbol aCoordinati onG oupC assNane);
19.

20. #pragnasel ector

21. creat eCoordi nati onG oupNanmedFor Coor di nati onG oupd assNanedl nHost
22. createCoordi nati onG oupNaned: f or Coor di nati onG oupC assNaned: i nHost :
23. Gouplnterface

24. cr eat eRenot eCoor di nat i onG oupNanedFor Coor di nati onG oupNamed| nHost
25. (in synbol aCoordi nati onG oupNane,

26. i n synmbol aCoordi nati onG ouod assNane, i n synbol aHost Nane);

27. ...

Figure 4.23 : Group classes creation’s IDL

98

4.7 CORODS - The Administrator

At the beginning of this chapter we introduced the Administrator pattern [Papa95a] to motivate the work
presented in this chapter. We will use the same exampleto illustrate the use of the CORODS coordination
service. We assume the exi stence of agroup class named AdministratorPattern containing the specification
of the coordination of the Administrator system. Wewill define aspecific scenario composed by oneadmin-
istrator and two workers, al the three running in three different machinesin alocal network: Ziyal, Albert
and Globi. Thefirst worker runsin Globi, the second worker in Albert; and theadministrator in Ziyal. A co-
ordination group named AdminGroup is created in Ziyal. The cordination group enforcesthe coordination
of the distributed workers and the administrator object. We assume of course that the COROD S servicewas
aready installed in thethree machines. In (Figure 4.27) we can visualize the scenario described before.

Group Creation and Enrolment of Participants

Ziyal

1.corods : = ORBObj ect resolvelnitial References: #CORODS.

2. adm nGroup : = corods createCoordi nati onG oupNaned: #Adni nG oup

3. f or Coor di nati onG oupCl assNaned: #Admi ni stratorPattern.

4. adm ni strator: = Adm ni strator new.
5. adm nG oup addParticipant: adm nistrator toRol eNanmed: #Adm nistrator.

Globi

1.corods : = ORBObj ect resolvelnitial References: #CORODS.

2. adm nGroup : = corods get Ref erenceToCoor di nati onG oupNaned: #Adm nG oup
3. i nHost: #Zivyal .

4. workerl : = Worker new.

5. adm nG oup addParticipant: workerl toRol eNamed: #Worker.

Albert

1.corods : = ORBOhj ect resolvelnitial References: #CORODS.

2. adm nG oup := corods get Ref erenceToCoordi nati onG oupNaned: #Adm nG oup
3. i nHost: #Zivyal .

4. worker2 : = Worker new.

5. adm nGroup addParticipant: worker2 toRol eNaned: #Worker.

Figure 4.24 : The Administrator Pattern Scenario

In(Figure 4.24 in Ziya) we can see how the AdminGroup group is created in the machine Ziyal (lines 2
and 3). The AdminGroup group created becomesthen potentially accessibleto participantsrunningin other
machines. To participatein thegroup thedistributed objects must join one of theroles specifiedinthegroup
(i.e., Administrator or Worker). Inline 5 we can see how an administrator participant joinstherole Admin-
istrator inthegroup. Itisimportant to remember that each rol e specified in acoordination group may specify

99

aroleinterface. Theroleinterface definesthe minimum requirementsfor an active object to play arole. We
assume that the distributed objects created in the exampl e satisfy the role interfaces of the roles they want
toplay.

To obtain areference to the AdminGroup group created in Ziyal from aremote machine (i.e., Globi or
Albert) we usethe CORODS service. In (line 2 - machines Globi and Albert) we can see how the CORODS
serviceisusedin Globi and Albert to obtain aremotereferenceto the AdminGroup group created inthe ma-
chine Ziyal. In line 5 the two worker objects in the machines Globi and Albert request the AdminGroup
group to join the role workers. To enrol in arole the distributed objects send the message addPartici-
pant: <Active Object> toRoleNamed: <Role Name> to the group with thereferenceto the distributed obj ect
and the name of the role asarguments.

From the users point of view it isnot too important to know where the groups are created. The most im-
portant isto be able to access and manipul ate them asthey werelocal to the machineswhere the manipula-
tions are done. With the CORODS coordination service it is possible to coordinate objects that find
physically distributed through the network benefiting at the sametimefrom the advantages of the use of co-
ordination models and languages. The separation of the coordination and the computation aspectsin the
specification and construction of the distributed systems built using CORODS facilitate their understand-
ing, modification and evolution.

4.8 CORODS implementation Requirements and Limitations

To make groups and parti ci pants remotely accessible through the CORODS serviceit isnecessary to make
the CoLaSD model CORBA compliant. To make the CoLaSD model CORBA compliant it is necessary to
makeall thedifferent el ementsthat composethe CoLaSD model (i.e., groups, roles, coordinationrules, par-
ticipants, etc.) CORBA compliant. For every element in the CoLaSD model we must first define the IDL
interfacesfor the servicesthey offer and second to make the element afactory. Remember that for aclassto
be consider asafactory in CORBA it must have an instance method named abstractClassl D. This method
should return the appropriate UUID-Universal Unique I dentifier which uniquely identifiesthe class.

Inthe CORBA standard the IDL interfaces are the key element, they allow service providersto specify
inaneutral languagetheinterface of the servicethey provide. An IDL definesa contract binding providers
of servicestotheir clients. Wewill not present the IDL specifications of all the elementsthat composed the
CoL aSD coordination model, what it isimportant to know isthat these IDL s are necessary in order to make
the groups remotely accessible. We show below as example the IDL interface specification of therolesin
the coordination groups (Figure 4.25). In the exampletherole IDL interface includesthe IDL specifica
tion of the method defineVariableinitial Value: used to specify rolevariablesinarole (line5).

100

l.interface Rolelnterface : CosLifeCycle::LifeCycleCbject {

2.

3. Smal | t al kObj ect defineVariable (in Snalltal kOoject aSynbol);

4.

5. #pragnma sel ector defineVariablelnitial Val ue

6. defineVariabl e:initial Val ue:

7. Smal | t al kCbj ect defineVari abl el nitial Val ue

8. (in Smal | tal kObj ect aSynbol ,in Snalltal kObject aVal ue);
9.

10. Smal | t al kObj ect includesVariabl eNanmed (in Snalltal kObj ect aSynbol);
11.

12. Smal | t al kObj ect addParticipant (in Snalltal kObject aParticipant);
13.

14.

15.};

Figure 4.25 : Role’s IDL Interface

To identify the IDL interface associated with an group element (i.e., arole, acoordination rule, etc.) in
CORBA we must specify amethod CORBANamein the corresponding classimplementing theelement. In
(Figure 4.26) we can see the specification of the CORBA Name method for the role element. The method
specifiesthat the IDL interface associated with therole element isthe Rolel nterface interface that findsina
modulecalled Cordsinthe DL repositories.

1. CORBANane
2. A#' . Corods:: Rol elnterface'

Figure 4.26 : CORBAName method
Dynamicity

Between the benefits that a CORBA ORB hasisthe possibility to define static and dynamic method invo-
cations. A CORBA ORSB letsthe users either to statically define method invocations at compiletime or to
dynamically discover them at run time. For static method invocations it is necessary to compile the IDL
specification with an IDL compiler that generates client and servers stubs (called skeletons). The stubs de-
fine how clientsinvokethe corresponding servicesand how servers processthe corresponding invocations.
For the dynamic method invocation the ORB provides arun time binding mechanism for serversthat need
to handle incoming method callsfor componentsthat do not have IDL compiled skeletons or stubs.

Because of the dynamic characteristicsof the CoLaSD model (i.e., new rolescan be added to the groups,
new coordination rules can be added or removed, etc.), the static approach of method invocation does not
fix well with our approach. The use of the static approach will imply the recompilation of IDLsand there-
distribution of the generated stubs to the clients every time a new modification is done to a coordination
group. In CORODS we have decided to exclusively use dynamic method invocation to manage changesin
the specification of the coordination groups. Whenever the interface of a CoLaSD element is modified at

101

run timewe recompile dynamically the DL interface and we re-store the new specification in the Interface
Repository. We have defined a unique | nterface Repository in which we store the IDL specifications of all
the groups classes created in the network.

4.9 Conclusions and Contributions

Traditionally the coordination layer of Open Distributed System (ODS) have been built using distributed
object-oriented languages. Building distributed object-oriented systemsisvery complicated. They require
ideally that four main issues be addressed: 1) Independent Failure, 2) Unreliable Communication, 3) Inse-
cure Communication and 4) Costly Communication. Building distributed object-oriented systemsis till
difficult today not only because they require that engineers address the four i ssues exposed before, but be-
cause existing distributed object-oriented languages provided limited support for their specification, con-
struction and evolution. Engineers must take care of connecting the distributed objects and specifying their
interactions and synchronizations; and such connections, interactions and synchronizations change when
the requirements of the applications change. Evolution is the most difficult requirement to meet since not
all the application requirements can be known in advance.

Several solutions have been proposed to tacklethe complexity of building such kinds of systems, among
them CORBA. The CORBA middleware proposed by the OMG providesastandard for interoperability be-
tween independently devel oped components across networks of computers. The OMG focused on distrib-
uted objects as avehicle for system integration. The CORBA middleware provides the necessary support
for building and executing ODS. In performing itstask CORBA relieson Object serviceswhich arerespon-
siblefor performing general object management operations such ascreation of objects, accesscontrol, track
of relocated objects, etc. Nevertheless, CORBA has proven itslimitation to support the evolution of those
systems. One of the main problemsisthat the computation code of the objects that compose those systems
and they way they are composed are mixed within the objects code. Thismixing of concernsmakesthedis-
tributed systems built difficult to understand, modify and customize. The idea of separating the coordina-
tion and computation aspects in concurrent and distributed systems introduced by [Gele92a] provides an
extremely interesting approach to tackle this problem. We consider the CoLaS coordination model as a
good candidate to integrate with the CORBA model. Thisintegration will give CORBA the necessary sup-
port to build and evolve ODS. To support the specification of the coordination in distributed systemswe ex-
tended the CoL aS coordination model to takeinto consideration the possibility of failuresinthe participants
common to distributed systems. The CoLaSD model (i.e., the new extended model) provides separation of
concernsbetween computati on and coordinationin ODS simplifying their understanding, modification and
customization.

Weintroduced in this chapter CORODS, a coordination servicefor distributed objects based on the Co-
LaSD coordination model. The CORODS coordination service supports the creation, the moving, the cop-
ying, the referencing, the modification and the destruction of coordination groups across the network. We
showed in this chapter how the CORODS coordination service was implemented in top of DST [Cinc944]
amiddleware framework CORBA 2.0 compliant. Weillustrated the use of the CORODS servicesusing the
Administrator example [Papa95a], an architectural pattern used to structure distributed systems. The ad-
ministrator isan object that usesacollection of “worker” objectsto service requestsreceived from clients.

102

Contributions

The main contribution of thischapter tothesisis:
* Weintroduce CORODS a coordination service for distributed objects for CORBA[OMG95g]. The

CORODS coordination service supports the creation, the moving, the copying, the referencing, the
modification and the destruction of coordination groups across the network. By using the CORODS
serviceit ispossible to perform coordination in distributed object systems guaranteeing at the same
time their interoperabililty. The CORODS service supports: a clear separation of the computation
and the coordination concerns (i.e., the coordination is encapsul ated in the coordination groups and
the computation in the distributed participants), the encapsulation of the coordination behavior (i.e.,
all the coordination behavior is specified in the coordination groups), the specification of multi-ob-
ject coordination (i.e., multiple distributed participants can participate in the coordination groups,
multiple roles can be defined), the specification of high-level coordination abstractions (i.e., rules
are used to specify coordination of groups of collaborating distributed objects, the coordination low
level details are ignored), the evolution of the coordination (i.e., new coordination patterns can be
defined and existing modified), the reuse of coordination abstractions (i.e.,coordination patterns can
be reused independently of their distributed participants) and the incremental specification of the
coordination (i.e., coordination can be specified using existing coordination).

CHAPTER 5

OpenColLasS: a Coordination
Framework for CoLaS Dialects

Several modifications have been made to the CoL aS coordination model and language since thefirst time
it was introduced in [Cruz99a]. These modifications have mainly concerned the coordination rules that
compose the model. Some rules were removed, some others were added and the semantics of some others
were changed.

The modificationswere always motivated by two main goals: first to obtain aclear separation of coordi-
nation and computation concerns in the model and second to define the minimal set of coordination rules
necessary to solvethelargest number of coordination problems.

We were not been able for long time to justify the existence of the coordination rules that composed the
CoLaS coordination model. Why these coordination rules and not others? Where do these coordination
rules come from? Are all these coordination rules necessary? These questions appeared al the time. Our
main justification to the existence of these coordination ruleswasthat they were purely empirical, the coor-
dination rules that composed the CoL aS coordination model were the result of along experimental work
solving coordination problemsin several case study systemswebuilt. Noformal justification was proposed
until now for the existence of these coordination rules.

Related work to ColLaS like Synchronizers [Frol93a], Composition Filters [Berg94a] and Moses
[Mins97a)] suffer from the same weakness. These works introduce coordination model s based on the same
reflective approach like CoLaS and do not providefor aformal specification nor ajustification of the exist-
ence of their coordinationrules. It isimportant to remember that reflective coordination model sperform co-
ordination by intercepting and controlling base operations in the systems. CoLaS is based on the
interception of the messages exchanged by the participants of the coordination groups. In order to provide
answersto these open questionswe devel oped OpenColL aS, aframework to experiment in the specification
of CoL aSlike coordination model sand languages. Theideabehind the OpenCoL aSframework isto “open”
the CoL aS coordination model and language in away that allows one to experiment with the specification
of coordination rules.

We have divided the presentation of this chapter into four parts:

Inthefirst part of this chapter we briefly introduce the different coordination rulesthat compose the Co-
LaS coordination model: cooperation, reactive and proactive rules. Cooperation rules are used to specify
cooperation actions between participants. Reactive rules are used basically to specify synchronizations
over theoccurrenceof actionsin participants. And, proactive rulesare used to specify proactions[Andr96a)
in groupsindependently of the messages exchanged by the participants.

104

In the second part of this chapter we introduce the OpenCoL aS framework, an object-oriented frame-
work that allows usersto experiment with the specification of coordinationrulesin CoLaSlikecoordination
models. Toillustrate the structure and the use of the framework we will use as exampl e the Electronic Vote
[Mins97a], an example introduced in chapter 3 of this thesis. We will describe a possible solution to this
problem using the OpenCoL aS framework. The ideais to show how the Electronic Vote problem can be
solved using coordination rules in CoLaS and how the same problem can be solved in the OpenColL aS
framework.

Inthethird part of this chapter we analysethe evolution of the CoL aS coordination model. We compare
the specification of the coordination rulesin the three main research publicationswritteninthe CoLaS mod-
el [Cruz994][Cruz01][Cruz02]. All aong the presentation we expose the reasons that motivated the modi-
fications introduced to the original model [Cruz99a]. The OpenCoL aS framework is used to specify the
different coordination rules of the different versions of the model.

In the fourth part of this chapter we use the OpenCoL aS framework to compare the specification of the
coordination rules in CoLaS with the coordination rulesintroduced in similar approaches: Synchronizers
[Frol93a], Composition Filters [Berg94a] and Moses [Mins97a]. Weillustrate for each related model how
their coordination rules can be specified in OpenCoL aS and we compare these resul tswith the specification
of the CoLaSmodel.

Finaly at the end of this chapter we present our conclusions pointing out the main contributions of the
chapter tothethesis.

5.1 Coordination Rules in CoLaS

The coordination rules specify therules governing the coordination of acoordination group. CoLaSdefines
actually three types of coordination rules: cooperation, reactive and proactive rules. We will present here
briefly thethree different types of coordination rules, for acomplete specification of therulesrefer to chap-
ter 3 of thisthesis.

5.1.1 Cooperation Rules

Cooperation rules are rules that define implications between participant actions. They specify actions that
participants must do when they receive method i nvocations corresponding to the behaviors specified inthe
rules. Participantsreact to these method invocations only during the timethey play rolesin the groups. Co-
operation rules have the form <Role> defineBehavior: <Message> as. <Coordination Actions>. The
<Role> specifiestheroleto which theruleisassociated, the <M essage> specifiesthe signature of the meth-
od (i.e, behavior) associated with the rule and the <Coordination A ctions> specifiesablock of coordination
statements. The <Coordination Actions> statementsinclude actions that manipulate the coordination state,
synchronous recursive method invocations, method invocations to parti cipants and to roles and the manip-
ulation of the participantsinroles.

5.1.2 Reactive Rules

Reactive rules are rulesthat depend for their application on the messages exchanged by the participants of
the groups. The ColL.aS model defines actually two forms of reactive rules. interception rules and synchro-
ni zation rules. Both types of rules are eval uated at specific eval uation points defined by the model. CoLaS
definesfour evaluation points: atArrival (at thearrival of amethod invocation), atSel ection (after the selec-

105

tion of amethod invocation), atSent (after the sent of amethod invocation to another participant) and atEnd
(after the execution of amethod invocation).

Interception Rules

Interception rulesare rulesthat changethe normal processing of the method invocationsin the participants.
They specify actionsthat modify the coordination state. They have the form <Role> < Interception Opera-
tor> <Message> do: <Coordination State Actions>. There are four interception operators: interceptAtAr-
rival, interceptAtSel ection, InterceptAtSent, interceptAtEnd. Each interception operator correspondsto an
evaluation point defined in the model. The <Coordination State Actions> specify actions that modify the
coordination state of the group: basically modificationsto state variables.

Synchronization Rules

Synchronization rules specify synchronization constraints on the execution of the method invocations re-
ceived by the participants. There are two forms of synchronization rules: ignore and disable rules. Ignore
ruleshavetheform<Role>ignhore: <Message> if: <Synchronization Condition> and disableruleshavethe
form <Role> disable: <Message> if: <Synchronization Condition>. Theignore rule specifies that method
invocations corresponding to the message <M essage> must be ignored when received (i.e., not stored into
the participant’s mailbox) if the condition specified in the <Synchronization Condition> validatesto true.
Thedisablerule specifiesthat the execution of the method invocation corresponding to the message <Mes-
sage> must be delayed (executed later) if the condition specified in the <Synchronization Condition> vali-
datesto true. The <Synchronization Condition> corresponds to aboolean expression referring exclusively
to: information related to the received method invocation (i.e. receiver, arguments, etc.), the coordination
state and the current timein the system.

5.1.3 Proactive Rules

Proactiverulesarerulesthat depend for their application exclusively on the coordination state of the group
and not on the method invocations received or sent by the participants. The CoLaS model definesactually
aunigue form of proactive coordination rule. The rule hasthe form <Coordination Group> validate: <Co-
ordination State Condition> do: <Coordination Actions>. The proactive rule guarantees that certain <Co-
ordination Actions> are carried out by the group if a certain <Coordination State Condition> validatesto
true. The <Coordination Actions> in the specification of the proactive rule correspond to the same actions
that those specified in cooperation rules and the <Coordination State Condition> to the same condition
specifiedinthereactiverules, excluding of courseinthe conditioninformation related to thereceived meth-
od invocation whichin proactiverulesdo not have any sense becausethey arenot triggered by the reception
of method invocations.

5.2 The OpenColLaS Framework

OpenColL aSisaframework that allowsoneto specify coordination rulesfor CoL aSlike coordination mod-
elsand languages. The OpenCoL aS defines an abstract class named CoordinationRule (Figure 5.1) asthe
root of all the possible types of coordination rules. OpenCoL aS defines three types of coordination rules:
behavioral, reactive and proactiverules.

106

CoordinationRule

/N

BehavioralRule ReactiveRule ProactiveRule

Figure 5.1 :The OpenCoLaS Framework

For each type of coordination rule OpenCoL aS defines an abstract class (subclass of the Coordination-
Rule class) containing all the necessary support to specify new coordination rules of the corresponding
type: BehavioralRulefor behavioral rules, ReactiveRulefor reactive rulesand ProactiveRulefor the proac-
tiverules. Wewill describein the next subsections how each type of coordination ruleisspecifiedin Open-
CoLasS.

We will use as example the CoL aS model to show how the coordination rules that compose the model
can be specified in OpenCoL aS. Specifically wewill use the Electronic Vote problem presented in chapter
3 of thisthesisto illustrate how instances of those coordination rules can be created in OpenColL aSto solve
aconcrete coordination problem.

5.2.1 The Electronic Vote [Mins97a]

Weshow in (Figure 5.2) apossible solutionin CoLaSto the Electronic Vote problem presented in chapter
3 of thisthesis. In the Electronic Vote an open group of participantsis requested to vote on aspecific issue.
Every participant in the group can initiate avote on any issue it chooses. Each participant votes by sending
theresult of its vote to the participant initiator of the vote. The system must guarantee that the voteisfair:
(1) aparticipant can vote at most once and only within the voting period, (2) the counting is done correctly
and (3) theresult of the voteis sent to all the participants after the end of the voting period.

107

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,

[1]

[2]

[3]

[4]

[7]

[8]

[9]

Vot er defineBehavior: ’'startVote:anlssue' as:
[group votel nProgress:true.
Voter voteOn: anlssue].

Vot er defineBehavior: ’'voteOn:anlssue’ as:
[sender vote:(self opinion: anlssue)].

Vot er defineBehavior: ’'vote:aVote' as:
[(aVote = "Yes')
i fTrue: [group numyes++]
i fFal se: [group nunNot ++] .
sender hasVoted: true].

Vot er defineBehavior: ’'stopVote' as:
[group votePeriodExpired: true].

Voter ignore: 'vote:aVote' if:
[group voterPeri odExpi red or sender hasVoted].

Vot er di sable: ’'startVote:anlssue' if:
[group votel nProgress].

El ectroni cVot e
val idate: [group votel nProgress and group votePeriodExpired] do:
[(group nunies = group size)
i fTrue: [Voter voteResult: ’'Yes']
i fFal se: [Voter voteResult: "No'].
Vot er do:[:each | each hasVoted: false].
group vot ePeri odExpi red: f al se.
group votel nProgress: fal se.
group numves: 0].

Figure 5.2 : The Electronic Vote in CoLaS

5.2.2 Behavioral Rules

The behavioral rulesin OpenColLaS are specified in two steps. In the first step we create behavioral rule
classes corresponding to the cooperation rulesthat wewant to specify. | nthe second step we createinstances
of the behavioral rules using the created behavioral rule classes.

Rules Class Creation

TheBehavioralRule classin the OpenCoL aSframework definesauniquerul e class creation method named
defineRule: <Rule Name> to create behavioral rule classes. The behaviora rule classes created are sub-
classes of the BehavioralRule class. Toillustrate how behavioral rules can be specified in OpenCoLaSwe
will use as exampl e the cooperation rules specified in the CoLaS model. The CoL aS model specifies one

108

type of behaviora rule(i.e., cooperation rule) named defineBehavior. In (Figure 5.3) we can seehow abe-
havioral rule class named DefineBehavior is created in the OpenCoL aS framework.

Behavi or al Rul e defi neRul e: Defi neBehavi or
Figure 5.3 : CoLaS DefineBehavior rule in OpenColLaS

Rules Instantiation

The second step in the specification of behavioral rules consists of creating behavioral ruleinstancesusing
the created behavioral rule class. The BehavioralRule class in the OpenColL aS framework specifies a
unigue method message: <M essage> actions: <Coordination Actions> for the creation of behavioral rules
instances. The argument <M essage> specifies the signature of the method (i.e., behavior) associated with
the rule and the argument <Coordination Actions> specifies a block of statements. The statementsin the
<Coordination Actions> include: (1) actionsthat manipul ate the coordination state, (2) synchronous recur-
sivemethod invocations, (3) method invocationsto participants and to roles and (4) the manipulation of the
participantsin roles.

Using behavioral Rules

To create behavioral ruleswe usethe DefineBehavior ruleclass. For each behavioral ruleinstanceto becre-
ated we specify the method signature <M essage> associated with the rule and the <Coordination Actions>
that define the coordination behavior. In (Figure 5.4) we show how four coordination behavior rules de-
fined in the Electronic Vote example are defined in OpenCoL aS: 1) startVote: <anlssue> (rule[1]), 2) vote-
On: <anlssue> (rule[2]), 3) vote: <aVote>, (rule[3]) and 4) stopVote (rule[4]).

1.[1] DefineBehavi or message: 'startVote: anl ssue’

2 actions:

3 [group votel nProgress:true.

4. Vot er voteOn: anlssue initiator: receiver].
5.

6.[2] DefineBehavi or nessage: ’'voteOn: anlssue’

7 actions:

8. [sender vote:(self opinion: anlssue)].
9.

10.[3] Defi neBehavi or nessage: ’'vote: aVote’

11. actions:

12. [(aVote = 'Yes')

13. i fTrue: [group nunies++]

14. i fFal se: [group numNot ++] .

15. sender hasVoted: true].

16.

17.[4] DefineBehavi or nessage: ’'stopVote’

18. actions:

19. [group votePeri odExpired: true]

Figure 5.4 : Behavioral Coordination Rules Instantiation for the Electronic Vote

109

5.2.3 Reactive Rules

Thereactiverulesin OpenColL aSare specified intwo steps. Inthefirst step we createthereactiveruleclass-
es corresponding to the reactive rules that we want to specify. I n the second step we create the reactiverule
instances using the created reactive rule classes. For each reactiverule class created i s necessary to specify
the semantics of the reactive rule and the validation point at which the rule must be eval uated.

Rules Class Creation

The basic ReactiveRuleclassin the OpenCoL aSframework definesarul e class creation method named de-
fineRule: <Rule Name> semantics: <Rule Semantics Actions> validationPoint: <Validation Point> to cre-
atereactiveruleclasses(Figure 5.5). The<Rule Name> argument specifiesthename of therule, the<Rule
Semantics Actions> argument specifies the semantics of the rule and the <Validation Point> argument the
validation point at which the rule must be eval uated.

Reacti veRul e defi neRul e: <Rul eNane>
semantics: <Rule Semantics Actions>
val i dati onPoi nt: <Validation Point>

Figure 5.5 : Reactive rules in OpenColLaS

Tounderstand the specification of reactiverulesin OpenColL aSitisimportant to understand that reactive
rulesarerulesthat depend for their eval uation on the method invocations recei ved by the participantsinthe
groups and that the participants are the entities in charge of their enforcement. The <Rule Semantics Ac-
tions> specify actions that transform the processed method invocations, like meta-actions in the sense of
[Kicz914] (i.e., actions that allow the modification of the language). It is possible to define three types of
semantics actions. 1) actions that modify the arguments of the method invocations, 2) actions that modify
the mailboxes of the participants (i.e. to remove amethod i nvocation from amailbox or to put amethod in-
vocation into amailbox) and 3) actions that transform method invocations into other method invocations,
in particular into a NoM essage method invocation.

Concerning the validation point <Validation Point> that appears in the specification of the rule, Open-
CoL aS defines actually four evaluation points: atArrival, atSelection, atSent, atEnd. The four validation
points correspond to the same validation points defined in the CoLaS model. They specify different mo-
ments during the processing of the method invocationsin the participants.

To refer to the method invocation currently processed by a participant in the <Rule Semantics Actions>
OpenColL aS definesapseudo variable called message. It ispossibleto request for the argumentsand the se-
lector of themethod invocation currently processed by sending the message arguments and sel ector respec-
tively to the pseudo variable message.

Concerning the second kind of semantics actionsthat appear in therules, they correspond to actionsthat
modify the mailboxes of the participants: (1) to add amethod invocation into a participant mailbox and (2)
to remove amethod invocation from a participant mailbox. OpenCoL aS defines a pseudo variable named
mailboxto refer to aparticipant mailbox. To add amethod invocation to aparti cipant mailbox one must send
the message addMessage: <M ethod Invocation Request> to the mailbox pseudo variable with the method
invocation reguest to add as an argument. To remove amethod invocation from a participant mailbox one

110

must send the message nextMessage to mailbox pseudo variable. The nextMessage method invocation re-
turnsthe next method invocationin the parti cipant maibox that validatestheinternal synchronization policy
specified in the participant.

The NoMessage method invocation specified in the third kind of semantics actions, is an specia mes-
sage used internally in OpenColL aSto indicate that amethod invocation must not continue to be processed.
It isextremely important to precise that the last action in a <Rule Semantics A ctions> specification should
alwaysbetoreturn amethod invocation: the samereceived, anew or aNoM essage method invocation. The
method invocation returned will continue to be processed by the participant if the method invocation re-
turned is not aNoM essage method invocation

For simplicity OpenCoL aS defines a second rule creation method in the ReactiveRul e class named de-
fineRule: <Rule Name> validationPoint: <Validation Point>. In thisrule the semantics associated with the
new reactiveruleisdefined by default asthe return of the same method invocation being processed.

Toillustrate how reactive rules can be specified in OpenCoL aSwewill useasexamplethereactiverules
specified in the CoLaS model. The CoLaS model specifies six types of reactiverules: InterceptAtArrival,
InterceptAtSelection, InterceptAtSent, InterceptAtEnd, Disable and Ignore. In (Figure 5.6) we can see
how the reactive rules of the CoLaS model are specified in the OpenCoL aS framework.

1. ReactiveRul e

2 defineRul e: Ignore

3. semantics: [“NoMessage new]

4. val i dati onPoi nt: OpenCoLaS atArrival.
5.

6. Reacti veRul e

7 defineRul e: Disable

8. semantics: [nail box addMessage: nessage.
9. "NoMessage new]

10. val i dati onPoi nt: OpenColLaS at Sel ecti on.
11.

12. Reacti veRul e

13. defineRule: InterceptAtArrival

14. val i dati onPoi nt: QpenColLaS atArrival.
15.

16. Reacti veRul e

17. defineRul e: InterceptAtSel ection

18. val i dati onPoi nt: OpenColLaS at Sel ecti on.
19.

20. Reacti veRul e

21. defineRul e: | nterceptAt Sent

22. val i dati onPoi nt: QOpenColLaS at Sent.

23.

24. ReactiveRul e

25. defineRul e: InterceptAt End

26. val i dati onPoi nt: OpenColLaS at End.

Figure 5.6 : ColLaS Reactive Coordination Rules in OpenCoLaS

111

Ignore (Figure 5.6 line 1): the rule semantics associated with the rule specifies the return of a No-
Message method invocation. The NoMessage method invocation indicates internally to the partici-
pant that the method invocation processed should not continue to be processed. The rule must be
evaluated at the atArrival validation point.

Disable (Figure 5.6 line 6): the rule semantics associated with the rule specifies the return of aNo-
Message method invocation after re-inserting the method invocation processed in the participant’s
mailbox. The NoMessage method invocation indicates internally to the participant that the method
invocation processed should not continue to be processed. The rule must be evaluated at the atAc-
cept validation point.

InterceptAtArrival (Figure 5.6 line 12), InterceptAtSelection (Figure 5.6 line 16), InterceptAt-
Sent (Figure 5.6 line 20) and InterceptAtEnd (Figure 5.6 line 24): the specifications of the four
rules do not associate any rule semantics to the rules, by default they return the same method invo-
cation processed. the InterceptAtArrival rule must be evaluated at the atArrival validation point, the
InterceptBeforeExecution rule must be evaluated at the atSelection validation point, the Intercep-
tAtSent rule must be evaluated at the atSent validation point and the InterceptAfterExecution must
be evaluated at the atEnd validation point.

It isinteresting to remark that in the specification of the CoL aS reactive rulestwo of the rules must be
evaluated at the same validation point: the InterceptAtArrival and the Ignore rules at the atArrival valida-
tion point. Which rule should be eval uated thefirst?is aquestion that must be solved. OpenColL aS alows
usersto specify evaluation ordersto avoid eval uation conflicts between rules. We will show below how re-
activerulesareevaluatedin CoL aSand how do we can specify eval uation ordersbetween rulesinthe Open-
CoL aS framework.

Rules Instantiation

The second step in the specification of reactiverulesisto create reactive ruleinstances using the created re-
active rule classes. The ReactiveRule class in OpenCoL aS specifies a generic creation method message:
<Message> condition: <Coordination Condition> actions: <Coordination State Actions> (Figure 5.7).
The argument <Message> specifies the signature of the method associated with the rule. The argument
<Coordination Condition> specifies a boolean expression referring to information related to the received
method i nvocation and the coordination state. And, the argument <Coordination State A ctions> specify ac-
tionsthat modify the coordination state of the group (i.e., modify the valuesto the state variables).

<Reactive Rule > nessage: <Message>
condition: <Coordination Condition>
actions: <Coordination State Actions>

Figure 5.7 : Instantiation of reactive rules in OpenCoLaS

For simplicity OpenCol aS definestwo other creation methodsfor reactiverules, onein which the <Co-
ordination State Action> are not specified and thus by default an empty segquence of actionsisassumed and
another in which the <Coordination Condition> is not specified and thus by default a boolean expression
trueisassumed (i.e, therule aways evaluatesto true).

112

In(Figure 5.8) we show how algnore and aDisable reactiverulesdefined in the El ectronic Vote exam-
plearedefined in OpenColL aS. Both rules do not specify <Coordination State Actions> actions, implicitly
they have associated an empty sequence of actions.

20.[7] lgnore nessage: 'vote:aVote’

21. condi tion:

22. [group voterPeriodExpired or sender hasVoted].
23.

24.[8] Disable nessage: 'startVote:anl ssue’

25. condi tion:

26. [group votel nProgress].

Figure 5.8 : Reactive Coordination Rules Instantiation for the Electronic Vote

The solution to the Electronic Vote problem showed in (Figure 5.2) does not include CoL aS Intercep-
tion rules: InterceptAtArrival, InterceptAtSelection InterceptAtSent, InterceptAtEnd. Interception rules
modify the coordination state at different moments during the processing of method invocations by the par-
ticipants. Weiillustratein (Figure 5.9) how instances of the interception rules can be created in OpenCo-
LaS. We do not specify specific messages and actions to these rules, they depend on the particular
coordination problem in which they are defined. It isimportant to remark that we do not specify <Coordi-
nation Condition>sduring their creation, thismeansthat they alwaysvalidateto true. Theinterception rules
areevaluated at the eval uation pointsindicated by their names.

Intercept At Arrival nessage:
actions: [..]

I nt er cept Bef or eExecuti on nessage:
actions: [..]

I nt er cept At Sent nessage:
actions: [..]

I nt er cept Aft er Executi on nessage:
actions: [..]

Figure 5.9 : Instantiation of Interception Rules

5.2.4 Proactive Rules

The proactive rulesin OpenCoL aS are specified in two steps. In the first step we create the proactive rule
classes corresponding to the proactive rulesthat we want to specify. In the second step we create the proac-
tiveruleinstances using the created proactive rule classes.

113

Rules Creation

The basic ProactiveRule classin the OpenCoL aS framework defines a unique rule class creation method
defineRule: <RuleName> to create proactive rule classes. The proactive rule classes created are subclasses
of the ProactiveRule class. Toillustrate how proactive rules can be specified in OpenColLaSwewill use as
example the proactive rules specified in the CoLaS model. The CoLaS model specifies a unique type of
proactive coordination rule: Validate. In (Figure 5.10) we can see the how a proactive rule class named
Validateiscreated in the OpenCol aS framework.

Proacti veRul e defineRul e: Validate.

Figure 5.10 : ColLaS Proactive Rule in OpenColLaS

Rules Instantiation

The second step in the specification of proactive rulesisto create proactive ruleinstances using the created
proactive rule classes. The ProactiveRule class in OpenColL aS specifies a generic creation method condi-
tion: <Coordination State Condition> actions: <Coordination Actions> to create proactive rule instances.
The <Coordination State Condition> corresponds to the same condition specified in the reactive rules, ex-
cluding of coursein the condition information rel ated to the received method invocation whichin proactive
rules do not have any sense. The argument <Coordination Actions> corresponds to the same actions that
those specified in cooperation rules. In (Figure 5.11) we show how a Validate proactive rules defined in
the Electronic Vote exampleisdefined in OpenCoLaS.

27.[9] Validate

28. condition: [group votel nProgress and group votePeri odExpired]
29. actions:

30. [(group nuni¥es = group size)

31. ifTrue: [Voters voteResult: ’Yes’]

32. i fFalse: [Voters voteResult: "No'].

33. Voter do:[:each | each hasVoted: false].

34. group vot ePeri odExpi red: f al se.

35. group votel nProgress: fal se.

Figure 5.11 : Proactive Coordination Rules for the Electronic Vote

5.2.5 Evaluation of Coordination Rules in CoLaS

To completethe presentati on of the OpenCoL aSframework we must explain how the coordination rulesde-
fined are evaluted in the OpenCoL aS framework. Wewill first have alook on how and when Coordination
Rules are evaluated in the CoL aS coordination model. In CoL aS the method invocations received by par-
ticipants are stored into their mailboxes until they are ready to process them. The selection of amethod in-
vocation from a participant mailbox depends of the internal synchronization policy associated with the
participant. Remember that synchronization policies are amechanism defined in the participant’s model to
ensure the consistency of the participant state when method invocations are executed concurrently. In Co-

114

LaS the participantsfollow amutual exclusion synchronization policy, only one method invocationisexe-
cuted at the time by a participant. In other words method invocations are processed by the participants
sequentially.

Cooperation Rules Evaluation

Cooperation rules are rules that define coordination behavior for participantsin groups. Each cooperation
rule specifiesthe signature of the method (i.e., behavior) to which the rule isassociated. Cooperation rules
are executed in response to method invocations received by the participants. When a method invocation
corresponding to the signature specified in arule is selected by a participant for execution (i.e., when the
rule validates the synchronization policy) the behavior specified in theruleis executed.

Reactive Rules Evaluation

Reactive rules are rules that depend for their execution of the method invocations received by the partici-
pants. Each reactive rule specifies the signature of the method to which the ruleis associated and avalida-
tion point which indicates the moment at which the rule should be evaluated. In CoLaS four different
validation points are defined for the evaluation of reactive rules: atArrival, atSelection, atSent and atEnd.
At each validation point reactive rules specified as associated with the validation point are matched against
the selector of the method invocation processed. Rules matching the method invocation are then executed.

Solving Evaluation Conflicts

The execution of the preselected rules is made on the basis of evaluation priorities associated with
the different reactive rules. Rules with higher priorities are executed first than rules with lower pri-
orities. The maximum priority that can be specified for aruleis defined by the OpenCol as constant
maximumEval uationPriority which is equal to 100 and the minimum priority by the constant mini-
mumEvaluationPriority which isegual to 1. By default when no priority isassociated with areactive
rule the evaluation priority associated corresponds to the constant defaultEval uationPriority which
is equal to 50. When severa rules have the same evaluation priority at some validation point the
reactive rules are evaluated nondeterministically.

Rules Execution

All the preselected reactive rules at some validation point are executed starting with those with the
highest evaluation priority. The execution of aruleimpliesfirst the evaluation of the <Coordination
Condition> specified in the rule. If the <Coordination Condition> validates to true, then the <Coor-
dination State Actions> actions associated with the rule are executed. Finally, the <Rule Semantics
Actions> semantics actions specified during the creation of the rule are then applied.

In the CoLaS model two rules: InterceptAtArrival and Ignore must be evaluated at the same valida-
tion point (atArrival). To specify the order in which these two rule must be evaluated we must assign
different evaluation priorities to these rules during their specification. To specify the evaluation pri-
ority for areactive rule the message evaluationPriority: <Evaluation Priority Vaue> must be sent
to the reactive rule during its creation with the priority to assign as an argument. In (Figure 5.12)
we show how we assign in OpenCoL aS different evaluation priorities to the two reactive rules Ig-
nore and InterceptAtArrival. It is cleat that the Ignore rules must be evaluated first than the Inter-
ceptAtArrival rules at the atArrival evaluation point, they have a higher execution priority.

115

Ignore evalutionPriority: OpenCoLaS maxi nunEval uationPriority.

Intercept At Arrival evaluationPriority: OpenCoLaS mi ni munEval uati onPri or
Figure 5.12 : Specification of evaluation priorities for CoLaS rules

Proactive Coordination Rules

The proactive rules are enforced and evaluated in the CoLaS model by the coordination groups and not by
the participantsasinthe case of behavioral and reactiverules. Itisimpossibleto determinewhen aproactive
rulewill be evaluated nor the order in which they will be selected for evaluation. What is certain isthat all
the proactive rul esassociated with the group will be evaluated at that time. | f the <Coordination Condition>
associated with theproactiverul evalidatesto true the group executesthe <Coordination Actions> specified
intherule.

5.3 Evolution of the CoLaS Coordination Model

One of the purposes of specifying and building the OpenColL aS framework was to provide an experimen-
tation tool to study the specification of existing and new coordination rulesin the CoL aS coordination mod-
el. Thecurrent version of the CoLaSmodel presented in chapter 3 of thisthesisistheresult of thework done
inthe OpenCoL asframework in thisdirection. To try to illustrate these resultswe will compare the coordi-
nation rulesin the CoLaS model with thoseintroduced in two previous versions of the model. Thefirst Co-
LaS version correspondsto the original CoLaS model introduced in [Cruz99a], the second CoL aS version
correspondsto an intermediate version of the CoLaS model presented in [Cruz014d)].

5.3.1 Original CoLaS model [Cruz99a]

Inthe original CoL aS coordination model there were five different types of reactive rules and two types of
proactive rules. Four categories of rules composed the reactive rules: synchronization, interception, coop-
eration and multi-party rules.

Synchronization Rules

Two forms of synchronization rules were specified in the origina model: Ignore and Disable rules. Both
kinds of rules correspond to the same two synchronization rulesthat we havein the current CoLaS model.

Interception Rules

Twoformsof interception ruleswere specified in the original model: ImpliesBeforeand ImpliesAfter rules.
Thetwo rulescorrespond to the I nterceptAtSel ection and InterceptAtEnd rulesin the current CoLaSmodel.
The only difference between these rulesin the two modelsisthat in the current CoL aS model werestrict the
kinds of coordination actions specified in the rulesto strictly actions that modify the coordination state. In
the ImpliesBefore and ImpliesAfter rules the list of coordination actions included for example asynchro-
nous and synchronous recursive message sends. The current CoL.aS model providestwo moreinterception
rules: InterceptAtArrival and InterceptAtSent. The InterceptAtArrival rule wasintroduced in theinterme-

116

diate version of the model before we started our work with the OpenCoL aS framework. Both interception
rulesare eval uated respectively at theatArrival and at the atSent validation points specifiedin OpenCoL aS.

Cooperation Rules

Theoriginal version of the CoL aS coordination model did not specify cooperationrulesasinthecurrent Co-
LaS modél (i.e, defineBehavior rules). The cooperation protocols were specified uncleanly using the two
interception rules defined in the original model and by defining coordination methods in the participants.
The model did not provide a clean separation of the coordination and computation aspects. Coordination
code appear mixed within the computational code of the participants. In the current version of CoLaS we
have behavioral rulesin the groupsto specify the coordination behavior. It isnot necessary anymoreto de-
fine coordination methodsin the specification of the participants.

Multi-Party Rules

Theoriginal version of CoL aS specified an interesting form of multi-party reactiverule called Atomic. The
execution of the <Coordination A ctions> actions associ ated with the Atomic rules depended on multiplein-
vocation requests occurring on different participants playing different roles. From our point of view the
Atomicruleisnot necessary inthe current version of CoL aSbecause the method invocationsand rules spec-
ify sequences of actions are executed atomically by default. However, we have found some problems not
related to the atomicity problems in which some form of multi-party synchronization rules seemsto bethe
most adapted solution. For example, amulti-party condition synchronization implicating multiple partici-
pantsor multi-party mutual exclusions. Fromour point of view the specification of multi-party coordination
rulesisan interesting future work that can be donein the CoLaS model and in the OpenCoL aS framework.
The problem with multi-party coordination rules is the specification of a clear semantics considering the
fact that they are based on multipleinvocation requests occurring in different participants possibly playing
different roles.

Proactive Rules

Two formsof proactiveruleswere specifiedintheoriginal CoLaSmodel: Once and Always. For both types
of proactiverulesit isnecessary to specify a<Coordination Condition> and <Coordination Actions> asin
the current version of the CoLaSmaodel. The<Coordination Condition> associated with theruledetermines
whether the <Coordination Actions> associated with the rule must be executed when theruleis evaluated
by the group. The semantics of the Once proaction rule ensured that the <Coordination Actions> associated
with the proaction were executed only once, the first time the <Coordination Condition> validated to true.
The Alwaysrul e ensured that the <Coordination Actions> associated with the proactive rule were executed
each time the <Coordination Condition> validated to true (and that, during the time of existence of the
group). Actually OpenCoL aS specifies only one proactive rule called Validate which corresponds to the
second form of proactiveruleintheoriginal CoLaS model. It iseasy to seethat the Once proactionruleisa
particular case of the Always proactive rule, the semantics of the rule can be simulated in the Alwaysrule
by defining a boolean group variable in the coordination state that indicates whether the proaction was al -
ready executed or not by the group.

117

5.3.2 Intermediate CoLaS model [Cruz01a]

In the intermediate CoL aS coordination model we had one type of behavioral rule, five different types of
reactiverules and onetype of proactive Rule. Two categories of reactive rulescomposed thereactiverules:
synchronization and interception rules.

Behavioral Rules

Oneform of behavioral rulewas specified in theintermediate CoLaS model: defineBehavior. The behavio-
ral rule correspondsto the same behavioral rule that we havein the current version of the CoLaS model.

Synchronization Rules

Two forms of synchronization rules were specified in the intermediate CoLaS model: Ignore and Disable.
Both kinds of rules correspond to the same two synchronization rules that we havein the current version of
the CoLaS model.

Interception Rules

Three forms of interception rules were specified in theintermediate CoLaS model: InterceptAtArrival, In-
terceptBeforeExecution and I nterceptAfterExecution. The three kinds of rules correspond to the I ntercept-
AtArrival, InterceptAtSelection and InterceptAtEnd interception rules specified in the current version of
the CoLaS model. Actually the CoLaS model provides an extrainterception rule InterceptAtSent. The In-
terceptAtSent interception rulesis evaluated at the atSent validation point. The InterceptAtSent ruleis an
important rule because it allows the specification of coordination based on the messages sent to other par-
ticipants.

Proactive Coordination Rules

Oneform of proactiverulewas specified intheintermediate CoLaSmodel : validatesAlways, thisproaction
rule correspondsto the Validate proaction rule that we havein the current version of the CoLaS model.

5.4 Simplifying the Interception Rules in CoLaS

If we compare the semantics of the different interception rules in the current version of the CoLaS model
(i.e., InterceptAtArrival, I nterceptAtSel ection, I nterceptAtSent and I nterceptAtEnd) and we analysethe se-
manctics associated with these rules in the OpenCoL aS framework we can say that they have the “ same”
semantics (i.e. to execute some actions at some eval uation point during the processing of amethod invoca-
tion by a participant). They differ exclusively in the validation point at which they must be evaluated. We
can deducethat only one generictype of interceptionruleisnecessary in CoLaSand in OpenCoL aS. A pos-
sible modification to the specification of interception rulesin CoL aS consists of defining a unique type of
interception rule name InterceptAt and to specify during its instantiation the validation point at which the
rule must be evaluated: atArrival, atSelection, atSent and atEnd. In (Figure 5.13 line 1) we can seehow a
genericinterception rule InterceptAt isspecified in OpenCol aS, no validation point isassociated duringits
specification. It isonly during the instantiation process of the InterceptAt interception rule that we specify
the validation point at which the rule must be evaluated.

118

1. ReactiveRul e

2. defineRule: InterceptAt.

3.

1.1 ntercept At nmessage:

2. actions: [..]

3. entryPoi nt: OpenCoLaS atArrival.
4.

5.1 ntercept At nessage:

6. actions: [..]

7. entryPoi nt: OpenCoLaS at Sel ecti on.
8.

9.l ntercept At nessage:

10. actions: [..]

11. entryPoi nt: OpenCoLaS at Sent.
12.

13. I ntercept At nessage:

14. actions: [..]

15. ent ryPoi nt: OpenCoLaS at End.

Figure 5.13 : Simplifying Interception rules

5.5 Specifying CoLaS like Coordination Models in OpenColLaS

A second goal of specifying and building the OpenCoL aS framework wasto provide aexperimental tool to
study and comparethe specification of Coordination Rulesin ColL aSlikecoordination modelsand languag-
es. Wepresent in thissection our resultsin the study of thethree most important related coordination models
and languages to the CoL aS model: Moses [Mins97a], Composition Filters [Berg94a] and Synchronizers
[Frol93a].

5.5.1 Moses [Mins97a]

Moses specifies basically two kinds of reactive rules (lawsin their terminology): sent(x,m,y):- <Primitive
Actions> and arrived(x,m.y):- <Primitive Actions>. The two rules determine what should be done when a
specified group of messagesis sent and received by the participants of thegroup. The sent rule specifiesthat
aparticipant x sendsamethod invocation request (i.e., amessage) mto another participant y and thearrived
that a message m sent by a participant x arrives to the participant y. The two reactive rules deal with what
Minsky and Ungureanu call regulated events. Among the possible <Primitive Actions> we have for-
ward(m,y,x) that emitsto the network the message m addressed to the participant y sent by the participant x
and deliver(m) that effectively delivers the message m to the participant that received the message. Other
possible primitive actionsinclude: modificationsto the coordination state (i.e., CS control state of the par-
ticipant in their terminology). Specifically they propose the following operations: (1) +t add atermto the
control state, (2) -t removesatermfromthe control state, (3) t1<- t2 which changetermt1 withtermt2; and
(4) incr(t(v),x) which incrementsthe value of aterm t with some quantity x.

Additionally to the sent and arrived reactive rules, M oses defines two forms of proactive rules (or obli-
gationsinthe Mosesterminology): +obligation(p,dt) and -obligation(p). The +obligation rule causesan ob-

119

ligation event obligationDue(p) to occur at some participant x (Agent in the Moses terminology) in dt
seconds (provided that the obligation has not been repeal ed in the meantime by the inverse operation -obli-
gation). The occurrence of the obligation event obligationDue(p) forces the participant to evaluate therule
for thisevent and to carry it on. Theruleisthusthe action associated with the obligation event.

The Sent rule

Whenweanalysethe semanticsof thereactiverulesin M oseswe can seethat when amessagemissent from
aparticipant x to aparticipant y, there are basi cally two possible actions over the message m that the <Prim-
itive Actions> may specify: to forward the message m or to do not forward the message m. It does not have
any senseto deliver to the participant amessage that a participant has requested to send. When the message
misnot forwarded the message must be simply ignored (likeinthe Ignorerulein the CoLaS model) and not
sent. When the message is forwarded the message itself is not affected (like in the InterceptAtSent rulein
the CoLaS model). In both cases <Primitive Actions> affecting the control state of the participant can be
specified.

We propose to specify in OpenCoL aS the sent rule in M oses as two different reactive rules: Sentlgnore
(with asimilar semanticsto the Ignore rule specified in the CoLaS model) and SentForward (with asimilar
semantics to the InterceptAtSent rule specified in the CoLaS model). Both rules must be evaluated at the
atSent validation point. In (Figure 5.14 rules 1 and 2) we illustrate how these two rules are specified in
OpenColLaS. It isimportant to remark that during the instantiation of the Sentlgnore rules (Figure 5.14
line 10) we specify the <Coordination Actions> that must be executed when therulesare applied and we do
not specify a<Coordination Condition> aswe do in CoLaSwhen we create Ignore rulesin the examples.

1.[1] ReactiveRule

2. defineRul e: Sentlgnore

3. semantics: [“NoMessage new]

4. entryPoi nt: OpenCoLaS at Sent.

5.

6.[2] ReactiveRule

7. defineRul e: Sent Forward

8. ent ryPoi nt: OpenCoLaS at Sent .

9.

10. Sent | gnore nessage: <m Moses nessage>

11. actions: [<Coordination State Actions>]
12.

13. Sent Forward nmessage: <m Mbses nessage>

14. actions: [<Coordination State Actions>]

Figure 5.14 : Moses Sent rule in OpenColLaS

The Arrived rule

The analysisof thearrived rulereveal s something similar to what we previously found for the sent rule. We
can see that when amessage m arrives from aparticipant x to aparticipant y, there are al so two possible ac-
tions over the message m that the <Primitive Actions> may specify: to deliver the message m to the partic-
ipant or to do not deliver the message to the participant. When the message mit is not deliver the message

120

issimply ignored (again likein the Ignore rulein the CoLaS model). When the message misdelivered the
message itself isnot affected (likein the InterceptAtArriva ruleinthe CoLaS model).

We proposeto specify in OpenColL aSthearrived rule astwo different reactiverules: Arrivedignorewith
asimilar semanticsto the Ignore rule specified in the CoLaS model and ArrivedDeliver with asimilar se-
mantics to the InterceptAtArrival rule specified in the CoLaS model. Both rules must be evaluated at the
atArrival validationpoint. In (Figure 5.15 rules 1 and 2), weillustrate how thesetwo rulesare specified in
OpenColLaS. Itisimportant to remark that during theinstantiation of the Arrivedl gnore ruleswe specify the
<Coordination Actions> that must be executed when the rules are applied and we do not specify a<Coor-
dination Condition> aswe do when weinstantiate |gnore rulesin the CoL aS exampl es.

1.[1] ReactiveRule

2. defineRule: Arrivedlgnore

3. semantics: [“NoMessage new]

4. entryPoi nt: OpenCoLaS atArrival.

5.

6.[2] ReactiveRule

7. defineRule: ArrivedDeliver

8. entryPoi nt: OpenCoLaS atArrival.

9.

10. Arrivedl gnore nessage: <m Moses nessage>

11. actions: [<Modifications to the control state>]
12.

13. ArrivedDel i ver message: <m Mbses message>

14. actions: [<Mbodification to the control state>]

Figure 5.15 : Moses Arrived rule in OpenCoLaS

Obligations rules

The obligations rules in the moses model can be specified in the CoLaS model as proactive rules. We can
simulate the semantics of the +obligation proaction rule and the generation of the obligation event obliga-
tionDue dt seconds|ater using acoordination state variable of “type” time. We must defineagroup variable
to storethetime at which the proactive rule must be evaluated and include areferenceto thisvariablein the
<Coordination Condition> associated with the proactive rule. The condition must include abool ean expres-
sion which comparesthe val ue of the group variable with the current timein the system. The only problem
with thisapproach isthat for each proaction specifying adt value we need to specify agroup variable. Con-
cerning the -obligation rule we can simulate the semantics of the rule by specifying another coordination
state variable that specifies whether the rule should not be eval uated anymore, again the problem with this
approach isthat for each -obligation rule agroup variable needs to be specified. It will bereally interesting
tothink inthe possibility toincludein the CoLaS model proaction rules associated with time constraints as
in the Moses model, thiswill avoid the definitions of coordination state variables each time an obligation
rule will appear. This could be another ideafor future work in the CoL aS coordination model.

121

1. ProactiveRul e

2. defi neRul e: #+Obli gati on.

3.

4. +Obl i gation nessage: <Mdses bligati on Event>

5. condition: [tinmeToExecuti onObligation >= Tinme now]
6. actions: [<Coordination State Actions>]

Figure 5.16 : Moses +obligation proaction rule in OpenCoLaS

Conclusions

We can conclude from the previous presentation that the two reactive rules specified in M oses correspond
to two special forms of the Ignore and InterceptAt reactive rulesin the CoLaS model. The Sentlgnore and
Arrivedignore can beinstantiated in OpenCoL aSfrom an I gnore rule specifying atSent and atArrival asthe
corresponding validation points. The SendForward and ArrivedDeliver can beinstantiated from alntercep-
tAt rule specifying atSent and atArrival asthe corresponding validation points.

Concerning the CoLaS model we can say that: 1) the CoLaS model specifies rules at two validation
pointsnot considered inthe M osesmodel (atSelection and atEnd), we can say that the CoLaS model isfiner
thanthe M oses model ; 2) the M oses model does not provide equivalent rulesto the Disabl e, InterceptAtAc-
cept, InterceptAtSelection and InterceptAtEnd, this is a consequence of the previous point. The Disable
rules are fundamental to express condition synchronizations in concurrent systems; 3) the Moses model
provides an extra Ignore rule at the atSent validation point which the CoL.aS model does not provide, the
CoLaS model only definesalgnorerule at the atArrival validation point similar to Moses and 4) The Ar-
rivedignore rule in the Moses model does not specify a<Coordination Condition> for the applicability of
therule as the Ignore rule does in the CoLaS model, in the other hand the Ignore rule in the CoLaS model
doesnot specify <Coordination State Actions> asthe Arrivedi gnorerulesdoesinthe Mosesmodel. Itisim-
portant to take into consideration that we are comparing both modelsasthey are currently defined, the Sen-
tignoreruleinthe Moses model can be easily integrated into the CoL.aS model because of flexibility of the
OpenCol aS framework to specify new rules. Concerning proactive rules, both model Moses and CoLaS
provides rulesto specify proactive behavior, the Moses rules are more general in the sense that they can be
associated with time constraints. When time constraints are not defined the Moses proactive rules corre-
spond to the proactive rules specified in the CoLaS model . Neverthel ess, aswe showed beforeit ispossible
to simulate the behavior of Maoses proactive rules using coordination state variablesin ColL aS.

5.5.2 Composition Filters [Berg94a]

Composition Filtersarefirst class objects used to affect the messagesreceived and sent in the object model.
A Composition Filter consists of two parts: an interface and an implementation part. The interface deals
with incoming and outgoing messages. The second part correspondsto theimplementation part which con-
sistsof method definitions, instance variables declarations, definitions of conditionsand an optional initial-
ization operation. The Interface part consists of one or moreinput and output filters, optional internal and
external objectsand method header declarations. If a message passes through theinput filtersit can be fur-
ther delegated to internal objects, methods or external objects that composed the object. All the messages
that originates from the method executions within the object and are sent to objects outside the boundaries

122

of the current object pass through the output filters. Without filters the model is very similar to a conven-
tional object model.

A filter element consists of three parts: 1) a condition, which specifies a necessary condition to be ful-
filled in order to continue eval uating afilter element; 2) amatching part, in which the evaluated messageis
matched against a defined pattern and 3) a substituting part, where parts of the message can bereplaced. In
the current version of the Sinalanguage (in which the Composition Filterswereintegrated) wefind thefol-
lowing primitivefilters: Dispatch, Meta, Error, Wait and Real Time. The Dispatch filterisused toinitiate ex-
ecution of a method when the corresponding message passes successfully through the filters. The Meta
filter issimilar to the Dispatch filter, but they differ inthat if the received messageis accepted by the Meta
filter the messageisfirst converted to an instanced of class Message and then passed as an argument of a
new message to the object. The Error filter is similar to the Dispatch filter but it does not provide method
dispatch; it raisesan error condition if amessage does not passthrough thefilter. The Wait filter is used for
synchronization, in thisfilter the message is queued as long as the evaluation of the filter condition results
inarejection. TheRea Timefilterisusedfor real timecomputations. Thesefilterscan bebothinput and out-
put filters. Animportant feature of all thesefiltersisthat they are orthogonal to each other and thereforethey
can be combined. Commonly the last filter to apply isawaysof class Dispatch which resultsin the delega-
tion of the request message to itstarget object.

When a message received by an object is evaluated by afilter, the message is checked against the ele-
ments of thefilter in the left-to-right order. If the condition associated with the filter validates to true, then
the selector received message is matched against the selector of the matching part, when the filter element
does not match, the subsequent filter is tried. When both the condition and the matching part validate, the
substitution actions described in the substituting part of the filter are applied to the message. The substitu-
tion actions specified in thefilter include: the rename and the redirection of the message.

The Dispatch Filter

Inthe CoLaSmodel wedo not have any equivalent ruleto thisfilter, if wedo not delay or ignore the execu-
tion of amethod invocation request, therequest will beautomatically dispatched. Itisnot possibleto specify
that the method i nvocation request must be dispatched (i.e.executed) at thetime of the evaluation of therule
asin Composition Filters.

The Meta Filter

In the CoLaS model we do not have any specific rule equivalent rule to thisfilter. In all CoLaSrulesitis
possibletorefer tothemethod invocation request received. It is possibleto request theidentity of the sender,
theidentity of the receiver, the sel ector and the arguments of the method invocation requested. We can say
that in some way all our rules are Metarules because it is always possible to reify the method invocation
requested.

The Wait Filter

The semantics of the Wait filter is similar to the Disable rule in the CoLaS model. The method invocation
request isdelayed internally in the object until that the <Coordination Condition> associated with therule
validatestotrue. The main difference between the Disable rule and the Wait filter isthat thefilter may spec-
ify transformations of the method invocation requested, we can only do thisin OpenCoL aS at therule class
level when we specify the semantics of arule class. In CoLaS the semantics of therulesisfix.

123

The Error Filter

Inthe CoLaSmodel wedo not have any equivalent rulefor thiskind of filter. We do not consider necessary
toincludean error ruleinthe CoLaSmodel, actually the CoLaS model allows oneto raise exceptionsinthe
<Coordination Actions> specifiedin therules. We use the exception handling of the languagein which Co-
LaSintegratesto raise and to catch exceptions.

The RealTime Filter

Inthe CoLaS model wedo not have any equivalent rulefor thiskind of filter. From our point of view thisis
specializedfilter useful to solvereal time problems, we have not consider until now inthe CoLaSmodel the
reguirements of specific domainsin the specification of rules.

Conclusions

Comparing the Composition Filters and the CoL aS model we can say: 1) the CoLaS model specifiesrules
at three other validation points not considered in the Composition Filters model (atAccept, atSelection and
atEnd), we can say that the CoLaS model is finer than the Composition Filters model; 2) wefind only one
equivalent rule between the two models: the Disablerule, the other filters can in away or another be smu-
lated using existing CoLaS rules (with the exception of the Real Time filters), 3) the Composition Filters
model allows one to specify transformations to the method invocation requests at the rule level (i.e. there
arerulesthat manipulate and transform the received messages), we can only do thisin OpenColL aS at the
rule class level, when we specify the semantics of the rule classes but not in CoLaS. What it is possiblein
CoL aSisto manipulate the arguments of theinvocation requests. We believe that the CoLaSrulesaremore
powerful thanthe Composition Filtersrules: first we are capable of specifying coordination at more differ-
ent points during the processing of messages by the active objectsand second all our rulesaremetarulesin
the sens of the Metafiltersin the Composition Filters.

5.5.3 Synchronizers [Frol93a]

Synchronizers are special objects that observe and limit the invocations accepted by a set of ordinary ob-
jects. Using the OpenColL aS terminol ogy we can say that Synchronizers defines basically four kinds of re-
active rules: <Pattern> updates <Coordination Actions>, <Pattern> disables <Coordination Condition>,
<Pattern> atomic and <Pattern> stops. The rules depend for their application on the matching of the <Pat-
tern> specified in the rule and the method invocation requests received by the participants of the Synchro-
nizers. A<Pattern>specifies defines logical expressions composed of a message or a group of messages
(and arguments) associated with a participant or to agroup of participants. It is also possible to specify in
the <Pattern> some extra condition based on the Synchronizer state.

The updates rule changes the state of the Synchronizer by executing <Coordination Actions> each time
areceived method invocati on request matches the <Pattern>.The disables rule prevents the acceptance of
method i nvocation requeststhat matchesthe <Pattern> if the <Coordination Condition> evaluatesto truein
current state of the Synchronizer. The atomic rule ensures the acceptance of a message of agroup of mes-
sages specified in the <Pattern> atomically (al or none). The stops rule specifies that the acceptance of a
method invocation request matching the <Pattern> terminates the Synchronizer.

124

The update rule

The semantics of the update ruleis similar to that of a InterceptAtArrival rule in the CoLaS model. Inthe
InterceptAtArrival rule some <Coordination Actions> that modify the Coordination State are executed
when some method invocation request isreceived by aparticipant. Both rules. the update rule and the Inter-
ceptAtArrival areevaluated at the arrival of method invocation requests. In (Figure 5.17) we can see how
the Synchronizers update ruleis specified in OpenCoL aS.

React i veCoor di nati onRul e
defi neRul e: #Updat es
entryPoi nt: OpenColLaS atArrival.

Figure 5.17 : Synchronizer Update rule in OpenCoLaS

The disables rule

The semantics of the disables rule is similar to the Disable rule in the CoLaS model. In the Disable rule
method invocation requests are delayed in the participants if the <Coordination Condition> eval uates to
trueduring the evaluation of therule. Inthe CoLaS model the Disableruleisassociated with the atSelection
validation point whilein the Synchronizers model the disablesruleis associated with the atArrival valida-
tion point. According to specification of the Synchronizers model the goal of thedisablesruleisto prevent
the acceptance of method invocation requests, neverthel ess because the method invocation requests are de-
layed in the participants this implies that the method invocation request is received and accepted in some
way by the participants, creating confusion. From our point of view the Synchronizers model mixestwo dif-
ferent momentsin the processing of method invocationsin thisrule. We will consider in this presentation
that the disables rule in the Synchronizers model are associated with the atSel ection validation point asthe
Disableruleinthe CoLaSmodel. In (Figure 5.18) we can see how the Synchronizersdisablesruleis spec-
ifiedin OpenCoLaS.

React i veCoor di nati onRul e
defi neRul e: #Di sabl e
semantics: [mail box put: message.
"NoMessage new]
entryPoi nt: OpenCoLaS at Sel ecti on.

Figure 5.18 : Synchronizer disable rule in OpenCoLaS

The Atomic rule

The original version of CoLaS specified asimilar rule to the atomic rule in the Synchronizers model, this
rule was eliminated from the current version of the model. The CoL aS model and the work done on Open-
CoL aS concentrated basi cally on the specification of single-party rules: rulesin which only one participant
and only one method invocation request istaken into account in the specification of rules. From our point

125

of view the specification of multi-party rulesis an interesting future work that can be done in the CoLaS
model and in the OpenCoL aS framework.

The stops rule

The ColLaS model does not provide any equivalent ruleto this. In CoLaSthe application of rulesisdonein
participants during the timethey remain playing rolesin groups.

Conclusions

Comparing the Synchronizersand the CoLaS model we can say: 1) the CoLaS model specifiesrulesat two
other validation points not considered in the Synchronizers model (i.e. atSent and atEnd), we can say that
the CoLaS model is finer than the Synchronizers model; 2) the Synchronizers model does not provide
equivalent rulesto the lgnore, InterceptAtSelection, InterceptAtSent and InterceptAtEnd, thisisapartially
aconsequence of the previous point; 3) the Synchronizersmodel provides a Disablesrule whose semantics
itisnot clear. Theruleissupposed to be evaluated at the atArrival validation point to avoid the reception of
messages When some condition validates to true. Because the message is delayed in the participants when
the condition associated with the rule validates to true the message isin some way accepted (the reception
isnot avoided) by the participants generating then aninconsistency. Therulesdoesnot prevent the reception
of messagesin fact.

Itisimportant to remark that one of theimportant aspects of the Synchronizersisthe possibility to define
multi-party coordination rules: rulesthat depend for their applicability on multipleinvocation requests oc-
curring and in different participants. Thisis something that can not be donein the CoLaS model actually.

Finally we must say that the Synchronizers model isa pure reactive coordination model, it does not pro-
vide equivalent rulesto the proaction rules specified in the CoLaS model. Synchronizersreact exclusively
to method invocation received by the participants.

5.6 Conclusions and Contributions

We presented in this chapter OpenColL aS aframework for experimenting with the specification of CoLaS
likerule-based cordination model sand languages. CoL aSfollowsan approach of coordination based onthe
interception of messages exchanged by the active objects (i.e., reflective approach), each coordination rule
specifies coordination actions that must be done in the group at some precise validation point. The Open-
ColL aS framework allows the specification of three types of coordination rules: behavioral, reactive and
proactive. For each type of coordinationrule, the framework defines abstract classes containing all the nec-
essary support to specify new subclasses of coordination rules. The approach used to build the framework
isthat of meta-languages[Kicz914] in which the semantics of the rulesand their eval uation process are ex-
plicitly reified in aframework to facilitate their definition and modification. New coordination modelsand
languages for object systems based on message interception and coordination rules can be created and ex-
isting languages compared using the OpenCoL aS framework.

The main goal of this chapter wasto provide arguments that justify the choice of the coordination rules
in the CoLaS model. Specifically, to provide answers to the following questions: Why these rules and not
others? Where do theserulescomefrom? Areall theserules necessary? Concerning the question Why these
rules and not others? we can say that basically each type of rule corresponds to a basic coordination need.
Cooperation rules are necessary to specify behaviorsin the participantsexclusively related to the coordina-

126

tion, synchronization rules (a type of reactive rules) are necessary to specify synchronization constraints
and proaction rules are necessary to specify proactive behavior independently of the messages exchanged
by the participants. Concerning interception rules (second type of reactive rules) they intercept messages
and perform actionsthat modify the coordination state of the group. At afirst view one can think that these
rules are not important and they can be eliminated from the CoL.aS model because whatever is specified in
these rules could also have been specified in the synchronization rules. The truth isthat if we would have
allowed usersto manipulate the normal processing of messagesin our rules aswe do in the meta specifica
tion of rulesin OpenCoL aS, we would have only defined interception rulesin our model. But, because we
do not give al thisfreedom to our users and because we believe that opening the rulesto their manipulation
in this way in the specification of the coordination will push programmers to focus more in specifying of
how to realize the coordination which isnot ideal from the coordination point view. We believethat the co-
ordination rulesin the model should have clear and simple semantics, they should keep the specification of
the coordination at ahigh level far from the detail s of how the coordination isdone. Each one of the coordi-
nation roles specified in the CoLaS model hasits utility no one can be eliminated.

All the rulesthat make part of the CoL aS models correspond to rulesthat are evaluated at four different
eval uation points during the processing of the messages by the participants (at the arrival of a message, at
the selection for execution of amessage by the participant, at the send of a message to another participant
and at the end of the execution of amessage). Thefirst timethe CoLaS model wasintroduced [Cruz99a)] the
notion of eval uation point was not fundamental inthe CoL.aSmodel, it wasonly until we built the OpenCo-
LaS framework and that we started to play with the definition of the semantics of therules, that it appeared
asfundamental to clearly specify for each coordination rule a precise moment (eval uation point) in which
therulewill be evaluated.

Concerning the question Where do these rules come from?the answer isfrom the eval uation points. Co-
LaSdefineseval uation pointsinwhich the coordination rulesare validated and enforced. Such answer rais-
es immediately two new questions: Are the four evaluation points defined in the CoLaS model the only
possible/interesting validation points during the processing of the messages by the participants? Which
kindsof interesting coordination rul escan be defined in each one of thesevalidation points? Concerning the
first question we can say that we have experimented with the definition of new validation pointsin the Co-
LaS model and the specification of new rules associated with these new validation points. We have found
that at the end these new rules can be replaced by combining existing rules. We are almost sure that we do
not need to specify more evaluation pointsin the CoLaS model. Concerning the second question it is diffi-
cult to givean answer considering that coordination is something new and we do not know yet if al coordi-
nation problems can be solved with the rules that actually we definein the CoLaS model, the only thing we
can say isthat until now therulesthat make part of the CoLaS model seemsto be sufficient to tackleawide
range of coordination problems. Neverthel ess, the results of the comparison of CoLaS with other similar
models done in this chapter shows that it is possible that new rules will need to be defined. If we take for
example Moses[Mins97a] we can seethat they have arulewith the same semanticsthat our rule Ignore but
evaluated at the atSent eval uation point, some coordination problems are solved using thisrule.

Concerning the last question, Are all these rules necessary? the answer isyes. Evenif the rulesrelated
with the events atSel ection and atEnd seemsto “violate” the separation of the coordination and the compu-
tation aspectsin the systems. The atSel ection eval uation point corresponds to the moment when a method
invocationisready to be executed by the participant and just after the synchronization policy wasvalidated.
The CoL aS models includes a synchronization rule Delay which is evaluated at the atSel ection point. The

127

Delay ruleisanimportant rule becauseit allowsoneto specify condition synchronizations[Andr00g)]. If we
consider aparticipant asablack box around which the coordination isspecified, only thearrival and the de-
parture of messagesto and from the participant can beidentfied aseventsfrom outside of the participant. In
other words a pure coordination model for objects must define“in theory” exclusively actionsrelated with
these two types of events.

Besides the fact that building the OpenCoL aS framework was fundamental in the understanding of the
CoLaSmodel andinitsevolution, theframework representsapowerful (an unique) tool to comparethe Co-
LaS model with related approaches. We presented in this chapter the results of our comparison study of the
three most important related coordination models and languages to the ColL.aS model: Moses [Mins974],
Composition Filters[Berg94a] and Synchronizers[Frol93a).

Concerning Moses [Mins97a] we conclude that the two reactive rules specified in M oses correspond to
two special formsof the Ignoreand InterceptAt reactive rulesin the CoLaS model. The Sentlgnore and Ar-
rivedlgnore can beinstantiated in OpenCoL aSfrom algnorerule specifying the atSent and the atArrival as
the corresponding validation points. The SendForward and ArrivedDeliver can beinstantiated from alnter-
ceptAt rule specifying the atSent and the atArrival as the corresponding validation points. We can say that
CoL aS specifiesrules at two validation points not considered in the Moses model: atSelection and atEnd.
We can also say that M oses does not provide an equivalent rule to the Disable ruleimportant in CoLaS to
specify condition synchronization. And, that Moses provides an extra lgnore rule evaluated at the atSent
evaluation that CoL aS does not have. Concerning proactive rules, both model Moses and CoL aS provides
rulesto specify proactive behavior, the M osesrules are more general inthe sensethat they can beassociated
with time constraints. When time constraints are not defined the M oses proactive rules correspond to the
same proactiverules specifiedinthe CoLaSmodel. We have shown that it i spossibleto simulate the behav-
ior of Moses proactive rules including time constraints in CoLaS using state variables. Few coordination
models and languages offer the possibiltity to define proactive coordination, CoLaS is one of them
[Andr96a][Cruz99a].

Concerning Composition Filters [Berg94a] We conclude that the CoL aS rules are more powerful than
the Composition Filtersinthe sensethat it is possibleto specify coordination at moredifferent pointsduring
the processing of messages by the active objects and second becauseall our rulesare metarulesasin Com-
position Filters. We can say that CoL aS defines rules at three validation points not considered in the Com-
position Filtersmodel: atAccept, atSel ection and atEnd. Only one Composition Filtersruleexist directly in
CoLasS: the Disablefilter, the other filters can bein away or another be simulated using CoLaSrules (with
theexception of Real Timefilters). What isdifferentin Composition Filtersisthismodel allowsoneto spec-
ify transformationsto the method invocation requests at therulelevel. CoL aS does not. We can not receive
amethod invocation, transform it in another one and send it to the object. We do not believethat thisisfun-
damental. We do not see cases in which thisfunctionality is needed. Finally the Composition Filtersare al
reactive related to the arrival of method invocationsto the objects. It is not possible to define proactive be-
havior in thismodel.

Concerning Synchronizers [Frol93a] we conclude that Synchronizers is a pure reactive coordination
model, it does not provide equivalent rulesto the proaction rules specified in the CoLaS model. Synchro-
ni zersreact exclusively to method invocation received by the active objects. We can say that ColL aSdefines
rules at three validation points not considered in the Synchronizers moddl : atSent and atEnd; and that Syn-
chronizers does not provide equivalent rulesto the Ignore and to our Interception rules. Finally onetype of
rule that we do not have actually in CoL aS but that Synchronizers has are rules to define multi-party coor-

128

dinationrules(i.e., rulesthat depend for their applicability on multipleinvocation requestsoccurring in dif-
ferent parti cipants). Multi-party coordination rulesareaninteresting futurework inthe CoL aS coordination
model.

Contributions
The main contributions of this chapter to thesisare:

* Weintroduce OpenCoLaS a framework for experimenting with the specification of rule-based co-
ordination models. The idea behind the OpenColL aS framework is to “open” the CoLaS coordina-
tion model and language in away that allows one to experiment with the specification of coordina-
tion rules, possibly also with new coordination rules. The OpenCoL aS framework allows the meta-
specification of the coordination rules that compose the CoLaS model.

* We present the semantics of each one of the coordination rules that make part of the CoLaS model.
For each rule we clearly specify the moment at which the rule is evaluated and the operational se-
mantics of the execution of the rule. The semantics of the rules are presented using meta operations
that alter the normal processing of messagesin the active objects, like for example to add amessage
to the object mailbox or to transform the method invocation in another method invocation.

» Wepresent theresults of the comparison of the specification of the coordination rulesin CoLaSwith
the coordination rules introduced in similar approaches: Synchronizers [Frol93a], Composition Fil-
ters[Berg94a] and Moses[Mins97a]. We believe that the CoL aS coordination model isamore com-
plete coordination model than the three others presented here. First we are capable of specifying co-
ordination in more evaluation points than the three others and second we have shown that most of
therules (filter in the Composition Filters approach) can be simulated using CoLaSrules. CoLaSis
that isthe only coordination model and language combining three types of rules: cooperation rules,
reactive rules and proaction rules. Each type of rule corresponding to a basic coordination need. Co-
operation rules are necessary to specify behaviors in the participants exclusively related to the co-
ordination, synchronization rules (atype of Reactive rules) are necessary to specify synchronization
constraints and proaction rules are necessary to specify proactive behavior independently of the
messages exchanged by the participants.

CHAPTER 6

Validation

We have presented in thisthesis CoL aS, a coordination model to specify the coordination aspect in concur-
rent object-oriented systems. The CoL aS coordination model i sbased on the notion of coordination groups,
entitiesthat specify control and enforce the coordination of groups of collaborating active objects. The pri-
mary tasks of the coordination groupsare: 1) to support the creation of active objects, 2) to enforce cooper-
ation actions between active objects, 3) to synchronize the occurrence of those actions and 4) to enforce
proactive behavior [Andr96a] on the systems based on the state of the coordination. The ColL aS coordina-
tionmodel followsthe coordination model and language approach in which the coordination aspect is spec-
ified separately from the computation aspect in the systems. The separation of the specification of the
coordination and the computation aspects in concurrent object-oriented systems facilitate their specifica-
tion, understanding, construction and evolution.

Until now wehave mainly focussed our presentation on the software engineering benefits obtained from
the separation of the coordination and the computation concernsin concurrent object-oriented systems us-
ing CoLaS. We have shown how complex interaction and synchronization patterns which normally are
mixed within the computation code of the objects appear now explicitly defined in the coordination groups
making those systems easy to understand and to modify. We will focus now in this chapter in providing a
methodology to useformal tools specifically Petri Netsfor the analysisand verification of the coordination
specified in the coordination groups. Petri Netsisaformal modeling language for concurrent systems that
has received wide academic and practical interest since its introduction by Carl Adam Petri in 1962
[Petr62a)]. Petri Nets are less powerful than Turing Machines, therefore verification of many interesting
propertiesis decidable [Espa94a] . Decidable propertiesinclude reachability, aproperty useful for the veri-
fication of safety properties such as deadl ock-freedom.

A property of aprogram isan attribute that istrue of every possible history of that program [Andr91a).
Concurrent programsmust satisfy two classes of property: safety and liveness[Owic82a). Safety properties
assert that nothing “bad” will ever happen during an execution (aprogram never entersinto a“bad” state)
and liveness properties assert that something “good” will eventually happen during the execution. Twoim-
portant saf ety propertiesin concurrent programs are mutual exclusion and absence of deadlock. For mutual
exclusion, the “bad” thing isto have more that one process executing critical sections of statements at the
sametimeand for the absence of deadlock isto have multiple processeswaiting for conditionsthat will nev-
er occur. Some examplesof livenesspropertiesof concurrent programsare[Andr91a]: that arequest for ser-
vicewill eventually be honoured, that amessage will eventually reach itsdestination and that aprocesswill
eventually enter its critical section. Liveness properties are affected by the scheduling policies, which de-
termine which atomic action is executed the next. If the scheduling does not guarantee fairness (i.e. every
process get the chance to proceed regardless of what other processes do).

Inthischapter of thethesiswewill present our approach to validate safety and liveness properties of Co-
LaSspecifications. Wewill usePredicate-Action[Kell76a] Petri Nets: Petri Netswith transitions<<if pred-

130

icate then action>> to formalise the CoL aS groups. We will provide a methodology to transform ColLaS
coordination groupsinto Predicate-Action Petri Nets. Wewill validate safety and liveness propertiesusing
enumeration analysisin the Petri Nets obtained. Wewill useatool called Tina: atoolbox for the editionand
analysisof Petri Netsand Time Petri Nets, devel oped in the Software and Tool for Communication Systems
group (OLC) of LAAS/CNRS in France. We have additionally included in Appendix B of thisthesisasur-
vey on Petri Nets (including Predicate-Action Petri Nets) including formal verification of properties.

We have divided the presentation of this chapter into four parts:

Inthefirst part of this chapter weintroduce our methodol ogy to transform ColL aS coordination groups
in Predicat-Action Petri Nets. Our methodology consists of defining amapping function F to transform el-
ements of the CoLaS model into Predicate-Action Petri Nets. We use as examplethe CoL aS solution to the
coordination problem “ Subject and Views’ presented in chapter 3 of thisthesistoillustrate our approach.

In the second part of this chapter we introduce a second example the “ The Electronic Vote”, to show a
compl ete transformation of a ColL aS group into a Predicate-Action Petri Net. We consider the exampleto
beinteresting because the Col aS group sol ution to the problem includesamost all the different typesof el-
ementsthat agroup may contain.

Inthethird part of thischapter we specify the different properties of Col aS coordination groups which
can be proved in the transformed Predi cate-Action. We show the results of the verification of those proper-
tiesinthe Predicate-Action Petri Nets obtai ned from the mappi ng of the* Subject and Views’ andthe Elec-
tronic Vote” coordination groups. The verification is done using Tina, the toolbox aready mentioned
before.

Finally inthefourth part of this chapter we present somerelated work in the use of Petri Netsfor thefor-
mal verification of propertiesin coordination models and languages. We conclude this chapter with a pre-
sentation of our conclusions, pointing out the main contributions of this chapter to thethesis.

6.1 From ColLaS Groups to Predicate-Action Petri Nets

Wewill show in this section all the details concerning how to map a CoL aS coordination group into a cor-
responding Predicate-Action Petri Net. Wewill start with abrief summary of the CoLaS model and the el-
ements that composeit, then we will show how to map each one the elements that compose CoLaSinto a
Predicate-Action Petri Net. At the end we will show how al the different Petri Nets obtained must be con-
nected to obtain thefinal Predicate-Action Petri Net modeling the complete coordination group.

A model isasimplified representation of the real world. It includes only those aspects of the real world
systemrelevant to the problem. Model sare used to study the adequacy and thevalidity of aproposed design.
A model can focus on a particular aspect of aproblem to perform verifications of properties. In thisthesis
wewill usePredicate-Action Petri Netsintheformalization of the CoL aS coordination model. In Predicate-
Action Petri Nets transitions have associated |abels of the form “if Condition(X) do Action(X)” where X
refersto aset of variables defined in the Petri Net. The Condition(X) specifies a condition to the firing of
thetransition and Action(X) specifies an action to be executed when the transition isfired. For moreinfor-
mation about Predicate-Action Petri Netsrefer to Appendix B of thisthesis.

131

6.1.1 The CoLaS model

The CoL aS coordination model is built out of two kinds of entities: the participants and the coordination
groups. The participants are the entities to be coordinated and the coordination groups are the entities that
control and enforce the coordination of the participants. A coordination group is composed of three ele-
ments (Figure 6.1): therol es specification, the coordination state and the coordination rules.

Theroles specification definesthe different rolesthat participants may play inthe group. Eachrole spec-
ifiesin aroleinterface the conditions imposed to the participants to play therole. Thereisno limitationin
thenumber of participantsthat may play arolenor in thenumber of rolesthat can be played by aparticipant.

The coordination state defines general information needed to perform the coordination, information
like: whether some action has occurred or occursin the system, the number of times some action has oc-
curred in the system, etc. In general the coordination state containsinformation about the state of the coor-
dination group and the participants. The coordination stateis specified by declaring variables. Thearethree
types of variables: group, role and participant variables. The group variables are shared by al the partici-
pants of the group, therolevariablesare shared by all the participants of arole and the participant variables
belong to the participants.

The coordination rules, definethe different rules governing the coordination of the group. The coordina-
tion rules specify: cooperation actions between participants, synchronizations on the execution of partici-
pants actions and proactions or actionsinitiated by the participantsindependently of the messagesthat they
exchange. Col aS defines three types of coordination rules: cooperation, reactive and proactive rules. Co-
operation rules specify cooperation actions between participants, reactive rules constrain the execution of
actions and proactive rules specify proactionsin the participants.

Coordimation Rules

Coordination Group

Figure 6.1 : A coordination group

132

6.1.2 Groups Mapping

The mapping of a coordination group to a Predicate-Action Petri is done by specifying recursively amap-
ping function F over the elementsthat composethe group. Thistechniqueisinspired inthework of Ayache
[Ayac852] in the modeling and the verification of protocols.

F(<Coordination Group>) = connect (F(Rolel), F(Role2), ..., F(RoleN)) + F(<Coordination State>)

Every role specified in the group generatesitself a complete Predicate-Action Petri Net. All the Predi-
cate-Action Petri Nets obtained are then connected connect either directly or indirectly through avirtual
medium. Thedirect connection of therole Predicate-Action Petri Netsmodel saperfect communication me-
dia between the different participants of the group. The use of virtual medium allows one to model asyn-
chronous communi cation and communication problemslike thelost of messages during their exchange. In
afirst timewewill assume a perfect communication media between the different participants, later we will
show how to specify different virtual mediums corresponding to different communication problems.

The Coordination State is modelled as variables in the Predicate-Action Petri Net. From our point of
view it isnot important in the Petri Net to differentiate between the different types of state variables. The
different types of state variables define different accessibility constraints on the participantsthat can not be
easily expressed in the Petri Nets and that are not extremely important for the verification purposes. The
mapping function will exclusively modify the names of the variablesto indicate their type and the role or
thegroup inwhichthey are defined. Thefunction definecreatesavariablein the Predicate-Action Petri Net

F(<Coordination State>) = F(<Group Variables>) + F(<Role Variables>) + F(<Parti ci pants Variabl es>)
F(<Group Variable>) = define groupvar_<Variable Name>

F(<Role Variable>) = definerolevar_<Role Name>_<Variable Name>

F(<Participant Variable>) = define partvar_<Role Name>_<Variable Name>

Message Exchange Mapping

To represent the exchange of messages between partici pants we have extended the specification of the con-
ditions associated with the transitionsin the Predicate-Action Petri Nets with two new conditions: ?m and
I'm. The condition ?m represents the reception of amessage m and the condition !'m the sent of message m.
Thetwo conditionsare used to connect Petri Net places during the generation of the Predicate-Action Petri
Nets, they are eliminated at the end when all the connections are done. We will back on thispoint below in
this section.

Wewill model the asynchronous exchange of messagesin agroup using a CSP[Hoar85a] similar nota-
tion. In our Predicate-Action Petri Nets atransition p?m defines a condition associated with the reception
of amessage m arriving from aplace p and the transition p!m defines a condition associ ated with the sent of
amessage m from aplace p. Inthe Petri Net the message exchanged isrepresented by anintermediate place
with the name of the message.

133

In(Figure 6.2(a)) thetwo places p and q correspond to statesin the two participants playing two differ-
ent roles A and B. At some point in time a participant playing the role A sends a asynchronous message m
to aparticipant playing the role B. The participant playing the role A does not wait until the messageisre-
ceived in the participant playing therole B to continue, we can seein thefigure how it is possible that more
actions (i.e., aPetri Net sequence) appear in the participant playing therole A after the message missent.

To represent in the Predicate-Action Petri Nets the time factor during the exchange of the message we
usean approach inwhich we model the possible causes of the communication problemsin avirtual medium
connecting the participants. The intermediate place m associated with the name of the message is used to
connect to the virtual medium. We will show later in this section how different virtual mediums can be de-
fined and how they can be connected to the participants. Wewill assumein thiswork aperfect communica
tion medium connecting the participants, our primary goal isto detect problemsin the specification of the
coordination and not problemsin the communication media.

Inthefutureandfor simplicity wewill useonly ?mand !mtolabel thetransition conditionsrelated to the
exchange of messages, we will not include areference to the place. Furthermore, to reduce the size of the
generated Petri Netswe will specify areduction rule with aspecial condition representing the combination
of the sent and the reception of a message (b). Both the !Im and ?m will appear in a same condition !'m/?m.
Thereduction rulewill be used when the communication used corresponds to a synchronous recursive sent
of amessage to the same participant or when the communication mediaused is consider as perfect.

Finally it isimportant to remark that in the Petri Nets the tokens represent the messages exchanged by

the participants. The flow of atokenin aPetri Net representsthe flow of amessage within and between the
participantsin the coordination group.

Role A RoleB

v m Y

\

)

p!m/p?m

Q=0

b) p

Figure 6.2 Predicate-Action Petri Net for a asynchronous message exchange

In CoL aS every message sent from a participant to another participant generates areply, repliesare sent
in the form of futures. The participant who receives the future decides whether to request or not the value
returned in thefuture. To represent the sent of areply to aparticipant weincludein the representation of the
communication a separate message representing the reply (Figure 6.3(a)). We add the keyword ret to the
name of the messagein the Predicate-Action Petri Net to indicate that the message corresponds to areply
message. If aparticipant waitsuntil thereply isreceived the Predicate-Action Petri Net must include anew

134

place representing the synchronization (Figure 6.3(b)). In CoLaS aparticipant indicatesthe wait for are-
ply by sending the message reply after the name of message sent to the other participant. The messagereply
isimplicitly sent to the future returned from the other participant.

Role A Role B Role A Role B

v Im/?2m I | Im/?2m

retm/!retm O A’-ﬁ'fﬁ:(retm O

Figure 6.3 Predicate-Action Petri Net for replies

a)

Tosimplify thegraphic representation of the obtai ned Predicate-Action Petri Net we do not show theval-
ues of theinput I(p,t) and output O(p,t) functionsfor atransitiont when their values are equal to 1 whichis
the casein most of the mappings that we show in this section.

Roles Mapping

The mapping of roles consists of mapping the different types of coordination rules specified in the group.
First the cooperation rulesand then thereactiverules. Thetransformation isdoneinthisorder because most
of thetime the reactiverulesrefer to behaviors specified in the cooperation rules. The mapping of thereac-
tive rules defines modificationsto the Petri Net obtained from the mapping of the cooperation rules.

F(<Role>) = F(<Cooperation Rules>) + F(<Reaction Rules>)

Cooperation Rules Mapping
<Cooperation Rule> . <Role> defineBehavior: <Message> as: [<Coordination Actions>]
F(<Cooperation Rule>) =

Role ocMessages

©—> »O—»’ F(<Coordination Actions>) ‘

<Message>
<Coordination Action > :: <Asynchronous M essage Send> |

<Synchronous Recursive Message Send> |
<Coordination State M odifications>

135

Thefirst type of coordination action corresponds to the asynchronous send of a message to another par-
ticipant playing adifferent role. The coordination actionis modeled in a Predicate-Action Petri Net simply
asaasynchronous message exchange mapping.

F(<Asynchronous Message Send>) =

Role A I<Message>> ?<Message> RoleB

<Message>

O

The second type of coordination action corresponds to the send of a synchronous recursive message to
the same participant. This coordination actionismodeled in aPredicate-Action Petri Net asareduced mes-
sage exchange mappings (reduction rule Figure 6.2(b)). The condition associated with the transition is
I<Message>/?<Message>.

F(<Synchronous Recursive M essage Send>) =

Role

O

! |<Message>/?<Message>

Y
>

Thethird type of coordination action corresponds to the modification of the coordination state. This co-
ordination action ismodeled in a Predicate-Action Petri Net as set of actions to be execute in atransition.
We use// to separate the conditions from the actionsin atransition label. The <Caoordination State Modifi-
cations> corresponds to the modification of the values of the variablesdefined in F(<Coordination State>).

F(<Coordination State Modification>) =

Role _— W
//<Coordination State M odifications>

136

Reactive Rules Mapping
The mapping of the cooperation rules specified in a coordination group continues asfollow:

<ReactionRule>:: <Interception Rule> | < Synchronization Rule>
<Interception Rule>:: <Role> <Interception Operator> <M essage> do: [<Coordination State Actions>]
<Interception Operator>:: interceptAtArrival | interceptAtSelection |

I nterceptAtSent |interceptAtEnd
<Synchronization Rule>:: <Role> <Synchro. Operator><Message> if: [<Synchronization Condition>]
<Synchro. Operator>:: disable|ignore

Interception rules and Synchronization rules are rules evaluated in the CoLaS model at different mo-
ments (i.e., eval uation points) during the processing of the method invocationsin the participants. The<In-
terception Operator> in the Interception rulesindicates the precise moment at which theruleis evaluated.
Thelnterceptionrules(disableandignorerul es) onthe other hand are eval uated respectively at theatArrival
and at the atSelection evaluation points in the CoLaS model. To model the different Reactive rulesin the
Predicate-Action Petri Nets we need to model the internal processing of the messages in the participants,
particularly the four evaluation pointsin which these rules are evaluated. It isimportant to remark that we
do not model the behavior of specific participantsin our Petri Nets but the behavior of theroles. Implicitly
we model the behavior of akind of unique participant playing therole.

F(<Reaction Rule>) = F (<Interception Rule>) | F (<Synchronization Rule>)
F(<Interception Rule>) = F(interceptAtArrival <Message> do: [<Coordination State Actions>)]=

<Message> //<Coordination State Actions>

interceptAtArrival<Message>

The mapping function F for an InterceptAtArrival reactiverule specifiesanew place named interceptA-
tArrival<Message> in the Predicate-Action Petri Net after thetransition with the condition associated with
thereception of the message <M essage>. The mapping function specifiesal so that the <Coordination State
Actions> specified in therule appear as actions associated with anew transition connecting theinterceptA-
tArrival<M essage> place which the next place that will be generated from the recursive application of the
mapping function to the coordination group. It isimportant to remember that the <Coordination State Ac-
tions> represent actionsthat modify exclusively the coordination state (i.€, the state variabl es) of the group.

137

F(<Interception Rule>) = F(interceptAtSel ection <Message> do: [<Coordination State Actions>)] =

Message> - ipox<Message>

Q_>‘_>Q

Mutual Exclusion
Synchronization Policy

y

Q interceptAtSel egtion<M essage>

v //<Coordination $tate Actions>

Y
O -

<Message> actions

In the InterceptAtSel ection mapping function we model the synchronization policy controlling the exe-
cution of messagesin the participants. Inthe CoL aS coordination model participants apply amutual exclu-
sive synchonization policy: messages are executed sequentially within a participant. The synchronization
policy placethat appearsinthePetri Net isconnected to atransition rel ated to the mailbox<M essage> place.
The mailbox place represents the participant’s mailbox and stores messages of type <M essage>. M essages
of type <Message> can only be executed if thereisatoken in the place associated with the synchronization
policy.

The mapping function shows also that the token associated with the synchronization policy is restored
after all the actions associated with the execution of the message are done. We model in thisway the atomic
execution of actionsin the participantsin the roles. It isimportant to remark that in our Predicate-Action
Petri Netswe define amailbox place for each type of message received by the participant. Thisis done be-
cause each message received by a participant may define rules that generate different sequences of Petri
Nets after the application of the mapping function F.

138

F(<Interception Rule>) = F(I nterceptAtSent <Message> do: [<Coordination State Actions>)]=
1<Message> /I<Coordination State Actions>

O —-

’ i nterceptAtSent<M essage>

The mapping function F for an InterceptAtSent reactive rule specifies a new place named interceptAt-
Sent<Message> in the Predicate-Action Petri Net after the transition with the condition associated with the

sent of the message <M essage>.

F(<Interception Rule>) = F(interceptAtEnd<M essage> do: [<Coordination State Actions>)]=

/I<Coordination State Actions>

?<Message>

OO0

<Message> actions interceptAtEnd<M essage>

The mapping function F for an InterceptAtEnd reactive rule specifies a new place named inter-
ceptAtEnd<Message> in the Predicate-Action Petri Net after all the places and transitions representing all
the actions performed during the execution of the message <M essage>.

F(<Interception Rule>) = F(ignore <Message> if: [<Synchronization Condition>)]=

<Synchronization Condition>

_>Q

ignore

?<Message>

i

not <Synchronization Condition>

The mapping function F for algnore synchronization rule modelsin the Petri Net the condition and the
not condition branches associated with the <Synchronization Condition>. Thereasonisthat for the valida-
tion purposes of this chapter it isimportant to represent all the possible evaluations branches. The Ignore
ruleisevaluated after the reception of the message <Message>. It is extremely important to remark in the
Predicate-Action Petri Net that when the transition associated with the <Synchronization Condition> is
fired atoken isgeneratedin the place named ignore. The placeignore correspondstowhat it isknowninthe
Petri Net language asadead place. Dead placesareinteresting placesin thevalidation process because most
of thetimethey are related which possible deadlocks. It is possible already to image what happensin aco-
ordination group when a participant sends a message to another participant and the messageisignoredin
the other participant. The participant who sent the message may remain blocked if it requiresareply.

139

F(<Interception Rule>) = F(disable <M essage> if: <Synchronization Condition>)

?<Message> .
mailbox<M essage>

‘
Mutual Exclusion
A Synchroni zation Policy

<Synchronization &ondition> not<Syrichronization Condition>

O

<Message> actions - j

The mapping function F for a Disable synchronization rule model sin the Petri Net the condition and the
not condition branches associated with the <Synchronization Condition>. The Disableruleisevaluated &f -
ter the selection of the message <M essage> in the mailbox of the participant. In the Predicate-Action Petri
Net when thetransition associ ated with the <Synchronization Condition> isfired, atoken (i.e., representing
the message) is generated in the place corresponding to the mailbox of the message.

Proactive Rules Mapping

Proactiverulesarerulesthat depend for their application exclusively on the coordination state of the group
and not on the method invocations received by the participants. Proactive rules guarantee that certain ac-
tionsare carried out by the group if certain conditions concerning the coordination state validate to true.

Proactive Rule= <Group> validate: <Coordination State Conditions> do: <Coordination Actions>
F(<Proactive Rule>) = F(validate: <Coordination State Conditions> do: <Coordination Actions>)

<Coordination State Conditions>//

@»)_»Q—»‘ F(<Coordination Actions>) }—»{P

A ‘4

140

It isimportant to remark in the Predicate-Action Petri Net that a token is always present in the initial
placein the representation of the rule. The token guaranteesthat the ruleis continuoudly evaluated. In Co-
LaSthe evaluation of proactionsisdoneindeterministically.

Synchronization Policy

Until now the synchronization policy that controls the execution of messagesin participants appeared only
in the mapping of the InterceptAtSel ection and Disable coordination rules. To obtain an exact representa-
tion of the CoLaS groupsin Petri Nets, we must modify all therulesrelated to the reception of messages(in
the samerole) in which the mailbox associated with the received message does not appear. We must explic-
itly define mailbox places associated with each possible message received and connect them all to the syn-
chronization policy place. We specify different mailbox places one per each type of message because we
need to differentiate the different messages. In (Figure 6.4) we show how to connect for a Role A com-
posed of two behaviors messages msgl and msg2 the reception messages mappings ?m1 and ?m2 to their
respective mailboxes placesand to the synchroni zation place. We can seethat thereisone mailbox placefor
each kind of message (mailboxmsgl and mailboxmsg2 places) and that they are all connected to the place
representing the synchronization policy named sync. In theinitial marking of the Petri Net the synchroni-
zation place contains always one token representing the disponibility of the participant to process a mes-

sage.

Role A

7msgl 2 '
% mailboxmsgl mailboxmsg2

msy
O—— O——0)
T N
Mutdial Exclision
L Synchronizatiog Policy i

msgl actions - -« msg2 actions

N

Figure 6.4 Connecting Message receptions

It isalsoimportant to definetransitionsthat restore (i.e.,regenerate) the token into the synchronization pol-
icy placesync. If thetokenisnot restored the participant will not be ableto execute other messagesreceived
and stored in the mailboxes. Aswe mentioned before the synchronization place guaranteesthe atomic exe-
cution of messages in the participants. Different types of synchronization policies must be modelled in a

141

similar way: first the policy must be model ed, then the Petri Net representing the policy must be connected
to al the messages mailboxes and then the transitions which restore the tokens must be added.

6.1.3 Specification of a Virtual Medium

We aready mentioned that we will assume a perfect communication medium connecting the participants.
Nevertheless, it ispossibleto define other possible communi cation mediumsto model for example commu-
ni cation problemsand delays. Thevirtual mediumisused to connect transitionsin the Predicate-Action Pet-
ri Nets related to the send of messages !m and the reception of the messages ?m in different participants.
Several types of connections can be modelled in the virtual medium, the basic model consists of represent-
ing with one (or several) place(s) the transit of a message through the medium. The transit of the message
through the medium startswith the fire of the transition labeled !m and finish with the fire of thetransition
labeled ?m (Figure 6.5).

m O — 7 7 7 m

OO0

L - — — — 4

virtual medium
Figure 6.5 : Basic Virtual Medium

In[Ayac85a] an interesting modeling of avirtual medium with lost of messagesis presented (Figure 6.6).
Theeventual lost of amessageisrepresented by thefired of thetransitionlabeled lost (8). It isinteresting to
remark in the model that the number of messagesin the virtual medium is not limited. The representation
does not constrain the virtual medium to evolve (i.e,. to transfer messages from the sender to the receiver).
To solvethisprablem new transition connections are added (dotted arrows) and the number of tokensin the
place UE set to the maximum number of messagesthat can bein the medium. Inthisway thereceiver iscon-
strained to consume messages because the sender is blocked.

r— o 7 - 1
| | |5 |
| | |- Ny
Im | lost | m m Yl lost | § 2m
NPT RET

| | | g |
L —_ 1 L =

a) virtual medium b) O virtual medium

Figure 6.6 : Virtual Medium modeling the lost of messages

142

Another interesting modeling of virtual medium (Figure 6.7) correspondsto abounded FIFO (i.e.ame-
dia containing alimited number of messages and guaranteeing deliver order of the messages). A tokenin
the place ECj indicates that the jth cell of the FIFO is empty. A token in the place M(i,j) indicates that the
message Mi findsinthejth cell of the FIFO. Thetransition lost isassociated with thelost of the message Mi
and thetransitions §(i,j) with the shift of the message Mi from thecell j tothecell j+1 inthe FIFO.

ECj ECj+1 ECn

o O O O

SN
m Plos i) y m

\‘ <. J\ 4
Y <
O O

M(,1) M(.j) M(i,j+1) M(i,n)

Figure 6.7 FIFO Virtual Medium

6.1.4 From Predicate-Action Petri Nets to Place-Transition Petri Nets

Because mainly all validation techniques available are made on Place-Transition Petri Nets the resulting
Predicate-Action Petri Nets must be transformed into simple Place-Transition Petri Nets. The transforma-
tion process consists of trand ating the variables, the conditions and actions defined in the Predicate Action
Petri Netsinto new placesand transitions. In (Figure 6.8) we can see how the condition and the action re-
lated with thevariablesN and M inthetransitiont aretranslated into aPlace-Transition Petri Net. Thevari-
ablesN and M aretranglatedinto two new placesN and M. Thecondition N>=4 istranslated into acondition
related with the number of tokensrequired to firethetransitiont’ (i.e., 4) and the number of tokens generat-
edwhenthetransitionisfired (i.e.,4). Theaction M:=M+6 istrand ated into the number of tokensgenerated
by thetransitiont’ (i.e,, 6) in the place M when thetransitiont’ isfired. When all the variables, conditions
and actionsaretranslated thetransitionst and t’ are merged, only the original transitiont remains.

P P N

t N>=4 /| M:=M+6 t

Q Triucti on Q M

Figure 6.8 Elimination of Predicate and Actions in Predicate-Action Petri Nets

143

6.2 Case Studies

6.2.1 The “Subject and Views” [Helm90a]

1. Coor di nati onG oup creat eCoordi nati onG oupCl assNaned: #ObserverPattern.

2.

3. GbserverPattern defineRol eNanmed: #Subj ect.

4. Subj ect defineVariabl e: #subject State.

5.

6. Cbserver Pattern defineRol eNaned: #Cbserver.

7. Goserver defineParticipantVariabl e: #observer State.
8.

9.[1] Subject defineBehavior: ’'setState: aState’ as:
10. [role subjectState: aState.

11. self notify].

12.

13.[2] Subject defineBehavior: 'notify' as:

14. [Goserver update].

15.

16.[3] Subject defineBehavior: ’'getState’ as:

17. [~rol e subjectState].

18.

19.[4] Cbserver defineBehavior: 'update’ as:

20. [sel f observerState: (Subject unique getState result).
21. sel f doSpecificAction].

Figure 6.9 Observer pattern group

Inthe" Subject and Views’ exampleacoordination problem appearswhen a Subject obj ect contai ning some
dataand acollection of View objects which represent that data graphically (i.e. asadial, ahistogram, or as
acounter) cooperate so that all times each View always reflects the current value of the Subject. The* Sub-
ject and Views’ coordination problem can be solved using the Observer pattern [Gamm95g]. We show in
(Figure 6.9) apossible specification of aColL aS group containing the specification of the coordination of
the Observer Pattern. We will focus on explaning how the mapping function F introduced in the previous
sections can be used to transform the coordination group into a Predicate-Action Petri net, for any question
related to themodel refer to chapter 3 of thisthesis.

The mapping of the ObserverPattern group into a Predicate-Action Petri Net starts asfollows: first the
group, then therolesinthe group and then the coordination state. The mapping of the coordination state con-
tinues with the mapping of the role and participant variables defined in the group.

F(<Observer Pattern>) = connect (F(Subject), F(Observer)) + F(<Coordination State>)
F(<Coordination State>) = F(<Role Variables>) + F(<Participant Variables>)

F(<Role Variable>) = definerolevar_Subject_subjectState

F(<Participant Variable>) = define partvar_Observer_observerState

144

In (Figure 6.10) we can see how the different roles specified in the CoL aS ObserverPattern group are
transformed into aPredi cate-Action Petri Net. We start the transformation with the mapping of therole Sub-
ject. Thetransformation of the rolesis done by mapping the coordination rules defined intherole. Therole
Subject has several cooperation rules associated with it, we start with the mapping to a Predicate-Action
Petri Net with the rule setState: rule (line 9) (Figure 6.10 (1)). The coordination actions specified in the
rule setState: includesamodification to the state variabl e subjectState and the send of asynchronous notify
message to the role Observer. The message will be send to all the participants playing the role Observer. In
our approach we model aunique participant per role, event if the role Observer may be played by morethan
one observer, for validation purposeswe only represent the behavior of one. We say that we model the be-
havior of the roles and not the behavior of specific participants.

Thetransformation of the group continueswith the mapping of the cooperation rule notify inthe Subject
role (line 13). Intheexampleonly one coordination action isspecified in the notify rule. It specifiesthe sent
of amessage update to the participants of the role Observers. We can decide at this point either to start with
thetransformation of therole Observer or to continue with thetransformation of the cooperation rul es spec-
ified in therole Subject. Inthe second case, welet open the transitions | abel ed with messages !'m sent to the
role Observer and at the end we connect the different open transitions in both roles. The connections are
doneby connecting !m transitionswith ?m transitions of the message m and by adding aplace mto the Petri
Net corresponding to the message exchanged (if the place do not exists). Becauseit is possible that asame
behavior (message m) appears in the specification of several roles, it is important to indicate in the open
transitions (i.e., ?m or m!) the name of the role to which or from which the message was sent or received.
When the connection of the open transitionsis done we rename again the transitions indicating simply the
name of messages exchanged and not anymoretheroles. In the example we do not have repeated messages
namesin thedifferent rolessoit isnot necessary to modify the names of thetransitionsin the Predicate-Ac-
tion Petri Nets generated.

The transformation of the group continues with the mapping of the cooperation rule update (line 19) in
the Observer role (Figure 6.10 (2)). The update rul es specifiesthe sent of the message getState to the Sub-
ject roleunique parti cipant. We can seein the Petri Net how the reply to the message getState appearsinthe
modeling as a message coming in the opposite direction and the existence of a place named sync (Figure
6.10 (3)) giving that the observer must wait for the result of the getState message sent to the subject. The
transformation of therest of Observer group continuesin the sameway until all the coordination ruleshave
been mapped in the Predicate-Action Petri Net. In (Figure 6.10) it is possible to seethefinal result of the
mapping process

We can seein the Predicate-Action Petri Net obtained two synchronization policies places one per each
role (p3and p10). In our casetheir names correspond to themutual exclusion policy used by the participants
to executed messages. All thetransitionsrelated with the execution of areceived message (t7 and t14inthe
Subject role and t6 in the Observer role) are required atoken in the corresponding synchronization policy
place in order to be fired. The initial marking of the Petri Net assigns one token to each synchronization
place.

We can also seeinthe Predicate-Action Petri Net that thereisaplace mailbox for aeach type of message
received. The places p2, p12 and p7 represent the maiboxes of the messages setState:, getState and update
messages specified in the cooperation rules 1, 2 and 4 (lines 9, 13 and 19) of the coordination group speci-
fication.

145

Finally itisinterestingto remark p6, p1l and p14 represent the messages exchanged by the two kinds of
participants: the subject and the observer. We do not connect to the representation of aspecial virtual medi-
um because we assume a perfect the communication medium between the participants.

Subject Role Observer Role

)

| 11V 7setStag:

Mutual Exclusion + |

connect

1 1 8 .
' . pé . ~undate p Mutual Exclusion
t3 * lupdate ! ! a p | pl0
g : update : + 2update
p5

. pll :
m : t6 + IgetState
+ ! getS[aN/ +
3 manlboxgetState ' P9 O) snyc C)
y

p15
pI3 3
roles connection t IdoSpecificAction

O
|3

|
Y |
p18 | |
| |
2 oti fy I?notify
|
|
|

Iret getState ! 10 12

l p14 l
} ret getState

ret getStated/observerState:ret getState

Figure 6.10 Predicate-Action Petri Net for the Observer Cooperation Rules

Someprotocol errorsin groupscan already bedetected at the end of the mappi ng and connection process.
The existence for example of places related to messages with no arcs leaving the place indicates that the
specification of the group contains undefined behaviors. In (Figure 6.11 (a)) we can see who the specifi-
cation of abehavior message-y in arole<Role-A> the sent of amessage <message-x>totherole<Role-B>.
The problem in the obtained Petri Net (b) isthat thereis not transition labeled ?<message-x> related to the

146

specification of the behavior <message-x> intherole <Role-B>. We will come back later during the verifi-
cation of the Petri Netsin thetype of structural errorsthat can be detected.

<Rol e- A> defi neBehavi or: nessage-y as: I<message-x> - <message>

Rol e- B> - :
[<Role <nessage- x> | Q .;i

a) b)

Figure 6.11 : A protocol error
6.2.2 The Electronic Vote [Mins973a]

Problem Description

Intheelectronic votean open group of participantsisrequested to vote on aspecificissue. Every participant
inthegroup can initiate avote on any issueit chooses at any time. Participants vote by sending their results
to the participant whoinitiated the vote. We assume that the period of time assigned to vote (i.e., voting pe-
riod) isdefined by the participant initiator of thevote.

The system must guarantee that the voteisfair: (1) each participant votes at most once and only within the
voting period established, (2) that the counting is done correctly and only votes from participants of the
group are counted and (3) that the result of the voteis sent to al the participants after the end of the voting
period. Initially the policy applied to determinetheresult of thevote (i.e., counting policy) will be consen-
sus (i.e. the number of positive votes should be equal to the number of votersto obtain apositive result oth-
erwise the result will be negative). For simplicity reasons we will add two new requirements, they will
simplify thefinal Petri Net representation obtained: 4) theinitiator of thevotemust remain neutral so, it does
not vote and 5) the result of the vote should not be sent to the initiator of the vote he isthe one who counts
and does knows the result. These new requirements do not appear in the specification of the CoL as group
but in the Petri Net obtained. In (Figure 6.12) we can see the ColL aS specification of the ElectronicVote
coordination group.

Structural Analysis

In(Figure 6.13) we can seethe Predicate-Action Petri Net obtained. From the structural representation of
the Predicate-Action Petri Net we can immediately see that the Petri Net is composed by two unconnected
subnets: one subnet that starts with the reception of the message ?startVote (place pl) and the other that
startswith the reception of the message ?stopVote (place p20). We can concludein this casethat thetwo be-
haviorsareindependent (i.e., not rel ated), each one can be executed independently of the other. Semantical-
ly we caninterpret this asthe fact that the vote process can not be stopped if no message stopVoteissent by
theinitiator of the vote. So, it is possible that the vote process never ends. From our point of view thisisa
simple example of the advantage of using Petri Netsfor the validation of the coordination groups, because
Petri Netsareagraphical tool, there are some structural problemsthat can beimmediately detected.

147

We can also seein the Petri Net obtained that there are some constraints missing in the specification of
the CoL.aS group, for example;

We do not control that the voteOn message is received only when a vote process is happening. It
will be possible for exampleto cheat avoter by putting atoken in the place p8 and thus to push it to
send its vote even if no vote processis actually happening.

We do not control that the vote message is received only when avote processis happening and only
by the members of therole Voter. If we put atoken in place p13 it will trigger a sequence of actions
that will modify the counting variables used in the group even if no vote process is happening. We
do not control neither the identity of the voters to guarantee that only the voters in the group vote.
We do not control that the stopVote is sent only when a vote process is happening and only by the
initiator of the vote process. If we put atoken in place p20 we can stop the vote process event if the
message was not sent by the voter initiator of the vote.

We do not verify the identity of the voter who sends the voteResult to the voters. If we put atoken
inplace 23 for exampleit will be possibleto cheat other voters and made them believe some specific
result of the vote.

All the problems mentioned before are rel ated with the reception of specific messages, in general all the
placesin the Petri Net related with the reception of messages must be analyzed separately to identify possi-
ble protocol problems. Of coursethisimpliesacertain knowledge of the semantics of the coordination spec-
ified in the coordination groups.

Some structural problemsthat can be easily detected in the Petri Nets obtained are:

Transitionswith no outgoing arcsleaving: aswealready mentioned before, this problem impliesthat
some behavior used in the coordination group was not defined.

Transitions with conditions associated with the reception of a message with more than one entering
arc: this problem implies that there exists more than one specification of the same behavior in the
coordination group.

Places with not outgoing arcs: these places do not represent necessary a problem, but they are ex-
tremely good candidatesto generate deadlocks. A deadlock in aPetri Net occurs when no moretran-
sition can be fired at a given time. As we already mentioned before the Ignore rule specified in the
CoL aS model definein a Petri Net a place ignore without outgoing arcs. Deadlocks in the coordi-
nation appear if another participant waits for the reply of the ignored message.

Unconnected groups of places: the fact that all the places are not connected does not necessary rep-
resent a problem in the protocol, but it implies that it is possible that some places will never be
reached when some behaviors are trigger in the coordination group. It is important to identify the
potential causes of the unreachability of the places and to connect then to the rest of the net if nec-
essary. In a coordination group this will imply to guarantee that every behavior specified in the
group appears in coordination action of another behavior.

148

1. Coor di nati onG oup creat eCoordi nati onG oupCl assNaned: #El ectroni cVot e.
2.

3. El ectroni cVot e defineRol eNaned: #Voter.

4.

5. Voter definelnterface: #(#opinion:).

6. El ectroni cVote defineVari abl es: #(#nunies #nunNot) initial Val ues: #(0 0).
7. El ectronicVote defineVariabl e: #votelnProgress initialValue: fal se.
8. El ectroni cVote defineVariabl e: #votePeri odExpired initial Val ue: fal se.
9. Voter defineParticipantVariable: #hasVoted initialValue: false.
10.

11.[1] Voter defineBehavior: 'startVote:anlssue' as:

12. [group votel nProgress: true.

13. Vot er voteOn: anlssue].

14.

15.[2] Voter defineBehavior: ’'voteOn:anlssue’ as:

16. [sender vote:(self opinion: anlssue)].

17.

18.[3] Voter defineBehavior: ’'vote: aVote' as:

19. [aVot e

20. i fTrue: [group numyes++]

21. i fFal se: [group nuniNot ++] .

22. sender hasVoted: true].

23.

24.[4] Voter defineBehavior: ’'stopVote’ as:

25. [group votePeri odExpired: true.

26. (group nunies = Voters size)

27. i fTrue: [Voter voteResult: ’'Yes’]

28. i fFalse: [Voter voteResult: 'No']].

29.

30.[5] Voter interceptAtEnd: 'stopVote’ do:

31. [Voter do:[:each | each hasVoted: false].

32. group votel nProgress: fal se.

33. group votePeri odExpired: fal se.

34. group numves: O.

35. group numNot: O].

36.

40.[6] Voter ignore: 'vote:aVote' if:

41. [group votePeri odExpired or:[sender hasVoted]].

42.

43.[7] Voter disable: 'startVote: anlssue’ if:

44. [group votel nProgress].

Figure 6.12 : The Electronic Vote

149

Voters Role p1 Voters Role

tartVote

Synchronization P19

Synchronization

vote//numYest++ ot++

hasVoted:tru 4 *
p17
O O
p20
i?stopVote
p3 —t21 | |
p21 ma’lboxstopVoJe
t27 lvoteResult: |

Figure 6.13 Predicate-Action Petri Net for the Electronic Vote

150

6.3 The Time Petri Net Analyser - TINA

Tinaisatoolbox for the edition and analysis of Petri Netsand Time Petri Nets, developed in the Software
and Tool for Communication Systems group (OL C) of LAAS/CNRS (http://www.|aas.fr/tina/).

The Tinatoolbox includesthetools:

nd (NetDraw): An editor for graphically or textually described Petri Nets, Time Petri Net and Automata.
Interfaced with analysistools below and drawing facilities.

tina: Construction of reachability graphs. Inputs netsin textual or graphical format. Outputs graphsin hu-
man readable form or in variousformats for available model checkers and equivalence checkers. Thistool
isdescribed in [Bert03a). Depending on optionsretained, it builds:

» The coverability graph of aPetri Net, by the Karp and Miller technique.

» The marking graph of a bounded Petri Net, checking boundness on the fly.

» Partial marking graphs of a Petri Net, by the covering steps methods of [Vern96a][Vern97a)], the
method of persistent sets, or several combinations of them.

» Various state space abstractions for Time Petri Nets (state class graphs)

struct: Structural analysis of Petri Nets (preliminary). Computes generator setsfor semi-flowsor flowson
places and/or transitions of aPetri Net. Also determinestheinvariance and consi stence properties.

Petri Net Description

A netisdescribed by aseriesof declarationsof placesand/or transitionsand an optional naming declaration
for the net. The grammar of anet declaration isthefollowing (wewill present here asimplified grammar):

<net desc> = ‘net’ <net>

<net > = (<trdesc> | <pldesc>)*

<trdesc> = ‘tr’ <transition> {<tinput> -> <toutput>}

<pl desc> = ‘pl’ <place> {(<marking)} {<pinput> -> <pout put >}

<tinput> <toutput> ::= (<place> {'*’ <weight>})*
<pi nput >, <poutput> ::= (<transition> {**’ <weigth>})*
<wei gth> <marking> ::= INT ---- unsigned integer

151

6.3.1 The “Subject And Views” [Helm90a]

Tina version 2.7.4 --
LAAS/ ONRS

06/13/05 --

node - &k

U IR riteriaima- £ 7 Ainesiosbnsieste Vet jrc e 309 05, [15E]

I NPUT NET
parsed net subj ect AndVi ews !

15 transitions EI

net subj ect AndVi ens
tr t1 pl -> p2

18 pl aces,

tr
tr
tr
tr

t10 pl4 p9 -> pl5
t11 p15 -> pl6
t12 pl6é -> plo
t13 pl13 -> p3

tr t14 p2 p3 -> pl8
tr t15 p5 -> p3

tr t2 pl8 -> p4

tr t3 p4 -> p5 p6

tr t4 p6 -> p7

tr t5 p8 -> p7

tr t6 pl0 p7 -> pll p9
tr t7 pll -> pl2

tr t8 pl7 -> pl2

tr t9 pl2 p3 -> pl3 pl4
pl pl (1)

pl p10 (1)

pl p3 (1)

Figure 6.14 “Subject and Views Places-Transitions Petri Net”

We show in (Figure 6.14) the Place-Transition Petri Net used to perform the reachability analysisin the
TINA tool for the “Subject-Views’ example (subsection 6.2.1). The initial marking used specifies one
uniquetokeninplacespl, p10and p3. The presence of atokenin placepl representsthearrival of amessage
setState to the subject. Thisevent is associated with the modification of the state of the subject playing the
role Subject. Thetwo other places p3 and p10 are used to model the mutual exclusion synchronization pol-
icy controlling the execution of participants playing roles Subject and Observer in the group respectively.
The existence of auniquetoken in each one of these places model sthe fact that only one method can be ex-
ecuted by the participantsat the sametime. The message setState can only be executed by the subject isthere
isatokenin place p3for example. If another setState message arrivesto the subject during the execution of
thefirst setState method the message is stored in place p2 (representing the mailbox of the subject partici-
pant) until the first message is executed completely and the token used for the synchronization is restored
into the place p3.

152

Reachability Analysis

REACHABI LI TY ANALYSI S REACHABI LI TY GRAPH

bounded 0->t1/1
1->1t14/2

20 cl asse(s), 25 transition(s) 2->12/3
3->13/4

CLASSES: 4 ->t15/5, t4/17
5->1t4/6

0 : pl plo p3 6 ->16/7

1: pl0 p2 p3 7->1t7/8

2 . plo pi8 8 ->1t9/9

3 : plo p4 9 ->t10/10, t13/16

4 : pl0 p5 p6 10 -> t11/11, t13/15

5 : pl0 p3 p6 11 -> t12/12, t13/14

6 : pl0 p3 p7 12 ->113/13

7 : pll p3 p9 13 ->

8 : pl2 p3 p9 14 ->112/13

9 : pl3 pl4 p9 15 -> t11/14

10 : pl13 pi5 16 -> t10/15

11 : pl13 pi16 17 -> t15/6, t6/18

12 : pl0 p13 18 -> t15/7, t7/19

13 : pl10 p3 19 -> t15/8

14 : pl16 p3

15 : p15 p3

16 : pl4 p3 p9
17 : pl0 p5 p7
18 : pll p5 p9
19 : pl2 p5 p9

19: 0

18 : 1

17 ;. 2

16 : 3

15: 4

LI VENESS ANALYSI S 14 - 17
. 13 : 18

not live 12 - 19
. 11: 5

1 dead classe(s), 1 live classe(s) 0: 6

2 dead transition(s), O live transition(s)
dead cl asse(s): 13

dead transition(s): t8 t5

ORPNWRAUON®OR
=
S)

Figure 6.15 Reachability Analysis for the Subject-Views Petri Net

The results obtained from the reachability analysis indicate that the Petri Net is bounded and not live.
Bounded means that all the time the number of tokens remain finite. This indicates that the coordination
rulesin the specification of the coordination group do not specify cycles generating infinite number of to-
kens. What doesthe “not live” property means? the results show that there is one dead class of transitions
13 composed by the places p3 and p10 and two dead transitionst5 and t8. Thefact that p3 and p10 are dead
classesmeansthat at some point during the evolution of the Petri Net we find tokensin these two places but

153

no transition can be fired anymore. If we understand the way we model the CoLaS group in Petri Netsthis
isnormal, even more, these should be the only dead transitionsin the Petri Net. In theinitial marking of the
Petri Net we place a unique token in place pl representing the arrival of a message setState to the subject
participant, the execution of the message requires the existence of atoken in the place p3 representing the
synchronization policy (similar for place p10in therole Observer). At the end of the execution of the mes-
sages we always restore the tokens in the synchronization policies but not the tokens corresponding to the
reception of the messages, it does not have any senseto doit. Thisisthe reason why we reach a state where
two tokens are found in places p3 and p10 and everything is blocked. Remember that the validation of be-
havioral properties depends aways of the initial marking and that our initial marking represents a unique
message received setState in place pl.

Inthe other hand, the two transitionst5 and t8 are considered dead because they were never fired. Again
thisisnormal because our initial marking represented the arrival of amessage setState and not the arrival of
messagesupdate and getStatein placesp8and p17. Inthe Petri Net placesp8and pl7 exist because we mod-
el the fact that update and getState messages can be received independently of the reception of a setState
message in the subject participant. If we add tokensin these placesin theinitial marking wewill be model -
ing the actual reception of these two messages by the subject and the observer participants.

Wementioned beforethat in our casethefact that our Petri Net wasbounded wasnormal . Another reason
that justifiesthat justifies thisisthe fact that we model a perfect communication media, in the case for ex-
amplewewould have modelled differently the communication mediathe validation of the boundness of the
Petri Net will become basic to determine problemsrelated with the spontaneous generation of messagesin
the medium and problems related with the duplication of messages. A Petri Net not bounded will imply a
Petri Net composed of an infinite number of states, thiswill indicate in our coordination groups potential
branches of coordination code with not end. For example possibleinfinite cycles of coordination behavior.

Wewill try to compl ete now theanalysisresulting from the TINA tool for thelist of behaviora properties
listedin B.2.1in Appendix B of thisthesis. We have:

» Isthe Petri Net Safe? Yes, the Petri Net is safe, because from theinitial marking (i.e. p1, p3 and p10
containing one token each one) for all possible accessible markings (all different classesin Figure
6.15) every place contains at most one token.

» IsthePetri Net Conform? No. In principle not because it is not live. But we aready explained why
thenetisnot aive.

* Isthe Petri Net free from deadlocks? No. The Petri Net is not free from deadlocks because as we
already mentioned before there is a marking (class 13 in Figure 6.15) where no transition is ena-
bled. Aswealready explained thisisnormal in our modeling because we are modeling the execution
of a unique message setState received by the subject participant. We do not model a continuous re-
ception of messages by the participants only the execution flow of one message. To model the re-
ception of several messages for example we will need to set more tokens in the initial marking in
places related with the reception of messages (i.e. ?<message> places).

* IsthePetri Net reversible? No. It isnot possible from each marking reachable from theinitial mark-
ing to reach theinitial marking. In other wordsit is not possible to get back to the initial state. This
isnormal in our case, if not this will means that the received message is executed infinitely.

154

6.3.2 The Electronic Vote [Mins97a]

Tina version 2.7.4 -- 06/13/05 --

LAAS ONRS
node - Ck
INPUT NET €A RS i - 3. 7. AVeesioslar besi e Wiy et jectVimered 309 05, [T [ET 0]
parsed net el ecvote
26 places, 27 transitions H
net el ecvote @
tr t1 pl -> p2 /
tr t10 pl13 -> pi12 El
tr t11 pl2 p3 -> pl4 o
§2 51—
tr t12 pld -> pi5 D—: —O 5
tr t13 pl4 -> pl6 3 g
tr t14 pl6 -> pi7 SN O O
tr t15 pl6 -> pi8 ﬂ - ’
tr t16 pl7 -> p3 0 2 e
tr t17 p18 -> p3 . W
tr t18 pi5 -> p3 O‘

tr t19 p6 -> p3 ; o

tr t2 p2 p3 -> p4 | I|
tr t20 pl0 -> pl9 L \ atl

tr t21 p20 -> p21 _‘ 'O‘__

tr t22 p21 p3 -> p22 p26 O-— . s

tr t23 p22 -> p24 y = Lo

tr t24 pl9 p24 -> p25 = EI
tr t25 p23 -> p24 |

tr t26 p25 -> pl9 -

tr t27 p26 -> p3 . ‘E‘-— pis -E(EI
B &3 ~-O .

tr t4 p4 -> p5

tr t5 p5 -> p6 p7

tr t6 p7 -> p9

tr t7 pl9 p9 -> pl0 pll
tr t8 p8 -> p9

tr t9 pll -> pl2

pl pl (1)

pl pl9 (1)

pl p3 (1)

Figure 6.16 Electronic Vote Places-Transitions Petri Net.

We show in (Figure 6.16) the Place-Transition Petri Net used to perform the reachability analysisin the
TINA tool for the “Electronic Vote” example (subsection 6.2.2). The initial marking used specifies one
uniquetokeninplacespl, p3and p19. The presenceof atokenin placepl representsthearrival of amessage
startVoteto aparticipant playing therole Voters. Thetwo other placesp3 and p19 are used to model the mu-
tual exclusion synchronization policy controlling the execution of method invocation requestsinthe partic-
ipants. The existence of a unique token in each one of these places models the fact that only one method
invocation request is executed by the participants at the sametime.

Itis possibleto seein the Petri Net generated from the ElectronicVote group that we represent “twice”
the role Voters specified in the group. Normally a unique Petri Net is generated per roles in our mapping
function, inthiscase and in other two identify clearly the flow of messages and synchronizations described
inthegroup wemodel asecond participant playing theroleVoters, different to thevoter initiator of thevote.

155

Reachability Analysis

REACHABI LI TY ANALYSI S

REACHABI LI TY GRAPH

bounded 0->t1/1

1->t2/2
28 cl asse(s), 45 transition(s) 2->13/1, t4/3

3 ->15/4
CLASSES: 4 ->119/5, t6/23

5->16/6
0: pl p19 p3 6 ->1t7/7
1: pl9 p2 p3 7 ->120/8, t9/16
2 pl9 p4 8 ->1t9/9
3 : pl9 p5 9 ->111/10
4 : pl9 p6 p7 10 -> t12/11, t13/13
5: pl9 p3 p7 11 -> t18/12
6 : pl9 p3 p9 12 ->
7 : pl0 pll p3 13 -> t14/14, t15/15
8 : pll pl9 p3 14 -> t16/ 12
9 : pl2 pl19 p3 15 -> t17/12
10 : pl4 p19 16 -> t11/17, t20/9
11 : pl5 p19 17 -> t12/18, t13/20, t20/10
12 : p19 p3 18 -> t18/19, t20/11
13 : pl6 pl9 19 -> t20/12
14 : pl7 pl9 20 -> t14/21, t15/22, t20/13
15 : pl18 p19 21 -> t16/19, t20/14
16 : pl0 pl2 p3 22 -> t17/19, t20/15
17 : pl0 pl4 23 ->t19/6, t7/24
18 : pl0 pi5 24 ->t19/7, t20/25, t9/27
19 : pl10 p3 25 ->t19/8, t9/26
20 : pl0 p16 26 ->t119/9
21 : pl0 p17 27 -> t19/16, t20/26
22 : pl0 pl8
23 @ p19 p6 p9 STRONG CONNECTED COVPONENTS:
24 : pl0 pll p6
25 : pll p19 p6 26 : 0
26 : pl2 pl9 p6 25: 12
27 plO p12 p6 24 3

23: 4
LI VENESS ANALYSI S = -« o= m s mmmmmcmmce e 22: 23
_____________ 21 : 24

20 : 27
not live 19 25

18 : 26
1 dead classe(s), 1 live classe(s) 1705
9 dead transition(s), O live transition(s) 12 ?
dead cl asse(s): 12 14 : 16

13 . 17
dead transition(s): t8t27t26t25t24t23t22t21t103 gg

10 : 21

9: 18

8 : 19

7: 8

6: 9

5: 10

4 . 13

Figure 6.17 Reachability Analysis for the Electronic Vote Petri Net

Theresults obtained from the reachability analysisindicate that the Petri Net isbounded and not live. Asin
thefirst case study, What does the “not live” property means? the results show that there is one dead class

156

of transitions 12 composed by placesp3 and p19; and nine dead transitionst8, t10, t21, t22, t23, t24, t25, t26
and t27. Thefact that p3 and p10 are dead classes meansthat at some point in thetime thesetwo placeswill
contain tokens but no transition will befired. Again, if we understand the way we model the ColLaS group
in Petri Netsthisisnormal. Intheinitial marking weplaceauniquetokenin place pl representing thearrival
of amessage startVoteto avoter, once thetokenisconsumed, werestore thetokensin the places p3 and p19
(places representing the synchronization policies), but we do not regenerate the token in place pl.

Theninetransitionst8, t10, t21, t22, 123, 124, t25, t26 and t27 are consi dered dead becausethey were nev-
er fired. Again thisis normal because our initial marking represented the arrival of amessage starVote and
not the arrival of the messages voteOn, vote and stopVote in places p8, p13 and p20. In the Petri Net places
p8, p13 and p20 exists becausewe model thefact that al so the participants may receivethevoteOn, voteand
stopVote messagesindependently of the reception of astartVVote messagein the voter participant. Theresult
of the reachability analysis confirms what we mentioned before in subsection (6.2.2) concerning the fact
that if no stopVote message arrivesto the participant the vote process could be endless. The second subnet
starting in the place p20 and representi ng the actions executed when the stopVote message arrivesto thevot-
er isnot connected to the subnet starting in place pl related to the reception of the startVote message.

Wewill try to compl ete now theanalysi sresultingfromthe TINA tool for thelist of behavioral properties
listedin B.2.1in Appendix B of thisthesis. We have:

 Isthe Petri Net Safe? Yes, the Petri Net is safe, because from theinitial marking (i.e. p1, p3 and p19
containing one token each one) for al possible accessible markings (all different classesin Figure
6.17) every place contains at most one token.

* IsthePetri Net Conform? No. In principle not becauseitisnot live. But already explain why the net
isnot aive.

* Isthe Petri Net free from deadlocks? No. The Petri Net is not free from deadlocks because as we
already mentioned before there isamarking (class 12 in Figure 6.17) where no transition is ena-
bled. Aswealready explained thisisnormal in our modeling because we are modeling the execution
of aunique message startVote received by a voter.

* IsthePetri Net reversible? No. It isnot possible from each marking reachable from theinitial mark-
ing to reach the initial marking. In other wordsit is not possibleto get back to theinitial state. Again
it does not have any sense to reach the initial marking in our case. This will means that received
messages are executed infinitely.

6.4 Related Work

Somerelated work in the formalization of coordination modelswith Petri Nets have been done by Buffoin
[Buff97a]. The subject has become an important topic in the coordination research, in 2004 the first inter-
national workshop on coordination and Petri Nets (http://www.cs.unibo.it/atpn2004/pnc04.html) wasorga-
nized. From our point of view the most important work is SynchNet [Ziag03a] given the similarity of the
approachwith ours. SynchNet isacompositional meta-level languagefor coordination of distributed object
systems inspired by Petri Nets. The based-object model of SynchNet is inspired by the Actor model
[Agha86a]. Each object isidentified by auniquereference. Objectscommunicate by an asynchronouscom-
munication mechanism called ARMI (Asynchronous Remote Method Invocation). In ARMI, the source
object asynchronously sends a message specifying the method to the invoked in the remote object accom-
panied by the argumentsto be passed.

157

In (Figure 6.18) we can see the example of two transmitters which communicate via asynchronous
sending of messages. The delivery of messages triggers invocations of methodsin the objectsthat control
thetransmitters. Each transmitter iscontrolled by an object with two methods: an on method that determines
transmission power and turns on the transmitter and an off method that turnsit off. A global requirement is
that no two transmitters may be transmitting at the same time. Turn off messages are sent to turn off the
transmitters before the next transmission begins. In Petri Net termsthe ob.on may beinvoked only whenin
thestate of the TransmitterM E thereisone ob’ .off token avail ablefor each object ob’ in the group. Oncethe
invocation of an ob.on isdecided the state of the generated synchnet ismodified by adding onetoken corre-
sponding to the invoked method ob.on and consuming the tokens specified in the consumes multilist. The
only requirement on theinvocation of an ob.off method isthat the ob isturned on. After consuming theto-
ken ob.on, other transmittersmay get achanceto beturned on. The“[withfairness]” condition requiresthat
all pending methodsto objectsin the group must be given afair opportunity of invocation.

1.synchnet TransmitterME (Transmitters: list of Transmi stterC)
2 init ={ ob'.off | ob’ in Transmitters }

3 foreach ob in Transmitters [with fairness]

4. met hod ob. on

5. requires { ob’.off | ob” in Transnmitters }

6 consunes { ob.off }

7 met hod ob. of f

8 requires { ob.on }

9. consunes { ob.on }

10.end Transmitter VE

Figure 6.18 TransmitterME SynchNet specification

In(Figure 6.19) we can see the graphical version of the synchnet generated by the expression Transmit-
tersME({t1,t2}), which isan instantiation of TransmitterM E on two transmitterstl and t2.

PRSI R O
i

tl.on t2.0n

Figure 6.19 Diagram of TransmitterME instantiated on t1 and t2 in its initial state

Inthe SynchNet work [Ziae034] it is pointed out theimportance of freedom from deadl ock in the coordina-
tion of acollection of interacting objects. Deadlock is defines as the situation in which the state of the one
or more synchnet disables certain methods forever. According to Ziaei and Aghaone can verify deadl ock-
freedom on a synchnet by performing reachability analysis. However, since reachability of Petri nets has

158

non-elementary complexity, they introduce an aternative formal method for the devel opment of deadl ock-
free synchnets. They introduce a preorder relation <=that is deadl ock-freedom preserving: S<= S implies
that whenever S' does not deadlock in an environment E, using S’ in environment E would not result in
deadlock either.

6.5 Conclusions and Contributions

We have presented in this chapter of the thesisaformal methodology to verify formal propertiesin the Co-
LaS groups. The methodology is based on the specification of a mapping function F transforming ColL aS
groupsin Predicate-Action Petri Nets. The Predicate-Action Petri Netsare an extension of Place-Transition
Petri Netswith transitions |abel ed with conditions and actions on variables specified in the Petri Net.

F : CoLaS groups- > Predicate-Action Petri Nets

The mapping function F was defined recursively over each one of the elements that compose the speci-
fication of aCoLaS group. For each element we showed its corresponding Predicate-Action Petri Net and
the way how all the different Petri Nets obtained must be connected to obtain the representation of the
group. Different models of connectionswereillustrated, they differ on the assumptions made on the com-
muni cation media enabling the communication.

We have sel ected to use Petri Netsto perform the validation of the CoL aS groupsfirst because by using
Petri netswe can benefit from therich and well studied theory of Petri nets. Thetheory includesformal char-
acterizations of many interesting properties along with decision algorithms to decide those properties.
There existsalot of analysistoolsthat made these theories accessible to researchers. And second, because
we believethat agraphical representation of the coordination and in particular of the flow of the exchange
of messages (i.e, the tokensin the Petri nets) between the group participants facilitates the understanding
and the detection of coordination problemsinthe Petri Nets. This point wasillustrated in the examples pre-
sented in this chapter, several coordination problemsin the coordination specification of the groups were
detected by asimple graphical check of the Petri Nets.

We showed concretely using the examples of the* Subject and Views’ and the* Electronic Vote” how to
use our methodol ogy. For each example we showed the specification of the ColL aS group and the Predicate-
Action Petri Net obtai ned from the application of the mapping function F to the group. We used enumeration
analysistechniquesin the Petri Nets obtained to verify certain properties. The enumeration analysis tech-
nigue is based on the construction of an accessibility graph from theinitial marking MO. The graph is ob-
tained by firing all the possibletransitionsuntil no new transition could befired. Propertieslike: boundness,
safeness, liveness, reversability and blockings can betested in nets.

The big problem with the approach developed in this chapter for the validation of group properties con-
cernstheinterpretation of theresults. Thisisnot aspecific problem of thisapproach but in general aproblem
of all the approachesthat transform the original model in adifferent formal model to realize the validation
of properties. In our caseit is difficult to give a generic recipe about how to interpret the results obtained
fromthevalidation of propertiesin the Petri Netsin Tina. We have seen for examplein the case of the* Sub-
ject-View” and the “Electronic Vote” Petri Netsthat even if the resultsindicated dead classesin the reach-
ability graph thisdoes not necessarily meansthat there was a problem. We believe that the interpretation of
resultsin the Petri Netsobtained from the groups constitute an interesting future work in the CoL aS coordi-
nation model.

159

We do not pretend that we have found the complete solution to the problem of formally verifying the
specifications contained in ColL aS groups specifications. Nevertheless, we believe that the methodol ogy
presented here cover the most important aspects of the CoL aSgroups. It provides programmerswithasim-
pletool to validate basi c properties of group specifications.

There are several modeling aspects which are not cover by this method, for example we only model the
existence of aunique participant per role. An ideato represent multiple participants will beto replicate the
Petri Nets obtained for therole, one for each participant playing the role and connect them all together.

We do not model the spontaneous generation of the messages received by the participants. In theinitial
marking we specify the messages received by the participants, the simulation of the reception of different
types of messages at different moments during the execution will imply the introduction of temporal con-
straintsin the Petri Net.

We do not model the manipulation of variablesin the examples, we showed at the beginning of section
6.1 how thiscan be done. Using the placesassociated with thevariablesit is possible to detect non-structur-
al problemslike for example conditions related with variables which never validate to true. Normally if a
condition never validatesto truethisindicatesthat thetransitionisnever fired. We explained in this chapter
how variablesin Predicate-Action Petri Netscan betransformed into simple placesin Place-Transition Petri
Netsto perform the verification of properties.

Wedo not model all the dynamic aspectsof the CoL.aSmodel. For example, we do not model thefact that
new participants canjoin therolesinthe groupsat any time. Neverthel ess, webelievethat we can model the
modification of therulesand the creation of new groups. The addition of new ruleto agroup correspondsto
the addition and the connection of anew Petri Net representing the new rule. The addition of a new group
corresponds to the addition and connection of anew Petri Net representing the new group.

We did not present the result of the validation of propertiesin the examples using different initial mark-
ings. An exhaustive validation of the coordination specified in agroup must consider all possible different
initial markings. Aninteresting work would beto determinewhich initial markingswill be sufficient to test
in order to conclude that the coordination specified is free of problems (given that generating all possible
marking is aproblem with exponential complexity, factorial of the number of places). How to select inter-
esting initial markings constitute an interesting future work from our point of view. According to our expe-
rience we suggest to consider asinitial markings al those including the reception of messages associated
with all the possible behaviors specified in the groups (i.e. ?<message> places).

How to test the possibleinterference problems caused by the execution of more than one messagein the
sameroleandin different rolesisanother interesting and problem. When the number of behaviors(i.e., co-
operation rules) definedinagroupissmall itisstill possibleto analyze thisinterference, but as soon asthe
number of behaviorsin aroleincreasesthetask become almost impossibleto achieve. To analysetheinter-
ference of messagesin arole or between different roleswe must test initial markingsin which wetake two
by two al the different possible combinations of messagesthat can bereceived by the participantin arole.

Finaly, webelievethat it isalso important to understand the kinds of thingsthat we can not verify inthe
CoL aSgroups using our approach. Definitely we can not say anything about how behaviorsspecifiedinthe
computational part of the participants or behaviors defined in other groups in which the participants also
participate affect the coordination specified in agroup. Even if we are able to determine that the specifica-
tion of agroup isdeadlock freeit does not meansthat deadlockswill not appear when a participant partici-
patesin other groups at the sametime.

CHAPTER 7

Case Studies

In the introduction of thisthesis we pointed out the limitations that concurrent object-oriented technology
has for building and maintaining concurrent object-oriented systems. From our point of view one of the
most important problemsin building and maintaining concurrent object-oriented systemsisthat the func-
tionality of the active objects that compose the systems and they way they cooperate and synchronize are
mixed within the active objects code. The mixing of cooperation and synchronization concerns makes the
concurrent systemsbuilt difficult to understand, modify and customize. We also pointed out theimportance
that coordination model sand |anguages havein the specification and construction of concurrent and distrib-
uted systems. Coordination models and languages promote the separation of the computation and the coor-
dination aspectsin those systems. The computation aspect concerns the specification of the elements that
composethose systemsand the coordi nation aspect the gluethat bindsall theelementstogether. Webelieve,
and thisisthe key point of thisthesis, that by separating the specification of the coordination aspect from
the computation aspect in concurrent object-oriented systems and by specifying the computation in active
objectswe simplify their specification, understanding, construction, evolution and validation of properties.

Although coordination is a fundamental aspect of object-oriented programming languages for concur-
rent systems, existing concurrent object-oriented programming languages provide only limited support for
its specification and abstraction. In Chapter 2 of thisthesisweidentified the most important problems we
believe existing concurrent object-oriented programming languages have in supporting the specification of
the coordination aspect in concurrent object-oriented systems. They are:

» Lack of high level coordination abstractions.

» Lack of coordination abstractions for complex interactions.

» Lack of separation of computation and coordination concerns.
» Lack of support for the evolution of the coordination code.

» Lack of support for the validation of the coordination code.

The CoL aS coordination model and language that weintroduced in thisthesisintroducesahigh level co-
ordination abstraction called Coordination Group that allows programmersto design, to specify and toim-
plement the coordination of groupsof collaborating active objectsin concurrent object-oriented systems. In
Chapter 2 of thisthesiswe al so identified the requirementsthat we consider to be fundamental for the spec-
ification of acoordination model and language for concurrent object-oriented systems. These requirements
can be summarized asfollows

» The coordination policies must be defined independently of the coordinated entities.

» It must be possible to define new coordination policies in the coordination model.

» It must be possible to incrementally define new coordination policiesin the coordination model.
» The coordination policies must be multi-party.

» The coordination policies must be declaratively defined in the coordination model.

161

* The coordination policies must be control-driven defined in the coordination model.

» The coordination model must be transparently integrated into the host language.

» The architecture of the coordination model must be hybrid.

» The coordination policies must include the possibility to define proactions in participants.

» The coordination policies must include the possibility to refer to the state of the participants and to
the coordination history.

* It must be possible to dynamically modify the coordination policies.

* It must be possible to prove the capability of the coordinated entities to be coordinated.

» It must be possible to validate basic safety and liveness properties of the coordination.

We believe and we will show it again in this chapter that our approach CoLaS fully satisfiesthelist re-
quirementsintroduced above. The goal of thischapter isto show concretely with six examples how our ap-
proach can be used to tackle the complexity of specifying and building concurrent object-oriented systems.
Some of the examples were taken from the coordination literature and some others from previous thesis
done in the coordination area. The examples selected cover the most important coordination problemsin
concurrent systemsidentified in the Chapter 2 of thisthesis: transfer of information, allocation/access of /to
shared resources, simultaneity constraints, condition synchronizations, execution orderings, task/subtask
dependencies, group decisions and global constraints. Not all the exampleswere implemented in real full-
scale. We believe that the diversity of the problems and their relevance as representative of the different
types of coordination problemsin concurrent systemswill be enough to convince the reader that CoLaSis
aninteresting and effective model to manage coordination problemsin concurrent object-oriented systems.
Wewill show inthese exampleshow designersand programmers of concurrent object-oriented systemscan
get advantage of the separation of the coordination and computation concernsin the specification, construc-
tion and evolution of their systems.

We have divided the presentation of this chapter into two parts:

In the first part of this chapter we present the six examples selected. For each example introduced we
specify: ashort description of the problem; adescription of our solution (sometimeswe include aninterest-
ed solution already proposed to solve the problem); a description of the coordination problemsthat appear
in the example and the ColL aS specification containing the specification of the solution to the problem. We
do not focusexclusively on the CoL aS sol ution to the problems, the most important isthat for each example
we compare our solution with a® classical” solutioninaconcurrent object-oriented language without coor-
dination abstractions. We use Smalltalk as an object-oriented programming language and we add to the ba-
sic core of Smalltalk classes the Actalk framework [Brio89b]: a set of classes specialized in the
representation of active objects. We also show for each example how the solution specified in CoLaS satis-
fiesthe requirements (not always all at the sametime) identified asideal for acoordination model and lan-
guage for concurrent object-oriented systems based on active objects. For most of the solutions we
complete the presentation of the solution with UML class diagrams and/or UML interaction diagrams de-
scribing the most important aspects of the solution.

The selected examples are:

* A Context-Sensitive Help: a system to provide help information in any part of aninterface. This ex-
ampleillustrates the following coordination problem: transfer of information.

» The Dining Philosophers: a system simulating agroup of philosophers eating and thinking. This ex-
ample illustrates the following coordination problems: transfer of information, condition synchro-
nizations and allocation/access of/to shared resources.

162

» The Vending Machine: a system to control avending machine. This exampleillustrates the follow-
ing coordination problems: transfer of information, simultaneity constraints, execution orderings
and condition synchronizations.

» TheOnline-Music Shop: an online music reseller system. This exampleillustrates the following co-
ordination problems: transfer of information, task/subtask and execution orderings.

» The Ornamental Garden: a system to control the entrance and the number of visitors to a garden.
This exampleillustrates the following coordination problems: global constraints.

e The New Server Election: election of a new replication server. An election is a procedure carried
out to choose a process from a group, for example to take over the role of a server that has failed.
Thisexampleillustrates the following coordination problems: transfer of information and group de-
cisions.

Finally at the end of this chapter we present our conclusi ons about the work presented here and we point

out the main contributions of this chapter to thethesis.

7.1 A Context-Sensitive Help [Gamm95a]

Problem Description

Consider a context-sensitive help facility for agraphical user interface. The user can obtain help informa-
tion on any part of the interface just by clicking on it. The help that is provided depends on the part of the
interface that is selected and its context; for example, a button widget in adialog box might have different
help information than asimilar button in the main window. If not specific help information exists for that
part of the interface, then the help system displays a more general help message about the immediate con-
text.

Solution: Chain of Responsibility Design Pattern

A natural solution to this problem consiststo organize the hel p information according to itsgenerality (i.e.,
from the most specific to the most general). The help request needs to be decoupled from the objects that
might provide the help information. The Chain of Responsibility design pattern proposes an interested so-
[ution to this problem. The pattern avoids coupling the sender of arequest toitsreceiver by giving morethan
one object achangeto handletherequest. The pattern chainsthereceiver objectsand passtherequest along
the chain until an object handlesit. Each object in the chain receivesthe request and either handlesit or for-
wardsit to the next object in the chain. The object that made the request has no explicit knowledge of who
will handleitsrequest.

Coordination Aspects
» Transfer of information: each object communicates with the next object handler in the chain to pass
the requests if necessary. Each object in the chain may decide to handle the request of to forward it
to the next object in the chain.

163

Structure
1
Client Handler
~ jsuccessor
0.1 * |+HandleRequest()
Zr l
Concrete handlerl ConcreteHandler2
+HandleRequest() +HandleRequest()

Figure 7.1 : Chain of Responsibility structure

In(Figure 7.1) we show the structure of the Chain of Responsibility pattern as presented in [Gamm95a].
The class Handler defines an interface for handling requests and implements the successor link. The class
ConcreteHandler handles the requests from which it isresponsible. If the ConcreteHandler can handle the
request, it does so; otherwise it forwards the requeststo its successor. The class Client initiates the request
toaConcreteHandler object in the chain.

Smalltalk Specification

We will present now how the solution to the Context-Sensitive Help problem can be implemented using
Smalltalk + Actalk[Brio89a] to represent the active objects. The Actalk framework includes aclasscalled
ActiveObject from which our participants in the solution inherit. The ActiveObject classincludes al the
necessary support to create and manipul ate active objects. In our presentation we will precede the specifi-
cation of methods with the symbol “>>" (only for notation purposes). Active objects communicate asyn-
chronoudly and replies are send back using futures.

In(Figure 7.2) we can see theimplementation of the abstract classHandler (line 1). The classspecifies
the successor instance variable to store the successor handler in the chain of responsibility (line 5). The
methods >>successor and >>successor: define accessors methods for the successor instance variable (line
10 and 12). The >>handleRequest: method (line 14) defines the core of the chain of responsibility pattern,
when the handler can handle the request (line 15) it call s the executeRequest: method (line 16) to execute
the request, when not is the successor in the chain of responsibility (line 19) who will be requested to exe-
cutetherequest (i.e., if thereisasuccessor of course). The classHandler letsthe concrete subclassesthere-
sponsibility to specify the methods >>canHandle: and >>executeRequest:. The method >>canHandle:
validateswhether the handler can handle (or must handle the request). It isup to each handler to determine
whether it can or not handle the request, in principle the validation is done based in the coordinates of the
request. If the coordinatesfall within the areagraphically cover by the handler the handler must handlethe
request.

164

1. CaseSt udi es defined ass: #Handl er

2. supercl ass: #{Actal k. Acti veCbj ect}
3. i ndexedType: #none

4, private: false

5. i nstanceVari abl eNanes: 'successor '
6. cl assl nstanceVari abl eNanes:

7. i mports:

8. category: 'CR Pattern'

9.

10. >>successor

11. Asuccessor

12. >>successor: aHandl er

13. successor : = aHandl er

14. >>handl eRequest : aRequest

15. (sel f canHandl e: aRequest)

16. ifTrue: [self executeRequest: aRequest]
17. i fFal se:

18. [sel f successor

19. ifNotNi | : [self successor handl eRequest: aRequest]]
20. >>canHandl e: aRequest

21. "sel f subcl assResponsibility

22. >>execut eRequest: aRequest

23. “sel f subcl assResponsibility

Figure 7.2 Handler Class

In (Figure 7.3) we can see the implementation of the concrete handler classes. Theclass View (linel)
representsagraphical view. The class View defines an instance variable named widgets (line 5) containing
thelist of all thewidgetsthat currently appear inthe view. Theinstance method >>handleRequest: (line 10)
specifiesthat the any request received by the view is sent to thefirst widget in thelist of widgets. The class
Widget (linel3) specifiesan abstract classfor al different typesof widgets(i.e., buttons, menus, etc.). Inthe
class Widget we specify all the behavior commonto all the different typesof widgetsthat we manageinthe
graphical views. The method >>executeRequest: (line 22) delegates the execution of the request to the
method >>displayHelp in the widget. It is the responsibility of each widget to specify the concreteimple-
mentation of the method >>displayHelp (line24). The method >>canHandle: (line 26) specifiesthat awid-
get can handle the request if the position of the request (i.e., the coordinates of the mouse click) fall within
the coordinates of the current position of the widget. The classes Button and Menu (lines 29 and 38) corre-
spond to concrete implementations of widgets. Because the class Widget isasubclass of the class Handler,
buttons and menus behave also ashandlers.

165

1.
2
3.
4.
5
6
7
8

9.

10.
11.
12.

13

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

38

39.
40.
41.
42.
43.
44.
45.

CaseSt udi es defined ass: #View

supercl ass: #{Actal k. ActiveQbj ect}
i ndexedType: #none

private: false

i nstanceVari abl eNanes: 'widgets
cl assl nstanceVari abl eNanes: '

i mports: '

category: 'CS_Pattern'

>>handl eRequest: aRequest
sel f widgets first handl eRequest: aRequest

CaseStudi es defineC ass: #W dget
supercl ass: #{CaseStudi es. Handl er}
i ndexedType: #none
private: false
i nstanceVari abl eNanes: 'position nodel'
cl assl nstanceVari abl eNanes: '
i mports: '
category: 'CR Pattern'

>>execut eRequest: aRequest
Asel f di splayHel p
>>di spl ayHel p
Asel f subcl assResponsibility
>>canHandl e: aRequest
Aself position contains: aRequest position

CaseStudi es defineC ass: #Button
supercl ass: #{CaseStudi es. Wdget}
i ndexedType: #none
private: false
i nstanceVari abl eNanes:
cl assl nst anceVari abl eNanes:
i mports: '
category: 'CR Pattern'

CaseStudi es defineC ass: #Menu
supercl ass: #{CaseStudi es. Wdget}
i ndexedType: #none
private: false
i nstanceVari abl eNanes:
cl assl nstanceVari abl eNanes:
i mports: '
category: 'CR Pattern'

Figure 7.3 Concrete Handlers

166

Analysis

From the coordination point of view we can seein theimplementation of the solution how the coordination
and computation aspects are mixed within the classes of the participant widgets. The classes Button and
Menuinherit all the coordination behavior specific to theimplementation of the chain of responsibility pat-
tern from the class Handler. This implies. 1) that the coordinated entities (i.e., the buttons and menus)
“know” in advance about the coordination in which they will participate; 2) that if the coordinated entities
participate in other coordination solutionsthey will accumul ate more coordination codein their class spec-
ifications, code not really related with the functionality of abutton or amenu; 3) that the coordination can
not be reused to coordinate other kinds of entities different to Widgets; 4) that any modification to coordi-
nation code will imply the modification of the different classes that participatein the solution, not only the
Handler classwill be affected by alsothe concrete handlers(i.e., buttonsand menus); 5) that it isnot evident
with asimple view of the code to identify which are the classes that participate in the coordination and to
understand how they participate; 6) that it isnot clear in case of amodification of the coordinationtoidentify
which classeswill be affected by the changes; 7) that if we want to do not coordinate the menus and the but-
tons in the example as a chain of responsibilities we will need to modify their inheritance hierarchies and
del ete some method i mplementations; 8) that it isnot possibleto dynamically modify the coordination code
if the implementation would have been done in a concurrent object-oriented language with strong typing
like Javait would have been necessary the recompilation of the code; 9) that in the case that a new type of
participants different to Views will need to be coordinated this will implies the new participants will need
to be defined as subclasses of the Handler class.

Another aspect that we should not forget in thisexampleisthat we are using active obj ectsto specify the
behavior of the different participant classes. Thereis not reference in the code to the creation of threads or
processeslikein atypical concurrent program written in Java. The specification of the active objectsin the
ActiveObject class hides all thelow levelsdetail srelated with the concurrency: creation of process, sched-
uling of processes, specification of internal synchronization policies, etc. We believe (as we have pointed
out several timesin thisthesis), that not only the specification of the coordination in a coordination model
and languageisimportant, both: the specification of the computation related with the concurrency in active
objects and the separation of computation and coordination concernsare key elementsinthesimplification
of the complexity of the specification, development and maintenance of concurrent object-oriented sys-
tems.

ColLaS Specification

We create a coordination group named ChainRespPattern (Figure 7.4) to encapsul ate the coordination as-
pect of the chain of responsibility pattern. The coordination group specifies a unique role named Handler
(line 3). Therole Handler specifiesan interface composed of two signatures executeRequest: (i.e., executes
arequest) and canHandle: (i.e., returnstrueif the handler can handle the request fal se otherwise) (line 5),
every object that wantsto play the role Handlers must know how to react to both methods. Therole Handler
specifies additionally a participant variable named successor (line 6). The participant variable successor is
used to store for each handler the reference to the next handler in the chain of responsibility. The ChainRe-
spPattern coordination group specifiesthe foll owing coordination rules:

Rulel (line 8): specifiesthat whenever arequest isreceived by ahandler, the handler verifieswheth-
er it can handle or not the request. If it can, it executes the request, if not it passes the request to the
next handler in the chain of responsibility (if thereis one of course).

167

Rule 2 (line 6): defines how to specify the next handler in the chain of responsibility for a handler.
Rule 3 (line 19): validates that a successor handler specified in a setSuccessor: behavior isavalid
handler. The handler specified as argument must be a participant of the role Handler. Only objects
validating the role interface specified in the role Handles are authorized to play the role.

1. Coor di nati onG oup createCoordi nati onG oupC assNaned: #Chai nRespPattern.
2.

3. Chai nRespPattern defi neRol eNaned: #Handl er.

4.

5. Handl er definelnterface: #(#executeRequest: #canHandl e:).

6. Handl er definePartici pantVari abl e: #successor.

7.

8.[1] Handl er defineBehavior: 'handl eRequest: aRequest’ as:

9. [(sel f canHandl e: aRequest)

10. i fTrue: [self executeRequest: aRequest]

11. i fFal se:

12. [sel f successor

13. i fNotNi|:

14. [sel f successor handl eRequest: aRequest]]].
15.

16.[2] Handl er defineBehavior: 'setSuccessor: aHandler’ as:

17. [sel f successor: aHandler].

18.

19.[3] Handl er ignore: ’'setSuccessor: aHandler’ if:

20. [(Handl er includes: aHandler)not].

Figure 7.4 : Chain of Responsibility Pattern

Analysis

From the group specification point of view the ChainRespPattern group illustrates: 1) the creation of aco-
ordination group (line 1); 2) the specification of aroleand itsroleinterface (lines 3 and 5); 3) the specifica
tion of a participant variable (line 6); 4) the specification of two cooperation rules (lines 8 and 16) and one
reactive synchronization rule (line 19) and 5) the specification of synchronous recursive method invoca-
tions(line9).

From the coordination point of view we can seein the example that in the specification of the group the
coordination policiesaredefined independently of the entitiesthat are coordinated. The conditionsimposed
tothe active objectsto play therole Handler are specified in theroleinterface (line5). To play therole Han-
dler the active objects must be ableto respond to two method i nvocations. executeRequest: and canHandle:.
The method executeRequest: executesareceived request and the method canHandle: validateswhether the
handler can handle (or must handl etherequest). The active objectsthat play the role Handler does not need
to “know” in advance anything about the coordination specified in the group to play the role, they do not
need know even that they will coordinated.

If we compare this solution with the solution presented before (i.e., using Smalltalk and active objects)
from the point of view of thefacility to realize the specification, construction and modification of the solu-
tion; the second sol ution presentsalot of advantages: 1) the coordination code does not appear in the com-

168

putation code of the participants; 2) the coordination code can be reused independently of the coordinated
entitiesand the coordinated entitiesindependently of the coordination code; 3) we do not need to modify the
class hierarchies of the participantsto specify and modify the coordination; 4) the participants do not need
to accumulate coordination behavior in their code; 5) any modification made to the coordinationisdonein
only one point in the code (i.e., in the coordination group); 6) it is clear which isthe coordination relating
thedifferent participants, itisclear what arethey roles, their obligationsandin general how they participate
tothe coordination; 7) it is possibleto dynamically modify the coordination if needed and 8) it will be easy
tointroduce new participantsif needed.

7.2 The Dining Philosophers[Dijk68a]

Problem Description

A number of philosophers are seated around acircular table. Each philosopher spendshislifealternatively
between two activities: eating and thinking. To eat a philosopher must sit at a table. Between each pair of
table positionsthereisasingle fork and there is the same number of forks than philosophers. To eat, each
philosopher needs two forks, the two that find in front of the philosopher over thetable (i.e., the one at his
left and at the one hisright). Asaconsequence a philosopher cannot be eating concurrently with his neigh-
bor.

Solution

Wehaveidentified two typesof entitiesintheproblem (Figure 7.5): the philosophersand theforks. All the
interaction starts when a philosopher triesto eat. To eat the phil osopher must take the two forksthat find in
front him over thetable: the oneto hisleft and the one hisright. The philosopher waitsif one or both of the
two forks are actually being used by another philosopher. When the philosopher takes both forks he starts
to eat. When the philosopher has eaten enough he freesthe two forks putting them over the table and sl eeps
for sometime.

Structure

:Philosopher :RightFork :LeftFork

T
life 1
|
1
1

> think

eat
takeFok

takeFork

spendTimeEating

|

putFork

putFork

T e I

Figure 7.5 The Dining Philosopher’s Interaction Diagram

169

Coordination Aspects

» Transfer of information: there is some basic flow of information between the philosophers and the
forks. The philosopher “announces’ to the forks hisintention to taken them and when he finishesto
eat he “announces’ to the forks his intention to put them over the table.

» Condition Synchronizations: philosophers can only eat if they can take the two forks that find in
front on them over the table. A fork can not be taken if the fork is already being used by another
philosopher.

» Allocation/Access of/to Shared Resources: each fork is shared by two philosophers. Only one phi-
losopher can accessafork at the time. Philosophers do not eat if they do not have the two forks that
find in front of them over the table.

Smalltalk Specification

Inthisexamplewe do not usethe A ctiveObject support of Actalk[Brio89a]. Our purposeistoillustrate how
thelow details related with the concurrency that appear in the solution of the dining philosophers problem
difficult its specification and understanding. In the example we use the basic support for concurrency in-
cluded in Smalltalk: the creation of aprocess (line 14), the resuming of the execution of aprocess (line 15),
theyielding of the processor timeto another process with same priority (line 14) and the use of amutual ex-
clusion semaphoreto control the accessto a shared resource (lines 38 and 40).

In(Figure 7.6) we can seetheimplementation of the classes Philosopher and Fork (lines 1 and 25). The
class Philosopher specifiestwo instance variabl esleftFork and rightFork (line 5) representing thetwo forks
that each philosopher hasin front of him over table. Each instance variable stores the reference to afork.
The method >>life (line 10) specifies the activities that a philosopher does during his whole life: to think
(line 12) and to ezt (line 13). The method >>think (line 16) simulatesthe behavior of the philosopher when
hethinks (itisalso possibleto usethe Smalltalk class Delay to stop the philosopher for some milliseconds).
The method >>eat (line 18) specifiesthe activity of eating of the philosopher. To eat aphilosopher needshis
two forks (lines 19 and 20), if he can take both forks he proceedsto eat (line 21). The method >>take (line
39) inthefork usesamutual exclusion semaphoreto control the accessto thefork. If thefork isbeing used
when the request for take is received the execution of the calling process is suspended until the fork is put
over the table. The method >>put (line 37) in the fork uses the same mutual exclusion semaphore that the
take method to indicate that the fork can be used by another philosopher. If aphilosopher processwas sus-
pended waiting for the fork the processis resumed and the philosopher can take the fork.

170

1. CaseStudi es defined ass: #Phil osopher
2. supercl ass: #{Core. Cbj ect}
3. i ndexedType: #none
4. private: false
5. i nstanceVari abl eNanes: 'rightFork |eftFork phil proc'
6. cl assl nstanceVari abl eNanes: "'
7. i mports: "'
8. category: ' Phil osophers'
9.
10.>>life
11. sel f philproc:[[true] whileTrue:
12. [sel f think.
13. sel f eat.
14. sel f philproc yield]] newProcess.
15. sel f phil proc resumne.
16. >>t hi nk
17. Transcript cr; show ‘Imthinking .
18. >>eat
19. self leftFork take.
20. sel f rightFork take.
21. Transcript cr; show ‘I spend some tinme eating’ .
22. self rightFork put.
23. self leftFork put.
24,
25. CaseSt udi es defined ass: #Fork
26. supercl ass: #{Core. Cbj ect}
27. i ndexedType: #none
28. private: fal se
29. i nstanceVari abl eNanes: ' semaphore '
30. cl assl nstanceVari abl eNanes: "'
31. i mports: "'
32. cat egory: ' Phil osophers'
33.
34. >>semaphor e
35. semaphore ifNil: [semaphore := Semaphore forMitual Excl usion].
36. Asemaphor e
37. >>>put
38. sel f semaphore signal
39. >>t ake
40. sel f semaphore wait
Figure 7.6 Philosopher and Fork classes
Analysis

From the coordination point of view we can seein theimplementation of the solution how the coordination
and computation aspects are mixed within the philosopher and fork classes. The method >>life (line 10) for
examplewhichisabehavior exclusively related with the coordination of the philosopher callsthelow level

171

Smalltalk method for the creation of processes >>newProcess. The process encapsulating the >>life meth-
od (lines11to 14) isdefined asaninfiniteloop composed of two subactivities. think and eat. Only the>>life
method executes concurrently in our solution, this means that philosophers execute concurrently among
them but sequentially internally. The main advantage of using the ActiveObject classesintroduced by Act-
alk [Brio894] isthat all the computational aspectsrel ated with theconcurrency can be encapsul ated and thus
hiddento the programmerswithin these classes. Programmersdefinethe ActiveObject class or subclassthat
fitsthe best to its object model (i.e. active object, actors, etc.) and focus exclusively on the specification of
the computation behavior specific to the problem. We can also see in the solution that a mutual exclusion
semaphore is used to specify the internal synchronization constraints associated with the execution of the
methods >>take and >>put in the forks. In the Actalk framework is possible to specify at a high level for
each object model the type of synchronization constraint needed, if we consider for example the case of a
multiple readers only one writer synchronization policy, in Actalk programmerswill not take care of spec-
ifyingthelow level detailsof how the policy isapplied but only in specifying which behaviors must be con-
sidered asreaders and which aswriters.

Additionally we can see in the solution: 1) that the coordinated entities (i.e., the philosophers and the
forks) must “ know” in advanceabout the coordinationinwhichthey participate; 2) that the coordination can
not be reused to coordinate other kinds of entities different these philosophers and forks; 3) that any modi-
ficationto coordination codewill imply themodification of the philosopher and fork classesin the solution;
4) that itisnot easily to dynamically modify the coordination (i.e., evenif in Smalltalk thisispossible). Con-
sider for example the casein which forks are replaced by chopsticksin the solution. In the new solution it
will be necessary to modify the specification of the class philosopher because of such simple modification.
Wewill see below in the CoL aS specification that such achange in the coordination specification does not
have any impact in the CoLaS solution to the problem, thisis because the specification of the coordination
in CoLaSis done based on theroles that participants play in the coordination and not in their identities or
their types. If the potential participants satisfy theroleinterfaces associated to therolesthey want toplay in
the coordination groupsthey will be authorized to play theroles.

ColaS Specification

We create a coordination group named DiningPhilosophers (Figure 7.7) to encapsulate the coordination
aspect of asolution to the dining philosophers problem. The coordination group specifiestwo roles Philos-
opher (line3) and Fork (line7). Theroleinterface of therole Philosopher (line4) specifiesthat philosophers
must know how to spend their time thinking (i.e., they must be able to react to the method think). Therole
philosophers specifies two participant variables named leftFork and rightFork (line 5) they model the two
forksthat find at theleft and at the right side of the each philosopher over thetable. Therole Forksaddition-
ally definesa participant variable named i sFree used to keep the current state of thefork (i.e., busy or free).

172

1. Coor di nati onG oup creat eCoordi nati onG oupCl assNaned: #Di ni ngPhi | osophers.
2.

3. Di ni ngPhi | osopher s defi neRol eNanmed: #Phil osopher.

4. Phi | osopher definelnterface: #(#think).

5. Phi | osopher defineParticipantVariabl es: #(#l eftFork #rightFork).
6.

7. Di ni ngPhi | osophers defineRol eNanmed: #Fork.

8. Fork defineParticipantVariable: #isFree initialValue: true.
9.

10.[1] Phil osopher defi neBehavi or:

11. ‘set Right Fork: right Fork setLeftFork:|eftFork’ as:
12. [self rightFork: rightFork.

13. self leftFork: |eftFork].

14.

15.[2] Phil osopher defineBehavior: 'life’ as:

16. [[true] whileTrue: [self think. self eat]].

17.

18.[3] Phil osopher defineBehavior: ’'eat’ as:

19. [(self rightFork take) wait.

20. (self leftFork take) wait.

21. Transcript cr; show ‘I spend some tinme eating’ .
22. (self leftFork put) wait.

23. (self rightFork put) wait].

24,

25.[4] Fork defineBehavior: 'take’ as:

26. [self isFree: false].

27.

28.[5] Fork disable: "take if:

29. [self isFree not].

30.

31.[6] Fork defineBehavior: 'put’ as:

32. [self isFree: true].

Figure 7.7 Dining Philosophers

The DiningPhil osophers coordination group specifies the following coordination rules:
Rule 1 (line 10): specifies how to assign the two forks associated to a phil osopher.
Rule 2 (line 15): specifiesthelife of aphilosopher. A philosopher passesall hislife thinking and eating.

Rule 3 (line 18): specifiesthat when aphilosopher wantsto eat first hetriesto take the two forksthat find
infront of him over thetable. If he getsthe two forks then he spends sometime eating and then he freesthe
two forks putting them back over the table. In this rule we can see the use of the wait message sent to the
futures received from the sent of the messages take and put to the forks. The wait message blocks the exe-
cution of the method >>eat until the execution of the operation that it precedesis done. | n this case the phi-
losopher executing the method >>eat blocks if the forks can not be taken (lines 19 and 20) and during the
execution of the messages put by thetwo forks(lines 22 and 23). In other words, the method wait guarantees
the synchronic execution of amethod.

173

Rule 4 (line 25): specifiesthat when afork istaken by a philosopher the variabl e specifying the state of
thefork isFreeisset tofase.

Rule5 (line 28): specifiesthat afork can not betaken by aphilosopher if thefork isbeing used. The mes-
sagetakeisdelayed until thefork isfree.

Rule6 (line31): specifiesthat when afork isfree by aphilosopher the variabl e specifying the state of the
fork isFreeisset totrue.

Analysis

From the group specification point of view the CoL aS Dining Philosophersgroupillustrates: 1) thecreation
of acoordination group (line 1); 2) the specification of two roles (lines 3 and 7) one with itsroleinterface
(line 4); 3) the specification of a participant variable (line 8) and 4) the specification of five cooperation
rules(lines 10, 15, 18, 25 and 31; 5) and one reactive synchronization rule (line 28).

From the coordination point of view we can seein the example that in the specification of the group the
coordination policiesaredefined independently of the entitiesthat are coordinated. The conditionsimposed
tothe active objectsto play therole Philosopher are specifiedintheroleinterface (line 4), different types of
“philosophers’” may play the role Philosopher aslong they implement them method >>think. Also because
no role interface is defined for the role Fork, in principle we can model the same problem with different
types of utensils (i.e. chopsticks, spoons, etc.). The active objects that play the role Fork do not need to”
know” anything about the coordination specified in the group to play therole, they do not need know even
that they are coordinated.

If we compare this solution with the solution presented before from the point of view of the facility to
realize the specification, construction and modification of the solution; the second solution presentsalot of
advantages: 1) the coordination code does not appear in the computation code of the participants, it will be
possible to use different kinds of participants to play the roles Philosopher and Fork; 2) the coordination
code can be reused independently of the coordinated entities and the coordinated entities independently of
the coordination code; 3) we do not need to modify class hierarchies of the participantsto specify and mod-
ify the coordination; 4) modifications to the coordination are done in one point in the code, in the group
specification; 5) it is possible to dynamically modify the coordination if needed, adding new rules and 6)
that itiseasy to introduce new types participantsif needed.

The CoL aS implementation presented in (Figure 7.7) of the DiningPhilosophersis not deadlock free.
Consider the situation where all the Philosophersbecome hungry at the sametime, sit down at thetableand
then each philosopher picks up the for to his (or her) right. The system can make no further progress since
each philosopher iswaiting for afork held by hisneighbor. We proposeto modify the existing coordination
group to define adeadl ock free solution. In this new solution to the dinning philosophers problem we will
introduce some asymmetry into the definition of a philosopher. Up to now, each philosopher had the same
specification. We will define two types of philosophers: odd-numbered philosophers get the left fork first
and even-numbered philosophers get theright fork first.

174

33. Phi | osopher definePartici pantVari abl e: #id.

34.

35.[3] Phil osopher defineBehavior: 'eat’ as:

36. [|firstFork secondForKk]|

37. (self id\\2= 1) /* \\ represents the nodul e operator
38. i fTrue:

39. [firstFork := self rightFork.

40. secondFork : = self |eftFork]

41. i fFal se:

42. [firstFork := self |eftFork.

43. secondFork := self rightFork].

44. (firstFork take) wait.

45, (secondFork take) wait

46. Transcript cr; show ‘I spend some tinme eating’ .
47. (secondFork put) wait.

48. (secondFork put) wait].

Figure 7.8 Dining Philosophers deadlock free

Inthe new solution anew participant variable nameid was added to the coordination group. Thevariable
id isused to determinethe order in which the forks must be taken by the philosopher. We dynamically mod-
ify the exiting coordination group by replacing the eat rule with a new rule that selects forks differently
based on the id of the philosophers. This example shows how the coordination specified in a coordination
group can be easily modified without affecting the specification of the participantsin thecoordination. This
can be done because of the clear separation of coordination aspect of the problem in the coordination
groups. Support for the evolution and the modification of the coordination are two fundamental require-
ments of an ideal coordination models and languages that the CoLaS model s supports.

7.3 The Vending Machine

Problem Description

A vending machine has a number of different parts: a coin accepter into which coins can be inserted and a
number of slots each containing apiece of fruit. The partsof avending machine are subject to aconsistency
requirement in order for the vending machine to have the desired functionality: insert enough money and
get back apiece of fruit from one of the slots. When a sufficient amount of money has been inserted into a
coin accepter, one or more of the slots are available opening. Each slot may be priced differently. Opening
one of the slots (i.e. taking the items they contain) will remove the inserted money from the coin accepter
and prevent other slotsfrom being opened. Pushing aspecial button on the coin accepter, itispossibleto get
arefund.

Solution

We have decided to specify three types of entities (Figure 7.9): the CoinA ccepter, the CoinRefunder and
the Slots. When a user of the vending machine inserts money in the CoinA ccepter we increase the amount

175

of money received and when the user request to be refunded we return the amount of money he or she still
hasin the machine. The Slots contain the different products contained in the vending machine.

Structure
a)
:CoinAccepter :CoinRefunder :Slot
i i i
i | |
1 1 1
insert | ! !
— i |
1 1 1
i i i
1 1 1
i 1 i
[1 [
b)

:CoinAccepter :CoinRefunder

refund

C

:CoinAccepter :CoinRefunder

takeltem

Yy

open

1
1
1
1
1
1
1
1
1
1
1
1
1
: reduceNumitems
1

Figure 7.9 :Vending Machine Interaction Dia{grams

Coordination Aspects

Transfer of information: there is flow of information between the different elements. The CoinAc-
cepter accepts the money and increases the amount of money available for the user in the machine.
The CoinRefunder returns the money still available and indicates to the CoinAccepter to reinitiaize
the counter of money introduced by the user. When a user takes an item from one of the dots the
dot indicates the CoinAccepter to reduce the amount of money available for the user by item price.
Simultaneity constraints: the system controls that refunds and the take of fruitsfrom the Slots do not
happen at the same time. The system must control also that only one Slot is opened at the time.
Execution orderings: several execution orderings must be respected in the systems. The CoinAc-
cepter accept the money only when the money isinserted. The reset of the amount of money avail-
ablefor the user isdone only after arefund. The number of items contained in aslot isreduced only
after the item was taken by the user.

Condition Synchronizations: the system controls that user take items only if they have inserted
enough money and no refund is done to the user if no money was inserted or if not money is still
available in the machine.

176

Smalltalk Specification
1. CaseSt udi es defineC ass: #Coi nAccept er
2. supercl ass: #{Actal k. ActiveObject}

3. i ndexedType: #none

4. private: false

5. i nstanceVari abl eNanes: 'anount O Moneyl nsert ed'

6. cl assl nstanceVari abl eNanes: '

7. i nports: "'

8. category: 'Vendi ngMachi ne’

9.

10. >>i nsert: aFl oat

11. sel f amount Of Moneyl nserted: sel f amount O Moneyl nserted + aFl oat.
12. sel f displayTotal Il nsert ed.

13.

14. CaseSt udi es defineCd ass: #Coi nRef under

15. supercl ass: #{Actal k. ActiveObj ect}

16. i ndexedType: #none

17. private: false

18. i nstanceVari abl eNanes: ' coi nAccepter sl otsManager'

19. cl assl nstanceVari abl eNanes: '

20. i mports:

21. category: 'Vendi ngMachi ne’

22.

23. >>refund

24. sel f sl ot sManager bl ockSlots result

25. i fTrue:

26. [sel f refund: (self coi nAccepter

27. amount Of Moneyl nserted wait).
28. sel f coi nAccepter reset Anbunt Of Moneyl nserted wait.
29. sel f sl ot sManager unbl ockSlots wait]

Figure 7.10 Vending Machine classes CoinAccepter and CoinRefunder

In this example we use the ActiveObject support introduced in Actalk[Brio89a). In (Figure 7.10) we
can seetheimplementation of the classes CoinAccepter and CoinRefunder (lines1 and 14). TheclassCoin-
Accepter specifies an instance variable named amountOfMoneyl nserted (line 5) which contains the total
amount of money inserted (and still available) by the user of the vending machine. The method >>insert:
(line 10) specifieswhat happenswhen the user insert somemoney in the coinAccepter, basically the counter
of the amount of money inserted is increased and total amount of money inserted is displayed. The Class
coinRefunder specifies two instance variables named coinAccepter and slotsManager (line 18) which are
used to keep referencesto the corresponding elements of the vending machine. The method >>refund (line
23) specifieswhat happenswhen the user request to be refunded; basi cally the vending machinefirst blocks
the dotsto avoid the user to take the fruits, then it returnsto the user the amount of money he or she has not
used, then the counter of the amount of money inserted isreinitialized to zero and finally the slots are un-
blocked. The blocking of the slotsis done by the SlotsManager, the blocking and unblocking of dotsisthe
mechanism used to guaranteethe mutual exclusion of therefund and takeltem operationsin thevending ma-
chine. Only one of these two operations may occur at the same time in the vending machine.

177

30. CaseSt udi es defineCd ass: #Sl ot

31. supercl ass: #{Actal k. ActiveObject}

32. i ndexedType: #none

33. private: false

34. i nstanceVari abl eNanes: 'item price numltens coi nAccepter
35. sl ot sManager noneySt or e'

36. cl assl nstanceVari abl eNanmes: "'

37. i mports: "'

38. category: ' Vendi ngMachi ne'

39.

40. >>t akel tem

41. sel f sl otsManager bl ockSlots result

42. i fTrue:

43. [sel f open. self updat eMoneyAndReduceNum tens. self close.
44, sel f sl ot sManager unbl ockSlots wait].

45. >>updat eMbneyAndReduceNun t ens

46. (sel f coi nAccepter reduceAmpunt Of Moneyl nserted: self price) wait.
47. (self noneyStore addMoney: self price) wait.

48. sel f reduceNunitens.

49.

50. CaseSt udi es defineC ass: #Sl ot sManager

51. supercl ass: #{Actal k. ActiveObject}

52. i ndexedType: #none

53. private: false

54. i nst anceVari abl eNames: ' sl ot sAreBl ocked'

55. cl assl nstanceVari abl eNanmes: "'

56. i mports: "'

57. category: ' Vendi ngMachi ne'

58.

59. >>bl ockSl ot s

60. "sel f sl ot sAreBl ocked “if the slots are bl ocked we dont bl ock”
61. ifTrue: [false]

62. ifFalse: [self slotsAreBlocked: true].

63.

64. CaseSt udi es defineC ass: #MneyStore

65. supercl ass: #{Actal k. ActiveObject}

66. i ndexedType: #none

67. private: false

68. i nstanceVari abl eNanes: 'total Amount Of Moneyl nsert ed'

69. cl assl nstanceVari abl eNanmes: "'

70. i mports: '’

71. cat egory: ' Vendi ngMachi ne’

72.

73. >>addMoney: aFl oat

74. sel f total Amount OF Moneyl nsert ed:

75. sel f total Arount Of Moneyl nserted + aFl oat.

Figure 7.11 Vending Machine classes Slot, SlotsManager and MoneyStore

178

In(Figure 7.11) wecan seetheimplementation of the classes Slot (line 30), SlotsManager (line50) and
MoneyStore (line64). The class Slot modelsaslot of the vending machine. Three of theinstance variables
specifiedintheclass Slot: item, price and numitems (line 34 and 35) specify information related to theitem
contained in the dlot. Theitem instance variable definesthe name of item contained in the dlot, the pricein-
stance variable defines the price of the item and numltems instance variable defines the number of items
contained in the slot. The other three instance variables. coinAccepter, slotsManager and moneyStore are
used to keep the referencesto the corresponding el ements of the vending machine. The method >>takeltem
(line 40) specifieswhat happenswhen auser request to take an item contained in aslot; basically the vend-
ing machine uses the blocking mechanism of the SlotsManager to avoid the user to be refunded, then it
opensthedot, it decreasesthe bal ance of the amount of money inserted by the user and the number of items
inthedots, thenit closesthe dlot and finally it unblocksthe SlotsManager. The class SlotsManager is used
to control themutual exclusioninthe execution of the >>refund and >>takel tem operations. Each one of the
two operationsregquest first to block the dotsif the slots are already blocked the operationisnot done. The
class Money Store model s the element of the vending machine containing the total amount money received
asresult of theselling of itemsin the vending machine. When auser takesanitem from the vending machine
the counter associated with the total amount of money stored in the machineisincreased by the price of the
item.

Analysis

From the coordination point of view we can seein theimplementation of thissol ution how the coordination
and computation aspects are mixed within the classes of the participants. We can see for example in the
specification of the different classes how instance variables are defined to store the referencesto the objects
(i.e., parts of the machine) with which they interact. It is clear that if the coordination needs to be modified
toincludeanew interaction with adifferent object it will be necessary to modify the specification of the par-
ticipant classes to define the new references. The consequences of the mixing of coordination and compu-
tation are: 1) that the coordinated entities must “know” in advance about the other participants of the
coordination; 2) that the coordination can not be reused to coordinate other kinds of entities, consider for
exampl e the case of aticket machine which does not includes slots with items but a new element in which
users specify the type of ticketsthey need. It will be very complicate to reuse even part of the coordination
specified in the solution, we will need to define new classes, redefine methods and predefine the relations
to the new elements; 3) that any modification to coordination codewill imply the modification of thediffer-
ent classesthat participatein the solution; 4) that if the coordination must be modified it isnot clear how to
identify which classeswill beaffected by these changesand how; 5) that it isnot easy to dynamically modify
the coordination.

We can also seein the example that is not simpleto specify the synchronization constraints specified by
the problem, for example the mutual exclusion of the >>refund and >>takeltem operationsis done here by
using an extra element the SlotsManager. The synchronization code is mixed to the computational code of
the three classes. In the specification of the solution we decided to ignore the operations >>refund and
>>takeltem when one of the two operationsisalready occurring in the system, if wewant to adopt adiffer-
ent policy and for examplejust delay their executionwewill need to usea Smalltalk mutual exclusion sema-
phoreto guarantee that processes are suspended when the mutual exclusion semaphoreisaready used. The
semaphorewill need to be shared by the two classes Slot and CoinRefunder. Again areferenceto the sema-
phore will need to be defined in the two classes as instance variables. The coordination code related to the
synchronization will be spread over the two classes and mixed to the computation code. Any modification

179

to the synchronization code will imply the modification of the specification of thetwo classes. If theimple-
mentation would have been done in a concurrent object-oriented language with strong typing like Java it
will have been certainly necessary the recompilation of the code.

Another aspect that we should not forget in thisexampl eisthat we are using active objectsto specify the
behavior of the different participant classes. The ActiveObject classhidesall thelow levels detailsrelated
with the concurrency: creation of process, scheduling of processes, specification of internal synchroniza-
tion palicies, etc. Aswe already pointed out in aprevious example not only the specification of the coordi-
nation in acoordination model and language isimportant, al so the specification of the computation related
with the concurrency in active objectsisakey element in the simplification of the complexity of the speci-
fication, development and maintenance of the concurrent object-oriented systems

ColLaS Specification

We create a coordination group named VendingM achine (Figure 7.12) to encapsul ate the coordination as-
pect of asol utionto thevending machine problem. The coordination group specifiesfour different rolesrep-
resenting the different partsof the machine: CoinAccepter (line3), CoinRefunder (line8), Slot (line 12) and
MoneyStore (line 16). Therole CoinAccepter specifiesarolevariable named amountOfM oneylnsertedBy-
User (line 5) to count the total amount of money inserted by the user. Theroleinterface of therole CoinAc-
cepter definesauniquesignature (lines6): display Total Accepted which displaysthetotal amount of money
introduced by the user. Therole CoinRefunder specifiesauniquesignatureinitsroleinterface (line 10): re-
fund:. The method refund: models the physical refund of the money to the user. Therole Slot defines two
signaturesin itsrole interface (line 13): open and close. The open and close methods model the physical
opening and closing of the otswhere the items are contai ned. Additionally three participant variablesare
definedintherole Slot (line 14): item, price and numitems. The three participant variables model the name
of item contained inthe slot, its price and the number of items contained inthe slot. Finally therole Money-
Store defines a role variable named total AmountOfMoneylnserted (line 18) to count the total amount of
money inserted inthe machine and obtained from the selling of the different itemscontained in the machine.
The role interface of the role MoneyStore defines a unique signature (line 19): storeMoney:. The store-
Money: method is used to increase the total amount of money stored in the money store.

The VendingM achine coordination group specifiesthe following coordination rules:

Rule 1 (line 20): specifiesthat when money isinserted in the coin accepter by auser of the vending ma-
chinethe counter of theamount of money inserted inthemachineisincreased and the new total isdisplayed.

Rule2 (line 25): specifiesthat when the user decidesto request to berefunded, the machinereturnsto the
user the amount of money he or she hasin the machine (i.e., not consumed) and the counter of the amount
of money inserted by the user isreinitialized to zero.

Rule 3 (line29): specifiesthat when auser decidesto take anitem from ad ot, the machine must openthe
door that gives access to the item, then the amount of money inserted by the user isreduced by an amount
equal to the price of theitem, then the number of items contained in the slot are reduced and finally the door
of theslotisclosed.

Rule 4 (line 37): specifiesthat a user can not take an item from aslot if the amount of money he hasin-
troduced isinferior to the price of the item.

Rule 5 (line 40): specifiesthat a user isnot refunded if the actual amount of money inserted by the user
isequal to zero(i.e., thevalue of therole variable anoutOf MoneylnsertedByUser is equal to zero).

180

. Coordi nati onGr oup creat eCoordi nati onG oupC assNaned: #Vendi ngMachi ne.

. Vendi ngMachi ne defi neRol eNaned: #Coi nAccepter.

. Coi nAccepter maxNunPartici pants: 1.

. Coi nAccepter defineVariabl e: #anount Of Moneyl nsertedByUser initial Value: 0.
. Coi nAccepter definelnterface: #(#displayTotal Accepted:).

ONOOUAWNBR

. Vendi ngMachi ne defi neRol eNaned: #Coi nRef under.
9. Coi nRef under maxNunParti ci pants: 1.
10. Coi nRef under definelnterface: #(#refund:).

12. Vendi ngMachi ne defi neRol eNaned: #Sl ot.
13. Sl ot definel nterface: #(#open #cl ose).
14. Sl ot defineParticipantVariabl es: #(#item #price #numtens).

16. Vendi ngMachi ne defi neRol eNanmed: #MneySt ore.

17. MoneySt ore maxNunParti ci pants: 1.

18. MoneySt ore defineVari abl e: #t ot al Amount Of Moneyl nserted initial Value: 0.
19. MoneySt ore definel nterface: #(#storehbney:).

20.

21.[1] Coi nAccepter defineBehavior: 'insert: noney’ as:

22. [sel f anpbunt OF Moneyl nsert edByUser += noney.

23. sel f displayTotal Accepted: self anmount Of Moneyl nsertedByUser].
24,

25.[2] Coi nRefunder defineBehavior: 'refund as:

26. [sel f refund: Coi nAccepter ampunt O Moneyl nsertedByUser.
27. Coi nAccept er anpunt Of Moneyl nsertedByUser: 0].

28.

29.[3] Slot defineBehavior: 'takelten as:

30. [sel f open.

31. Coi nAccept er anpunt O Moneyl nsert edByUser-=: self price.
32. (MoneySt ore uni que storelMbney: self price) wait.

33. Money St or e t ot al Anount Of MoneySt or ed+= sel f pri ce.

34. sel f num tens--.

35. sel f close].

36.

37.[4] Slot ignore: '"takeltem if:

38. [Coi nAccept er ampount Of Moneyl nsert edByUser < self price].
39.

40.[5] Coi nRefunder ignore: 'refund if:

41. [Coi nAccept er amount Of Moneyl nsertedByUser = 0].

Figure 7.12 : The Vending Machine

181

Analysis

From the group specification point of view the VendingMachine group illustrates: 1) the creation of acoor-
dination group (line 1); 2) the specification of rolesand roleinterfaces(lines 3, 6, 8, 10, 12, 14, 16 and 19);
3) the specification of role variables (lines 5 and 18); 4) the specification of three cooperation rules (lines
21, 25 and 29) and two reactive synchronization rules (lines 37 and 40) and 5) the specification of synchro-
nous recursive method invocations (lines 23, 26, 30 and 35).

From the coordination point of view we can seein the example that in the specification of the coordina-
tion group the coordination policies are defined independently of the entities that are coordinated and that
nowhere in the specification of the participants it was necessary to specify their relationsto other partici-
pantsasin the solution introduced previously in this section. If we compare both sol utionsfrom the point of
view of thefacility torealize the specification, construction and modification of the solution; the second so-
lution presentsalot of advantages: 1) the coordination code does not appear in the computation code of the
participants; 2) the coordination code can be reused independently of the coordinated entities and the coor-
dinated entitiesindependently of the coordination code; 3) we do not need to modify classhierarchiesof the
participants to specify and modify the coordination; 5) it is clear which isthe coordination relating the dif-
ferent participants, itisclear what aretheir roles, their obligations and how they participateto the coordina-
tion; 6) itispossibleto dynamically modify the coordination if needed and 8) new participants and relations
can be easily introduced if needed, for example theintroduction of new slotsin the machineisdonesimply
by enrolling anew participant to therole Slot.

Thisexampleisalso very interesting example because it shows al so the problemsthat the CoLaS model
has to support simultaneity constraints. In the presentation of the CoLaS model in Chapter 3 of thisthesis
we mentioned that there are not CoL aS synchroni zation rulesto define multi-party coordination rules(i.e.,
rulesthat depend for their applicability on multipleinvocation requests occurring in different participants).
We can seeinthisexamplethat such kinds of ruleswill simplify the way the simultaneity constraintsiden-
tified in the coordinati on aspects of the example are specified. Inthe Smalltalk solution aclassnamed Slots-
Manager is used to manage the mutual exclusion of the execution of the two operations: >>takeltem and
>>refund. Weuseasimilar solution in the CoL aS specification but thisisnot very natural. Theideal will be
to be able to define such synchronizations at a high level without introducing any new class. Consider a
multi-party synchronization rule of theform:

V endingM achine mutual Exclution: #(CoinRefunder refund, Slot takeltem)

The rule specifiesthat the different behaviors appearing in the list (in the respective roles) are executed
mutually exclusive. Such ahigh level rulewill smply the complexity of specifying the solution to the syn-
chronization problemin the CoL aS specification and will avoid the mixing of the synchronization detailsin
the specification of the participants behaviors. A solutionin CoLaSto the mutual exclusion probleminthe
exampleisproposed in Figure 7.13 using asimilar approach that the one used in the Smalltalk specifica-
tion, anew type of participant called SlotsManager will be necessary to centralize the control of the mutual
exclusion. To our view point the introduction of multi-party synchronization rules becomeapriority inthe
futurework agenda of the CoL aS coordination model and language.

182

1. Vendi ngMachi ne defi neRol eNaned: #S| ot sManager .

1. Sl ot sManager defineVari abl e: #sl ot sAreBl ocked initial Val ue: false.
2.

3.[6] Sl otsManager defineBehavior: 'blockSlots’ as:

4 [~sel f sl otsAreBl ocked

5. ifTrue: [false]

6 ifFalse: [self slotsAreBlocked: true. true]].

-

8

.[7] Sl otsManager defineBehavior: ’unbl ockSlots’ as:

9. [sel f slotsAreBl ocked: false]

10.

11.[2] Coi nRefunder defineBehavior: 'refund as:

12. [(Sl ot sManager uni que bl ockSl ots result)

13. i fTrue:

14. [sel f refund: Coi nAccepter anmpunt O Moneyl nsert edByUser.
15. Coi nAccept er amount Of Moneyl nsert edByUser: 0.

16. Sl ot sManager uni que unbl ockSl ots wait]].

17.

18.[3] Slot defineBehavior: ’'takeltem as:

19. [(Sl ot sManager uni que bl ockSl ots result)

20. i fTrue:

21. [sel f open.

22. (Coi nAccept er anmpount Of Moneyl nsert edByUser -=self price.
23. (MoneySt ore uni que storelMney: self price) wait.

24. MoneySt or e t ot al Amount Of MoneyStored += self price.

25. sel f numltens--.

26. sel f cl ose.

27. Sl ot sManager uni que unbl ockSlots wait]].

Figure 7.13 Vending Maching using a SlotsManager

183

7.4 The Online-Music Shop [Pric00a]

Problem Description

=11 Heoord o Fikeed b vl

aardeand Fhnr

Figure 7.14 Online-Music Shop problem

Multiple service providers maintain databases of digital music tracks. A client that wants to buy music
browsesthe availabletracksat the on-linerecord store and listensto streamed sampl esof tracksinwhich he
or sheisinterested before paying for and downloading high-quality versions of thefilesinto hislocal com-
puter or hi-fi. Themusicitself isstored in one or more mediastores. We assume al so that those mediastores
belong to different record companies.

Solution

We have decided to specify four types of entities (Figure 7.15): the OnlineRecordShop which represents
the web interface used by the clients, the RecordShop which represents the record shop, the MediaStores
which representsthe place where physically the music tracks are stored and the Bank which representsthe
entitiesin charge of the validation of paymentsdone online. Clients can browse through thetitles stored in
the shop with the hel p of keywords, listen previews (i.e., low quality tracks) of selected titles and purchase
thetitles(i.e., high quality tracks). Whenthe client decidesto purchasetitles, he providesall theinformation
concerning hiscredit cards(i.e., only paymentswith credit cardsare accepted) if thebank doesnot authorize
apayment the client does not receive the high quality tracks of the selected songs. We do not focus here on
the security aspects rel ated to the online payment we assume everything isdonein asecure way for the cli-
ent.

Coordination Aspects

» Transfer of information: clients browse their favoritestitles specifying keywordsin their web inter-
face, thetitles containing the specified keywords are sent from the record shop to the web interface.
Low quality song tracks are sent on demand from the record shop to the online record shop, the
tracks find physically stored in the media stores. High quality song tracks can be purchased on de-
mand. The payment information flows between the online record shop, the record shop and the
banks. Authorizations are sent from the banks to the record shop to validate the transactions.

» Task/Subtask: when a client request to the record shop for titles containing some specific keyword
the record shop must request the different media stores for such titles. The information of the differ-

184

ent titlesis not stored in record shop but spread over the different media stores. A record shop plays
therole of an intermediary, it must request the different media stores for the titles related with some
keyword, join all the different answers and send back the complete answer to the clients.

» Execution orderings: several execution orderings must be respected in the system. To show client
previews of titles contai ning some specified keywords the record shop request first the different me-
dia stores for the titles. To purchase atitle a user must first select atitle and then introduce the in-
formation related to the payment. A confirmation of the payment from the bank is necessary to the
record shop before the record shop will send the high quality version of amusic-track to the client.

Structure
a)
:OnlineRecordShop :RecordShop
i i
browse : :
E— browse !
1 »
i
D display i
i i
| |
b)
:OnlineRecordShop :RecordShop :MediaStore
] 1
preview l
preview

lowQuality TrackWithld

. A —

=

Q

<
————————— et

c)
:OnlineRecordShop :RecordShop :MediaStore :Bank
i i i
purchase ! i |
» purchase 1 :
|
|

1
confirmPayment

o

4
<
@

Figure 7.15 Online Music-Shop Interaction Diagrams

185

Smalltalk Specification
1. CaseSt udi es defineC ass: #Onl i neRecor dShop

2. supercl ass: #{Actal k. ActiveObject}

3. i ndexedType: #none

4, private: false

5. i nst anceVari abl eNanes: "'

6. cl assl nst anceVari abl eNanmes: ' recor dShop'

7. i mports:

8. category: ' OnlineMsicShop'

9.

10. >>br owse

11. | keywor d|

12. keyword : = self request Keyword.

13. self display: (self recordShop browse: keyword) result.
14. >>previ ew

15. |[titlelnfo track]|

16. titlelnfo := self selectTitle.

17. track := (self recordShop preview titlelnfo) result.
18. self play: track.

19. >>pur chase

20. | paynmentinfo titlelnfo track]|

21. titlelnfo := self selectTitle.

22. payrmentInfo : = self requestPaynent! nformation.

23. track :=(self recordShop purchase: aTitlelnfo

24. paynent: paynment|nfo) result
25. sel f save: track.

Figure 7.16 Online Music Shop: OnlineRecordShop class

In this example we use the ActiveObject support introduced in Actalk[Brio89a]. In (Figure 7.16) we can
see the implementation of the class OnlineRecordShop (line 1). The class OnlineRecordShop specifies an
instance variable named recordShop (line 6) which is used to keep the reference to the record shop (i.e., or
to the record shops in case there will be several). The method >>browse (line 10) specifies what happens
when aclient of the online record shop decides to browse the music tracks offered by the different media
stores(i.e., each mediastore correspondsto a different record company and thus has adifferent offer). The
client specifies akeyword and the system requests to the record shop for all the titles containing the speci-
fied keyword. Thetitlesreceived are displayed in theweb interface. The method >>preview (line 14) spec-
ifieswhat happenswhen aclient of the online record shop decidesto request apreview of atitleinwhich he
or sheisinterested. Theclient selectsatitle among those previously displayed. The selected titleis used by
the systemto request the record shop for alow quality version of thetitle. Thelow level track isthen played
intheclient’smachine. Themethod >>purchase (line 19) specifieswhat happenswhen aclient of theonline
record shop decidesto purchaseatitlein which he or sheisinterested. Theclient selectsatitle among those
displayed. The selected titleisthen used by the system to request the record shop for ahigh quality version
of thetitle. Theclient specifiesal so the payment information rel ated to the purchase. The payment informa-
tion is sent to the record shop and then to the corresponding bank for verification. If the payment informa-
tioniscorrect (i.e., authorized by the bank) the high quality music-track isdelivered to the client and saved
inthe client’s machine.

186

26. CaseSt udi es defined ass: #RecordShop

27. supercl ass: #{Actal k. ActiveObject}

28. i ndexedType: #none

29. private: false

30. i nst anceVari abl eNanes: ' nedi aSt ores banks'

31. cl assl nstanceVari abl eNames: "'

32. i mports: "'

33. category: ' OnlineMsicShop'

34.

35. >>br owse: aKeyword

36. | resul ts]

37. results := OrderedCol | ecti on new.

38. sel f medi aStores do:

39. [:each| results add: (each titlesWthKeyword: aKeyword) result].
40. Aresul ts.

41. >>preview. aTitlelnfo

42. | medi aSt orel d medi aSt or e|

43. medi aStoreld : = aTitl el nfo nmedi aStoreld.

44, medi aStore : = self nmedi aStores detect:[:each| each i d= medi aStoreld].
45, A(medi aStore lowQualityTrackForTitle: aTitlelnfo) result.

46. >>purchase: aTitlelnfo payment: aPaymentl| nfo

47. | medi aSt orel d nmedi aSt ore bank aut hori zati on|

48. medi aStoreld := aTitlelnfo nmedi aStoreld.

49. medi aStore : = self nmedi aStores detect:[:each| each i d= medi aStoreld].
50. bank : = self banks detect:[:each | each name = aPayment|nfo bank].
51. aut hori zation : = (bank confirnPaynent: aPaymentlnfo) result.

52. (aut hori zation ~= -1)

53. i fTrue:

54. [self registerAuthorization: authorization

55. f or Payment: aPayment | nfo

56. A(medi aStore highQualityTrackForTitle: aTitlelnfo) result].

Figure 7.17 Online Record Shop: RecordShop class

In(Figure 7.17) we can see the implementation of the class RecordShop (line 26). The class Record-
Shop specifies two instance variables named mediaStores and banks (line 30) which are used to keep the
references to the different media stores and the different banks. The method >>browse: (line 35) specifies
that when a browse request is received by the record shop arequest for titles related with the keyword re-
ceived is sent to the different media stores. The results received from the media stores are joined and sent
back as areply. The method>>preview: (line 41) specifies that when a preview: request isreceived by the
record shop first weidentify the mediastorein which thetitleis stored and then we request the media store
for alow quality track of thetitle. Thelow quality track issent back asareply. The method>>purchase: pay-
ment: (line 46) specifiesthat when apurchase:payment: request isreceived by therecord shop first the bank
related with the payment information received from the client isidentified, then thepayment informationis
verified with the bank and if the bank authorizes the transaction we request the media store containing the
titlefor ahigh quality copy of thetrack of thetitle. The high quality track of thetitleis sent back asareply.

187

57. CaseSt udi es defineC ass: #Bank

58. supercl ass: #{Actal k. ActiveObj ect}

59. i ndexedType: #none

60. private: false

61. i nst anceVari abl eNanes: "'

62. cl assl nstanceVari abl eNanes: "'

63. i mports:

64. category: ' OnlineMsicShop'

65.

66. >>confirnmPaynent: aPaynent|nfo

67. | authorization |

68. ((authorization := self validatePayment: aPaynent|nfo) ~= -1)
69. i fTrue:

70. [self registerAuthorization: authorization
71. forPayment: aPayment | nformation].
72. ~Naut hori zation].

Figure 7.18 Online Record Shop: Bank class

In (Figure 7.18) we can see the implementation of the class Bank (line 57). The method >>confirmPay-
ment: (line 66) specifiesthat when apayment confirmationisreceived, thebank verifiesinternally if thein-
formationreceivediscorrect and if the balance (or the credit) of the client allowsthetransaction. If the bank
authorizesthe transaction the authorization is sent back and theinformation related to the payment isregis-
ter by the bank. Internally the bank updatesthe current balance of the client’s account.

Analysis

From the coordination point of view we can seein theimplementation of this sol ution how the coordination
and computation aspects are mixed within the classes of the participants. We can seein the specification of
the different classes how the classes define instance variables to store the references to the objects with
whichthey interact. Itisclear that if the coordination needsto be modified to include anew interaction with
adifferent object it will be necessary to modify the specification of the participant classesto define the new
references. Consider for examplethe case wherewe must includein the coordination radio stations promot-
ing new songsand singers. Certainly the RecordShop classwill be affected and new coordination behavior
added. This problem is a consequence of the lack of separation of the coordination and computation con-
cernsin the code. The coordination code and the rel ations to the participants are specified within the com-
putational code in the classes. Thisimplies. 1) that the coordinated entities “know” in advance about the
other participants of the coordination, for exampl e the RecordShop knows about mediastoresand banks; 2)
that the coordination can not be reused to coordinate other kinds of entities, if wewant to replacethe media
storesfor examplefor another storage elements, the RecordShop classwill need to be modified and the new
relationsintroduced, 3) that any modification to coordination codewill imply the modification of the differ-
ent classesthat participatein the solution, for exampletheintroduction of new ways of payment will imply
modificationsin the class RecordShop; 4) that it isnot clear in case of amodification which classeswill be
affected by these changes; 5) that it isnot possible to easily dynamically modify the coordination.

188

Colas Specification

We create a coordination group named MusicShop (Figure 7.19 and Figure 7.20) to encapsul ate the co-
ordination aspect of asolution to the music shop problem. The coordination group specifies four different
roles representing the most important entities in the problem: RecordShop (line 3) representing the record
shop, MediaStore (line 6) representing the different medias where the music is physicaly stored, Onli-
neRecordStore (line 10) representing theweb applicationthat runsinthe browsersof theclientsand through
which they interact with the music store and Bank (line 16) representing the entity in charge of authorizing
the payments of the clientsin the online-music shop. Remember that we are interested in the specification
the coordinati on aspect and not in the complete computational specification of the entitiesthat make part of
the solution. We will not show al the details related to the web solution like whether we are using applets,
or web services, etc.

The role RecordShop specifies in its role interface a unique signature: registerAuthorization:forPay-
ment: (line 4, registers the authorization received from a bank for a payment). MediaStore specifiesin its
role interface the following signatures: id (line 7, id of a mediastore), titleswithKeyword: (line 7, deter-
mines all titles containing akeyword), lowQualityTrackForTitle (line 8, returns the low quality track of a
title) and highQualityTrack (line 9, returns the high quality track of atitle). The role OnlineRecordStore
specifiesarolevariable named recordShop (line 12) which isused to keep areferenceto the record shop. In
itsroleinterface the role OnlineRecordStore specifies the following signatures (lines 13 and 14): request-
Keyword (requeststo the client for somekeyword to usein the search of musictitles); display: (displaysthe
list of musictitlesin the screen. We assume that the web application includesall thefunctionality to manip-
ulatetheinformation about thetitlesand tracks, like different types of sorts (i.e., by name, by year, etc.) and
thepossibility to listen trackswhichisnormally thisisdone by amediaplayer; selectTitle (selectsatitle be-
tweenthosedisplayedinthescreen); play: (playsamusictrack); save: (savesamusictrack file) and request-
Paymentlnformation (request all the payment information to the client). Therole Banks specifiesinitsrole
interface the following signatures: name (line 17, name of bank), validatePayment: (line 17, validates the
information related with a payment, an authorization is generated if the payment is authorized by abank),
registerAuthorization:forPayment: (line 18, registers all the information related with the payment and the
authorization generated by then bank when they the payment is approved).

The MusicShop coordination group specifiesthe following coordination rules:

Rule1 (line20): specifiesthat when aclient in theweb interface requeststo browsethemusictitlesin the
shop, the web interface application requests the client for some keyword (or keywords) to be used in the
search, then aquery is sent to the record shop with the keywords specified and the results returned are dis-
played intheweb browser.

Rule 2 (line 25): specifies how to manage a browse request coming from aclient in a online interface.
The record shop queries al the mediastores for titles related with the keyword received in the request, al
theresults(i.e,, titles) returned by the mediastores arejoined and sent back to the online record shop.

Rule 3 (line 32): specifiesthat arequest for apreview from aclient in aweb interface impliesthe selec-
tion of thetitleby the client and then the sent of arequest for apreview for that tittleto therecord shop. When
thelow quality track of the song isreceived asreply from therecord shop the onlineinterface playsthetrack
using one of the mediaplayersinstalled.

Rule 4 (line 38): specifiesthat arequest for apreview impliesfirst theidentification of the mediastorein
whichthetitleisstored (line 40) we assumethat thisinformation makes part of theinformation storedinthe

189

titleinformation received in the browse operation. A request for alow quality track of the song isthen sent
to the media store. The reply received from the media store is then sent to the online record store. We also
assume herethat each titleis contained in only one media store.

1. Coor di nati onGroup createCoordi nati onG oupd assNaned: #Misi cShop.
2.

3. Musi cShop defi neRol eNaned: #Recor dShop.

4. RecordShop definelnterface: #(#registerAuthorization:forPaynment:).
5.

6. Musi cShop defi neRol eNaned: #Medi aStore.

7. Medi aStore definelnterface: #(#id #titl esWthKeyword:

8. #l owQual i tyTrackForTitl e:

9. #hi ghQual i tyTrackForTitle:).

10.

11. Musi cShop defi neRol eNaned: #Onl i neRecor dSt ore.

12. Onl i neRecordSt ore defi neVari abl e: #recor dShop.

13. Onl i neRecor dSt ore defi nel nterface: #(#request Keyword #di spl ay: #selectTitle
14. #pl ay: #save: #requestPaynent! nformation).

16. Musi cShop defi neRol eNaned: #Bank.
17. Bank definelnterface: #(#nanme #vali datePaynment:

18. #regi st er Aut hori zati on: f or Payment:).

19.

20.[1] OnlineRecordShop defineBehavior: ’'browse' as:

21. [| keywor d|

22. keyword : = self request Keyword.

23. self display: (self recordShop browse: keyword) result].
24,

25.[2] RecordShop defineBehavior: ’'browse: aKeyword' as:

26. [|results|

27. results := OrderedCol | ecti on new.

28. Medi aSt or e

29. do:[:each| results add: (each titlesWthKeyword: aKeyword) result].
30. Aresults].

31.

32.[3] OnlineRecordShop defineBehavior: ’'preview as:

33. [titlelnfo track|

34. titlelnfo := self selectTitle.

35. track := (self recordShop preview titlelnfo) result.

36. self play: track].

37.

38.[4] RecordShop defineBehavior: 'preview aTitlelnfo' as:

39. [| medi aSt orel d medi aSt or e|

40. medi aStoreld := aTitlelnfo nedi aStorel d.

41. medi aStore : = MediaStore detect:[:each | each id = nediaStoreld].
42. A(medi aStore |l owQualityTrackForTitle: aTitlelnfo) result].

Figure 7.19 : Online-Music Shop browse and preview specifications

190

43.[5] OnlineRecordShop defineBehavior: ’'purchase’ as:

44. [| paymentinfo titlelnfo track|

45, titlelnfo := self selectTitle.

46. paynentinfo : = self requestPaynent| nformation.

47. track: =(self recordShop purchase: titlelnfo

48. payment: paynmentInfo) result.

49. sel f save: track].

50.

51.[6] RecordShop defineBehavior: ’'purchase: aTitlelnfo

52. paynent: aPaynentlnfo’ as:

53. [| medi aSt orel d nedi aSt ore bank aut hori zati on]|

54. nedi aStoreld : = aTitlelnfo medi aStoreld.

55. nedi aStore := MediaStore detect:[:each | each id = nediaStoreld].
56. bank : = Bank detect:[:each | each name = aPaynent|nfo bank].
57. aut hori zation := (bank confirnPayment: aPaynentlnfo) result.
58. (aut hori zati on ~= -1)

59. i fTrue:

60. [sel f registerAuthorization: authorization

61. forPaynment: aPayment | nfo.

62. A(nedi aStore highQualityTrackForTitle:aTitlelnfo) result]].
63.

64.[7] Bank defineBehavior: 'confirnPaynent: aPaynment|nfo’ as:

65. [| authorization |

66. ((authorization := self validatePaynent: aPaynentlnfo) ~= -1)
67. i fTrue:

68. [sel f registerAuthorization: authorization

69. for Payment: aPaynent | nfo].

70. Naut hori zation].

Figure 7.20 : Online Music Shop purchase specification

Rule5 (line43): specifiesthat arequest for purchase from aclient in aweb interfaceimpliesthe request
for all theinformation concerning the payment (i.e., credit card and client information) and the sent of apur-
chase reguest to the record shop. The high quality track of the song corresponding to thetitle purchased is

received and stored in the machine of the client.

Rule6 (line51): specifiesthat arequest for purchase received by therecord shopimpliestheverification
of the payment by the bank and the retrieve and the sent to the online record shop interface of the high qual-
ity track corresponding to thetitle purchased. All the information related to the transaction realized is reg-

ister by therecord shop.

Rule 7 (line 64): specifiesthat aconfirmation of a payment by the bank impliesthe verification of all the
payment information and the sent of an authorization to the record shop. All theinformation related to the

authorized payment isregister by the bank.

191

Analysis

From the group specification point of view the Online-Music shop group illustrates: 1) the creation of aco-
ordination group (line 1); 2) the specification of four roles (lines 3, 6, 11 and 16) and their corresponding
roleinterfaces(lines4, 7, 13 and 17); 3) the specification of arolevariable (line 12) and 4) the specification
of seven cooperation rules (lines 20, 25, 32, 38, 43, 51 and 64).

From the coordination point of view we can seein the example that in the specification of the group the
coordination policies are defined independently of theidentity of the entities that are coordinated and that
nowhere in the specification of the participants it was necessary to specify their relationsto other partici-
pants. When we wanted to refer to the participants we referred exclusively to the rolesthey where playing
inthegroup. If we comparethissolutionwith the Smalltalk solution presented beforefrom the point of view
of thefacility to realize the specification, construction and modification of the solution; the second solution
presentsalot of advantages: 1) the coordination code does not appear in the computation code of the partic-
ipants; 2) the coordination code can be reused independently of the coordinated entitiesand the coordinated
entitiesindependently of the coordination code; 3) we do not need to modify class hierarchies of the partic-
ipants to specify and modify the coordination; 5) it is clear which isthe coordination relating the different
participants, it is clear which are they roles, their obligations and how they participate to the coordination;
6) itispossibleto dynamically modify thecoordinationif needed and 8) it will be easy to introduce new par-
ticipantsand new relationsif needed.

71. Musi cShop defi neRol eNanmed: #Radi oSt ati on.

72. Radi oStation definelnterface: #(#nane #topTenTitl es)

73.

74.[8] OnlineRecordShop defineBehavior: 'topTenTitl eslnRadi oStation: aString’
75. as: [self display:

76. (self recordShop topTenTitl eslnRadi oStation: aString) result].
77.

78.[9] RecordShop defineBehavior: 'topTenTitl eslnRadi oStation: aString as:
79. [| radi oSt ation|

80. radi oStation : = Radi oStation detect:[:each | each name = aString].
81. Aradi oStation topTenTiles result].

Figure 7.21 Dynamic Modification of the Coordination

Wewill illustrate now with an example how easy isto modify the coordination already specified in the
coordination group. We suggests for example theidea of introducing anew type of participant in the coor-
dination. Consider for example theintroduction of radio stationsas new participantsin the coordination. In
our new version, the online shopwill be used to promote songsthat appear inthetop ten of theradio stations.
In(Figure 7.21) (line 71) we define a new role named RadioStation representing the radio stations. The
role RadioStation specifiesin itsroleinterface two behaviors (line 71): name (the name of the station) and
topTenTitles (thelist of theten top titlesin the station). To play the role RadioStation an active object must
know these two behaviorsin advance.

192

We add two new rulesto The MusicShop coordination group:

Rule 8 (line 74): specifiesthat when aclient in the web interface requestsfor the top ten titlesin aradio
station, the query is sent to the record shop with the name of the radio station as argument. Theresult of the
request isdisplayed in the web interface.

Rule 9 (line 78): specifies how to manage arequest for thetop tentitlesin aradio station coming from a
clientinaonlineshop interface. Therecord shop identifiesthe radio station and sendsthe request for top ten
titles. Theresult of the request is sent back to the online shop.

7.5 The Ornamental Garden [Burn93a]

Problem Description

A largeornamental garden, probably formerly the groundsof aBritish stately residence, isopento members
of the public, who must pay an admission fee to view the beautiful collection of roses, shrubs an aquatic
plant. Entry isgained by two turnstiles (or more). The management of the gardenswant to be ableto deter-
mineat any time, thetotal number of visitors asthey enter and leave the gardens. Additionally wewill con-
sider because of protection purposes of the place the number of visitors visiting the place at sometimeis
limited by some predefined number and it must be possibleto define several entrancesand existsinthepark.

Solution

A concurrent program that implement the population count required by the management of the ornamental
garden consistsof several concurrent turnstileseach incrementing (or decrementing) ashared counter when
aperson passesthrough the turnstile.

Coordination Problems

» Controlling access to shared resources: the concurrent access to the global counter of visitors must
be controlled.

» Global constraints: aglobal synchronization must be respected, no more that numMaxVisitors must
be authorized to enter the garden through all the turnstiles. If the number of visitors is exceed the
turnstiles must avoid usersto enter into the garden.

Structure

-east, west -people

Garden Turnstile Counter

+increment()

Figure 7.22 :Ornamental Garden structure

The structure presented in (Figure 7.22) represents a particul ar case of the problem in which only two
turnstiles are defined in the garden one at the east and the other at the west of the garden.

193

Smalltalk Specification
1. CaseStudi es defined ass: #Turnstile
2. supercl ass: #{Actal k. ActiveObject}

3. i ndexedType: #none

4. private: false

5. i nstanceVari abl eNanes: ''

6. cl assl nst anceVari abl eNanes: 'counter'/* share variable
7. i mports: "'

8. category: 'O namental Garden’

9.

10. >>counter: aTurnstil eCounter

11. counter := aTurnstileCounter

12. >>enterVisitor

13. sel f counter

14. i ncrement Count er | f DoneDo: [Transcri pt cr; show ‘' Wl come’]
15. i f Not DoneDo: [Transcript cr; show ‘Garden is full"‘]
16. >>| eaveVi si tor

17. sel f counter decrenent Counter

18.

1. CaseSt udi es defi neC ass: #Turnstil eCounter

2. supercl ass: #{Core. Object}

3 i ndexedType: #none

4 private: false

5. i nstanceVari abl eNanes: "'

6. cl assl nst anceVari abl eNanes: 'counter counter_seni

7 i mports: '

8 category: 'O nanental Garden’

9.

10. >>count er

11. counter ifNil:[counter := 0].

12. Acounter

13. >>counter: anlnteger

14. counter := anlnteger.

15. >>count er _sem

16. counter_semifNil: [counter_sem:= Semaphore forMitual Exclusion].
17. Acounter _sem

18. >>i ncrenent Count er | f Do: aDoneBl ock ifNot DoneDo: aNot DoneBl ock

19. sel f counter_semcritical:

20. [self counter < 100

21. ifTrue: [self counter: self counter + 1. abDoneBl ock eval]
22. i fFal se: [aNot DoneBl ock eval]]

23. >>decr enent Count er

24. self counter_semcritical: [self counter : self counter -1]

Figure 7.23 Ornamental Garden classes

194

Analysis

From the coordination point of view we can seein theimplementation of this sol ution how the coordination
and computation aspects are mixed within the classes of the participants. The specification of the turnstiles
inparticular the>>enterVisitor and >>leaveVisitor methods make directly referenceto the mechanismused
to control the coordination (i.e., the counter). Similar for the value that contains the maximum number of
visitorsthat can enter the park. The constant used finds coded into the specification of the mechanism used
to control the number of visitors. This can be partially solved by defining an accessor and by assigning the
valeto an instance variable. We can a so see in the specification of the Turnstile class also how this class
which represents a participant of the coordination defines an instance variabl e to store the reference to the
shared counter. It is clear that if the coordination needs to be modified to include anew interaction with a
different object it will be necessary to modify the specification of the Turnstil e participant classto definethe
new references. Another important point that appearsinthe solutionisthat it istheresponsibility of the user
to define how the coordination is done, in this case we use amutual exclusion semaphoreto exclude multi-
ple modifications at the sametime of the counter. Only experimented programmers know that the best way
to access and modify a shared variable is by encapsulating the calls and modifications in critical blocks.
Nevertheless, these detail s of the coordination arelow level details, theideal will beto define high level ab-
stractionsthat allow usersto definetheir coordinationin asafeway (e.g., for exampleavoiding possiblenot
liberation of semaphores after their use) at ahigh level.

ColLaS Specification

We create a coordination group named Ornamental Garden (Figure 7.24) to encapsul ate the coordination
aspect of a solution to the ornamental garden problem. The coordination group specifies a unique role
named Turnstiles (line 5), we do not consider necessary to represent the Garden entity in our solution in
some way the group model sthis class. The coordination group specifies two group variables maxNumVis-
itors (line 2) and numVisitors (line 3). In CoLaS groups variables are shared by &l the participants of the
group, they can acceded automatically by using their names. Because they group variables are shared vari-
ablesthegroupinternally protectstheir integrity by serializing their accessors. In ColL asthis aspect isman-
aged internally by the model.

1. Coor di nati onG oup createCoordi nati onG oupd assNanmed: #O nanent al Gar den.
2. Ornanent al Garden defineVari abl e: #maxNunmVisitors initial Val ue: 100.

3. O nanent al Garden defineVariable: #numVisitors initial Value: O.

4,

5. Ornanent al Garden defi neRol eNaned: #Turnstil e.

6.

7. Turnstile defineBehavior: 'enterVisitor’ as:

8. [group nunVisitors = group maxNunmberOf Visitors

9. i fTrue: [Transcript cr; show ‘Garden is full']

10. i fFal se: [group nunVisitors++. Transcript cr; show ‘Wlcone'].
11.

12. Turnstil e defineBehavior: 'leaveVisitor’ as:

13. [group numVisitors--].

Figure 7.24 Ornamental Garden

195

The Ornamental Garden coordination group specifiesthe following coordination rules:

Rulel (line 7): specifiesthat the entrance of avisitor into the garden by aturnstileimpliestheincrease of
the number of visitors of the garden. If the number of visitorsisalready inthe garden isequal to the maxi-
mum number of visitors authorized to enter the garden the visitor will not be allowed to enter.

Rule? (line 12): specifiesthat the exit of avisitor from the garden by aturnstile implies the decrease of
the number of visitors of the garden.

Analysis

From the group specification point of view the CoL aS Ornamental Garden group illustrates: 1) the crea-
tion of acoordination group (line 1); 2) the specification of two group variables (lines 2 and 3); 3) the spec-
ification of arole (line5) and 4) the specification of two cooperation rules (lines 7 and 12).

From the coordination point of view we can seein the example that in the specification of the group the
coordination is defined independently of the identity of the entitiesthat are coordinated. The coordination
policies appear clearly defined in the two cooperation rules and the role Turnstile defines the only type of
participants. No restrictions areimposed by the role on the participation of active objects. We will usethis
exampletoillustrate some problem that the CoL aS coordination model has. The enterVisitor rule behavior
specifiesthat whenever the number of visitorsis equal to the maximum number of visitors permitted in the
garden amessage” Gardenisfull” iswrittenin the Transcript (i.e., the screen). The message enterVisitor re-
ceived by the turnstile will be consider as executed once the message iswritten. Thefirst question that im-
mediately risesis: Would it be possible to del ay the execution of the messagein case the number of visitors
is exceeded? adelayed message will imply that the message will not be consider as consumed and no new
message enterVisitor will be need to be sent again to theturnstile. Theanswer isyes, in principle CoLaS al-
lows to disable messages when conditions are not satisfied (i.e., condition synchronizations). In (Figure
7.25) we show anew version of the solution specifying adisable rulein the coordination group.

14. Turnstil e defineBehavior: 'enterVisitor’ as:

15. [group numVisitors++. Transcript cr; show ‘Wl come’'].
16.

17. Turnstil e defineBehavior: 'leaveVisitor’ as:

18. [group nunVisitors--].

19.

20. Turnstile disable: "enterVisitor’ if:

21. [group numVisitors = group maxNunber O Visitors].

Figure 7.25 Ornamental Garden with disable rule

Rule3 (line 13): specifiesthat visitor to the garden are not authorized to enter to the garden if the number
of visitorsalready in the garden isequal to the maximum number of visitor authorized to enter the garden.

196

7.6 The New Server Election

Problem Description

Many distributed application are easy to implement if thereisin the system adedicated processto adminis-
ter certain tasks. For example areplica server, replication isthe maintenance of on-line copies of dataand
other resources. Replication it isakey to the effectiveness of distributed systems, in that it can provide en-
hanced performance, high availability and fault tolerance. A basic architecture model for the management
of replicated datais oneinwhich each client’srequests arefirst handled by acomponent called afront end.
Thefront end then communicateswith oneor morereplicamanagers, rather thanforcing theclient todo this
itself explicitly. If the front end server fails one of the replicamanagers must take over therole of front end
server. An election isaprocedure carried out to choose a process from a group, the main requirement isfor
the choice of the elected processto be unique, even if several processcall election concurrently.

Solution

Wewill useaaring-based el ection algorithm proposed by Chang and Roberts[Chan79a], suitablefor acol-
lection of processesthat are arranged in alogical ring. The algorithm assumes that the processes do no not
know the identities of the others a priori and that each process knows only how to communicate with its
neighbor (i.e., let’s say the clockwise direction). The goal of the algorithm isto elect a single coordinator,
which isthe process with the largest identifier. The algorithm assumes that all the processes remain func-
tional and reachableduringitsoperation (i.e., whichisour case). Initially, every processismarked asanon-
participant in an election. Any process can be begin an election. It proceeds by marking itself as a partici-
pant, placing itsidentifier in an el ection message and sending it to its neighbor. When aprocessreceivesan
election message, it comparestheidentifier in the message with its own. If the arrived identifier is smaller
and the receiver isnot aparticipant then it substitutesits own identifier in the message and forwardsit; but
it doesnot forward themessageif it isalready aparticipant. Onforwarding an election messagein any case,
the process marksitself asaparticipant. If, thereceiver identifier isthat of thereceiver itself, then this pro-
cess identifier must be the greatest and it becomes the new elected coordinator process. The new elected
process marksitself asanon-parti cipant once more and send an el ected messageto its neighbor announcing
its election and enclosing itsidentity. When a process other than the el ected receives and el ected message,
it marksitself asanon-participant and forwards the messageto its neighbor.

Coordination Problems

» Transfer of information: election messages are exchanged between neighbour processes. The elec-
tion messages are exchanged clockwise and they contain the identification of process with the high-
est identification id (initially when an election is started the el ection message containsthe id of the
process initiator of the election). The id associated to each process is used to elect a new process.
Messages indicating the identity of the new selected process are exchanged between neighbour
processes too. They announce the identity and the election of a new process.

» Group decisions: the group of process decidesto elect anew coordinator process. The processes ex-
change election messages choosing the processes with the highest id. In the current example the
group decision corresponds to the election of a new server possibly because of the failure of the ac-
tive one. Whatever the decision will be the algorithm described in the solution can be used to select
among the different solutions proposed by the different participants of a group.

197

Smalltalk Specification
1. CaseSt udi es defineC ass: #Server

2. supercl ass: #{Actal k. ActiveObject}

3. i ndexedType: #none

4. private: false

5. i nst anceVari abl eNanmes: '

6. cl assl nstanceVari abl eNames: 'id next participant el ected'
7. i mports:

8. category: 'RingBasedEl ecti on'

9.

10. >>el ect NewSer ver

11. sel f participant: true.

12. sel f next election: self id.

13. >>el ecti on: anl nt eger

14. anl nteger > self id

15. i fTrue:

16. [sel f next election: anlnteger.
17. sel f participant: true].

18. anl nteger < self id

19. i fTrue:

20. [self participant

21. i fFal se:

22. [self next election: self id.
23. self participant: true]].
24. anlnteger = self id

25. i fTrue:

26. [self participant: false.

27. self elected: self receiver.

28. sel f next elected: self receiver
29. >>el ected: aServer

30. sel f receiver ~= aServer

31. ifTrue: [self next elected: aServer].
32. self elected: aServer

Figure 7.26 Ring Based Election Server class

Analysis

From the coordination point of view we can seein theimplementation of this sol ution how the coordination
and computation aspects are mixed within the participant class. The Server class which represents the par-
ticipantsof the new el ection contai nsthe specifi cation of the coordination about how the new server isel ect-
ed. Itisclear that if the coordination needsto be modified for exampl eto sel ect no the server withthe highest
id but the server with the lowest wewill be force to modify the specification of the Server class. Something
similar it will happen it we decide to change the type of participantsin the election. Either the new partici-
pant class must define (i.e., copy) the specification already contained in the Server class or if the behavior
isspecifiedinanother special classthe new participant classwill haveto bedefined asasubclass of thisnew
class. Few programming languages allow the dynamic change of hierarchiesof classesand evenif thiswill
be possible the most important is that these changes are temporal changes, only during thetime the partici-

198

pant plays some role in the coordination, afterwards the ancient class hierarchy must need to be restored.
Changing and unchanging class hierarchies could generate errorsif the work isdone carefully.

ColLaS Specification

1. Coor di nati onG oup creat eCoordi nati onG oupCl assNanmed: #Ri ngBasedEl ecti on.
2.

3. Ri ngBasedEl ecti on defi neRol eNaned: #Server.

4.

5. Server defineParticipantVariables: #(id #next #participant #el ected)
6. initial Values: #(0 nil false nil).

7.

8.[1] Server defineBehavior: 'electNewServer’ as:

9. "[sel f participant: true.

10. sel f next election: self id]'.

11.

12.[2] Server defineBehavior: 'election: anlnteger’ as:
13. "[anl nteger > self id

14. i fTrue:

15. [sel f next election: anlnteger.

16. sel f participant: true].

17. anl nteger < self id

18. i fTrue:

19. [sel f participant

20. i fFal se:

21. [self next election: self id.
22. self participant: true]].
23. anlnteger = self id

24, i fTrue:

25. [self participant: false.

26. self elected: self receiver.

27. sel f next elected: self receiver]]'.
28.

29.[3] Server defineBehavior: ’'elected: aServer’ as:
30. "[self receiver ~= aServer

31. ifTrue: [self next elected: aServer].

32. self el ected: aServer]'

Figure 7.27 Ring-Based Election group

We create a coordination group named RingBasedElection (Figure 7.27) to encapsulate the coordination
aspect of thering based el ection algorithm specified in the sol ution of the new server election problem. The
coordination group specifiesauniquerolenamed Server (line 3). Thecoordination group specifiesfour par-
ticipant variables(line5): id which specifiesauniqueid associated to the server, participant isavariablethat
indicateswhether the server hasalready participated to the election (i.e., in some sort whether it has voted),
next isavariable used to keep areferenceto the next server inthering and elected isavariable used to keep
areferenceto the elected server.

199

The RignBasedEl ection coordination group specifiesthe following coordination rules:

Rulel (line 8): specifiesthat when anew election of aserver isrequest by aserver, the participant partic-
ipant variable of the server is set to true and the server sends amessage el ection: to itsneighbor server with
itsid.

Rule2 (line 12): specifiesthat when aserver receives an election: messageit comparestheidreceivedin
the message withitsown id. If thereceived id isgreater than itsid then the server sends amessage el ection
toitsneighbor server with the sameid it received and set its participant variableto true. If thereceivedidis
smaller thanitsid, thenif the server has not already vote (i.e., set its participant variableto true) it sendsto
itsneighbor server itsid (remember that the algorithm is based on selecting the server with the highest id).
If thereceivedid isequal to theid of the server then this server hasthe highest id and it considersitself as
elected. The server then sends a message el ected with its own reference to its neighbor server which will
propagate theidentity of the new elected server.

Rule3 (line29): specifiesthat when aserver receivesan el ected: messageif the served elected isdifferent
to the one who received the message then the server sendsthe elected: messageto theits neighbor server to
propagate theidentity of the new el ected server.

Analysis

From the group specification point of view the VendingMachine group illustrates: 1) the creation of acoor-
dination group (line 1); 2) the specification of aroles (line 3); 3) the specification of participant variables
withinitial values (line’5 and 6) and 4) the specification of three cooperation rules (lines 8, 12 and 29).

Although the specification of the coordination group looksvery similar to the specification of the Small-
talk solution presented before, from the coordination point of view we can seethat in the specification of the
group the coordination is defined independently of theidentity of the entitiesthat are coordinated. Werefer
to the participants of the coordination by the role they play in the coordination, in this case the role Server
(we could have named Participantl nEl ection the role to use amore generic name). Different kinds of server
partici pants can participate in the el ection. To be more rigorous we could have specified some signaturesto
filter the kinds of serversthat can participate in the election: for example we could have requested them to
be able to perform some specific service like to be able to replicate information which is our case. Theim-
portant isthat the coordination can be modified independently of the participants and reused to coordinate
different types of participants.

We can also see in the group specification how the coordination policies appear clearly defined in the
three cooperation rules. If the policy used to determined the new elected server will need to be changed, it
will be necessary to modify only the election behavior rule which specifies the policy. In CoLaS rules can
be modified dynamically, this means that new election policies can be defined dynamically for the group.
We do not need to modify class hierarchies of the participantsto specify and modify the coordination.

Finally another important aspect inthe group specificationisthat thereisnot restriction in the number of
participants that may play the role Server. The election coordination behavior may scale up and adapt to a
greater number of participants (i.e., electors).

7.7 Conclusions

We have shown in this chapter with aseries of examplesthat CoLaSfully satisfiesthelist requirementsfor
anideal coordination model and language for active objectsintroduced at the beginning of this chapter. We

200

consider these requirements to be fundamental for the specification of a coordination model and language
for concurrent object-oriented systems. We believe that Col aS tackles the most important problems exist-
ing concurrent object-oriented programming languages have in supporting the specification of the coordi-
nation aspect in concurrent object-oriented systems: 1) CoLaS allows the specification of high level
coordination abstractions hidden thelow level detail sabout how the coordinationisdone, 2) CoLaSallows
the specification of complex interactions concerning more than two participants, even more ColL aS allows
the specification of interactionsin which morethan one participant may play the samerolein the coordina-
tion; 3) CoL aS supportsthe separation of coordination and computation, the coordination coderefersto the
participants exclusively by the role the participants play in the groups and not by their identities or names,
similarly the coordination policies are specified in theform of coordination rules defined completely inde-
pendent of the computation code of the participantsand 4) Col aS supportsthe evol ution of the coordination
code, basically new coordination groups can be defined dynamically, new coordination rules can be added
and existing removed or redefined and new partici pants can be added to the group.

The CoL aS coordination model and language uses ahigh level coordination abstraction called Coordi-
nation Group that allows programmersto design, to specify and toimplement the coordination of groups of
collaborating active objectsin concurrent object-oriented systems. Designers and programmers of concur-
rent obj ect-oriented systems get advantage of the separation of the coordination and computation concerns
in the specification, construction and evol ution of their concurrent object-oriented systems.

We showed inthischapter concretely with six exampl eshow our approach can be used to tacklethe com-
plexity of specifying and building concurrent object-oriented systems. The examples selected cover the
most important coordination problemsin concurrent systemsidentified in chapter 2 of thisthesis: transfer
of information, allocation/access of/to shared resources, simultaneity constraints, condition synchroniza-
tions, execution orderings, task/subtask dependencies, group decisionsand global constraints. Thediversi-
ty of the problems and their relevance as representative of the different types of coordination problemsin
concurrent systems show that CoLaS is an interesting and effective model to manage coordination prob-
lemsin concurrent object-oriented systems.

In most of the showed examples we have used the active object support introduced in Actalk[Brio89a].
to specify a solution. The Actalk framework includes a class called ActiveObject from which participants
inthe solutionsinherit. The ActiveObject classincludesall the necessary to support to create and manipu-
late active objects. Programmers define the ActiveObject class or subclass that fits the best to its object
model (i.e., active object, actors, etc.) and focus exclusively on the specifi cation of the computation behav-
ior specific to the problem. We believe that not only the specification of the coordination in a coordination
model and language isimportant to tackle the complexity of building concurrent object-oriented systems,
both the specification of the computation related with the concurrency in active objects and the separation
of computation and coordination concernsin the coordination model and language are key elementsin the
simplification of the complexity of the specification, development and maintenance of concurrent object-
oriented systems.

We asoincluded in this chapter an examplein which the active object support of Actalk isnot used, we
illustrate with this example how the low level details of the concurrency of the participants appear in the
specification of the coordination code. Coordinationis specifiedin CoLaSat ahighlevel.

We also showed examplesin which we illustrate some of the problems that CoL aS have in supporting
simultaneity constraints. In the presentation of the CoLaS model in Chapter 3 of this thesis we mentioned
that there are not CoL aS synchronization rules to define multi-party coordination rules (i.e., rulesthat de-

201

pend for their applicability on multipleinvocation requests occurring in different participants). We believe
that such type of rules areimportant and that they are an interesting future work .

Finally, we al so showed exampl esin which the CoL aS specification was modified to adapt to changesin
the coordination: we introduced new types of participantsin the coordination, we specified new rolesand
we defined new rules. It isimportant to remember that one of the most important characteristics of the Co-
LaS model isits capacity to dynamically adapt the coordination specified in the coordination groups. The
CoL aSmodel support threetypes of dynamic coordination changes: (1) new participants canjoin and leave
the groups at any time, (2) new groups can be created and destroyed dynamically and (3) new coordination
rules can be added and existing removed from the groups

CHAPTER 8

Conclusions

We have proposed in thisthesisto tackle the compl exity of the specification and construction of concurrent
object-oriented systems based on active objects using the coordination models and languages approach.
The coordination models and languages approach, which appeared in the beginnings of the 90s, promotes
the separation of the computation and coordination aspectsin the building and the specification of concur-
rent and di stributed systems. According to the coordination model sand languages approach acompl ete pro-
gramming model can be built out of two separate pieces: the computation model and the coordination
model. In our case, the computation model concerns the specification of the active objects that compose
those systems and the coordination model the specification of the glue that bindsall them together.

Our claiminthisthesisisthat by separating the specification of the coordination aspect from the compu-
tation aspect in concurrent object-oriented systems and by specifying the computation in active objectswe
simplify the specification, understanding, construction, evolution and validation of propertiesin thiskind
of systems. What isnew in our approach istheway in which we specify the coordination aspect of agroup
of collaborating active objects in an abstraction called coordination group. We introduced in this thesis a
new coordination model and language called Col aS specifically adapted to the specification and the pro-
gramming of the coordination aspect of concurrent object-oriented systems based on coordination groups.

We have identified that the most important problemsthat existing programming languages have in sup-
porting the specification of the coordination aspect in concurrent object-oriented systems are five: 1) lack
of high level coordination abstractions, 2) lack of coordination abstractions for complex interactions, 3)
lack of separation of computation and coordination concerns, 4) lack of support for the evolution of the co-
ordination code and 5) lack of support for the validation of the coordination code.

Thereexistsalargenumber of coordination model sand languages| Papa98a], they differ basically in: the
kinds of entitiesthey coordinate, the underlying architecture assumed by the models, the coordination me-
diathey useto coordinate and the semantics to which the models adhere to. We have included in Appendix
A of thisthesisasurvey of coordination abstractionsin existing coordination models and languages. From
our point of view none the coordination models and languagesincluded in our survey fully satisfiesthelist
of requirementswe haveidentified to be fundamental for the specification of acoordination model and lan-
guage for concurrent object-oriented systems. We can summarized theidentified requirements asfollows:

» The coordination policies must be defined independently of the coordinated entities: the coordina-
tion model must enforce the separation of the coordination and the computation aspects. It must be
possible to define coordination policies independently of the specification of the coordinated enti-
ties.

» It must be possible to define new coordination policies in the coordination model: the coordination
model must alow programmersto define their own coordination policies and do not constrain them
to use fixed coordination policies.

203

It must be possible to incrementally define new coordination policiesin the coordination model: the
coordination model must allow programmers to use existing coordination policies in the specifica-
tion of new coordination policies.

The coordination policies must be multi-party: the coordination model must allow the specification
of coordination policies referring to different types of coordinated entities. Furthermore, it should
be possible to coordinate not only different types of coordinated entities but also several entities of
the same type.

The coordination policies must be declaratively defined in the coordination model: the coordination
model must alow the specification of the coordination in a declarative way avoiding the details of
how the coordination is done. High level coordination abstractions should be used to hide the details
about how the coordination is done.

The coordination policies must be control driven defined in the coordination model: the coordina-
tion model must respect and adapt to the basic object model to specify the coordination. No new
abstractions must be added to the object model to specify the coordination.

The coordination model must be transparently integrated into the host language: the coordination
model must integrate into the host language without imposing any constraint to the host language.
The coordinated entities must not be aware of the existence of the coordination layer in the systems.
The architecture of the coordination model must be hybrid: the enforcement of the coordination in
the coordination model must be shared between the coordinated entities and a central coordinator.
It must be possible to get advantage of the computing power of the entities being coordinated in the
enforcement of the coordination. The coordinator must not be a bottleneck for the system.

The coordination policies must include the possibility to define proactions in participants: the coor-
dination model must not be exclusively reactive waiting for events or actions occurring in the sys-
tem. It must specify proactive coordination in the coordinated entities.

The coordination policies must include the possibility to refer the state of the participants and to the
coordination history of the system: the coordination model must allow the specification of coordi-
nation referring to the state of the participants and the history of the coordination.

It must be possible to dynamically modify the coordination policies: the coordination model must
allow the dynamic modification of the coordination. It must be possible to easily adapt the coordi-
nation policiesto new requirements in the systems.

It must be possible to prove the capability of the coordinated entities to be coordinated: the coordi-
nation model must allow the system to validate whether potential coordinated entities are capable
of participating in the coordination.

It must be possible to validate basic safety and liveness properties of the coordination: the coordi-
nation model must allow programmers to validate formal propertiesin the specified coordination.

We have shown all along thisthesisthat our approach CoL aS, a coordination model and |anguage based on
the notion of coordination groups (and specially adapted to specify the coordination in concurrent object-
oriented), fully supports the list of requirements defined above. The CoLaS coordination model and lan-
guageintroducesahigh level coordination abstraction called Coordination Group that allows programmers
to design, to specify and to implement the coordination of groups of collaborating active objectsin concur-
rent object-oriented systems. A coordination group is an entity that specifies, controls and enforcesthe co-
ordination of groups of collaborating active objects. The primary tasks of the coordination groupsare: 1) to
support the creation of active objects, 2) to enforce cooperation actions between active objects, 3) to syn-

204

chronize the occurrence of those actions and 4) to enforce proactive behavior on the systems based on the
state of the coordination.

The ColL aS coordination model isbuilt out of two kinds of entities: the participantsand the coordination
groups. The participants are the entities to be coordinated and the coordination groups are the entities that
control and enforce the coordination of the participants. The participantsin the CoL aS coordination model
are active objects: objectsthat have control over concurrent method invocations. A coordination group it-
self iscomposed of three el ements: theroles specification, the coordination state and the coordination rules.
Therolesspecification definesthedifferent rolesthat participantsmay play inthegroup. Eachrolespecifies
the minimum requirements it imposes to an active object to play the role. The coordination state defines
general information needed to the coordination and the coordination rules define the different rulesgovern-
ing the coordination of the group. The coordination rules specify: cooperation actions between participants,
synchronizations on the execution of the participants actions and proactions or actionsthat areinitiated by
the participants independently of the messages they exchange.

One of the most important characteristics of the CoLaS coordination model and languageisits capacity to
dynamically adapt the coordination specified in the coordination groups. The CoLaS model supportsthree
types of dynamic coordination changes: (1) new participants can join and leave the groups at any time, (2)
new groups can be created and destroyed dynamically and (3) new coordination rules can be added and re-
moved from the groups. The capacity of CoLaS to dynamically adapt the coordination specified in the
groupsat runtimemakesit particul arly interesting for the specification and construction of modern concur-
rent object-oriented systems. In those systems evol ution isthe most difficult requirement to meet since not
all the application requirements can be known in advance. No other existing coordination model and lan-
guagein our survey of existing coordination modelsand languagesin AppendixA of thisthesissupportsthe
dynamic evol ution of the coordination. It is precisely because the CoL aS coordination model and language
supports the dynamic evolution of the coordination aspect in concurrent object-oriented systems that we
have suggested in this thesis to use it in the specification and construction of Open Distributed Systems
(ODS). Weintroduced the CoL aSD coordination model into the CORBA framework in the form of acoor-
dination servicecalled CORODS. The CoLaSD coordination model isan extension of the CoL aS coordina-
tion model to realize the coordination of distributed active objects. The CoLaSD model takesinto account
the possibility of failures in the participants common to distributed systems. The CORODS coordination
servicesupportsthe creation, themoving, the copying, thereferencing, the modification and the destruction
of coordination groups acrossthe network. Although the CORBA middleware seemsto provideall the nec-
essary support for building and executing ODS, thetruth isthat it provides avery limited support for their
evolution. From our point of view the main problem with CORBA isthat it does not enforce the separation
of the description of the elements from which systems are built and the way in which they are composed.
Thisproblem makesthose systemsdifficult to understand, modify and customize. Coordination modelsand
languagesin particularly CoLaS may help CORBA to becometheright tool to build ODS.

8.1 Evaluation of the CoLaS Model

The ColL aS coordination model and language satisfiesall the requirementsin thelist of requirementsiden-
tified to be fundamental in the specification of a coordination language for concurrent object-oriented sys-
tems:

» Clear separation of the computation and the coordination concerns: in CoLaS the coordination and
computation aspects are specified separately in two distinct entities: the coordination groups and the

205

participants. The coordination groups are specified independently of the participants they coordi-
nate and the participants are specified independently of the coordination groups which coordinate
them.

Encapsulation of the coordination behavior: in CoLaS the coordination of a group of collaborating
participants is encapsulated inside coordination groups. The specification of a coordination group
includes: the role specification, the coordination state and the coordination rules.

Support multi-object coordination: in CoL aS the coordination specified in the coordination groups
is not limited to two participants but to a group of participants. The coordination groups specifies
abstractly the coordination of groups of participants in terms of the roles they play in the coordina-
tion and their respective interfaces. The role abstraction allows the specification of the coordination
independently of the effective number of participants participating in a group, we talk in this case
of a coordination specified intentionally and not extensionally.

High-level coordination abstractions. in CoLaS programmers do not focus on how to perform the
coordination but on how to expressit. All the low-level details concerning how the coordination is
done are managed internally by CoLaS. For example programmers do not care about locking and
unlocking state variable to guarantee their consistency during the coordination. The coordination
groupsinternally serialize the access to the state variables.

Support evolution of the coordination: in ColLaS the coordination behavior is not fixed. It can
change over the time. CoL aS support dynamic coordination changes in three distinct axes in coor-
dination groups: (1) new participants can join and |eave the coordination groups at any time, (2) new
coordination groups can be created and destroyed dynamically and (3) coordination rules can be
added to and removed from the coordination groups.

Promote the reuse of coordinations abstractions: in CoL aS the coordination groups are specified in-
dependently of the participants they coordinate. They can be used to coordinate different groups of
participants. Similarly, the participants can be reused in different coordination groups. The mini-
mum requirements imposed to participants to play the roles are specified in the roles interfaces.
Declarative specification of the coordination: in CoLaS the coordination is specified in adeclarative
way using rules. The Coordination rules specify: cooperation actions between participants, synchro-
ni zations over the occurrence of actions occurring in participants and proactionsin participants. The
advantage of using rules in the specification of the coordination is that the coordination becomes
explicit.

Incremental specification of the coordination: in CoL aS existing coordination groups specifications
can be composed to specify new coordination groups. Complex coordination schemes can be built
from simpler coordination specifications.

Support validation of formal properties: in CoL aS we define a simple methodol ogy that we can use
to formally validate properties in the coordination layer. In chapter 6 of this thesis we present such
a methodology. The basic idea of this methodology is to transform CoL aS coordination groups in
Predicate-Action Petri Nets. Reachability analysis techniques are then used to validate formal prop-
erties.

8.2 The Good, The Bad and The Ugly of the Model

We believethat showing only the good aspects of the model will not be useful for learning from the experi-
ence of defining acoordination model and language for active abjects. It isalsoimportant too to show some

206

problems and ideas of the coordination model that we did not mention during its presentation and during its
evaluation.

8.2.1 The Participants

There are three different ways one could structure a concurrent object-based system in order to protect ob-
jects from concurrency [Papa95a): the orthogonal approach, the homogenous approach and the heteroge-
neous approach. In the orthogonal approach concurrency execution is independent of objects. In the
homogenousapproach all objectsareconsidered as“active” entitiesthat have control over concurrent invo-
cations. And, in the heterogeneous approach both active and passive objects are provided. Our participants
follow the active object approach; themselvesthey have the responsihility to schedule concurrent requests.
The main advantage of the active object model isthat programmers do not perform synchronizations at a
thread level, the synchronization is done at the object level, most of the time based on the semantics of the
methods specified in the object classes. The synchronization is specified in policiesthat “in principle”’ can
be reused and modified separately of the objectsthemselves. Although all this sounds easy and simple, the
specification of synchronization policies when the number of behaviors to control increases becomes as
complex astrying to specify synchronizations with threads. Furthermore, the synchronization policies be-
comevery difficult to modify and verify. From our point of view the synchronization policies approach suf-
fersfrom ascalability and the active objects approach suffersfrom this problem.

Another problem related with the specification of synchronization policies for active objects concerns
the impossibility to combine different synchronization policies within the same object. In some cases we
would like to combine different synchronization policiesto control different kinds of methods, sometimes
wewould liketo include even class methods and not only instance methods. In all the research works done
in synchronization policieswe haveread it was never mentioned how to combine different synchronization
policies, nor how class methods can be combined in the synchronization policieswith instance methods. In
other words active objects are not the panacea, similarly to concurrency itself there are advantages using
them but also there are disadvantages. There is an interesting paper written by Milicia and Sassone
[Mili04a] analyzing what isthe current situation of modern concurrent object-oriented languages like Java
and C# related with synchronization policies. The conclusionisthat still today thoselanguages suffer from
the same problems related with the specification of synchronization policiesidentified in[Mats94a). They
suggest that the separation of concerns promoted by A spect Oriented programming may finally solve these
problems. They mention also that coordination languages, in particular the Composition Filters approach
[Berg944] are aninteresting way to solve these problemstoo.

Finally, the last important point we wanted to mention hereisthat even if theoretically the goal behind
the specification of the coordination models is to separate coordination from computation, as soon as one
associatesadifferent synchronization policy to theparticipants(i.e., different to mutual exclusionwhichthe
onethat we use) the details of the synchronization policy appear inthe specification of the coordination lan-
guage. Remember for exampl ethat the cooperationrules(i.e. defineBehavior rulesin CoL aS) define behav-
iors that participants “learn” when they join roles in the groups, their execution depends on whether they
validate or not the synchronization policy associated with the parti cipants. We experimented with different
synchronization policiesinthiswork in order toincreasetheinternal parallelism of themodel. If weconsid-
er for example a Multiple readers only one Writer synchronization policy (i.e., object methods are divided
into two categories: readers and writers, readers methods executed concurrently if not writer method isrun-
ning and writers methods executed mutual exclusively) it is necessary to specify for the cooperation rules

207

whether therulesshould be consider asreader or writer methods. In“theory” the specification of the behav-
ior of the participant must be independent of the coordination specified in the group, sometimesthisis not
possiblelikein the example.

Communication

Wealready said that partici pants communi cate by exchanging messages asynchronously in CoL aS. Our ex-
perienceinthe specification of coordination groups has shown usthat most of thetimethe participantscom-
municate synchronously. Any solution to the specification of a coordination model must include at least
these two forms of communication. In ColLaS we use the futures generated by the method invocation re-
questsin other partici pantsto synchronizethe execution of messagesintheparticipants. When areply isex-
pected we sent the message value to the future to receive the result and when no value is expected but we
want only to synchronize the execution of messageswe sent the message wait. I n both cases either because
theresult isnot ready of because the other parti ci pant have not finished to execute to method invocation the
participant who sent the request blocksin the future.

Another important type of communication used in the CoLaSmodel isgroup communication. Inthe Co-
LaS model it is possible to send a message to a al the participants of a role (i.e.,, multicast message)
[Coul944]. Oneof the problems of the CoL aS model isthat the communication model used to communicate
between participants and between aparticipant and arole are not the same. We do not manage replieswhen
amessageis sent to all the participants of arole. (i.e., multicasted). It will beinteresting to extend the com-
munication model used in CoLaSto communicate with roles managing multiple-replies. Thiscanbeanin-
teresting future work.

8.2.2 Role Specification

We already mentioned in thisthesisthat we believe that our role concept in very wesak, in particular therole
interface definition. Even if an active object implements the behaviors specified in theroleinterface, there
is not guarantee that the coordination will not break. It will be interesting to extend the specification of
method signatures with returned values and argument types to obtain atyped interface definition. The ad-
vantage of having atyped interface definition isthat we can specify more precisely the requirementsthat we
impose to participantsto play theroles. In our model therole concept isfundamental in the specification of
groupsit allowsto identify and to specify abstractly the coordination of agroup of participants sharing the
same coordination behavior.

8.2.3 The Coordination State

Concerning the coordination state the three types of variables defined in CoL aS correspond to three possi-
ble accessibility constraintsthat can be defined on variables specified in agroup. Group variables can only
be used by all the participants playing rolesin the group, role variables can only be used by the participants
playing the role and participants variables can only be used by the participant to whom they belong. We do
not specify typesfor the variables, the type of avariable corresponds to the actual value stored in the vari-
able. If thetype of the value stored in the variable changes the type of the variable also changes.

Concerning the concurrent access to group and role variables (i.e. shared variables), it isimportant to
know that these two types of variables are stored in the group entity. A request for the value or for the mod-
ification of the value of these variables correspondsimplicitly to amethod invocation request to access or

208

to modify thevariablein the group entity. The concurrent accessto variablesin groupsis controlled by mu-
tual exclusion semaphoresimplicitly associated to the variables.

8.2.4 The Coordination Rules

The CoLaSmodel definesthreetypesof coordination rules: cooperation rules, reactiverulesand proactive
rules. Thefirst two typesof rulesdepend for their eval uation of the messages exchanged by the participants
playing roles in the group. Cooperation rules define actions that must be executed when the participants
playing some role receive method invocation corresponding to the behavior specified in the cooperation
rules. Reactive rules define actions that must executed at some specific points during the processing of the
method invocations by the participants. Somereactive rulesdefine additional ly conditionsthat must beval-
idated before the actions associated with the rules be executed (i.e., synchronization rules). Thefour evalu-
ation points defined in the CoLaS model are: atArrival, atSelection, atSent and atEnd.

Theimportant point hereisthat, from the separation of concerns point of view only the rules associated
withtheatArrival and atSent eval uation pointsrespect the separation of concerns promoted by coordination
models. If we consider a participant asablack box around which the coordination is specified, only the ar-
rival and the departure of messagesto and from the participant can be perceived as events from outside the
participant. In other words a pure coordination model for objects must define exclusively actions related
with these two types of events.

Why we have defined two more eval uation pointsin the CoL aS model ? the atSel ection eval uation point
correspondsthe to moment when amethod invocation isready to be executed by the participant and just af-
ter the synchronization policy was validated. The CoLaS models includes a synchronization rule Disable
which is evaluated at the atSelection point. The Disableruleis an important rule because it allows one to
specify condition synchronizations[AndrO0a] . Andrews specifiesthat there aretwo basic kinds of synchro-
nizationsin concurrent systems: mutual exclusion and conditions synchronizations. Mutual exclusionisthe
problem of ensuring that critical sections of statements do not execute at the same time and condition syn-
chronization isthe problem of delaying a process until agiven condition istrue. The “delaying a process’
in an active object correspondsto the delaying of the execution of amethod invocation by the object. This
is the reason why we have defined the atSel ection evaluation point and why the rule Disable exists. Con-
cerning the evaluation point atEnd, we do not have astrong justification for this. The CoLaS model defines
auniqueruleinterceptAtEnd associ ated with thispoint. TheinterceptAtEnd ruleisbasically used to update
state variablesrel ated with the execution of method invocations, for example: avariable storing theidentity
of thelast method executed, or a variable counting the number of method invocations executed. At afirst
view, it seemsto be possibleto include every action specified in the InterceptAtEnd rulein the specification
of coordination actions in cooperation rules, remember that cooperation rules define behaviorsthat are re-
quested by other participants as method invocations. The problem isthat the InterceptAtEnd rules are not
necessarily associated with behaviors specified in cooperation rules. All the different interception rulescan
be associated to methods not rel ated with the coordination behaviors specified inthe coordination group for
exampleto behaviors appearing in the role interfaces. Thisis not very common but it happens. Thisisthe
reason why we prefer to keep thisrule and this evaluation point in our model.

8.2.5 Dynamic Aspects

The CoL aSmodel supportsthreetypesof dynamic coordination changes: first new participantscanjoinand
leavethe groups at any time; second, new groups can be created and destroyed and third, new coordination

209

rules can be added and removed from the groups. The problem with the three types of modificationsisthat
itisalmost impossibleto determinein advance (i.e., without aformal analysis) which are the consequences
of these actions for the coordination specified in the group. If we consider the Electronic Vote problemin-
troduced in this chapter for example, What will it happen if for example during a vote process a new voter
joinsthe group after that the vote message is sent by theinitiator of the voteto all the voters?the answer is,
the new voter will never receive the request to vote. And, because it makes part of the participants playing
therole Voter and because the decisions are taken unanimously the result of the vote will be negative even
if the othersvoter voted positively.

Thedynamic addition and removal of rulescan even have more serious consequencesin the coordination
specified in the group, they can for exampleintroduce errors or deadlocksin the coordination. Suppose for
exampl e acooperation rule which specifiesan action corresponding to the asynchronous send of amessage
to another participant and where no behavior associated with such amessage existsin the other participant,
or a cooperation rule for example that introduces a cycle in the communication protocol specified in the
group. We need to be sure that whenever we modify the group specifications we do not introduce problems
inthe coordination. Unfortunately the only way to control that the dynamic modifications of the groups do
not introduce problemsin the coordination is to formally verify the coordination specification at the time
the modificationsare made. In our case thisiscompletely unrealistic, we have defined avalidation method
that transforms CoL aS groupsinto Petri Netsto validate safety and liveness properties. Actually thetrans-
formation processis not automatic and the interpretation of the results requires some knowledge of Petri
Nets and some knowledge of the coordination specified in the coordination groups. CoLaSis not the only
coordination model and language that suffersfrom this problem, in general most of the existing concurrent
object-oriented programming languages and coordination language suffer from this problem. The rea
problem hereisthat in general the validation of propertiesin programsin not madein thelanguageinwhich
the programs arewritten. Theideal solutionwill beto includein the language mechanismsto automatically
validatethe code. Today, weare till quite far from thisideal solution.

8.3 Some Implementation Concerns

8.3.1 The Role Concept

How to integrate the role concept into object oriented systemsis athesis research subject itself. In CoLaS
the fact that a participant plays arole concretely means, that there are methods (cooperation rules) and in-
stance variables (role state variables) related to the coordination that must “make part” of the participant
classes (they must appear in the classes definitions). There are two possible ways the role concept can be
introduced to an object-oriented model: either the language provides multiple inheritance and then arole
can be modeled as a class or the role characteristics are model ed at the instances level using delegation. If
we choose the first option this will imply for our model that participant classes hierarchies will need to
change dynamically. For example aparticipant playing arole Votersin the ElectronicVote example will be-
long at the sametimeto the class Votersand to the class Person, anew class PersonVoter specifying the mul-
tipleinheritancewill needto becreated. It will be necessary to modify the classhierarchiesof the participant
classes at runtime. If we choose the second approach thiswill imply that at some point it will be necessary
to introducein the internal representation of our participants some specific knowledge concerning how to
manage the access and execution of the behaviors (i.e, methods) and variables associated with therolesvi-
olating in thisway the separation of concerns between computation and coordination. In other words, the

210

introduction of the concept of roleinto the model introduces alot of advantageslike the possibility to spec-
ify multiparty coordination and to abstract the specification of the coordination from the specification of the
coordinated entities, but at the sametimeit introduces aseries of problemsto be considered. Actually what
wedo in the implementation of CoLaSisthat we defineinternally for all the participants avariable named
rolesto keep the reference to the roles the participant plays. How clean can be kept the separation between
coordination and computation in the implementation of the CoLaS model when the role concept is intro-
duced in aobject-oriented languageisnot clear. All modifications doneto the participant hierarchy violates
too the principle of separation of concerns promoted by the coordination models and languages. The coor-
dination model must not interfere with the computational specification of the participants. To our point of
view, thereisnot clear solution to this problem, we believe that this can be athesis subject by itself. We be-
lievetheroleconcept in our model must be considered morein detail. It will beinterestingto havealook in
different thesis actually working in the integration of the role concept into object-oriented languages. It is
important to always analyze the implications of every implementation decision in the model beforeto im-
plement the model, in particular if they affect the separation of concerns between computation and coordi-
nation.

8.3.2 Coordination Enforcement

There are two different architectures that can be used to implement the enforcement of the coordination
specified in the CoLaS groups:. a centralized architecture where the coordination rules are validated by a
central entity representing the group (i.e., group entity) and a decentralized architecture where the coordi-
nation rules are enforced by the participants playing the rolesin the groups. Our first implementation of the
CoL aS model followed a centralized architecture, the participants sent notifications to the group entity to
indicatethey were at one of the four eval uation points defined in the model, then the group entity evaluated
the rules associated with the evaluation point and if the execution condition associated with the rules vali-
dated to true, theruleswere executed by the group entity. The problem with thisarchitectureisthat: first the
group entity becomes very easily abottleneck giving that the execution of all the messages related with the
coordination are controlled and executed by the group entity and second that the centralized architecture
does not uses all the potential computational power of the participants given that all the coordination work
related with the enforcement of the coordination isdonein the group entity.

The decentralized approach (the onewe have chosenin our current implementation of the CoLaSmodel)
inthe other hand, dividesthe enforcement of the coordination work between the parti ci pants and the group
entity. Most theinformation necessary to the enforcement of coordination rulesassociated with rolescan be
stored in the participants (i.e., the coordination rul es associated with the rolesthey play and the Participant
variablesin the Coordination State). The main advantages of the second approach are that the group entity
does not represents anymore abottleneck in the architecture and that the computational power of the partic-
ipantsisalso used in the enforcement of the coordination. In the second architecture only the modifications
of the group and the role variables in the coordination rulesimply the communication between the partici-
pantsand the group entity during theenforcement of the coordination. Thebig disadvantage with the second
architectureisthat whenever the specification of the group changes (i.e., addition and/or removal of rules)
the changes must be notified to all the participants and their coordination rules updated.

In general whatever architectural approachisused to build themodel it requiresthat participantsinclude
some behavior that allowsthento interact with the group entity. The point hereisthat both implementations
impose some conditionsin theinternal behavior of the partici pantsthat make that some aspects of the coor-

211

dination at the end appear mixed again within the computational aspect of the participants. In CoLaS our
participants are subclasses of a class named ActiveObject, a class specially adapted to interact with the
group entitiesto enforce the coordination.

8.4 Future Work

Aswealready mentionedinthisthesis, we consider that there are several aspectsin the CoLaS coordination
model which deserve special attention and thus some future work.

[Coordination model] we believe it will be interesting to work in a better integration of the role el-
ement to the model. For example, it will be interesting to extend the specification of the role inter-
faces as we mentioned during the presentation of the model. Theideal will be to be able to specify
asprecisely as possible the requirementsimposed on the participants, of course without fixing their
types. We have seen that therole interface is an extremely good ideato separate the specification of
the participants from the coordination in the coordination groups.

[Coordination model] we believe it will be interesting to work in the specification of multi-party
rules, rules that depend for their application on multiple invocation requests occurring in different
participants. For example it will be interesting to be able to specify condition synchronizationsim-
plicating more that one participant. One interesting work in this direction is Interacting Processes
[Fran96a]. We showed in the Vending Machine example introduced in Chapter 7 the utility of such
kinds of rules.

[Coordination model] we believe it will be interesting to work in the problems related with the in-
troduction of different synchronization policiesinto the model. We already mentioned in thisthesis
that the introduction of new synchronization policies in the objects affects the specification of the
coordination. The coordination model has to specify how the new coordination behavior specified
will behave with respect to the synchronization policy. How to keep the separation of computation
and coordination concernsin this caseis ahig challenge.

[Validation] we believe it will be interesting to work more in the interpretation of the results ob-
tained from the validation of properties in the Petri Nets in which we transform the coordination
groups.

[Validation] we believeit will beinteresting to work in tool s that automatically transform coordina-
tion groups in Predicate-Action Petri nets using the mapping function defined in thisthesis. Such a
work will avoid to programmes possible errors introduced during the manual transformation of the
groups.

[Validation] we believeit will beinteresting to work in the validation of propertieswhen multi meth-
od invocations are processed at the same time.

[Validation] we believeit will be interesting to work in the validation of properties when the objects
participate in different coordination groups at the same time.

[Validation] we believe it will be interesting to be able to determine coordination problems gener-
ated by non coordinated behavior. Until now we can not guarantee that a non coordinated behavior
in a participant does not affect the coordination behavior of a group, even if the two behaviors are
specified separately.

[Implementation] the main challenge from the implementation point of view is to keep the separa-
tion of the coordination and the computation in the CoLaS model in the implementation of the mod-
€l. The biggest challenge is the definition of coordination behavior at the object level and not at the
classlevel in an object oriented language. Normally in an object model the behavior of the objects

212

isdefined in their classes. In CoL aS, coordination behavior is“added” to the participants when they
jointheroles, this behavior is defined at the object level and not at the classlevel. If we add the new
behavior at the class level other instances of the same class of the participant object will be affected
by the coordination even if they do not play roles in a coordination group. We believe it will bein-
teresting for example to define an object model in which not all the behavior is specified at the class
level but in which it will be possible to specify behavior specific to objects.

APPENDIX A

Coordination Abstractions

A.1 Abstract Communication Types [Aksi92a][Berg94a]

The Abstract Communication Types (ACT in the following) approach introduces abstractionsto structure,
abstract and reuse object interactions. Inthe ACT model composition filtersare applied to abstract commu-
ni cation among objects. The basic object model is extended to introduce input and output composition fil-
tersthat affect the sent and received messages respectively.

Composition Filters

raclvd
Hiedaages
Input Fiiters
ihterface park L
~ v ~
~
b \
/ \
.' cm n-,mm Ma'l:had \

«\ Q‘* flna)t:g% ;'J
Implamentation part < =
(kernel objacs) 4

Outpurt Fitters

AT FHgatad e

Figure A.1 : Composition Filters

A compositionfilter object consistsof two parts: an interface and animplementation part. Theinterface part
deal swith incoming and outcoming messages. It consists of one or more input and output filters, optional
internal and external objects and method header declarations. The implementation part contains method
definitions, instance variable declarations, definitions of conditions concerning instance variables, an op-
tional initialization operation. Theimplementation part isfully encapsul ated within the object.

214

There are two types of composition filters: input and output filters. An input filter specifies conditions
for message acceptance or rejection and determinesthe subsequent actions. If amessage passesthrough the
input filtersit can befurther delegated to internal objects, methodsor external objects. All the messagesthat
originatefrom method executi onswithin the object sent to objectsthat are outsidethe boundariesof the cur-
rent object passthrough the output filters. Output filters specifies conditionsand actions on the sent of mes-
sages.

The composition filters model is adopted by the Sinalanguage [Aksi89a]. The current version of Sina
provides anumber of primitive filters such as: dispatch, meta, error, wait and realtime. These filters can be
used as both input and/or output filters. Thesefiltersare orthogonal to each other, and thereforethey can be
combined.

A compositionfilter consistsof anumber of filter elements. When amessageisto be evaluated by afilter
the message is checked against the elements of the filter in left to right order. A filter element consists of
three parts:

A condition, which specifies a necessary condition to be fulfilled to continue with the eval uating of

thefilter. A condition always resultsin aboolean value, and is free of side effects.

* A matching part, which specifies a pattern matching expression against which the evaluated mes-

sage is matched. A pattern matching expression refers to the message's selector.

* A substituting part, which specifies how parts of the message are replaced.

PO

Tt'r.cr' W'P” \ / o fitter pattern

. "HE\' {arriving meﬁﬁﬂgﬁs] ..

- . helestad mesasgea

>

(mssaaas doea not: matceh)

— ‘—_—:—_ . =-1::> J
j__ g - [meaazge continues to nedt At

i___ "'_"‘__ ;/'_/ {tHessage matches)

(tHessags le Hadiflad,

k} v __+__ sotTEnUea to next fittar)
<:> ,_»—*1‘\ T*/—/ (message matches)

[meesage |z dispatched)

Figure A.2 : Filters evaluation

215

Evaluation

The selector of the processed message (i.e. received or sent) ismatched against the sel ector of the matching
part of each filter element; when thefilter element doesnot match the subsequent filter istried. When afilter
matchesthe condition associated with thefilter, thefilter isapplied to the message. Thetype of thefilter de-
termines what happens to the message. Commonly the last filter in a sequence filtersis a dispatch filter,
which resultsin delegation of the request messageto itstarget object. In(Figure A.2), we show the evalu-
ation process of thefilters.

Inheritance and Delegation

Input filters can be applied to perform basic object oriented data modeling techniques such as inheritance
and delegation. In the composition filters model, inheritance is not directly expressed by alanguage con-
struct but is simulated by input filters. Inheritance can be simulated by delegating messagesto internal ob-
jects.

ACT

ACTsareclassesthat abstract i nteraction among objects. They operate onfirst classrepresentations of mes-
sages. For converting amessageintoisfirst classrepresentation (reification) anew filter classmetafilter is
used. The meta-filter hasthe same structure that the dispatch filter previously described. They differ in that
messages accepted by meta-filtersarefirst converted into instances of the class M essage and then passed as
argument of new messagestothe ACT objects. The ACT object can retriever information from the message
and modify the contents of the message. The ACT object can convert an instance of Message back to ames-
sage execution. ACTSs can be further classified as abstract sender types (AST) and abstract receiver types
(ART). Both typesof ACTsobjectsareresponsiblefor abstracting oneway communi cation among objects.
An AST object is responsible for handling outgoing messages and an ART object for handling incoming

messages.

figure
{ONEWAYConsTRAINT)

Figure A.3 : ASTs object controlling outgoing messages

216

In (Figure A.3), we show graphically the specification of an ART communication type introduced in
[Berg92a]. In the example an instance of Reference Point is supposed to store the reference to the coordi-
nates of afigure. When the references point are changed, then all the dependent graphical objects must be
updated accordingly. To compose this constraint behavior with ReferencePoint, the interface of the class
ReferencePoint isextended by declaring an object figure of class OneWayConstraint inthe externalsclause
and by adding anew input filter called constraint of classMeta(Figure A.4). The class OneWayContraint
isan ART which providesthe consistency of the dependant variableswhen theindependent variable chang-
es. Whenever the reference point is moved using the method moveTo the applyConstraint method of the
OneWayConstraint isapplied inthefigure. The constraints associated with thefigure are specified using the
method putConstraints. This method accepts an ordered collection of instances of class Block asargument.
Each block defines a constraint expression to be solved.

cl ass ReferencePoint interface

1.

2

3. externals figure: OneVayConstraint;// instance of the ART cl ass
4. internals nyPoint: Point,

5. methods display returns N I;// display itself

6

7

8

inputFilters
{constraint: Mta={True=> [*. nmoveTo]figure. appl yConstraint};

9. di sp: D spatch={true=> nyPoi nt.*, True=>inner.*};}
10. end
11.
12.cl ass OneVyConstrai nt interface
13.
14. net hods
15. appl yConstrai nt (Message) returns N I; // independent val ue
16. put Dependant s(O deredCol | ecti on(Any)) returns NI ;
17. size returns Integer;
18. put Constrai nts(OrderedCol | ection(Block) returns NI ;
19. getConstraints returns O deredCol | ection(Bl ock);
20.
21. inputFilters
22. {disp: Dspatch = {true => inner.*}
23.
24. end

Figure A.4 : ReferencePoint and OneWayConstraint classes specification

217

A.2 Activities [Kris93a][Kris973a]

Legend:
L o
W -
' . Relation-class
¢ with links to
s domains
¥
Link named n
n to domain

. : I Man} link" to
P L ; domain

Figure A.5 : Graphic representation of an Activity

Activitiesare abstractionsto model theinterplay between groupsof objectsover agiventime. Anactivity is
defined by specifying its participants and adirective. The parti cipants specify the objectsthat participateto
theactivity and the directive the actionsthat composethe activities. A directive may include other activity-
objects and method activations of the participants. The interplay between the participants, which is de-
scribed collectively, specifies“who isdoing what to whom” . The atomic elements of an activity’sdirective
usually comprisesthree things: subject (who), object (whom) and verb (what isdone).

Assuming the existence of classes B, C and D an activity class A isdefined as the rel ation between par-
ticipant classesB, Cand D as: ClassA [B, C, D] (...). Theactivity A definesarel ation between three objects
corresponding to the domains of the participant classes B, C and D. In the specification of an activity itis
possibleto give namesto the objects that participate in the activity Class A [rb: B, rC: *C, rD: D], the par-
ticipantsin the activity A are named rb, rC and rD. The'*’ in the specification of the participant domain
meansthat rc may refer to an arbitrary number of C objects. Thereisnot restriction in the number of activ-
itiesinwhich participantsmay play at thesametime. In(Figure A.5), we can seethegraphic representation
of theactivity A and its participants.

AASSC(...)

QASSRL ROEC (...)
QASS R ROEC (...)

AASSAL] ... , R, ... 1 (...)
AASSA2[... , R, ... 1(...)

Figure A.6 : Roles specification

218

Because not every aspect of a participant isrelevant for every activity in which it participates activities
introducesthe notion of role. A role specifiesthe different aspects of the participantsthat arerelevant for an
activity. Roles are described asrole-classes. In (Figure A.6), R1 and R2 arerole classesfor class C. The
activity classes Al and A2 hasrol e classesrespectively R1 and R2 as one of their domain classes. An object
of class C can acquirerole-objectsform R1 and R2 during itslife cycle and participate in the activities Al
and A2.

Specialization and Aggregation

dass §... Pg: ...](...action(...))

dass S G[... Ps: ...1(...action (...))

Figure A.7 : Specialization Mechanism

Activities specialized from another (super) activity arecalled sub-activities (Figure A.7). Anactivity may
be redefined in several ways: by adding more participants classes, by refining the description of existing
participants classes (i.e., substituting a participant class by a subclass) and by refining the actions already
part of the action sequence.

dass P:[... pP. ...](... action (...))
dass W[...pW...](...action(...0P..))

Figure A.8 : Aggregation Mechanism

Activities can also be aggregated to form larger activities (Figure A.8). The aggregated activities are
called part-activities. Each activity/part-activity isresponsible for managing its associated interplay.

A.3 Activities and Environments [Arap91a]

Thiswork define the notions of objects, activities and environments within atemporal context. These no-
tions are used to formally describe dynamic evol ution of object behavior and interactions of collections of
cooperating objects. The objects represent entities of the problem domain. They communicate between
them by sending and receiving messages. The activities describe interactions of collections of objectsand
the environments describe coordination of a set of activities. The notions of object, activity and environ-
ment are formally specified using the language of first-order temporal logic FTL [Abad89a].

FTL Syntax - Modal Operators

[1 (*awaysin the future”) [1 (“alwaysin the past”)
Y (“sometimein the future”) Y (“sometime in the past”)
O (“next”) O (“previous’)

u (“until”) S(“since’)

219

Objects

Objectsareentitiesthat represent the problem domain. An abject communicateswith other objectsby send-
ing and receiving messages. A message represent arequest for thereceiver to perform sometask or toreturn
to the sender some information. Objects have associated constraints. Object constraints specify temporal
ordersin which messages are to be sent to and received from an object.

In(Figure A.9) we show the specification of the class Control Tower introduced in [Arap91a] and rep-
resenting acontrol tower inan airport. The messages section specifiesthe messagesthat can bereceived by
the Control Tower instances. The message take off and landed for example inform the tower which air-
planes have taken off and landed. The constraints section specifies temporal constraints associated with
thesemessages. Thefirst constraint for example ensuresthat whenever amessagerequest_take off withpa-
rameter X isreceived, sometime in the future the message permission_take off will be sendtox.

cl ass Control Tower {

nessages
request _t ake_of f(x, self,y);
request _| and(x, self,y);
take_of f(x, self,y);
| anded(x, sel f,y);
per m ssi on_t ake_of f (sel f, x);
per m ssi on_| and(sel f, x);

constraints
(X)[1((%y) request_take off(y,self,x) =>

O Y perm ssion_take of f(self,x));

Figure A.9 : ControlTower class specification

Activities
Activitiesmodel interactions of collections of objects. An activity specification isdividein three parts: the
agents, the messages and the constraints.

The agents part specifiesthe different agents which objects may represent. Objects participatein activi-
ties by becoming agents (representing an agent). For each agent an object classis specified. Candidate ob-
jectsfor representing a particular agent must beinstances of the object class associated with that agent. An
object may either decideonitsown or be solicited by another object to participatein an activity. Objectsare
not restricted to represent only oneagent in an activity. It ispossiblefor the same object to represent several
agents of an activity. An object may also participatein severa activities simultaneously.

The messages part contains the names of messagesthat can be sent to and received from the activity. The
communication between activitiestakes place by exchanging messages like for objects.

The constraints part contains the set of temporal constraints on the messages exchanged by the activity.
The constraints associated with the activities differ to the constrai nts associated with the objectsin that they

220

describetheinteraction of acollection of objects. The set of constraints associated with aparticular activity
areverified only oncethe message start is sent to that activity. The message start can only be sent to the ac-
tivity when al the activity agents are represented by some object. A sequence of messages exchangesby an
activity islegal if the sequence of messages satisfies thetemporal constraints associated with that activity.
Objects participating in a particular activity cannot stop their participation unless alegal sequence of mes-
sages hasbeen exchanged with respect to that activity. Finally an activity can only be deleted when thereare
not objects representing agentsin that activity.

activity TakeOf {
agents
ct: Control Tower;
pl: Airplane;

nmessages
-- related to agent ct
request _take off(self, ct, y);
taken_off (self, ct, y);
perm ssion_take_off(ct, self);
-- related to agent pl
comtake off(self, pl);
com pos_t ake of f (self, pl);
set_pilot(self, pl, vy);

constraints
[](comtake off(self, pl) => OY pernission_take off(ct,self);
[](taken_off(self, ct, self) => OY comtake off(self,pl);

Figure A.10 :Take-off activity specification

In(Figure A.10), weshow an activity introduced in [Arap91a] describing thetake off activity of anair
traffic control application. It contains two agents: airplane and control tower. Constraints associated with
the activity concern the communication between the activity and the control tower and the activity and the
airplane. Thereis not direct communication between the airplane and the control tower. The communica-
tion between the activity and the control tower is related to the request to take off. When the permissionis
granted the activity communicatesto the airplane to indicate the authorization to take off.

Environments

An environment defines relationships between activities and relationships between activities and object
participating in activities. An environment specification consists of two parts: thefirst part specifiesaset of
activities composing the application. The second part aset of constraints concerning object participationin
activities, the temporal order of activity executions and object flow between activity executions. The con-
straints associated with an environment can be classified in five groups: 1) local constraints (constraints
which must hold for aset of objectsto participate in a particular activity), 2) flow constraints (constraints

221

that must hold for a set of objectsto participate in aparticular activity with respect to their participationin
previous, current or future activities), 3) message-message constraints (temporal orders between messages
exchanged by thedifferent activities), 4) message-activity constraints (temporal ordersbetween activity ex-
ecutionsand messagesexchanges) and 5) activity-activity constraints (temporal ordersbetween activity ex-
ecutions). The first two classes define constraints expressing conditions for objects to participate in
activities, the last three represent temporal relati onships between message exchanged and/or activity exe-
cutions.

Consistency of the Specifications

Testing the consistency of agiven specification of an application reducesto testing whether there exists at
least one sequence of message exchanges satisfying the specification (constraints). According to Arapis
[Arap91a], ageneral satisfiability algorithm for FTL does not exists. However and under the assumption
that at any point of time the domain of interpretation for FTL formulasisfiniteit ssemsthat is possibleto
find an algorithm for testing satisfiability of FTL formulas. Thiswork proposes asuch agorithm.

A.4 Cast [Vare99a]

In thiswork coordination is modelled hierarchically by grouping actors[Agha36a] into casts. Each cast is
coordinated by a single director. Coordination in the hierarchical model isaccomplish by constraining the
reception of messages that are addressed to particular actors. Messengers are special migrating actors that
represent amessage from aremote cast.

An Actor can only receive amessage when the coordination constraints associ ated with the reception of
such amessage are satisfied. It isnot clear in thiswork the kind of constraints that can be imposed to the
messages received, we assume that the constraints correspond to those previously introduced in synchro-
nizers [Frol93a] in which one of the authors was previously implicated. The coordination constraints are
checked for conformance by the casts directors.

Thedirector-actor relationship form aset of trees. A message from asender actor isreceived by atarget
actor only after approval by all the directorsin thetarget actor' s coordination forest path up to thefirst com-
mon director, if such adirector exists, otherwise, approval isrequired of all thedirectorsin thetarget's co-
ordination forest path up to the top level. An actor can have at most one director at a given point in time.
However adirector may itself belong to acast and thus be coordinated by another director.

It isimportant to remark in thismodel it isalso possible to have completely “uncoordinated” actors. By
“uncoordinated” we mean actors that do not belong to a cast and which therefore have no external con-
straints on message reception.

222

®©

uncoordinated
actor

messenger

@

Figure A.11 Coordinated activity with casts, directors and messengers.

In(Figure A.11), we show asample actor configuration. Some examples of valid messages paths are:

- A message from any actor can go directly to actor a, or actor k.

- A message from actor f to actor g has to be approved by director e.

- A message from actor c to actor f hasto be approved directorsb and e.

- A message from actor k to actors b, ¢, d,...,j has to be approved by actor a.

A.5 Connectors - FLO [Duca97a][Duca98a]

A connector isaspecial object that connects components. A component can be an object or agroup of ob-
jects. In (Figure A.12), we show aconnector template as introduced in the FLO language [Duca974d]. A
connector specifies how message exchangesinfluence the behavior of the connected components. Compo-
nents participate in connectors by playing roles. A component can participatein aconnectionif it provides
an interface compatible to aconnector’srole. Roles are specified by variables namesin the connector tem-
plate declaration. A role specifiesthe set of method sel ectors on acomponent which will beintercepted or
invoked by the connector (asubset of the component’sinterface).

New connectors can be define from existing connectors from existing connector templates by adding
new rules or by combining connectors definitions. In (Figure A.12), a connector template with the key-
word inherit preceding alist of existing connector templates, the template specifies a new connector as a
combination of existing connector definitions.

223

(def Connect or connectorAB (:roleA :roleB) ; alist of role names
sinherit ((...)); alist of ancestors
Jvar ; some connector variabl es
:behavior; interaction rules of connector

)

Figure A.12 : Connector specification

Connector’s behavior

Thebehavior of aconnector isdefined by meansof aset of interaction ruleswhich specify how the messages
received by participant objects should be controlled. In (Figure A.13), we show the formal specification
of therules. Each ruleis defined by afilter, an operator and acontext. The filter specifies which messages
should beintercepted for which kinds of participants, given by arolename. The operator definesthe seman-
tics of the rule and gives meaning to the context of rule. The context of the rule specifies the execution of
messages: alist of method invocations on participants.

Rule ::= Filter Qperator Context

Filter ::= Selector Rol enane List-of-Calling-Args
Cont ext: : = Message+

Message: : = Sel ector Rol enane Args

Qperator ::=inplies | permtted-if | corresponds

Figure A.13 : Filters syntax

There are three types of rule operators. implies, permitted-if and corresponds. Theimpliesfilter isused
to propagate messagesto the sender object or to other objectsafter the recepti on and the execution of amess-
sage. The permitted-if filter inhibits the execution of the received messageisacondition, named aguard is
satisfied. The correspondsfilter, delegates the execution of the received message to some objects. Thedel-
egated message can be different to the received message.

(def Connect or cal cul at or-di spl ayer (: cal cul ator: di spl ayer)
: behavi or
(((conput e-newval ue: calculator val) inplies
(add- new val ue: displayer (convert connector val result)))
((conput e-newval ue: calculator val) permtted-if
(free-variables? : displayer))))
;computing a new value is only possible it the displayer can display it
; end of behavior definition

(def met hod convert ((conector cal cul ator-displayer) vl v2)
(list (fromfloat-to-pixels vl) (fromfloat.to-pixels v2))
a conversion fromtwo floats to a list of pixels(list

Figure A.14 : A Calculator-Graphic Displayer's Connector

224

In(Figure A.14), we show acal cul ator-graphic displayer connector introduced in [Duca98a]. The ex-
ample represents a cal culator component that generates new data when the method new-valueisinvoked.
The calculator displaysthe cal culated data on agraph displayer with only displaysalimited number of val-
ues on x-y axes,; and has amethod for displaying aval ue (add-new-value) and one for removing avalue by
clicking on the display (remove-one-value). The connector specifies that each value computed by the cal-
culator should be displayed by the displayer, in other words that when the graph displayer isfull new values
should not be computed. Additionally, it specified that when the format of the calculator’sresult valuesis
not compatible with the displayer’s format, the value must be converted.

A.6 Connectors - ArchJava [Aldr03a]

ArchJavaisan extension of Javathat all ows programmersto expressthearchitecture of an applicationwith-
in the source code. ArchJavaadds new |anguage constructsto support component, connections and ports.

1. public conponent class PoenPeer {

2. public port search {

3 provi des PoenDesc{} search(PoenDesc partial Desc) throws | CException;
4, provi des voi d downl oadPoen{ PoenDesc desc) throws | CExcepti on;
5.
6
7
8

}

public port poens {
requi res PoenbDesc[] get PoenDesc();

9. requi res Poem get Poen{ PoenDesc desc);
10. requires voi d addPoen{ Poem poen);
11. }
12.
13. public port interface client {
14. requires client(lnetAddress address) throws | CException;
15. requires PoenDesc[] search(PoenDesc partial Desc, int hops, Nonce n);
16. requires Poem downl oad(PoenDesc desc);
17. }
18.
19. public port interface server {
20. provides PoenbDesc[] search(PoenbDesc partial Desc, in hops, Nonce n);
21. provi des Poem downl oad(PoenDesc desc);
22.}
23.
24. voi d downl oadPoen{ PoenDesc desc) throws | CeException { ... }
25. ...
26.}

Figure A.15 PoemPeer class

A component in ArchJavais a specia kind of object that communicates with other componentsin a
structured way. Components are instances of component classes. Components in ArchJava communicate
through ports. A port represents alogical communication channel between a component and one or more
componentsthat it is connected to. Ports declare two sets of methods, specified using the requires and pro-

225

videskeywords. A provided method isimplemented by the component and itisavailableto be called by oth-
er components connected to this port. Conversely, each required method is provided by some other
component connected to this port. A component can invoke a required method declared in one of its ports
by sending amessage to the port. If acomponent communicates with multiple different componentsusing
thesameinterface, it can declareaport interface and the create aport of that interface typefor each compo-
nent it needs to communicate with. The goal of the portsisto specify both the services implemented by a
component and the services a component needs to do its job, making dependencies explicit. In (Figure
A.15) we can see an exampleintroduced in [Aldr03a]. A PoemSwap is a simple peer-to-peer program for
sharing poetry-online. The PoemPeer component representsthe network interface of the PoemSwap appli-
cation. The proems port requires methods that get descriptions of al the poemsin the database, retrieve a
specific poem by its description and add a poem to the database.

27.public conponent class Poenbwap {

28. private final SaapU = new SwapU ();

29. private final PoenBtore store = new PoenBtore();
30. private final PoenPeer peer = new PoenPeer();
3L

32. connect pattern SwapU . poens, Poen®t ore. poens;
33. connect pattern PoenPeer.poem Poen§t ore. poens;
34. connect pattern SwapU .search, PoenPeer. search;
35.

36. public Poenmbnap() {

37. TCPConnect or . r egi st er (bj ect (peer, PCEM PCRT, “server”);

38. connect (ui . poens, store. poens);

39. connect (peer. poens, store. poens);

40. connect (ui . search, peer. search);

41. '}

42.

43. connect pattern PoenPeer.client, PoenPeer.server with: TCPConnector {
44, connect (sender. client, PoenPeer.server)

45, wi t h new TCPConnect or (address, PCEM PCRT, “server”);
46. }

a7, };

48.}

Figure A.16 PoemSwap architecture.

In ArchJava, the set of permissible connections in the architecture is declared using connect patterns.
Aconnect pattern specifies two or more port interfaces that may be connected together at run time. Actual
connections are made using connect expressions that appear in the methods of the components. A connect
expression specifies concrete component instancesto be connected in addition to the connected ports. Each
connected pattern must provide a connection constructor for each of the required connection constructors
declared in the connected ports. Instead of using ArchJava's default type checking rules, connect patterns
can specifiy that auser-defined connector class should be used for type checking. The default implementa-
tion of type check returns an error for each required method that has no matching provided method, or has
more than one matching provided method. In (Figure A.16) we can see atextual description of the Poem-

226

Swap architecture. The PoemSwap component class contains three subcomponents- a user interface, a
poem store and the network peer. Connect patterns show how these components may be connected and the
connect expressionsin the constructor link the componentstogether following these patterns.

Connector abstractions are defined using the archjava.reflect library. Thislibrary defines a Connector
classthat user-defined connectorsclassesextend. Theclass Connector providesahook for defining custom-
ized connectors. Different forms of connectors can be specified: procedure call, event, stream, arbitrator,
adaptor and distributed connectors.

A.7 Contracts [Helm90a]

In object oriented systems, groups of related objects cooperate to perform tasks or maintain invariants. In
the contracts work a group of cooperating objectsis called a behavioral composition. Contracts are con-
structsfor the explicit specification of behavioral compositions.

Contract Specification

A contract definesthe behavioral composition of aset of cooperating participants.A contract specifies: the
participantsin the behavioral composition and their contractual obligations, theinvariantsthat participants
cooperate to maintain and the preconditions on the participants to establish the contract and the methods
which instantiate the contract. Thereare two types of contractual obligations: type and causal. Thetype ob-
ligations specify variables and external interface definitions that participants must support and the causal
obligationsspecify ordered sequences of messages (actions) that participantsmust performand certain con-
ditionsthat participants should make truein response to these messages.
Contract Subj ect Vi ew

Subj ect supports [
val ue: Val ue
Set Val ue(val : Val ue) -> Aval ue {value = val}; Notify()
GetVal ue(): Value -> return val ue
Notify() -> <|| vi v ¢ Views: v -> Update()>
AttachView(v:View -> {v ¢ Views }
DetachView(v:View -> {v not ¢ Views }

Views: Set(View where each View supports [
Update() -> Draw()
Draw() -> Subject -> GetValue() {Viewreflects Subject.val ue }
Set Subj ect (s: Subj ect) -> {Subj ect = s}]

i nvari ant
Subj ect. SetVal ue(val) -> <vv: v gViews: v reflects Subject. val ue>

instantiation
<||v: v e Views: <Subject -> AttachView(v) || v->Set Subj ect (Subj ect)>>
end Contract

Figure A.17 : Contract SubjectView

227

In(Figure A.17), weshow the specification of the SubjectView behavioral composition (Observer Pat-
tern) introduced in [HeIM90a]. In the SubjectView behavioral composition a Subject object, containing
some dataand acollection of View objectswhich represent that datagraphically (i.e. asadial, ahistogram,
etc.) cooperate so that all times each View always reflectsthe current val ue of the Subject.

Refinement and Inclusion

Two important operations on contracts are: refinement and inclusion. Refinement allowsthe specialization
of contractual obligations and invariantsin contracts. Contracts are refined by either specializing the type
of aparticipant, extending its actions, or specifying anew invariant. Refinement is expressed in a contract
by the refines statement. Inclusion allows contracts to be composed from simpler sub-contracts. The sub-
contractsare denoted by theinclude statement whichidentifiesasubset of acontract’s participantsand how
they participate in the sub-contract. Participation in the sub-contractsimpose additional obligation on par-
ticipants over and above those defined in the contract.

Conformance

Contracts are defined independently of classes of their participants, aclass conformsto a participant’s def-
initioninacontract only if itsmethods and i nstance variabl es satisfy both the typing and causal obligations
required in the participant’s definition. Class implementations must be mapped to participant specifica-
tions. A conformance declaration specifies how aclass, and thusitsinstances, support therole of apartici-
pant inacontract. A conformance declaration containsaset of bindingsof theform a: o <- b: t, which maps
identifier b of typet defined in aclass, to theidentifier aof type o in aparticipant.

Instantiation

Behavioral compositions are created by instantiating contracts. They require identifying objects as partici-
pantsin the desired contract, and then establishing the contract via the methods specified in the contract’s
instantiation statement. Typically the instantiation statement ensures that objects have references to other
participants and that theinitial conditions required for the contract arevalid.

A.8 Collaborations [Yell973a]

The collaborationswork assumesaworld inwhich systems are composed of software componentsinteract-
ing with other components via typed interfaces. Each component exposes one or more interfaces through
which messagesare sent to and received from apotential collaboration mate component. When aninterface
of component A is bound to and interface of component B, A and B are said to engage in a collaboration:
messages sent through A'sinterface are received at B'sinterface and vice versa. Each interface hasatype,
thistypeisassociated with what they call acollabor ation specification: an enhanced interface specification
defining the rules governing message exchange. A collaboration specification (only collaboration in the
following) consists of two parts. the interface sighature and the protocol.

228

Col | aboration Filter {
Recei ves Messages {
i tenToBeFi | tered(dataltem bjectRef);
nohorel tens();}
Send Messages {
newFi | t er Request () ;
ok();
remove();}
Prot ocol {
States {Stable(init), Filter, Respond};
Transitions {
Stabl e: -newFi |terRequest-> Filter;
Filter: +itenmloBeFiltered-> Respond,;
Filter: +noreltens -> Stabl e
Respond: -ok-> Filter;
Respond: -renove-> Filter;}}

Figure A.18 : A Filter’s collaboration specification

» Theinterfacesignature: describesthe set of messagesthat can be exchanged between the component

and its mate. Besides indicating the type of its parameters, each message in a collaboration specifi-
cation is labeled as a send or areceive message.

The protocol: describes a set of sequencing constraints. Sequencing constraints define legal order-
ings of messages by means of afinite state grammar. Thefinite state grammar is specified by means
of aset of named states and a set of transactions. There is one transaction for each message that can
be sent or received from aparticular state. A transition hastheform <state>: <direction> <message>
-> <state>, where direction is + (indicating that the message is a receive message) or - (indicating
that the message is a send message). Every protocol has a unique initial state init that corresponds
to theinitial state when the collaboration is established. It is not possible to have two transitions as-
sociated with the same state having the same labdl (i.e. if s1: +M1->s2 and sl: +M2 -> s3 are tran-
sitions, then M1 must be different to M2. The same is true if the signs + are reversed to - signsin
the transitions). A protocol may have final states with no outgoing transitions, or it may be nonter-
minating.

A component can expose multipleinterfaces, allowing it to simultaneously engage in multiple collabo-
rationswith multiple components. However any collaboration is always between exactly two components.
A collaboration between acomponent C and multiple other components for example, must be modelled by
separateinterfacesin C, oneinterfacefor each other party whichit collaborateswith. In (Figure A.18), we
show aFilter collaboration introduced in [Yell97a] and describing how afilter component interacts with a
data server component in the context of a Global Desktop graphical environment. The Receives and Send
in the collaboration define that the Filter component sends messages item ToBeFiltered and noMoreltems
and receives messages newFilterRequest and ok. Theprotocol inthe collaboration defines 3 different states:
Stable, Filter and Respond. In the Stable state for example the collaboration defines that when the Filter
component finds in the state Stable, if the component receives the message newFilterRequest the Filter
component changesto state Filter in the protocol.

229

Protocol Semantics

When two components collaborate with each other viainterfaces, each component receives and sends mes-
sagesaccording to protocol defined inthe collaboration. Therearetwo possible semanticsonecanassignto
collaborating components. an asynchronous semantics and a synchronous semantics. Under the asynchro-
nous semantics, acomponent may send amessage mwhenever it isin state that enablesasend mtransition,
evenif itsmateisnot in astate that enablesit to receive that message. Under the synchronous semantics, a
component can only send a message to its mate if the component isin a state that enables it to send them
message and if itsmateisin astate that enablesit to received the message.Collaborationsfollow asynchro-
Nous semantics.

Protocol Compatibility

The collaborationswork defines additionally an algorithm to test protocol compatibility. Theideabehind a
protocol compatibility algorithm isto be able to determine whether two components can collaborate or not
on the basis of a collaboration specification. Protocol compatible components are guaranteed to work to-
gether free of protocol errors (e.g. messages arriving out of sequence or deadl ock).

Adaptors
<sl>: + <message> from <conponent_nane> -> <s2>
[, <save_actions>]
[, <invalidate_actions>];

<sl>: - <message> to <conponent _nane> -> <s2>
[, <synthesis_actions>]
[, <invalidate_actions>];

Figure A.19 : Adaptor’s transition rules

When two components that have incompatible collaboration specifications wants to collaborate, adaptors
need to be specified between the two components. An adaptor is a piece of code that sits between the two
components and which compensates their interfaces incompatibilities. An adaptor is specified by afinite-
state machine with interfaces to the two collaborating components. In (Figure A.19), we can see how an
adaptor for t. The semantics of the first rule is as follows: when the component finds in the state <s1> the
adaptor can receive (i.e. +) amessage of type <message> from <component_name> and then will advance
to state <s2>. The semantics of the second ruleisasfollows: when in state <s1> the adaptor can send (i.e. -
) amessage of type <message> to <component_name> and will then advance to state <s2>.

A.9 Coordination Contracts [Andr99a][Barr02a]

A coordination contract specifiestheinteracti on between objectsbased on the separati on between structure,
(what is stable) and interaction (what is changeable). A coordination contract superposes a behavior over
thedirect interaction of its partners by intercepting their interaction. Theinteraction isexpressed asrules of
theform: when <event> do <reaction> with <guard>. An event istypically amethod invocation and there-
action specifiesaset of operations of the contract andits partnersthat take place aslong astheguard istrue.
Thewholeinteraction is handled as an atomic transaction.

230

1.contract <name>

2. partners <list-of-partners>

3. invariant <the relation between the partners>
4. constants ..
5
6
7
8

attributes ..
operations ..
coordi nation <interaction-wth-partners>
. behavi or /1 the contract’s own behavi or
9. <addi ti onal behavi or bei ng super posed>
10.end contract
11.
12.<interaction-wi th-partner>
13. <nane> : when <condition> do <set of actions> with <condition>

Figure A.20 Coordination Contract specification.

In(Figure A.20) we show the form of a Coordination Contract.The condition under when established
thetrigger of theinteraction. Typically theconditionisrelated with the occurrence of actionsinthe partners.
The do clause identifies the reactions to be performed, usually in term of actions of the partners and some
of the contract’s own actions. The reactions of the partners constitute what is called the synchronization set
associated withtheinteraction. In (Figure A.21) weshow an exampl e of the specification of acoordination
contract of aVIP account in abank, the coordination specifies the relation between the owner y of the ac-
count and the account X.

1.contract M P package

2. partners x: Account; y: Qustoner;

3. constants CONST_VM P_BALANCE: | nt eger

4. attributes Credit: Integer;

5. invariants

6 ?2owns(x,y) = TRUE

7 x. Aver ageBal ance() >= OONST_M P_BALANCE;
8. coordination

9. vp: when y.calls(x.wthdrawal (z)) do x.withdrawal (z)
10. with x.Balance() + Oedit() > z;
11.end contract

Figure A.21 VIP account package coordination contract.

A.10 Coordination Environments [Mukh95a]

Coordination Environments (CEsin the following) specify non-intrusive coordinators that impose collab-
orative behavior on a set of objects called autonomous objects. Coordination in the CEs model isenforced
by Coordinating Environment objects (CE objectsin the following) that are instances of Coordination En-

231

vironment classes (CE classesin the following). CE objects coordinate collections of autonomous objects
that compete and cooperate to achieve acommon task or goal.

Autonomous Objects

An autonomous object has a public interface (Pl in the following) that is visible to the client and a current
publicinterface (CPI inthefollowing) that isnot visibleto the client. The Pl isdetermined by the name, re-
turn type and types of the arguments of the public methods of an autonomous object. The CPI isasubset of
the Pl that stores only representations of the method names that the object may executein its current local
state. A client requests service from an object group by explicitly communicating with one or more of the
autonomous objectsin the group. A client usesatwo step procedureto invoke apublic method of an auton-
omous object. Thefirst step isto construct aspecial object called arequest message that stores arepresen-
tation of the method being invoked and alist of the actual argument values. In the second step, the client
object synchronously invokes a special method of the server and supplies the request message as an argu-
ment to that method.

Request messages are managed by an autonomous object’s Request Handler (RH). The RH usesthe CPI
interface of the autonomous object to determine whether to execute the request message. Only if the mes-
sageappearsinthe CPl the message the messageisaccepted and executed. Because autonomous objectsdo
not buffer request messages that cannot be processed immediately they defines two models of sending re-
guest messages: 1) only-once request where arequest message may be sent only once and control returnsto
the client if the message is not accepted. The client decides what to do when the request fails. 2) until-ac-
cepted request where the request messagesis sent repeatedly until it is accepted by a sever object.

CE Objects

CE objectscoordinate coll ections of autonomous objects. The CE objectsuse specia methods called Coor-
dinating behavior methods (CBs methods) that implement and structure coordination actions. The coordi-
nation actionsof aCE aretriggered by the occurrence of eventsrel ated both with the acceptance of arequest
message and the termination of amethod that was scheduled by the CE object. A CE object isinformed of
the occurrences of acceptance and termination events by a RH using event messages. Event messages are
observed by a CE object using event objects. There are two types of event objects (EOs: elementary (EEO)
and composite (CEO) events. EEO events aobjects can be used to observe acceptance and termination of
events related to a method in only one component while CEO can be used to observer acceptance and ter-
mination events related to amethod in more than one component.

On observing an event, a CE object may take one or more of thefollowing actions: updateitslocal vari-
ables, schedul e the accepted message for execution and either continue immediately or wait for the termi-
nation of amethod, block or unblock request messages, add default argument valuesto theargument listin
the request message, synchronously and asynchronously invoke methodsin coordinated objects, specify a
replacement CB method, specify which coordinated object to observethe next event in, or any of thetwo as
the next event and inquire whether the last event observed was an acceptance or atermination. A CE object
may also mark one or more acceptance events as unobserved. This action enables CE object ignore those
acceptance eventsthat do not play any rolein its coordinating activities.

In(Figure A.22), we show the CE class MultiButtonPanel defined in [Mukh95a)]. The class Coordina-
tionEnvironment implements CE objects, the class ElementaryEvent implements EEOs, the class Group-
Component implements autonomous objects that participate in the object groups, the class Event

232

implements the common behavior of both EEOs and CEOs and the underlined names specify the coordina-
tion actionstaken by a coordination behavior.

class MultiButtonPanel: public GCoordinatingEnvironment {
public:
Mil ti ButtonPanel (H enentaryEvent* el, H enentaryEvent* e2) {
depr essedBut t on=Nul | ;
depr essedBut t on=el; undepressButton=e2;};
virtual void Initiate(){
Becone(&Ml ti But t onPanel : : NoneDepr essed) ; }

pr ot ect ed:
Q oupConponent * depr essedBut t on;
Bl ement ar yEvent * depr essButt on, undepr essButton;
virtual void UndepressButtonCA() =0;
virtual void Replacement CB2() {
Becone(&Ml ti But t onPanel : : OneDepr essed) ; }
virtual Event* CbserveEvent1() ({
return Cbserve(depressButton)}
virtual Event* CbserveEvent2() ({
return oserve(depressButton, undepressButton);};

voi d NoneDepressed() {
Event * whi chEvent =Cbser veEvent 1();
depr essedBut t on=whi chEvent - >Whi chConponent () ;
whi chEvent - >Awai t Ter m nat i on(TH SCE) ;
Repl acenment CB2() ; };

Figure A.22 : MultiButtonPanel Coordination Environment

A.11 Coordination Policies [Mins97a]

This coordination model definesacoordination policy Pasatriple<M, G L>.

* M isthe set of messages representing primitive operations of the activity to be coordinated (also
called P-messages).

» Gisadistributed group of agents. They are permitted to send and receive P-messages. They arethe
participantsin the policy P.

» L isthe set of rules regulating the exchange of P-messages between members of the group G (also
called the law of the palicy).

The Law of a Policy

A law L of apolicy P determines the treatment of P-messages by specifying what should be done when a
such messageis sent and when it arrives. More specifically, the law deal s with the following two kinds of
eventsthat areregulated

233

sent(x,m,y): occurs when an agent x sends a P-message m addressed to y. If the destination keyword
isall mismulticasted to all members of the group. The sender is considered the home of this event.
arrived(x,m,y): occurs when a p-message m sent by x arrivesat y. The receiver y is considered the
home of the event. The receiver is considered the home of this event.

A law L isapair <R, CS> where R isafixed set of rules defined for the entire group G of the policy in
guestion and CSisamutable set of control states, one per member of the group. The effect of actually any
given eventisprescribed by thelaw L of the policy. The prescription of alaw consists of asequenceof prim-
itive operationscarried out astheimmediate response to theoccurrence of theevent. The operationsthat can
be included in the ruling of the law for a given regulated event are called primitive operations. They are
primitive in the sense that they can be performed only if thus authorized by the law. These operationsin-
clude:

1) operations that change the CS of the home agent (i.e. +t, -t, t1<-t2, incr(t(v),x))

2) the operation forward(m,y,x) emits the network the message m addressed to y, where x identifies
the sender of the message.

3) the operation deliver(m) delivers the message m to the home agent. R defines the global set of
rules that compose the law L. The function of R is to evaluate a ruling for any possible regulated
event that occurs at an agent with a given control-state.

Policies Enforcement

Thelaw for agiven policy P=<M, G, L> isenforced asfollows: there isacontroller associated with each
member of group G, logically placed between the agent and the communications medium. All controllers
have identical copies of the global set of rulesR of L and each controller maintains the control states of the
agentsunder itsjurisdiction. When x sends amessage mto itsassigned controller. The controller evaluates
theruling of thelaw L for the event sent(x,m,y) and its carries out thisruling. If part of therulingisto for-
ward amessage mto y, x’s controllers sends m to the controller assigned to y. When m arrives to the con-
troller of y it generates an arrived(x,m,y) event. Theruling for this event is computed and carried out. The
message misdeliveredtoy if sorequired by theruling.

Members Admission

Theadmission of new membersinto G and the remotion of existing membersfromit, isdone by asecretary
server who acts asaname server for members of its group.

Obligations

An obligation imposed on a given agent serves as akind of motive force that ensures that a certain action
will becarried out at thisagent at aspecified timeinthefuture provided that certain conditionsonthe control
state of the agent is satisfied at that time. The primitive operation +obligation(p,dt) carried out at agent x
would cause the event obligationDue(p) to occur at X in dt seconds. The occurrence of the event obligation-
Due(p) at X, promptsthe controller of x to evaluate theruling of thelaw for thisevent.

234

Rl: sent(X startVote(issue(l),end(ET)),all) :-
not (vot el nPr ogr ess@s) , do(+yesVot es(0)), do(+noVot es(0)),
(do(+vot el nProgress)), do(+obl i gati on(sendResul ts, ET +100)),
do(forward).

R2: arrived(X startVote(issue(l),end(ET)),Y) :-
do(+vote(init(X),end(ET))), do(deliver).

R3: sent(Y,castVote(Val),X :-

vote(init(X),end(ET))@s, cl ock(T) @S, T < ET,
do(-vote(init(X),end(ET))), do(forward).

R4: arrived(Y, castVote(yes),X) :- yesVotes(N @S, do(i ncr(yesVotes(N,1)).
R5: arrived(Y, castVote(no), X) :- noVotes(N @S, do(i ncr(noVotes(N), 1)).

R6: obligationDue(sendResults) : -
yes\Vot es(NL) @S, noVot es(N2) @S,
do(- yesVot es(NL)), do(-noVot es(N2)), do(-vot el nProgress),
do(forward(resul ts(yesVotes(NL), noVotes(N2)),all)).

R7: arrived(_, results(yesVotes(_),noVotes()),_) :- do(deliver).
Figure A.23 : Law L for electronic voting policy

In(Figure A.23), we show the electronic vote exampleintroduced in [Mins97a]. Under thislaw every
agent in the group can initiate avote on any issue he chooses, by sending the message startVoteto al mem-
bers of the group. Agentsvote by sending castVote messagesto theinitiator. Thelaw ensuresthefollowing
requirements: 1) a member can vote at most once and only within the period allotted for the vote; 2) the
counting of thevotesisdone correctly; 3) the voteis secret, 4) agents are notified of the result of thevote.

A.12 Coordination Types [Puti97a]

In the object-oriented paradigm types specify contracts between objects and their users. Strong typing en-
suresthat the viol ations of type constraints (type errors) cannot occur during program execution. The prob-
lem is that not all the constraints can be checked statistically, sometimes the constraints depend on the
object’s current state and history. Thiswork proposes atype model for object-oriented systemsbased on a
process cal culus. Some actionsin the cal culus are annotated with typeinformation. A type specifiesall pos-
sible sequences of messages accepted by an object aswell astype constraints on the messages' s parameters.
A type checker ensures statically that users of an object are coordinated so that only messages specified by
the object’s type are sent to the object in an expected order. In (Figure A.24), we show the syntax of the
process calculus. A process specifies the behavior of an object. There are three atomic actions for sending
messages, accepting messages and creating new objects. Semicolons separate actions from the process
which should be executed after the actions. A message consistsof aconstant name ¢ (message selector) and
alist of argumentsal,...,aN (a).

235

0::= 0 (zero process; no action)

| x.c[a];q (send nessage ¢ with argunents a to x; then execute q)
| c(xX); q (accept message ¢ with parameters x of types ;then q)
| (x)%a[][a]; (create new object x that executes a[][a"]; then)
| a=a’"? g.q (execute if a=a"; otherw se executes q)
| g+ q (alternatives; execute either orq’)
| a[l[a'] (call awth type argunents and argunents a’)
a::=x (paraneter or object identifier)
| (s)(x)q (cl osed process; does not contain free vari abl e nanes)

Figure A.24 : Processes Syntax

Static Checking

Static checking isdivided into two parts: 1) to check whether objects (behaving asservers) areactually able
to accept all messages as promised by the object’stype and 2) to check whether objects (behaving as users)
send only type-conforming messages.

A.13 Darwin - Ports [Mage95a]

Darwin isaconfiguration language that allows distributed programs to be constructed from specifications
of components instances and their interconnections. Components are defined in terms of both the services
they provideto allow other componentsto interact with them and the servicesthey requirein order tointer-
act with other components. Composite components are defined by declaring both the instances of other
components they contain and the bindings between those components. The bindings associate the services
required by one component with the services provided by others. The bindings are only made between re-
quired an provided serviceswith compatible types.

In(Figure A.25), we show the specification of avariable length pipeline of filtersinstancesin which
the output of each instanceis bound to its predecessor’s output. The binding between the required input of
afilter and the provided output of the precedent filter are declared by the bind statement. In the examplethe
input of each filter component instance F[k+1] is bound to the output of its predecessor filter F[k] by the
statement bind F[k+1].input -- F[K].

236

conponent filter {
provi de out put <stream char>
require input <streamchar>

}

conponent pi peline(int n) {
provi de out put ;
require input;

array F[n]: filter;
forAll k:0 .. n-1{
inst Flkl]@k + 1;
when k < n-1;
bi nd F[k+1].input -- F[k].output;
}
bi nd
f{O].input -- input;
output -- F[n-1].output;
}

Figure A.25 : Specification of a pipeline component

A.14 Event Notifications [Papa94a][Papa96a][Hern96a]

The coordination model introduced in thiswork isbased on the ability to synchronize the activity of an ob-
ject with anumber of events occurring in the execution of other objects. The event notifications model was
introduced in the concurrent object-oriented programming language called ATOM [Papa96a].

The event notifications model associates to each object an object-manager that monitors its execution
and ensures local synchronization constraints. The object-manager istriggered by events occurring in the
execution of the object (internal events) such asthetermination of athread executing amethod and external
events such asthe request for amethod execution. The object-manager can undertakes actionslike resum-
ing asuspended thread and requesting or queuing arequest until the object reaches an appropriate state de-
pending on the local synchronization constraints. Another function of the object-manager is to accept
requests from other object-managers all owing a synchronized execution of their respective objects.

Information about an obj ect’ sstateisavailableto managersand other objectsviastate predicates. A state
predicateisused to determine whether or not the object isin astate that satisfies some condition abstracted
inthe predicate. An object may request for exampleto get notified when aremote object reaches a state sat-
isfying a state predicate. There are two ways of coordinating the execution of an object with state changes
of another object:

» Asynchronous notification of state changes. used to get notified when atarget object has reached a
state satisfying a given state predicate. To request for a notification of a state change an object must
definefirst an instance of a synchronization event. The event instance is used to synchronize the ex-
ecution of the object that holds the event and a target object. The object that makes the request for
notification specifies additionally whether the object must be suspended or blocked until the occur-

237

rence of the event in the target object. When the object is suspended only the calling thread is sus-
pended, the object may continue to accept new requests during that time. The thread will resume
when the target object will reach the object state specified in the synchronization event. When the
object is blocked, no more requests are accepted. In this approach when the thread is resumed, al
that may be asserted isthat the target object has been in a state satisfying the state predicate associ-
ated with the notification. Nothing can be said on whether thisis still true.

» Synchronous notification of state changes. used to indicate that atarget object has reached a certain
state. In this approach the calling thread is suspended until the target object isin a state satisfying a
predefined object state. The synchronization mechanism locks the target object when the state is
reached. This mechanism ensures that when the thread is resumed, the object is till in the requested
state. Requests to the locked object are delayed until the object is unlocked.

Itisalso possibleto get notified and synchronized with events other than changesin the objects state. An
object can be notified of theinvocation, execution and completion of methods in other objects. The notifi-
cation may also be synchronous or asynchronous. The target object register with the source object its noti-
fication requirement. It specifies the selector of the method invocation, the event type (i.e.invocation,
execution and compl etion), the type synchroni zation and the method that should be called by the target ob-
ject in the object when the event occurs.

In(Figure A.26), we show an exampleintroduced in [Papa96a]. The example concernsaproducer ob-
ject which produces data packages and stores them in a buffer object. A consumer object retrieves data
packagesfrom the buffer and consumesthem. The purpose of therateController coordinator isto ensure, by
modifying the rate of the producer, that the buffer will never get empty or full. After initialization, a new
thread is created to execute the monitor method of the rateControl object (Figure A.26 line2intherate-
Control class). Thismethod loopswaiting for notification events. In (Figure A.26 lines8 and 9 intherate-
Control class) the calls to the notifyRequest methods request the buffer’s object manager to notify the
rateControl object when the buffer is at the abstract states (' contains', self.low) and (' contains’, self.high)
respectively.

238

1.cl ass Consurer (Activity) 1.cl ass Producer (Activity)
2. def _init_(self,ch): 2. methods=[' changeRate,’ getRate’]
3 self.c = ch 3. s=0; rate = 2; ¢ = None
4, 4,
5. def stepaction(self): 5. def _init_(self,ch):
6 data = self.c.get(). 6 self.c = ch
7 sel f. consune(dat a) 7
8. def stepaction(self):
9. for i in range(l,self.rate):
10. data = sel f. produce()
11. sel f. c. put (dat a)
12.
13. def changeRate(sel f,r):
14. self.rate =r
15.
16. def getRate(self):
17. return self.rate
1.cl ass rateControl (ActiveChj ect Support):
2. activities = ['nonitor’]
3
4, def _init_(self,p,c,b,hl):
5. self.prod = p; self.cons = c; self.buf=b
6 self.high = h; self.low =1
7 sel f. buf. newPred(contentsPred, [’ containts’]())
8 self.ishi = self.buf.notifyRequest((’ contains’, self.high))

9. self.islo = self.buf.notifyRequest(('contains’, self.low))
10.

11. def nonitor(self):

12. while not self.atState((stopped)):

13. r = self.wait Conpl exEvent (

14. "Any', ({"hi’:self.ishi,’low:self.islo}))

15. if r ='hi’' #decrease rate

16. sel f. prod. changeRat e(i nt (sel f. prod. get Rate()/2))

17. else # increase rate

18. sel f. prod. changeRat e(i nt (sel f. prod. get Rate()*2))

Figure A.26 : Flow Control Example

A.15 Finnesse - Bindings [Berr98a]

Finnesseisacoordination model and language based on an abstraction called binding. an abstract entity that
encapsulates communication between distributed software components participating in an application.
Bindings are described in terms of the following concepts:

» binding: describes a configuration of components and their allowed or expected interactions.

239

» role: abinding hasaset of rolesthat can or must be filled by participating components. One or more
components can fulfill asinglerole. A role definition can be prefixed by a cardinality constraint.

« interface: components have interfaces through which they interact with their environment. Eachin-
terface is connected to one or more rolesin the binding and must implement the behavior specified
by theroleit fills.

» events: components participate in abinding by executing events at their interfaces. Events have pa-
rameters and direction (in or out).

» event relationships: specify the behavior and interactions of a binding by describing the relation-
ships between events occurring at object interfaces.

In(Figure A.27), we show abinding with two roles: client and server asintroduced in [Berr98a]. The
interactions specifications defines relationship between events occurring in the different roles. Events are
referred to by the role name followed by aperiod . and the event name. In the example line 8, the client
executesasend event followed by all serversexecuting thereceiveevent. Thesymbol '# intheinteractions
represents the number of components executing the event. When no cardinality constraint isgiven, the de-
fault cardinality isexactly one. The binding described in reality areliable multicast.

.Bindi ng Exanpl e {

Inport ...;
Rol es {

1
2
3
4 dient {send! }

5. [#>=1] Server { receive? }
6. }

7

8

9

1

Interactions {
dient.send -> [#=all] Server.receive

0.}
Figure A.27 : Binding describing a reliable multicast

Events are specified by aname, adirection indicator and a parameter list. For example: el (x: t1; y: t2)
definesan event named e, x and y arethe event parametersand t1 and t3 are the datatype of the parameters.
Thedirection canbe’!” toindicate an output event and’? toindicate an input event.

Eventsrelationships provide the basisfor describing behavior in bindings. They capture the rel ation be-
tween events at the interfaces of components participating in adistributed application. There arethreetype
of event relationships:

» Casual relationships: which describes casual dependencies between events.
el! (x:t1) -> e2 ? (y: t2): specifies that event el must complete before event e2 begins.

» Parameter relationships: which describe the rel ation between parameters of casually related events.
el! (x:itl; y: t2) ->e2?(z: t3) { z=f (el.x) }: specifiesthat parameter z in event e2 isafunction of
parameter X in event el.

 Timing relationships: which describe any time relationships between events.
el! () ->[now - end(el) < 10] e2 ?(): specifiesaguard for an event based on atiming constraint.

240

Inheritance and Subtyping

Finnesse supports inheritance (keyword inherits) and explicit specification of subtype relationships (key-
word implements). Theinheritskeyword instructs Finessetoincludetheroles and interactions of the parent
binding into the child binding. Definitionsin child bindings with same named roles and actionsthat in par-
ent bindings override parent definitions. The implements keyword in the other hand is intended to allow
specific implementation of high-level behaviors. High-level bindings can be replaced for specific imple-
mentations of the binding.

Interaction Semantics

Therearetwo separateinteraction semanticsin Finesse: onefor dependent (sequential) iteration and onefor
independent (parallel) interaction. Both take theform of apostfix operator on an action or event. The* + op-
erator indicatesthat the action or event should berepeated with acasual dependency on previousexecutions
(sequentially). The* - operator indicatesthat the actions or event should be repeated with no dependency on
previous executions (in paralel). In (Figure A.28), we show the specification of a binding using the two
interaction semantics. The binding specifies two roles: consumer and producer. The consumer can only
consume one dataitem at atime, while the producer can produce many dataitemsin parallel. Theinterac-
tions describe that each produce event resultsin aconsume event.

Bi ndi ng Exanpl e {

Rol es {

Consuner { consunme?(x:tl) *+}
Producer { produce! (x:t1) *- }

Interactions {
{Producer. produce -> Consuner. consume } *-

1.
2
3
4
5.}
6
7
8. 1}
9.}
Figure A.28 : Interaction Semantics

A.16 Formal Connectors [Alle94a]

Thiswork providesaformal system for specifying architectural connector types. The architecture of asys-
temisdescribed in three parts. Thefirst part of the description defines the component and connector types.
A component typeisdescribed asa set of ports and acomponent-spec that specifiesits function. Each port
definesalogical point of interaction between the component and its environment. A connector typeisde-
fined by a set of rolesand a glue specification. the roles describe the expected local behavior of each of the
interacting parts. The second part of the system definitionisaset of component and connector instances (ac-
tual entitiesthat will appear in the configuration). In the third part of the system definition, component and
connector instances are combined by prescribing which component ports are attached as which connector
roles.

241

Connector Specification

1.connector Service =

2. role dient =request!x ->result?y -> dient P

3. role Server = invoke?x -> returnly -> Server []

4. glue = dient.request?x- > Service.invoke! x

5 ->Service.return?y -> Qient.result!y -> glue
6

[]

Figure A.29 : Service Connector

A connector is described by specifying process descriptions for each of itsroles and its glue. The process
descriptionsis specified using a subset of CSP[Hoar85a] (a process algebra). In (Figure A.29), we show
the specification of aconnector serviceintroduced in [Alle94a]. The server role describes the communica-
tion behavior of the server. The server roleisdefined asaprocessthat repeatedly acceptsand invocation ant
then returns; or it can terminate with success. The client role describes the communication behavior of the
user of the service. Theclient roleisdefined asaprocessthat can call the service and then receivethe result
repeatedly. The glue specification coordinates the behavior of the two roles by indicating how the events of
theroleswork together. The([]) representsthealternative operator, P[] Q specifiesaprocessthat can behave
asPor asQ. The(IT) represents adecision operator, PI1Q specifiesaprocessthat can behave non determin-
isticaly as P or as Q. The (->) represents the prefixing operator, e->P specifies a process that engagesin
event e and then becomes process P

A.17 GAMMA - Multiset Rewriting [Bana96a]

The GAMMA (General Abstract Model for Multiset and mAnipulation) model isbased on multiset rewrit-
ing. Thebasic datastructurein GAMMA isamultiset (abag) containing elements. A programin GAMMA
iscomposed of pairs(reaction-condition -> action) and itsexecution impliesthereplacing of those elements
in the multiset satisfying the reaction-condition by the products of the action. The result is obtained when
no more such reactions can take place. In (Figure A.30), we show agenerator of prime numbersin GAM-
MA.. The program eliminates elements from the multiset { 2, ..., N} those xX’smultiples of y's. Thereaction
condition R specifiesthe predicate x ismultiple of y and the action A specifiesthe remove of the element x
from the multiset.
prime_nunbers(N =T ((RA)

({2,..N}) where

R(x,y) = multiple(x,y)

AXy) = {y}

Figure A.30 : Prime numbers in Gamma

A.18 Gluons [Pint95a]

Gluons are special kind of objects responsible for managing the cooperation among software components.
They encapsul ate and implement interaction protocols by instantiating aninterplay relation for agiven pro-
tocol.

242

A gluonisan object that handles afinite state automaton with output to control the execution of aproto-
col’sinterplay relation. Thefinite state automaton is composed of statesand statetransitions. A gluon con-
tains a start state, any number of intermediate states and many end states. A state transition triggers the
execution of an action which iscomposed of operations. State transitions are fired when the gluonsreceive
messages.

There are three types of operations that compose an action in a gluon: messages sends, object assign-
mentsand message sel ector assignments. A message send action allowsagluon to send amessageto acom-
ponent requesting for a service, an object assignment action allows agluon to keep areference to software
components and amessage sel ector assignment action allows agluon to keep areference to message selec-
tors.

Gluons have roles that store participants references to the software components that are “ compatible”
with therole. A typical example of rolesare client and server rolesin aclient-server protocol. The compat-
ibility refersto the fact that acomponent playsaroleinthegluon.

Protocol Transitions Event/Action

State Trangition Sate
0 Sart Source:registerServer{ server}
Server ;= server
<any_obj:<message>

Sart 1 Sart | MessSd := <message>
<message> -> Server

5 <any_obj>:exit

Sart End [giuonDisconnecting{ self} —>Server
Server := none

Figure A.31 : Protocol transition table for a simple gluon

In(Figure A.31), we show asimple gluon that handles an interaction protocol between a server and a
client. The protocol handles message forwarding. The association between the server and the gluonisre-
guested by the server component by sending the message regi sterServer to the gluon. Thismessagetriggers
state transition O which initiates the gluon’s protocol. Any client component can then send messagesto the
gluon and these messages are forwarded to the server with transition 1. Finally, the Gluon can be discon-
nected from the server by sending to it the message exit.

A.19 Linda- Tuple Spaces [Gele85a][Carr94a]

Lindais coordination model based on the so-called generative communication paradigm. In a generative
communication paradigm processes communicate by exchanging data (passive tuples) through a shared
dataspace (known as tuple space). The generative communication paradigm decouples processes in both
space and time: no process need to know the identity of the other processes, nor isit required al the pro-
cessed to bealiveat the sametime. In addition to the passive tuples containing data, the tuple space can al so

243

contain active tuples representing processes which after the completion of their execution, transform into
passive tuples.

Lindaiscomposed of aset coordination primitivesonthetuplespace: in, rd and eval. The primitive out(t)
is used to put apassivetuplet in the tuple space, the primitivein(t) retrieves a passive tuplet from thetuple
space, the primitiverd(t) retrievesacopy of t from thetuple space (thetuplet retrieved isnot removed from
the tuple space) and the primitive the eval (p) puts an active tuple (i.e., a process) in the tuple space. The
primitivesrd andin areblocking primitives and will suspend execution until thedesired tupleisfound. The
primitivesout and eval are non-blocking primitives. A processthat executeseval (p) will executein parallel
with p, which will turn into a passive tuple when it completes execution. Additional primitiveswereintro-
duced into the basic model: rdp(t) and inp(t) are not blocking variants of rd(t) and in(t) respectively.

The tuples are sequences of typed fields. They are retrieved from the tuple space by means of pattern
matching mechanism. The matching of atuplet with an actua tupletain the tuple space will succeed pro-
vided that the number, position and types of thet’sfields match those of ta.

1.phil (i) linitialize()

2. int i; 2.{

3.{ while(l) { 3. int i;

4. t hi nk(); 4 for (i=0; i<Num i++) {
5. in(’ roomticket’); 5. out (' chopstick’, i);
6. in(’ chopstick’, i); 6 eval (phil (i));

7 i n(’ chopstick’, (i+1)%wun; 7 if (i<(Num1l))

8 eat(); 8 out ('roomticket’);
9 out (' chopstick’, i); 9 }

10. out(’chopstick’, (i+1)%wunj;
11. out(’'roomticket’);
12. '}

Figure A.32 : Dinning Philosophers in Linda

In(Figure A.32), we show theimplementation of the classical problem dinner philosophersin Linda.
In the dinner philosophers a group of five philosophers sat around atable try to eat at the same time. Be-
tween each pair of table positions there is asingle chopstick (i.e., there are five chopsticksin total for the
five philosophers). To eat, each phil osopher must have two chopsticks, they can only usethetwo chopsticks
on either side of them.

Therehasbeen alot of worksdone on Lindaextensions. Wewill refer to someof themaost important here:

» BauhausLinda]Carr94a]: isadirect extension of the Lindamodel featuring multiple tuple spacesin
the form of multiset (msets). Instead of adding tuplesto and reading or removing tuples from asin-
gleflat tuple space, Bauhaus Linda's out, rd and in operations add multisets to and read or remove
multisets from another multiset.

» Bonita[Rows974]: includes a new set of primitives that provide asynchronous access to the tuple
spaces. The new primitives are:

244

rgid=dispatch(ts,tuple,[templ ate,destructive|nondestructive]): non-blocking primitive which con-
trolsall the accessto atuple space. If atupleis specified then thistupleis placed in the tuple space.
If atemplate is specified thisindicates that the tupleisto beretrieved from the specified tuple space.
If thisisthe case and extrafield isused to indicate if the tuple retrieved should be removed (destruc-
tive) or not removed (nondestructive).
rgid=dispatch_bulk(tsl,ts2,template,destructive|nondestructive): non-blocking primitive which
controls the movement of tuples between tuple spaces. The source tuple space is ts2 and the desti-
nation tuple space ists2 and the tuples are either moved (destructive) or copied (nondestructive).
arrived(rgid): non-blocking primitive that detects if atuple or result associated with arqid is avail-
ble. The primitive either returns true or false.

obtain(rqid): blocking primitive which waits for the tuple or result with rqid to arrive.
Law-Governed Linda [Mins94a]: extends the Linda model with rules to control events occurring
during the interaction of each process with the tuple space. Three classes of events are controlled:
invocation events (occur when a process invokes one of the Linda operations out, rd or in), selection
events (occur when the template of alindain or rd operation invoked by a process is matched with
some tuple in the tuple space) and asynchronous events (occur asynchronously with respect to the
processes). The primitive operations that can be included in aruling are:

complete: execute the operation being invoked.

complete(arg’): like complete, except that the original argument of the operation is replaced with
ag'.

return: delivers a selected tuple to a process.

return(t’): likereturn, except that the tuplet’ isdelivered to the processinstead of the matched tuple
t.

out(T): out operation in Linda.

remove: remove a process from the system.

Objective Linda [Kiel964]: introduces a coordination model that adapts the Linda model to object
orientation. The objectsin the model are instances of abstract data types with are described in alan-
guage-independent language called Object Interchange Language (OIL). Object matching is based
on object types and the predicates defined by typeinterfaces. The operation on the object space are:
out(m: MULTISET;timeout: REAL):BOOLEAN: triesto move the objects contained in minto the ob-
ject space. Return trueif the operation can be done, false otherwise.

in(o: OIL_OBJECT; min,max: INTEGER;timeout: REAL): MULTISET: tries to remove multiple ob-
jects matching 01,..,0n matching the template object o from the object space returns a multiset con-
taining at least min at most max objects.

eval(m: MULTISET; timeout: REAL): BOOLEAN: tries to move the objects contained in m into the
object space and startstheir activities. Returnstrueif the operation could be completed successfully,
falseif not or if the timeout fixed expires.

infinite_matches: INTEGER: constant that will beinterpreted as an infinite number of matcheswhen
provided as min or max.

infinite_time: REAL: constant that will be interpreted as an infinite delay when provided as timeout.
JavaSpaces [Sun03a]: A JavaSpace serviceisthe equivalent of atuple spacein the Lindamodel. A
JavaSpace service contains entries. An entry is typed group of objects expressed in a class for the

245

Java platform that implements the interface net.jini.core.entry.Entry. There are four primitives that
can be invoked in a JavaSpace service.

write: writes a given entry into the JavaSpace service.

read: reads an entry from a JavaSpace service that matches a given template.

take: reads an entry from a JavaSpace service that matches a given template, removing it from the
JavaSpace service.

notify: notify an object when entries that match a given template are written in the JavaSpace ser-
vice.

A.20 Manifold - IWIM [Arba96a][Arba98a]

Manifold isacoordination |anguage based on the IWIM (Idealized Worker | dealized Manager) model. The
basic conceptsin the IWIM model are processes, events, ports and channels.

A processisablack box with well defined connection ports used to exchange units of information with
other processes. The exchange of information is donein only one direction: either into (input port) or out
(output port). Ports have names associated with them, p.i for example refersto the port i of the processin-
stancep.

The interconnections between the ports of processes are made through channels. A channel connects a
port inaproducer processto another port inaconsumer process, p.o -> q.i denotesachannel connecting the
port o of the producer process p to the port i of the consumer processq.

Independently of the channels, the IWIM model proposes an event mechanism for information ex-
change. Events are broadcast by their sourcein their environment at the occurrence of certain events. Pro-
cesses decide which events they want to react to. The event mechanism supports anonymous
communication: a process does not and need not to know the identity of the processes which it exchanges
information.

Therearetwo typesof processin IWIM: workersand amanagers. Theresponsibility of aworker process
isto perform acomputational task. Theworker is not responsible for obtaining the proper input it requires
to perform itstask, nor isit responsible for the delivering the resultsit produces. It is up to managers pro-
cessesto coordinate the necessary communication among a set of worker processes.

There are two means of communication available to aworker process. viaits portsand viaevents. The
primitivesthat allow aprocessto exchangeinformation through ports are: read and write. To communicate
using events the worker must raise the events. The events are broadcast to all the processesin its environ-
ment.

Manager process can create new instances of processes and broadcast and react on event occurrences. It
can also create and destroy channel connections between port of the processinstancesit knows, including
itself. The manager process controls the communication among a number of processesinstances. In (Fig-
ure A.33), we show an implementation of the classical problem of dinning philosophersin Manifold asin-
troduced in [Arba98a]. Upon activation, a Fork instance enters an infiniteloop (lines 25 to 29) waiting for
apair of event occurrences (line 11) and reacting to them (lines 12 to 15).

246

nanner
nanner
nanner
nanner

©NoOGOA~WNE

. export

.#define WAl T(preenptal |, terninated(self))

.event request, done.

Eat (process, process, process) inport.
Thi nk(process) inport.

Get Ticket () inport.

Ret urnTi cket () inport.

For k()

10.{begin: while true do {

11. begin: WAIT.

12. request. *phil & *ready. *phil: {
13. save *.

14. begin: (raise(ready), WAIT).
15. done. phil:.

16. }
17. }
18.}
19.

20. export Phi | osopher ()

21.{
22. event

r eady.

23.begin: while true do {

24. begi n: Think(self);

25. Get Ticket ();

26. (rai se(request,ready), WAIT).

27. ready. *Ifork & ready. *rfork: Eat(self, Ifork, rfork).

28. end:

rai se(done);

29. ReturnTicket ().

30. }
31.}

Figure A.33 : Dinning Philosophers in Manifold

A.21 Piccola-Scripts [Ache00a]

Piccolaisasmall “compositionlanguage’ designed to support software composition. The core abstractions
of the Piccola model are forms (immutable, extensible records), agents (communicating processes) and
channels (locations where agents asynchronously exchange forms). In top of the Piccolamodel forms are
used to build higher-level abstractions to define composition and coordination styles. Piccola proposes an
approach for composing and coordinating software componentsin which different high-level, algebraic co-
ordination styles may be defined and agents script components according to these styles. The coordination
styles are implemented as component algebras. A script, isan expression of the algebrathat specifies how

the components are plugged together.

247

Table 1: Stream Style Components (Provided-Required Services)

Provided Services Required Services

Source put(X): write element downstream
closg(): signal end of stream

Filter put(X): accept a data element put(X): write element downstream
close(): close the input stream closg(): signal end of stream

Snk put(X): accept a data element
close(): closeinput stream

To illustrate how Piccola can be used to specify coordination styles we will show as example a Push-
Flow coordination styleintroduced in [Ache00a)]. In thisstyleanindividual component pushes data down-
stream to another component to which it is connected. The style includes three kinds of components: a
source (produces dataand pushesit downstream), afilter (accepts pushed data, processit and pushesthere-
sult further downstream) and a sink (accepts pushed data and represents the end of the stream). In (Table
1), weshow the provided and required servicesfor thethree different elementsthat compose the Push-Flow
coordination style.

Source | Sink -> () : connect streams to the sink

Source | Filter -> Source : mani pul ate streams using filter

Filter | Filter -> Filter : conpose two filters

Filter | Sink -> Sink: build newsink using filter

Source + Source -> Source: concatenate streans (sequential conposition)
Source & Source -> Source: merge streans (parallel conposition)

Sink + Sink-> Sink: multiplex a streamto two sinks

Figure A.34 : Push Stream Signature

In(Figure A.34), we show the set of composition rules (signature) of the stream style. The signature of
the style specifiesthe correct bounds between the different streams components. The operators(i.e. |, + and
&) inthe stream style are specified using scripts. In (Figure A.35), we can seethe specification of the | op-
erator. The asSource abstraction specifies the binding between a source component S and the component
Right appearing in the right side of the operator.

248

1.asSource(S).

2. S

3. _|(Rght): #define the | connector
4, S. regPut . bi nd(R ght. put)

5 S.reqd ose. bi nd(R ght . cl ose)

6 return asEnmpt yQ Sour ce(R ght)

Figure A.35 : The | Operator

In order to plug a source component mySource for exampleinto afilter the asSourceisappliedtoit. In
(Figure A.36), we show how to asource component isplugged to afilter component. The coordination be-
tween the two componentsis performed as procedure calls.

s := asSource (nySource)
s | filter |

Figure A.36 : Source-Filter plugging

A.22 Rules and Constraints [Andr96a][Andr96b]

The coordination model introduced in thiswork is based on the use of rulesand constraints, constructsthat
come from the tradition of declarative (rule-based) programming languages. A rule specifiesthe coordina-
tion steps needed to go from one global state to another. Constraints define restrictions over the domain of
interpretation of the rule; they can be used for capturing restrictions over general coordination schemes.
Two kinds of rules are specified in thismodel to perform coordination: reactive and pro-activerules.

Re-active rules

Re-active rules act upon pools of tokens of knowledge (the facts). Each rule specifies how to infer aset of
tokens(theright hand side of therule) from aset of already established tokens (theleft hand side of therule).
In object oriented the tokens manipul ated by the rules correspond to objects and method invocations (mes-
sages). Theleft hand side of rules synchronizes the execution of events corresponding to the modification
of object states and to the triggering of messages. Theright hand side of therules expressesthe notification
of new events.

Each reactive rule acts as an autonomous, long lived thread of activity continuously looking for events
to be synchronized. The computational model obtained is purely re-active. It applies quite naturally to the
design of event managersand all sort of synchronizers.

Pro-Active rules

Proactive systemsaim at influencing and maodifying the environment, rather than simply re-acting to exter-
nal stimulus. Theideabehind pro-activerulesisto switch from an extensional representation of the pool of
tokensto an intentional one. A rule no longer just wait for the tokens on itsleft hand side to appear on the

249

pool, but it materialize the intentional description of the pool, so asto makeit happen. The pro-active com-
putational model is adapted to design real coordinators rather than simple synchronizers.

Object Coordination Schemes

An object coordination schemainvolves two kinds of entities: the coordinator and the participants (active
objects). Rulesare used to define the coordinator’s behavior. The pool of tokens onwhich therulesapply is
handled by the participants themselves. The tokens on the left hand side of such rules represent actions on
the participants (method invocations). Thus, by accessing atoken A, the coordinator issues the following
reguest tothe participants: perform an action capabl e of producing A. Thisregquest may be satisfiablein one
or moreways, or may not be satisfiableat all. The fact of satisfying atoken may changetheinternal state of
the concerned participants. This change happensonly when the ruleis certain to apply, that is, when all the
tokensin the left hand side of the rule are available (transactional reading of the tokens). A token aon the
left hand side of arule triggers atransaction dial ogue between the coordinator and one of the participants,
consisting of three phases: Inquiry, Reservation and Confirmation/Cancellation

* Inquiry: the coordinator inquiries whether the participant can produce the token A. The participants
returns a set of possible actions that could perform to produce A.

» Reservation: the coordinator reserves from the participants a specific action from those identified
during the inquiry phase, this action is then said to be engaged.

» Confirmation/Cancellation: the coordinator either confirms or cancel s the action engaged during the
reservation phase. If confirmation occurs, then the corresponding action is executed and the resourc-
es are modified.

l.transfer(Acctl, Amtl, Acct2, Amt2, Acct)@

1.

2.extract (Acctl, Amt1l) @extract(Acct2, Amt2)<>-insert(Acct, Amtl+Amt 2)
3.

4.transf er - dat e(Dat e) @out - of - dat e(Dat) <>-t i neout - pr ocedur e

Figure A.37 : Remote Banking

In (Figure A.37), we show a transfer rule (line 1) in a remote banking simulation introduced in
[Andro6b]. The rule upon the reception of an bank order from the bank operator atomically transfers an
amount from two accounts (Acctl and Acct2) into athird account (Acct). The bank operator isviewed as
bag of orders (events) and thelnquiry phasefor thetoken tranfer(Acctl,Amnt1,Acct2, Amnt2,Acct) will re-
trieve each of them successively. It may happen that the order returned by the Inquiry isnot processed, if the
rule cannot grab the other tokens it requires. To discard such un-processed orders, after a certain time-out
period asecond ruleisincluded (line 4).

A.23 Synchronizers [Frol93a]

Multi-object coordination patterns are expressed in the form of multi-object constraints. A multi-object
constraint mai ntai ns certai n properti essuch astemporal ordering and atomicity associated with messagein-
vocations processed by agroup of objects. Synchronizers are special objects that specify multi-object con-
straints. A synchronizer observes and limits the message invocations accepted by a set of objects, whether

250

or not an object process a message invocation depends on the current status and invocation history of the
group of constrained objects.

In (Figure A.38),we can see the abstract syntax for synchronizers. The structure of a synchronizer is
specified using the{...} constructor. Each synchronizer hasanamethat allowsitsinstantiation and alist of
formal parametersthat are bound to actual valueswhen the synchronizer isinstantiated (Figure A.38 line
15). Each synchronizer has also an init part which declaresthe list of local namesthat hold the state of the
synchronizer (Figure A.38 line 16).

1.binding ::=nane : = exp |

2. bi ndi ngl; bi ndi ng2

3.

4.pattern ::= object. name|

5. obj ect. nane(nanel, ..., naneN |
6. patternl or pattern2 |

7. pattern exp

8.

9.relation ::= pattern updates binding |
10. exp disables pattern |

11. atomc(patternl, ..., patternN|
12. pattern stops|

13. relationl, relation2

14.

15. synchroni zer ::= name(namel, ..., nameN
16. { [init binding]

17. relation }

Figure A.38 : Abstract Syntax for Synchronizers.

The specification of the synchronizersis done using pattern matching (Figure A.38 line4). Therules
defining pattern matching are:

» The pattern 0.n matches all messages invoking method n in object o.

» The pattern 0.n(x1,.., XN) matches all messages matched by the pattern 0.n and binds the actual val-
ues of the arguments of a matching message to the names x1,..., xN.

e The pattern p1 or p2 matches messages that match either p1 or p2.

» A message matches the pattern p where exp if the message matches the pattern p and the boolean
expression exp evaluates to true.

Therelation part of asynchronizer specifiesthe different multi-object constraints (Figure A.38line9).
There arefour possibletypesof relations:

» Avrelationof theformpat t er n updat es bi ndi ng changesthe state of the enclosing synchro-
nizer according to binding each time an object isinvoked by amessage that matches pattern. In order
to maintain consistency of synchronizers, bindings are established as atomic actions. The updates
operator can be used to record the invocation history of the object (which invocations have been pro-
cessed by the object and in which order).

251

» Ardationof theformexp di sabl es pat t er n preventsthe acceptance of messagesthat match
pattern if the expression exp istrue in the current state of the synchronizer. A disables operator de-
fines conditions that must be met before the object can be invoked by certain messages. Prevented
invocations are delayed at the object if the conditions in the enforced multi-object constraints are
not satisfied. Synchronizers that contain both updates and disables relations can enforce temporal
ordering when the legality of the invocationsis determined by the past invocation history.

» Avrelationof theformat om c(patternl, ..., patternN) invokesi kindsof messages
that match the patterns patternl,.., patternN respectively. The relation ensures that the acceptance of
amessage from either kind occurs along with acceptance of messages from the other i-1 kinds with-
out any observable middle states. Either al or none of the patterns are matched and thereis no tem-
poral ordering between the matching invocations. The atomic operator gives rise to indivisible
scheduling of multiple invocations at multiple objects.

» Aninstantiated synchronizer remainsin effect until observing an invocation that matchesthe pattern
of astopsrelation. Therelation pattern st ops impliesthe acceptance of a message matching
the pattern and that terminates the synchronizer. A synchronizer without a stops operator remainsin
effect permanently.

1. Vendi ngMachi ne (accepter, apples, bananas, apple_price, banana_price)
2.{ init amount := 0.

3. anount < appl e_price disabl es appl es. open,

4. anount < banana_price di sabl es bananas. open,

5. accepter.insert(v) updates amount := anount + v,

6. (accepter.refund or appl es. open or bananas. open) updates amount := 0 }

Figure A.39 : The Vending Machine

In(Figure A.39), we show asynchronizer specification introduced in [Frol93a] to coordinate the dif-
ferent parts of afruits vending-machine. The vending machine hastwo dots: onefor applesand onefor ba-
nanas. The name applesrefersto the apple slot and the name apple_priceto the price of an apple (similar for
thebananas). The name accepter refersto an obj ect representing the coin accepter. The appleand thebanana
dots have an open operation that can be invoked if the accepter contains enough money. The variable
amount holdsthe amount of money contained in coin accepter.

A.24 Wrappers [Ciob05a]

Thiswork introduces a specification language where components are described as objects, coordinationis
defined asaprocessand their integration isgiven by wrappers. The semantic integration of the coordinating
process and coordinated entitiesis based on bisimulation.

Classes and Objects

A class specification consists of specification of attributes and specification of operations. An operations
specification includesthe signature of the operation and its behavioral specification expressed in theterms
of its parameters and attributes values before and after its execution. Objects are autonomous units of exe-

252

cution which are either executing the sequential code of exactly one method, or passively maintaining their
states. An object instanceisapair (R | state), where R isan object reference and stateis an ordered sequence
of pairs (attribute, value). The result of the execution of amethod R.m(d) over a state st consists of a new
statest’” whose attributes val ues are computed according to the behavioral specification of m. In other words
s’ = R.m(d)(st).

Coordination

A coordination process provides ahigh-level description of the interaction between objects. It syntax isin-
spired by process algebras as CSS and n-calculus[Miln99a]. Interaction with the environment is given by
someglobal actionsand interaction between componentsis given by anondeterministic matching between
complementary local actions. Coordination processes are described by a set of equations. The process ex-
pressions E are defined by guarded processes, non deterministic choice E1 + E2 and parallel composition
E1|E2. Thereisasoan empty processO. In(Figure A.40) we can seethe syntax grammar for the processes.

proc <proc_spec_name>
{

1

2

3. global actions : <lact_list>;
4. local actions: <gact_list>;

5. process: <proc_id_|list>

6. guards: <guard_id_list>

-

8

equat i ons:
<eqn_list>

9.}
10.
11. where
12.<lact_list> ::= <l abel _list>
13.<gact _list> ::= <l abel _list>
14.<l abel _list> ::= <l abel > | <l abel >, <l abel _|ist>
15.<label > ::= <identifier> | ~ <identifier>
16.<proc_id list>::=<id_list>
17.<guard_id_list> ::=<id_list>
18.<id_list>::=<identifier>| <identifier> <id_list>
19.<eqgn_list> ::= <eqn> | <eqn>; <eqn_|ist>
20.<eqn> ::= <proc_i d> = <pexpr>;
21.<pexpr> ::= 0 | <l abel >. <pexpr> | [<guard_i d>] <pexpr>
22. [not <guard_i d>] <pexpr> | <pexpr> + <pexpr >
23. <pexpr >| <pexpr >

Figure A.40 : Coordination processes syntax grammar.

In(Figure A.41) we show the specification of acoordination processintroduced in [Ciob05g]. The co-
ordination process correspondsto the specification of an Alternate Bit Protocol (ABP) communication pro-
tocol as a coordination between a Sender and a Receiver.

253

1.proc ABP

2.{

3. global actions: in, out, alterS, alterR
4. local actions: chl, ch2;

5. processes: AL A, V, B B, T,

6. equations:

7. A=inA;

8. A = ~chl.ch2. V

9. V = [sok] alterS.A + [not sok] A;

10. B =[rok] B + [not rok] out.alterR B;
11. B = ~ch2.B;

12.}

Figure A.41 ABP Communication protocol as a Coordination process.

Interaction Wrapper

A coordination process can be considered as an abstract interface of the system, an interaction wrapper de-
scribes an implementation of this interface by means of a collection of objects. The coordinating process
specifies coordination directives and the coordinated object interpret these directives using an interaction
wrapper. The interaction wrappers provide the link between the high level coordination processes and the
lower level executing objects. In (Figure A.42) we show the syntax of an interaction wrapper.

1.<w ap_spec> ::= <w ap_name> (<wparam| i st>)

2. i npl enenti ng <proc_spec_nanme>

3. {<amap_list> <gnap_list>}

4. <wparam list> ::=<wparane | <wparamlist> <wparan»
5. <wparan® ::= <cl ass_nane> <obj ect _ref>
6.<amap_list> ::= <amap> | <amap_list> <amap>
7.<amap> ::= <action_nane> -> <crmd>;

8.<gnmap_list> ::= <gmap> | <gmap_list> <gmap>

9. <gnap> ::= <guard_name> -> <bexpr>;

Figure A.42 Wrapper Syntax Grammar

In (Figure A.43) we show the wrapper’s specification for the previous described ABP protocol. The
wrapper instructsa Sender S and aReceiver R in order to correctly follow the directives of the protocol. In
line 3, we can see how adirectivein received from the coordination processistranslated into an execution
of method read by S. ThedirectivesalterSand alterR (lines4 and 5) are trandlated into executions of meth-
odschBit and chAck by and R respectively. In line 5 we can seethat whenever the directivetau(chl) ispos-
sible in the coordination process, the directive is translated into a synchronization of the methods
sendFrame of S and recFrame of R. The synchronization is accompanied by a communication between
them. Similar for the directive tau(ch2). Finally the last two lines, corresponds to the comparison of the
sending bit and the received acknowledge done at the object level.

254

wrapper w (Sender S, Receiver R inplenenting ABP
{

1.
2.
3. in->Sread();

4. alterS -> S.chBit();

5. alterR -> S chAck();

6. tau(chl) ->

7 R recFrane(S.data, S bit) ||

8 S. sendFr ane() ;

tau(ch2)

10. S recAck(R ack()) || R sendAck();
1l.out -> Rwite();

12.sok -> S. bit == S ack;

13.rok -> S bit =/= R ack;

14.}

© ¢

Figure A.43 Protocol ABP wrapper specification

Temporal Properties of the Coordinated Objects

Sincethe semantics of the coordinated objectsisgiven by labeled transition system, thiswork proposesthe
use of temporal formulaswrittenin CTL (Computation TreeLogin) for describing their properties. Tempo-
ral formulasare verified using amodel checking algorithm.

APPENDIX B

Petri Nets

Petri Netsareagraphical and mathematical modeling tool used to describe and study systemsthat are char-
acterized as concurrent, asynchronous, distributed, parallel, nondeterministic, and/or stochastic. As a
graphical tool, Petri Netscan be used asavisual communication aid similar to flow charts, and networks. In
addition, tokens are used in these nets to simulate the dynamic and concurrent activities of systems. Asa
mathematical toal, it ispossibleto set up state equations, algebraic equations, and other mathematical mod-
elsgoverning the behavior of systems.

According to [Bert93a] Petri Nets can be classified into three classes: modelstypel, II, and 111. Models
of typel allow qualitative analysis of systems (the logic of the system), models of type Il include temporal
extensions, and model of typelll allow the quantitative analysis (eval uation of performances). In model s of
type | we have: Place-Transition Petri Nets, Coloured Petri Nets, Predicate-Action Petri Nets, and Numer-
ical Petri Nets. In models of type Il we have: Temporised Petri Nets, Temporal Petri Nets, With Temporal
Arcs Petri Nets, With Temporal Flux Petri Nets. In models of type |1l we have: Stochastic Petri Nets, Sto-
chastic Temporised Petri Nets, etc. Wewill focusexclusively on thischapter in themodeling and the seman-
tics of Petri Netstype |, in particular in Predicate-Action Petri Nets which we will use to formalise and
validate CoL aS coordination groups.

B.1 Type |- Modeling and Semantics

B.1.1 Place-Transition Petri Net

A Petri Netisaparticular kind of directed graph, together with aninitial marking MO. Theunderlying graph
of aPetri Net is adirected, weighted, bipartite graph consisting of two kinds of nodes, called places and
transitions, wherearcsare either from aplaceto atransition, or fromatransition to aplace. In graphical rep-
resentation placesaredrawn ascircles, transitionsasbarsor boxes. Arcsarelabel ed with their wei ghts (pos-
itive integers).A marking assigns to each place a nonnegative integer k, we say that p is marked with k
tokens. In agraphical representation we place k black dots (tokens) in place p. A marking isdenoted by M,
an m-vector where misthetotal number of places. The pth component of M, denoted by M(p) corresponds
to the number of tokensin placep.

In modeling, using the concepts of conditions and events, placesrepresent conditionsand transition rep-
resent events. A transition (an event) has a certain number of input and output places representing the pre-
conditions and the post-conditions of the event, respectively. The present of atoken in placeisinterpreted
as holding the truth of the condition associated with the place. In another interpretation, k tokensin place
indicatethat k dataitems or resources are available.

256

A place-transition Petri Net isafive-tuple:
PN =<H,Tr, 1,0, M0O>

o Pl={p1, p2, .., pm} afinite set of places.
o Tr={t1,t2, .., tn} afinite set of transitions.
e I=PIxTr->N input function. Specifies the number of tokens than
should be present at aplace to allow the transition to be fired.
e O=PIxTr->N output function. Specifies the number of tokens generated

in aplace when atransition isfired.

e« MO=P->N initial marking. Specifies the number of tokensinitially set in each
place.

Theevolution of MO inthetimeisrepresented asM.

The behavior of many systems can be described in terms of system states and their changes. In order to
simulate the dynamic behavior of asystem, astate or markingin aPetri Net ischanged according to thefol-
lowing transition (firing rule):

1) atransition is said to be enabled if each input place p of t is marked with at least I(p,t) tokens.

2) an enabled transition may or may not fire (depending on whether or not the event actually takes
place)

3) afiring or an enabled transition t removes I (p,t) tokens from each input place p of t, and adds
O(p,t) tokens to each output place p of t.

A transition without any input place is called a source transition, and one without any output placeis
called asink transition.

Graphical Representation

(o) -

p q

P={p,q} T ={t} MO(p) = 1 MO(q) = 2 I(p,t) =3 O(q.t) = 4

Figure B.1 Graphical representation of a Petri Net

In(Figure B.1) we show the representation of a Petri Net composed of two placesp and g, and onetransi-
tiont. In place p thereisinitially one token, and in place q two tokens. Transition t can only be fired if and
only if the number of tokensisat least threein place p, and the number of tokens generated in place g when
thetransitiontisfiredisfour.

257

Semantics
A transitiont can befired, if and only if for al pin Pl:

M(p) >=1(p.t)
If tisfired, anew marking M’ isgenerated in which wewill have:
M* =M(p) - I(p.t) + O(ai.t)

M odeling

A Petri Net correspondsto the representation of asystem at agiven time.Themarking M correspondsto the
number of availableresourcesat that time. The modeling of asystem using Petri Nets starts with the mode-
ling of each sub process composing the system using a Petri Net, and then joining all the Petri Nets by their
common placestwo by two in order to obtain afinal Petri Net.

It isimportant to remark that in Place-Transition Petri Netsthe tokens do not have and identify and thus
they can not be differentiated. When different resources must be modelled, it is necessary to define aplace
per type of resource, evenif those resources are used in asimilar way.

B.1.2 Coloured Petri Nets

Coloured Petri Netsintroduce the notion of identity assigning coloursto the tokens. In this model of Petri
Nets, the places in the net contain individualised tokens, each colour associated with a token identifies
uniquely atoken or aset of tokens. Thefiring of atransition dependson theidentity of therespectivetokens.
A transformation to a place-transition Petri Net is always possible. A Coloured Petri Net correspondsto a
six-tuple:

PN =<Pl, Tr, 1,0, MO, C>

o Pl={p1, p2, .., pm} afinite set of places.

o Tr={t1,t2, .., tn} afinite set of transitions.

e I=PIxTrxC->N input function. Specifies the number of tokens of each
colour than should be present at a place to alow the transition
to befired.

* O=PIxTrxC->N output function. Specifies the number of tokens
of each colour generated in a place when atransition is fired.

e MO=PIXC->N initial marking. Specifies the number of tokens per colour
initially set in each place.

« C afinite set of colours.

Theevolution of MO inthetimeisrepresented as M.

258

Graphical Representation
t

<a> 2<a>

OO
p q
I(p, t, <a>) = <a> O(p, t, <a>) = 2<a>
I(p, t,) = O(p, t,) =
P={paT={t} MO(p,<a>) = 1 MO(p,)
C = {<a>, }

Figure B.2 Graphical Representation of a Coloured Petri Net

Semantics

A transitiont can befired, if and only if for all pinPl:
M(p.t, c) >=I(p,t,c)
If tisfired, anew marking M’ isgenerated in which wewill have:
M’ =M(p,c) - I(p.t.c) + O(a.t,c)

B.1.3 Predicate-Action Petri Nets [Kell76a]

In Predicate-Action Petri Nets systems are decomposed into two parts (Figure B.3): adatapart and acon-
trol part. The datais defined in the form of variables, and the control part by an extended Place-Transition
Petri Net. For each transitionin the Petri Net alabel of theform“if predicate(X) do action(X)” isadded. The
predicate and the action concern the variables of the system (the data).

O\t

/ Q
Q if P(X) do A(X)

Figure B.3 Graphical representation of a Predicate-Action Petri Net

Graphical Representation

semantics
A transitiont can befired, if and only if for all pinPl:
M(p.t, ¢) >=1(p,t,c) AND (P(X) istrue)
If tisfired, anew marking M’ isgenerated in which wewill have:

259

M

" =M(p,c) - I(p,t,c) + O(q,t,C)

and the action A(X) associated with tisdone.

B.1.4 Numeric Petri-Nets [Symo80a]

Numeric Petri Nets are similar to Predicate-Action Petri Nets, they differentiate in that in Numeric Petri it
is possibleto specify for each place entering in atransition asensibilitation condition CSfor thefiring rule
RT. In(Figure B.4) we can seethat each place entering in the transition t specifies asensibilisation condi-
tion (i.e., CS1 and CS2), thefiring rules RT1 and RT2 specify the number of tokensto be removed from the
two places when these conditionsvalidateto true.

Graphical Representation

U5

) RT3
—
V Q
Q oy TRX) doA(X)

Figure B.4 Graphical representation of a Numeric Petri Net

B.2 Validation [Bram83a]
Therearetwo families of validation methodsfor Typel Petri Nets.

Enumeration Analysis: this consists of the construction of an accessibility graph from the initial
marking MO. The graph is obtained by firing one by one all the possible transitions starting from the
initial marking until no new transition could be fired. Each node of the graph correspondsto a mark-
ing of the system, each arch to the transition which allowed to generate the new marking. Thisisthe
most common method used for the verification of propertiesin Petri Nets.

For Colored and Predicate-Action Petri Nets, the principle used to construct the accessibility graph
isthe same, only the fire rules change.

Some techniques of reduction and projection can be used during the enumeration analysisto reduce
the size and the complexity of the graph. The reduction and projection techniques allow to obtain
simplified views of the system. The reduction technique allow to reduce the graph before the acces-
sibility graph is built. The projection allows one to reduce the accessibility graph in order to obtain
an equivalent abstract view. It isup to the person analyzing the system to specify the adequate equiv-
aencerelation aswell asthetransitions of the model that will remain visible (the otherswill become
interns and non visible)

Structural Analysis: this consists of specifying invariants associated with places. The results ob-
tained are independent of theinitial marking. The invariants represent the fact that a predicate join-
ing the marking of a certain number of places remains always valid.

260

B.2.1 Formal Verification of Petri Nets [Mura89a]

A major strength of Petri Netsistheir support for analysis of many properties and problemsassociated with
concurrent systems. Two kinds of properties can be studied with a Petri-net model: those which depend on
theinitial marking (marking-dependent properties), and those which are independent of theinitial marking
(structural properties). Wewill usethetechnique called enumeration analysisto verify certain propertiesin
the Petri Nets. The enumeration analysis technique consists of the construction of an accessibility graph
from theinitial marking MO. The graphisobtained by firing al the possibletransitions until no new transi-
tion could befired. Intheexampleshownin (Figure B.5) weshow aPlace-Transition Petri Net withitsini-
tial marking matrix MO.

—»@ Pl
i
VRN
p2 p3
itz 3 t3 M0=(1,0,0,0,0)

p4 O p5
35/2

Figure B.5 Place-Transition Petri Net

1) For theinitial marking MO, thereis only one transition t1 that can be fired. The new marking ma-
trix M 1obtained after thetransition tlisfiredis: M1 = (0,1,1,0,0,0). Thistransformation can be de-
noted as MO (t1->M1.

2) For the marking matrix M 1there are only two transition t2 and t3 that can be fired. The new mark-
ing matrixes obtained after the transitionst2 and t3 arefired: M2 = (0,0,1,1,0) and M3 =(0,1,0,0,1).
These transformations can be noted asM1 (t2->M2 and M1 (t3->M 3 where

3) For the marking M2 only the transition t3 can be fired. The new marking matrix M4 obtained
after the transition t3 isfired is: M4 = (0,0,0,1,1). This transformation can be denoted as M2 (t3-
>M4.

4) For the marking M3 only the transition t2 can be fired. The new marking matrix M4 obtained
after the transition t2 is fired is: M4 = (0,0,0,1,1). This transformation can be denoted as M2 (t2-
>M4.

5) Finally, for the marking M4 only the transition t4 can be fired. The new matrix obtained after the
transition t4 isfired is MO. No new marking can be generated, then the process stops.

MO* definesthe set of marking generated from MO ={MO, M1, M2, M3, M4}.

261

Starting from marking MO transitions t1 and t2 can be fired. After these transition the new marking
isM2. Thistransformation can be denoted as MO (t1 t2 -> M2 and S =t1 t2 as afiring occurrence
sequence MO (S->M2

behavioral properties

Reachability: a marking Mi is said to be reachable from an initial marking MO if there exists a se-
guence of firingsthat transform MO to Mi. It has been proved that the reachability problem is decid-
able although it takes exponential space (and time) to verify in the general case.

Boundness: a place Pi is said to be bounded for an initial marking MO if for all marking accessible
from MO the number of tokensin Pi is finite. A Petri Net is said to bounded for an initial marking
MO isall the places are bounded for MO*.

If for all Mi belonging to MO* if we have Mi(Pi=) <= k where k is an finite number, weis said that
Pi isk-bounded. If this property is true for all the places of the Petri Net is said that the Petri Net is
k-bounded.

Safeness: aPetri Net is said to be safe for an initial marking MO if for al accessible marking every
place contains at most one token. A Safe Petri Net is a particular case of 1-bounded Petri Net.
Liveness: atransition tj issaid to belivefor an initial marking MO if for all marking accessible from
Mi belonging to MO* there exists afiring sequence containing tj from Mi. A Petri Net is said to be
live for an initial marking MO if al the transitions are live. In other words there are not transitions
in the Petri Net that can not be fired.

Conform: a Petri Net is said to be conformif it is safe and live.

Quasi-Alive: atransition tj is said to be quasi-live for an initial marking MO if there exists afiring
sequence containing tj from MO. A Petri Net is said to be quasi-live if al its transitions are quasi-
aive.

Blocking: ablocking isamarking where no transition is enabled. In other words no evolutionis pos-
sible from a certain marking. A Petri Net is said to be free from blockings for an initial marking MO
if no marking Mi belonging to MO* is ablocking.

Reversibility and Home State: aPetri Net is said to be reversibleif from each marking Mi belonging
to MO* MO is reachable from Mi. In other words, in areversible net one can always get back to the
initial state.

Coverability: amarking Mi in MO* issaid to be coverableif there exists amarking Mj in MO* such
that the number of tokensin Mj(p) is superior or equal to the number of tokensin Mi(p) for each p
in the net.

Fairness: many different notions of fairness have been proposed in the literature of Petri Nets. Two
of them are: bounded fairness and unconditional (global) fairness. Two transitionstl and t2 are said
to bein bounded-fair relation if the maximum number of times that either one can fire while the oth-
er isnot firing is bounded. aPetri Net is said to be bounded-fair if every pair of transitionsin the net
are bounded-fair. A firing sequence Sis said to be unconditionally (globally) fair if itisfinite or ev-
ery transition in the net appears infinitely often in S. A Petri Net is said to be unconditionally fair
net if every firing sequence Sfrom M in MO* isunconditionally fair. Every bounded-fair net is un-
conditionally-fair net and every bounded unconditionally-fair is a bounded-fair net.

Bibliography

[Abad89d]

[Ache00g]

[Ache0ld]

[Aghas6ad]

[Ahuj86a]

[Andr91a)

[Andr96d]

[Androeb]

[Andr99]

[Andr00g]

[Aldro3d]

[Alle94d]

[Aksi89a]

[Aksi924]

[Arap9la)

M. Abadi and Z. Manna, Temporal Logic Programming, Journal of Symbolic Computa-
tion, 8: 277-295, 1989.

F.Achermann, S.Kneubuehl, O.Nierstrasz, Scripting Coordination Syles, Coordination
2000, Antonio Porto and Gruia-Catalin Roman (Eds), LNCS, Vol. 1906, Springer-Verlag,
Limassol, Cyprus, September 2000, pp.19-35.

F.Achermann, O.Nierstrasz, Applications = Components + Scripts: A Tour of Piccola,
Software Architectures and Component Technology, Mehmet Aksit (Ed), pp.261-291,
Kluwer, 2001.

G.. Agha, Actors: AMaodel of Concurrent Computation in Distributed Systems, MIT Press,
1986

S.Ahuja, N.Carriero, and D.Gelernter, Linda and Friends, |IEEE Computer, VVol. 19, No. 8,
1986, pp. 26-34.

G..R.Andrews, Concurrent Programming, Benjamin/Cummings Publishing, 1991.

JM.Andreoli, S.Freeman, and R.Pareschi, The Coordination Language Facility: Coordi-
nation of Distributed Objects, Theory and Practice of Object Systems (TAPOS), Vol. 2,
No. 2, 1996, pp. 635-667.

JM.Andreoli, H.Galaire, and R.Pareschi, Rule-Based Object Coordination, in
[Cianc96a], pp. 1-13.

L.FA.Andrade, J.L.L.Fiadeiro, Interconnecting Object Via Contracts, Proceedings of
UML’99, Bernhard Rumpe (Ed.), LNCS 1723, pp. 566-583, Springer Verlag.

G..R.Andrews, Foundations of Multithread, Parallel, and Distributed Programming, Ad-
dison-Wesley, 2000.

J.Aldrich, V.Sazawal, C. Chambers, D. Notkin, Language Support for Connector Abstrac-
tions, ECOOP 2003, LNCS 2743, pp. 74-102.

R.Allen, D.Garlan, Formal Connectors, Internal Report CMU-CS-94-115, Carnegie-Mel-
lon University, Pittsburg, USA.

M. Aksit, On the Design of the Object-Oriented Language Sna, Ph.D. Dissertation, De-
partment of Computer Science, University of Twente, The Netherlands, 1989

M. Aksit and L.Bergmans, Obstacles in Object-Oriented Software Development,
OOPSLA"92, pp.341-358, Vancouver, Canada.

C.Arapis, Specifying Object Interactions, in D.Tsichritzis, editor, Object Composition,
University of Geneva, 1991.

263

[Arbag3a]

[Arbag6a]

[Arbagsa]

[Arbagsb]

[Ayacs5d]

[Badu024]

[Banag6a]

[BarrO2a]

[Berg94a]

[Berr98a]

[Bert93a]

[Bert03a]

[Bloo794]

[Bosc974q]

[Bram83a)
[Brio98a]

F.Arbab, I. Herman, and P.Spilling, An Overview of Manifold and its| mplementation, Con-
currency: Practice and Experience5 (1), 1993, pp. 23-70.

F.Arbab, The WIM Mode for Coordination of Concurrent Activities, in[Cian96a], pp.34-
56.

F.Arbab, P.Ciancarini, C.Hankin, Coordination Languages for Parallel Programming,
Journal of Parallel Computing, Vol. 24, No. 7,1998, pp. 989.

F.Arbab, What Do you Mean, Coordination ?, Bulletin of the Dutch Association for The-
oretical Computer Science (NTV1), March 1998. http://www.cwi.nl/NV TI/Nieuwsbrief/
nieuwsbrief98.ps.gz.

J.M.Ayache, J.P.Courtiat, and M.Diaz, Utilisation desréseaux des Petri pour la modélisa-
tion et la validation des protocol es, Technique et Science Informatiques, AFCET, 1985.

L.Baduel, F. Baude and D. Caromel, Efficient, Flexible, and Typed Groups Communica-
tions in Java, Proceedings of Java Grande 2002, November 3-5, Seattle, Washington,
USA, 2002, pp. 28-36.

J.PBénatreand D.Le M étayer, GAMMA and the Chemical Reaction Model; Ten YearsLat-
er, Coordination Programming: mechanisms, models and semantics, pp. 1-39, |C Press,
London.

L.Barroca, J.L.Fiadeiro, Coordination Contracts as Connectorsin Component-Based De-
vel opment, Proceedings of Integrated Design and Process Technology | DPT 2002, Pasade-
na, California, 2002.

L.Bergmans, Composing Concurrent Objects: Applying Composition Filters for the De-
velopment and Reuse of Concurrent Object-Oriented Programs, Ph.D Thesis, University
of Twente, The Netherlands, 1994,

A.Berry, S.Kaplan, Open, Distributed Coordination with Finesse, Proceeding of the on
Applied Computing SAC98, Atlanta, Georgia, USA, pp.178-184, 1998.

B.Berthomieu, J.P.Courtiat, M.Diaz, and G.Juanole, Techniques de description formelle
pour la conception des protocoles de communication, Rapport N. 7869, LAAS, Toulouse,
1993

B.Berthomieu, B-O.Ribet, F.VVernadat, L’ outil TINA--Construction d’ espaces d’ etats ab-
straits pour lesréseaux de Petri et réseaux Temporels, Modélisation des Systémes Réac-
tifs, MSR’ 2003 Hermes.

Toby Bloom, Evaluating Synchronization Mechanisms, In Seventh International ACM
Symposium on Operating System Principles, pp. 24-32, 1979

R.Bastide and D.Buchs, Model's, Formalisms and Methods for Object-Oriented Distribut-
ed Computing, ECOOP’ 97 Workshop Reader, Vol. 1357, Finland, pp. 221-255, June 1997.

GW.Brams, Réseaux des Petri: théorie et practique, Masson, 1983.

J-PBriot, R.Guerraoui, K-P. Léhr, Concurrency and Distribution in Object-Oriented Pro-
gramming, ACM surveys 1998.

264

[Briogob]

[BuUff974]

[Bush95a]

[Burn93a

[Carr894]

[Carr944]
[Chan794]

[Cian94a]

[Cian96d]

[Cian99a]

[Cian014]

[Cinc94a)

[Ciob05a]

[Coul94a]

[Crow9la]

[Crow964]
[Cruz99a]

[Cruz99b]

JPBriot, Actalk: a Testbed for Classifying and Designing Actor Languagesin the Small-
talk-80 Environment, Proceedingsof ECOOP* 89, British Computer Society Workshop Se-
ries, Cambridge University Press, pp. 100-129, July, 1989.

M. Buffo, E. Urland, J. Rolim and D. Buchs, A Coordination Model for Distributed Sys-
tems’, in[Garl974], pp. 410-413.

F.Buschmann, R.Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented Soft-
ware Architecture: A System Of Patterns, West Sussex, England: John Wiley & SonsLtd.,
1996.

A.Burnsand G..L.Davies, Concurrent Programming, Addisson-Wesley, 1993.

N.Carriero and D.Gelernter, Linda in Context, Communications of the ACM, Vol. 32, No.
4, 19809, pp. 444-458.

N. Carriero, D.Gelernter and L. Zuck, Bauhaus Linda, in [Cian94a], pp. 66-76.

E.G Chang and R.Raberts, An improved algorithm for decentralized extrema-finding in
circular configurations of processors. CACM, Voal. 22, No. 5, pp. 281-283.

P.Ciancarini, O.Nierstrasz, A.Yonezawa (Eds), Object-Based Models and Languages for
Concurrrent Systems, ECOOP 94 Workshop on Models and Languages for Coordination
of Parallelism and Distribution, Bologna, Italy, 1994, LNCS 924, Springer Verlag.

P.Ciancarini and C.Hankin (Eds), First International Conferencein Coordination Models,
Languages and Applications-Coordination’ 96, Cesena, Italy, 15-17 April, 1996, LNCS
1061, Springer Verlag.

P.Ciancarini and A.Wolf (Eds), Proceedingsof thethird I nter national Conferencein Coor-
dination Model s and Applications-Coordination’ 99, Amsterdam, The Netherlands, 1999,
LNCS 1594, Springer Verlag.

P.Ciancarini, Coordination Models and Languages, Course Material, Lipary, July 2001.

Cincom Inc., VisualWbrks™ Distributed Smalltalk Programmer’s Reference, P46-0115-
0202, http:/www.cincom.com, 1994.

G. Ciobanu, D. Lucanu, A Specification Language for Coordinated Objects, Proceedings
of the International Workshop on Specification and Verification of Component-Based Sys-
tems, Lisbon, 2005.

G Coulouris, J. Dollimore, T. Kindberg, Distributed Systems, Addison Wesley, 1994,

K.Crowston, Towards a Coordination Cookbook: Recipes for Multiagent Actions, PhD
Dissertation, Sloan School of Management, MIT, Cambridge, USA, 1991.

J. Crowcroft, Open Distributed Systems, UCL Press, London, 1996.

J.C.Cruz, and S.Ducasse, CoLaS: a Group Based Approach for Coordinating Active Ob-
jects, in[Cian994], pp. 355-371.

J.C.Cruz and S. Ducasse, Coordinating Open Distributed Systems, Future Trends of Dis-
tributed Computing Systems, IEEE, pp. 125-130.

265

[CruzO1a)

[CruzO14)

[Cruz02a]

[Deck954]

[Didrogd]
[Dijk684]

[Dol1924]

[Duca974]

[Duca984]

[Espad4al

[Ferb99d]

[Film84a]

[Fran96a]

[Frol934]

[Gamm953]

[Garl97a]

[Geles5a]

[Gele924]

J.C.Cruz, CORODSa Coordination Programming System for Open Distributed Systems,
LMO 2001, LeCraisic, France, 2001, pp. 11-26.

J.C.Cruz, Supporting Devel opment of Open Cooper ative Object | nformation Systemswith
CORODS, O0IS 2001, Calgary, Canada, 2001, pp.

J.C.Cruz, OpenColLaS a Coordination Framework for CoLaS Dialects, in COORDINA-
TION 2002, York, United Kingdom, 2002, pp. 133-140.

K.S.Decker and V.R.Lesser, Designing a Family of Coordination Algorithms, Computer
Science Technical Report 94-14. University of Massachusetts, Amherst, USA, 1995.

K.Dridra, A Cooperation Service for CORBA Objects, EuroPar’ 99, LNCS 1685.

E.W. Dijkstra, Cooperating Sequential Processes, In F. Genuys (ed) Programming Lan-
guages, 43-112. New York, Academic Press.

J.Dollimore, G.Coulouris, The relevance of Object Groups and Multicast in Shared Dis-
tributed Object Systems, Fifth ACM SIGOPS European Workshop: M odelsand paradigms
for distributed systems structuring, September 21-23, Le Mont Saint-Michel, France, pp.
1-4.

S.Duccasse, Intégration Réflexive des dependances dans un modéle a classes. Ph.D. The-
sis, Université Nice-Sophia Antipolis, 1997.

S.Ducasse and M.Guenter, Coordination of Active Object by means of Explicit Connec-
tors, DEXA worshops, View, Austria, |EEE Press, 1998, pp. 572-577.

J.Esparza and M. Nielsen, Decidability Issues for Petri Nets- a survey, Inform. Process.
Cybernet., Vol. 30, pp. 143-160, 1994.

J.Ferber, Multi-Agent Systems: An Introductionto Distributed Artificial Inteligence, 1999,
Addison-Wesley.

R.E.Filman and D.P.Friedman, Coordinating Computing: Tools and Techniques for Dis-
tributed Software, 1984, McGraw Hill.

N. Francez and |.R. Forman, Interacting Processes: a Multi-party Approach to Coordinat-
ed Distributed Programming, Addison-Wesley, 1996.

S.Frolund, Coordinating Distributed Objects-An Actor Approachto Synchronization, MIT
Press, 1996.

E. Gamma, R.Helm. R.Johnson, J.Vlissides, Design Patterns: Elements of Reusable Ob-
ject-Oriented Software, Addison-Wesley, 1994.

D.Garlan and D. Le Métayer (Eds), Second International Conference in Coordination
Models, Languages and Applications-Coordination’ 97, Berlin, Germany, Sept, 1997,
LNCS 1282, Springer Verlag

D.Gelernter, Generative Communication in Linda, ACM Transactions on Programming
Languagesand Systems (TOPLAYS), Vol. 7, No. 1, 1985, pp. 80-112.

D.Gelernter, N.Carriero, Coordination Languages and their significance, Communica-

266

[Guer92q]

[Guer92b]

[Guer98ad]

[Helmo0a]

[Hern96a]

[Hoar853]

[Holz964]

[IONA%4g]

[Jenn93a]

[Jenn96a]

[K afu96a]

[Kell76a]
[Kicz914q]

[Kicz974]

[Kiel964]

[Kriso34]

tionsof the ACM, Vol.5, N0.32, 1992, pp. 102-107.

R.Guerraoui, R.Capobianchi, A.Lanusse, PRoux, Nesting Actions Through Asynchronous
Message Passing: The ACSProtocol, ECOOP 1992, The Netherlands, June/July 1992, pp.
170-184.

R.Guerraoui, R.Capobianchi, A.Lanusse and PRoux, KAROS: un langage a objects con-
currents destiné a des applications distribuées, Techical Report CEA, CE Saclay DEIN/
SIR, 1992.

R. Guerraoui, P. Ferber, B. Garbinato, K. Mazouni, System Support for Object Groups,
Proceedings of OOPSLA’ 98, Vancouver, Canada, 1998.

R.Helm, I.Holland, D.Gangopadhyay, Contracts. Specifying behavioral Compositionsin
Object-Oriented Systems, OOPSL A/ECOOP 90, Vol .25, October 1990, pp.169-180.

J.Hernandez, M.Papathomas, J.M.Murillo, F. Sanchez, Coordinating Concurrent Objects:
How to deal with the Coordination Aspect?, InJ.Bosch and S. Mitchell (eds), Aspect-Ori-
ented Programming Workshop ECOOP 97, Finland, 1997.

C.A.R.Hoare, Communicating Sequential Processes, Prentice-Hall, 1995.

A.A.Holzbacher, A Software Environment for Concurrent Coordinated Programming, in
[Cian96a], pp. 249-266.

IONA, AnIntroductionto ORBIX+ 19 S, IONA Technologiesand | S SDistributed Systems,
1994,

N.R.Jennings, Commitments and Conventions: The Foundationsof Coordinationin Multi-
Agent Systems, The Knowledge Engineering Review Journal, Vol. 8, No. 3, 1993, pp. 223-
250.

N.R.Jennings, Coordination Techniques for Distributed Artificial Intelligence, in
[O’'Har96a], pp. 187-210.

D.Kafura, M.Mukherji, Coordination in Satically-Typed Concurrent Object-Oriented
Languages, 1996.

R.M.Kéller, Formal Verification of Parallel Programs, CACM, July, 1976.

GKiczales, J.des Riviéres, and D.G Bobrow, The Art of the Metaobject Protocol, MIT
Press, 1991.

GKiczales, JLamping. C.Maeda, C.Videira Lopes, J-M.Loingtier, J. Irwin, Aspect-Ori-
ented Programming, ECOOP 1997, Mehmet Aksit and Satoshi Matsuoka (Eds.), LNCS
1241, Springer Verlag, Finland, 1997, pp. 220-242.

T.Kielmann, Designing a Coordination Model for Open Systems, in [Cian96d], pp. 267-
284.

B.Kristensen, Traverse Activities: Abstractionsin Object-Oriented Programming, Object
Technologies fr Advanced Software, First JSSST International Symposium, Vol. 742,
Springer Verlag, 1993, pp. 279-296.

267

[Kriso74]

[Land974]

[Lea99d]

[Less874]

[Lisk834]

[Lope97a)

[Mage95a]

[Mage99al
[Malo93a]

[Mats94a]

[McHa934]

[Mins94a]

[Mins974]

[Mint924]
[Milio4a]

[Miln9ga]
[Mish894]

[Moss814]

B.Kristensen and D.May, Activities: Abstractions for Collective behavior, ECOOP' 97,
Vol. 1098, Linz, Austria, 1997, pp. 472-500.

S. Landis, and S. Maffeis, Building Reliable Distributed Systemswith CORBA, Theory and
Practice Object Systems 3, April 1997.

D.Lea, Concurrent Programming in Java-Design Principles and Patterns, Second Edi-
tion, Addison-Wesley 1999.

V.R.Lesser and D.D.Corkill, Distributed Problem Solving, in Encyclopedia of Al (ed.
S.C.Shapiro), pp. 245-251, John Wiley and Sons, 1987

B.Liskov and R.Shifler, Guardiansand Actions: Linguistic Support for Robust Distributed
Programs, ACM TOPLAS, July, 1983

C.V.Lopez and G..Kiczales, D: A Language Framework for Distributed Programming,
PARC Technical Report, TR SPL97-010P9710047, X erox Parc, 1997

J.Magee, N.Dulay, S.Eisenbach and J.Kramer, Soecifying Distributed Software Architec-
tures, ESEC' 95, Barcelone, Spain.

J.Magee, J.Kramer, Concurrency: Sate Modelsand Java Programs, Wiley, 1999.

T.Mdone, K.Crowston, The Interdisciplinary Sudy of Coordination, Technical Report
#157, Center for Coordination Science, MI T, Cambridge, USA.

S. Matsuokaand A. Yonezawa, Analysis of Inheritance Anomaly in Object-Oriented Con-
current Programming, in Research Directions in Concurrent Object-Oriented Program-
ming, MIT Press, 1993, pp. 107-150.

C.McHale, Synchronisation in Concurrent Object-Oriented Languages: Expressive Pow-
er, Genercity and I nheritance, Ph.D. Thesis, Deparment of Computer Science, Trinity Col-
lege, Dublin, 1994,

N.Minsky, Jerrold Leichter, Law-Governed Linda asa Coordination Model, in [Cian94a]
pp.125-146.

N.Minsky and V.Ungureanu, Regulated Coordination in Open Distributed Systems, in
[Garl97a], pp. 81-97.

H.Mintzberg, Sructurein Five: Designing Effective Organizations, 1992, Prentice-Hall.

G Miliciaand V. Sassone, The Inheritance Anomaly: Ten Years After, Proceeding of the
ACM Symposiumin Applied Computing, SAC 2004, Nicosia, Cyprus.

R.Milner, Communicating and Mobile Systems. the #-calculus, Cambridge University
Press, 1999.

S.Mishra, L. Peterson, and R. Schilicting, |mplementing Fault-Tolerant Replicated Ob-
jectsUsing Psync. | EEE Symposium on Reliable Distributed Systems, 1989.

J.E.B.Moss, Nested Actions: an Approach for Reliable Distributed Computing, Ph.D. The-
sis, Technical Report MIT/LCS/TR-260, MIT Laboratory for Computer Science, Cam-
bridge, USA, 1981.

268

[Mukh95a]

[Mull934]
[Mura89s]

[[Neliold]

[Nier87d]

[Nier89g]

[Nier93g]

[Nier00a]

[0’ Har964]

[OMG954]

[OMGO00g]

[Orfagsa]

[Owic82d]

[Papad4al

[Papadsal

[Papad6al

[Papadsal

[Petr624]

M.Mukhjeri and D.Kafura, Specification of Muti-Object Coordination SchemesUsing Co-
ordinating Environments, Draft, Virginia Tech, 1995.

S.Mullender, Distributed Systems, ACM Press, 1993

T.Murata, Petri Nets: Properties, Analysisand Applications, Proceeding of the |EEE, Vol.
77,N. 4, April, 1989.

A. Nelisse, T. Kielmann, H.E. Bal, J.Maassen, Object-Based Coll ective Communicationin
Java, ACM Java Grande, ISCOPEQ1 , Palo Alto, California, USA, 2001.

O.Nierstrasz, Active Objectsin Hybrid, OOPSLA’ 87, Vol. 22, Orlando, Florida, 1987, pp.
243-253.

O.Nierstrasz, A Survey of Object-Oriented Concepts, Object-Oriented Concepts, Databas-
es and Applications, ed. W. Kim and F. Lochovsky, pp. 3-21, ACM Press and Addison-
Wesley, 1989

O. Nierstrasz, Composing Active Objects-The Next 700 Concurrent Object-Oriented Lan-
guages, Research Directions in Concurrent Object-Oriented Programming, G. Agha, P
Wegner and A. Yonezawa (Eds.), pp. 151-171, MIT Press, 1993.

O.Nierstrasz, Concurrent Programming, course Material, http://www.iam.unibe.ch/cp-
wO1.pdf

G.M.PO’'Hareand N.R.Jennings (eds), Foundations of Distributed Artificial Intelligence,
1996, Wiley Press.

Object Management Group, The Common Object Request Broker: Architecture and Spec-
ification, 1995, http://www.omg.org/corba.

Object Management Group, Fault Tolerant CORBA Specification, Document ptc/2000-
04-04.

R.Orfali, D.Harkey, J.Edwards, The Essential Distributed Objects Survival Guide, Jon Wi-
ley & Sonsinc., 1995

S.Owicki, L.Lamport, Proving Liveness Properties of Concurrent Programs, ACM Trans-
actions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

M .Papathomas, G..S.Blair, and G..Coulson, A Model for Active Object Coordination and
its Usefor Distributed Multimedia Applications, in [Cian944], pp. 162-175.

M .Papathomas, Concurrency in Object-Oriented Programming Languages, in Object-
Oriented Software Composition, Addison Wesley, 1995.

M .Papathomas, ATOM: An Active Object Model for Enhancing Reusein the Devel opment
of Concurrent Software, Research Report RR 963-1-L SR-2, L SR-Imag, Grenoble, France,
1996.

G.A.Papadopoulos, F.Arbab, Coordination Model and Languages, CWI report, SEN-
R9834, The Netherlands, 1998.

C.A. Petri, Kommunikation mit Automaten, Ph.D. Thesis, University of Bonn, Bonn West

269

[Pint95a]

[Pric00g]

[Putio7a]

[Rows974]

[Schro3d]

[Sun034]

[Sun04a]

[Sutt05a]

[Symo80a]

[Tich974]

[Vare99a]

[Vern96a)

[Vern97a)

[W00d934]

[Yell974]

[Yone874]

[Ziae034]

Germany, 1962.

X.Pintado, Gluon: and the Cooper ation Between Software Components, in Object-Orient-
ed Software Composition, Addison Wesley, 1995

N.Price, Component Interaction in Distributed Systems, Ph.D.Thesis, University of Lon-
don, 2000.

F.Puntigam, Coordination Requirements Expressed in Types for Active Objects, Proceed-
ingsof ECOOP 97, LNCS 1241, Finland, 1997.

A.Rowstron and A.Wood, Bonita: a Set of Tuple Space Primitivesfor Distributed Coordi-
nation, 30th Hawaii International Conference on Systems Sciences- HICCS30, Maui, Ha
waii, 7-10 Jan, 1997, | EEE Press, Vol. 1, pp. 379-388.

M.D.Schroeder, A Sate of the Art Distributed Systems: Computing with BOB, 1993, in
[Mull93a].

Sun Microsystems, JavaSpaces Service ecification, Version 2.0, 2003, http://
www.sun.com/software/jini/specs/js2_0.pdf

Sun Microsystems, Concurrency Utilities, Java 2 Standard Edition 5.0, http:/
java.sun.com/j2se/1.5.0/docs/guide/concurrency/index.html

Herb Sutter, A Fundamental Turn Toward Concurrency in Software, Dr Dobb, March
2005.

F.J.W.Symons, Representation, analysisand verification of communication protocols, Re-
search Report 7380, Telecom Australia, 1980.

S.Tichelaar, A Coordination Component Framework for Open Distributed Systems, SCG-
Master Thesis, May 1997, University of Bern.

C.Vardlaand Gul Agha, A Hierarchical Model for Coordination of Concurrent Activities,
in[Cian99q], pp. 166-182.

F.Vernadat, PAzéma, Covering Sep Graph, 17th Int. Conf. on Application and Theory of
Petri Nets 96, Osaka, Japan, LNCS 1091, Springer, 1996.

F.Vernadat, F. Michel, Covering Siep Graph Preserving Failure Semantics, 18th Int. Conf.
on Application and Theory of Petri Nets 97, Toulouse, France, LNCS 1248, Springer,
1997.

M. Wood, Replicated RPC Using Amoeba Closed Group Communication, |EEE Interna-
tional Confererencein Distributed Computing Systems, 1993.

D.Yellin, R. Strom, Protocol Specifications and Component Adaptors, ACM TOPLAS,
Vol. 19 Issue 2, 1979.

A. Yonezawa and M.Tokoro, Object-Oriented Concurrent Programming, MIT Press,
Cambridge, Mass, 1987

R.Ziaei, G Agha, SynchNet: A Petri Based Coordination Language for Distributed Ob-
jects, GPCE 2003, LNCS 2830, pp. 324-343.

Curriculum Vitae

Per sonal I nformation:
Name: Juan Carlos Cruz Molinares
Nationality: Colombian
Date of Birth: 22 October 1967
Place of Birth: Barranquilla, Colombia
Education:
2006 Ph.D in Computer Sciencein the Software Composition Group (SCG), Prof. Dr. Oscar

1995

1990

Nierstrasz and Prof. Dr. Stéphane Ducasse, IAM, University of Bern, Switzerland

Subject of the Ph.D. Thesis:

"A Group Based Approach for Coordinating Active Objects"

DEA: Dipléme d'études approfondies eninformatique (Speciality: Parallelism and Distributed
Systems), Institut National Polytechnique de Grenoble-INPG, Ecole Nationale Supérieureen
Informati que et Mathématique A ppliquée de Grenoble (ENSIMAG), Prof.Dr. Jean-Luc
Koning and Prof. Dr. Yves Demazeau, France

Subject of the Master Thesis:

"Versun Ingénierie des Protocoles d'Interaction Pour des Systémes Multiagents”

Engineer in Computer Science, University of the Andes, Bogot4, Colombia

Professional Activities:

2004-

2001-2003
1999-2000
2002-2003

I'T Specialist/Security, Union Bank of Switzerland (UBS AG), Zurich, Switzerland
Software Consultant, Daedal os AG, Zurich, Switzerland

Software Consultant, Valtech AG, Zirich (former ObjectShare AG)

Software Consultant, Union Bank of Switzerland (UBS AG), Information and
Knowledge M anagement Division, Responsible: Ing. Dipl. Andreas Baer.

1999-2002

1995-1999

1994-1995

1992-1994

1991-1992

1990-1992

1989-1990

Software Consultant, Union Bank of Switzerland (UBS AG), Golden Retriever System,
Capacity Management Division, Responsible: Ing. Dipl. Andreas Baer

Research Assistant t at the Software Composition Group, |AM-University of Bern.
National Swiss Foundation project: NFS 2000-46947.96. Group leader Prof.Dr.

Oscar Nierstrasz

Research Internship at the Laboratory of Artificial Intelligence LIFIA-Grenoble, France
Group leader: Yves Demazeau. Validation of Interaction Protocolsin Multiagent
Systems

Computer Science-Research Engineer at the Laboratory of Nuclear Physics of
Annecy-le-Vieux (LAPP), France. Development of aparallel control system for the
new level 2 of the experience L3 at the LEP (CERN). Group Leader: Andre Degre
(Part-time) Development engineer at the DRI ingtitute (Ministry of Agriculture).
Development of asystem for planning and control of foreign investments.
Development and Support Engineer at INFOTEC S.A. Devel opment of the CAD/CAM
tool IXCEL v6.0. for the design and fabrication of cloths. Group Leader: Dr. José
Tiberio Hernandez

Research assistant at the CAD/CAM team of the Computer Science Department-
University of the Andes. Development of CAD/CAM tools.

SCG Responsibilities:

Co-Supervisor of thefollowing Master Thesisat the University of Bern:
Sander Tichelaar, 1996-1997 A Coordination Framework for Open Distributed Systems

Daniel Kuehni,

1997-1998 APROCO: A Programmable Coordination Medium,

Thomas Hofmann,1999-2000 OpenSpaces.An O.0. Framework for Reconfigurable

Coordination Spaces

Teaching Experience:

1990-1991

Introduction to Programming, Professor, Computer Science,
University of the Andes, Bogota, Colombia.

Publications;
J.C.Cruz

JJBlasing, et-al

J.C.Cruz, S. Tichelaar
J.C.Cruz, S. Tichelaar
J.C.Cruz, S. Ducasse

J.C.Cruz, S. Ducasse

S.Tichelaar, €t. al.
J.C.Cruz

J.C.Cruz

J.C.Cruz

"CIM inthetextileared', Memo No. 31, University of the Andes, CIFI, 1992
"The L3 second level for LEPwith the ST 9000 transputer and the STC104
asynchronous packet switch from SCG-Thomson", Proceedings of DAQ96,
Osaka 13-15 Nov. 1996.

"A Coordination Component Framework for Open Systems' SCG-Report, 1997.
"Managing evol ution of Coordination Aspectsin Open Systems', CTIS98.
"CoLaS: A Group Based Approach for Managing Coordination of Active Object",
COORDINATION'99

"Coordinating Open Distributed Systems, Proceedings of Future Trendsin
Distributed Computing Systems, FTDCS99

"Desing Guidelines for Coordination Components’, SAC2000.

"CORODS: A Coordination Programming Systemfor Open Distributed Systems”,
LMO2001

"Supporting Devel opment of Cooperative Object Information Systemswith
ColLaS', O0IS2001.

"OpenCoL aS: A Coordination Framework for CoLaSDialects’,
COORDINATION'2002

	CHAPTER 1
	Introduction
	1.1 The Problem
	1.2 The Approach
	Figure 1.1 : A coordination group

	1.3 Contributions of this Thesis
	1. Introduction of a group based approach for coordination of concurrent activities in object sys...
	2. Introduction of a coordination service for CORBA [Cruz99b][Cruz01a]. We define CORODS, a coord...
	3. Introduction of a platform for experimenting with the specification of rule-based coordination...
	4. A survey of coordination abstractions. We present a survey of coordination abstractions in exi...
	5. A methodology for the validation of formal properties of CoLaS coordination code. We present a...

	1.4 Thesis Outline

	CHAPTER 2
	Requirements for a Coordination model and language for Active Objects
	2.1 Coordination Models and Languages
	2.2 Coordination Theory
	Figure 2.1 : Malone and Crowston’s dependencies management examples
	2.2.1 Classification of Coordination Models and Languages
	2.2.2 Importance of Coordination Models and Languages

	2.3 Coordination Problems in Concurrent Systems
	2.4 Coordination Abstractions
	2.4.1 Abstract Communication Types [Aksi92a][Berg94a]
	Advantages:
	Disadvantages:

	2.4.2 Activities [Kris93a][Kris97a]
	Advantages:
	Disadvantages:

	2.4.3 Activities and Environments [Arap91a]
	Advantages:
	Disadvantages:

	2.4.4 Cast [Var99a]
	Advantages:
	Disadvantages:

	2.4.5 Connectors - FLO [Duca97a][Duca98a]
	Advantages:
	Disadvantages:

	2.4.6 Connectors - ArchJava [Aldr03a]
	Advantages:
	Disadvantages:

	2.4.7 Contracts [Helm90a]
	Advantages:
	Disadvantages:

	2.4.8 Collaborations [Yell97a]
	Advantages:
	Disadvantages:

	2.4.9 Coordination Contracts [Andr99a][Barr02a]
	Advantages:
	Disadvantages:

	2.4.10 Coordination Environments [Mukh95a]
	Advantages:
	Disadvantages:

	2.4.11 Coordination Policies [Mins97a]
	Advantages:
	Disadvantages:

	2.4.12 Coordination Types [Puti97a]
	Advantages:
	Disadvantages:

	2.4.13 Darwin - Ports [Mage95a]
	Advantages:
	Disadvantages:

	2.4.14 Event Notifications [Papa94a][Papa96a][Hern96a]
	Advantages:
	Disadvantages:

	2.4.15 Finesse - Bindings [Berr98a]
	Advantages:
	Disadvantages:

	2.4.16 Formal Connectors [Alle94a]
	Advantages:
	Disadvantages:

	2.4.17 GAMMA - Multi-Set Rewriting [Bana96a]
	Advantages:
	Disadvantages:

	2.4.18 Gluons [Pint95a]
	Advantages:
	Disadvantages:

	2.4.19 Linda - Tuple Spaces [Gele85a][Carr94a] + Linda Extensions: Bauhaus Linda [Carr94a], Bonit...
	Advantages:
	Disadvantages:

	2.4.20 Manifold - IWIM [Arba96a][Arba98a]
	Advantages:
	Disadvantages:

	2.4.21 Piccola - Scripts [Ache00a]
	Advantages:
	Disadvantages

	2.4.22 Rules and Constraints [Andr96a][Andr96b]
	Advantages:
	Disadvantages:

	2.4.23 Synchronizers [Frol93a]
	Advantages:
	Disadvantages:

	2.4.24 Wrappers [Ciob05a]
	Advantages:
	Disadvantages:

	2.4.25 Related Work - Summary

	2.5 An Ideal Coordination Language for Active Objects
	Requirements

	2.6 Conclusions and Contributions

	CHAPTER 3
	The CoLaS Coordination Model and Language
	3.1 The CoLaS Coordination Model
	Figure 3.1 : Entities composing the CoLaS model
	3.1.1 The Participants
	3.1.2 The Coordination Groups
	Figure 3.2 : Coordination Group
	Coordination Groups Specification
	Active Objects Group Participation
	Coordination Enforcement

	3.1.3 A first View of CoLaS - Subject and Views [Helm90a]
	Coordination Problems
	Structure
	Figure 3.3 : Observer Pattern structure

	Solution
	Figure 3.4 : Observer pattern

	Analysis

	3.2 The CoLaS Coordination Language - A Detailed View
	3.2.1 A Case Study: The Electronic Vote [Mins97a]
	Problem Description
	Figure 3.5 : The Electronic Vote - UML Class Diagram
	Figure 3.6 : The Electronic Vote - UML Interaction Diagram

	3.2.2 Roles Specification
	Figure 3.7 : Electronic Vote - Coordination Roles
	Analysis

	3.2.3 Coordination State
	Figure 3.8 : Electronic Vote - Coordination State
	Accessing And Modifying State Variables
	Figure 3.9 Accessing and Modifying State Variables

	Analysis

	3.2.4 Coordination Rules
	3.2.4.1 Cooperation Rules
	Figure 3.10 Cooperation Rules BNF
	Figure 3.11 : Electronic Vote - behavioral Rules
	Coordination Actions
	Replies

	3.2.4.2 Reactive Rules
	Interception Rules
	Figure 3.12 : Interception Rules BNF
	Figure 3.13 : Electronic Vote - Interception Rules
	Coordination State Actions

	Synchronization Rules
	Figure 3.14 : Synchronization Rules BNF
	Figure 3.15 : Electronic Vote - Synchronization rules

	Synchronization Condition

	3.2.4.3 Proactive Coordination Rules
	Figure 3.16 : Proactive Rules BNF
	Figure 3.17 : Electronic Vote - Proactive behavior
	Proactive Rules Enforcement

	3.2.4.4 Pseudo-Variables
	Analysis

	3.2.5 Dynamic Aspects
	Joining and Leaving Groups
	Figure 3.18 : Dynamic addition and removal of Participants

	Dynamic Creation of Groups
	Figure 3.19 : Dynamic creation of Groups

	Modification of the Coordination behavior
	Figure 3.20 : Dynamic modification of the Coordination behavior

	Analysis

	3.2.6 Groups Composition - The Electronic Agenda
	Problem Description
	Figure 3.21 : The Electronic Agenda - UML Class Diagram
	Figure 3.22 : The Electronic Vote - UML Interaction Diagram

	3.2.6.1 Coordination Roles
	Figure 3.23 : Electronic Agenda - Roles Specification

	3.2.6.2 Coordination State
	Figure 3.24 : Electronic Agenda - Coordination State

	3.2.6.3 Reusing Existing Coordination Groups
	Figure 3.25 : Electronic Agenda - Including Specification
	Analysis

	3.2.6.4 Coordination Rules
	Figure 3.26 : Electronic Agenda - Coordination Rules

	3.2.7 Groups as Participants
	Figure 3.27 Group Facade Specification
	Figure 3.28 : Electronic Agenda - Group Interface
	Analysis

	3.3 Evaluation of the CoLaS model
	3.4 Conclusions and Contributions
	Contributions

	CHAPTER 4
	CORODS: A Coordination Programming System for Open Distributed Systems
	4.1 Related Work
	4.2 Motivation - The Administrator Pattern [Papa95a]
	Figure 4.1 : A Distributed Administrator Pattern

	4.3 CoLaSD: Extensions for Distributed Object Coordination
	4.3.1 Consistency in Distributed Object Systems
	1. var n: partRange;
	2. var part: array [partRange] of oid of graphicObject;
	3. n := partRange.first;
	4. atomic {
	5. coloop {
	6. activity {
	7. delegate (part[n].displaySelf);
	8. }
	9. if (n <? partRange.last) {n+=1;}
	10. else {break;}
	11. }
	12. }
	Figure 4.2 Atomic actions in Hybrid
	1. <Guardian>.<Handler>(<arguments>)
	2. /* specification of the handler <Handler> for the guardian <Guardian>
	3.
	4.
	5.
	6. except when failure(why:string)
	7. /* alternative code in a case of service failure
	8.
	9.
	10.
	11. end
	Figure 4.3 : Guardian specification in Argus

	4.3.2 Consistency in CoLaS
	Figure 4.4 : Asynchronous communication in CoLas
	Figure 4.5 : CoLaS nested atomic actions

	4.3.3 The ACS Protocol
	4.3.3.1 App ly
	Figure 4.6 : Apply message
	Figure 4.7 : Failure in Apply message

	4.3.3.2 Call
	Figure 4.8 : Call Message

	4.3.3.3 Send
	Figure 4.9 : Send Message

	4.4 The CoLasD Coordination Model
	4.4.1 The Participants
	4.4.2 The Coordination Groups
	4.4.3 CoLaSD - The Administrator Pattern: A Simplified Version
	Figure 4.10 : The Administrator Pattern
	1. AdministratorPattern defineRoleNamed: #Client.
	2. AdministratorPattern defineRoleNamed: #Administrator.
	3. AdministratorPattern defineRoleNamed: #Worker.
	4.
	5. Worker defineInterface: #(#request:).
	6. Client defineInterface: #(#reply:).
	7.
	8. Worker defineParticipantVariable: #isFree initialValue: true.
	9.
	10. [1] Client defineBehavior: ’request:args’ as:
	11. [Administrator apply request: args].
	12.
	13. [2] Administrator defineBehavior: ’request:args’ as:
	14. [|worker|
	15. worker := Worker detect:[:aParticipant| aParticipant isFree].
	16. worker isFree: false.
	17. worker apply request:args client: sender].
	18.
	19. [3] Administrator disable: ’request:args’ if:
	20. [(Worker detect:[:aParticipant |aParticipant isFree])isNil].
	21.
	22. [4] Worker defineBehavior: ’request:args client: client’ as:
	23. [client reply: (self request: args)].
	24.
	25. [5] Worker interceptAtEnd: ’request:args client:client’ do:
	26. [receiver isFree:true].
	Figure 4.11 : The Administrator Pattern
	Role Specification
	Coordination State
	Coordination Rules
	Pseudo-Variables
	Failures
	Figure 4.12 Failure of the Apply service:
	1. [2] Administrator defineBehavior:’request:args’ as:
	2. [|worker result future |
	3. worker := Workers detect: [:aWorker| aWorker isFree].
	4. worker isFree: false.
	5.
	6. [worker notNil and:
	7. [(worker call request: args client: sender) failed]]
	8. whileTrue:
	9. [(worker := Workers detect:[:aWorker| aWorker isFree])
	10. ifNotNil: [worker isFree: false]].
	11.
	12. worker ifNil:[InsufficientComputingResourceError raiseSignal]].
	Figure 4.13 : Considering failures in workers

	Analysis

	4.5 CORODS - A Coordination Service for CORBA
	Figure 4.14 : CORODS
	4.5.1 The DST Framework

	4.6 The CORODS Coordination Service
	1. corods := ORBObject resolveInitialReferences: #CORODS.
	Figure 4.15 : Obtaining a reference to the CORODS service
	4.6.1 Coordination Groups Lifecycle Operations
	Group Creation
	1. CORODS >>createCoordinationGroupClassNamed: aCoordinationGroupClassName
	2. CoordinationGroup
	3. createCoordinationGroupClass: aCoordinationGroupClassName.
	4.
	5. CORODS >>createCoordinationGroupClassNamed: aCoordinationGroupClassName
	6. inHost:aHostName
	7. | orbProxy remoteCORODS |
	8. orbProxy := OrbResolver generateOrbProxy: aHostName.
	9. remoteCORODS := orbProxy resolveInitialReferences: #CORODS.
	10. remoteCORODS
	11. createCoordinationGroupClassNamed: aCoordinationGroupClassName.
	Figure 4.16 : Group Classes creation
	12. CORODS >>createCoordinationGroupNamed: aCoordinationGroupName
	13. forCoordinationGroupClassNamed: aCoordinationGroupClassName
	14. | factoryFinder cgFactory cg namingService|
	15. factoryFinder := ORBObject resolveInitialReferences: #FactoryFinder.
	16. cgFactory := factoryFinder
	17. contextResolve: aCoordinationGroupClassName asDSTName.
	18. cg := cgFactory
	19. createObjectKey: aCoordinationGroupClassName criteria: #().
	20. cg groupName: aCGName.
	21. namingService := ORBObject resolveInitialReferences: #NameService.
	22. namingService contextBind: aCoordinationGroupName asDSTName to: cg.
	23. ^cg
	24.
	25. CORODS >>createCoordinationGroupNamed: aCoordinationGroupName
	26. forCoordinationGroupClassNamed: aCoordinationGroupClassName
	27. inHost: aHostName
	28. | orbProxy remoteCORODS |
	29. orbProxy := OrbResolver generateOrbProxy: aHostName.
	30. remoteCORODS := orbProxy resolveInitialReferences: #CORODS.
	31. ^remoteCORODS
	32. createCoordinationGroupNamed: aCoordinationGroupName
	33. forCoordinationGroupClassNamed: aCoordinationGroupClassName
	Figure 4.17 : Groups creation in CORODS
	Figure 4.18 : Remote creation of a group

	Group Copy
	1. CORODS >>copyCoordinationGroupNamed: aCoordinationGroupName
	2. toHost: aHostName
	3. | cg orbProxy remoteFactoryFinder |
	4. cg := self getReferenceToCGNamed: aCoordinationGroupName.
	5. orbProxy := OrbResolver generateOrbProxy: aHostName.
	6. remoteFactoryFinder := orbProxy
	7. resolveInitialReferences:#FactoryFinder.
	8. ^cg copyFactoryFinder: remoteFactoryFinder criteria: #()
	9.
	10. CORODS >>copyRemoteCoordinationGroupNamed: aCoordinationGroupName
	11. fromHost: aHostName
	12. | orbProxy remoteCORODS cg |
	13. orbProxy := OrbResolver generateOrbProxy: aHostName.
	14. remoteCORODS := orbProxy resolveInitialReferences: #CORODS.
	15. cg := remoteCORODS getReferenceToCGNamed: aCoordinationGroupName.
	16. ^cg copyFactoryFinder: ORBObject factoryFinder criteria: #()
	17.
	18. CORODS >>copyCoordinationGroup: aGroup toHost: aHostName
	19. | orbProxy factoryFinder |
	20. orbProxy := OrbResolver generateOrbProxy: aHostName.
	21. factoryFinder := orbProxy resolveInitialReferences: #FactoryFinder.
	22. ^aGroup copyFactoryFinder: remoteFactoryFinder criteria: #()
	Figure 4.19 : Copying groups in CORODS

	Group Move
	Group Destruction
	1. CORODS >>destroyCoordinationGroup: aGroup
	2. | namingService cgName orb |
	3. orb := ORBObject.
	4. cg isRemote ifTrue:[orb:= OrbResolver generateOrbProxy:cg hostName].
	5. namingService := orb resolveInitialReferences: #NameService.
	6. cgName := cg groupName.
	7. namingService contextUnBind: cgName asDSTName.
	8. ^cg destroy
	Figure 4.20 : Destroying groups in CORODS

	4.6.2 References to Coordination Groups
	1. CORODS >>getReferenceToCoordinationGrouNamed: aCoordinationGroupName
	2. | namingService |
	3. namingService := ORBObject resolveInitialReferences: #NameService.
	4. ^namingService contextResolve: aCoordinationGroupName asDSTName.
	5.
	6. CORODS >>getReferenceToCoordinationGroupNamed: aCoordinationGroupName
	7. inHost: aHostName
	8. | orbProxy remoteCORODS |
	9. orbProxy := OrbResolver generateOrbProxy: aHostName.
	10. remoteCORODS := orbProxy resolveInitialReferences: #CORODS.
	11. ^remoteCORODS
	12. getReferenceToCoordinationGroupNamed:aCoordinationGroupNameName.
	Figure 4.21 : Obtaining references to groups
	Figure 4.22 : Obtaining a remote reference to a group

	4.6.3 The CORODS service’s IDL
	Group Creation Operations
	1. module CORODS {
	2. interface CORODSInterface {
	3.
	4. #pragma selector createCoordinationGroupClassNamed
	5. createCoordinationGroupClassNamed:
	6. void createCoordinationGroupClassNamed (in symbol aGroupName);
	7.
	8. #pragma selector createCoordinationGroupClassNamedInHost
	9. createCoordinationGroupClassNamed:inHost:
	10. void createCoordinationGroupClassNamedInHost
	11. (in string aGroupName, in symbol aHost);
	12.
	13. #pragma selector
	14. createCoordinationGroupNamedForCoordinationGroupClassNamed
	15. createCoordinationGroupNamed:forCoordinationGroupClassNamed:
	16. GroupInterface
	17. createCoordinationGroupNamedForCoordinationGroupClassNamed
	18. (in symbol aGroupName, in symbol aCoordinationGroupClassName);
	19.
	20. #pragma selector
	21. createCoordinationGroupNamedForCoordinationGroupClassNamedInHost
	22. createCoordinationGroupNamed:forCoordinationGroupClassNamed:inHost:
	23. GroupInterface
	24. createRemoteCoordinationGroupNamedForCoordinationGroupNamedInHost
	25. (in symbol aCoordinationGroupName,
	26. in symbol aCoordinationGrouoClassName,in symbol aHostName);
	27. ...
	Figure 4.23 : Group classes creation’s IDL

	4.7 CORODS - The Administrator
	Group Creation and Enrolment of Participants
	1. corods := ORBObject resolveInitialReferences: #CORODS.
	2. adminGroup := corods createCoordinationGroupNamed: #AdminGroup
	3. forCoordinationGroupClassNamed: #AdministratorPattern.
	4. administrator:= Administrator new.
	5. adminGroup addParticipant: administrator toRoleNamed: #Administrator.
	1. corods := ORBObject resolveInitialReferences: #CORODS.
	2. adminGroup := corods getReferenceToCoordinationGroupNamed: #AdminGroup
	3. inHost: #Ziyal.
	4. worker1 := Worker new.
	5. adminGroup addParticipant: worker1 toRoleNamed: #Worker.
	1. corods := ORBObject resolveInitialReferences: #CORODS.
	2. adminGroup := corods getReferenceToCoordinationGroupNamed: #AdminGroup
	3. inHost: #Ziyal.
	4. worker2 := Worker new.
	5. adminGroup addParticipant: worker2 toRoleNamed: #Worker.
	Figure 4.24 : The Administrator Pattern Scenario

	4.8 CORODS implementation Requirements and Limitations
	1. interface RoleInterface : CosLifeCycle::LifeCycleObject {
	2.
	3. SmalltalkObject defineVariable (in SmalltalkObject aSymbol);
	4.
	5. #pragma selector defineVariableInitialValue
	6. defineVariable:initialValue:
	7. SmalltalkObject defineVariableInitialValue
	8. (in SmalltalkObject aSymbol,in SmalltalkObject aValue);
	9.
	10. SmalltalkObject includesVariableNamed (in SmalltalkObject aSymbol);
	11.
	12. SmalltalkObject addParticipant (in SmalltalkObject aParticipant);
	13.
	14. ...
	15. };
	Figure 4.25 : Role’s IDL Interface
	1. CORBAName
	2. ^#'::Corods::RoleInterface'
	Figure 4.26 : CORBAName method
	Dynamicity

	4.9 Conclusions and Contributions
	Contributions

	CHAPTER 5
	OpenCoLaS: a Coordination Framework for CoLaS Dialects
	5.1 Coordination Rules in CoLaS
	5.1.1 Cooperation Rules
	5.1.2 Reactive Rules
	Interception Rules
	Synchronization Rules

	5.1.3 Proactive Rules

	5.2 The OpenCoLaS Framework
	Figure 5.1 : The OpenCoLaS Framework
	5.2.1 The Electronic Vote [Mins97a]
	Figure 5.2 : The Electronic Vote in CoLaS

	5.2.2 Behavioral Rules
	Rules Class Creation
	Figure 5.3 : CoLaS DefineBehavior rule in OpenCoLaS

	Rules Instantiation
	Using behavioral Rules
	Figure 5.4 : Behavioral Coordination Rules Instantiation for the Electronic Vote

	5.2.3 Reactive Rules
	Rules Class Creation
	Figure 5.5 : Reactive rules in OpenCoLaS
	Figure 5.6 : CoLaS Reactive Coordination Rules in OpenCoLaS

	Rules Instantiation
	Figure 5.7 : Instantiation of reactive rules in OpenCoLaS
	Figure 5.8 : Reactive Coordination Rules Instantiation for the Electronic Vote
	Figure 5.9 : Instantiation of Interception Rules

	5.2.4 Proactive Rules
	Rules Creation
	Figure 5.10 : CoLaS Proactive Rule in OpenCoLaS

	Rules Instantiation
	Figure 5.11 : Proactive Coordination Rules for the Electronic Vote

	5.2.5 Evaluation of Coordination Rules in CoLaS
	Cooperation Rules Evaluation
	Reactive Rules Evaluation
	Figure 5.12 : Specification of evaluation priorities for CoLaS rules

	Proactive Coordination Rules

	5.3 Evolution of the CoLaS Coordination Model
	5.3.1 Original CoLaS model [Cruz99a]
	Synchronization Rules
	Interception Rules
	Cooperation Rules
	Multi-Party Rules
	Proactive Rules

	5.3.2 Intermediate CoLaS model [Cruz01a]
	Behavioral Rules
	Synchronization Rules
	Interception Rules
	Proactive Coordination Rules

	5.4 Simplifying the Interception Rules in CoLaS
	Figure 5.13 : Simplifying Interception rules

	5.5 Specifying CoLaS like Coordination Models in OpenCoLaS
	5.5.1 Moses [Mins97a]
	The Sent rule
	Figure 5.14 : Moses Sent rule in OpenCoLaS

	The Arrived rule
	Figure 5.15 : Moses Arrived rule in OpenCoLaS

	Obligations rules
	Figure 5.16 : Moses +obligation proaction rule in OpenCoLaS

	Conclusions

	5.5.2 Composition Filters [Berg94a]
	The Dispatch Filter
	The Meta Filter
	The Wait Filter
	The Error Filter
	The RealTime Filter
	Conclusions

	5.5.3 Synchronizers [Frol93a]
	The update rule
	Figure 5.17 : Synchronizer Update rule in OpenCoLaS

	The disables rule
	Figure 5.18 : Synchronizer disable rule in OpenCoLaS

	The Atomic rule
	The stops rule
	Conclusions

	5.6 Conclusions and Contributions
	Contributions

	CHAPTER 6
	Validation
	6.1 From CoLaS Groups to Predicate-Action Petri Nets
	6.1.1 The CoLaS model
	Figure 6.1 : A coordination group

	6.1.2 Groups Mapping
	Message Exchange Mapping
	Figure 6.2 Predicate-Action Petri Net for a asynchronous message exchange
	Figure 6.3 Predicate-Action Petri Net for replies

	Roles Mapping
	Cooperation Rules Mapping
	Reactive Rules Mapping
	Proactive Rules Mapping
	Synchronization Policy
	Figure 6.4 Connecting Message receptions

	6.1.3 Specification of a Virtual Medium
	Figure 6.5 : Basic Virtual Medium
	Figure 6.6 : Virtual Medium modeling the lost of messages
	Figure 6.7 FIFO Virtual Medium

	6.1.4 From Predicate-Action Petri Nets to Place-Transition Petri Nets
	Figure 6.8 Elimination of Predicate and Actions in Predicate-Action Petri Nets

	6.2 Case Studies
	6.2.1 The “Subject and Views” [Helm90a]
	1. CoordinationGroup createCoordinationGroupClassNamed: #ObserverPattern.
	2.
	3. ObserverPattern defineRoleNamed: #Subject.
	4. Subject defineVariable: #subjectState.
	5.
	6. ObserverPattern defineRoleNamed: #Observer.
	7. Observer defineParticipantVariable: #observerState.
	8.
	9. [1] Subject defineBehavior: ’setState: aState’ as:
	10. [role subjectState: aState.
	11. self notify].
	12.
	13. [2] Subject defineBehavior: ’notify’ as:
	14. [Observer update].
	15.
	16. [3] Subject defineBehavior: ’getState’ as:
	17. [^role subjectState].
	18.
	19. [4] Observer defineBehavior: ’update’ as:
	20. [self observerState: (Subject unique getState result).
	21. self doSpecificAction].
	Figure 6.9 Observer pattern group
	Figure 6.10 Predicate-Action Petri Net for the Observer Cooperation Rules
	Figure 6.11 : A protocol error

	6.2.2 The Electronic Vote [Mins97a]
	Problem Description
	Structural Analysis
	1. CoordinationGroup createCoordinationGroupClassNamed: #ElectronicVote.
	2.
	3. ElectronicVote defineRoleNamed: #Voter.
	4.
	5. Voter defineInterface: #(#opinion:).
	6. ElectronicVote defineVariables: #(#numYes #numNot) initialValues: #(0 0).
	7. ElectronicVote defineVariable: #voteInProgress initialValue: false.
	8. ElectronicVote defineVariable: #votePeriodExpired initialValue: false.
	9. Voter defineParticipantVariable: #hasVoted initialValue: false.
	10.
	11. [1] Voter defineBehavior: ’startVote:anIssue’ as:
	12. [group voteInProgress: true.
	13. Voter voteOn: anIssue].
	14.
	15. [2] Voter defineBehavior: ’voteOn:anIssue’ as:
	16. [sender vote:(self opinion: anIssue)].
	17.
	18. [3] Voter defineBehavior: ’vote: aVote’ as:
	19. [aVote
	20. ifTrue: [group numYes++]
	21. ifFalse: [group numNot++].
	22. sender hasVoted: true].
	23.
	24. [4] Voter defineBehavior: ’stopVote’ as:
	25. [group votePeriodExpired: true.
	26. (group numYes = Voters size)
	27. ifTrue: [Voter voteResult: ’Yes’]
	28. ifFalse: [Voter voteResult: ’No’]].
	29.
	30. [5] Voter interceptAtEnd: ’stopVote’ do:
	31. [Voter do:[:each | each hasVoted: false].
	32. group voteInProgress: false.
	33. group votePeriodExpired: false.
	34. group numYes: 0.
	35. group numNot: 0].
	36.
	40. [6] Voter ignore: ’vote:aVote’ if:
	41. [group votePeriodExpired or:[sender hasVoted]].
	42.
	43. [7] Voter disable: ’startVote:anIssue’ if:
	44. [group voteInProgress].
	Figure 6.12 : The Electronic Vote
	Figure 6.13 Predicate-Action Petri Net for the Electronic Vote

	6.3 The Time Petri Net Analyser - TINA
	Petri Net Description
	6.3.1 The “Subject And Views” [Helm90a]
	Figure 6.14 “Subject and Views Places-Transitions Petri Net”
	Reachability Analysis
	Figure 6.15 Reachability Analysis for the Subject-Views Petri Net

	6.3.2 The Electronic Vote [Mins97a]
	Figure 6.16 Electronic Vote Places-Transitions Petri Net.
	Reachability Analysis
	Figure 6.17 Reachability Analysis for the Electronic Vote Petri Net

	6.4 Related Work
	1. synchnet TransmitterME (Transmitters: list of TransmistterC)
	2. init = { ob’.off | ob’ in Transmitters }
	3. foreach ob in Transmitters [with fairness]
	4. method ob.on
	5. requires { ob’.off | ob’ in Transmitters }
	6. consumes { ob.off }
	7. method ob.off
	8. requires { ob.on }
	9. consumes { ob.on }
	10. end TransmitterME
	Figure 6.18 TransmitterME SynchNet specification
	Figure 6.19 Diagram of TransmitterME instantiated on t1 and t2 in its initial state

	6.5 Conclusions and Contributions

	CHAPTER 7
	Case Studies
	7.1 A Context-Sensitive Help [Gamm95a]
	Problem Description
	Solution: Chain of Responsibility Design Pattern
	Coordination Aspects
	Structure
	Figure 7.1 : Chain of Responsibility structure

	Smalltalk Specification
	1. CaseStudies defineClass: #Handler
	2. superclass: #{Actalk.ActiveObject}
	3. indexedType: #none
	4. private: false
	5. instanceVariableNames: 'successor '
	6. classInstanceVariableNames: ''
	7. imports: ''
	8. category: 'CR_Pattern'
	9.
	10. >>successor
	11. ^successor
	12. >>successor: aHandler
	13. successor := aHandler
	14. >>handleRequest: aRequest
	15. (self canHandle: aRequest)
	16. ifTrue: [self executeRequest: aRequest]
	17. ifFalse:
	18. [self successor
	19. ifNotNil: [self successor handleRequest: aRequest]]
	20. >>canHandle: aRequest
	21. ^self subclassResponsibility
	22. >>executeRequest: aRequest
	23. ^self subclassResponsibility
	Figure 7.2 Handler Class
	1. CaseStudies defineClass: #View
	2. superclass: #{Actalk.ActiveObject}
	3. indexedType: #none
	4. private: false
	5. instanceVariableNames: 'widgets '
	6. classInstanceVariableNames: ''
	7. imports: ''
	8. category: 'CS_Pattern'
	9.
	10. >>handleRequest: aRequest
	11. self widgets first handleRequest: aRequest
	12.
	13. CaseStudies defineClass: #Widget
	14. superclass: #{CaseStudies.Handler}
	15. indexedType: #none
	16. private: false
	17. instanceVariableNames: 'position model'
	18. classInstanceVariableNames: ''
	19. imports: ''
	20. category: 'CR_Pattern'
	21.
	22. >>executeRequest: aRequest
	23. ^self displayHelp
	24. >>displayHelp
	25. ^self subclassResponsibility
	26. >>canHandle: aRequest
	27. ^self position contains: aRequest position
	28.
	29. CaseStudies defineClass: #Button
	30. superclass: #{CaseStudies.Widget}
	31. indexedType: #none
	32. private: false
	33. instanceVariableNames: ''
	34. classInstanceVariableNames: ''
	35. imports: ''
	36. category: 'CR_Pattern'
	37.
	38. CaseStudies defineClass: #Menu
	39. superclass: #{CaseStudies.Widget}
	40. indexedType: #none
	41. private: false
	42. instanceVariableNames: ''
	43. classInstanceVariableNames: ''
	44. imports: ''
	45. category: 'CR_Pattern'
	Figure 7.3 Concrete Handlers

	Analysis
	CoLaS Specification
	1. CoordinationGroup createCoordinationGroupClassNamed: #ChainRespPattern.
	2.
	3. ChainRespPattern defineRoleNamed: #Handler.
	4.
	5. Handler defineInterface: #(#executeRequest: #canHandle:).
	6. Handler defineParticipantVariable: #successor.
	7.
	8. [1] Handler defineBehavior: ’handleRequest: aRequest’ as:
	9. [(self canHandle: aRequest)
	10. ifTrue: [self executeRequest: aRequest]
	11. ifFalse:
	12. [self successor
	13. ifNotNil:
	14. [self successor handleRequest: aRequest]]].
	15.
	16. [2] Handler defineBehavior: ’setSuccessor: aHandler’ as:
	17. [self successor: aHandler].
	18.
	19. [3] Handler ignore: ’setSuccessor: aHandler’ if:
	20. [(Handler includes: aHandler)not].
	Figure 7.4 : Chain of Responsibility Pattern

	Analysis

	7.2 The Dining Philosophers[Dijk68a]
	Problem Description
	Solution
	Structure
	Figure 7.5 The Dining Philosopher’s Interaction Diagram

	Coordination Aspects
	Smalltalk Specification
	1. CaseStudies defineClass: #Philosopher
	2. superclass: #{Core.Object}
	3. indexedType: #none
	4. private: false
	5. instanceVariableNames: 'rightFork leftFork philproc'
	6. classInstanceVariableNames: ''
	7. imports: ''
	8. category: 'Philosophers'
	9.
	10. >>life
	11. self philproc:[[true] whileTrue:
	12. [self think.
	13. self eat.
	14. self philproc yield]] newProcess.
	15. self philproc resume.
	16. >>think
	17. Transcript cr; show: ‘Im thinking’.
	18. >>eat
	19. self leftFork take.
	20. self rightFork take.
	21. Transcript cr; show: ‘I spend some time eating’.
	22. self rightFork put.
	23. self leftFork put.
	24.
	25. CaseStudies defineClass: #Fork
	26. superclass: #{Core.Object}
	27. indexedType: #none
	28. private: false
	29. instanceVariableNames: 'semaphore '
	30. classInstanceVariableNames: ''
	31. imports: ''
	32. category: 'Philosophers'
	33.
	34. >>semaphore
	35. semaphore ifNil: [semaphore := Semaphore forMutualExclusion].
	36. ^semaphore
	37. >>>put
	38. self semaphore signal
	39. >>take
	40. self semaphore wait
	Figure 7.6 Philosopher and Fork classes

	Analysis
	ColaS Specification
	1. CoordinationGroup createCoordinationGroupClassNamed: #DiningPhilosophers.
	2.
	3. DiningPhilosophers defineRoleNamed: #Philosopher.
	4. Philosopher defineInterface: #(#think).
	5. Philosopher defineParticipantVariables: #(#leftFork #rightFork).
	6.
	7. DiningPhilosophers defineRoleNamed: #Fork.
	8. Fork defineParticipantVariable: #isFree initialValue: true.
	9.
	10. [1] Philosopher defineBehavior:
	11. ‘setRightFork:rightFork setLeftFork:leftFork’ as:
	12. [self rightFork: rightFork.
	13. self leftFork: leftFork].
	14.
	15. [2] Philosopher defineBehavior: ’life’ as:
	16. [[true] whileTrue: [self think. self eat]].
	17.
	18. [3] Philosopher defineBehavior: ’eat’ as:
	19. [(self rightFork take) wait.
	20. (self leftFork take) wait.
	21. Transcript cr; show: ‘I spend some time eating’.
	22. (self leftFork put) wait.
	23. (self rightFork put) wait].
	24.
	25. [4] Fork defineBehavior: ’take’ as:
	26. [self isFree: false].
	27.
	28. [5] Fork disable: ’take’ if:
	29. [self isFree not].
	30.
	31. [6] Fork defineBehavior: ’put’ as:
	32. [self isFree: true].
	Figure 7.7 Dining Philosophers

	Analysis
	33. Philosopher defineParticipantVariable: #id.
	34.
	35. [3] Philosopher defineBehavior: ’eat’ as:
	36. [|firstFork secondFork|
	37. (self id\\2= 1) /* \\ represents the module operator
	38. ifTrue:
	39. [firstFork := self rightFork.
	40. secondFork := self leftFork]
	41. ifFalse:
	42. [firstFork := self leftFork.
	43. secondFork := self rightFork].
	44. (firstFork take) wait.
	45. (secondFork take) wait
	46. Transcript cr; show: ‘I spend some time eating’.
	47. (secondFork put) wait.
	48. (secondFork put) wait].
	Figure 7.8 Dining Philosophers deadlock free

	7.3 The Vending Machine
	Problem Description
	Solution
	Structure
	Figure 7.9 : Vending Machine Interaction Diagrams

	Coordination Aspects
	Smalltalk Specification
	1. CaseStudies defineClass: #CoinAccepter
	2. superclass: #{Actalk.ActiveObject}
	3. indexedType: #none
	4. private: false
	5. instanceVariableNames: 'amountOfMoneyInserted'
	6. classInstanceVariableNames: ''
	7. imports: ''
	8. category: 'VendingMachine'
	9.
	10. >>insert: aFloat
	11. self amountOfMoneyInserted: self amountOfMoneyInserted + aFloat.
	12. self displayTotalInserted.
	13.
	14. CaseStudies defineClass: #CoinRefunder
	15. superclass: #{Actalk.ActiveObject}
	16. indexedType: #none
	17. private: false
	18. instanceVariableNames: 'coinAccepter slotsManager'
	19. classInstanceVariableNames: ''
	20. imports: ''
	21. category: 'VendingMachine'
	22.
	23. >>refund
	24. self slotsManager blockSlots result
	25. ifTrue:
	26. [self refund:(self coinAccepter
	27. amountOfMoneyInserted wait).
	28. self coinAccepter resetAmountOfMoneyInserted wait.
	29. self slotsManager unblockSlots wait]
	Figure 7.10 Vending Machine classes CoinAccepter and CoinRefunder
	30. CaseStudies defineClass: #Slot
	31. superclass: #{Actalk.ActiveObject}
	32. indexedType: #none
	33. private: false
	34. instanceVariableNames: 'item price numItems coinAccepter
	35. slotsManager moneyStore'
	36. classInstanceVariableNames: ''
	37. imports: ''
	38. category: 'VendingMachine'
	39.
	40. >>takeItem
	41. self slotsManager blockSlots result
	42. ifTrue:
	43. [self open. self updateMoneyAndReduceNumItems. self close.
	44. self slotsManager unblockSlots wait].
	45. >>updateMoneyAndReduceNumItems
	46. (self coinAccepter reduceAmountOfMoneyInserted: self price) wait.
	47. (self moneyStore addMoney: self price) wait.
	48. self reduceNumItems.
	49.
	50. CaseStudies defineClass: #SlotsManager
	51. superclass: #{Actalk.ActiveObject}
	52. indexedType: #none
	53. private: false
	54. instanceVariableNames: 'slotsAreBlocked'
	55. classInstanceVariableNames: ''
	56. imports: ''
	57. category: 'VendingMachine'
	58.
	59. >>blockSlots
	60. ^self slotsAreBlocked “if the slots are blocked we dont block”
	61. ifTrue: [false]
	62. ifFalse: [self slotsAreBlocked: true].
	63.
	64. CaseStudies defineClass: #MoneyStore
	65. superclass: #{Actalk.ActiveObject}
	66. indexedType: #none
	67. private: false
	68. instanceVariableNames: 'totalAmountOfMoneyInserted'
	69. classInstanceVariableNames: ''
	70. imports: ''
	71. category: 'VendingMachine'
	72.
	73. >>addMoney: aFloat
	74. self totalAmountOfMoneyInserted:
	75. self totalAmountOfMoneyInserted + aFloat.
	Figure 7.11 Vending Machine classes Slot, SlotsManager and MoneyStore

	Analysis
	CoLaS Specification
	1. CoordinationGroup createCoordinationGroupClassNamed: #VendingMachine.
	2.
	3. VendingMachine defineRoleNamed: #CoinAccepter.
	4. CoinAccepter maxNumParticipants: 1.
	5. CoinAccepter defineVariable: #amountOfMoneyInsertedByUser initialValue: 0.
	6. CoinAccepter defineInterface: #(#displayTotalAccepted:).
	7.
	8. VendingMachine defineRoleNamed: #CoinRefunder.
	9. CoinRefunder maxNumParticipants: 1.
	10. CoinRefunder defineInterface: #(#refund:).
	11.
	12. VendingMachine defineRoleNamed: #Slot.
	13. Slot defineInterface:#(#open #close).
	14. Slot defineParticipantVariables: #(#item #price #numItems).
	15.
	16. VendingMachine defineRoleNamed: #MoneyStore.
	17. MoneyStore maxNumParticipants: 1.
	18. MoneyStore defineVariable: #totalAmountOfMoneyInserted initialValue: 0.
	19. MoneyStore defineInterface: #(#storeMoney:).
	20.
	21. [1] CoinAccepter defineBehavior: ’insert: money’ as:
	22. [self amountOfMoneyInsertedByUser+= money.
	23. self displayTotalAccepted: self amountOfMoneyInsertedByUser].
	24.
	25. [2] CoinRefunder defineBehavior: ’refund’ as:
	26. [self refund: CoinAccepter amountOfMoneyInsertedByUser.
	27. CoinAccepter amountOfMoneyInsertedByUser: 0].
	28.
	29. [3] Slot defineBehavior: ’takeItem’ as:
	30. [self open.
	31. CoinAccepter amountOfMoneyInsertedByUser-=: self price.
	32. (MoneyStore unique storeMoney: self price) wait.
	33. MoneyStore totalAmountOfMoneyStored+= self price.
	34. self numItems--.
	35. self close].
	36.
	37. [4] Slot ignore: ’takeItem’ if:
	38. [CoinAccepter amountOfMoneyInsertedByUser < self price].
	39.
	40. [5] CoinRefunder ignore: ’refund’ if:
	41. [CoinAccepter amountOfMoneyInsertedByUser = 0].
	Figure 7.12 : The Vending Machine

	Analysis
	1. VendingMachine defineRoleNamed: #SlotsManager.
	1. SlotsManager defineVariable: #slotsAreBlocked initialValue: false.
	2.
	3. [6] SlotsManager defineBehavior: ’blockSlots’ as:
	4. [^self slotsAreBlocked
	5. ifTrue: [false]
	6. ifFalse: [self slotsAreBlocked: true. true]].
	7.
	8. [7] SlotsManager defineBehavior: ’unblockSlots’ as:
	9. [self slotsAreBlocked: false]
	10.
	11. [2] CoinRefunder defineBehavior: ’refund’ as:
	12. [(SlotsManager unique blockSlots result)
	13. ifTrue:
	14. [self refund: CoinAccepter amountOfMoneyInsertedByUser.
	15. CoinAccepter amountOfMoneyInsertedByUser: 0.
	16. SlotsManager unique unblockSlots wait]].
	17.
	18. [3] Slot defineBehavior: ’takeItem’ as:
	19. [(SlotsManager unique blockSlots result)
	20. ifTrue:
	21. [self open.
	22. (CoinAccepter amountOfMoneyInsertedByUser -=self price.
	23. (MoneyStore unique storeMoney: self price) wait.
	24. MoneyStore totalAmountOfMoneyStored += self price.
	25. self numItems--.
	26. self close.
	27. SlotsManager unique unblockSlots wait]].
	Figure 7.13 Vending Maching using a SlotsManager

	7.4 The Online-Music Shop [Pric00a]
	Problem Description
	Figure 7.14 Online-Music Shop problem

	Solution
	Coordination Aspects
	Structure
	Figure 7.15 Online Music-Shop Interaction Diagrams

	Smalltalk Specification
	1. CaseStudies defineClass: #OnlineRecordShop
	2. superclass: #{Actalk.ActiveObject}
	3. indexedType: #none
	4. private: false
	5. instanceVariableNames: ''
	6. classInstanceVariableNames: 'recordShop'
	7. imports: ''
	8. category: 'OnlineMusicShop'
	9.
	10. >>browse
	11. |keyword|
	12. keyword := self requestKeyword.
	13. self display: (self recordShop browse: keyword) result.
	14. >>preview
	15. |titleInfo track|
	16. titleInfo := self selectTitle.
	17. track := (self recordShop preview: titleInfo) result.
	18. self play: track.
	19. >>purchase
	20. |paymentInfo titleInfo track|
	21. titleInfo := self selectTitle.
	22. paymentInfo := self requestPaymentInformation.
	23. track :=(self recordShop purchase: aTitleInfo
	24. payment: paymentInfo) result
	25. self save: track.
	Figure 7.16 Online Music Shop: OnlineRecordShop class
	26. CaseStudies defineClass: #RecordShop
	27. superclass: #{Actalk.ActiveObject}
	28. indexedType: #none
	29. private: false
	30. instanceVariableNames: 'mediaStores banks'
	31. classInstanceVariableNames: ''
	32. imports: ''
	33. category: 'OnlineMusicShop'
	34.
	35. >>browse: aKeyword
	36. |results|
	37. results := OrderedCollection new.
	38. self mediaStores do:
	39. [:each| results add: (each titlesWithKeyword: aKeyword) result].
	40. ^results.
	41. >>preview: aTitleInfo
	42. |mediaStoreId mediaStore|
	43. mediaStoreId := aTitleInfo mediaStoreId.
	44. mediaStore := self mediaStores detect:[:each| each id= mediaStoreId].
	45. ^(mediaStore lowQualityTrackForTitle: aTitleInfo) result.
	46. >>purchase: aTitleInfo payment: aPaymentInfo
	47. |mediaStoreId mediaStore bank authorization|
	48. mediaStoreId := aTitleInfo mediaStoreId.
	49. mediaStore := self mediaStores detect:[:each| each id= mediaStoreId].
	50. bank := self banks detect:[:each | each name = aPaymentInfo bank].
	51. authorization := (bank confirmPayment: aPaymentInfo) result.
	52. (authorization ~= -1)
	53. ifTrue:
	54. [self registerAuthorization: authorization
	55. forPayment: aPaymentInfo
	56. ^(mediaStore highQualityTrackForTitle: aTitleInfo) result].
	Figure 7.17 Online Record Shop: RecordShop class
	57. CaseStudies defineClass: #Bank
	58. superclass: #{Actalk.ActiveObject}
	59. indexedType: #none
	60. private: false
	61. instanceVariableNames: ''
	62. classInstanceVariableNames: ''
	63. imports: ''
	64. category: 'OnlineMusicShop'
	65.
	66. >>confirmPayment: aPaymentInfo
	67. | authorization |
	68. ((authorization := self validatePayment: aPaymentInfo) ~= -1)
	69. ifTrue:
	70. [self registerAuthorization: authorization
	71. forPayment: aPaymentInformation].
	72. ^authorization].
	Figure 7.18 Online Record Shop: Bank class

	Analysis
	ColaS Specification
	1. CoordinationGroup createCoordinationGroupClassNamed: #MusicShop.
	2.
	3. MusicShop defineRoleNamed: #RecordShop.
	4. RecordShop defineInterface: #(#registerAuthorization:forPayment:).
	5.
	6. MusicShop defineRoleNamed: #MediaStore.
	7. MediaStore defineInterface: #(#id #titlesWithKeyword:
	8. #lowQualityTrackForTitle:
	9. #highQualityTrackForTitle:).
	10.
	11. MusicShop defineRoleNamed: #OnlineRecordStore.
	12. OnlineRecordStore defineVariable: #recordShop.
	13. OnlineRecordStore defineInterface:#(#requestKeyword #display: #selectTitle
	14. #play: #save: #requestPaymentInformation).
	15.
	16. MusicShop defineRoleNamed: #Bank.
	17. Bank defineInterface: #(#name #validatePayment:
	18. #registerAuthorization:forPayment:).
	19.
	20. [1] OnlineRecordShop defineBehavior: ’browse’ as:
	21. [|keyword|
	22. keyword := self requestKeyword.
	23. self display: (self recordShop browse: keyword) result].
	24.
	25. [2] RecordShop defineBehavior: ’browse: aKeyword’ as:
	26. [|results|
	27. results := OrderedCollection new.
	28. MediaStore
	29. do:[:each| results add:(each titlesWithKeyword: aKeyword) result].
	30. ^results].
	31.
	32. [3] OnlineRecordShop defineBehavior: ’preview’ as:
	33. [titleInfo track|
	34. titleInfo := self selectTitle.
	35. track := (self recordShop preview: titleInfo) result.
	36. self play: track].
	37.
	38. [4] RecordShop defineBehavior: ’preview: aTitleInfo’ as:
	39. [|mediaStoreId mediaStore|
	40. mediaStoreId := aTitleInfo mediaStoreId.
	41. mediaStore := MediaStore detect:[:each | each id = mediaStoreId].
	42. ^(mediaStore lowQualityTrackForTitle: aTitleInfo) result].
	Figure 7.19 : Online-Music Shop browse and preview specifications
	43. [5] OnlineRecordShop defineBehavior: ’purchase’ as:
	44. [|paymentInfo titleInfo track|
	45. titleInfo := self selectTitle.
	46. paymentInfo := self requestPaymentInformation.
	47. track:=(self recordShop purchase: titleInfo
	48. payment: paymentInfo) result.
	49. self save: track].
	50.
	51. [6] RecordShop defineBehavior: ’purchase: aTitleInfo
	52. payment: aPaymentInfo’ as:
	53. [|mediaStoreId mediaStore bank authorization|
	54. mediaStoreId := aTitleInfo mediaStoreId.
	55. mediaStore := MediaStore detect:[:each | each id = mediaStoreId].
	56. bank := Bank detect:[:each | each name = aPaymentInfo bank].
	57. authorization := (bank confirmPayment: aPaymentInfo) result.
	58. (authorization ~= -1)
	59. ifTrue:
	60. [self registerAuthorization: authorization
	61. forPayment: aPaymentInfo.
	62. ^(mediaStore highQualityTrackForTitle:aTitleInfo) result]].
	63.
	64. [7] Bank defineBehavior: ’confirmPayment: aPaymentInfo’ as:
	65. [| authorization |
	66. ((authorization := self validatePayment: aPaymentInfo) ~= -1)
	67. ifTrue:
	68. [self registerAuthorization: authorization
	69. forPayment: aPaymentInfo].
	70. ^authorization].
	Figure 7.20 : Online Music Shop purchase specification

	Analysis
	71. MusicShop defineRoleNamed: #RadioStation.
	72. RadioStation defineInterface: #(#name #topTenTitles)
	73.
	74. [8] OnlineRecordShop defineBehavior: ’topTenTitlesInRadioStation: aString’
	75. as: [self display:
	76. (self recordShop topTenTitlesInRadioStation: aString) result].
	77.
	78. [9] RecordShop defineBehavior: ’topTenTitlesInRadioStation: aString’ as:
	79. [|radioStation|
	80. radioStation := RadioStation detect:[:each | each name = aString].
	81. ^radioStation topTenTiles result].
	82.
	Figure 7.21 Dynamic Modification of the Coordination

	7.5 The Ornamental Garden [Burn93a]
	Problem Description
	Solution
	Coordination Problems
	Structure
	Figure 7.22 :Ornamental Garden structure

	Smalltalk Specification
	1. CaseStudies defineClass: #Turnstile
	2. superclass: #{Actalk.ActiveObject}
	3. indexedType: #none
	4. private: false
	5. instanceVariableNames: ''
	6. classInstanceVariableNames: 'counter' /* share variable
	7. imports: ''
	8. category: 'OrnamentalGarden'
	9.
	10. >>counter: aTurnstileCounter
	11. counter := aTurnstileCounter
	12. >>enterVisitor
	13. self counter
	14. incrementCounterIfDoneDo:[Transcript cr; show:‘Welcome‘]
	15. ifNotDoneDo: [Transcript cr; show:‘Garden is full‘]
	16. >>leaveVisitor
	17. self counter decrementCounter
	18.
	1. CaseStudies defineClass: #TurnstileCounter
	2. superclass: #{Core.Object}
	3. indexedType: #none
	4. private: false
	5. instanceVariableNames: ''
	6. classInstanceVariableNames: 'counter counter_sem'
	7. imports: ''
	8. category: 'OrnamentalGarden'
	9.
	10. >>counter
	11. counter ifNil:[counter := 0].
	12. ^counter
	13. >>counter: anInteger
	14. counter := anInteger.
	15. >>counter_sem
	16. counter_sem ifNil: [counter_sem := Semaphore forMutualExclusion].
	17. ^counter_sem
	18. >>incrementCounterIfDo: aDoneBlock ifNotDoneDo: aNotDoneBlock
	19. self counter_sem critical:
	20. [self counter < 100
	21. ifTrue: [self counter: self counter + 1. aDoneBlock eval]
	22. ifFalse: [aNotDoneBlock eval]]
	23. >>decrementCounter
	24. self counter_sem critical: [self counter : self counter -1]
	25.
	Figure 7.23 Ornamental Garden classes

	Analysis
	CoLaS Specification
	1. CoordinationGroup createCoordinationGroupClassNamed: #OrnamentalGarden.
	2. OrnamentalGarden defineVariable: #maxNumVisitors initialValue: 100.
	3. OrnamentalGarden defineVariable: #numVisitors initialValue: 0.
	4.
	5. OrnamentalGarden defineRoleNamed: #Turnstile.
	6.
	7. Turnstile defineBehavior: ’enterVisitor’ as:
	8. [group numVisitors = group maxNumberOfVisitors
	9. ifTrue: [Transcript cr; show: ‘Garden is full’]
	10. ifFalse: [group numVisitors++. Transcript cr; show: ‘Welcome’].
	11.
	12. Turnstile defineBehavior: ’leaveVisitor’ as:
	13. [group numVisitors--].
	Figure 7.24 Ornamental Garden

	Analysis
	14. Turnstile defineBehavior: ’enterVisitor’ as:
	15. [group numVisitors++. Transcript cr; show: ‘Welcome’].
	16.
	17. Turnstile defineBehavior: ’leaveVisitor’ as:
	18. [group numVisitors--].
	19.
	20. Turnstile disable: ’enterVisitor’ if:
	21. [group numVisitors = group maxNumberOfVisitors].
	Figure 7.25 Ornamental Garden with disable rule

	7.6 The New Server Election
	Problem Description
	Solution
	Coordination Problems
	Smalltalk Specification
	1. CaseStudies defineClass: #Server
	2. superclass: #{Actalk.ActiveObject}
	3. indexedType: #none
	4. private: false
	5. instanceVariableNames: ''
	6. classInstanceVariableNames: 'id next participant elected'
	7. imports: ''
	8. category: 'RingBasedElection'
	9.
	10. >>electNewServer
	11. self participant: true.
	12. self next election: self id.
	13. >>election: anInteger
	14. anInteger > self id
	15. ifTrue:
	16. [self next election: anInteger.
	17. self participant: true].
	18. anInteger < self id
	19. ifTrue:
	20. [self participant
	21. ifFalse:
	22. [self next election: self id.
	23. self participant: true]].
	24. anInteger = self id
	25. ifTrue:
	26. [self participant: false.
	27. self elected: self receiver.
	28. self next elected: self receiver
	29. >>elected: aServer
	30. self receiver ~= aServer
	31. ifTrue: [self next elected: aServer].
	32. self elected: aServer
	Figure 7.26 Ring Based Election Server class

	Analysis
	CoLaS Specification
	1. CoordinationGroup createCoordinationGroupClassNamed: #RingBasedElection.
	2.
	3. RingBasedElection defineRoleNamed: #Server.
	4.
	5. Server defineParticipantVariables: #(id #next #participant #elected)
	6. initialValues: #(0 nil false nil).
	7.
	8. [1] Server defineBehavior: ’electNewServer’ as:
	9. '[self participant: true.
	10. self next election: self id]'.
	11.
	12. [2] Server defineBehavior: ’election: anInteger’ as:
	13. '[anInteger > self id
	14. ifTrue:
	15. [self next election: anInteger.
	16. self participant: true].
	17. anInteger < self id
	18. ifTrue:
	19. [self participant
	20. ifFalse:
	21. [self next election: self id.
	22. self participant: true]].
	23. anInteger = self id
	24. ifTrue:
	25. [self participant: false.
	26. self elected: self receiver.
	27. self next elected: self receiver]]'.
	28.
	29. [3] Server defineBehavior: ’elected: aServer’ as:
	30. '[self receiver ~= aServer
	31. ifTrue: [self next elected: aServer].
	32. self elected: aServer]'
	Figure 7.27 Ring-Based Election group

	Analysis

	7.7 Conclusions

	CHAPTER 8
	Conclusions
	8.1 Evaluation of the CoLaS Model
	8.2 The Good, The Bad and The Ugly of the Model
	8.2.1 The Participants
	Communication

	8.2.2 Role Specification
	8.2.3 The Coordination State
	8.2.4 The Coordination Rules
	8.2.5 Dynamic Aspects

	8.3 Some Implementation Concerns
	8.3.1 The Role Concept
	8.3.2 Coordination Enforcement

	8.4 Future Work

	APPENDIX A
	Coordination Abstractions
	A.1 Abstract Communication Types [Aksi92a][Berg94a]
	Composition Filters
	Figure A.1 : Composition Filters
	Figure A.2 : Filters evaluation

	Evaluation
	Inheritance and Delegation
	ACT
	Figure A.3 : ASTs object controlling outgoing messages
	1. class ReferencePoint interface
	2.
	3. externals figure: OneWayConstraint; // instance of the ART class
	4. internals myPoint: Point,
	5. methods display returns Nil; // display itself
	6.
	7. inputFilters
	8. {constraint: Meta={True=> [*.moveTo]figure.applyConstraint};
	9. disp: Dispatch={true=> myPoint.*, True=>inner.*};}
	10. end
	11.
	12. class OneWayConstraint interface
	13.
	14. methods
	15. applyConstraint(Message) returns Nil; // independent value
	16. putDependants(OrderedCollection(Any)) returns Nil;
	17. size returns Integer;
	18. putConstraints(OrderedCollection(Block) returns Nil;
	19. getConstraints returns OrderedCollection(Block);
	20.
	21. inputFilters
	22. {disp: Dispatch = {true => inner.*}
	23.
	24. end
	Figure A.4 : ReferencePoint and OneWayConstraint classes specification

	A.2 Activities [Kris93a][Kris97a]
	Figure A.5 : Graphic representation of an Activity
	Figure A.6 : Roles specification
	Specialization and Aggregation
	Figure A.7 : Specialization Mechanism
	Figure A.8 : Aggregation Mechanism

	A.3 Activities and Environments [Arap91a]
	FTL Syntax - Modal Operators
	Objects
	Figure A.9 : ControlTower class specification

	Activities
	Figure A.10 :Take-off activity specification

	Environments
	Consistency of the Specifications

	A.4 Cast [Vare99a]
	Figure A.11 Coordinated activity with casts, directors and messengers.

	A.5 Connectors - FLO [Duca97a][Duca98a]
	Figure A.12 : Connector specification
	Connector’s behavior
	Figure A.13 : Filters syntax
	Figure A.14 : A Calculator-Graphic Displayer’s Connector

	A.6 Connectors - ArchJava [Aldr03a]
	1. public component class PoemPeer {
	2. public port search {
	3. provides PoemDesc{} search(PoemDesc partialDesc) throws IOException;
	4. provides void downloadPoem(PoemDesc desc) throws IOException;
	5. }
	6.
	7. public port poems {
	8. requires PoemDesc[] getPoemDesc();
	9. requires Poem getPoem(PoemDesc desc);
	10. requires void addPoem(Poem poem);
	11. }
	12.
	13. public port interface client {
	14. requires client(InetAddress address) throws IOException;
	15. requires PoemDesc[] search(PoemDesc partialDesc, int hops, Nonce n);
	16. requires Poem download(PoemDesc desc);
	17. }
	18.
	19. public port interface server {
	20. provides PoemDesc[] search(PoemDesc partialDesc, in hops, Nonce n);
	21. provides Poem download(PoemDesc desc);
	22. }
	23.
	24. void downloadPoem(PoemDesc desc) throws IOException { ... }
	25. ...
	26. }
	Figure A.15 PoemPeer class
	27. public component class PoemSwap {
	28. private final SwapUI = new SwapUI();
	29. private final PoemStore store = new PoemStore();
	30. private final PoemPeer peer = new PoemPeer();
	31.
	32. connect pattern SwapUI.poems, PoemStore.poems;
	33. connect pattern PoemPeer.poem, PoemStore.poems;
	34. connect pattern SwapUI.search, PoemPeer.search;
	35.
	36. public PoemSwap() {
	37. TCPConnector.registerObject(peer, POEM_PORT, “server”);
	38. connect(ui.poems, store.poems);
	39. connect(peer.poems, store.poems);
	40. connect(ui.search, peer.search);
	41. }
	42.
	43. connect pattern PoemPeer.client, PoemPeer.server with: TCPConnector {
	44. connect(sender.client, PoemPeer.server)
	45. with new TCPConnector(address, POEM_PORT, “server”);
	46. }
	47. };
	48. }
	Figure A.16 PoemSwap architecture.

	A.7 Contracts [Helm90a]
	Contract Specification
	Figure A.17 : Contract SubjectView

	Refinement and Inclusion
	Conformance
	Instantiation

	A.8 Collaborations [Yell97a]
	Figure A.18 : A Filter’s collaboration specification
	Protocol Semantics
	Protocol Compatibility
	Adaptors
	Figure A.19 : Adaptor’s transition rules

	A.9 Coordination Contracts [Andr99a][Barr02a]
	1. contract <name>
	2. partners <list-of-partners>
	3. invariant <the relation between the partners>
	4. constants ..
	5. attributes ..
	6. operations ..
	7. coordination <interaction-with-partners>
	8. behavior // the contract’s own behavior
	9. <additional behavior being superposed>
	10. end contract
	11.
	12. <interaction-with-partner>
	13. <name> : when <condition> do <set of actions> with <condition>
	Figure A.20 Coordination Contract specification.
	1. contract VIP package
	2. partners x: Account; y: Customer;
	3. constants CONST_VIP_BALANCE: Integer
	4. attributes Credit: Integer;
	5. invariants
	6. ?owns(x,y) = TRUE;
	7. x.AverageBalance() >= CONST_VIP_BALANCE;
	8. coordination
	9. vp: when y.calls(x.withdrawal(z)) do x.withdrawal(z)
	10. with x.Balance() + Credit() > z;
	11. end contract
	Figure A.21 VIP account package coordination contract.

	A.10 Coordination Environments [Mukh95a]
	Autonomous Objects
	CE Objects
	Figure A.22 : MultiButtonPanel Coordination Environment

	A.11 Coordination Policies [Mins97a]
	The Law of a Policy
	Policies Enforcement
	Members Admission
	Obligations
	Figure A.23 : Law L for electronic voting policy

	A.12 Coordination Types [Puti97a]
	Figure A.24 : Processes Syntax
	Static Checking

	A.13 Darwin - Ports [Mage95a]
	Figure A.25 : Specification of a pipeline component

	A.14 Event Notifications [Papa94a][Papa96a][Hern96a]
	1. class Consumer(Activity)
	2. def _init_(self,ch):
	3. self.c = ch
	4.
	5. def stepaction(self):
	6. data = self.c.get().
	7. self.consume(data)
	Figure A.26 : Flow Control Example

	A.15 Finnesse - Bindings [Berr98a]
	1. Binding Example {
	2. Import ...;
	3. Roles {
	4. Client {send! }
	5. [#>=1] Server { receive? }
	6. }
	7. Interactions {
	8. Client.send -> [#=all] Server.receive
	9.
	10. }
	Figure A.27 : Binding describing a reliable multicast
	Inheritance and Subtyping
	Interaction Semantics
	1. Binding Example {
	2. Roles {
	3. Consumer { consume?(x:t1) *+ }
	4. Producer { produce!(x:t1) *- }
	5. }
	6. Interactions {
	7. {Producer.produce -> Consumer.consume } *-
	8. }
	9. }
	Figure A.28 : Interaction Semantics

	A.16 Formal Connectors [Alle94a]
	Connector Specification
	1. connector Service =
	2. role Client = request!x -> result?y -> Client P
	3. role Server = invoke?x -> return!y -> Server []
	4. glue = Client.request?x- > Service.invoke!x
	5. ->Service.return?y -> Client.result!y -> glue
	6. []
	Figure A.29 : Service Connector

	A.17 GAMMA - Multiset Rewriting [Bana96a]
	Figure A.30 : Prime numbers in Gamma

	A.18 Gluons [Pint95a]
	Figure A.31 : Protocol transition table for a simple gluon

	A.19 Linda - Tuple Spaces [Gele85a][Carr94a]
	1. phil(i)
	2. int i;
	3. { while(1) {
	4. think();
	5. in(’room ticket’);
	6. in(’chopstick’, i);
	7. in(’chopstick’, (i+1)%Num);
	8. eat();
	9. out(’chopstick’, i);
	10. out(’chopstick’, (i+1)%Num);
	11. out(’room ticket’);
	12. }
	13. }
	Figure A.32 : Dinning Philosophers in Linda

	A.20 Manifold - IWIM [Arba96a][Arba98a]
	1. #define WAIT(preemptall, terminated(self))
	2.
	3. event request, done.
	4. manner Eat(process, process, process) import.
	5. manner Think(process) import.
	6. manner GetTicket() import.
	7. manner ReturnTicket() import.
	8.
	9. export Fork()
	10. {begin: while true do {
	11. begin: WAIT.
	12. request.*phil & *ready.*phil: {
	13. save *.
	14. begin: (raise(ready), WAIT).
	15. done.phil:.
	16. }
	17. }
	18. }
	19.
	20. export Philosopher()
	21. {
	22. event ready.
	23. begin: while true do {
	24. begin: Think(self);
	25. GetTicket();
	26. (raise(request,ready), WAIT).
	27. ready.*lfork & ready.*rfork: Eat(self, lfork, rfork).
	28. end: raise(done);
	29. ReturnTicket().
	30. }
	31. }
	Figure A.33 : Dinning Philosophers in Manifold

	A.21 Piccola-Scripts [Ache00a]
	Table 1 : Stream Style Components (Provided-Required Services)
	Figure A.34 : Push Stream Signature
	1. asSource(S).
	2. S
	3. _ |(Right): #define the | connector
	4. S.reqPut.bind(Right.put)
	5. S.reqClose.bind(Right.close)
	6. return asEmptyOrSource(Right)
	Figure A.35 : The | Operator
	Figure A.36 : Source-Filter plugging

	A.22 Rules and Constraints [Andr96a][Andr96b]
	Re-active rules
	Pro-Active rules
	Object Coordination Schemes
	1. transfer(Acct1, Amnt1, Acct2, Amnt2, Acct)@
	1.
	2. extract(Acct1, Amnt1)@ extract(Acct2, Amnt2)<>-insert(Acct, Amnt1+Amnt2)
	3.
	4. transfer-date(Date)@ out-of-date(Date)<>-timeout-procedure
	Figure A.37 : Remote Banking

	A.23 Synchronizers [Frol93a]
	1. binding ::= name := exp |
	2. binding1; binding2
	3.
	4. pattern ::= object.name |
	5. object.name(name1, ..., nameN) |
	6. pattern1 or pattern2 |
	7. pattern exp
	8.
	9. relation ::= pattern updates binding |
	10. exp disables pattern |
	11. atomic(pattern1, ..., patternN) |
	12. pattern stops |
	13. relation1, relation2
	14.
	15. synchronizer ::= name(name1, ..., nameN)
	16. { [init binding]
	17. relation }
	Figure A.38 : Abstract Syntax for Synchronizers.
	1. VendingMachine (accepter, apples, bananas, apple_price, banana_price)
	2. { init amount := 0.
	3. amount < apple_price disables apples.open,
	4. amount < banana_price disables bananas.open,
	5. accepter.insert(v) updates amount := amount + v,
	6. (accepter.refund or apples.open or bananas.open) updates amount := 0 }
	Figure A.39 : The Vending Machine

	A.24 Wrappers [Ciob05a]
	Classes and Objects
	Coordination
	1. proc <proc_spec_name>
	2. {
	3. global actions : <lact_list>;
	4. local actions: <gact_list>;
	5. process: <proc_id_list>;
	6. guards: <guard_id_list>;
	7. equations:
	8. <eqn_list>
	9. }
	10.
	11. where
	12. <lact_list> ::= <label_list>
	13. <gact_list> ::= <label_list>
	14. <label_list> ::= <label> |<label>,<label_list>
	15. <label> ::= <identifier> | ~ <identifier>
	16. <proc_id_list> ::= <id_list>
	17. <guard_id_list> ::= <id_list>
	18. <id_list> ::= <identifier> | <identifier>, <id_list>
	19. <eqn_list> ::= <eqn> | <eqn>; <eqn_list>
	20. <eqn> ::= <proc_id> = <pexpr>;
	21. <pexpr> ::= 0 | <label>.<pexpr> | [<guard_id>]<pexpr> |
	22. [not <guard_id>]<pexpr> | <pexpr> + <pexpr> |
	23. <pexpr>|<pexpr>
	Figure A.40 : Coordination processes syntax grammar.
	1. proc ABP
	2. {
	3. global actions: in, out, alterS, alterR;
	4. local actions: ch1, ch2;
	5. processes: A, A’, V, B, B’, T;
	6. equations:
	7. A = in.A’;
	8. A’= ~ch1.ch2.V;
	9. V = [sok] alterS.A + [not sok] A’;
	10. B = [rok] B’ + [not rok] out.alterR.B;
	11. B’ = ~ch2.B;
	12. }
	Figure A.41 ABP Communication protocol as a Coordination process.

	Interaction Wrapper
	1. <wrap_spec> ::= <wrap_name> (<wparam_list>)
	2. implementing <proc_spec_name>
	3. {<amap_list> <gmap_list>}
	4. <wparam_list> ::= <wparam> | <wparam_list>; <wparam>
	5. <wparam> ::= <class_name> <object_ref>
	6. <amap_list> ::= <amap> | <amap_list> <amap>
	7. <amap> ::= <action_name> -> <cmd>;
	8. <gmap_list> ::= <gmap> | <gmap_list> <gmap>
	9. <gmap> ::= <guard_name> -> <bexpr>;
	Figure A.42 Wrapper Syntax Grammar
	1. wrapper w (Sender S, Receiver R) implementing ABP
	2. {
	3. in -> S.read();
	4. alterS -> S.chBit();
	5. alterR -> S.chAck();
	6. tau(ch1) ->
	7. R.recFrame(S.data, S.bit) ||
	8. S.sendFrame();
	9. tau(ch2)
	10. S.recAck(R.ack()) || R.sendAck();
	11. out -> R.write();
	12. sok -> S.bit == S.ack;
	13. rok -> S.bit =/= R.ack;
	14. }
	Figure A.43 Protocol ABP wrapper specification

	Temporal Properties of the Coordinated Objects

	APPENDIX B
	Petri Nets
	B.1 Type I - Modeling and Semantics
	B.1.1 Place-Transition Petri Net
	Graphical Representation
	Figure B.1 Graphical representation of a Petri Net

	Semantics
	Modeling

	B.1.2 Coloured Petri Nets
	Graphical Representation
	Figure B.2 Graphical Representation of a Coloured Petri Net

	Semantics

	B.1.3 Predicate-Action Petri Nets [Kell76a]
	Graphical Representation
	Figure B.3 Graphical representation of a Predicate-Action Petri Net

	semantics

	B.1.4 Numeric Petri-Nets [Symo80a]
	Graphical Representation
	Figure B.4 Graphical representation of a Numeric Petri Net

	B.2 Validation [Bram83a]
	B.2.1 Formal Verification of Petri Nets [Mura89a]
	Figure B.5 Place-Transition Petri Net
	behavioral properties

	Bibliography

	Curriculum Vitae

