

A Component-based Architecture for
Open, Independently Extensible

Distributed Systems

Inauguraldissertation der Philosophisch-naturwissenschaftlichen
Fakultät der Universität Bern

vorgelegt von

Luca Deri
von Pisa, Italien

Leiter der Arbeit: Prof. Dr. Oscar Nierstrasz
Institut für Informatik und angewandte Mathematik
Universität Bern

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, den 18. Juni 1997 Der Dekan:
Prof. Dr. Horst Bunke

Every effort has been made to ensure that the information contained in this book is accu-
rate. The author is not responsible for typographical errors.

AuthorÕs contact addresses:

IBM Research Division
Zurich Research Laboratory
S�umerstrasse 4
8803 R�schlikon
Switzerland
Email: lde@zurich.ibm.com
WWW: http://www.zurich.ibm.com/~lde/

Universit�t Bern
Institut f�r Informatik und Angewandte Mathematik
Software Composition Group
Neubr�ckstrasse 10
3012 Bern
Switzerland
Email: deri@iam.unibe.ch
WWW: http://iamwww.unibe.ch/~deri/

Table of Contents
 Abstract ..1

 Sommario...3

 Summary ...5

1 About this Book ..11
The Road Behind... 11
Acknowledgments .. 11
Structure of this Book ...12

Special Font ..12
Types of Notes ...12

Coding Conventions ...12

2 Introduction...13
Architectures and Framework Basics...13
Software Components ..14
Open Systems: What are They? ..16
From Open Distributed Systems to Network Management Systems ...18
Merging Network Management with Component Technology...19

From Class Libraries to Component Factories..20
Thesis Motivation..21
The Vision: Component-based Open, Independently Extensible Systems22
Thesis Scope...22
Thesis Requirements...23
Research Goals...28
Research Contributions ..30
Thesis Outline..31

3 Related Research...33
Component-based Architectures ..33

OpenDoc ...33
Microsoft Object Linking and Embedding ..38
Java Beans...42
A Component-based Architecture for Open, Independently Extensible Distributed Systems I

Flexible Components ..44
Apple QuickTime Component Manager ...46

Plug-in Software Components ..48
CGI Applications ...48
Shell Applications..49
Plug-in Components ...49

Network Management Standards ..49
OSI Network Management ..50
Internet Network Management...54
OMG Network Management...57
Comparison of Network Management Architectures..60

Network Management Research ..61
OSI and Internet Management ..61

ISODE ..62
Classic Management Platforms ..63
XOM/XMP .. 63
Java Management API.. 64
Web-based Management ...65
TCL/Perl-based Management ..66

Interdomain Management ...66
Static Mapping ..66
Dynamic Mapping ..68

Do We Really Need Yet Another Architecture? ..68

4 Yasmin: the Architecture ...73
Introduction ...73
Conceiving Yasmin ...73
Yasmin at a Glance..75
Droplets ..80

Droplet Interface..81
The Service Interface...89
Comparison with Other Software Components ...90

Yasmin Components...92
Personality Abstraction Layer ...92
Droplet Manager ...93
Event Manager...95
Service Manager ..96
Resource Manager...97
Collaboration Services ..97
Communication Services..98

YasminÕs Design Choices ...98
Comparison with Other Architectures...101
Final Remarks ..103

5 Liaison: Yasmin at Work..105
Introduction ...105
Motivation..107
Welcome to Liaison...109
Web-based Management.. 111
HTTP-based Management...121
II A Component-based Architecture for Open, Independently Extensible Distributed Systems

Application Side Bindings ...125
CORBA Interfaces..129

Rapid Network Management Application Development...134
Final Remarks ..141

6 Validation...143
Thesis Validation ...143
WhatÕs New in Yasmin? ...147

Conclusion..148
Further Remarks..149

7 Conclusion...151
Lessons Learned..151
Which Results can People Reuse in Other Projects? ..152
Open Issues ..154
Future Work ...156

8 Glossary ...159

9 Abbreviations..163

10 References..167
OSI Network Management..183

The OSI Management Standards ..183
OSI Reference Model ..184
ASN.1 ..186
CMISE ...187

Internet Network Management ..189
Internet Standards ...189
The SNMP Protocol...190
Management Naming Scheme: Object IdentiÞers ..191

Diagram Notation ...193
Java/C++ Bindings ...194
C Bindings..198
CORBA-Liaison Interfaces...199
Evaluating Liaison ..203
From Theory to Practice: Implementing Droplets..207
LiaisonÕs Code Fragments..209

 Curriculum Vit¾...247
A Component-based Architecture for Open, Independently Extensible Distributed Systems III

IV A Component-based Architecture for Open, Independently Extensible Distributed Systems

Abstract
Object-oriented programming (OOP) has significantly changed the way
software applications are produced and has allowed many problems that
affected traditional programming to be overcome. Unfortunately many ob-
ject-oriented systems misused OOP techniques, failed to address issues
such as application extensibility, and produced monolithic systems that are
difficult to manage and tailor. Especially in the context of communication
networks, some companies have developed huge management systems
very powerful and rich in terms of functionality and tools, but that do not
address problems relating to application development. The natural conse-
quence is that management applications are monolithic, difficult to tailor
and configure, and are system resources-hungry, preventing them from
running on hosts having limited power.
These problems have been the driving force to define Yasmin, a new archi-
tecture for applications. Yasmin attempts to overcome problems that affect
traditional applications by defining an application framework characterised
by the following properties: 1) light and simple kernel, 2) based on a new
type of pluggable software components called droplets, 3) built entirely on
object-oriented technology, as well as 4) extensible, easy to tailor and dis-
tribute. The idea behind Yasmin is to build component-based applications
that can be composed by the user, who can add or replace components at
runtime. By enforcing the component boundaries, Yasmin prevents compo-
nents from making assumptions concerning other components, hence re-
ducing component interdependency and making them easy to reuse in
different contexts. Liaison, a Yasmin-based application, has been developed
in order to validate the architecture. Liaison has been applied to selected
network management problems and clearly demonstrated that Yasmin-
based applications efficiently overcome problems that affect conventional
management applications. In addition, Liaison proved that common beliefs
such as management applications need a long development time, need
large computing resources, are difficult to scale and tailor, and have a poor
performance, are not at all correct.
In conclusion, Yasmin a) allowed traditional problems to be overcome, 2)
demonstrated that droplets can be effectively used to create distributed ap-
plications that are easy to extend, scale and tailor, and 3) proved to be a fea-
sible architecture for management applications and in general for open
distributed application systems.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 1

Abstract

2 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Sommario
La programmazione orientata agli oggetti ha cambiato profondamente il
modo di produrre applicazioni ed ha permesso di risolvere problemi
riguardanti applicazioni scritte in modo tradizionale. Purtroppo molti
sistemi orientati agli oggetti hanno abusato di alcune tecniche
programmative, non sono riusciti a fornire una soluzione a problemi quali
lÕestendibilit� delle applicazioni ed hanno finito col produrre sistemi
monolitici difficili da gestire e configurare. Specialmente nel campo dei
sistemi comunicativi, alcune aziende hanno sviluppato enormi sistemi per
la gestione di rete assai potenti e ricchi di funzionalit� che per� non
risolvono i problemi inerenti il loro sviluppo. LÕovvia conseguenza � che
questi sistemi sono monolitici, difficili da gestire e configurare, necessitano
di molte risorse che quindi possono essere utilizzati solo su potenti sistemi.
Tali problemi hanno portato alla definizione di Yasmin, una nuova
architettura per applicazioni. Yasmin risolve i problemi visti prima
definendo un framework che gode delle seguenti propriet�: 1) kernel
semplice e leggero, 2) basato su un nuovo tipo di componenti software
chiamati droplets, 3) construito interamente con tecnologie orientate agli
oggetti, 4) estendibile, facile da configurare e distribuire. LÕidea dietro
Yasmin � di produrre applicazioni basate su componenti software che
possono essere manipolati dallÕutente in modo da aggiungere o togliere tali
componenti a tempo di esecuzione. Creando una ben definita interfaccia tra
componenti, Yasmin � stata capace di evitare che componenti facessero
assunzioni su altri componenti quindi riducendo dipendenze tra
componenti in modo da facilitare il loro riutilizzo in altri contesti.
Liaison � unÕapplicazione basata su Yasmin ed � sviluppata per validare
lÕarchitettura. Liaison � stata applicata ad alcuni problemi inerenti la
gestione di rete dimostrando chiaramente che le applicazioni basate su
Yasmin hanno risolto efficientemente i problemi presentati da applicazioni
sviluppate con metodi tradizionali. Inoltre Liaison ha anche fatto vedere che
� possibile sviluppare applicazioni per la gestione di rete senza richiedere
un lungo tempo di sviluppo e molte risorse di calcolo. Tali applicazioni
sono facilmente configurabili, scalabili e dotate di buona performance. In
conclusione Yasmin 1) ha permesso di risolvere molti problemi inerenti lo
sviluppo di applicazioni, 2) dimostrato che i droplet possono essere usati
per creare applicazioni distribuite scalabili, efficienti, facili da estendere e
configurare, 3) dimostrato di essere una buona architettura per sviluppare
qualunque tipo di applicazione e non solo sistemi per la gestione di rete.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 3

Sommario

4 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Summary
Object-oriented programming (OOP) has significantly changed the way
software applications are produced and has allowed many problems that
affected traditional programming to be overcome. Unfortunately many ob-
ject-oriented systems misused OOP techniques, failed to address issues
such as application extensibility, and produced monolithic systems that are
difficult to manage and tailor. Especially in the context of communication
networks, network management applications are usually built following
the craftsman principle (i.e. everything has to be custom-built for a certain
task) without exploiting the power of OOP or adopting a clean application
architecture or framework.
Some companies have developed huge management systems composed of
several applications and libraries that address every network management
need. Although these systems are very powerful and rich in terms of func-
tionality and tools, they do not address problems relating to application de-
velopment. In fact in order to build network management applications
based on those systems, developers need detailed knowledge of many dif-
ferent libraries that usually have not been designed to work together and
that very seldom are based on OOP concepts. In addition, due to the inter-
dependency among those libraries, user applications require the installation
of a large subset of the application system in order to run.
The natural consequence is that applications are monolithic, difficult to tai-
lor and configure and are system resources-hungry, preventing them from
running on hosts of limited power. Moreover, network management appli-
cations quite often have to support different management protocols and ob-
ject models, and be open to extensions and updates as the network
technology changes. In addition, applications must be built in such a way
that it is possible to add new pieces when new hardware devices have to be
supported or when users demand additional services.
These problems that affect many management applications, have been the
driving force to define Yasmin, a new architecture for applications. Yasmin
attempts to overcome those problems mentioned before by defining an ap-
plication framework characterised by the following properties:
1. light and simple kernel;
2. based on pluggable software components;
3. built entirely on object-oriented technology;
4. extensible, easy to tailor and distribute.

The idea behind Yasmin is to build component-based applications that can
A Component-based Architecture for Open, Independently Extensible Distributed Systems 5

Summary

be composed by the user, who can add or replace components at runtime.
By enforcing the component boundaries, Yasmin prevents components
from making assumptions concerning other components, hence reducing
component interdependency and making them easy to reuse in different
contexts. Additionally, Yasmin loads the components on demand only
when they are really needed and unloads them when no longer in use ac-
cording to a policy defined by its developer. The efficient use of system re-
sources is quite important because it enables complex applications to run on
hosts of limited computation power such as mobile computers.
An effective way to limit the application size is cooperation. This is because
components provide services that can be used by other components instead
of reimplementing them in different flavours when needed. Every compo-
nent that implements a service of general use makes it available through a
well-defined interface. This is very important in the management world be-
cause large network management systems must use a common set of serv-
ices that sometimes require significant resources.
YasminÕs components are called droplets. This term derives from their abil-
ity to be activated and replaced by simply being dropped into a certain di-
rectory. A droplet is characterised by the following properties:
1. it is not statically linked to the application but is loaded at runtime;
2. it has the ability to be replaced (i.e. a new version of the droplet can

replace a previous one) at runtime while the application is running;
3. it has a well-deÞned interface, the so called droplet interface, that

enables it to communicate with other droplets independently from the
type of the services provided;

4. it is reentrant, hence the droplet can process concurrent requests.

The following illustration shows YasminÕs components.

Figure 1. Yasmin’s Components

User services are implemented using droplets, which change from applica-
tion to application. Kernel services, part of each Yasmin-based application,
provide services and functionality on which droplets rely. Kernel services
sit on top of the operating system and a personality layer. This layer hides
the differences among various operating systems insulating the operating
system-dependent code in order to simplify the porting of Yasmin-based
applications on different operating systems. The droplet manager is respon-
sible for handling droplets and it collaborates with the service manager, in-

Host Operating System

Personality Layer

Communication

Services

Resource

Manager

Droplet

Manager

Service

Manager

Event

Manager

Collaboration

Services

Kernel
Services

Uses

Legend:

User
Services
6 A Component-based Architecture for Open, Independently Extensible Distributed Systems

forming it of newly available services. The event manager delivers events to
the various components and allows different droplets and services to coop-
erate and interact by means of the events they exchange. The service man-
ager interacts with the droplet manager to handle the services provided by
the droplets, and it allows local or remote service calls to be issued, trans-
parently handling the necessary communications. The resource manager
cooperates with other managers to use system resources (for instance mem-
ory, threads or disk space) efficiently, making sure that system resources are
not wasted and that resources no longer needed are purged. Collaboration
services provide facilities for sending requests in multicast/broadcast mode
to other components, collecting results, and synchronising tasks by means
of events. Finally, communication services allow droplets to communicate
with remote entities (local communications are performed by means of
events or service requests).

 Liaison, a Yasmin-based application, has been developed in order to vali-
date the architecture. Liaison has been applied to selected network man-
agement problems such as interdomain management in order to
demonstrate that Yasmin can efficiently solve these problems. Besides this,
Liaison had to face with new challenges derived from new technologies
such as the web and from the efforts in the network industry to unify the
various management models (OSI, Internet and CORBA) in a single uni-
form one. Liaison has a very light kernel, that does not include any man-
agement functionality, whereas the management functionality is fully
implemented inside droplets which are loaded on demand only when nec-
essary.

Figure 2. Liaison’s Components

Desktop Integration

RAD

C Interface Corba

Java/C++ Bindings

Web-based Network Management

HTML VRML

HTTP

SNMP CMIPLiaison

AIX
A Component-based Architecture for Open, Independently Extensible Distributed Systems 7

Summary

Liaison comes with droplets that implement:

1. web-based full OSI (CMIP) and Internet (SNMP) management;
2. a basic directory service for locating management resources and other

instances of Liaison running on local or remote hosts;
3. a metadata repository used only by SNMP because the metadata

information relative to CMIP is retrieved by Liaison directly from the
OSI stack;

4. Java/C/C++ external bindings, which enables the development of
client/server management applications to exploit LiaisonÕs services;

5. CORBA interfaces, which allow pure CORBA applications to be created
while being able to manage existing CMIP and SNMP resources.

As depicted in the previous figure, Liaison acts as a proxy (mid-level man-
ager), which allows CMIP and SNMP resources to be managed using HTTP
and CORBA. Since Liaison provides services accessible from external appli-
cations using the external bindings and the CORBA interfaces, powerful
and light client/server applications exploiting LiaisonÕs services can be cre-
ated. Additionally, thanks to the large variety of interfaces offered by Liai-
son, it has been possible to build management applications rapidly at
various levels of sophistication, overcoming a common belief in the man-
agement world that management applications require a large amount of
time and highly skilled developers. Therefore, Liaison has been the very
first management application that:
¥ allowed people to manage networks using HTML/VRML, hence ena-

bling network resources to be managed with a Web browser instead of
using complex, expensive and platform-dependent client applications
(see ÒWeb-based ManagementÓ on page 111);

¥ allowed people to deliver to people a real seamless integrated inter-
domain management applications supporting CMIP, SNMP and
CORBA, that overcomes limitations of the current generation of
CORBA-based network management applications (see ÒCORBA Inter-
facesÓ on page 129);

¥ enabled people to rapidly create simple, light, and efÞcient management
applications by combining services provided by Liaison with tools for
rapid application development (see ÒRapid Network Management
Application DevelopmentÓ on page 134);

¥ brought software technologies such as software components into the
management world solving problems that affect conventional manage-
ment applications such as scalability, monolithic structure, and limited
tailoring and extensibility (see ÒEvaluating LiaisonÓ on page 203);

¥ introduced HTTP-based management that allows network resources to
be managed using simple client/server applications such as Java applets
which communicate with Liaison using the HTTP protocol (see ÒHTTP-
based ManagementÓ on page 121);
8 A Component-based Architecture for Open, Independently Extensible Distributed Systems

¥ demonstrated that CMIP and CORBA management no longer have to be
considered a challenge because Yasmin-based applications such as Liai-
son are easy to modify, use very limited computing resources, are small
in size and offer good performance (see table ÒLiaison at a GlanceÓ on
page 141 and ÒEvaluating LiaisonÓ on page 203);

¥ thanks to Yasmin, it has been possible to bring management capabilities
to operating systems that previously were considered unsuitable for this
task (for instance MacOSª).

In conclusion, Yasmin has proved to be a feasible architecture for manage-
ment applications and in general for open distributed application systems.
Moreover, Yasmin has exploited novel technologies such as the web and
CORBA, which permitted it to go beyond the initial goals of simple CMIP/
SNMP management.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 9

Summary

10 A Component-based Architecture for Open, Independently Extensible Distributed Systems

1 About this Book
1.1. The Road Behind

My interest in computer networks has been gradually instilled in me by a
friend who was employed as a system manager at Scuola Normale Superi-
ore based in Pisa, Italy. Watching my friend, I was amazed to see him con-
nect to sites throughout the world and exchange mail with distant users. In
early 1991, I was looking for a masterÕs thesis while studying at the univer-
sity. I was growing increasingly interest in networks and so I decided to fol-
low the suggestion of my advisor and contact Tecsiel, a networking
company based in Pisa. During the interview, I was interrupted by the
interviewer who told me more or less this: ÒItÕs amazing to see that you,
like me, have inside you the Ôholy ÞreÕ for computer science. Soon you will
encounter many difÞculties that will extinguish your holy ÞreÓ. After
almost six years I have to say that this man was both right and wrong. He
was right because computer networks are incredibly complicated (and net-
work management is even more complex). He was wrong because the holy
Þre is still burning in me. I hope it will never abate.

This thesis is my tribute to all the people who instilled in me the interest in
computer science, to those who constantly encouraged me, to those who
raised me and taught me that it does not matter what I do as long as I do it
with passion. This book is a product of the need and the enjoyment I felt
while trying to imagine it, while suffering and struggling to realise it. It is
here to contain all the best I have been able to achieve during the past years:
sacrifice, struggle, success, defeat, discussion, suffering, disappointments. It
is my humble and tiny contribution to computer science research, made in
the hope that all my efforts to develop those ideas may be useful to some-
body. In any case this thesis is here: it is a software application and a book
sitting on your desk.

1.2. Acknowledgments

Infinite thanks to all those who love me, and to those who loved me but who
are not longer here.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 11

About this Book

Bern, 15 June 1997. Luca Deri

1.3. Structure of this Book

This thesis has been written in an incremental fashion: an argument is Þrst
introduced, and then covered in detail. This approach should make the
reading easier even for the non-expert.

1.3.1. Special Font

All code listings, reserved words, and the names of data structures, classes
constants, Þelds, parameters, methods, and functions are shown in Courier
(this is Courier).

1.4. Types of Notes

There are two types of notes used in this book, which are formatted like the
following two paragraphs.

NOTE

A note formatted like this contains information that is interesting but possibly not essential to the
understanding of the main text.

IMPORTANT

A note like this contains information that is particularly important.

1.4.1. Coding Conventions

The following are conventions that apply to the code fragments contained
in this book. The listings that appear in this book embody certain naming
conventions designed to indicate the type and usage of identiÞers. These
conventions and examples of each are as follows:

classes begin with uppercase letters Proxy

variables begin with lowercase letters proxy

uppercase letters identify each word HashTable [class]

hashTable [variable]
12 A Component-based Architecture for Open, Independently Extensible Distributed Systems

2 Introduction
The aim of this research is to demonstrate that open distributed systems
can be built with relatively little effort if an appropriate software architec-
ture is used. In particular, by using a component-based architecture, it is
possible both to satisfy the typical requirements of open systems and to
produce applications that are not affected by common problems such as
having a monolithic structure or being difÞcult to extend and to conÞgure.

This chapter introduces the issues addressed in this thesis and defines the
terms and concepts used throughout. This is necessary because merging
open distributed systems concepts with other methodologies from the soft-
ware engineering world requires the definition of a common terminology.
Additionally the requirements and the scope of this thesis are identified.

2.1. Architectures and Framework Basics

The structure of software applications has been recognised by many people
to be an important issue of concern. However, only in the past few years
has software architecture emerged as an explicit and important Þeld of
study in software engineering. Although the term Òsoftware architectureÓ
is commonly used in the computer community, there is not a universally
accepted deÞnition of it. Some people use this term to denote, a style of
building applications, whereas other mean the high-level organisation of
computational elements and the interactions among them. Other people
may use different deÞnitions. The worst aspect of this lack of deÞnition is
that in some cases architectural concepts are mixed with implementation
concepts with the result that architectures and frameworks are sometimes
mixed.

A good definition of software architecture is the following [Garlan93]
[Abowd93]: the structure of the components of a program/system, their in-
terrelationships, and principles governing the design and evolution over
time. Components perform the primary computations of the system and in-
teract using high-level communication abstractions such as message pass-
ing and event broadcasting. An architectural instance refers to the
architecture of a specific system, whereas an architectural style defines con-
straints on the form and structure of a family of architectural instances. Ar-
chitectural styles range from abstract patterns (such as Òclient-serverÓ or
A Component-based Architecture for Open, Independently Extensible Distributed Systems 13

Introduction

ÒlayeredÓ organisation) to reference architectures such as the OSI (Open
Systems Interconnection) basic reference model [ISO7498-4].

An architecture is defined by means of a framework, which specifies and re-
stricts the way components interact.

NOTE

Do not confuse the term component used here with the term software component used later.

The main difference between an architecture and a framework lies in their
nature. An architecture is a conceptual description of a system used to un-
derstand it at a level of abstraction at which the systemÕs high-level design
can be understood. A framework specifies:
¥ the structure of the components, the services they provide, and their

responsibilities with respect to other entities of the system (contracts);
¥ the component interface, which speciÞes the component characteristics

that have to be visible from the outside;
¥ the way components are glued together;
¥ the communication mechanisms used by the components.

Therefore a framework is an extensible set of cooperating components that
make up a reusable design solution for a given problem domain. Therefore
an architecture is an abstract system description, whereas a framework is a
software library that enables the creation of components, which are guaran-
teed to respect the constraints imposed by their architecture. The less free-
dom the framework leaves the developer, the better the framework is. This
is because the developer should not be responsible for design but only for
application development.

2.2. Software Components

The software component Þeld is quite new and has not yet reached a cer-
tain degree of maturity. Some problems arise from the fact that there is no
unique deÞnition of the term software component. This section is an
attempt to deÞne a software component, to establish what kind of compo-
nents are currently available and to determine which of them are relevant
for this thesis work.

What is a Software Component?
The term software component has different meanings depending on the
community that uses it [Caldiera91]. In addition, its definition may differ
even inside within one company. According to [Microsoft93a], a component
is Òa piece of compiled software which is offering a serviceÓ, whereas in
[Microsoft93b] this definition becomes Òa reusable piece of software that
can be plugged into other components from other vendors with relatively
little effortÓ. Although the first definition is true for components, it is too
weak because, according to it, a compiled library is also a software compo-
14 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Software Components

nent. The second definition is too vague and does not define any component
properties.
In [Waskiewicz95] a component is defined as Òthe minimal piece of func-
tionality in a system or subsystem that can be removed without affecting the
integrity of the system or subsystemÓ. This definition is somehow incorrect
because according to it components have to be minimal, hence an aggrega-
tion of components is not possible. This statement thus excludes the con-
struction of large applications.
[Ciupke96] defines components as Òsoftware units that are context inde-
pendent both in the conceptual and technical domainÓ where the conceptu-
al context is the modelling environment of the program being created and
the technical context is given by the properties of the system such as pro-
gramming language and the operating system. Although this definition em-
phasises another aspect of components, namely their independence from
the context and hence their reusability in different contexts, it is not very
clear and it does not define the component properties.
A more precise definition can be found in [Pfister96] where it is defined as
Òa collection of cooperative objects with a clearly defined boundary to other
objects and componentsÓ. This definition says more about the component
properties although it defines components in terms of objects (components
do not necessarily have to be object-oriented) and restricts the component
size, which cannot be smaller than an object.

In [Nierstrasz95], a component is a Òstatic abstraction with plugsÓ. The
word ÒstaticÓ highlights the fact that components are long-lived entities that
can be stored in a software database independently of the applications that
have used it. Abstract means that the component shields the software it en-
capsulates from the outside by putting an opaque boundary around it. The
plugs are the communication channels that allow the component to interact
and communicate with the outside world (messages, ports, etc.).

The definition of component used in this thesis is a refined version of the def-
inition above: a static abstraction with bidirectional plugs. Bidirectional empha-
sises the fact that other components can communicate with the component
but also that the component can communicate with other components, i.e.
peer-to-peer vs. client-server mode. If the bidirectional constraint is relaxed,
then the component is called plug-in because other components can commu-
nicate with it but not the other way round.

Component Granularity
Although the definition given above is quite precise, it does not specify the
component granularity, which is a very important issue for the decomposi-
tion of a system into components. According to the above definition, soft-
ware component granularity can range, for instance, from an iterator class
to a component able to manage multimedia data such as QuickTimeª (see
ÒApple QuickTime Component ManagerÓ on page 46). In order to better
specify and compare different components, it is necessary to classify them
into fine and coarse-grained components. The boundary which divides
them concerns component properties. A component is fine-grained if one of
A Component-based Architecture for Open, Independently Extensible Distributed Systems 15

Introduction

the following properties hold:
¥ the component needs other components in order to be usable, i.e. is not

self-contained (for instance an iterator component needs a list or a stack
in order to be useful);

¥ suppose the component is coded using a compiled language, the compo-
nent has to be distributed in source form in order to be used (for instance
a C++ template).

A component that does not satisfy the above statements is a coarse-grained
component. Seen the definition above, a droplet is a coarse-grained compo-
nent.

Table 1. Some Fine and Coarse-Grained Components

2.3. Open Systems: What are They?

The deÞnition of open distributed systems is not unique in the computer
world. The differences among the various deÞnitions derive from the
emphasis put on the various aspects involved in a given deÞnition of the
term.

In the context of distributed systems a system is considered open if it imple-
ments open standards. Standards fall into two categories: Òde factoÓ (a.k.a.
industry standard) or Òde jureÓ standards. In the Þrst case a standard is such
if it has been so widely adopted that virtually everyone has to deal with it
(for instance the IBM PC computer, which become a de facto standard be-
cause thousands of manufacturers have chosen to clone them). A de jure
standard is such if it has been standardised by some authorised standardi-
sation body such as ISO (International Standards Organisation) or IETF (In-
ternet Engineering Task Force). In some cases, an industry standard can be
considered an open standard if:
¥ it has been deÞned by a consortium composed of a (relatively) large

number of companies and institutions;

Fine-Grained Components
Coarse-Grained

Components Plug-in

• STL (Standard Template
Library) [Jazayeri95]

• ET++ components
[Gamma91]

• Smalltalk Collection
Classes [Cook92]

• TCL (THINK Class Library)
[Symantec93b]

• Darwin Components
[Magee92]

• OpenDoc [Apple95]

• OLE [Box95]
[Brockschmidt93]
[Microsoft93a]

• VisualBasic VBX/OCX
[Microsoft92]

• Java Beans [JavaBeans]

• Flexible components
[Leeb96]

• QTCM [Apple93]

• Droplets [Deri95c]

• CGI applications [CGI]

• Shell Commands
16 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Open Systems: What are They?

¥ companies and institutions that are not part of the consortium can
choose to join the consortium, i.e. the consortium is not closed;

¥ documents produced by the consortium can be used not only by the
consortium members but also by third parties;

¥ access to such documents is at no or nominal cost.

NOTE

As some standardisation organisations are self founded, in some cases the standards have a price
or a membership is required in order to gain access to the standards (this is the case of ITU, Interna-
tional Telecommunications Union). This does not necessary mean that these organisations produce
proprietary standards.

It is important to note that, in the deÞnition above, the properties of the sys-
tems are not considered relevant.

In the software engineering community a system is open if it:
¥ does not rely on features peculiar to a speciÞc platform, hence it can be

ported to various platforms;
¥ has an open topology, i.e. software applications can run in a physically

distributed environment;
¥ is open to changing requirements (evolution).

Throughout this thesis, an open system is such if it satisfies the following re-
quirements:
¥ it implements open standards according to the previous deÞnition;
¥ it does not implement or use proprietary technologies that are not pub-

licly available or are protected by patents;
¥ it is proved to be portable, i.e. it is not strongly tied to a certain architec-

ture, operating system, or manufacturer;
¥ it does not rely on a speciÞc physical topology, either local or distrib-

uted;
¥ it is open to extensions and changing requirements.

This definition of an open system is basically the intersection of the previous
definitions. In addition it does not imply that an open system has to be dis-
tributed but that it should not rely on a specific topology and hence that it
is open to extensions (from local to distributed topology) and to restrictions
(from distributed to local topology).

In the deÞnition of an open system given above, the notion of system exten-
sibility is rather vague and needs to be further deÞned. A system that allows
functionality to be added at runtime is called an extensible system
[Szypersky96]. An extensible system loads only the functionality currently
used and adds further functionality only when needed. A more precise def-
inition of extensibility has to take into account mutually independent exten-
sions. A system is called independently extensible [Weck96] if it can cope with
the late addition of extensions, possibly developed by different people in
complete ignorance of each other, without requiring a global integrity
check. This thesis deals with open, independently extensible distributed
A Component-based Architecture for Open, Independently Extensible Distributed Systems 17

Introduction

systems.

2.4. From Open Distributed Systems to Network
Management Systems

Open distributed systems are a very broad area of computer science. This
area includes very different systems ranging from e-mail systems (for in-
stance Internet mail or OSI X.400) to distributed multimedia services like In-
ternet MBONE.

Figure 1. Open vs. Network Management Systems

Among those systems are network management systems, which are used to
manage communication networks ranging from LANs (Local Area Net-
works) to telephone networks. As distributed open systems are a very
broad area which cannot be covered properly within the scope of a PhD the-
sis, this work will focus on a subset there of, namely on network manage-
ment. Network management has been selected because:
¥ this is the area of primary interest to the author;
¥ management systems are far from being perfect, and some problems and

open issues present on this area have stimulated most of this research
work;

¥ recent technological innovations in computer science may be proÞtably
applied to this Þeld, hence there is a need to deÞne a new way to build
applications that solves common problems and that exploits these inno-
vations.

The authorÕs interest in network management is based on:
¥ the many yet unsolved problems which range from the integration of

heterogeneous systems to scalability issues present in large networks;
¥ dissatisfaction with the usual way to approach the Þeld, namely from

the protocol side, which neglects aspects such as ease of use and ele-
gance of design methodology in favour of raw performance;

¥ the absence of an architecture that focuses on the seamless integration of
various protocols and services into a homogeneous and human-friendly
environment.

Network management not only significantly stimulated the authorÕs inter-
est but it has also been the testbed of the prototypes presented later which

Open Distributed Systems

Network
Management

Systems
18 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Merging Network Management with Component Technology

are based on the architecture proposed here.

2.5. Merging Network Management with
Component Technology

In the past decade, the computer world has changed signiÞcantly. Powerful
and centralised computers are currently being replaced with many con-
nected mid size computers in an effort to decentralise and distribute intelli-
gence on the network. The consequence of this trend is the need to move
data reliably between computer systems running different operating sys-
tems, physically located at distant sites. The problem of managing network
devices has become increasingly important with the evolution of net-
worked operating systems and with the need to integrate management
packages from different vendors [Qwerin91]. The aim of network manage-
ment is to control, coordinate, and monitor resources for the purpose of
communication. In the past, network management was relevant only for
computer manufacturers, who needed tools to control the network devices
they produced. Today, network management is perceived as an integrated
set of tools able to manage efÞciently a network made up of products from
different vendors.

The need to manage different computer devices pushed the industry to
produce network management tools based on open standards [Rose90].
The two predominant standards for network management, SNMP and
CMIP, allow network resources to be managed independently from the
vendor and the device type. Especially in the CMIP world, network man-
agement standards are quite complex. This and their relatively slow deÞni-
tion by standardisation bodies are two of the reasons for their delayed and
limited adoption. These days, emphasis is shifting from agents, applica-
tions that physically manage network resources, to managers, applications
that implement user-deÞned management policy by issuing requests to the
agents. This is because SNMP agents are often implemented inside net-
work devices and because modern CMIP agent development toolkits allow
agents to be built in a relatively easy way. Agents run on powerful hosts
usually located close to the managed resources, whereas managers often
run on user machines connected to remote agents. Agents are transparent
to user which interact exclusively with managers. For this reason, manag-
ers need to be resource-savvy because they have to coexist with userÕs
applications. They should also be simple to use and to conÞgure because
modern users are accustomed to these facilities.

The accelerating pace in the development of object-oriented open network
management standards, combined with the complexity and heterogeneity
of CMIP and SNMP, has enhanced the interest in new object-oriented
frameworks and architectures to facilitate the rapid and accurate implemen-
tation of such standards. The most interesting one seems to be OMGÕs (Ob-
ject Management Group) CORBA (Common Object Request Broker
A Component-based Architecture for Open, Independently Extensible Distributed Systems 19

Introduction
Architecture), which fulfils all the requirements: object-oriented, platform
neutral, and able to merge CMIP and SNMP object models into a simpler,
fully object-oriented CORBA object model. Unfortunately so far CORBA
has not been able to deliver all this, mostly because it has been employed, in
the network management field to merge network management standards
into a new object model, which means that it unifies all the problems, idio-
syncrasies, and limitations of CMIP and SNMP.

Most management applications are difÞcult to use, to conÞgure and to
extend. Worse yet they are notoriously resource hungry. One of the reason
for this situation is that developers of existing network management appli-
cations have emphasised communication aspects more than application
efÞciency. This is because most of these developers come from the Òproto-
col schoolÓ and do not consider such important issues as real object-ori-
ented design and implementation, or a user-friendly graphical user
interface. Instead they are accustomed to dealing with Òbits and bytesÓ and
character-based cryptic user interfaces.

In this arena the Internet recently came into the play. The explosion of
Internet-accessible resources, the low cost of network equipment and the
consequent proliferation of network devices have contributed to make the
situation even more complex. Users demand fast and reliable networks;
networks are getting bigger and even more heterogeneous; mobile comput-
ing is replacing conventional site-based processing. Therefore network
management applications have to scale up in order to manage more and
more devices, and hence to become more efÞcient and less resource-hun-
gry. Moreover management applications have to leave their familiar envi-
ronment composed of powerful hosts and expert users, becoming ÒvisibleÓ
from the Internet as HTTP-aware distributed network resources.

2.5.1. From Class Libraries to Component Factories

The popularity of object-oriented programming (OOP) has increased con-
siderably in the past few years. OOP offers many advantages over tradi-
tional programming, such as allowing programmers to deÞne objects that
can be easily extended and composed in order to build a software applica-
tion [Brown90] [Budd91]. Although powerful, OOP lacked a standard
framework through which software objects created by different vendors
can interact with one another. The major result of this trend has been the
production of a Òsea of objectsÓ that cannot interact across application
boundaries in a meaningful way. At the beginning of this decade, the soft-
ware industry realised that the ability to tie objects together to create a
closer unit would result in a much more powerful system [Champeaux93].
For this reason, many frameworks and architectures have been developed
to address this problem. Unfortunately applications based on such frame-
works often had a monolithic structure mostly because object-oriented
techniques such as inheritance have been misused by introducing cross
dependencies among classes. The obvious consequence has been that
objects were so tightly coupled that even the simplest application had to
20 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Thesis Motivation
link the entire system [Joymer92]. This has been the reason for the decline
or limited diffusion of such celebrated applications systems as Symantec
Bedrockª [Symantec93a] and Taligent CommonPointª [Taligent95a].

Software components [Nierstrasz92] [Joch96] [Udell94] seem to be the
answer to all these problems. As its name suggests, component software is
based on the notion of a component, which is a reusable piece of software
that can be Òplugged intoÓ components from other vendors with relatively
little effort [McIlroy69] [Staringer94].

Traditional applications are built around a block that performs all necessary
functions. These applications are satisfactory and still do their job reasona-
bly well. Nevertheless this paradigm is reaching its limits in terms of code
reusability, extensibility, configuration, and especially speed and size. One
reason is that such a paradigm specifies that the application must contain
the entire functionality even if much of the functionality is required only for
very particular tasks. This paradigm also requires that every extension of
the initial design be integrated by the application developer, who is the only
person able to access the source code. But the user, not the developer, is of-
ten the one who best knows the requirements. The natural consequence of
this would be to provide an interface that allows the user to add new func-
tionality to the monolithic block, and that defines a migration path towards
compound applications.
Software components seem to be the answer to all these problems. Like a
child does with Legoª, one can build a compound application by using
several simple blocks - called components - rather than a monolithic entity.
Once the application has been built, it works like a monolithic one but it
has the great advantage that it can easily be modiÞed and extended and
improved by adding pieces or replacing components. Component software
creates a system in which it is easy and inexpensive to tailor individual
needs. The old Latin proverb ÒDivide et imperaÓ can now be changed to
ÒBuild Ôn playÓ.

2.6. Thesis Motivation

It is the authorÕs opinion that the problems and limitations of the current
generation of network management systems could be solved using an
appropriate architecture. This architecture should exploit the latest innova-
tions in software engineering such as software components which seem to
be a viable solution to well-known problems that affect traditional applica-
tions as well as network management systems. This is because network
management places the emphasis on the communication issues rather than
on architectural issues, since the customers of network management appli-
cations are large institutions or big carriers which can afford expensive
computer systems. In addition, the advent of mobile computing and the
Internet has highlighted the limitations of these applications systems espe-
cially with respect to scalability. For instance, using architectures employed
by traditional network management systems, it is quite difÞcult to produce
A Component-based Architecture for Open, Independently Extensible Distributed Systems 21

Introduction
applications able to exploit distributed and heterogeneous environments
and that run on computing devices of limited power (see ÒDo We Really
Need Yet Another Architecture?Ó on page 68).

2.7. The Vision: Component-based Open,
Independently Extensible Systems

The objective of this thesis is to deÞne Yasmin, a new architecture for open,
independently extensible systems that can be applied to selected network
management problems. Yasmin is a component-based, object-oriented
architecture for extensible software applications which need to accommo-
date extensions and updates [Rumbaugh94]. The need to deÞne a new
architecture derives from the fact that most of the ones available today are
tailored for graphical user interface applications and are almost useless for
network management.

Yasmin defines a new style of building applications based on established
technologies such as OOP [Wirfs-Brock90], software components and novel
concepts such as cooperation, delegation [Goldszmidt93], and subcontract-
ing. This is part of the effort to make computer software easy to use and de-
velop in addition to overcoming typical problems that affect network
management applications such as scalability, monolithic structure, and lim-
ited tailoring and extensibility [Wayt94]. In addition, Yasmin allows distrib-
uted environments and Internet technologies to be exploited because
Yasmin-based applications:
¥ are composed of droplets that can roam around and be distributed

among different applications according to a certain policy (mobile
agents);

¥ scale by replicating services in multiple locations and making them
accessible transparently using a trader;

¥ provide services accessible from remote in a way similar to what hap-
pens with Internet services (for instance ftp);

¥ droplets provide services using a naming convention based on Internet
naming [Deri95d].

Hence one can prove that it is feasible to develop simple yet powerful Inter-
net-aware network management applications by using an appropriate ar-
chitecture.

2.8. Thesis Scope

This thesis includes the design of a component-based architecture and the
implementation of an application based on it, which can be used for open,
independently extensible systems [Tsichritzis89]. As authorÕs interest lies
22 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Thesis Requirements
mainly in network management, the architecture should take into account
open issues and current trends in this Þeld. Despite the focus on open dis-
tributed systems, the proposed architecture can be applied in other con-
texts when there is a need to create extensible applications that are easy to
tailor and to configure, and that make efficient use of system resources.
Nevertheless this work does not deÞne an architecture for general-purpose
applications, nor does it cover all the relevant aspects of managing network
systems.

In order to validate this work, an application based on Yasmin has been de-
veloped and applied to the network management field. Although the appli-
cation described here is fully functional and currently in use in commercial
and research projects, very specific implementation issues are covered only
in the appendix (see ÒImplementation IssuesÓ on page 203) because they do
not enhance the overall quality of this research work nor constitute integral
part of it.

2.9. Thesis Requirements

In the course of the problem analysis, many requirements have been identi-
Þed and divided into three categories according to their relevance. In ÒThe-
sis ValidationÓ on page 143 the requirements listed below will be used to
validate this thesis work.

Mandatory Optional Secondary

1. extensibility;
2. evolution;
3. ease of use and develop-

ment;
4. distributed environment

support;
5. use of software compo-

nents;
6. promotion of reuse;
7. efficient resource utilisation

and ability to run on environ-
ments of limited resources;

8. portability and genericity;
9. based on open standards;
10. Internet-awareness;
11. slim and efficient architec-

ture;
12. full support of (manage-

ment) standards;
13. scalable and performant

applications;
14. independence from specific

technologies and lan-
guages.

1. full distributed environment
support (for instance in
terms of replication and
mobility);

2. security support;
3. ease of installation and tai-

loring
4. support for visual applica-

tion development.

1. exploitation of specific plat-
form features;

2. integration with commercial
products/frameworks and
ability to embed compo-
nents into commercial
frameworks;
A Component-based Architecture for Open, Independently Extensible Distributed Systems 23

Introduction
Table 2. Architecture Features

Mandatory Issues
These issues are mandatory because they constitute the minimal set of re-
quirements a modern architecture for open systems must satisfy.

1. Extensibility
The architecture must support application extensibility. This is necessary
in dynamic Þelds such as open systems where new standards and
technologies are introduced frequently, and must be supported not only
by new applications but also by existing ones. For this reason it is
important to create applications that not only are able to fulÞl todayÕs
requirements but can also accommodate future extensions.

2. Evolution
Evolution is the ability to change/extend the behaviour of an
application. Especially in open systems, application evolution is a must
because applications have to be adapted to the changing requirements
and to the different environments in which they run. For instance a
management application that manages an analogic network will have to
be signiÞcantly modiÞed/extended when the network migrates to
digital technology. This is because digital networks support new
characteristics such as quality of service and bandwidth reservation,
which were not present on analog networks.

3. Ease of use and development
Open systems are often labelled complex systems that can be operated
only by highly skilled specialists. This is because open standards are
rather complex and the need for an application to support a few of them
exponentially increases the systemÕs complexity. Ease of use concerns
issues such as installation, conÞguration, and tailoring. Ease of
development concerns the development language, the various libraries
and APIs which are used to build up the application, and their
integration. In fact many problems are derived from the loose
integration of the various object models and APIs, which exposes to the
developer all their idiosyncrasies.

4. Distributed environment support
As this thesis deals with open distributed systems, it is necessary to
exploit distributed environments. This ranges from basic
communications between remote peers to the exploitation of distributed
environment, for instance, increasing application performance and
robustness.

5. Use of software components
Component technology appears to be a very promising way to
overcome many problems that affect most software applications. This is
especially true in some Þelds of open systems such as network
management, where applications are often monolithic and difÞcult to
extend and conÞgure. In addition software components have many
24 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Thesis Requirements
other advantages in terms of code reuse and application design, which
can become necessary to create a new generation of modern
management applications.

6. Promotion of reuse
Reuse of code and design are becoming increasingly important in the
software industry. Software components are a way of achieving code
reuse, whereas a good architecture guarantees design reuse. Reuse is an
important issue because it saves development time. Moreover, reusing
well designed and already tested pieces signiÞcantly reduces testing
time, hence minimising the Òtime to marketÓ.
In the open systems Þeld, reuse of existing (legacy) code is very
important because it is deÞnitely not feasible to implement a new
system from scratch. Key part of it may take a signiÞcant amount of
development time. In addition, it is quite often mandatory to integrate
legacy binary code, which is necessary to interface the system with
existing applications and resources.

7. EfÞcient resource utilisation and ability to run on environments of
limited resources
It is a common belief that, because open systems are complex, they need
a signiÞcant amount of resources in order to run. For instance, the best
selling system/network management platforms (see ÒClassic
Management PlatformsÓ on page 63) require at least a mid range
Unixª-based computer equipped with no less than 64-128 Mb of
memory and a large hard disk in order to install and run the daemons
and applications that make up the management environment. This
example shows that, although management applications are complex,
an architectural problem has led to the creation of such monstrous
applications. A modern architecture for open systems must be able to
produce applications that do not demand a great amount of resources
and that can run, within certain limitations, in environments of limited
computing power. This has become even more important since the
advent of mobile computing because many people have replaced their
desktop computers with mobile ones with limited computing resources
which must be used very wisely.

8. Portability and genericity
Code/design portability is a must in the Þeld of open systems because
the same application may have to run on very different operating
systems. This imposes constraints on the architecture, which must be
generic enough to be adaptable to different platforms but still able to
exploit most of the facilities offered by a platform such as threads or
multiprocessing.

9. Based on open standards
Although open systems must be based on open standards, often
proprietary protocols are often used to implement secondary
functionality instead of using existing standard protocols. For instance
only a few large SQL databases can be managed using a standard
management protocol such as SNMP, and most of them are managed
A Component-based Architecture for Open, Independently Extensible Distributed Systems 25

Introduction
with proprietary tools. This design decision prevents such databases
from being managed like any other system/network resource and also
introduces additional costs. For this reason, an architecture for open
systems must deÞne new protocols if and only if there is not a suitable
open protocol. In any case a proprietary protocol (i.e. an undocumented
black-box protocol) must be avoided.

10. Internet-awareness
Internet protocols are becoming the default way to access information.
Therefore it is necessary to leave room for these protocols in the
architecture, hence to support at least one of them (for instance HTTP).

11. Slim and efÞcient architecture
As open systems have to implement various protocols, it is mandatory
that the architecture be kept slim and efÞcient in order to avoid adding
further complexity. In many cases the architecture has merely to provide
the glue between the application and the protocols it implements.

12. Full support for (management) standards
When a standard protocol is implemented, it has to be implemented in
full, not just in part. In general the architecture must fully support a
given standard although some functionality may not yet be
implemented. This is an important point because quite often
architectures have been designed to support a limited standard subset
due to architectural limitations that preclude full support. This is
signiÞcant for management standards where vendors have to specify in
a PICS (Protocol Implementation Conformance Statement) which
standards have been implemented and to what extent they comply with
the standard speciÞcation.

13. Scalable and performant applications
The architecture must support scalability because in open systems it is
quite difÞcult value a given problem size. In the management world for
instance, network devices and services increase rapidly every year,
making it necessary to produce management applications that can be
scaled up according to current needs.
Furthermore Þnal applications must perform quite well in order to be
used not only for everyday but also for real mission-critical tasks. This is
necessary in order to validate the architecture and to show that it can be
used for real application development.

14. Independence from speciÞc technologies and languages
The concepts in this thesis have to be general enough to be implemented
using different programming languages. This means that this work
should not depend at all on a speciÞc technology or programming
language. In particular this applies to Yasmin components, which must
be implementable on different platforms using different languages
without relying on speciÞc features such as garbage collector or
multithreading.
26 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Thesis Requirements
Optional Issues
1. Full distributed environment support

The full exploitation of a distributed environment, for instance in terms
of mobility and replication, is an interesting problem. The effort
necessary to cover it is, however, huge due to the wide variety of the
mobile systems/applications and to the challenges associated with a
complex topology. For this reason, the architecture must not impose
additional constraints on the topology nor make assumptions
concerning the location of certain services/resources. This will facilitate
extending the architecture, should this become mandatory.

2. Security support
Security in the context of this thesis means identifying and
implementing mechanisms that allow the distributed environment to be
exploited in a safe way by preventing possible intruders from interfering
with the application. Security should also prevent unauthorised users
from changing critical network parameters, which can affect the global
system stability.

3. Ease of installation and tailoring
An application that is difÞcult to install and tailor has not fulÞlled the
requirements, even if such an application will be used only by experts. It
would be useful to provide facilities that make installation and tailoring
easy and allow it to be done not only by experts but also by novice users.

4. Support for visual application development
The use of software components has stimulated the creation of
applications that can be built visually using a predeÞned set of basic
components. It would be interesting to understand what kind of support
has to be provided by an architecture in order to tackle this issue.

Secondary Issues
1. Exploitation of speciÞc platform features

The exploitation of speciÞc platform features allows applications based
on the architecture to perform and behave exactly as other applications
tailored for the platform. As the main objective of this work is to be
general, however being both general and able to exploit platform-
speciÞc features is contradictory. Although this requirement may be
relevant for commercial products, it is worth noting that this thesis deals
with open systems, for which speciÞc platform issues are irrelevant.

2. Integration with commercial products/frameworks and ability to
embed components into commercial frameworks
This issue is interesting from both the commercial and the technical
point of view. As the author is not aware of component-based
architectures for open systems, the integration of this work with other
commercial applications can be done only at a communication level. As
one of the requirements of this work is the use of open standards, the
only issues involved are related to interoperability, i.e. to validating the
implementation of open protocols.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 27

Introduction
2.10.Research Goals

Besides fulÞlling the above requirements, the goals of this research are as
follows:

1. The demonstration that Yasmin overcomes typical problems that affect
open systems, such as being monolithic and not open to extensions (see
ÒConceiving YasminÓ on page 73).

2. YasminÕs components, called droplets, are effective for developing
applications:

¥ whose behaviour can be extended and modiÞed at runtime by
adding/replacing droplets (see ÒDropletsÓ on page 80);

¥ that integrate both legacy and heterogeneous code, a typical situation
in the Þeld of open distributed systems, where different object models
need to be integrated in the same application (see ÒHeterogeneous
Code IntegrationÓ on page 87);

¥ whose components can migrate when necessary. Suppose there is a
remote application that implements a heavily used service inside a
droplet. Thanks to the droplet paradigm, it is possible to migrate such
a droplet and integrate it into the local application, which will then
avoid making remote calls (see ÒComponent MigrationÓ on
page 102).

3. The proof that cooperation and delegation, when combined with a clean
component interface, promote reuse and resource sharing because this
will prevent the duplications of services and functionalities (see ÒReuseÓ
on page 78). Thus when a resource/service is of general interest, it must
be exported by the component through the droplet interface. This allows
the resource/service to be usable from other components and hence
prevents them from reimplementing it.

Specifically with respect to network management, the goals of Yasmin-
based applications are the following:

1. The implementation of selected network management applications,
currently considered a difÞcult task and described in ÒIntroductionÓ on
page 105, no longer is a challenge when Yasmin is used (see ÒRapid
Network Management Application DevelopmentÓ on page 134).

2. The demonstration that network management applications can
proÞtably exploit Internet technologies and then be visible using
conventional Internet tools such as a web browser (see ÒWeb-based
ManagementÓ on page 111). This is a very important demonstration in
the network management world because it proves that management
applications can be integrated and accessed using common tools rather
than having to run special applications on special hosts to perform
management.
28 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Research Goals
IMPORTANT

Management applications can usually be used only on hosts where the management platform is
installed and thus cannot fully exploit client/server environments. Internet visibility is also impor-
tant because it allows management applications to exploit at no cost facilities such as security
(for instance SSL and firewalls) and platform independence (for instance through the use of
HTML and Java as described in “Web-based Management” on page 111 and “HTTP-based Man-
agement” on page 121). The use of Internet technologies therefore allows management applica-
tions to leave their highly specialised environment in favour of a more standard, simple, and
platform-independent one.

3. Rapid development of distributed client-server applications that
communicate using standard protocols (see ÒHTTP-based
ManagementÓ on page 121 and ÒRapid Network Management
Application DevelopmentÓ on page 134). This proves that contrary to a
common belief, management application do not necessarily need a long
development time.

4. IdentiÞcation of a new management approach that harmonises the
various network management object models, a.k.a. interdomain
management (see ÒCORBA InterfacesÓ on page 129), and overcomes the
limitations of current solutions (see ÒInterdomain ManagementÓ on
page 66).

NOTE

With the advent of object-oriented distributed computing models (for instance CORBA), there are
efforts in the industry and research to manage networks using a single and uniform object model
although the managed devices may support various object models. The goal of interdomain
management is to create a bridge between emerging models such as CORBA and existing man-
agement protocols such as CMIP and SNMP. Future management applications will be based
exclusively on these emerging models (see “Interdomain Management” on page 66).

5. Reuse and sharing of common services (see ÒReuseÓ on page 78) that
prevent their replication whenever a new application has to access to
them.

Finally, the proposed architecture and the application built using the con-
cepts defined here, are compared with similar state-of-the-art approaches
(see ÒComparison with Other ArchitecturesÓ on page 101) in order to:
1. show how this work solved the problems that affect the current

generation of network management applications (see ÒFinal RemarksÓ
on page 141);

2. propose solutions to partially solved network management problems
such as interdomain management (see ÒCORBA InterfacesÓ on
page 129);

3. demonstrate that Internet standards/tools can be proÞtably used for the
purpose of network management (see ÒWeb-based ManagementÓ on
page 111 and ÒHTTP-based ManagementÓ on page 121) without the
need to design additional standards/tools uniquely for the purpose of
management.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 29

Introduction
2.11.Research Contributions

The main contributions of this thesis are the deÞnition of a new type of
software components and the novel adoption (and integration) of well-
known concepts/techniques such as software components, cooperation,
and delegation into a new Þeld, namely open distributed systems. In par-
ticular this research work:

1. deÞnes droplets, a new type of software components that are replaceable
and modiÞable at runtime (see ÒDropletsÓ on page 80), hence which
allow application behaviour to be extended and modiÞed at runtime as
the application requirements change;

2. presents Yasmin, an original architecture for distributed open,
independently extensible distributed systems that:

¥ effectively exploits object-oriented and software component
techniques (see ÒYasmin at a GlanceÓ on page 75);

¥ addresses well-known problems in the Þeld of software engineering
such as monolithic application structure and runtime application
evolution (see ÒYasminÕs Design ChoicesÓ on page 98);

¥ enabled the creation of a new generation of management applications
accessible using Internet technologies.

3. demonstrates the superiority of software components over the
techniques currently being used for open system development (see
ÒFinal RemarksÓ on page 141) which can lead to large monolithic
applications that are difÞcult to modify and extend;

4. proves that, contrary to common belief (see ÒIntroductionÓ on page 105),
efÞcient network management applications can be built rapidly and
simply (see ÒRapid Network Management Application DevelopmentÓ
on page 134) without having to use specialised tools but just reusing
existing tools and techniques;

5. introduces a new implementation technique used by Liaison that
demonstrates that it is possible to:

¥ overcome limitations of the current generation of management
applications such as being large and monolithic, not portable across
different platforms, resource hungry, and difÞcult to extend and
modify (see table ÒJava/C++ Bindings vs. Similar SolutionsÓ on
page 128 and table ÒComparison of Techniques for Rapid Application
DevelopmentÓ on page 137);

¥ achieve interdomain management, Internet protocol support, and
true platform independence (see ÒWelcome to LiaisonÓ on page 109)
without having to give up ease of development and application
performance (see ÒEvaluating LiaisonÓ on page 203);
30 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Thesis Outline
6. deÞnes a new technique for real seamless interdomain network
management, an open problem in the management community, and
demonstrates its practical feasibility (see ÒCORBA InterfacesÓ on
page 129);

7. deÞnes an Internet Draft which explains how management applications
can beneÞt from using Internet technologies [Deri96c].

Although implementation issues should not belong in a PhD thesis, it is
worth mentioning that Liaison is a true milestone in the field of HTTP-based
network management because it has been the very first application that:

1. allowed network resources to be managed with a Web browser [Deri95a]
instead of using complex, expensive and platform-dependent client
applications (see ÒWeb-based ManagementÓ on page 111);

2. employed VRML to represent network management information in 3D
[Deri97b] going beyond classic 2D visualisation techniques that are not
suitable for modern network topology (see ÒVRML: Adding 3D to
Network ManagementÓ on page 117);

3. allowed CMIP and SNMP network resources to be managed using the
Java language [Deri96b] enabling the creation of simple, cheap,
platform-independent management applications (see ÒHTTP-based
ManagementÓ on page 121);

4. implemented full CMIP and SNMP network management capabilities
using CORBA, demonstrating that interdomain management is feasible
[Deri97a] by overcoming limitations of the current generation of
CORBA-based network management applications (see ÒCORBA
InterfacesÓ on page 129);

5. enabled development of slim, client-server network management
applications in a visual and rapid way [Deri97c] by combining the
services provided by Liaison (see ÒRapid Network Management
Application DevelopmentÓ on page 134) with tools for rapid application
development;

6. implemented network management in a real portable way, showing that
it is possible to achieve performance, conformance to standards, and
portability (see table ÒLiaison at a GlanceÓ on page 141 and ÒEvaluating
LiaisonÓ on page 203).

2.12.Thesis Outline

This thesis is divided into four parts:

1. collection of requirements, open issues, and limitations of current
generation of network management applications;

2. deÞnition of a component-based architecture that satisfy the
requirements;
A Component-based Architecture for Open, Independently Extensible Distributed Systems 31

Introduction
3. design and implementation of a modern network management
application based on the deÞned architecture;

4. validation of the work and comparison with relevant architectures and
network management systems.

This chapter has covered the basic concepts and terminology necessary to
understand and evaluate this thesis, and defined the scope and the goal of
this work in addition to having established external constraints and require-
ments. The main achievements and contributions of this research have been
also identified.

Chapter three covers relevant research efforts undertaken in the areas cov-
ered by this thesis: software components and network management archi-
tectures. For simplicity, the chapter has been divided into two parts. In the
first part, state-of-the-art component-based architectures and software com-
ponents are covered in detail. The second part instead, covers the three
standard management architectures, highlighting their differences and sim-
ilarities (see ÒComparison of Network Management ArchitecturesÓ on
page 60). In addition to commercial and research applications, this compar-
ison is necessary because the three management paradigms are quite differ-
ent in terms of goals and functionality.

Chapter four covers Yasmin in detail. It describes the concept behind Yas-
min, why it has been necessary to define yet a new architecture for open sys-
tems, which issues Yasmin addresses that are not covered by the available
architectures. Additionally, YasminÕs main components are covered in de-
tail and Yasmin is compared with the component-based architectures
shown in Chapter three (see ÒComparison with Other ArchitecturesÓ on
page 101).

Liaison, a Yasmin-based application for network management, is covered in
Chapter five. First, the scenario is shown in which Liaison was conceived,
including the open problems that Liaison solved. Then, Liaison components
and internals are described according to the functionality they implement
and compared with similar approaches undertaken in this area. Finally, it is
shown how Liaison can be used profitably to build interdomain manage-
ment applications rapidly.

Chapter six evaluates and validates this work comparing it with relevant ef-
forts undertaken in the areas of component-based architectures and open
systems.

Chapter seven summarises the lessons learned in the course of this work,
and demonstrates that Yasmin and Liaison have fulfilled the initial goals.
Finally, open issues requiring future work are identified.
32 A Component-based Architecture for Open, Independently Extensible Distributed Systems

3 Related Research
This chapter covers the relevant standard, commercial, and research efforts
undertaken in the area of software components and network management.
In the next two chapters, these efforts described here are compared with the
work in this thesis.

3.1. Component-based Architectures

In this section, Þve component-based architectures are presented. These
architectures differ considerably: the Þrst one is used for document-centric
application, the second one for generic software applications, the third one
for compound Java applications, the fourth one for simple applications,
and the last one for sharing multimedia components. The Þrst four archi-
tectures have been selected because of their acceptance in the industry,
whereas the last one is relevant for this thesis because the components it
deÞnes are similar in some aspects to the droplets.

Because droplets are coarse-grained components, the following sections
will only cover-coarse grained components, in order to better position drop-
lets.

3.1.1. OpenDoc

OpenDoc [Apple95] is a set of shared libraries designed to facilitate the
construction of compound, customisable, collaborative, and cross-platform
documents. To do this, OpenDoc replaces today's application-centred user
model with a document-centred one. The user focuses on constructing a
document or performing an individual task, rather than using a particular
application. The software that manipulates a document is hidden, and
users feel that they are manipulating parts of the document without having
to launch or switch applications. This document-centred model does not
mean that OpenDoc supports only those kinds of data found in paper doc-
uments. An OpenDoc document can contain data as diverse as navigable
movies, sounds, animation, and database information such as networked
calendars or virtual folders as well as traditional spreadsheets, graphics,
and text. In OpenDoc, every kind of medium can be represented as a part
of any document. Thus, an OpenDoc document is automatically able to
contain future kinds of media, even kinds not yet envisioned, without
A Component-based Architecture for Open, Independently Extensible Distributed Systems 33

Related Research
modiÞcation. Although OpenDoc lends itself readily to complex and
sophisticated layouts, its usefulness is by no means restricted to page-lay-
out applications or even compound documents. The scripting and exten-
sion mechanisms allow communication among parts of a document for any
imaginable purpose.

OpenDoc consists of six functional service layers:

Figure 2. OpenDoc Building Blocks

1. OpenDoc Compound Document Services
OpenDoc Compound Document Services manage display and user-
interface aspects in such a way as to ensure a uniÞed document model
that supports multiple data types, while providing users with a smooth
and single look and feel when working with a variety of contents. These
services consist of a set of libraries that allow editors to work together to
display and manipulate the contents of an OpenDoc document.

2. OpenDoc Component Services
OpenDoc Component Services support the integration of multiple soft-
ware components into both seamless compound documents and custom
applications. They allow cross-platform support, scriptability, replacea-
bility, and extensibility. These services consist of a set of libraries
designed to allow components to work together by providing methods
for negotiating resources, registering objects for cooperative use, and
persistently storing components.

3. OpenDoc Storage Services
OpenDoc Storage Services are designed to solve the problems inherent
in storing multiple content elements by providing a standard mecha-
nism for storing such elements as objects. These services are based on
Standard Interchange Format (formerly known as Bento), a published
and widespread model for document storage. OpenDoc Storage Services
consist of a portable object storage library and format that allow
OpenDoc to store and exchange compound documents and multimedia.

OpenDoc interoperability
services

OLE interoperability

ComponentGlue
technology

Taligent
interoperability

Other
interoperability

Open Scripting
Architecture

OpenDoc automation
services

SOM (System Object Model)

OpenDoc object management services

OpenDoc compound
document services

OpenDoc component
services

OpenDoc storage
services
34 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Component-based Architectures
4. OpenDoc Automation Services
Based on the Open Scripting Architecture (OSA), OpenDoc Automation
Services (OAS) consist of an automation and scripting API that supports
application-independent scripting. Not a scripting language, but rather
a standard for the coexistence of multiple scripting systems, OAS pro-
vide full functionality with compliant scripting languages, allowing
them to plug in transparently. This lets arbitrary scripting systems be
built as shared libraries, so that any component application can be
scripted by any scripting system. In this way, OAS free developers from
the need to develop a scripting language or system of their own.

5. OpenDoc Object Management Services
OpenDoc Object Management Services are based on IBM's System
Object Model (SOM) [DSOM] [IBM94a], a highly efÞcient dynamic link-
ing mechanism for objects, which supports multiple languages and pro-
vides a gateway to distributed object services. SOM technology allows
different object-oriented programming languages, such as SmallTalk
[Goldberg83] and C++ [Stroustrup91] [Ellis90], to create objects that can
work together on a single desktop. Through SOM, developers can take
advantage of the OMG's CORBA standard for distributed object messag-
ing (see ÒOMG Network ManagementÓ on page 57). This provides a
path to distributed cross-platform, networked applications and a means
to link desktop applications to information services, computing
resources.

6. OpenDoc Interoperability Services
OpenDoc Interoperability Services solve the issue of interoperability
between OpenDoc and other technologies such as Microsoft OLE,
Microsoft Corporation's proprietary API for application integration (see
ÒMicrosoft Object Linking and EmbeddingÓ on page 38). The
ComponentGlue technology lets any OpenDoc component be directly
embedded within any OLE object or application. OpenDoc components
appear as OLE objects which can be embedded in OpenDoc documents.
This capability allows OLE-enabled desktop objects to communicate
easily with distributed OpenDoc components. An OLE object embedded
in an OpenDoc document remains an OLE object and it does not inherit
such additional OpenDoc features as support of irregular objects. But,
within the limitations of the functionality that OLE provides, the OLE
object works inside the OpenDoc application.

Component Model
OpenDoc's basic elements are documents, their parts, their frames, and the
part editor code that manipulates them. Those elements, represented in a
set of object-oriented class libraries, deÞne a number of object classes. The
classes provide interoperability protocols that allow independently devel-
oped software components to cooperate in producing a single document
for the end user. Through the class libraries, these cooperating components
share user-interface resources, negotiate document layout on-screen and on
printing devices, share storage containers, and create data links to one
another.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 35

Related Research
Documents, not applications, are at the centre of OpenDoc and individual
documents are not tied to individual applications. In creating OpenDoc
documents, collections of software components called part editors replace
the conventional monolithic applications in common use today. Each part
editor is responsible only for manipulating data of one or more specific
kinds in a document. The user does not directly launch or execute part edi-
tors, however. The user works with document parts (or just parts), the piec-
es of a document that, when executing, include both the document data and
the part-editor code that manipulates it. Each part editor must: display its
part, both on screen and when printing, edit its part by changing the state
of the part in response to events caused by user actions, and store its part,
both persistently and at runtime. At runtime, a part is the equivalent of an
object-oriented programmatic object in that it encapsulates both state and
behaviour. The part data provides the state information, and the part editor
provides the behaviour; when bound together, they form an editable object.
As with any programmatic object, only the state is stored when the object is
stored. Moreover, multiple instantiations of an object do not mean multiple
copies of the editor code; one part editor in memory serves as the code por-
tion for any number of separate parts that it edits. OpenDoc dynamically
links part editors to their parts at runtime, choosing an editor based on the
kinds of data that a part contains. Dynamic linking is necessary for a smooth
user experience because any sort of part might appear in any document at
any time.
All OpenDoc part editors are represented to OpenDoc by a subclass of
ODPart, which is a SOM class as are all the classes in the OpenDoc class
library. The part editor interface is written using an extended version of
OMGÕs Interface DeÞnition Language (IDL) [OMG95]. Using SOM it is
possible to create subclasses of existing part editors simply having access to
the IDL Þle, which deÞnes of the part editor interface (no access to the part
editor code is necessary). Unlike the object models found in formal object-
oriented programming languages [Rumbaugh91], SOM is language-neu-
tral. It preserves the key OOP characteristics of encapsulation, inheritance,
and polymorphism without requiring that the user of a SOM class and the
implementor of a SOM class use the same programming language. There-
fore, it is possible to write part editors using one of the languages sup-
ported by SOM (currently C, C++, FORTRAN and SmallTalk). This also
implies for instance that a base part can be written in C++, an inherited
part can be written in Pascal, and a double-inherited part can be written in
C++ or Pascal or C or Fortran etc. OpenDoc components can be parameter-
ised in a totally different way that common constructs such as the C++ tem-
plate. Each component has an associated part kind, i.e. a typing scheme
analogous to Þle type, to determine which part editor to associate with a
given part in a document. Because OpenDoc documents are not associated
with any single application, a Þle type is insufÞcient in this case; each part
within a document needs its own ÒtypeÓ, or in this case, part kind. Com-
mon part kinds are ÒTEXTÓ, ÒPICTÓ and ÒSNDÓ. The substitution of part
editors is facilitated by deÞning a part category, a general description of the
kind of data manipulated by a part editor. Part categories have broad des-
ignations, such as Òplain textÓ, Òstyled textÓ, ÒbitmapÓ, or ÒdatabaseÓ. Both
part kind and part category are speciÞed as ISO strings.
36 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Component-based Architectures
OpenDoc components are black-boxes and because they are implemented
using SOM, they behave like SOM objects derived from a class named
ODPart. Developers who need to specialise a component can override some
of its methods and extend the interface by subclassing the component.
Thanks to SOM, there is no need to have access to the component's source
code but simply to the component interface deÞned in IDL. If the interface
has not been made available by the component developer, the component
can be treated like a subclass of ODPart and then subclassed. OpenDoc com-
ponents are Þrst-class values.

Component semantics is deÞned by OpenDoc. Hence every part has a well-
deÞned behaviour (at least at the ODpart level) and an interface which guar-
antees plug-compatibility and versioning through facilities offered by SOM.
Composition can be obtained in two ways:
1. Runtime

Objects can be composed using OSA or by creating a document template
(c.f. below). In both cases composition is dynamic, i.e., it is possible to
modify the relation ship among components and the way they are glued
together. A document template is a Þle that contains information on how
the various components have been glued together in order to deÞne the
document. For instance, a word processor document template speciÞes
how the various components (text editor, spelling checker, drawing
tools) have been glued together to build the word processor. A docu-
ment generated out of a document template is an instance of the tem-
plate and it stores only pure data (e.g. text and pictures). A document
template can be further composed by adding components or by chang-
ing the links among them. In any case a document template it is not yet a
new SOMObject, hence it does not own an interface and cannot be sub-
classed.

2. Compile time
Components can be composed by deÞning a new component. In order to
do this a new IDL Þle has to be deÞned and the component has to be
implemented using a programming language. In this case the composi-
tion is static because the result of the composition is a new component
whose behaviour can be modiÞed only through recompilation.

Application Domain
OpenDoc has been tuned to document-centric applications, but this does
not mean that OpenDoc can be used exclusively for document-centric
applications. As SOM is an integral part of OpenDoc, it is possible to build
CORBA-savvy applications that are not based on documents, such as serv-
ers or daemons.

Users can build applications on top of the basic classes, on top of ODF
(OpenDoc Framework provided with OpenDoc for MacOS) or they can
deÞne a new framework. In any case, developers have limited freedom
because the architecture speciÞes how components have to interact and
how they can be composed. This is certainly an advantage because it guar-
antees interoperability and component composition. Heterogeneous com-
A Component-based Architecture for Open, Independently Extensible Distributed Systems 37

Related Research
ponents are supported thanks to SOM, which also supports versioning and
provides functions to query metadata information contained inside com-
ponents. This does not guarantee that there is a binary representation for
components but simply that components built and running on different
platforms will be able to interoperate and be composed into a document as
soon as an upcoming version of OpenDoc based on DSOM (Distributed-
SOM) is released. OpenDoc speciÞes how the messages exchanged among
components should look, leaving to (D)SOM the task to mask differences
between different operating systems and architectures. Finally CI (Compo-
nent Integration) Labs, a non-proÞt organisation, ensures that OpenDoc
components follow the OpenDoc guidelines. Hence it certiÞes that compo-
nents are able to interoperate and be composed.

Concluding Remarks
OpenDoc is the first (and so far the only) architecture that allows compound
document-centric applications to be built. Based on SOM, it allows compo-
nents to be created and composed at both compile and runtime. The use of
IDL-defined object interfaces simplifies the creation of black-box compo-
nents and clearly separates component's interfaces from their implementa-
tion. Although OpenDoc has been tuned to document-based applications, it
is possible to use some of its components such as Bento and SOM to build
more general-purpose applications which, unfortunately, cannot take full
advantage of OpenDoc.
At the moment, OpenDoc has not yet reached maturity owing to its limited
availability (MacOS and OS/2, and recently Win32 and AIX) and to its lack
of many applications and parts. In addition, development tools are still
primitives and do not offer facilities to easily debug compound applica-
tions. These problems are expected to be solved very soon, and a recent
agreement between Apple and Sun will shortly allow people to use Java to
write OpenDoc components, and hence to combine the flexibility of Java
with the power of OpenDoc.

3.1.2. Microsoft Object Linking and Embedding

Microsoft's Component Object Model (COM) is a language-neutral binary
interface specification for Windows Objects and a set of runtime functions
for instantiating them. Microsoft's Object Linking and Embedding (OLE)
[Microsoft93a] [Brockschmidt93] is based on COM. It defines a set of COM
object interfaces, which provide a variety of ways to integrate application
38 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Component-based Architectures
components, and specifies their binary storage representation.

Table 3. COM/OLE Layering Model

In particular OLE defines:
1. Binary Object Representation

As COM is a speciÞcation and does not provide an object representation,
OLE has to specify the binary representation of OLE components
[Box95] [Petzold95]. Unlike other object models which are language-
independent, OLE embraces more or less closely the C++ way of think-
ing objects which is used to provide language independence. Interfaces
make use of structures of pointers and function calls be means of point-
ers stored in a pointer table built by the developer. Once an OLE object
has registered its interface with the OLE object registry, applications can
query the object interface and use the provided interface using a C++
call style.

2. Collection of Interfaces
OLE provides visual editing, drag and drop between applications, OLE
Automation, and structured storage for objects. Visual editing allows
two or more applications to cooperate in the editing and display of com-
pound documents. Drag and drop allows users to select an application
object such as a document and drop it into another application window,
where it can be copied or moved. OLE Automation provides a standard
means for macro and script languages for applications to view and
manipulate a set of internal application-level objects and for altering the
object's state. Finally, structured storage allows applications to cooperate
in the creation of compound Þles supporting a variety of native data
types stored as nested objects within a standard Þle format.

3. System Object Model
OLE's system object model based on COM provides object versioning
and evolution in a safe way. It offers interfaces that allow developers to
query the object interface, safely downcast objects and aggregate them.

Custom Controls

Automation Visual Editing Compound
Documents

Drag and Drop

COM: Model and Runtime Library

Uniform Data
Transfer

Custom
Interfaces

Structured
Storage

OLE

COM
A Component-based Architecture for Open, Independently Extensible Distributed Systems 39

Related Research
4. Distributed Capabilities
The current version of OLE permits components running on different
object spaces inside the same host to be integrated. The coming version
of OLE for WindowsNT will include a networked version of OLE that
allows an application to integrate OLE components located on a host
connected via a network. Networked OLE will be based on LRPC (Light
RPC) a lightweight version of the standard Unix RPC and will include
support for security designed to be upwardly compatible with future
implementations of OLE.

Component Model
COM is, according to Microsoft, a language-neutral binary interface specifi-
cation but is primarily a set of rules that must be implemented in every ap-
plication implementing interoperable Windows Objects. It provides no
formal representation of an object, hence developers are responsible for pro-
viding the representation of Windows Objects. They are arbitrary as long as
one obeys the rules of how COM expects its objects to behave. COM is ob-
ject-based and not object-oriented and is based on aggregation rather than
inheritance. Therefore, applications using COM obtain and manipulate only
interface references and not objects at all. A byproduct is that it is possible
to manipulate COM objects from relatively simple and non-object-oriented
languages such as Basic.

A component interface is a strongly typed contract between software com-
ponents that is designed to provide a small but useful set of semantically re-
lated operations. An interface is associated with a unique identifier called
an interface ID. The way to obtain an interface from an object is to query it
directly from the object using a method called QueryInterface. When an ob-
ject is to be cast, a new interface has to be obtained. If the interface cannot be
returned then the object does not support that interface. QueryInterface is a
safe way to cast objects; it eliminates the error-prone situations that arise in
many programming languages like C++.
COM does not support inheritance but aggregation, which is essentially a
manual technique entirely implemented by user-written code. Rather than
have one class derived from another, COM allows a new aggregate object to
be built. Using this model, a set of objects can work together in a well-de-
fined manner to appear to other software components as a single object: the
container object delegates to the component object in much the same way as
a derived class passes messages to its base class. As the COM interface is
very generic, it is possible to support genericity, i.e., to parameterise COM
objects. However COM provides no support, so developers are responsible
for implementing it themselves.

Components are black-box entities. The component interface is the only
way to interact with the component and can also be used to query informa-
tion about other supported interfaces. Developers have no access to compo-
nent internals nor to additional information. Unlike real objects, COM
objects can externalise information only by means of their interface. An ad-
vantage of this scheme is that aggregate components cannot rely on side in-
formation but only on the interface. Hence COM prevents the Òfragile base-
40 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Component-based Architectures
class problemÓ, which is well documented in the literature [Nackman94]
[Szypersky96].
A component can be of arbitrary granularity, so it can be smaller or larger
than an object. Applications usually consist of a main program and addi-
tional code which glues components together. However it is possible to
have OLE servers, implemented as DLLs (Dynamic Loadable Library) and
without a visual appearance, which can be embedded in an existing docu-
ment or application. OLE allows components to be embedded at runtime
into existing applications. Hence they can be considered first-class values.

Composition can be performed at:
1. Runtime

Objects can be composed dynamically using OLE Automation, which is
essentially a set of interfaces that allow some object characteristics to be
exposed to other components. This serves to connect components to
applications. Languages such as Microsoft VisualBasic [Microsoft92]
or Borland Delphi [Pacheco96] thus allow binary stand-alone applica-
tion to be created through composition. Notice that components will not
be integrated as part of the application code but will still be delivered as
DLLs.

2. Compile time
At compile time it is possible to compose objects using aggregation. In
this case the composition is static because the result of the composition is
a new component whose behaviour can be modiÞed only through rec-
ompilation.

Component semantics is partially defined by OLE, which specifies a mini-
mal behaviour of a component. Nothing can be said about other component
properties because OLE guarantees very minimal properties such as plug-
compatibility via an object interface.

Application Domain
OLE components come in different flavours including OCX (OLE Control
eXtension) and OLE servers. OCX have a visual appearance and are suitable
for document-centric applications. OLE servers may have a visual appear-
ance (only if they have been embedded in an application) and are usually
used to provide services. Although OLE pretends to be suitable for docu-
ment-centric applications, it lacks important features such as document
storage or real support for scripting. OLE is suitable for building applica-
tions that make use of components (for instance OCXs) where the interac-
tion among components is rather limited.

OLE specifies how components should look from the outside. Developers
can use the standard Microsoft framework or build their own framework to
develop the component. In both cases developers have limited freedom be-
cause OLE specifies how components have to interact and how they can be
composed. Although OLE specifies several characteristics of components,
many Windows developers have experienced problems with third-party
components. Unlike OpenDoc, in the Microsoft world there is no organisa-
A Component-based Architecture for Open, Independently Extensible Distributed Systems 41

Related Research
tion which tests components for conformance with OLE. Hence embedding
components can sometimes become quite an ordeal.
Components are supposed to be language-neutral but the use of pointers
and function pointers make them easy to build only with C++-like languag-
es. COM does not define a definition language such as OMG's IDL, so there
is no standard language-independent way to describe component interfac-
es. The lack of a definition language is fairly important from the program-
ming point of view because COM does not provide an automatic tool, such
as an IDL compiler, that facilitates the composition and the definition of
new components. Heterogeneous components are supported but have to be
developed with languages that support C++ pointer arithmetic.
COM provides facilities to implement versioning and to query object inter-
faces. Windows OLE Registry keeps track of the registered components and
provides facilities to register/deregister them. As OLE is very complex and
error-prone, Microsoft has released code generators and other tools which
simplify the development of components. Unfortunately most of those tools
are not part of the standard OLE distributions but usually come with Micro-
soft development tools.

Concluding Remarks
Although OLE has many limitations, is based on proprietary technology, is
difficult to program and not object-oriented, it is a reality. Hundreds of
companies have embraced this technology and offer components for many
different purposes. It is likely that a component one needs is available, so it
can simply be reused. Aside from general acceptance, the OLE world is
overly complex. Old and widespread components called VBX (VisualBasic
eXtensions) [Microsoft92] are going to be replaced with OCX, OLE does not
specify all the implementation details, so component reuse implies that
components come with low-level implementation details. Although it is
clear today that OpenDoc/SOM is technically far better than OLE, the mar-
ket has not yet accepted this new technology. Hence it is likely that OLE will
continue to be an important player in the near future.

3.1.3. Java Beans

A Java Bean [JavaBeans] is a reusable software component written in the
Java programming language [Sun96a] such that it can be manipulated vis-
ually in a builder tool. Builder tools may include web page builders, visual
application builders or server application builders. The goal of JavaBeans is
to deÞne a software component model for Java in order to enable the com-
position of Java software components by end users. Beans range from
small controls to simple compound documents. Thus the beansÕ API (called
an interface, i.e. a collection of method signatures, in Java terminology) is
similar to the OLE Control API but does not provide the full range of high-
end document API provided, for instance, by OpenDoc.

A bean is a collection of Java classes describing the behaviour of the objects
that make up the bean and a serialised (i.e. marshalled) version of the initial
object configuration of the bean. Therefore a bean is not a class that has to
be instantiated in order to obtain a runtime component, and not even an ob-
ject but rather a collection of objects, each having an initial state. A bean has
42 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Component-based Architectures
to implement two well-separated interfaces:
1. Design Interface

This interface is used to compose beans and is not used at all at runtime.
The interface exposes the beansÕ properties (for instance the foreground
colour), the methods that other components can call on the bean, and the
set of events it emits.

2. Runtime Interface
This interface is used only at runtime. It consists of methods that allow
the bean to be manipulated, interact with the environment (e.g. through
cut and paste), and handle events.

Beans are black-box entities. The only way to access beansÕ internals is
through the introspection interface, which can expose only the information
the developer decided to make public. Because beans can be passed as val-
ues at runtime, they can be considered first-class values and can also be
used to build new beans. Composition can be performed at the object or
class level. Two bean objects are composed by passing each otherÕs refer-
ence whereas class composition is performed by subclassing. Object compo-
sition is dynamic and can be done by writing Java glue code, by using a
scripting language or through property editors and composition wizards. In
the case of a compiled composition, the structure of the new component can
be serialised and stored in a persistent file called a pickle.

Contrary to OpenDoc, beans are specified in Java, lack a formal interface
definition language, and do not have a solid semantic foundation. Never-
theless the fact that beans are based on Java has several advantages:
¥ they have a binary standard representation (Java byte-code);
¥ beans can be distributed and accessed remotely through the Java

Remote Method Invocation (RMI) API;
¥ thanks to the Java serialisation mechanisms, beans can be easily moved

on the network along with their state

NOTE

This facility is not available even of on mature architectures like CORBA.

Conclusion
Although Java Beans are a simple technology in comparison to other com-
mercial components, they have many unique features which make them
very attractive, especially in a distributed environment:
¥ ßexible network access mechanisms: HTTP, Java RMI, Java IDL (JavaÕs

CORBA implementation) and JDBC (Java DataBase Connectivity);
¥ ability to move beans around easily, by exploiting the serialisation/dese-

rialisation mechanisms;
¥ platform-independent component model;
¥ persistence and security facilities (provided by Java).

The ability to run beans unmodified on any platform that supports Java
makes beans even more attractive. This is because the beansÕ component
A Component-based Architecture for Open, Independently Extensible Distributed Systems 43

Related Research
model is currently the only way to produce components, which run un-
modified on different heterogeneous platforms.

3.1.4. Flexible Components

[Leeb96] presents a software architecture which enables end users to build
applications by modifying and extending software components. These
components are designed for building small, simple exploratory applica-
tions such as simple board games or mathematical models. The architec-
ture is based on ßexible components, which are executable pieces of software
that can be developed, distributed, and reused independently. They consti-
tute the application building blocks by being:
1. Programmable

It is possible to modify and extend component functionality dynami-
cally.

2. Interoperable
Components can communicate with each other through standardised
interfaces managed by a system component called the component engine.

3. Composable
two or more components can be composed to form a new component by
exploiting the component engine, which provides functionality for coor-
dination, relation, and composition of components.

Flexible components can share parts and also be combined dynamically to
build applications or compound components. They cooperate by communi-
cating with each other and may be combined in hierarchy or grouping rela-
tions. Flexible components simplify programming by virtue of:
1. Reusability

Components can be modiÞed in order to be reused for different pur-
poses, and to build a new application mostly by reusing existing build-
ing blocks.

2. Runtime modiÞcation
Components can be modiÞed, extended, and replaced in-place, i.e.,
within their application environment, in order to observe the effects of
modiÞcations immediately.

Most of the flexibility and power of flexible components derive from the fact
that they have been implemented uniquely using dynamic object environ-
ments (a.k.a. prototype-based programming environments) [Wegner87] such as
Self [Ungar87], Obliq [Cardelli94], or Cecil [Chambers93]. In these environ-
ments objects are called prototypes which exist on their own (i.e. they are not
instances of a class) and are created by cloning existing objects. A prototype
is a collection of data or methods members called slots. Prototypes usually
offer a user interface that supports direct manipulation of their structures
(i.e. the number, the name, and the type of their slots) and their behaviour
(i.e. the functionality of their method slots). As prototype-based systems do
not support most of the mechanisms present in class-based systems, they
have introduced some alternatives such as:
44 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Component-based Architectures
1. Delegation
This establishes a parent-child hierarchy among objects. A child can del-
egate some unknown slot to its parent which, if owner of the slot, will
handle the message on behalf of the child.

2. Shared information
As there are no objects which derive from a common base class, groups
of methods that need to be used by several objects are shared among
those objects and externalised in a trait. Unfortunately the of shared
objects parts lead to a break down of the correctivness principle in proto-
type-based environments by introducing objects that do not behave like
other objects.

Besides these advantages, prototype-based environments have several dis-
advantages with respect to object-oriented ones:
1. Object Interdependency

Owing to information sharing, interdependency in a dynamic system
can become complex, and the basic advantage of concreteness (object)
being simpler to understand than abstractness (class) vanishes.

2. Interoperability
Prototype-based environments are closed, because they offer little or no
interoperability with other applications, making them unsuitable in
cases where legacy code or objects created using other development lan-
guages have to be integrated into the application.

Component Architecture
Flexible components are binary objects written using a prototype-based lan-
guage, whose functionality is encapsulated in methods and data members.
The component interface allows the component behaviour to be controlled
by executing methods, and its functionality to be modiÞed by adding/de-
leting/modifying methods or data members. Each object has:
¥ a system-wide, unique, immutable identity;
¥ a modiÞable name;
¥ a visual representation, i.e. an icon;
¥ data and methods, some of them being modiÞable or removable

depending on the component;
¥ a command interface (i.e. objectÕs method and data at a certain time)

used to access the component functionality, and a programming inter-
face necessary to modify it.

The component engine is responsible for providing global services neces-
sary to manage component interaction, such as:
¥ creation and destruction of components,
¥ component location and identiÞcation,
¥ component communication through message passing,
¥ component grouping in a parent-child or sharing (i.e. all the components

that share data or methods) hierarchy,
A Component-based Architecture for Open, Independently Extensible Distributed Systems 45

Related Research
¥ component composition in a cluster of components.

Conclusion
Although flexible components have some interesting capabilities, they are
not suitable for developing real applications owing to the following limita-
tions:

¥ Complexity
The more ßexible a component is, i.e. the more options it presents to the
user, the more complex it is.

¥ Performance and Scalability
Owing to the addition of several levels of indirection and to the interpre-
tation of methods and message, the general application performance is
degraded. Additionally, because component sharing is implemented
replicating common data in each object and updating it every time the
data change, this results in suboptimal memory usage and further per-
formance degradation whenever common data is modiÞed.

¥ Robustness and Reliability
Components with multiple interfaces can be modiÞed in multiple ways
that may damage the global system integrity owing to the complex com-
ponent composition scheme, which does not facilitate the immediate
identiÞcation of problems due to interface modiÞcation.

In conclusion, although flexible components are a promising alternative to
more traditional components such as OpenDoc or OLE, their numerous lim-
itations do not permit their use for real application development but only
for simple, experimental applications with a small number of components
which users combine in many different ways and where flexibility and pro-
grammability are much more important that performance and reliability.

3.1.5. Apple QuickTime Component Manager

Apple QuickTime is a set of libraries and services for the manipulation of
multimedia data, such as images, audio, and video. A component is a piece
of code that provides a deÞned set of services to one or more clients. Appli-
cations, libraries, as well as other components can use the services of a com-
ponent. A component typically provides a speciÞc type of service to its
clients and multiple components can provide the same type of service. All
components of the same type support the same basic interface. Hence appli-
cations can use different components in order to obtain different levels of
service.

The Component Manager (QTCM) [Apple93] provides access to components
and manages them by keeping track of the currently available components
and routing requests to the appropriate component. The Component Man-
ager classifies components by three main criteria: the type of service pro-
vided, the level of service provided, and the component manufacturer. The
Component Manager uses a component type to identify the type of service
provided by a component.
46 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Component-based Architectures
Every component must have a single entry point that returns a value of type
ComponentResult (a long integer). Whenever the Component Manager receives
a request for a component, it calls that componentÕs entry point and passes
any parameters, along with information about the current connection, to a
component parameters record. When a component receives a request, it ex-
amines the parameters to determine the nature of the request, performs the
appropriate processing, sets an error code if necessary, and returns an ap-
propriate function result to the Component Manager.

The component parameters record is defined by a data structure of type
ComponentParameters.

TYPE ComponentParameters =
PACKED RECORD

flags: Char; {reserved}
paramSize: Char; {size of parameters}
what: Integer; {request code}
params: ARRAY[0..0] OF LongInt; {actual parameters}

END;

The what field contains a value that specifies the type of request. Acceptable
values are for instance kComponentTargetSelect and kComponentUnregisterSelect,
which are used respectively to register and unregister a component. The
params field of the component parameters record is an array that contains the
parameters specified by the application that called the component.

Whenever an application requests services from a component, the Compo-
nent Manager calls the component and passes two parameters: the applica-
tionÕs parameters in a component parameters record and a handle to the
memory associated with the current connection. The component parame-
ters record also contains information identifying the nature of the request.
There are two classes of requests: requests that are defined by the Compo-
nent Manager and requests that are defined by the component. When an ap-
plication closes a connection to a component, the Component Manager
issues a close request to that component. The component disposes of the
memory associated with the connection and closes any files or connections
to other components that it no longer needs.

The developer defines the interfaces supported by the component being de-
veloped by declaring a set of functions for use by applications. These func-
tion declarations specify the parameters that must be provided for each
request. Once a component has been created, it has to be registered with the
Component Manager in order to be used by other components and applica-
tions. There are two mechanisms for registering a component with the Com-
ponent Manager. First, during startup processing, the Component Manager
searches the components in a directory contained inside the directory where
the operating system is stored. Second, an application can register the com-
ponent and can specify whether the component should be made available
to all applications (global registration) or only to the application (local reg-
istration).
A Component-based Architecture for Open, Independently Extensible Distributed Systems 47

Related Research
Conclusion
The QuickTime Component Manager is a very simple mechanism to regis-
ter components either application-wide or operating system-wide. In any
case components can only be used by local applications and are not availa-
ble to remote applications. A component is basically a function that pro-
vides a certain service which is identified by a four character long name. The
Component Manager takes care of component registration and deregistra-
tion. In addition it is responsible for routing the client requests to the appro-
priate component. Unlike CORBA, there is not an interface definition
language which can be used to specify the component interface. This re-
stricts the component reuse because an application can use only those com-
ponents whose interface has been made public, similar to OLE.

3.2. Plug-in Software Components

In the past few years, software developers have recognised the need to
change the application development cycle. The necessity to support many
media types and Þle formats, to add new tools, and ultimately to facilitate
application tailoring, has contributed signiÞcantly to the creation of new
types of software components. These software components do not usually
constitute the core part of the application architecture (c.f. section 3.1) but
they are used for side activities. For this reason they are often called plug-
ins (see ÒSoftware ComponentsÓ on page 14).

The following sections cover some types of software components that fall
in this category. Although they have been developed for a very precise
task, they have been selected because of the technology used to implement
them.

3.2.1. CGI Applications

CGI (Common Gateway Interface) [CGI] is an interface deÞned by NCSA
(National Center for Supercomputing Applications) between a web server
and Unixª applications. Before the advent of CGI, web server were able
only to return static documents stored on the Þles system. With CGI, it has
become possible to start applications when a speciÞc URLs is requested to
the server. CGI passes arguments, such as the request, to the application
using the Unix environment. Basically, before launching the application,
the web server ÔenrichesÕ the environment with information relative to the
URL and then starts the application, which can fetch the information it
needs from the environment. The output generated by the application is
then returned to the requestor through the web server. Owing to the way
48 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Network Management Standards
the web server interacts with the CGI applications, it is not possible to
qualify a CGI application as a component because it has only monodirec-
tional plugs (see ÒSoftware ComponentsÓ on page 14):

¥ a CGI application (in general) cannot interact with other CGI applica-
tions;

¥ the CGI application cannot send data to the web server, unless the web
server issues a request to the CGI application.

3.2.2. Shell Applications

Shells are command-line interfaces that allow commands to be executed.
Some commands may be hard-coded in the shell whereas others are stored
somewhere on the Þle system and are executed when needed. The shell
interacts with the applications it starts in two ways, through the parame-
ters it passes to the application and through the environment. The shell is
always the entity that initiates the operations. Shell applications usually
return a return code to the shell in order to indicate whether the operation
was completed successfully. Like in the previous case, shell applications
cannot be considered components but rather plug-ins because they interact
with the shell and with other components in a client-server mode rather
than a peer-to-peer mode.

3.2.3. Plug-in Components

Several commercial applications [Adobe96] [Claris93] [Metrowerks96] use
programming techniques similar to the component manager in order to
achieve extensibility and customisation by allowing users to plug in compo-
nents, often called plug-ins. Like the QuickTime Component Manager,
these techniques define a component interface and a jump table containing
functions pointers called by the application. Usually a plug-in cannot com-
municate with another plug-in while the application can access all of them.
Additionally the plug-ins have quite limited capabilities and cannot access
all the services and resources accessible by the application.

IMPORTANT

A comparison of the architectures and software components covered in the previous sections can be
found in the “Comparison with Other Architectures” section on page 101.

3.3. Network Management Standards

Networks are used to interconnect heterogeneous systems and devices. In
the past few years, hardware manufacturers have acknowledged the need
to build software applications able to manage the different network equip-
ment they produced. Unfortunately the interconnection of devices from
different manufacturers has shown the limitations of ad hoc software for a
speciÞc device and it has been one of the reasons that pushed the network
community towards a standard way to manage networks. For historical
A Component-based Architecture for Open, Independently Extensible Distributed Systems 49

Related Research
reasons network management is split into two distinct parts: OSI network
management and Internet management. The former deals with the man-
agement of large public (tele)communication networks, the latter with
management of devices attached to the Internet. In the past few years, a
new management paradigm deÞned by OMG and based on CORBA is has
been very successful. This is due to its ability both to operate (e.g. TCP/IP)
and manage (e.g. SNMP, CMIP) networks, activities which instead are sep-
arated in OSI and Internet management.

The following sections introduce OSI, Internet, and OMG management, and
cover the various predominant architectures and frameworks currently in
use.

3.3.1. OSI Network Management

The OSI Network Management [Jeffree92] [Klerer88]:
¥ deÞnes how management information has to be collected, represented,

and transferred among open systems [Collins89] [ISO10165-1];
¥ provides a common terminology [ISO7498-4] necessary to ßatten the dif-

ferences among different systems and create new management stand-
ards;

¥ speciÞes the protocols used to exchange management information;
¥ deÞnes the services and operations relevant for network management;
¥ identiÞes and deÞnes the tools necessary to monitor, control, and coordi-

nate open systems activities.

The OSI Environment is the set of resources that allows open systems to com-
municate according to OSI protocols and services. The OSI Management En-
vironment is a subset thread that deals with the tools and services necessary
to control and supervise interconnection activities and the resources rele-
vant for management. The systems part of the OSI Environment can per-
form management activities themselves or they can cooperate with other
open systems for the purpose of management. In the latter case OSI Man-
agement offers tools that:
¥ enable system managers to plan, organise, and control interconnection

services;
¥ help maintain reliable connections among systems;
¥ protect management information through the authentication of senders

and receivers of management information being exchanged.

Resources contained in the open systems part of the OSI Management Envi-
ronment are represented by managed objects (MO) [ISO10040] [ISO10165-1]
[ISO10165-2] and are managed using the protocols defined by OSI Manage-
ment. An MO is an abstract representation of a physical (for instance a
bridge or a router) or logical (for instance a communication protocol) entity.
It is characterised by some attributes which represent its properties, its char-
acteristics that need to be visible from the outside, the operations (methods)
to which the MO responds, its behaviour, and the events (notifications) the
MO emits asynchronously. For instance a counter can be represented by an
50 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Network Management Standards
MO containing an attribute which stores the counterÕs current value and
which can be manipulated using the get, set, and reset methods. These
methods manipulate only the MO attributes. It is the MOÕs responsibility to
synchronise the modification of the attribute with the current counter value,
which may be stored in a physical network device. An MO is a member of
a certain object class that characterises all the objects which have the same at-
tributes, support the same operations, and emit the same notifications. MOs
are defined using GDMO [GDMO] notation, defined by ISO in order to har-
monise management information definition. GDMO is a formal language
which allows users to specify MO characteristics. Unfortunately it is not
powerful enough to specify MO behaviour which is defined in plain Eng-
lish. This limitation prevents GDMO from being a suitable fully automatic
processing because a compiler cannot interpret the behaviour clause, thus
making management application toolkits complex and unable to generate
applications automatically without humans to code MO behaviour
[Deri95b] [Halsall90].

OSI management model defines two hierarchical relations for MOs: inherit-
ance and containment. Inheritance is a relation between hierarchical classes.
Each object class inherits the characteristics (attributes, operations, notifica-
tions) of its superior class adding new characteristics or specialising some of
them. For instance the object class Òpacket switching networkÓ is derived
from the class ÒnetworkÓ in the inheritance hierarchy. Containment is ap-
plied to single MOs. An MO can contain other MOs, which can contain fur-
ther MOs. For instance an MO representing a router can contain MOs
representing the router communication ports, which can contain MOs rep-
resenting the devices connected to such ports. Although inheritance is a
concept present in object-oriented languages, containment is a characteristic
of OSI management because in object-oriented languages there is no means
of object containment and hierarchy. In conclusion, every resource relevant
to the OSI Management is represented by an MO having some peculiar
characteristics.

MOs can be specified for a single management layer (N-layer MO), for mul-
tiple layers or for system management (system MO). The following picture
shows the OSI Stack (see ÒOSI Reference ModelÓ on page 184) with the hi-
erarchy of managed objects and it highlights the difference between N-layer
MOs and system MOs.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 51

Related Research
Figure 3. OSI: Environment: Managed Objects Hierarchy

In an open system the information relative to MOs is stored in the Manage-
ment Information Base (MIB). Such information can be modified or trans-
ferred only by using OSI Management protocols. A consequence of this is
that data contained in the MIB are logically organised according to the OSI
Management specifications. Nevertheless OSI Management imposes no re-
strictions on data types, on the storage method (for instance database or flat
files), on the abstract syntax, or the semantics used during data exchange.
The formal language defined by OSI to define abstract syntaxes is ASN.1
(Abstract Syntax Notation One) [ASN1], which provides a wide variety of
types ranging from simple bit strings to complex structures (see ÒASN.1Ó on
page 186).

Figure 4. OSI Management Paradigm

The OSI Management paradigm is characterised by two processes: manag-

System Managed Objects
(N)-Layer Managed Objects

OSI Environment

Managed Object

MO Hierarchy

Legend:

OSI Stack

Transport

Session

Presentation

Application

Network

Data-link

Physical

Manager

Agent Agent

Manager

Open System A Open System B Open System C

OSI Management ProtocolLegend:

Agent

Agent

Local Protocol (unspecified)
52 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Network Management Standards
ing process (manager) and agent process (agent) [ISO10040]. The agent ma-
nipulates MOs directly by performing operations requested by managers.
Agents are also responsible for sending events to managers when a certain
situation occurs. An OSI open system can implement one or more agents or
managers.

The OSI System Management defines the mechanisms used to monitor, con-
trol and coordinate MOs contained in an open system. It allows MOs con-
tained in one or more layers to be managed and it is the only way, within
OSI Management, to operate on different layers. System management com-
munications are performed by the System Management Application-Entity
(SMAE), which define the services offered by OSI management applica-
tions. SMAEs send requests and receive responses and notifications from/
to open systems. They are composed of one or more Application Service En-
tity (ASE), namely: SMASE (System Management Application Service Ele-
ment), CMISE (Common Management Information Service Element), ROSE
(Remote Operation Service Element) e ACSE (Association Control Service
Element).
SMASE [ISO10040] is responsible for identifying and defining specific man-
agement aspects concerning the information which has to be exchanged
among open systems.
CMISE (see ÒCMISEÓ on page 187) is composed of CMIS and CMIP, and
permits OSI Management systems to share management information and to
handle requests received from other systems.
CMIS [CMIS] is the general service employed by OSI Management to han-
dle communications concerning the management of MOs and the transmis-
sion of notifications. It defines a set of service primitives, their parameters
and the information necessary to describe each primitive semantically. The
CMIS primitives allow:
¥ notiÞcations to be received (M-EVENT-REPORT primitive);
¥ attributes to be read (M-GET and M-CANCEL-GET) and modiÞed (M-

SET);
¥ MO instances to be created and deleted (M-CREATE and M-DELETE);
¥ operation requests to be sent to another CMISE user (M-ACTION).

CMIP [CMIP] specifies the protocol used by CMIS and by N-layer MOs to
exchange management information. It defines the procedures for exchang-
ing management information between applications (CMIP abstract syntax),
for the correct information control protocol interpretation and for the con-
formance tests employed to validate CMIP implementations.
ROSE [ISO9092-1] [ISO9092-2] allows remote operations to be requested
and the corresponding responses to be received. ROSE can be considered
the OSI service that corresponds to the Unixª Remote Procedure Call
(RPC). CMIP exploits the ROSE transactional services in order to send re-
quests and receive responses.
ACSE [ACSE] provides services which establish (A-ASSOCIATE primitive)
or release in a normal (A-RELEASE) or abnormal (A-ABORT) way logical
associations between two application entities. It also provides the means to
control an application association, which is a cooperation relationship be-
A Component-based Architecture for Open, Independently Extensible Distributed Systems 53

Related Research
tween two application entities that communicate using a connection estab-
lished in an open system environment.

OSI has identified five functional areas within OSI Management:
¥ fault management,
¥ conÞguration management,
¥ performance management,
¥ accounting management,
¥ security management.

The fault management provides the facilities necessary to:
¥ identify, diagnose, and correct network faults;
¥ notify the system managed about errors and abnormal situations;
¥ analyse error logs;
¥ perform diagnostic tests used to verify network activities.

The configuration management provides facilities necessary to:
¥ set key parameters of open systems;
¥ initialise and remove MOs;
¥ collect information about the system and notify state changes;
¥ modify the system conÞguration.

The performance management provides facilities for monitoring, controlling,
analysing, and tuning system activities. The account management provides
the facilities necessary to:
¥ collect information on the users and the resources they have used;
¥ calculate the costs involved in the utilisation of some MOs necessary to

perform a certain activity;
¥ collect statistics concerning errors and anomalous situations.

The security management provides facilities necessary to:
¥ authenticate users who performed management requests;
¥ control and maintain the tools used for security;
¥ handle encryption keys;
¥ control and maintain access rights;
¥ manage and maintain security logs.

3.3.2. Internet Network Management

SNMP (Simple Network Management Protocol) [SNMP] is the management
protocol used to manage Internet network devices. It has been created for
research purposes by four professors who needed to manage the devices at-
tached to their campus network. The main requirements were that SNMP
54 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Network Management Standards
be:
¥ a simple protocol with low impact on the managed devices;
¥ able to continue working when the network is collapsing;
¥ capable of managing both current and future networks.

SNMP is able to accomplish many tasks including accounting, configura-
tion, testing and fault detection/correction. Although this protocol was
born in an academic environment, it has been widely adopted by many
computer manufacturers. Since then it has rapidly become the management
protocol for network devices connected to LANs and is by far the most used
protocol, whereas CMIP is employed primarily on telecommunication net-
works. SNMP is a protocol part of the application level of the TCP/IP stack
(TCP/IP is the protocol used in the Internet) and it defines the formal struc-
ture of communications between devices attached to different interconnect-
ed networks. The content and the structure of SNMP data is defined in
ASN.1, which has been selected because it is a standard language and also
because it is able to separate data cleanly from their effective representation
for transmission.
SNMPÕs network architecture comprises three components:
¥ the SNMP protocol;
¥ the management information base (MIB) [RFC1156] [RFC1158]

[RFC1907];
¥ the structure of the managed information (SMI) [RFC1155] [RFC1902].

SMI specifies how the information relevant for management has to be rep-
resented inside the MIB. The MIB is a set of MOs (in SNMP they are usually
called MIB variables) which describe the logical and physical network re-
sources, and a set of test points and controls which a management system
based on SNMP has to support. The MIB also names the MOs according to
the hierarchy used by OSI for network object naming using object identifiers
(see ÒManagement Naming Scheme: Object IdentifiersÓ on page 191). Fol-
lowing this naming convention, SNMP retrieves the MOs contained in the
MIB, which are logically interconnected in a table-like structure.
The software for network management is usually contained in the network
devices part of the Network Management System (NMS), a system which con-
trols and monitors network devices produced by different vendors, sends
requests, and receives asynchronous events (traps) from the SNMP agents
contained in the devices shown in the picture below.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 55

Related Research
Figure 5. SNMP Network Management System

SNMP agents are typically small software applications that maintain infor-
mation regarding specific MOs which control critical resources (for instance
the state of an Ethernet interface of the number of errors received). Agents
are also responsible for processing requests sent by managers in a very sim-
ilar way to OSI Management, for generating alarms when a critical condi-
tion is verified, when certain network resources are not available or when
devices are powered up/down. As SNMP agents are usually inside the net-
work devices (hence they are often stored in some persistent memory), they
necessarily have to be quite simple and able to continue working even when
the network is collapsing (this is one of the fundamental SNMP paradigms).
Other than being simple, SNMP is an extensible protocol. Instead of using
complex data types to represent network resources like CMIP does, SNMP
uses only a few simple types (about ten), which are composed to build more
complex types. As the types are simple, it is quite easy to extend the MIB by
adding new variables. In order to maintain a consistent variable naming
convention that leaves room for new variables, SMI divided the variables
into four parts (see ÒManagement Naming Scheme: Object IdentifiersÓ on
page 191):
¥ directory: identiÞes the MOs reserved for future use;
¥ management: identiÞes the MOs that need to be implemented by every

SNMP implementation;
¥ experimental: contains the MOs used for research purposes and which

may become part of future MIB extensions;
¥ private: contains MOs deÞned by hardware manufacturers in order to

manage the devices they produce.

SNMP Agent

Multiprotocol
Router

Remote
Link

Storage
Devices

File Server

Bridge

Bridge

SNMP Agent

SNMP
Queries and
responses

Network Statistical
Database

NMS

NMS
SOFTWARE

SNMP Agent

SNMP Agent
56 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Network Management Standards
Thanks to these classifications, SNMP has become a very long-lived proto-
col. In fact, as soon as new MOs become available, new software applica-
tions can use them while old applications can continue to work unmodified
without being influenced by the new MIB variables.

3.3.3. OMG Network Management

In order to describe OMG management it is necessary to first define the
terms and concepts proper of this management paradigm. An object model
provides an organised presentation of object concepts and terminology
[OMG95]. It also defines a partial model for computation that embodies the
key characteristics of such objects. The object model describes concepts use-
ful to client application such as use of the objects, object creation and iden-
tity, requests and operations, types and signatures. It then describes
concepts related to object implementations such as methods, execution en-
gines and activation. An object system is a collection of objects that isolate the
requestors of the services (clients) from the provides of services (servers) by
a well defined encapsulating interface.
In the CORBA object model [OMG92] [OMG91] [Yang96], objects are identi-
fiable, encapsulated entities that provide one or more services which can be
requested by clients. Objects encapsulate state (attributes) and behaviour
(operations) that can be accessed through an interface, which is a description
of a set of possible operations that a client may request of an object. Object
interfaces are specified in OMG IDL, a language used to define the object in-
terface but not the object behaviour. IDL, like ASN.1, is not a programming
language, so it has to be complied in a programming language such as C++
or FORTRAN. Supposing we use C++, then the CORBA interfaces for some
specific objects are processed as follows:

Figure 6. CORBA Interfaces Implementation using the C++ Language

The IDL compiler compiles the IDL file containing the object interfaces and
updates the interface repository, a persistent-type repository of objects repre-
senting the elements of interface definitions, created and maintained based
on information supplied in the IDL source file. In addition the IDL compiler
generates C++ stubs for each interface method. The stubs are empty, i.e. the
object behaviour has still to be implemented. The user has to write this code:
there is no way for an automatic tool to do it because the objects represent a

IDL File IDL Compiler C++ Stubs Object Behaviour Implementation
(User Written Code)

C++ Compiler Shared Library

Interface Repository Implementation Repository
A Component-based Architecture for Open, Independently Extensible Distributed Systems 57

Related Research
real resource whose behaviour is not specified in the IDL file. Once this step
has been done, the stubs are compiled and a shared library (usually the pre-
ferred format) is generated. Such a library is then added to the implementa-
tion repository, a database which contains the implementation definitions of
CORBA objects, i.e. the shared information on the location of the libraries
that implement the CORBA objects and their relative object classes.
On each host on which CORBA instances are to be created there is an Object
Request Broker (ORB), a.k.a. a CORBA server, responsible for handling client
requests, locating the requested objects and their implementations, per-
forming the request on the objects, and returning the results, if any, to the
client.

Figure 7. Client Access to CORBA Objects through the ORB

The ORB is also responsible for creating and deleting objects on behalf of cli-
ents. In order to serve such requests, the server accesses the interface and
the implementation repository. Whenever a client application creates a re-
mote object, the ORB uses the implementation repository to gain access to
the code that implements the requested CORBA object. Once the code
which implements the object has been located, it instantiates a new object
instance locally. The client application receives from the object creation an
object reference, allocated in the clientÕs address space, which identifies the
real instance created in the server application. Owing to this mechanism, in-
stances cannot be manipulated directly by clients but they do access them
transparently through the ORB. Instead, if the instances are created locally,
i.e. in the client address space, there is no interaction with the server, and
the instances behave like a normal non-CORBA instance. Nevertheless if the
instance is created locally, the instance is private to the application and there
is no way for external clients to access it.

The goal of NMF-X/Open Joint Interdomain Management task force
(XoJIDM) is to reconcile the OSI and Internet models using CORBA. Specif-
ically it focuses on the management of OSI and SNMP resources using COR-
BA and vice versa. Assuming that future network management applications
will be written using CORBA, it is still necessary to access network resourc-
es managed existing object models in order to preserve large investments.
In order to reconcile the models, XoJIDM follows three approaches:
¥ model alignment by identifying of the core elements of the different

models to be uniÞed, omitting model features that may be difÞcult to
align;

Object Request Broker

CORBA Client CORBA Object Implementation
58 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Network Management Standards
¥ runtime mediation between implementations of the models by means of
proxy applications;

¥ use of notation mapping tools based upon translation algorithms allows
OSI/Internet objects to be mapped into CORBA object and vice versa.

Basically XoJIDMÕs approach consists of two parts:
¥ SpeciÞcation Translation [XoJIDM95a], which deÞnes the static translation

of GDMO/ASN.1 to IDL;
¥ Interaction Translation [XoJIDM95b], which speciÞes how the mapping is

used at runtime.

The goal of this effort is to translate the MIB of an agent (GDMO/ASN.1)
into CORBA IDL, which can subsequently be used to manage the agent us-
ing CORBA [Soukouti95]. The GDMO/ASN.1 documents describing the
agent's MIB are translated into IDL and then to a server implementation.
GDMO templates are mapped to IDL interfaces, and each ASN.1 type is
translated to a corresponding IDL type. The generated IDL interfaces repre-
senting GDMO class templates will include IDL attributes generated from
ASN.1 types. IDL is then compiled to produce the client and server stubs in
the desired language binding (e.g. C++). The server stub and the implemen-
tation code generated by the GDMO/ASN.1-IDL compiler are compiled
and linked to produce a CORBA implementation. The client stubs are com-
piled and linked with the user application. Information on available COR-
BA interfaces (which represent CMIP instances) is contained in the
generated client stubs and therefore known to the client at compile time. At
runtime, the client proxies forward any request they receive to their corre-
sponding objects in the CORBA server. These will use the implementation
code generated by the GDMO/ASN.1-IDL compiler to communicate with
the managed objects in an agent using CMIP/SNMP usually using XOM
[XOM] and XMP [XMP], which are the X/OpenÕs proposed C-interfaces for
abstract syntax and management operations.

As XoJIDMÕs approach relies strongly on static mappings between GDMO/
ASN.1 and IDL and vice versa, it has several drawbacks:
¥ each modiÞcation to GDMO/ASN.1 leads to a regeneration of the IDL

code, hence to the recompilation and modiÞcation of the client applica-
tions;

¥ including static stubs in client applications generates large applications
because the translation generates a large amount of code (as seen above,
this is a problem that affects network management applications in gen-
eral);

¥ owing to the dynamic nature of ASN.1 and GDMO that some types are
known only at runtime, code for all the possible cases is generated and
included in the client applications.

In the ÒCORBA InterfacesÓ section on page 129 a new dynamic approach is
presented, which allows most of the limitations due to the static nature of
XoJIDMÕs approach to be overcome.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 59

Related Research
3.3.4. Comparison of Network Management Architectures

The following table presents a comparison of the network management
architectures covered in the previous sections [Rutt94]:

OSI Internet OMG

Goal Distributed Network Man-
agement.

Management of Internet
networked devices.

Object-oriented distrib-
uted systems develop-
ment.

Interoperability At syntactic and semantic
level. Communications
interoperability.

At syntactic and seman-
tic level. Communica-
tions interoperability.

At syntactic and
semantic level. No
communications inter-
operability (provided
by CORBA v.2).

Portability No code portability. No code portability. Code portability.

User Advantage Management of heteroge-
neous network compo-
nents.

Management of hetero-
geneous internetworked
devices.

Transparency of appli-
cations of the underly-
ing heterogeneous
platforms.

Reusability Library of management
information.

MIB specifications. Interface Type Library.

Object Interface
Type

Communications inter-
face agents and manag-
ers.

Communications inter-
face between NMS and
SNMP agents.

Programmatic inter-
face (signature only)
between client and
server.

Transmission
Protocol

CMIP. SNMP. Independent of the pro-
tocol (IIOP in CORBA
v.2).

Open Interfacea ISO/IEC standards and
other industrial standards
[OMNIPoint93].

Many RFC, including
MIB [RFC1155] and
MIB-II [RFC1158].

IDL.

Protocol Model Nonblocking message-
passing with normal and
exception reply types. A
single request may result
in multiple replies.

Nonblocking message-
passing usually without
guarantee of delivery. A
single request results in
(at most) a single reply.

Two styles: at most
once (blocking with
exceptions) and best
effort (nonblocking, no
guarantee of delivery).

Interface
Concurrencyb

Yes. Polling driven, manag-
ers control concurrency.

Not precluded by the
object model.

Object
Description

MO is characterised by
the attributes it makes
available, its behaviour
and the invocations and
notifications that cross its
boundary. There is sup-
port for inheritance, poly-
morphism, encapsulation.

MO represent individual
MIB variables manipu-
lated through SNMP.
Each object has a name,
a syntax, and an encod-
ing. Inheritance is not
supported.

An object is a package
of data and code used
to model an applica-
tion entity. There is
support for encapsula-
tion and interface inher-
itance.

Object
Operations

Operations can be con-
firmed or not, exceptions
are signalled by means of
exception replies.

Operations are con-
firmed and always gen-
erate a single response.
Exceptions are sig-
nalled as responses.

Operations result in a
single reply (the return
of control to the
invoker), exceptions
are indicated by excep-
tion signals.

Object Events Notifications (confirmed/
unconfirmed).

Traps (unconfirmed). Events are sent to the
event notification serv-
ice, which are distrib-
uted via a push or poll
model.

Table 4. Comparison of the OSI, Internet, and OMG Management Models
60 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Network Management Research
3.4. Network Management Research

Network management research can be divided into two large groups: OSI/
Internet management and interdomain management. This division is nec-
essary to distinguish between platforms and frameworks for the purpose
of OSI/Internet network management and for new efforts to manage exist-
ing network resources using CORBA. In the Þrst case the goal is to manage
network resources efÞciently using existing standards. In the second case
the goal is to deÞne new mappings, either similar or quite different to the
one proposed by OMG, that allow CMIP and SNMP protocols to be
mapped to CORBA and vice versa.

3.4.1. OSI and Internet Management

Given that SNMP is based on TCP/IP, the implementation of SNMP appli-
cations mostly concern implementations of functions able to encode/de-

a. An interface that supports a published protocol and at which conformance may be tested.
b. The property of an interface such that it will accept protocol elements at any time.
c. IDL is much less flexible than ASN.1, and not all the ASN.1 types can be defined in IDL.
d. An object reference does not reveal/define the transport protocol for that object.
e. An object reference does not reveal its location.
f. An object reference remains valid after the object changes location

Object
Behaviour

Supported (described in
GDMO in plain English).

Supported (described
inside the MIB in plain
English).

Not specified in IDL.

Object Life-Cycle
Operations

Built-in on CMIP (M-CRE-
ATE and M-DELETE).

No direct support (emu-
lated through the Set).

No built-in creation
(factory objects can be
defined).

Data Types All ASN.1-defined types. 10 ASN.1 defined types. All IDL-defined typesc.

Encapsulation Supported. Not supported. Supported.

Object Reference Object Instance. Object Identifier. Object Reference
(Opaque datatype).

Interface
Reference

Object Identifier. Object Identifier. Each interface has a
reference Id through
Module names.

Specification Tools GDMO templates. ASN.1 macros. IDL.

Object Taxonomy Containment tree. Naming hierarchy
through object identifi-
ers.

Object types hierarchy
by means of multiple
inheritance.

Access
Transparencyd

Not supported. Not supported. Supported (ORBs may
use whatever protocol
is most appropriate).

Object Location
Transparencye

Not supported. Not supported. Supported in CORBA.

Object Location
Independencef

Not supported. Not supported. Supported in CORBA.

OSI Internet OMG

Table 4. Comparison of the OSI, Internet, and OMG Management Models
A Component-based Architecture for Open, Independently Extensible Distributed Systems 61

Related Research
code the (few) SNMP types to BER (see ÒASN.1Ó on page 186). The situation
is quite different for OSI. CMIP, the protocol used for OSI management, is
much more complex than SNMP; it is based on OSI transport protocols and
requires an OSI stack (see ÒOSI Reference ModelÓ on page 184) in order to
work. Therefore, the implementation of OSI applications presents problems
for the implementation of both the CMIP protocol and of the application it-
self.
In addition, many problems arise from the integration of CMIP with SNMP
because quite often CMIP is used for managing large networks whereas
SNMP is used to manage locally the devices part of the network. Therefore,
the industry and research have acknowledged the need to define new man-
agement paradigms to permit the seamless integration of CMIP with SNMP
in order to facilitate the development of hybrid management applications.

The following sections present:

¥ ISODE
The Þrst (public domain) implementation of OSI protocols and SNMP. It
is considered a milestone in the Þeld of network management and has
deeply inßuenced many other implementations and products.

¥ Classic Management Platforms
Classic management platforms such as IBM NetView are the market
product leaders for system and network management, and have deeply
inßuenced some parts of this work because they represent the stereotype
of how most of management applications work.

¥ XOM/XMP
X/OpenÕs solution to seamless CMIP/SNMP integration has been
adopted by most vendors.

¥ Java Management API
The Þrst Java API for management (including SNMP management). This
is the Þrst concrete effort to deÞne management capabilities using Java.

¥ Web-based Management
This section presents some solutions for web-based management,
deÞned after the release of Liaison, and which are useful to position
web-based management capabilities offered by Liaison.

¥ TCL/Perl-based Management
This category includes attempts to simplify the way network manage-
ment is performed by using some simple scripting languages.

3.4.1.1. ISODE

ISODE (ISO Development Environment) is a research tool developed to
study the upper layers of OSI [Rose89]. At the moment, ISODE is available
in two forms: an old public-domain version and an updated commercial
version. ISODE supports OSI directory services, OSI mail, some integration
APIs from X/Open, and SNMP management capabilities. CMIP support is
62 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Network Management Research
provided through an ISODE extension called OSIMIS (OSI Management In-
formation Service) [OSIMIS], to which the author contributed by imple-
menting the CMIP access control support [Knight94]. ISODE is written in C,
whereas OSIMIS uses C++. ASN.1 data encoding/decoding is based on C
functions generated by the ASN.1 compiler called PEPY (Presentation Ele-
ment Parser Yacc-based). As OSIMIS relies on PEPY, OSIMIS-based man-
agement applications are quite large because of the large amount of code
generated by PEPY. In addition, OSIMIS applications do not use metadata
at all, hence all the management information has to be compiled and linked
with the final applications.
In conclusion, besides the fact that both ISODE and OSIMIS have facilitated
the diffusion of OSI protocols, they are based on old concepts, basically the
ÒVi, Unix and CÓ school, so applications based on these platforms are affect-
ed by technology limitations.

3.4.1.2. Classic Management Platforms

Products such as IBM NetView [IBM95a], HP OpenView [HP_DM], and
Sun Solstice [Solstice] belong in this category. The common philosophy be-
hind these products is their flexibility and their wide spectrum of subprod-
ucts which provide solutions to many problems. These products run on
mid/high-end Unix workstations and usually require access to an SQL da-
tabase where network information is stored. Owing to the large number of
tools and components parts of this kind of platform, their price is quite high
and the applications that can be based on them are closely tied to them. As
these platforms have been developed over several years and sometimes
merged with products coming from other vendors, the set of APIs available
to programmers is often unrelated and based on different philosophies.

In conclusion, although these platforms provide the APIs and tools neces-
sary to solve most management problems, unless the platform comes with
a tool which exactly solves the userÕs management problem, the develop-
ment of custom applications is costly for several reasons. The main reason
is that a the large number of APIs is necessary to build an application that is
integrated into the environment. Note that this does not guarantees that the
developed application will be able to run on the same platform on different
operating systems without major modifications. Moreover, the high plat-
form costs, the need to run on mid/high-end machines, and the fact that the
developed applications are tied to the platform running on a certain operat-
ing system makes them suitable only for large universities or telecommuni-
cation companies but not for small companies or institutions.

3.4.1.3. XOM/XMP

X/Open has defined a single API to support the communication of manage-
ment information offered by CMIP and SNMP. XOM (X/Open OSI-Ab-
stract-Data-Manipulation) [XOM] is an API to manipulate ASN.1 values
which are mapped through a compiler to C datatype which is then manip-
ulated by XOM. GDMO documents, SNMP MIBs, and ASN.1 documents
are translated into XOM objects (actually they are C structs) according to an
A Component-based Architecture for Open, Independently Extensible Distributed Systems 63

Related Research
algorithm defined by X/Open [GDMO_XOM]. XMP (X/Open Manage-
ment Protocols) [XMP] instead, is an API to manage CMIP and SNMP in-
stances based on XOM.
Although XOM/XMP was announced by X/Open as a big leap in the indus-
try because it was supposed to guarantee interoperability at the source code
level of management applications, it has virtually missed the target. The
main reasons for this failure are:
¥ the fact that XOM/XMP implementations do not really guarantee inter-

operability at the source code level;
¥ the extreme complexity of XOM, which also affects applications in terms

of performance;
¥ the fact that XOM objects are difÞcult to manipulate and are not deÞned

in an object-oriented language;
¥ being that XOM objects are complex to manipulate, many users added a

C++ layer which simpliÞed object manipulation but jeopardised XOM/
XMP because developed applications are tied to a speciÞc implementa-
tion and also because these applications become fatter, slower and more
memory-hungry due to this extra layer.

NMF and X/Open recently acknowledged the need to define a fully object-
oriented framework for network management and released an early draft of
TMN++ [CMIS++] based on XOM/XMP and restricted only to CMIP.
TMN++ is supposed to put a C++ object-oriented layer on top of XOM/
XMP and thus enable the construction of real object-oriented applications
while preserving the investment in XOM/XMP.

3.4.1.4. Java Management API

The Java Management API (JMAPI) [JMAPI] allows any Java graphical user
interface application running in a Java-enabled browser to interact with
managed object instances on a central server. It also enables objects to ma-
nipulate any number of appliances (i.e. management target systems)
through remote agent objects. Managed objects implement distributed
management functionality. These objects map closely to the resources that
are to be managed. Basically, the managed objects are a proxy to the real re-
sources. These objects supply the interfaces that perform the real manage-
ment operations, and all inherit directly or indirectly from the managedObject
class. The managedObject class provides the methods that allow object devel-
opers to build on the database, security, and distribution elements of the ar-
chitecture.

Among the protocols supported by JMAPI is SNMP, hence it is possible to
manage network resources using the JMAPI. JMAPI provides the following
64 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Network Management Research
for integration with existing SNMP agents:
¥ a set of Java classes that implements the SNMP protocol and interfaces

to use the protocol;
¥ a set of JMAPI managed objects to more easily use the Java classes that

implement the SNMP protocol;
¥ a JMAPI managed object that receives all SNMP traps and converts them

into instances of JMAPI events.

Although JMAPI has not yet been finalised, it has been accepted by the in-
dustry and research, and hence is likely to become very important. It sup-
ports only SNMP and relies heavily on Java protocols such as RMI (Remote
Method Invocation), which makes it unsuitable for anything but pure Java
environments.

3.4.1.5. Web-based Management

Pushed by the inherent limitations of many management platforms (see
ÒClassic Management PlatformsÓ on page 63) especially in terms of central
management consoles, many researchers have found that more ßexible
access to management information can be gained using the web over dial-
up links. Besides Liaison, which was the Þrst publicly available application
that implemented web-based management capabilities, many companies
and institutions have released applications and tools for integrating man-
agement capabilities within the web [Jander96] [Damocles95] [Marben95]
[Knight95]. The purpose of most of these tools is to interface existing man-
agement applications with HTML pages to be able to perform limited man-
agement from the web. Nevertheless, this way of approaching the problem
is somehow orthogonal to the purpose of this thesis which attempts to
define an architecture able to exploit new technologies to create a new gen-
eration of management applications and not to modernise existing ones.
The subtle difference is that in the first case the new technologies are
(potentially) fully exploited whereas in the second case they are only par-
tially used. This is because when there is some legacy code involved like in
the second case, developers do not have much freedom. This hypothesis is
proved by the fact that every web-based solution currently available is lim-
ited to only one management protocol (either SNMP or CMIP), it is often
an add-on to an existing platform which provides web-visibility only,
rarely it is open to extensions in terms of programming APIs but is moder-
ately customisable concerning only the appearance of web-pages.

In other cases [Hudis96] [Vertel97] companies driven primarily by Micro-
soft are trying to define an enhanced version of HTTP tuned for web-based
management which can easily be combined with Microsoft technologies
such as DCOM and ActiveX. Although the later approach involves several
companies, it is not perfectly coherent with OSI and SNMP because it is
based on proprietary technologies and because it does not use standard pro-
tocols but attempts to define new proprietary ones.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 65

Related Research
3.4.1.6. TCL/Perl-based Management

The difficulties, especially in terms of complexity, encountered while devel-
oping management applications using technologies based on static compi-
lation, C language, and automatic code generation have prompted some
research groups to find new ways to develop management applications.
The requirements are faster application development, platform-independ-
ent graphical appearance, ease of use, and portability. A good approach to
this problem is the adoption of powerful scripting languages such as TCL
[Ousterhout94] and Perl [Wall96], which have been combined with power-
ful toolkits for graphical user interface development such as Tk
[Ousterhout94].

Many efforts undertaken in this area [Sch�nw�lder95] [Zwemmer96]
[Pavlou96], have demonstrated the feasibility of this approach although
they have also shown certain limitations in terms of performance, code
maintenance, inability to develop large applications, and excessive use of
memory.

3.4.2. Interdomain Management

Interdomain management is a new branch of the management Þeld which
attempts to deÞnes mappings from CMIP/SNMP to CORBA and vice
versa. This is done to develop future management applications using
CORBA which transparently manage CMIP/SNMP-based network
devices.

This section is divided into two parts according to the way in which the
mappings have been defined:
¥ Static Mapping

Into this category fall the mappings deÞned at compile time, similar to
the XoJIDM approach (see ÒOMG Network ManagementÓ on page 57).

¥ Dynamic Mapping
Dynamic mapping is a new approach which performs the mapping at
runtime by exploiting metadata information derived from the process-
ing GDMO/SNMP documents that deÞne the structure of the managed
network devices.

3.4.2.1. Static Mapping

Static mappings are based on the idea that the CMIP/SNMP management
information has to be mapped to the management domain (a CORBA-like
implementation) using static translation tools. The motivation to develop
this solution is that users accustomed to CORBA environments want to
deal with CORBA objects, usually represented by C++ objects, which rep-
resent the management information. For instance if a managed object has
an enumerated attribute which represents its state (possible values are up,
down), the translation tool will generate a C++ class which looks some-
thing like this:
66 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Network Management Research
typedef enum { up, down } State;

class StateObj {
private:
 State state;

public:
 StateObj();
 ~StateObj();

 void SetState(State value);
 State GetState();
 void RestoreDefaultState();
};

Figure 8. Simple C++ Type Corresponding to an Attribute Contained in a Managed Object

The advantage of having a type in a programming language (C++ in this
case) that corresponds to an attribute is in terms of generated code and flex-
ibility:
¥ each attribute is mapped to one or more C++ types/classes (one type

and one class in the example below);
¥ supposing we have a similar type which can assume the values up,

stand_by, down, it is necessary to generate two new types instead of
extending existing ones (State and StateObj in this case);

¥ because managed information is quite dynamic (i.e. two managed
objects that are members of the same class may be quite different in
terms of the number of their attributes. Therefore attributes are present/
absent depending on the object state); each object has to contain the
superset of all possible attributes that the class may have (for example,
in the class UnixWorkstation, each instance must have as attributes display-
Type, CDROM, FloppyDrive and so on although a diskless workstation has
none of them because it does not support those devices);

¥ every time the managed information changes, it is necessary to perform
mapping, and to link/modify the applications even if the modiÞcations
to the managed information are not relevant to the managed application;

¥ even if the managed applications are not too complex, they use consider-
able memory due to the (shared) libraries that contain the generated
code and are linked with the application.

This approach maps all the metadata information to static classes which are
then compiled and linked with every application although the application
may access only a small subset of them. Note that, because all the generated
classes make extensive use of inheritance, there are many cross-relation-
ships (i.e. all the datatype are closely tied) hence an application that uses, for
instance, only one type has to be linked with the full library which contains
all the types. Most of the methods rely on automatic translation techniques,
which are performed by off-line compilers [Kong96] [Sch�rfeld94]
[Soukouti95], whereas other approaches [Genilloud96] require manual in-
teraction because fully automatic translation is inefficient.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 67

Related Research
3.4.2.2. Dynamic Mapping

This category is almost empty although it seems to be quite a reasonable
approach to interdomain management. The only known approach belong-
ing to this category is GOM (Generic Object Model) [Ban96] [Ban97], a
framework for managing instances of multiple object models such as
CORBA, CMIP or SNMP. GOM uses the concept of reiÞcation, modelling
elements of object-oriented models as objects themselves [Maes87]. Thus,
all CORBA interfaces or GDMO class templates that will ever be encoun-
tered are mapped to an instance of the generic GOM class GenObj, all
attributes to instances of Attribute, and all values to instances of Val. As cli-
ent applications do not have to include type information about available
classes at compile time, they are typically very small. Moreover, when a
speciÞcation is modiÞed, clients do not have to be recompiled. Only modi-
Þed speciÞcations have to be parsed and fed into the Metadata Information
Database (MID) via off line tools. The MID is used by the adapters to trans-
late GOM into a speciÞc model (for instance OSI) and vice versa. Contrary
to the static approaches described in the previous section, there is no com-
piled-in knowledge of any classes in the system; adapters rely entirely on
metadata about the CORBA, SNMP or CMIP classes available to perform
their work. In practice the static approaches store the metadata information
using C++, whereas GOM stores the information into the MID. Thus GOM
produces smaller applications, that are easy to modify when the metadata
information changes because basically only the MID is updated and the
application remains untouched.

3.5. Do We Really Need Yet Another Architecture?

The sections above describe relevant efforts in the field of software compo-
nents and network management. One may ask why there is a need to define
a new architecture and a new type of software components instead of reus-
ing existing technology. To do this, it is worthwhile to verify whether the
technologies shown above satisfy the requirements stated in the previous
chapter (see ÒThesis RequirementsÓ on page 23).

OpenDoc OLE JavaBeans
Flexible

Components Plug-Ins

Suitable for Man-
agement Applica-
tion Development

Yes
(if only DSOM

is used)

Unknown
(probably not)

No No Unknown
(probably not)

Available when this
Work Started/Now

No/Partial Partial/Partial
(DCOM is

available only
on NT4)

No/Yes No/Yes Yes

Application
Extensibility

Yes Yes Yes Yes Yes

Application Evolu-
tion at Runtime

No No No Yes Partial

Ease of Use High High High High High
68 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Do We Really Need Yet Another Architecture?
Table 5. State-of-the-Art Software Components vs. Thesis Requirements

Ease of
Development

Low
(OD is huge)

Low
(COM is very

complex)

High High High

Distributed
Environment
Support

No Partial
(only with
DCOM)

Yes No No

Promotes Reuse Yes Yes Yes Yes Partial

Ability to Run with
Limited Resources

Partial Partial Partial No
(dynamic lan-
guages need

a lot of
resources)

Unknown
(probably not)

Portability and
Genericity

Limited Limited Yes No Unknown

Based on Open
Standards

Partial No Yes No Unknown
(probably not)

Internet-aware No No Yes No No

Slim and Efficient Partial Partial Yes No Partial

Scalable No No No No No

Performant Partial Partial Partial
(limited by the

Java VM)

No Unknown
(probably yes)

Technology and
Platform
Independent

No No Yes No
(dependent on
the availability

of the lan-
guage)

Unknown
(probably yes)

ISODE
OSIMIS

Classic
Mgmt

Platforms
XOM
XMP JMAPI

Web-
based
Mgmt

TCP/Perl
Mgmt

Static
Interdom.

Mgmt

Dynamic
Interdom.

Mgmt

Suitable for
Management
Application
Development

Yes Yes Yes Partial
(support
only for
SNMP)

Partial
(dynamic

events
are han-

dled
using

only Java)

Yes Yes Yes

Available at
the Time This
Work Started/
Now

Yes Yes Yes No/Partial
(alpha)

No/Yes Yes Partial/
Partial
(some

mappings
are unde-

fined)

No/Partial
(no appl.
supports

both
CMIP
and

SNMP)

Application
Extensibility

No No Difficult Unknown Unknown Yes Difficult Yes

Application
Evolution at
Runtime

No No Difficult Possible No Possible No No

Ease of Use Low Low Unknown High High High Unknown Unknown

OpenDoc OLE JavaBeans
Flexible

Components Plug-Ins
A Component-based Architecture for Open, Independently Extensible Distributed Systems 69

Related Research
Table 6. State-of-the-Art Management Architectures/Platforms vs. Thesis Requirements

From the two tables above, it is possible to conclude that:
¥ none of the component technologies nor the management architectures/

platforms satisfy all the mandatory thesis requirements;
¥ some technologies satisfy most of the requirements (for instance Java

Beans and JMAPI) but unfortunately have signiÞcant limitations (for
instance JMAPI supports only SNMP).

As far as the management is concerned, it is worth mentioning that a truly

Ease of
Development

Low Low Low Average Unknown High High High

Distributed
Environment
Support

Partial Partial Unknown Yes Yes Unknown
(probably

not)

Yes Yes

Promote
Reuse

No No Partial Partial Unknown Unknown
(probably

yes)

No Partial

Ability to
Run with Lim-
ited
Resources

No No Partial Yes Yes Partial No Partial

Portability
and
Genericity

Yes Partial Yes Yes Yes Yes Low
(ORB

depend-
ent)

Low
(ORB

depend-
ent)

Based on
Open
Standards

Yes Yes Yes Yes Yes Yes Yes Yes

Internet-
aware

No No No Yes Yes Partial No No

Slim and
Efficient

No No No Partial
(limited
by the

Java VM)

Yes Partial No Partial
(needs a

MID)

Scalable Partial Partial Unknown Unknown
(probably

yes)

Unknown
(impl.

depend-
ent)

Unknown
(probably

not)

Yes
(thanks to
CORBA)

Yes
(thanks to
CORBA)

Performant Yes Partial
(they

require
powerful
hosts)

No Unknown
(probably

yes)

Yes Yes Yes Yes

Technology
and Platform
Independent

Yes No Partially
(poten-

tially yes,
but basi-
cally tied
to UNIX)

Yes Yes Yes No
(ORB

depend-
ent)

No
(ORB

depend-
ent)

ISODE
OSIMIS

Classic
Mgmt

Platforms
XOM
XMP JMAPI

Web-
based
Mgmt

TCP/Perl
Mgmt

Static
Interdom.

Mgmt

Dynamic
Interdom.

Mgmt
70 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Do We Really Need Yet Another Architecture?
flexible and modern management platform should:
¥ provide facilities for developing CMIP and SNMP applications using

conventional technologies such as pure C++;
¥ provide facilities for developing CORBA-based applications, because

this is likely to become the primarily way to develop future manage-
ment applications;

¥ offer Internet visibility (for instance through the web);
¥ allow applications to be developed in different ways (for instance using

C++, Java or interpreted languages) according to the requirements.

As shown in the previous table, none of the management architectures/
platforms satisfy all these requirements.

The conclusion is that, because none of the current technologies satisfy the
requirements, it is necessary to develop a new architecture that allows:
¥ all requirements to be satisÞed,
¥ a truly modern management architecture to be developed, according to

the deÞnition given above.

This what prompted the author to develop Yasmin and Liaison.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 71

Related Research
72 A Component-based Architecture for Open, Independently Extensible Distributed Systems

4 Yasmin: the Architecture
4.1. Introduction

This chapter presents Yasmin, a component-based architecture and frame-
work for software applications. Yasmin has been developed with the intent
to simplify the implementation of open distributed applications. Yasmin
deÞnes a new style of building applications, based upon established tech-
nologies such as OOP [Booch91] [Meyer88], software components and
novel concepts like cooperation [Gr�goire94], delegation [Goldszmidt93]
[Yemini91] [Johnson91b] and subcontracting [Hamilton93]. This is part of
the effort to make computer software easy to use and develop in addition
to overcoming typical problems that affect many applications, particularly
in the network management Þeld, such as being monolithic, hard to conÞg-
ure and extend. The experience gained by applying Yasmin to the are of
network management allowed Yasmin to be reÞned and transformed into a
more general architecture for open distributed software applications.

4.2. Conceiving Yasmin

The idea to design Yasmin [Deri97d] derived from several years of network
management application development [Deri92] [Deri95b]. Despite the fact
that many frameworks and architecture for building software applications
are available on the market, most of them are tailored only for graphical
user interface (GUI) development [Apple89] [Linton87] [Weinand88]. In the
network management world, applications are usually built following the
craftsman principle (i.e. everything has to be custom built for a certain task)
without the adoption of application frameworks. Some companies have de-
veloped huge application systems that are composed of several applications
and libraries that address every network management need. Although these
systems are very powerful and rich in terms of functionality and tools, they
do not address problems relating to application development. In fact in or-
der to build network management applications based on those systems, de-
velopers need to know in detail many different libraries that have not
always been designed to work together and that very seldom are based on
OOP concepts. Additionally, due to the interdependency among those li-
braries, user applications require the installation of a large subset of the ap-
A Component-based Architecture for Open, Independently Extensible Distributed Systems 73

Yasmin: the Architecture
plication system in order to run [Coad91]. The natural consequence is that
applications are monolithic, difÞcult to tailor and conÞgure and are system
resources-hungry, preventing them from running on hosts of limited power.
Beside this, network management applications quite often have to support
different management protocols and object models other than being open to
extensions and updates. Since network services should be available most of
the time, it is necessary to identify mechanisms which allow applications to
be selectively upgraded while they remain partially available in order to
guarantee a minimal level of service. Additionally, applications must be
built in such a way that it is possible to add new pieces when new hardware
devices have to be supported or when users demand new services.

Yasmin attempts to address these issues and to overcome those problems
mentioned before by defining an application framework characterised by
the following properties:
1. light and simple kernel;
2. based upon pluggable software components;
3. built entirely on object-oriented technology;
4. extensible, easy to tailor and distribute.

The idea behind Yasmin is to build component-based applications that can
be composed by the user, who can add or replace components at runtime
[Marais96].

NOTE

Whereas other architectures [Smith92] allow component to be added at runtime, Yasmin has the
unique capability to replace binary components at runtime. Note that dynamic languages allow the
application code (hence the component code, if any) to be changed at runtime.

By enforcing the component boundaries, Yasmin prevents components
from making assumptions on other components, hence reducing compo-
nent inter-dependencies and making them easy to reuse on different con-
texts [Chen94] [Johnson88] [Johnson91a] [Meyer87]. Additionally, Yasmin
loads the components on demand only when they are really needed and un-
loads them when no longer in use according to the policy deÞned by its de-
veloper. The efÞcient use of system resources is quite important because it
enables complex applications to run on hosts of limited computation power
like mobile computers.
An effective way to limit the application size is through cooperation
[Helm90]. This is because components provide services available through a
well-deÞned interface, that can be used by other components instead of re-
implementing them in different flavours when needed. Often, large net-
work management systems need to use a common set of services that
sometimes require signiÞcant resources. A typical example are encoding/
decoding (enc/dec) services needed to transmit information that are often
replicated in different applications. As those services are often implemented
using shared libraries, there is only one copy of the enc/dec logic in memo-
ry. Nevertheless this is not efÞcient enough because every time the enc/dec
service is instantiated in the application, it needs a lot of memory for the al-
location of the enc/dec tables. In this case, a single (multithreaded) enc/dec
74 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Yasmin at a Glance
that cooperated with all the local applications would be able to serve all of
them without the need to replicate the services and hence require a larger
amount of memory.

4.3. Yasmin at a Glance

Although the terms architecture and framework appear quite often in the
literature, only in the last years the problem of formally describing them has
been approached. The use of software architectures is pervasive in the infor-
mal diagrams and idioms that people use to describe system designs
[Shaw94] [Shaw96]. The formalism used here to describe Yasmin the one
proposed by Garlan and others [Abowd93] [Garlan93] [Garlan95]
[Magee95] [Shaw95a] which at the moment seems to be the most adequate
and complete one (for more information See ÒArchitectures and Framework
BasicsÓ on page 13).

The relevant architectural aspects of Yasmin are now discussed in detail.

Application Domain
Yasmin is tailored for the development of open distributed applications.
Since the author is mainly involved in the management of open networked
systems, Yasmin has been designed to address most of the issues present on
that field (See ÒThesis RequirementsÓ on page 23). The most important ones
are:

Yasmin

Application
Domain

Open distributed systems with emphasis on network management.

Architectural
Goals

1. Genericity.
2. Enable scalability.
3. Promotion of reuse.
4. Support for runtime application evolution.
5. Enable the creation of slim ad efficient applications.
6. Technology independence.
7. Heterogeneity: allow different object models to be integrated.

Architectural
Style

1. External: distributed, client-server model.
2. Internal: component-based, meshed architecture.

Genericity Yasmin is not meant to support only a few specific protocols, but it is gen-
eral enough to potentially support/integrate most of the protocols used in
the context of open distributed systems.

Scalability 1. Multiple instantiations of the same Yasmin-based application.
2. Concurrency support.
3. Addition of new components at runtime.

Reuse At component level.

Interoperability 1. Application level.
2. Component level.

Component
Interaction

Message and event passing, procedure (service) call. All the interactions
between components are mediated by the architecture (i.e. no direct com-
ponent interaction).

Table 7. Yasmin at a Glance
A Component-based Architecture for Open, Independently Extensible Distributed Systems 75

Yasmin: the Architecture
1. need to support different, heterogeneous network management stand-
ards and object models;

2. necessity to enable the integration of existing legacy code into new
applications, in order to preserve the investments;

3. ability to be open to modiÞcations and extensions, quite frequent in this
Þeld as the network technology changes;

4. scalability and exploitation of the distributed environment in order to
achieve the performance demanded by the users.

Architectural Goals
The main architectural goals of Yasmin are [Johnson93]:

1. Genericity
Yasmin has to be generic in the sense that it can be employed for build-
ing applications which belong to different areas in the context of open
distributed systems. This is necessary since the investment in designing
and adopting Yasmin has to be shared among different applications and
projects. This also will enable reusability since different components
which follow the Yasmin guidelines can be reused with very low effort
[Karlsoon95].

2. Enable Scalability
Since computer networks grow and change quite rapidly, it is manda-
tory to produce applications which can scale without having to rewrite
them. For instance the number of network nodes in the last years has
increased exponentially and the network management applications used
so far, need now to handle and manage a much larger number of nodes
than in the recent past.

3. Promote Reuse
One of the key reasons for adopting one architecture is that it guarantees
some basic properties. In open networked systems it is mandatory to
promote reuse since the same component, slightly modiÞed and
adapted to the environment, can be successfully used in many different
systems or in different environments without having to strongly modify
if not rewrite it [IEEE94] [Kr�ger92].

4. Support for Runtime Application Evolution
Often in distributed systems it is necessary to constantly guarantee a
certain minimal level of service. When this does not happen, the conse-
quences may not be limited to the local system. Suppose for instance
that the host on which the DNS (Domain Name Server) runs is off-line
for some hours. This prevents many users from accessing the network
hence this situation is not acceptable. For this reason Yasmin allows
applications components to be replaced and added while the application
is running [M�tzel96]. This solution enables the selective update of rele-
vant application parts without having to put the application off-line thus
to totally disable the provided services.
76 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Yasmin at a Glance
5. Enable the Creation of Slim ad EfÞcient Applications
Especially with the advent of mobile computing and downloadable
applications, it is becoming necessary to produce applications which are
able to run on environments of limited computing power and resources.
In order to do this, Yasmin exploits mechanisms such as cooperation and
delegation which prevent the replication of similar functionality and
allow a simpler application structure to be designed. In fact, a applica-
tion which strongly relies on cooperation is divided in small compo-
nents which collaborate in order to obtain a global result (this is similar
to what happens on RISC microprocessors). These components favourite
the application tailoring and allow the application to load only the nec-
essary components, hence to avoid wasting computing resources (a side
effect is that the more computing resources are available for the system,
the better is the global performance).

6. Technology Independence
Yasmin does not have to be tighted to a speciÞc OS or technology. It is
very important that Yasmin-based applications can run on almost every
operating system and that they do not rely on speciÞc technologies such
as database and frameworks. This is necessary in order to avoid tighting
the architecture to other technologies while limiting the dependency on
the OS. These dependencies may prevent running the Yasmin-based
application on different machines running the same OS but conÞgured
differently. This limitation is not acceptable on computer networks
where computers run different OSs and are conÞgured differently
depending on the user needs.

7. Heterogeneity
As described in the previous chapter, relevant network management
standards are quite different and heterogeneous. Since the integrated
management of computer networks requires the support for (most) all of
these protocols, then the architecture should promote the integration of
different object models. Yasmin does this by deÞning a clean and sharp
component interface which prevents components to expose peculiar
properties which may inßuence the global application. For instance this
happens when a component deÞnes some peculiar datatype which then
have to be included (in a C sense) by all the other components and not
only by the ones which really need it (global datatype dependency).

Architectural Style
YasminÕs architectural style can be divided in two parts: external and inter-
nal style. Externally Yasmin is a distributed architecture which exploits the
networked distributed environment and that it is based on the client-server
model. A Yasmin-based application provides certain services accessible
from the network. Applications can provide services, use services or do
both.
Internally the application is divided in cooperative components which are
disposed in a meshed architecture. Namely, the resulting component graph
is a mesh where components cooperate by using/providing services from/
to other components, either local or remote.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 77

Yasmin: the Architecture
Genericity
In open systems the protocols which an application needs to support are
not speciÞed. Quite often it is necessary to write some proxy applications
which interface different protocols or object models (see mediation func-
tions, ÒOMG Network ManagementÓ on page 57). For this reason Yasmin
has to potentially be able to support and use most of the protocols used on
open systems. SpeciÞcally, Yasmin implements protocol supports inside its
components (not at the application kernel), hence it allows future protocols
to be integrated.

Scalability
Scalability is an important issue since on open systems applications are not
static. This is because these applications periodically need to support new
functionality as the network technology changes and to handle an increas-
ing number of data which range from managed objects to network devices.
Yasmin provides support for scalability in three ways:
1. Multiple Instantiations of the same Yasmin-based Application

A way to increase global performance is through the exploitation of the
distributed and networked environment. Since Yasmin-based applica-
tions provide collaboration and delegation support and are able to proc-
ess remote requests, applications can delegate some activities to other
remote applications which process requests on behalf of them. The more
applications are available the better is the performance [Bernard89]
[Lindenberg90]. Notice that this is an interesting way to use idle net-
worked computers and old networked computers which are not able to
deliver the performance needed by todayÕs applications but which may
be very well used for distributed computing [Sawitzki92] [Theimer89].

2. Concurrency Support
YasminÕs components are reentrant making them suitable to process
concurrent requests. Since Yasmin provides facilities for concurrency
support, a Yasmin-based application can be concurrently used by differ-
ent users or by the same user which issues concurrent requests [L�hr93].
Additionally with the advent of affordable multiprocessor computers,
the concurrency support is becoming necessary to exploit these architec-
tures.

3. Dynamic Application Extension by Adding New Components at
Runtime
Yasmin is based on software components which can be even added at
runtime allowing application behaviour to be extended [Micallef88].
Given a problem, it is possible to implement support just for the core
functionality adding further functionality later on. Notice that in com-
puter networks is often quite difÞcult to estimate a problem size due to
the rapid changing requirement.

Reuse
Yasmin facilitates reuse at component level, i.e. a component can be reused
on different context [Shaw95b]. Since components can provide multiple
services (see next section) it is possible to create a component which imple-
78 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Yasmin at a Glance
ments just one service hence to have a very Þne granularity. Additionally,
since services can be accessed from remote, in order to reuse YasminÕs com-
pliant services it is not necessary to have the component which implement
these services locally but it is possible to issue remote service calls. This
way to reuse services and components it is preferable when the requester
and the server hosts are running different operating systems, because it
allows services to be reused without having to port the code which imple-
ments that service on the local operating system. Finally, notice that the
porting process sometimes is not possible because, especially on network
management, there are a lot of proprietary applications which provide
services which are able to run only on a speciÞc host/operating systems
hence that cannot be ported to another platform.

Interoperability
Interoperability of Yasmin-based applications is at two levels:
1. Application Level

At this level two applications can interoperate if the format of
exchanged messages is the same. Since Yasmin does not imposes any
restriction of the transport protocol and of the message format/content,
this aspect of interoperability is totally delegated to developers. For
instance Liaison (see next chapter), a Yasmin-based application, uses
HTTP as transport protocol and also speciÞes the message format and its
encoding. This guarantees that different instantiations of Liaison can
communicate but it does not guarantee that they can interoperate
because developers are responsible for the message contents.

2. Component Level
Yasmin is responsible for component communications, namely it guar-
antees that a message/event sent to a component and its corresponding
reply (if any) are delivered correctly. Developers are then responsible for
the content of these messages/events.

Yasmin do not imposes any restrictions on the message format because this
would impose some constraints (i.e. limited genericity). Nevertheless this
approach leaves completely to developers the responsibility to format the
messages properly since Yasmin just guarantees that the requests/
responses are delivered correctly.

Component Interaction
Components interact by message and event passing and by service call. As
seen before, Yasmin does not deÞne the semantic format of the communica-
tions. Instead, Yasmin mediates all the component interactions. This is nec-
essary because it:
1. avoids direct component dependencies, necessary to replace compo-

nents at runtime;
2. simpliÞes the component code since components are not responsible for

locating other components or services.

Since Yasmin is a component-based architecture, it is reasonable to describe
the architecture beginning with the description of YasminÕs components,
A Component-based Architecture for Open, Independently Extensible Distributed Systems 79

Yasmin: the Architecture
named droplets.

4.4. Droplets

In the case of Yasmin, components can be regarded as the atom of the appli-
cation. Yasmin components are typically faceless, i.e. without a visual ap-
pearance, and provide services to users and other components accessible
both locally and remotely, under certain constraints which will be shown
later. It is up to the developer to identify the granularity of the components.
The smaller the granularity, the easier is the component reuse because the
component provides a generic service. This approach has certain side effects
however, because very generic services have to be composed in order to
provide the service required, and a large number of active components may
have a negative impact on the performance. Often, when an object-oriented
language is used, a component can be defined in terms of a class. The main
difference between a class and a component is felt when new classes are de-
fined. A new class usually inherits from other classes and therefore special-
izes the parent class.

Figure 9. Object Classes vs. Components

A component, on the other hand, adds further services and functionality to
the system, often exploiting existing services provided by other compo-
nents. This is done by exchanging messages containing operation requests
with other components. The core idea is that a component provides new
services by collaborating with peers, whereas classes do this using inherit-
ance. Such a statement does not mean, like in some object models (for in-
stance COM), that inheritance is not supported. It means that, internally, a
component can use inheritance to implement its logic but, whenever it has
to interact with other entities, it does so by using the component interface
and not by defining additional methods or class names. In other words the
interface inheritance is supported but not the implementation inheritance.
Therefore a new component provides new services by giving other compo-
nents the opportunity to use its services through the component interface,
whereas a new class provides new methods and a new starting point for fur-
ther specialisation.

A droplet [Deri95c] is a software component having the following specific

Object Class

Component

Inheritance

Message Flow

Legend:
80 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Droplets
properties:
1. it is not statically linked to the application but it is loaded at runtime;
2. it has the ability to be replaced (i.e. a new version of the droplet can

replace a previous one) at runtime while the application is running;

NOTE

Since droplets can be replaced at runtime, droplets are responsible for saving and restoring the
persistent information they need to maintain. Typically, other droplets provide persistency facili-
ties.

3. it has a well-deÞned interface, droplet interface, that makes it possible to
communicate with other droplets independently of the type of the
services provided;

4. it is reentrant hence the droplet can process concurrent requests.

NOTE

It is the droplet developer’s responsibility to make sure that the droplet code is reentrant.

The term droplet, which does not have to be confused with MacPerlª drop-
lets, derives from the fact that in order to activate a droplet it is necessary to
drop it into a certain directory monitored by the running application. The
droplet interface (the component plugs) defines the provided services, the
format of the messages that will be exchanged with the outside world, and
additional information needed to load the droplet. Notice that whereas a
class is an integral part of the application, a droplet requires an application
in order to live even if the application can exist without the droplet. This is
because the droplet adds functionality and services to the application but
the application can exist independently of the number and the type of drop-
lets.

4.4.1. Droplet Interface

A Yasmin-based application does not know at compilation time what serv-
ices it will have to provide since the services are stored inside the droplets
and not in the application. Due to this, such application has to be split into
two parts: the core application, which provides the generic and the basic
services, and the droplets which can provide additional services. For in-
stance considering the case of a Web browser, the core services are: the user
interface and the functions that handle the basic communication (e.g. TCP/
IP socket creation, DNS lookup). Other services, which are part of each Web
browser (for instance HTML display and FTP) could be implemented as
droplets. The heterogeneous nature of droplet-provided services exactly
identifies the boundary between the core application and the droplets. The
core application is the most important part of the whole application because
it is the part that never changes. Nevertheless it has to be general enough to
accommodate current and future droplets.
Every routine that can be considered of public interest has to be added to
the core application. Every access to data and services must be mediated by
Yasmin, hence they can be accessed indirectly through the core application.
A droplet should not be allowed to invoke functions directly or issue service
requests provided by other droplets because this would introduce some
A Component-based Architecture for Open, Independently Extensible Distributed Systems 81

Yasmin: the Architecture
droplet interdependency which are explicitly forbidden by the architecture.
Every request has to be sent from the droplet to the core application that in-
vokes the requested service on behalf of the droplet. This mechanism works
based on the assumption that every communication has to pass through the
core application because it is the only entity that knows how to locate and
request services.

IMPORTANT

Suppose a droplet A want to invoke a service X provided by a droplet B. Event if the A would like to
call X directly, it could not do it because the (linker) symbol for X has not been exported outside B
due to the way droplets are built. Due to this X is not accessible directly by A, unless B access is on
behalf of A.

Thanks to this mechanism, a droplet can use a service without knowing
where it is really provided and it does not contain direct dependencies on
other droplets. Either the core application or another droplet may even act
as a proxy for another remote entity that provides the real service
[Coplien95].

Method and Function Resolution
Before discussing how the droplet interface has to be implemented, it is nec-
essary to understand how droplets can invoke external methods and func-
tions not known at compilation time. This mechanism is called method/
function resolution and entails the step of determining which procedure
have to be executed in response to a method invocation/function call. There
are a few techniques for performing the resolution:
¥ offset resolution,
¥ name-lookup resolution,
¥ dispatch-function resolution.

The offset resolution is the fastest technique but also the most constrained
because it requires that the name of the method/function to be invoked and,
in the case of object-oriented programming, the name of the class that intro-
duces the method be known at compile time.
The name-lookup resolution, similar to resolution techniques used by Ob-
jective C [Hook88] and Smalltalk [Goldberg83], is more flexible than the off-
set resolution and can be used when one of these conditions is verified:
¥ the method/function name is not known until runtime;
¥ the method is added to the class interface at runtime;
¥ the name of the class introducing the method is not known until runt-

ime.

The dispatch-function resolution is the slowest and most flexible technique.
It allows method resolution to be based on arbitrary rules associated with
the class of which the receiving object is an instance.
82 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Droplets
Figure 10. Direct and Indirect Calls

The droplet issues direct (offset resolution based) and indirect (name-
lookup resolution based) calls. The direct call is used when the droplet in-
vokes functions provided by the core application. A droplet is a sort of small
application linked at runtime with the core application.

NOTE

A droplet, usually implemented using shared libraries, is actually loaded and not linked at runtime.
Nevertheless, since the core application provides some basic services which the droplet may use,
when the droplet is linked it has to be linked with a shared library which contains the symbols of the
services provided by the core application. The linked droplet, will not include the code of the services
contained in the core application but just the reference to those symbols. These references are then
resolved dynamically by the loader when the droplet is loaded. Due to this, a droplet is then both
loaded and linked at runtime.

Droplets can use functions/methods, access objects contained in the core
application and issue service calls. When a droplet calls a core application
provided function/method, the offset resolution technique is used because
the name of this function/method is known at compile time, and the linker
can resolve these references based upon such information. If a droplet re-
quests a service that is not provided by the core application, the indirect call
is used. In this case the droplet invokes a core application function/method
that takes the service name and the parameters as input (See ÒService Man-
agerÓ on page 96). Then the core application function/method performs the
name-lookup and, if the requested service has been found, it calls the re-
quested service and returns the results of the call to the droplet that issued
the request. In practice, a service can be used by a droplet not only if the
service exists but also if the droplet has access to the service. Finally note
that it does not make too much sense to allow droplets to use all the availa-
ble services without enforcing some basic security rules: the droplet must
have the necessary credentials and access rights in order to access critical or
privileged services.

IMPORTANT

All the code fragments are written using the C++ language [Ellis90] [Stroustrup91]. Because droplets
do not rely on specific C++ features, they can be written using whathever programming language
([Deri95e] covers droplet implementation using Java).

The following example shows how a droplet calls an external service, i.e. a
service provided by another local droplet, named ABC:

Component

Component

Core
Application

direct method/function call

indirect service call (through the Core Application)

Legend:
A Component-based Architecture for Open, Independently Extensible Distributed Systems 83

Yasmin: the Architecture
int returnCode;
ABC_InterfaceType ctrBlk;

ctrBlk.input = <input params>;
ctrBlk.output = <output params>;
ctrBlk.rc = &returnCode;

switch(CallLocalService("ABC", (void*)&ctrBlk, NULL)) {
 case SERVICE_NOT_AVAILABLE: // Service not available
 cerr << "The service ABC is not available" << endl;
 break;
 case SERVICE_ERROR: // Service call returned an error (check returnCode)
 cerr << "The service ABC returned an error" << endl;
 break;
 case NO_ERROR: // Service executed successfully
 cerr << "Done." << endl;
 break;
}

Figure 11. External Service Call

The name-lookup resolution technique is used in the droplet-based applica-
tion because method dispatching has to be done at runtime for two reasons:
¥ it is not possible to statically link the droplet to the core application

because the number and the type of the droplets are not known at com-
pile time;

¥ the indirect call technique decouples the droplets and makes them inde-
pendent of the existence of other droplet-provided services.

Thus the indirect dispatch is of primary importance because it makes the ap-
plication independent of the location and the existence of services.
Implementing the droplets using shared libraries does not have much effect
on the application speed of a monolithic application. In fact in the latter case
the compiler and the linker resolve the references. In a Yasmin-based appli-
cation the resolution is performed at runtime by the indirect dispatch mech-
anism. Every time a droplet or a service is invoked, the core application has
to find the corresponding function (this search may fail if the function does
not exist). This lookup has an impact on the performance but the slow-down
effect can be minimized if caching or an efficient search mechanism such as
hash tables is used.

NOTE

The author has not investigated in detail how to efficiently solve the problem besides using basic
cache and has tables. The Self language uses some very interesting techniques [Ungar87] that can
be employed to significantly decrease the lookup time.

Notice that when a virtual class or method is used in an object-oriented pro-
gramming language a similar lookup is performed. This analogy illustrates
how the droplet technology is similar to the object-oriented technology and
how in some ways both techniques share similar problems.

Understanding the Droplet Interface
The object interface is the set of methods to which the object responds. The
method name and its signature are defined at compilation time and cannot
be changed at runtime. Hence the only way to add new methods or to mod-
ify existing ones is to shut down the application, modify it, recompile it and
84 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Droplets
start it again.
The droplet interface defines the boundary between the core application and
the droplets. Unlike the object interface, the droplet interface is well defined
and it is the same for every droplet independently of the provided services.
It also has to be general enough in order to accommodate different and het-
erogeneous services. The difference between an object interface and a drop-
let interface can be emphasized by means of an example. Suppose we have
a droplet with this interface:

class Class {
public:
 int PerformAction(char *serviceName, char **returnValue);
}

Figure 12. Simple Droplet Interface

Imagine that the droplet recognises only the ÒAppleÓ and ÒPearÓ services,
and that we have to extend it by adding a service called ÒOrangeÓ. The way
to do this, is to add the functions/methods needed to handle it. When the
serviceName parameter has the value ÒOrangeÓ, this new logic is used. Thus
a droplet does not redefine its interface but releases some constraints on the
parameters by accepting a wider set of values. Since the interface is un-
touched, the application which uses the droplet does not have to be recom-
piled but just the droplet whose new version can be reloaded by the running
application [Ban95]. The example seen before can be modified as follows in
the case of a class:

Figure 13. Class Definition

Subclassing is necessary because the ParentClass class may have been
shipped as a library and thus it cannot be modified but only subclassed.
This prevents the new class and the new methods from being used by a class
that is not derived from ParentClass. Also in order to make the new service
available, the application has to be recompiled and restarted, whereas the
droplet-based one has simply to reload the droplet.

NOTE

Implementation issues concerning droplet reload are not relevant for this work since they vary from
platform to platform. Since droplets have no cross dependencies, they can be loaded/unloaded at
runtime without affecting other droplets. Due to this, droplet load/reload is a pure programming exer-
cise and it does not present any problem. What is not possible to do, is to change the implementa-
tion of a shared library used by some droplets and pretend that the system automatically reloads the
involved droplets. This limitation is due to the fact that the system knows only about droplets and not
about the libraries loaded by such droplets. In any case this is a secondary limitation. More informa-
tion about this topic can be found in [Crelier94].

It is worth mentioning that a droplet can be written either in a object-orient-
ed language or not. Thus the difference between droplets and classes is that
the droplet adds new services by releasing limitations on the values of the

class ParentClass {
public:
 int Apple();
 int Pear();
};

class Class: public ParentClass {
public:
 int Orange();
};
A Component-based Architecture for Open, Independently Extensible Distributed Systems 85

Yasmin: the Architecture
interface parameters (the interface being unchanged), whereas a class pro-
vides new functionality by subclassing and defining new methods. This dif-
ference is shown in the following example:

 int Class::dropletInterface(char *serviceName, char &returnValue)
 {
 if(strcmp(serviceName, "Child") == 0)
 strcpy(&returnValue, GetChildName());
 else if(strcmp(serviceName, "Father") == 0)
 strcpy(&returnValue, GetFatherName());
 else
 return SERVICE_NOT_HANDLED; // Service not handled by this droplet

 return NO_ERROR; // No error
 }

Figure 14. Droplet: Service Handling

In any case, the droplet paradigm does not have to be considered a class
competitor. It has been shown that both paradigms can fit together and that,
thanks to this, the droplet paradigm can be introduced into existing appli-
cations written in an object-oriented language like a transition path towards
a pure compound application.

Droplet Interface Definition
A droplet is not statically linked to the core application but is loaded at runt-
ime. Therefore a mechanism to load a droplet dynamically and to bind it to
the core application has to be identified. Many operating systems provide
facilities for the creation and use of dynamically bound shared libraries. Dy-
namic binding allows external symbols referenced in user code and defined
in a shared library to be resolved by the loader at runtime. The shared li-
brary code is not present in the executable image on disk. Shared code is
loaded into memory once, in the shared library segment and shared by all
processes that reference it. Considering the facilities offered by a shared li-
brary and its great versatility, it makes sense to use it for droplet implemen-
tation.
A droplet is seen by the core application as a shared library. The core appli-
cation can load droplets on demand or at start-up time. The entry point of a
shared library can either be a function/method or a variable. Given the en-
try point, the core application has to be able to access all the services provid-
ed by the droplet. It is therefore necessary to define a new type or class that
contains all the information about the droplet and to define a static variable
in the droplet code containing this information. Such a variable will be the
entry point of the library. This is the basic information that can be specified
by a droplet:

typedef void(*DropletInitTermFunct)(<function parameters>);
typedef void(*DropletInterface)(<interface parameters>);

typedef struct {
 short version, loadOnDemand;
 unsigned long lifetime; /* in seconds */
 char *dropletName, *dropletInfo;
 void* additionalInfo;
 DropletInitTermFunct startFunct, endFunct;
 DropletInterface toolFunct;
 LocalService *localServices;
86 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Droplets
 RemoteService *remServices;
} DropletInfo;

Figure 15. Droplet Information

The DropletInterface is defined as a function but it can be also defined as a
static method. The parameters are not specified because they can vary from
application to application, however each application defines a droplet sig-
nature that will be used for all the droplets. The version field (major and mi-
nor number) is useful to check the version in order to prevent
inconsistencies between droplet versions. The loadOnDemand field (boolean)
specifies whether the droplet can be loaded on demand or if it must be load-
ed at start-up time, this mostly for performance reasons since some droplets
may take some time to initialise. The lifetime field specifies for how long the
droplet can stay in memory since the last time it has been used (See ÒDroplet
ManagerÓ on page 93). The dropletName and dropletInfo fields are used to pass
the droplet-related information to the core application. The dropletName is
necessary to find droplets given their name, and the dropletInfo to character-
ise the droplet by specifying what the droplet does and how it expects to be
invoked (the technique of putting comment information into the item itself
has already been applied in languages such as SmallTalk). The additionalInfo
field contains some (optional) private droplet information in an unspecified
form. The core application is not responsible for this information but it is the
droplet itself that has to manage it. The startFunct, toolFunct and endFunct are
pointers to droplet functions. The startFunct and endFunct are optional (they
can be set to NULL) and when present they are called when the droplet is load-
ed/unloaded. The toolFunct identifies the core droplet function. It is invoked
by the core application when an operation concerning the droplet has been
requested. The ability of the core application to load the droplet at runtime
permits droplets to be loaded on demand. This technique can be used to
save system resources (for instance memory) and to make distributed appli-
cations more flexible. For example a remote application can provide a serv-
ice, implemented by a droplet, and used frequently by a local application.
In order to reduce the network traffic, it makes sense to copy the droplet
from the remote host to the local host and to attach it to the local application.
Due to this, each time this service is requested, a local request is issued in-
stead of a remote one. Similar techniques can be used in many other cases
where the performance, the network traffic or the resources in use have to
be optimised.

Heterogeneous Code Integration
Besides advantages relative to application extensibility and runtime behav-
iour modification, the use of droplets has another important advantage.
The integration of legacy code into a new application creates a lot of prob-
lems. Namely:
¥ integration of legacy code coming from different sources usually

imposes different programming styles or the use of different program-
ming languages;

¥ since legacy code is often available only in binary form, the developer
does not have control over it hence this code may clash with other parts
of the application being developed.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 87

Yasmin: the Architecture
The first problem is more a programming problem. Mixing different pro-
gramming styles into an application is not a good programming technique
since this makes the code more difficult to understand and also creates sev-
eral problems if the code to be integrated is not written using a single pro-
gramming language.
The second problem is more subtle and difficult to track and solve. This can
be clarified with an example. Suppose having a library which contains the
following code fragment:

// The following class is used internally by GetMainLibraryService
class SimpleClass {
public:
 SimpleClass();
 ~SimpleClass();
};

int numItems;
char* GetMainLibraryService() { ... };

SimpleClass()::SimpleClass() { ... };
SimpleClass()::~SimpleClass() { ... };

Figure 16. Example of Legacy Code

Suppose also that the application needs to use the GetMainLibraryService func-
tion. This requires the application to be linked with the library. In case the
main application contains a class named SimpleClass there will be a link prob-
lem because the linker symbols for SimpleClass are duplicated since the same
symbols are present in both the application and the library. One way to
solve this problem is to modify the application and to rename the
SimpleClass, although this might be a problem in case the application is large
or when the class name cannot be changed for other reasons.
A more subtle problem can be caused by the numItems variable. If the appli-
cation defines a variable with the same name (the type does not have to be
necessarily the same since the compiler will always generate a symbol
named numItems independently from its type) at link time there will be a sym-
bol clash hence one of the two symbols will be overwritten (notice that
smart linkers may highlight the problem) with the result that the applica-
tion will interfere with the library and vice-versa.

This simple example demonstrates that the integration of legacy code may
cause several unexpected problems. The use of droplets prevents all these
problems with no effort. In the example above, the developer will imple-
ment a droplet which has as toolFunct (see Figure 15, ÒDroplet Information,Ó
on page 87) the GetMainLibraryService function and then will link only such
droplet with library. In case the application or another droplet define some
symbols as the ones defined in the library, there are no side effects since the
application or the droplet will not be linked with the library because they
do not use the GetMainLibraryService function.

The droplet ability to prevent the problem seen above, it is very useful be-
cause the integration of legacy code into a newly developed application is
quite difficult to solve when the application is monolithic since there is a sin-
gle final link step instead of several link steps, one for each droplet. A side
88 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Droplets
advantage of having a link step for each droplet is related to the link time.
Since a droplet is much smaller that the whole application, the time neces-
sary to link a droplet vs. the time necessary to link the monolithic applica-
tion is much smaller. Additionally a modification in a droplet does not
require the whole application to be relinked but just the modified droplet.

4.4.2. The Service Interface

Droplets should not be regarded as mere parts of an application. They are
separate entities that provide and use services. In order to specify the serv-
ices provided by a droplet, the droplet interface includes the service inter-
face (localServices and remServices), which specifies respectively the services
accessible only locally and remotely. This interface, like the droplet inter-
face, masks how the service is implemented and other details that need not
be of public interest, just like a class of an object-oriented language does.
The interface is specified as follows:

typedef int(*LocalServiceFunction)(void* in_data, void** out_data);
typedef void(*RemoteServiceFunction)(char* in_data, char** out_data);

typedef struct {
 LocalServiceFunction localServPtr;
 char *servName, /* Name of the service */
 servInfo, / Info about the service */
 servInParam, / Info about input parameter */
 servOutParam, / Info about output parameter */
 servRetValue; / Info about return value */
} LocalService;

typedef struct {
 RemoteServiceFunction remoteServPtr;
 char *servName, /* Name of the service */
 servInfo, / Info about the service */
 servInParam, / Input parameter format */
 servOutParam; / Output parameter format */
} RemoteService;

Figure 17. Service Interface

The string localServPtr/remoteServPtr are the pointers to the function that pro-
vide the local/remote service. It is very important that this function have a
well-defined and general interface like the one shown above. There are oth-
er possibilities to define LocalServiceFunction such as imposing no constraints
on the number and type of parameters instead of using a void* which can be
used to pass every datatype. This requires use of a variable argument list
that may reduce robustness due to the limited checks that can be performed
on the parameters. The servName identifies the name of the service. To im-
prove the lookup speed, however, a numerical index can be added. The oth-
er fields are used to provide additional information about the service: what
it does, which input/output parameters it expects, and how to interpret the
return value.

IMPORTANT

In the case of LocalServiceFunction the type of the input/output parameters is undefined (i.e.
every type can be specified), whereas in the case of RemoteServiceFunction their type is char*
and it is developer’s responsibility to marshall/unmarshall the information, i.e. to pack/unpack the
information in/from a stream of bytes.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 89

Yasmin: the Architecture
These fields are very important whenever a droplet has to call services pro-
vided by other droplets and whenever it has to find out how it is supposed
to issue requests. They do not have to be identified as information of sec-
ondary importance but they have to be considered part of the dynamic serv-
ice call interface. For example suppose that an application displays a pop-
up menu containing the names of all the external tools such as circle, line, or
rectangle. The application can exploit servName to add the tool names to the
menu and servInfo to draw an icon for each entry. Note that certain services
may be available only when specific conditions are verified (e.g. only when
some resources are available). For this reason the core application should of-
fer a way to register/deregister services dynamically other than via
DropletInfo. Services are identified with a precise name just like for methods.
Nevertheless it is important to include a description of the service. It has to
be remembered that droplets may have been written by different persons
for very different purposes and therefore may not have a description, so
these droplets are useless for anybody but the droplet-author.

4.4.3. Comparison with Other Software Components

In the previous chapter (see ÒComponent-based ArchitecturesÓ on page 33
and ÒPlug-in ComponentsÓ on page 49) state-of-the-art component-based
architectures and software components have been discussed and compared.
It is interesting to see how droplets compare with them. The following table
lists some of the major differences between the various component types ac-
cording to certain key criteria [IBM94b]:

OpenDoc OLE Java Beans QTCMa Droplets

Application
Domain

Generic and
document-cen-
tric applica-
tions.

Generic appli-
cations.

Generic appli-
cations (usu-
ally with a GUI).

Plug-in archi-
tecture for
extensible
applications.

Generic, modu-
lar, dynami-
cally-
extensible
applications.

Programming
methodologyb

Object-Ori-
ented.

Object-based. Object-Ori-
ented.

Object-based. Object-based.

Relationship
to Languages

Language-neu-
tral.

Language-neu-
tral, function
pointer table
based user-
built.

Written on
Java.

C/Pascal. Language-neu-
tral, function
pointer table
based user-
built.

Remote Com-
ponent Inter-
action

No. Yesc. No. No. Yes.

Method
Resolution
Mechanisms

Automatic,
three forms are
supported:

1. offset,
2. name,
3. dispatch.

User responsi-
bility:

1. Use Query-
Interface to
get the Inter-
face.

2. Indirect
function call
via interface
vector table.

Automatic, pro-
vided by Java.

Indirect func-
tion call via
interface vector
table.

Automatic: indi-
rect function
call via droplet
interface vector
table. Note that
being the drop-
let interface
object-based,
components
can only
invoke func-
tions and not
methods.
90 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Droplets
From the previous table it is possible to see some similarities between drop-
lets and other component types. Namely, droplet are similar to:
¥ OLE objects at the interface level in the way components interact, both in

a local or remote fashion;
¥ Java Beans because both component types allow components to be

active entities and support concurrency;

a. This column covers the QuickTime Component Manager and the other type of components,
similar to QTCM, covered in the section “Plug-in Software Components” on page 48.

b. According to [Wegner87].
c. Exclusively with DCOM, available only on WindowsNT release 4.

Polymorphism
Support

Yes. Granular-
ity:

1. interface
level;

2. method
level;

3. user-
defined.

No. It must be
emulated by
user-written
code.

Yes, provided
by Java.

No. No. It must be
emulated by
user-written
code. If drop-
lets are speci-
fied using an
object-oriented
language, all
the mecha-
nisms offered
by the lan-
guage can be
used.

Inheritance
Support

Yes:

1. single,
2. multiple,
3. abstract

(interface)
inheritance.

No. Instead,
containment
and aggrega-
tion (manually)
are offered.

Yes, provided
by Java.

No. No. Instead,
cooperation
and aggrega-
tion (manually)
are offered.

Component
Interface
Definition
Language

SOM IDL
based on OMG
IDL.

None. None. None. None.

Component
Interface

Statically typed. Statically typed.
Developers
can choose at
runtime the
interface they
intend to use.

Statically typed. Statically typed. Statically typed
(Droplet Inter-
face).

Component
Interaction

Events,
method call.

Events, proce-
dure call.

Events,
method call.

Indirect proce-
dure call
through the
component
manager.

Events (single
and multicast),
service call
(local and
remote).

Encapsulation
Boundary

Object Level. Interface Level. Interface Level. Interface Level. Interface Level.

Active Compo-
nents

No. No. Yes. No. Yes.

Concurrent
Objects

Not specified
(usually it has
to be emulated
by user-written
code).

Not specified
(usually it has
to be emulated
by user-written
code).

Yes. No. Yes.

OpenDoc OLE Java Beans QTCMa Droplets
A Component-based Architecture for Open, Independently Extensible Distributed Systems 91

Yasmin: the Architecture
¥ QTCM because both component types allow applications to be extended
at runtime simply by placing components in a well-speciÞed directory.

A unique droplet characteristic is its ability to be added and replaced at
runtime while the application is running.

At a glance, droplets may seem to be quite primitive because they are object-
based. From another perspective, this feature allows them to be relatively
simple yet quite powerful. The cost of implementing components in a full
object-oriented fashion like in OpenDoc is certainly convenient for compo-
nent writers but it fully ties components to OpenDoc. This means that such
components can only run on those platforms where OpenDoc is available.
Moreover it prevents the reuse of existing components in non-OpenDoc ap-
plications. This is a major drawback especially on computer networks
where computers are very heterogeneous. Even if two computers run the
same OS there is no guarantee that both have the same version and the same
components. One of the design goals of the droplets has been to make them
as OS/technology-independent as possible in order to achieve portability
while including only the basic features each network application needs in
order to keep them simple and light.

4.5. Yasmin Components

The following picture depicts YasminÕs components.

Figure 18. Yasmin’s Components

User services are implemented using droplets, which change from applica-
tion to application. Kernel services instead, are part of each Yasmin-based
application and provide services, and functionality on which droplets rely.
The following sections cover each kernel component in detail.

4.5.1. Personality Abstraction Layer

The kernel services are designed to run on different operating systems. For
this reason it is necessary to abstract the operating system through a thin

Host Operating System

Personality Layer

Communication

Services

Resource

Manager

Droplet

Manager

Service

Manager

Event

Manager

Collaboration

Services

Kernel
Services

Uses

Legend:

User
Services
92 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Yasmin Components
layer called a personality.

NOTE

The term personality has been borrowed from Mach kernel [Accetta86] terminology. In that case, the
kernel provides some basic services on top of which different operating systems or different
instances of the same operating system, called personalities, can run.

Personalities provide abstractions for low-level services performed by the
host operating system. Those services include, but are not limited to:
¥ concurrent execution (threads) [Atkinson91];
¥ synchronisation primitives (semaphores);
¥ loading/unloading of libraries and metadata information;
¥ interprocess communication.

If a potential operating system does not support all of these capabilities, it
is often possible to run Yasmin-based applications too. For instance an ap-
plication can run in single-threaded mode if threads and semaphores are
not supported. The use of personalities allows a single source code tree for
different operating systems to be maintained, whereas the personality con-
tains operating-system-dependent code. This facilitates porting code on dif-
ferent operating systems and to maintain the different code versions. In
addition it prevents having to change the entire application but just this
component when different releases of the underlying operating system of-
fer new or more performant functionality.

4.5.2. Droplet Manager

The droplet manager (DM) is responsible for handling droplets. Namely it:
¥ loads droplets on demand;
¥ maintains a droplet reference counter that allows droplets to be purged;
¥ is responsible for detecting new droplet versions or further droplets

added at runtime;
¥ collaborates with the service manager, informing it of newly available

services.

A Yasmin-based application stores droplets in a well-defined directory
(usually named Droplets/). The user puts (or drops, if drag and drop is used)
droplets in such a directory and is free to replace them during program ex-
ecution, hence the term droplet. The DM at start-up time searches for a file
called index, which contains the name of the droplets and the services they
implement. If such a file is found, the DM verifies that it is newer than all
the other droplets (this is done by checking the file modification time) to en-
sure that it is consistent with the current droplet set. If not, or if there is a
new droplet, the index file is rebuilt automatically without any external in-
tervention. This operation, similar to the registration of OpenDoc part edi-
tors, is done by loading and unloading in sequence each droplet in order to
build the list of droplets available and of the services provided by the drop-
lets that are not visible at the file system level because they are usually
stored inside the droplet itself.
Inside each droplet the droplet lifetime is specified. The lifetime, which
A Component-based Architecture for Open, Independently Extensible Distributed Systems 93

Yasmin: the Architecture
ranges from one second to infinity, specifies how long the droplet has to be
kept in memory since the last time it was used. This facility is used to avoid
keeping in memory droplets that are no longer needed. It indicates to the
system when to purge some resources in case of low memory conditions. If
the dropletÕs lifetime has expired, the DM unloads it and releases all the
memory and resources allocated by the droplet by calling the droplet termi-
nation function.
The DM is also responsible for detecting new droplets and new versions of
them. In this case the index file is updated and the service manager (SM - See
ÒService ManagerÓ on page 96), responsible for handling the services, is no-
tified of the new services available and the ones no longer available (this
happens when a new version of a certain droplet does not implement all the
services implemented by the former version). Moreover, droplet versioning
prevents the system from loading and using droplets that have been devel-
oped for a different application version, which may introduce problems or
spurious errors. Similar to the versioning system used by IBM DSOM, drop-
lets have a minor and a major version number. The major version number
specifies which application version can use a given droplet version, where-
as the minor number is used to implement the droplet versioning.
It is worth noting that droplets cannot be unloaded when in use, whereas it
is possible to have one or more different versions of the same droplet active
at the same time. This technique works because the DM is the only entity
that maintains direct references (i.e. pointers) to droplets, whereas other en-
tities such as the service manager simply access services through the DM.
For this reason, whenever there is a new droplet version, the DM loads it
without checking whether someone is still using the old version. If the old
droplet version was no longer in use, then that version is unloaded and the
new version is loaded, otherwise the DM flips the pointer to the droplet vec-
tor table. This operation:
¥ allows the new droplet to be used whenever a new request for such a

droplet has to be processed;
¥ prevents new requests from being processed with the old droplet while

the operations in progress (that make use of the old droplet) can con-
tinue;

¥ allows the old droplet to be unloaded whenever all the operations
involving the old droplet have been completed.

NOTE

Although replacing components on demand seems to be an easy job, this is possible if and only if
the access to the components is mediated by a single manager (the DM in the case of droplets)
which intercepts all the accesses to the component. The lack of this manager is the reason why
other component-based architectures such as OpenDoc do not allow components to be replaced at
runtime.

The DM collaborates with the SM in order to guarantee this behaviour by
keeping track of the requests currently in progress for each droplet. A re-
quest is considered Òin progressÓ from the time the SM issues a new service
request to the DM until the SM notifies the DM that the request has been
completed. This mechanism works because services and droplets are ac-
cessed only through managers which shield them from the rest of the sys-
94 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Yasmin Components
tem. Access to resources and services exclusively through managers:
¥ contributes to the global system robustness;
¥ prevents droplets from being directly dependent on each other, i.e. by

means of direct function or method calls;
¥ allows droplets to be selectively plugged and unplugged at any time

because they have no cross dependencies of any type.

4.5.3. Event Manager

Events are by nature asynchronous and usually indicate that something has
occurred. Typical events are mouseUp/mouseDown or network events.
Normally, events are processed when they occur and their type is well de-
fined so the program can handle them. In Yasmin, these limitations are re-
laxed, hence:
¥ events can specify when they have to be processed;
¥ droplets can deÞne new event types.

Yasmin represents events as information records containing the type of the
event (event type), when it has occurred (event time), and additional informa-
tion relative to the event itself (event info). Yasmin adds a new field to this
record which specifies when the event has to be processed; it may contain
an absolute time or a displacement with respect to the time the event oc-
curred. If this field is set, the event is called a delayed event. A delayed event
is used to implement periodic tasks and activities that have to be performed
at a certain time. Typical examples are chime clock events that have to be ex-
ecuted every hour or system backups that have to be performed every Sun-
day at 1am when virtually nobody is expected to be using the system.

The Event Manager (EM) is responsible for:
¥ delivering events to the various components,
¥ handling delayed events,
¥ allowing different droplets and services to cooperate and interact by

means of the events they exchange.

Yasmin defines a set of basic event types and allows droplets to define their
own custom event types, specified inside the droplet itself. Hence, whenev-
er a new droplet is loaded/unloaded, the DM notifies the EM about the
event types that can be handled. As different droplets can handle the same
event type, a string called eventDestination specified inside the event record
is used to identify the type of the received event. Such a string can have
three values: a droplet name, a star (Ò*Ó), or a null value. In the first case the
event is delivered to the specified droplet, in the second to all the droplets
that handle such an event, in the last to a droplet that handles the event, if
any. If an event cannot be handled, it is discarded and the memory used by
the event is freed.
YasminÕs event flexibility allows droplet intercommunication to be imple-
mented easily and clean-way. Delayed events facilitate the implementation
of periodical tasks whereas custom events allow different droplets to inter-
operate in an appropriate way to send a specific event for a certain situation
A Component-based Architecture for Open, Independently Extensible Distributed Systems 95

Yasmin: the Architecture
instead of using generic ones that must be jeopardised in order to express
peculiar situations. Additionally, the event destination enables droplets to
implement a multi/broadcast facility, which is useful when multiple drop-
lets have to be informed of a certain event that is important for all of them
(for instance a resourcePurge event, which is broadcast by the system in low
memory situations).

4.5.4. Service Manager

The Service Manager (SM) interacts with the DM to handle the services pro-
vided by the droplets. When a droplet is loaded, the DM notifies the SM of
the services provided by the droplet, which are made available to the entire
system. When a droplet is unloaded, the DM informs the SM of the services
that are no longer available. Whenever the SM receives a request for a cer-
tain service, it request the DM to return a reference to the requested service.
The DM, according to the information contained in the index file, identifies
the droplet which implements the service, loads it on demand if necessary,
and returns a droplet reference to the SM. If there is no droplet which im-
plements the requested service, the request is rejected by the SM.
Services, identified by a unique string, can be of two types: local or remote.
A local service can be used only locally whereas a remote service can be
used both locally and remotely in an RPC-like way [Birrell84] by exploiting
the Communication Services (CS - See ÒCommunication ServicesÓ on
page 98). The main difference between local and remote services is that for
remote services, the input/output parameters are both strings (hence the
service is responsible for marshalling/unmarshalling data) whereas local
services can use any type they want. Local services are requested using Cal-
lLocalService, whereas remote ones using CallRemoteService. Each service is
specified by an entry inside the droplet information record. Such entries
contain the name of the service, information about the service and about the
input and output parameters specified as strings using the C language con-
vention. Remote services contain char* in both input and output parameters
whereas local services parameter contain the real type. For instance a local
service that takes as input a record containing the name and the age of a per-
son has a service input parameter that looks like char*, unsigned short. Service
parameters are mandatory and are useful for developers whenever they
want to access services provided by a droplet written by third parties.

NOTE

In a future Yasmin revision, service parameters (see Figure 17, “Service Interface,” on page 89) will
be used to do transparent marshalling/unmarshalling, allowing just one type of service accessible
both locally and remotely.

When a droplet has to invoke a service request, it cannot call the service di-
rectly, thus the SM does this on its behalf. The droplet provides the service
name and the input parameters to the SM, and it then receives from the SM
the result of the service invocation or an error if the service cannot be found.
This design choice derives once more from the plug Ôn play principle, which
specifies that information access cannot be gained directly (e.g. through a
pointer) but has to be mediated by the entity responsible for managing such
information.
96 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Yasmin Components
In Yasmin, service requests must be processed within a limited amount of
time in order to leave processing time to other requests. This means that a
service request has to terminate and it cannot last for an infinite amount of
time (e.g. an endless loop). Services that may take a long time to process re-
quests (for instance they may need some resources not yet available) should
be divided into subservices that are activated sequentially by means of
events. The requirement to complete service requests in a finite amount of
time is very important in single-threaded systems, because the entire sys-
tem is blocked until the service has been completed. In a multi-threaded sys-
tem, although the system can continue to work, long lasting services occupy
resources (for instance threads) and hence reduce the global application
performance. The SM has no way to guarantee that services do not take too
long because programmers are responsible for this. The only way for the SM
to prevent application deadlock or wild resource usage is to run a sort of
garbage collector that kills the threads that are apparently in an infinite loop
or that have been running too long. Although this solution is not very clean
because resources in use by threads may not be freed when the thread is
killed, the SM has no other choice to guarantee a minimal quality of service
and to prevent application deadlock.

4.5.5. Resource Manager

The Resource Manager (RM) cooperates with other managers to use system
resources efficiently. Such resources include but are not limited to memory,
communication sockets, and droplets. The RM makes sure that system re-
sources are not wasted and that like a kind of garbage collector is activated
periodically to purge resources no longer needed. The RM:
¥ informs the DM when a dropletÕs lifetime has expired so it can be

unloaded;
¥ makes sure that threads are used efÞciently by not starting too many

threads, which would decrease the overall application performance;
¥ is responsible for purging memory and other system resources (includ-

ing droplets) periodically or when it is required to perform a certain task
and the available resources like MacAppª [Apple89] does.

Although the RM is a hidden component, it is very important because it al-
lows the system to run with very limited resources and prevents wasting
them. For instance, Liaison (cfr. next chapter), a Yasmin-based network
management application, can perform complex network management tasks
using a very small amount of memory because the RM contributes to scale-
down network management applications from large hosts to standard ma-
chines.

4.5.6. Collaboration Services

CollaBoration Services (CBS) enable droplets and services to communicate
and cooperate in order to perform a certain task [Nierstrasz90]. CBS, ex-
ploiting SM and EM, allow a task to be divided into many small cooperative
subtasks. This solution enhances performance because these subtasks can
be performed concurrently. This helps keep complexity low because each
A Component-based Architecture for Open, Independently Extensible Distributed Systems 97

Yasmin: the Architecture
subtask is simpler than the original task. CBS provide facilities for:
¥ sending requests in multicast/broadcast mode and collecting results;
¥ synchronising tasks by means of events.

It is worth noting that Yasmin implements collaboration not only by means
of CBS but also through the SM. In fact droplets collaborate with the rest of
the system by providing services that can be of general interest. This avoids
services being replicated, which saves development time and keeps the sys-
tem slim and efficient.

4.5.7. Communication Services

Communication Services (CS) allow Yasmin-based applications to commu-
nicate with remote entities (local communications are performed by means
of events). As Yasmin has been designed with portability in mind, external
communications should be based on well widespread protocols such as
TCP/IP or HTTP. Developers use the CS in order to:
¥ register/deregister communication sockets,
¥ be notiÞed when data is available,
¥ issue requests and retrieve results.

NOTE

A communication socket is used to identify a communication channel which allows the application to
communicate with external peers. The term socket does not necessarily mean that Unix BSD sock-
ets [Stevens90] must be used.

CS are also used internally by other architecture components such as the
SM, which uses it to transparently send remote service requests and to re-
ceive responses. In fact an important characteristic of CS is that they allow
one to send data in a reliable way and to transparently handle socket and
protocol errors, shielding droplets from differences among socket imple-
mentations available on various platforms.

4.6. Yasmin’s Design Choices

The YasminÕs design has been an iterative work. Some architecture compo-
nents have been added and others have been signiÞcantly redesigned
while developing the architecture. This section highlights some design
choices and it discusses possible alternatives.

Droplets
The droplet design has influenced the whole architecture. It was clear since
the beginning of this work that Yasmin needed to be a droplet-centred ar-
chitecture. The reason for this is very simple: the use of programming tech-
niques such as inheritance or polymorphism used to glue different pieces of
an application, has often produced very monolithic applications. Then I de-
cided to implement the application using software components able to be
replaced and added to a running application. The various alternatives could
98 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Yasmin’s Design Choices
have been CORBA, OLE, or the use of languages such as Objective C or
SmallTalk. I decided to drop CORBA and OLE because their components
are not replaceable at runtime, and also because the disadvantages are pre-
dominant with respect to the advantages (complexity, cost, platform-de-
pendence). I have also dropped Objective C because is not available on all
platforms I was interested in. I decided not to use SmallTalk because all the
SmallTalk implementations I have been able to use were not able to deliver
the performance needed in network management, not mentioning other im-
portant issues such as memory use and portability.
I decided to design the droplet interface in a ÔCÕ fashion after having
thought for a while to implement it in an object-oriented language such as
C++ in order to manipulate droplets as pure objects. I decided not to use
C++ because:
1. Due to they way C++ compilers generate symbols, the integration of

droplets developed using two different compilers presented some prob-
lems because the dynamic linker was not always able to resolve all the
references.

2. The number and the name of services provided by a droplet is not Þxed
hence each droplet should have a different interface. For instance:

Table 8. Some C++ Droplet Interfaces

This solution has been discarded because C++ does not offer a standard
way of getting information about classes (reßection), hence about the
name and the number of services.

3. Because droplets are independent entities, a droplet must not have
direct references to other droplets. For instance if a droplet A needs to
call the service Service_B1() as deÞned in the previous table, it should
contain the call Droplet_B_InterfacePtr->Service_B1(). Therefore droplet A
should make assumptions on the droplet interface of B. This prevents for
instance droplet B from being modiÞed without having also to modify
droplet A.

NOTE

The adapter pattern [Gamma94] cannot be applied to the problem just described, because such
patter needs to know the interfaces at compile time.

In conclusion, the definition of the droplet interface using an object-oriented
language presents many drawbacks. Therefore I decided to model droplets
as objects, so they look exactly as objects with the difference that internally
they have to deal with a non object-oriented interfaces hence with functions
instead of methods. This solution prevents mechanisms such as inheritance
and polymorphism among droplets to be used. Nevertheless this does not
have to be considered a limitation because those mechanisms are incompat-
ible with the dynamic nature of the droplets.

class InterfaceDroplet_A {
public:
 int Service_A1();
 int Service_A2();
};

class InterfaceDroplet_B {
public:
 int Service_B1();
 int Service_B2();
 int Service_B3();
 };
A Component-based Architecture for Open, Independently Extensible Distributed Systems 99

Yasmin: the Architecture
Slim Application Kernel
Since quite some time there is a debate concerning what has to be included
in an operating system kernel, and what has to be implemented in the user
space. Some people say that a microkernel has advantages over a fat kernel
because once the kernel has been ported to an hardware platform then it is
quite simple to port the rest of the OS. Additionally a microkernel can be op-
timised more easily that a fat kernel hence the performance degradation due
to the several calls to kernel functions can be balanced by a better kernel per-
formance.
Similar considerations can be applied to Yasmin. Yasmin has been designed
to produce applications both portable and performant. The problem about
what to include and what not to include in the application kernel came into
the arena due to the unique structure of Yasmin-based applications that are
split into kernel and user services. Since I have not been able to find a defin-
itive answer on the literature about kernel granularity, I have decided to fol-
low the following approach. At first all the necessary services have to be
included in the kernel, and then services will be selectively moved from ker-
nel to user space (droplets) until a good balance of performance and flexi-
bility is achieved. The outcome of this iterative process produced a slim
kernel that is not exactly minimal but that contains only the services used
by all the droplets. The decision not to have a very minimal kernel has been
made after having developed a few prototypes. If a minimal kernel is used,
the application performance is affected proportionally to the number of
times that non-kernel entities (droplets) have to use kernel services. This
performance degradation is acceptable if there is a real need to have a very
minimal kernel, namely if some of the services included in the kernel need
to be modified at runtime. Because this is not the case, I have decided to de-
sign a slim kernel which is more performant with respect to a minimal ker-
nel but which is still flexible because the services that the kernel provides
are not expected to be modified at runtime.

Event Manager
In general events are issued when a certain situation occurs. Common
events are mouse click and disk insert. In the network management field it
is often necessary to perform periodic tasks. This happens for instance when
an important file system has to be monitored in order to avoid users to fill
it up. With the advent of threads, many developers implement periodic
tasks using a thread. Each thread contains an endless loop in which the
thread performs the task and then sleeps for a specified amount of time. Un-
fortunately the number of threads an application can spawn is limited,
whereas the number of these tasks can be potentially high, and it is not pos-
sible to know in advance what is the maximum number of periodic tasks an
application has to perform. In addition, as far as the author knows there are
no patterns which can be applied to the problem. Due to this, delayed
events have been defined (See ÒEvent ManagerÓ on page 95) with the pur-
pose to be able to handle a potentially unlimited number of periodic tasks
without the need to spawn a thread for each of them.

NOTE

Delayed events have the advantage that can be implemented with or without threads, hence they do
not necessarily need thread support from the operating system.
100 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Comparison with Other Architectures
Conclusion
Although considerations similar to the ones above can be applied to every
Yasmin component, this section demonstrates that each component has
been designed in an iterative way:
¥ collection of the requirements;
¥ identiÞcation of the mandatory features the component must have;
¥ survey of the patterns and solutions already available that could be used

to design the component;
¥ decision to reuse (and modify) an existing solution or to design a new

one in the case no satisfactory solutions are available;
¥ implementation of a small prototype used to select the adopted solu-

tions in case there are a few alternatives to the component implementa-
tion.

It is worth noting that very seldom there is a unique solution to a given
problem. In fact quite often a certain solution is preferred with respect to
others because it is the best compromise between advantages and draw-
backs.

4.7. Comparison with Other Architectures

In order to better understand the strengths and limitations of Yasmin, some
criteria for comparing it with the architectures presented in the previous
chapter have been identiÞed. The result of the comparison is contained in
the following table.

OpenDoc OLE Java Beans Yasmin

Application
Domain

Generic and docu-
ment-centric appli-
cations.

Generic applica-
tions.

Generic applica-
tions.

Open distributed
systems with
emphasis on net-
work manage-
ment.

Architectural
Style [Garlan93]

Data abstraction
and object-ori-
ented organisa-
tion, layered
architecture.

Event-based,
implicit invocation
architecture, lay-
ered architecture.

Data abstraction
and object-ori-
ented organisa-
tion.

Distributed (client-
server), event-
based, implicit
invocation,
meshed architec-
ture.

Programming
methodologya

Object-Oriented. Object-based. Object-Oriented. Object-based.

Static Typing Objects statically
typed via the class
hierarchy.

Individual (not
objects) interfaces
are statically typed.

Statically typed
classes and inter-
faces.

Individual (not
objects) interfaces
are statically
typed.

Distributed
Object Support

Provided by the
DSOM Framework.

Provided by Net-
worked OLEb
(DCOM).

Provided through
the Java RMI API.

Yes, provided by
the Communica-
tion Services.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 101

Yasmin: the Architecture
a. According to [Wegner87].
b. Available only on WindowsNT release 4.
c. Migration concerns, in a client/server environment, the replication/move of a component from

the server to the client host in order for the previously remote component to be available in
the local environment.

d. Evolution concerns the ability to change/extend the application behaviour.
e. Interoperability is the ability of two or more entities to communicate and cooperate despite dif-

ferences in the implementation language, the execution environment, or the model abstrac-
tion.

Distributed
Communication
Protocol

Corba (IBM
DSOM).

Lightweight-RPC
(MS-proprietary
RPC).

HTTP, Java RMI,
Java IDL and
JDBC.

Not specified by
Yasmin. Liaison
(cf. next chapter)
uses the HTTP
protocol.

Component
Migrationc

Not applicable. Possible but
entirely user-written
(applicable only in
the case of
DCOM).

Yes. Yes (not between
different OS types)

Binding
Technology

1. Compile time
(using contain-
ment, inherit-
ance);

2. Runtime (via
OSA).

1. Compile time
(using contain-
ment, aggrega-
tion).

2. Runtime (via
OLE Automa-
tion).

1. Compile time
(using contain-
ment, inherit-
ance, property
editors and
composition
wizards).

2. Runtime
(scripting lan-
guages).

1. Compile time
(using coopera-
tion and aggre-
gation);

2. Runtime (via
external
requests like the
external bind-
ings described
in the next
chapter).

Runtime Evolu-
tion Supportd

No. No. No. Yes.

Interoperabil-
itye Support

Yes (via DSOM). Yes (at binary
level).

Yes (the Bean
interfaces to be
supported guar-
antee basic
interoperability).

Yes (droplet inter-
face and events
guarantee basic
interoperability).

Interoperability
Type

Object-oriented
interoperability.

Procedure-ori-
ented interoperabil-
ity.

Object-oriented
interoperability.

Procedure-ori-
ented/event inter-
operability.

Versioning Automatic (major &
minor numbers).

User-written
(major & minor
numbers).

None. Automatic through
the DM (user-writ-
ten version
number).

Object
Lifecycle
Support

Automatic, includ-
ing object creation,
object destruction,
object factories.

User-written, imple-
mented using refer-
ence counting.

Automatic, pro-
vided by Java.

Automatic, includ-
ing object crea-
tion, object
destruction, object
factories.

Concurrency
Support

Not specified. Not specified. Yes. Yes.

Platform
Coverage

AIX, MacOS, OS/
2, Win95/NT.

MacOS, Win95/NT. All platforms
which offer Java
support.

Platform neutral.
Currently running
on AIX, OS/2,
MacOS, Linux,
Win95/NT.

OpenDoc OLE Java Beans Yasmin
102 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Final Remarks
4.8. Final Remarks

This chapter presented a new component-based architecture for software
applications called Yasmin. Its main characteristics are that it is:
¥ highly portable, conÞgurable, and extensible;
¥ built upon dynamic software components called droplets;
¥ founded on cooperation and delegation, used to glue components

together;
¥ a slim and efÞcient kernel that relies on a fast event handler;
¥ an efÞcient use of system resources, which enables Yasmin-based appli-

cations to run on environments of limited computing power.

Despite YasminÕs native ability to work in a networked environment, this
architecture is general enough to be used not only on this application field.
Its ability to modify and extend applications at runtime makes it attractive
in dynamic environments where new services and resources must be sup-
ported while the original application must remain active and ready to serve
incoming requests. The following chapter covers the design and the imple-
mentation of Liaison, a Yasmin-based application, used to manage telecom-
munication networks.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 103

Yasmin: the Architecture
104 A Component-based Architecture for Open, Independently Extensible Distributed Systems

5 Liaison: Yasmin at Work
This chapter covers the design and implementation of Liaison, an applica-
tion based on Yasmin developed for the purpose of network management.
As Liaison represents le Òtrait dÕunionÓ between Yasmin and the network
management world, familiarity with terms and concepts covered in the
previous sections is necessary.

5.1. Introduction

TodayÕs networks are composed of many interconnected heterogeneous
resources. It is essential to use tools able to master this great amount of
complexity and diversity. Network management standards provide the
basis for hiding differences among resources thus allowing them to be
managed in a consistent way. Although this is the Þrst step towards inte-
grated network management, there is a clear need to provide the end-user
tools able to manage network resources in a single and consistent way.
There are many solutions on the market that address some aspects of this
problem. Network resources often come with proprietary software applica-
tions that run on a speciÞc platform and are capable of managing such
resources. When a network is composed of different heterogeneous
resources, the system administrator often has to use various tools to man-
age the different network parts. A partial solution to this problem is to
adopt very powerful and general-purpose network management tools. The
disadvantage of this solution is that such tools are costly and require pow-
erful hardware to run them. They are also complex in terms of usage and
conÞguration. Therefore this solution is suitable only for customers with a
reasonably large budget, but certainly not for small and mid-sized compa-
nies or many public institutions or universities.

Other events in the computer industry contributed to make this scenario
even more complex as depicted in the following Þgure.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 105

Liaison: Yasmin at Work
Figure 19. Recent Relevant Events in the Network Management/Internet World

In the current decade, many companies and research institutions have
attempted to simplify the scenario by deÞning a single and consistent way
for managing heterogeneous networks based on both CMIP [CMIP] and
SNMP [SNMP]. In this view, X/Open has deÞned an industry standard C-
based API called XOM/XMP (see ÒXOM/XMPÓ on page 63), able to unify
these two dominant network management protocols. The idea was to allow
people to write applications using a single API in order to simplify the inte-
gration of code written by different people. Recently a new effort by X/
Open called TMN++ [TMN++96] pretends to add an object-oriented inter-
face on top of XOM/XMP in order to have a simpler object model for pro-
gramming management applications. Although TMN++ is at the moment
far from being completed, this effort appears to be yet another dinosaur in
terms of complexity and Þnal application size.

Parallel to these activities, the increasing popularity of the CORBA
[OMG92] industry-standard pushed many people to write mappings be-
tween CMIP/SNMP and CORBA (see ÒInterdomain ManagementÓ on
page 66) based on the assumption that CORBA will become the network
management standard of the future and that everybody will use it instead
of CMIP and SNMP. Despite their efforts, there are many different map-
pings available today that usually do not fully support CMIP/SNMP (see
ÒInterdomain ManagementÓ on page 66). Another drawback is related to
the significant amount of code that must be generated to implement these
mappings and that has to be linked with the final application. Moreover, a
network management expert who intends to write a management applica-
tion must learn CORBA, IDL, how the mappings have been defined, and
must have an ORB installed somewhere. It is clear, for instance, that the in-
itial vision of SNMP to be simple and light has been jeopardized.
Whereas in the management community most efforts are spent deÞning a
single API or object model for coding management applications, in the
Internet world a new tool, the World Wide Web, has come into the play. It
was pioneered by an English engineer, who envisioned a system able to
handle various Internet protocols as well as different data formats using a
single consistent user interface. In addition, this system handles a new pro-
tocol called HTTP (HyperText Transfer Protocol) [HTTP] and a new data
format called HTML (HyperText Markup Language) [HTML]. HTML is a

1989 Definition of SNMP

1991 Standardisation of CMIP

Object Model Unification
(CORBA) [in progress]

Industry Standard API for Network
Management (X/Open XOM/XMP)

1994

1995 Explosion of the Internet and of the Web.

1996 The year of Java.
First X/Open TMN++ draft.
106 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Motivation
simple markup language used to create hypertext documents that are port-
able from one platform to another. Such documents are identiÞed by URLs
(Uniform Resource Locators) [URL]. The growing popularity of the web
offers a new way to provide wide access to complex software applications.
Almost every platform supports web browsers, and many people are using
the web as a single tool to access many different services. Hence the web is
quickly becoming a sort of general-purpose container for every kind of
information, whether distributed on the network or contained in a single
large database. Another important advantage derived from using the web
is related to software development and distribution. Many problems arise
for various reasons: the high cost of porting software to different platforms
together with the difÞculty of training people, maintaining and updating
software running on different operating systems are just a few. These prob-
lems can be addressed using the web because:
¥ it allows a single and established user interface, thus eliminating the

amount of training necessary;
¥ it does not require software porting because web browsers run on

almost any platform;
¥ it makes software maintenance easy because the web-enabled applica-

tions are installed in a few places by the system administrators, who can
maintain them easily without the need to update the client machines
that run conventional web browsers.

From the beginning, the web showed great potential, which did not fit in
with the limitations of the initial vision, according to which the web was
simply a tool to retrieve and visualise multimedia documents such as text,
graphics, and sound. It was clear that the web required some extensions to
make it more interactive. The first solution proposed by NCSA was CGI (see
ÒCGI ApplicationsÓ on page 48), which consisted essentially of a simple
way to start applications on the server side, which returned data based
upon the requested URL. This solution still suffered from the client-server
nature of the web, meaning that the web browser requested documents
from the server, thus making the client dependent on the server. People de-
manded more intelligence on the client side to interactively run applica-
tions. The Java language [Sun96a] solved this problem. Java, a concurrent
object-oriented programming language, is compiled to a platform-inde-
pendent bytecode and then interpreted by a virtual machine (VM). The in-
tegration of the Java VM into web browsers allowed people to run small
applications, called applets, inside the browser, hence to put intelligence
into the browser. Java native ability to handle network communications and
concurrent processing (multithreading) facilitated the creation of Internet-
aware applications (i.e. applications that support Internet protocols such as
HTTP or Gopher) and contributed to the explosion of Internet.

5.2. Motivation

Although many network management tools are on the market, some of
A Component-based Architecture for Open, Independently Extensible Distributed Systems 107

Liaison: Yasmin at Work
which have been produced by the author [XOBJ] [OSIMIS] [IBM95a], they
frequently do not work together in a consistent manner mostly due to the
way these tools implement standards. Moreover they are targeted at big
customers with huge networks to manage.
The idea to integrate the world of network management into the web
emerged from usersÕ frustration with conventional network management
tools and from the need to have simple but powerful tools accessible from
almost every platform. The time necessary to install and configure such
tools, together with the difficulty of using them, was too much for an aver-
age user. Although computers are becoming faster and more powerful, soft-
ware tools have not changed very much. A few years ago it was acceptable
to have simple, user-friendly tools for activities such as word processing
and complicated but powerful tools for more complex tasks. Today, users
demand simple user interfaces for both simple and complex tasks. The great
popularity of the web combined with its power and acceptance has ren-
dered it a reasonable candidate for building a new class of network manage-
ment tools. These tools will be accessible from every platform capable of
running a web browser and they will have one user interface that is simple
enough to be used by the average user. Often, for example, graphical user
interfaces are not very easy to use, although they may look quite appealing.

Although web-based network management seems to be the solution to eve-
ry management problem, it is clear that the limitations of the web in terms
of interactivity and master/slave architecture (the server cannot push data
to the client) prevent this. In this context Liaison was born. Liaison is a proxy
application [Shapiro86] [Gamma94] based on Yasmin which interfaces the
HTTP-based world with network management.

Figure 20. Liaison at a Glance

The idea is to use Liaison to shield management applications from the com-
plexity of the management world instead of moving this complexity up to
the applications, as usually happens. The HTTP protocol has been selected
because it is standard, open, and used by the web to transport multimedia
information. In this context, web-based management is a special case of
HTTP-based management, where the type of data transported by HTTP is
HTML. Liaison allows client/server applications based on HTTP to be cre-
ated. Basically Liaison acts as a server application that provides the manage-
ment functionality accessed by client applications via HTTP. The simplicity
of HTTP does not have to be seen necessarily as a limitation. In fact HTTP
makes it extremely difficult to move complex data, so it pushes developers
to simplify the management data being exchanged between Liaison and cli-
ent applications.

The following sections cover Liaison and its implementation in detail.
Groups at other companies [Jander96] [Damocles95] [Marben95] and uni-
versities [Knight95] [Sch�nw�lder95] have worked on integrating web tech-

HTTP CMIP/SNMP/Corba

Liaison
108 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Welcome to Liaison
nologies with network management. Nevertheless the present work is
different in several aspects:
¥ it is not a simple web-iÞcation of existing tools but provides a general

framework to accommodate different protocols (SNMP, CMIP, CORBA
and others) (see ÒWeb-based ManagementÓ on page 111 and ÒHTTP-
based ManagementÓ on page 121) [Taligent93] [Taligent95b];

¥ it allows efÞcient client/server applications for the purpose of manage-
ment and based on HTTP to be built [Meyer95];

¥ it has been able to seamlessly integrate different management protocols
and object models for interdomain management in a open and extensive
framework, delivering today what other organisations such as X/Open
and OMG have not yet released;

¥ it has proposed an open way to perform HTTP-based management
which has been published to the community as an IETF Internet Draft
[Deri96c].

It is worth remembering that Liaison is a recognised pioneer in this field. It
is the very first implementation of integrated web-based management for
CMIP and SNMP (and so far the only one), and the first application to pro-
pose and implement HTTP-based management. Its public availability on
the Internet at no cost and for several platforms has turned it into a well-ac-
cepted platform for network management.

5.3. Welcome to Liaison

In an effort to integrate the network management world with the web, the
author developed an application called Liaison. Liaison is based on Yasmin
and fully follows Yasmin guidelines because:
¥ it is based on the droplet paradigm (see ÒDropletsÓ on page 80) as

demonstated in ÒFrom Theory to Practice: Implementing DropletsÓ on
page 207;

¥ it implements a light kernel containing the components speciÞed in
ÒYasmin ComponentsÓ on page 92.

The kernel part of Liaison, usually called the Proxy server, implements Yas-
minÕs kernel services. It is a pure application in the sense that it does not im-
plement management functionality which instead are implemented inside
droplets. As seen above, droplets have the ability to be replaced and added
at runtime, allowing the behaviour of the application that contains them to
be dynamically modified and extended. Each droplet, built upon shared li-
braries, implements one or more services. These components cooperate
through Liaison, which handles communication with the outside world. Li-
aison implements the HTTP protocol, so remote web users can access it di-
rectly without the need to have, for instance, CGI applications that interface
the HTTP server with Liaison itself. This solution presents several advan-
tages in terms of performance and configuration. Liaison comes with drop-
A Component-based Architecture for Open, Independently Extensible Distributed Systems 109

Liaison: Yasmin at Work
lets that implement:
1. web-based management with full CMIP and SNMP support;
2. a basic directory service for locating management resources and other

Liaison instances running on local or remote hosts;
3. a metadata repository only for SNMP because the metadata information

relative to CMIP is retrieved by Liaison directly from the OSI stack;
4. external bindings (see ÒHTTP-based ManagementÓ on page 121), which

enabled the creation of client/server management applications;
5. CORBA interfaces for interdomain management (see ÒCORBA Inter-

facesÓ on page 129).

Figure 21. Liaison’s Components

Thanks to droplet flexibility, it has been easy to support different manage-
ment protocols and to integrate them with Liaison. The idea is to implement
a droplet for each management operation and then cooperate with the exist-
ing droplets in order to reuse the services they provide especially with re-
spect to metadata access. This demonstrates how powerful software
components are and how they allow existing services to be reused and then
applications to be built incrementally, instead of starting from scratch every
time.
Each droplet communicates with remote requesters through Liaison, which
acts as a tunnel application. As the droplet code is reentrant, concurrent
requests can be served. Liaison communicates with remote clients over
HTTP and exchanges local messages/events with the droplets. Use of the
HTTP protocol has been preferred over other protocols because it is simple,
well established and can ßow through Þrewalls, allowing hosts to be man-
aged everywhere on the network. Because each droplet exploits existing
services, the average size of a droplet that implements a management
primitive is about 10 Kb. The memory footprint is very small too because
droplets allocate only temporary memory needed to process the request
and they do not store any state. All Liaison structure is stateless and it is up
to Liaison clients to maintain state information. This contributes to keeping

Desktop Integration

RAD

C Interface Corba

Java/C++ Bindings

Web-based Network Management

HTML VRML

HTTP

SNMP CMIPLiaison

AIX
110 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Web-based Management
the code simple and it allows droplets to be replaced at runtime without
having to save a large amount of data concerning the state, similar to what
threads do.

So far, Liaison strictly follows Yasmin. The droplets make it unique and al-
low it to be tailored for network management. In the following sections the
droplets part of the basic Liaison distribution is analysed. These droplets
have been divided according to the services they provide for the purpose of
web-based and HTTP-based management.

5.4. Web-based Management

The current trend is to replace centralized and powerful computers with a
network of cheap and mid-power computers. Network management has
been affected by downsizing, and the current trend is to use high/mid-sized
hosts for running agent applications and to reserve limited-power machines
for manager applications. These manager applications feature:
¥ ease of use: users of mid-sized machines are accustomed to the WIMP

(Windows Input Mouse Pointers) metaphor and do not like applications
with a poor user interface;

¥ plug Õn play: average users want to install an application and run it right
away without having to be a conÞguration expert;

¥ low resource usage: manager applications should not use all the availa-
ble resources, but are expected to leave room for other running applica-
tions.

Mobility is another important factor. People tend to move more frequently
than in the past, and a whole set of new technologies has to be introduced
in order to access network resources transparently and independently from
both the location and the computer type [Reilly97]. This pushes software de-
velopers to create applications that run efficiently on different platforms in-
dependently of the version and type of the operating system. One solution
is to use frameworks that hide the differences among operating systems, us-
ing proxy agents that can be accessed by a well-established protocol like
TCP/IP or by interpreted languages. In this complex scenario, the web
plays a key role due to its growing popularity and its ability to access every
kind of information using a single established interface.

In this context, web-based management was born. Web-based management is
the system and network management using web technologies [Kasteleijn97]
[Barillau97] [SimpleTimes]. Web-based network management applications
have the following properties:
¥ different tools share the same Ôlook and feelÕ;
¥ limited conÞguration: the system locates network resources and limits

the number of choices the user has to make by providing default values;
A Component-based Architecture for Open, Independently Extensible Distributed Systems 111

Liaison: Yasmin at Work
¥ on-line help: documentation and other facilities are directly available
on-line and exploit the web hypertext facilities;

¥ active support: in case of error, the system identiÞes the cause of the
problem and indicates possible solutions;

¥ limited alternatives: the system shows only valid operations, thus pre-
venting the user from performing invalid ones.

The web has been preferred over other tools [Rice95] or platform-independ-
ent languages such as TCL/Perl [Pavlou96] [Sch�nw�lder95] (see ÒTCL/
Perl-based ManagementÓ on page 66) because it:
¥ is an accepted and well-known user interface;
¥ is available for virtually every platform;
¥ is general purpose: it is able to accommodate todayÕs services and is

open to future extensions;
¥ has an integrated hypertext capability ideal for navigating different

kinds of information;
¥ is more secure: security facilities provided by network management pro-

tocols can be combined with emerging web security protocols;
¥ is a web-enabled program that can be used by different platforms with-

out the need for it to run on those platforms.

Contrary to other approaches [Marben95], Liaison [Deri96a] has used the
web not only to provide a single and unified user interface but pretends to
offer users the same ease of use that they experience navigating HTML doc-
uments. Liaison takes an approach similar to the desktop metaphor on
MacOSª [Apple96]. Users do not have to configure anything or know
where resources are located. The system does this itself and it shows the net-
work resources using well-established macebearers such as files and fold-
ers. This automatic configuration and resource discovery facility combined
with the ease of use of the web allowed a light and powerful application to
be built to access network resources from virtually any platform.

Liaison is based on the idea that the complexity of protocols such as CMIP
or SNMP has to be hidden by the system. It then contains facilities for:
¥ automatic discovery of network resources;
¥ access to metadata information and error handling;
¥ ASN.1 representation using a string API instead of complex data struc-

tures [IBM95a];
¥ enabling only the execution of valid operations.

These facilities greatly simplify interactions with the user. Liaison requires
user input only when it is unavoidable such as when a new value for an at-
tribute must be specified. In all other cases Liaison presents the user with
only the set of operations that are valid at that point of the execution by ex-
ploiting GDMO and ASN.1, if available. This prevents invalid commands
from being issued and simplifies the application by removing many checks
on the user data. For instance Liaison suppresses the display of the CMIP
M-ACTION icon when a certain instance, according to the GDMO, cannot
112 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Web-based Management
execute actions. In other situations, like when the value for the scope or syn-
chronization parameter has to be provided, Liaison prompts the user to
choose only valid values. Another advantage of this approach is the limited
amount of information the user has to keep in mind. For instance Liaison
shows the ASN.1 syntax of every instance attribute by analysing the encod-
ing/decoding data currently used by the OSI stack.

As shown in figure 20, Liaison implements the HTTP protocol. Hence it is
seen from web browsers as a web server. For every request issued by the
web browser, Liaison processes it and returns the HTML response docu-
ment to the browser. If Liaison is not able to process the request, it acts like
a tunnel application and forwards the request to the local HTTP server, if
any. This solution has several benefits with respect to conventional scenar-
ios in which the HTTP server invokes external applications using the CGI
interface:
¥ no need for CGI scripts/applications to interface Liaison with the HTTP

server,
¥ no latency due to the CGI interface because Liaison is directly connected

to the web browser,
¥ very low load on the HTTP server: modern browsers have a local cache

and therefore Liaison contacts the HTTP server very seldom only when
a new icon not yet cached is requested by the web browser.

Thanks to this solution and to the multithreaded architecture of Liaison, it
is possible to serve multiple concurrent requests efficiently even on ma-
chines of limited computing power.

Mapping Management Requests to URLs
Management requests issued by the web browser are mapped to URLs. This
mapping is very important because the entire Liaison architecture relies on
it. It allows a URL to be mapped uniquely to a management operation and
vice versa. This mapping has to work with conventional HTTP servers and
web browsers in order to access Liaison from every host without the need
to install special software. As specified in [Deri95d] [Deri96c], URLs are
composed of five elements:
http://<host>/<protocol>/<operation>/<context>?<parameters>, where:
1. <host> identifies the host where the HTTP server runs;
2. <protocol> specifies the protocol used (either CMIP or SNMP);
3. <operation> specifies the management operation (CREATE, GET, ...);
4. <context> specifies the context used, if any;
5. <parameters> contains the operation parameters.

For instance, if <protocol> is set to CMIP, <context> contains the agent title and
the managed object instance, whereas for SNMP <context> specifies the ob-
ject identifier of the attribute. <parameters> contains operation-specific pa-
rameters (e.g. for CMIP M-SET, <parameters> contains the attribute(s) to set
and their new values) and other values such as timeout or the name of the
host on which the agent is running. All the ASN.1 values (such as the ones
contained in the <parameters> field) have to be expressed in string format and
A Component-based Architecture for Open, Independently Extensible Distributed Systems 113

Liaison: Yasmin at Work
with binary values. This is because this mapping is supposed to be used not
only by software applications but also by human operators from within
their web browsers. ASN.1 values for SNMP/CMIP are fairly simple and
follow public guidelines [Geiger94]. The following examples show how the
mapping works, assuming an HTTP server running on the host kis.zu-
rich.ibm.com:
¥ CMIP SET the attribute administrativeState of the managed object

instance systemId=(name IBM) contained on the agent whose AE-title is abc
to enabled: http://kis.zurich.ibm.com/CMIP/SET/abc/sys-

temId=(name+IBM)?administrativeState=enabled&timeout=30

¥ SNMP GET for the attribute sysDescr contained on the SNMP agent run-
ning on the host bal.zurich.ibm.com: http://kis.zurich.ibm.com/SNMP/GET/sys-
Descr.0?Host=bal.zurich.ibm.com&Community=public

Although this mapping is almost straightforward, Liaison hides it from the
user. In fact, Liaison shows the user a starting point and then the user does
not have to worry about the syntax because URLs are dynamically generat-
ed by the system. This usually happens with most web sites where the nav-
igation starts with a simple entry point and then the system returns more
complex URLs embedded on the returned HTML documents.

Each management primitive such as CMIP M-ACTION or SNMP GET is im-
plemented in a droplet. The dropletName (see figure 15, ÒDroplet Informa-
tion,Ó on page 87) follows the URL format /<protocol>/<operation> (for
instance for CMIP M-ACTION the name is /CMIP/ACTION). The web sends the
requested URL to Liaison, which compares the initial part of the URL with
dropletName. If they match, Liaison forwards the request to that droplet, oth-
erwise Liaison checks whether the request corresponds to a local file. If not,
the request is forwarded to the local HTTP server, if any, because the re-
quest cannot be handled by Liaison. Each droplet is responsible for execut-
ing the request and building a response HTML document, generated on the
fly, containing either the output of the request or an error message in a user-
friendly way, simple enough to be understood by almost any user.

Figure 22. Simple Error Message

LiaisonÕs architecture - Yasmin - greatly simplified the development process
114 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Web-based Management
due to the clear separation, at the droplet interface, between the droplet it-
self and the rest of the application. This separation also allows new services
to be accommodated easily and the application size to be kept small because
common routines are contained in the core part of Liaison and not replicat-
ed in every droplet. Currently, Liaison comes with droplets for every CMIP
and SNMP operation and with additional droplets that implement directo-
ry services and Liaison-to-Liaison communication facilities.

The droplet paradigm allows one to combine services easily. For instance
Liaison comes with a droplet that implements a directory service. This serv-
ice is used by the discovery droplet, which, is responsible for locating net-
work resources. Composition of services has several advantages. It keeps
the application complexity low and allows service implementations to be
replaced with new and more efficient ones without having to affect the us-
ers of those services.
Liaison has the ability to transparently locate and exchange information
with other LiaisonÕs running on different hosts. This enables one to use the
Liaison that is closest to the managed resource. In fact, thanks to the TCP/
IP-based Liaison-to-Liaison communication services, a Liaison that has to
deal with management resources running on a remote host delegates when-
ever possible the request to another Liaison that is running locally with re-
spect to the managed resources. This solution allows bandwidth to be saved
because it ensures:
¥ local computation: all communications Liaison-managed resource are

local;
¥ Liaison-to-Liaison communication uses a simple protocol that moves

less data than an equivalent CMIP/SNMP request/response;
¥ Liaison-to-Liaison communication is always 1:1 (one request/one

response), whereas CMIP is 1:n in the case of scoped operations.

Liaison usually is installed by the system manager on the same host where
the OSI stack runs. Hence users can access network resources from both
conventional hosts and portable machines connected via SLIP or PPP to
such a host. In this way, it is possible to have a single Liaison application
and multiple web browsers running on light and cheap machines accessing
the agent.

Using Liaison
Liaison has been designed to run in a dynamic environment, where network
resources can change state very often and where users access these resourc-
es using portable machines that are frequently attached and detached from
the network. Interaction between the user and Liaison has been made very
simple. The user starts a web browser and connects it to Liaison. Liaison
then returns an HTML document containing the network resources current-
ly available. This document is used as a starting point for navigation. The
following picture shows the initial page for OSI resources.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 115

Liaison: Yasmin at Work

Figure 23. OSI Resource Discovery

The resource discovery droplet is responsible for building the HTML docu-
ment above by communicating with the yellow page droplet responsible for
collecting information related to the network resources. OSI resources are
grouped by host name. Each resource has a MIBname (e.g. MIBCTL) and
shows the AE-title, the user who started it and the time. URLs are dynami-
cally generated by Liaison. Thus the user does not have to type or remember
them because they are embedded inside HTML anchors.
Once an OSI resource has been selected, all the following requests will be
relative to it. Liaison shows instances contained in an OSI resource using the
folder/file metaphor used by modern operating systems.

Figure 24. OSI Resource Exploration

A file represents an instance without subinstances, whereas a folder repre-
sents an instance containing subinstances. The instance name, displayed at
the top of the window, is relative to the base instance. Icons at the top-right
of the window represent the operations that can be performed on the base
instance. In this case of the figure above, the M-ACTION operation cannot
be performed because the base instance, which is a member of the class cus-
tomer, does not allow actions according to its GDMO definition. This exam-
ple shows how Liaison can access metadata information used by the OSI
agent in order to check whether certain operations can be performed. In the
current version, Liaison provides facilities that allow this information to be
retrieved directly from the OSI stack. There is also a droplet that looks at the
encoding/decoding information and then builds the ASN.1 type corre-
sponding to a certain syntax. This is depicted in the following figure.

 MIBname User

 AE-Title

 Host

 Time

Instance with subinstances

Instance without
subinstances

Available
operations

Base Instance
116 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Web-based Management

Figure 25. CMIP M-GET

The attribute name is an anchor. If the user selects it, the droplet responsible
for the metadata services queries the OSI stack and then fetches the syntax
information from it. The following picture shows the allomorphs syntax pro-
duced by the metadata droplet.

Figure 26. Metadata Lookup

Regarding the figure 25 on page 117, it should be noted that the SET button
is only present for those attributes that can be set. If multiple instances have
to be set, the M-SET operation is performed by selecting the SET icon. It al-
lows multiple instance attributes to be set as well as scope, synchronization,
and filter parameters to be specified.

VRML: Adding 3D to Network Management
Over the past few years, graphical computer capabilities have been im-
proved significantly. Pushed by the game industry and by vertical markets
such as computer graphics and medical visualisation, computer manufac-
turers are producing increasingly faster chips and video systems able to
draw and animate realistic images and mathematical models. This quick ev-
olution in computer hardware enabled the move from 2D to more realistic
3D representations. After some attempts to create APIs and modeling lan-
guages for 3D, Silicon Graphics, a pioneer of computer graphics, released a
graphics library called OpenInventor [SGI94], available on many platforms.
Its wide acceptance in the industry contributed to the unification of the var-

Object Class

Object Instance

Operations
Available

Attribute Name
and

Metadata Anchor

CMIP M-SET Button

Attribute Value
A Component-based Architecture for Open, Independently Extensible Distributed Systems 117

Liaison: Yasmin at Work
ious existing APIs for 3D visualisation, apart from being used to originally
implement VRML, an acronym for Virtual Reality Modeling Language
[VRML]. VRML is a modeling language, hence it describes a set of 3D ele-
ments usually called a 3D virtual world. A software application called
VRML viewer interprets VRML to render the world, allowing people to ex-
plore and navigate it. One of the most interesting features of VRML is its
ability to link virtual worlds with the Web as it associates an HTML anchor
with each VRML element. This allows users to jump to other VRML worlds
and HTML documents and vice versa, exploring the Web as if wandering
through a vast universe.
Aside from some rare exceptions, network management visualisation is still
limited to 2D. In many cases, classic 2D representations are too limited and
do not allow complex information to be represented easily. Recently, the
great diffusion of the Web promoted the development of Web-based net-
work management systems, such as Liaison, which shows how greatly
management systems can benefit from their integration into the Web. The
idea to apply 3D visualisation techniques to selected network management
problems [Deri97b] is derived from the need to represent management in-
formation in a way that is as close as possible to reality. Conventional 2D
visualisation systems have many limitations, some of them being:
¥ a lack of realistic representation of information whenever such informa-

tion is implicitly in 3D format;
¥ a lack of expressiveness whenever a large quantity of sparse information

has to be combined in order to build a compound view of it;
¥ an inability to display topological information as it is in reality.

Apart from all this, 3D visualisation offers several interesting advantages. It
allows people to represent the information in a way very similar to reality:
to change a perspective, move a viewpoint, and add or eliminate details by
getting closer to the information. Beyond these benefits, it is not straightfor-
ward to identify how to apply 3D to network management and where to
prefer it to 2D. 3D is significantly more computation-costly than 2D and it is
usually not platform-independent, in the sense that applications written us-
ing standard 3D graphic libraries cannot run unmodified on other plat-
forms. In addition, the cost of writing an application for 3D visualisation is
high in terms of development time and expertise. The solution to all these
problems has been the adoption of a modeling language because it allows
different worlds to be represented easily, leaving to the language viewer the
task to visualise the information. VRML has been selected because it is cur-
rently the standard modeling language: it is also well integrated with the
Web because:
¥ web browsers usually come with a VRML viewer,
¥ VRML Þles are retrieved using HTTP, the same protocol used by the

Web to retrieve documents,
¥ it is possible to jump transparently from HTML Þles to VRML and vice

versa.

The integration of the Web with network management is becoming increas-
ingly important because it allows network resources to be managed in a
118 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Web-based Management
simple, cheap, platform-independent way directly from within a standard
Web browser. In this view VRML has been preferred over more powerful
modeling languages like 3DMF (QuickDraw 3D Metafile Format) [3DMF]
because:
¥ HTML is a simple, platform-independent and elegant way to display

information that can be represented in 2D. The ability to jump from
HTML to VRML and vice versa enables developers to use the best visu-
alisation format for each situation;

¥ VRML can be visualised efÞciently on standard PCs without the need to
purchase additional custom hardware;

¥ VRML is a very simple yet powerful language that is easy to learn and
thus allows developers to create new VRML worlds or enhance existing
ones without technical knowledge of 3D visualisation because the
VRML viewer is responsible for this.

In the context of network management, VRML has been applied in the fol-
lowing situations:
1. Network Topology

Network topology deals with the visualisation of network elements.
Topology can be either logical or physical. Logical topology is used to
visualise how elements are interconnected and what the connections are,
without any constraint on an elementÕs physical location or topological
distance. Physical topology instead requires that elements be placed
where they are really located and that distance constraints be satisÞed.
In the case of logical topology, the goal is to display the information in
the most readable way. This is in order to show human operators the
current network status without adding additional information such as
element size or distance, which are not meaningful in this context and
may confuse operators.

2. Hierarchical Information
Quite often in network management, information is aggregated in
hierarchical structures. In the OSI world for instance, object instances are
stored in a containment tree. This means that an object instance can
contain one or more subinstances in a tree structure. In SNMP the same
structure can be obtained by splitting the information according to the
MIB groups, which are identiÞed using nested object identiÞers. The
TCP/IP protocol identiÞes hosts by assigning addresses of the type
X.Y.W.Z, where X, Y, W and Z are integers; host addresses are then
grouped in subnets according to a subnet mask.

3. Compound Information View
Very rarely can all the potential information be represented in the same
view because different users may be interested in different aspects of the
same information. Moreover, in many cases the information to be
represented is quite rich, so ways to ÒcompressÓ such information have
to be identiÞed. This means that a representation has to be as clear as
necessary and as rich as possible in order to depict most of the
information in a single picture. Compound information means that
A Component-based Architecture for Open, Independently Extensible Distributed Systems 119

Liaison: Yasmin at Work
several aspects of the same information have been combined to produce
a simple representation that removes or hides any information that is
irrelevant for a given representation. VRML can help in this respect
because it allows a great amount of information to be included in a
single virtual world.

The following picture shows an example of compound information in
which topology information has been combined with management infor-
mation.

Figure 27. Simple VRML Compound Information View

A map of Europe has been wrapped over a 3D flat surface, national hosts
are identified by buildings (boxes) located where they really are and la-
belled with the flag of the country. Services are depicted in a colour repre-
senting their state. Each element has an HTML anchor that links it to the
corresponding resource details or that allow one to jump to other VRML/
HTML pages. The use of a VRML feature called the level of detail helps sim-
plify the exploration of the world because the VRML viewer removes/adds
objects to the view according to the current camera position. When the user
is far away from a location of a host, a box with a flag on top of it is dis-
played. As the user approaches a box, the more details are shown. It is like
navigating the containment tree with a camera: users do not have to enter
boxes to see what is inside. It is also possible to represent much information
in one view without demanding users to click several times to arrive at the
object of their interest, although this possibility is provided as well.

Like in the case of HTML, droplets are responsible for generating the VRML
world. In order to report to the HTML browser, which usually contains a
VRML viewer, that the returned HTTP response is in VRML format, the
HTTP response header specifies that its type is x-world/x-vrml. This allows
browsers to handle both HTML and VRML files properly. As VRML is
much more sophisticated than HTML, the VRML droplets do not generate
VRML code directly but instead create an internal representation of the rel-
evant data necessary to build the VRML world. Then, based on this infor-
mation, the droplet expands some of the variables into pseudo-VRML files,
120 A Component-based Architecture for Open, Independently Extensible Distributed Systems

HTTP-based Management
which define the structure of the VRML world. This solution allows the
VRML world to be modified easily by simply changing the content of these
pseudo-VRML files.

Conclusion
This section has shown how the world of network management can benefit
from using the web. Its integration enabled the creation of powerful CMIP/
SNMP network management tools in an easy way. Its major advantages are
that is:
¥ Internet-ready, simple, and platform-independent based on HTML/

VRML, which are portable, compact, and widely established languages;
¥ an established and open technology;
¥ a limited conÞguration: Liaison automatically discovers network

resources;
¥ based on cheap and standard web technology: Liaison can be accessed

from almost any platform using conventional web browsers;
¥ a way in which users can manage network resources using a machine

with limited power able to run a web browser;
¥ low in cost: a single Liaison can be used by multiple users;
¥ able to provide security through the web in addition to standard man-

agement protocols security mechanisms;
¥ able to display 3D data using their native format instead of ßattening

them to 2D and able to mix 2D and 3D data.

5.5. HTTP-based Management

A special case of web-based management is HTTP-based management,
which concerns the system and network management using the HTTP pro-
tocol. Basically, management applications communicate with a mid-level
manager using HTTP, and that manager performs management operations
by converting the HTTP requests into management primitives, for instance
by issuing CMIP, SNMP, or CORBA requests. Liaison is a mid-level man-
ager suitable for HTTP-based management as depicted in figure 20 on
page 108. HTTP-based management was proposed by the author to the
management community in an Internet Draft at the end of 1996 [Deri96c]
as a way to overcome common problems in the current class of manage-
ment applications.

Towards HTTP-based Management
The increasing complexity and heterogeneity of modern networks has
pushed industry and research towards finding a single and consistent way
to manage networks. The effort to define a single industry-standard API for
network management basically failed because it did not address aspects like
complexity and ease of programming. Recently, a common approach is to
map established network management standards into another object mod-
el, often based on the emerging CORBA standard. Unfortunately even this
A Component-based Architecture for Open, Independently Extensible Distributed Systems 121

Liaison: Yasmin at Work
approach has proved to have many drawbacks, most of which are related to
the significant amount of code that has to be linked with the final applica-
tion and to the many limitations and imperfections of the mapping itself.

HTTP-based management is based on the idea that network management
has yet to be considered a special software engineering problem for which
solutions must be built ad-hoc instead of reusing widely established con-
cepts. Today most network management experts come from the ÒVi, Unix
and CÓ school and ignore new concepts and innovations like software com-
ponents and truly object-oriented software development (most of the code
is object-based but not object-oriented) [Cox91]. In addition, it is common
practice to pretend to solve a problem by generating code for all possible sit-
uations (for instance XOM/XMP and many CMIP/SNMP to CORBA map-
pings generate a class for each datatype) instead of defining a way to
simplify the problem. The advent of Java and TCL [Ousterhout94] demon-
strated that the short reign of native-code-generating-object-oriented com-
pilers is about to end [Udell94]. Internet and the market demand light,
machine-independent applications capable of roaming from machine to
machine. This requires light applications simple enough to be downloaded
from the network and that do not require excessive amount of system re-
sources.
These days, programmers want to use programming concepts instead of
protocol concepts. All modern programming languages support exceptions
and programmers are used to this; therefore it is time to replace protocol er-
rors with exceptions and avoid executing a lot of code or converting infor-
mation many times merely to obtain the value of an integer attribute.

In this context HTTP-based management was born. The idea is to simplify
management protocols by introducing a mid-level manager which shields
management applications from the complexity of underlying protocols,
thus ceasing to move the entire complexity of these protocols up to the man-
agement applications as usually happens. HTTP has been selected because
it is the protocol used by the web, it is reliable, open, and above all simple.
For the latter reason, is quite improbable that users will jeopardise it in or-
der to transport complex data. What is likely, is that the mid-level manager
will find a method for simplifying the management protocols, and hence
will not infect management applications with complex datatype or primi-
tives. This is exactly what Liaison does: it unifies the various management
standards in a light and simple object model.

Merging Network Management Standards
Network programmers need a single way to manipulate instances of vari-
ous object models [Joseph90]. The main problem arises from the datatypes
that have to be managed. In SNMP this is easy to handle because there are
about ten different datatypes. CMIP is much more flexible in this respect
and it allows the user to define new datatypes. Hence, the number of da-
tatypes that a network management application has to handle is not deter-
mined a priori. Therefore a solution has to be defined in order to handle
different datatypes of arbitrary complexity.
The solution proposed here is based on string notation [Geiger94], i.e. every
122 A Component-based Architecture for Open, Independently Extensible Distributed Systems

HTTP-based Management
datatype is represented by strings. Aggregate datatypes such as sequences
or sets are a composition of such basic datatypes as integer or boolean. The
fact having a single datatype makes things simple and allows applications
written in any given language to use it, even if this representation slows
down the system code. Nevertheless experience derived from using string
representation for various commercial applications has shown that this in-
efficiency is relatively limited, especially on Unixª systems [Bourne83]
[Rochkind85], which are able to handle string very efficiently. Moreover,
comparing a string representation to classical representation using C struc-
tures [ISODE] [Pavlou93], there are obvious advantages in terms of applica-
tion size and ease of use/programming [Pavlou91]. Despite the advantages
of a string-based notation, some users may want to define information using
a different object model. For this reason, utilities for handling aggregate
types are provided in order to make the conversion smooth and efficient.

Figure 28. Data Values Encoding using BER

Programmers define data values using string representation and the encod-
er/decoder module converts this string into BER (Basic Encoding Rules)
[ISO8825] and back.

NOTE

BER are encoding rules defined by OSI to convert ASN.1 (abstract syntax) into binary data (concrete
syntax) exchanged between network applications.

The conversion is based on metadata information. In the IBM stack
[IBM95a] for instance, the ASN.1 and GDMO compilers compile input doc-
uments into a data file that is read by the encoder/decoder at start-up time.
These data files contain the datatype as well as object-model-dependent in-
formation. In the case of CMIP, data files contain information about man-
aged object classes, name binding, actions, and notifications. In the case of
SNMP information concerning object identifiers and the textual description
of the various attributes are stored in separate files. At runtime it is possible
to access this information not only for encoding/decoding purposes but
also for querying information about a particular attribute or action. This
kind of information is very useful in browser applications or to facilitate
their work preventing for instance, the request of wrong operations. Once
the problem of defining a single format to represent various syntax is
solved, the difference between connectionless and connection-oriented pro-
tocols has to be hidden.
In SNMP there is no concept of connection and every message is sent inde-

((name Luca), (country Italy))

011101101010011010

Encoder/Decoder
A Component-based Architecture for Open, Independently Extensible Distributed Systems 123

Liaison: Yasmin at Work
pendently, usually over UDP. In CMIP every protocol request travels over
an association that has to be established first and then closed when the com-
munication is over. Users should not be concerned with associations and
should think only in terms of objects. In the IBM stack, associations have
been implemented transparently. In a simple directory service, similar to
the one defined by many XMP implementations, there is stored information
about known peers and about the instance tree they manage. Every time a
request is sent to the stack, the object instance is analysed, the correct agent
managing that instance is identified, and an association is opened. An asso-
ciation stays alive until it is closed either by one of the partners or when an
error occurs (for instance if the connection goes down). Thanks to the string
representation and to automatic association handling, it is now possible to
manipulate remote instances transparently using both SNMP and CMIP in
a single and uniform way.

Mapping Management Requests to HTTP
In ÒMapping Management Requests to URLsÓ on page 113, a mapping be-
tween URLs and management request has been defined. In that case, the
format of the HTTP responses was not relevant because HTML code was re-
turned. In the case of HTTP-based management it is necessary to define ex-
actly the format of the HTTP responses, to design it in order to reduce the
amount of information exchanged with the remote client, and to be flexible
enough to allow not only CMIP and SNMP but even new protocols to be
handled. Supposing we select the following URL, http://kis.zurich.ibm.com/
SNMP/GET/sysDescr.0?Host=bal.zurich.ibm.com&Community=public, the HTTP-client
(for instance a web browser) will send the following data:

GET /SNMP/GET/sysDescr.0?Host=bal.zurich.ibm.com&Community=public HTTP/1.0
[empty line]

The HTTP response returned by the HTTP server is always positive unless
the requested URL cannot be found or if some other HTTP problems arise
(for instance authentication problems). If the HTTP response is positive it
will contain the SNMP response, which can be either positive or negative.
The HTTP response contains a set of pairs (<identifier>, <value>) separated
by a carriage return. If the SNMP response is negative, the last pair is (<empty
line>, <error code>) where <error code> contains the error code corresponding
to the SNMP request in numeric or string format (for instance noSuchName or
2 as defined in the SNMP standard). Identifiers are object identifiers, usually
in symbolic form, whereas values are strings encoded using the encode
scheme used by the HTTP protocol. A positive response for the previous re-
quests is the following:
HTTP/1.0 200 OK
Server: IBM ZRL Proxy Server
Date: Fri, 28 Jun 1996 12:30:16 GMT
Content-type: text/x-www-form-urlencoded
Content-length: 35

sysDescr.0
IBM+RISC+System%2F6000
124 A Component-based Architecture for Open, Independently Extensible Distributed Systems

HTTP-based Management
IMPORTANT

Note that responses are not sent in plain text but in the standard encoding format used to encode
URLs. This is because encoding guarantees a unique representation of the value independent of the
platform and prevents carriage returns contained in the returned values from being confused with
those used to separate the entries.

The proposed solution allows either a single response or multiple responses
encapsulated in a single HTTP response to be returned. In the latter case, the
response contains multiple pairs separated by a carriage return. HTTP re-
sponses can contain additional fields, such as the value type, which can be
used by the client application (for instance the web browser) to display the
returned value properly. Similar considerations can be done for CMIP. The
only difference with respect to SNMP is that CMIP scoped requests can re-
turn multiple CMIP responses, each of which contains multiple attributes
relative to a specific object instance. In this case CMIP responses are sepa-
rated by (<empty line>, <empty line>). Note that if the first line of the HTTP re-
sponse is an <empty line> then the response is negative, otherwise it is
positive. Hence there is no ambiguity between (<empty line>, <empty line>)
and (<empty line>, <error code>) if <error code> is empty.

5.5.1. Application Side Bindings

Because clients communicate with Liaison over HTTP and because the data
exchange type is based on strings, it is easy to write bindings - called external
bindings - in any given programming language, whether, object-oriented or
not. These bindings allow developers to create applications that manage
CMIP/SNMP network resources exploiting the management services pro-
vided by Liaison.

Figure 29. Liaison External Bindings

Liaison droplets handle the HTTP requests seen in the previous section. For
each management request type, for instance /SNMP/GET, there is a droplet re-
sponsible for handling it. Management applications that use external bind-
ings are linked with a shared library containing the bindings (in the case of
C/C++ bindings) or compiled with them (in the case of Java). For the sake
of simplicity, bindings described in this section are written using Java. Sim-
ilar considerations can be made for the C++ bindings that come with the ba-
sic Liaison configuration. The class hierarchy is quite simple, see following
figure.

Droplets

HTTP

CMIP/SNMP

Liaison

Applet
or

Application

External
Bindings
A Component-based Architecture for Open, Independently Extensible Distributed Systems 125

Liaison: Yasmin at Work
Figure 30. Java-bindings Class Inheritance Hierarchy

NOTE

The diagram notation used throughout this thesis is covered in “Diagram Notation” on page 193.

The class Proxy is responsible for handing communications with Liaison. It
transparently sends requests and receives responses. The class Information
contains information relative to the request and to the response(s), stored
in an object of class java.util.Hashtable. This information is passed as input
parameters to an instance of class Proxy. Subclasses SNMPObj and CMIPObj
implement certain high-level manipulation functions for manipulating the
input/output information and invoking Proxy methods whenever a request
has to be issued. These subclasses have been provided to further simplify
the access to Information and Proxy classes and must be regarded as pure
facilities. Requests can have single or multiple responses. When multiple
responses are returned, they are inserted in a java.util.Vector that is
returned as output parameter. In the case of a single response, the returned
values replace the actual ones in the input SNMPObj or CMIPObj object. In this
way the input object is transparently updated with the return values. The
example below clariÞes this situation.

CMIPObj cmip;
try {
 cmip = new CMIPObj("MIBCTL" /* MIB name */);
 cmip.UseProxy("adl.zurich.ibm.com" /* Host where Liaison is running */);
 cmip.SetObjectClass("system");
 cmip.SetObjectInstance("genericNetworkId=Net1@systemId=(name Telco)");
 cmip.SetAttribute("systemTitle", "");
 cmip.CMIPGetAttributes(); // Issue the CMIP M-GET request
 System.out.println("systemTitle is:"+cmip.GetAttribute("systemTitle"));
} catch(Exception e) { System.out.println("Error: "+e); }

Figure 31. Code Fragment that Retrieves the systemTitle Attribute Value from an OSI Agent

When the CMIPGetAttributes() method is called, Liaison sends back the CMIP
response containing objectClass, objectInstance, currentTime, and systemTitle.
CMIPObj receives these values and puts them in the CMIP instance itself. In
the case of systemTitle, the original empty value is replaced with the one
returned by Liaison. currentTime, not present in the request, is added to the
input object. This approach allows one to easily get and set attribute values
other than having to issue operations using a few lines of code. If a request
fails for whatever reason, an exception of class ProxyException is thrown:
users should not deal with protocol errors but should interact only with
remote objects using programming constructs. This is very important

java.lang.object

InformationProxy

SNMPObj CMIPObj
126 A Component-based Architecture for Open, Independently Extensible Distributed Systems

HTTP-based Management
because programmers do not have to change their programming style,
which includes using familiar concepts such as exceptions. When an excep-
tion is raised, an error code is returned together with the error response
that does not affect the input object, i.e. it remains unmodiÞed.

The Information class and its subclasses SNMPObj and CMIPObj greatly simplify
and reduce the amount of code users have to write:
¥ a SNMPObj or CMIPObj object represents a reference to an instance independ-

ent from the operation that will be issued: this allows different opera-
tions to be issued using the same input object;

¥ parameters such as scope, filter, sync (CMIP) or community (SNMP) are
handled transparently: if not present or set to default, they are not sent
to Liaison, which will then use the defaults;

¥ default values are expressed using empty (“”) values instead of using
special ßags or data structures.

In addition, this solution saves bandwidth because only the necessary
attributes are exchanged between Liaison and the Java application and
because unmodiÞed attributes, for instance objectClass, in a CMIP response,
are not transmitted. Classes SNMPObj or CMIPObj other than issuing protocol
requests, allow metadata information to be retrieved and object identiÞers
to be converted from numeric to symbolic form and vice versa.

NOTE

For a complete reference of the Java/C++ bindings, see “Java/C++ Bindings” on page 194.

The decision to base the bindings on Liaison derives from the fact that,
especially with the advent of Internet, applications have to be as light as
possible. It does not make sense to duplicate part of the functionality of
Liaison in every network management application. Moreover, in the case of
CMIP, Liaison should be installed by those who install the stack and the
OSI agent, if any, and Liaison users should not be responsible for conÞgu-
ration or maintenance tasks. Nevertheless, Liaison is quite compact and,
thanks to its droplet-based architecture, it can be installed, replicated on
various hosts, and tailored easily using very little space. In total, the Java
classes just described require about 8 Kb. This allows them to be easily
used inside applets downloaded by remote web browsers.

As C++ bindings are very similar to Java bindings, no special considerations
are necessary. C bindings instead are slightly different. C bindings provide a
set of functions (the total size of C bindings is about 30 Kb) that allow users
to take advantage of CMIP and SNMP from within the RAD environment
(see ÒRapid Network Management Application DevelopmentÓ on
page 134). The bindings are quite small because they rely on the functional-
ity of Liaison, which is supposed to run on a machine reachable from the
network. The bindings are multithread-aware and perform memory man-
agement. In other words the bindings include a simple garbage collector,
which ensures that the strings passed/returned from/to the application are
correctly freed. This feature also simplifies application development be-
cause programmers do not have to allocate/free the memory of the strings
A Component-based Architecture for Open, Independently Extensible Distributed Systems 127

Liaison: Yasmin at Work
used to communicate with the bindings and makes the application more ro-
bust because it prevents the application from crashing due to bad memory
management. Furthermore the parameters passed to the bindings are care-
fully verified in order to eliminate the risk of crashing the entire application
if a bad value is passed to the bindings.
The overhead incurred by Liaison (mapping C bindings⇔URL⇔Liai-
son⇔CMIP/SNMP) compared to that of a direct C bindings⇔CMIP/
SNMP mapping is less than 10-15% and is significantly lower in the case of
a multithreaded application in which requests are issued concurrently. It is
worth mentioning that the use of Liaison has many other advantages with
respect to the latter solution:
¥ the size of the bindings is very small because they basically contain the

garbage collector and a set of functions based on C++ bindings (i.e. the
actual processing is performed by Liaison);

¥ Liaison handles the metadata, stores network events on behalf of the
bindings (event reports and traps) and handles the communication with
the OSI stack (in the case of CMIP). This helps keep the binding struc-
ture simple and uses very little memory on the application side;

¥ multiple Liaisons running on different machines can be accessed by a
single application based on the C bindings in order to exploit Liaison's
distributed architecture and to deliver the performance the application
requires [Sloman94];

¥ bindings are very simple, do not rely on a speciÞc OS, and can run on
almost any platform. Thus they are likely to support heavy protocols
such as CMIP on platforms without OSI support and to manage net-
works using machines of limited computing power;

¥ bindings can be easily modiÞed and rewritten in another programming
language (SmallTalk, FORTRAN, Objective C) to allow users to work in
their favourite language. They also facilitate the integration of manage-
ment capabilities into existing legacy code.

The following table compares this work with similar efforts.

Java/C++
Bindings
[Deri96b]

Tcl-MCMIS
[Pavlou96]

Scotty
[Schönwäl

der95]
XMP

[XMP]
GOM

[Ban97]

Application Size Small Medium Medium Medium/
Large

Small

Object Oriented Yes No No No Yes

Ease of Use Easy Easy Easy Difficult Easy

Typing Weak Weak Weak Strong Weak

Type Checking Runtime Runtime Runtime Runtime Runtime

Supported
Object Models

CMIP/
SNMP

CMIP CMIP/
SNMP

CMIP/
SNMP

CMIP/
CORBA

Language
Bindings

Java/C/C++ TCL TCL C Java/C++a

Data
Representation

String String String XOM GOM
(15 Types)

Table 9. Java/C++ Bindings vs. Similar Solutions
128 A Component-based Architecture for Open, Independently Extensible Distributed Systems

HTTP-based Management
This table shows that the proposed solution is preferable over the listed al-
ternatives in much important aspects as application size and ease of use.
Other solutions based on TCL, despite their simplicity and their similarity
with the approach described here, have a larger application size and hence
cannot run unmodified on different platforms due to their use of C/C++ li-
braries that interface TCL with CMIP/SNMP resources. Finally, the pro-
posed solution, thanks to the Java application bindings and to its limited
size, enables the construction of a new class of network management appli-
cations that can be easily integrated into the web and Internet. This topic is
covered in detail in the section ÒRapid Network Management Application
DevelopmentÓ on page 134.

5.5.2. CORBA Interfaces

With the growing impact of CORBA in the telecommunications industry
sector, the need has arisen for CORBA to manage CMIP/SNMP agents. As
the CORBA object model is easier to learn than CMIP and SNMP, anyone
who is able to create CORBA applications can immediately use services
offered by CMIP/SNMP agents, given a CORBA interface to them, without
speciÞc knowledge of CMIP or SNMP [Dittrich96]. It is the authorÕs opin-
ion that this asset will become a widespread need as more applications in
the telecommunications business will be programmed in CORBA. Given
the large investment of carriers in CMIP/SNMP, however, the need to man-
age CMIP/SNMP agents will continue in the future. If CORBA can be
employed to transparently manage these agents, then a smooth transition/
cooperation between the two worlds can be achieved. For this reason a
company that intends to move to CORBA needs a way to access their leg-
acy agents, and, maybe, gradually to phase them out and replace them
with CORBA applications [Quinn93].

There are several approaches, some orthogonal, some overlapping, that use
CORBA for CMIP/SNMP management (see ÒStatic MappingÓ on page 66).
In ÒOMG Network ManagementÓ on page 57 the XoJIDM approach is out-
lined. XoJIDM statically maps the management information into CORBA
datatype, resulting in a large amount of generated code and data struc-
tures. Other approaches such as GOM (see ÒDynamic MappingÓ on
page 68) use a semidynamic approach, which exploits a metadata reposi-
tory and which maps the management information in a set of basic

a. In future versions, any language for which CORBA bindings exist.

Metadata
Access

Yes No No Implement.
Dependent

Yes

Prerequisites None.
(Java VM
for Java
bindings)

TCL TCL XOM/XMP ORB

Java/C++
Bindings
[Deri96b]

Tcl-MCMIS
[Pavlou96]

Scotty
[Schönwäl

der95]
XMP

[XMP]
GOM

[Ban97]

Table 9. Java/C++ Bindings vs. Similar Solutions
A Component-based Architecture for Open, Independently Extensible Distributed Systems 129

Liaison: Yasmin at Work
datatypes, which are then composed to form more complex types, just like
ASN.1 does. In this section a novel, fully dynamic approach is covered and
compared with the other two approaches just mentioned.

Based on external bindings, some CORBA interfaces to the CMIP/SNMP
protocols have been deÞned. An important design choice has been not to
map each CMIP/SNMP object to a CORBA object as seen in other transla-
tion methods, but to map the CMIP/SNMP protocols to CORBA in a very
generic way. This choice has been motivated by the following reasons:

1. the ability to fully support CMIP/SNMP from CORBA;
2. low complexity and high ßexibility since there is no need to generate

new CORBA classes for new CMIP/SNMP objects to be supported;
3. user-deÞned abstraction level: depending on their needs users can

deÞne additional CORBA classes based on the basic ones without the
complexity of having a CORBA class for each CMIP/SNMP object, even
if not all of them are currently used.

CORBA-Liaison interfaces (CL) for CMIP/SNMP, defined using the IDL lan-
guage, have been implemented using DSOM [DSOM], IBMÕs CORBA com-
pliant ORB. As we do not rely on any specific characteristic of DSOM,
similar considerations can be made for other CORBA implementations.
ASN.1 datatypes, like external bindings datatypes, have been mapped to
strings, hence to the native string IDL datatype. CL interfaces representing
CMIP and SNMP objects, defined in a way very similar to LiaisonÕs external
binding, are depicted in the following figure.

Figure 32. CORBA-Liaison Interfaces Inheritance Hierarchy

The interface DSOMInformation contains information relative to the request
and the response(s). Internally the values are stored in a hash table, where
the attributeId constitutes the key and the attributeValue the value of each
table entry. The use of a hash table associated with the mapping of values
into strings allows objects to be handled independently of their class and
complexity. In the case of CMIP, the presentation layer or a thin layer on
top of the stack converts attribute values into strings and vice versa,
whereas in the case of SNMP, Liaison handles the conversion. Given that
DSOMInformation is built upon a hashtable, it is possible to retrieve and store
elements efÞciently and to have only a few methods that handle all situa-
tions. In order to simplify the attribute manipulation further, the classes
DSOMSNMPObj and DSOMCMIPObj have been defined. These classes simplify access
to DSOMInformation by deÞning macros such as DSOMCMIPObj::GetObjectIn-

DSOMSNMPObj DSOMCMIPObj

DSOMInformation

SOMObject
130 A Component-based Architecture for Open, Independently Extensible Distributed Systems

HTTP-based Management
stance(), which are mapped into calls to DSOMInformation methods
(DSOMInformation::GetAttribute(“objectInstance”) in this case). C++ methods of
CL are almost identical to the ones deÞned in the corresponding class part
of the external bindings, hence the stub implementation has been very
straightforward. The similarity between these interfaces and the corre-
sponding class part of the external bindings has the advantage that devel-
opers can use both DSOM and the external bindings, having to learn just
one object model. In addition, code can be written once and then slightly
modiÞed to use either the C++/Java external bindings or the C++/Java
language bindings of the DSOM interfaces. This is because methods and
classes have the same names and parameters. The following example
shows how a simple program based on the external bindings can make use
of DSOM interfaces simply by adding the code shown in boldface type.
The code fragment below reads the value of the attribute systemTitle of the
instance netId=Net1@systemId=(name Telco) using the CMIP protocol.

Environment ev;
SOM_InitEnvironment(&ev); SOMD_Init(&ev); // Initialization

try {
 Liaison_DSOMCMIPObj *cmip = new Liaison_DSOMCMIPObj(&ev);
 cmip->UseProxy(&ev, "adl.zurich.ibm.com"); // Liaison is running on adl
 cmip->SetAgentAET(&ev, p, "MIBCTL" /* CMIP Agent AE-Title */);
 cmip->SetObjectClass(&ev, "system");
 cmip->SetObjectInstance(&ev, "netId=Net1@systemId=(name Telco)");
 cmip->SetAttribute(&ev, "systemTitle", "");
 cmip->CMIPGetAttributes(&ev); // Issue the CMIP M-GET request

 if(somExceptionId(&ev) == NO_EXCEPTION)
 printf("systemTitle is: %s\n", cmip->GetAttribute(&ev, "systemTitle"));

 delete cmip;
} catch(char *exc) { printf("Caught exception: %s", exc); }

SOMD_Uninit(&ev); SOM_UninitEnvironment(&ev); /* Termination */
Figure 33. Simple C++ Program based on CL

This is because methods and classes have the same names and parameters.
Basically the only code that has to be added is related to:
1. DSOM initialisation/termination;
2. the Environment parameter required in every DSOM method call;
3. exception handling that cannot catch all the DSOM exceptions using the

try/catch mechanism because DSOM may use the Environment parameter
to report error conditions.

The design choice to implement DSOM stubs using the external bindings in-
stead of wrapping the entire Liaison into a DSOM object has the following
A Component-based Architecture for Open, Independently Extensible Distributed Systems 131

Liaison: Yasmin at Work
advantages:
¥ as the external bindings are quite light, the DSOM interface implementa-

tion is very light (about 80 Kb);
¥ DSOM has to be installed only by users who need to access Liaison

using DSOM, i.e. applications based on external bindings do not require
that DSOM be installed in order to run;

¥ DSOM allows objects to be created on hosts where Liaison is not
installed. In such case a remote Liaison is exploited, and there is no need
to have DSOM installed on the host where this Liaison runs (the com-
munication DSOM server/Liaison is HTTP based);

¥ depending on the situation, users can decide to access services provided
by Liaison using HTTP, DSOM or both (if Liaison were wrapped in a
CORBA object, then users would need DSOM to access Liaison);

¥ it is possible to manage hosts outside Þrewalls using a local Liaison and
DSOM interfaces because they are based on HTTP (DSOM cannot cross
Þrewalls, but HTTP can).

The drawback of this solution is that every time a management operation is
to be issued, communication takes place among the DSOM client, the
DSOM server, and Liaison instead of having Liaison contained inside the
DSOM server. In the tests we have performed, the slowdown of the pro-
posed solution is no more than 10-20% with respect to a full integration of
Liaison inside a DSOM object. Considering the many advantages of this so-
lution with respect to total DSOM integration, this overhead is acceptable
and in fact almost negligible if client applications can perform multiple op-
erations concurrently (multithread) without incurring an active wait.

To compare CL with other approaches it is necessary to differentiate be-
tween the two relevant schools of thinking (see ÒInterdomain ManagementÓ
on page 66):
1. Static Approach

X/Open's Joint Interdomain Management task force (XoJIDM) works on
the mapping between GDMO/ASN.1 and IDL and vice versa (only the
Þrst mapping is of interest to us here) as described in ÒOMG Network
ManagementÓ on page 57. XoJIDM has proposed to statically translate
GDMO/ASN.1 to generate code which is included by management
applications that therefore know at compile time the extent of classes
that they can handle.

2. Dynamic Approach
Approaches such as CI or GOM fall in this category [Ban96], as they are
not dependent on compile time knowledge because they are either
string- or metadata-based.

The following table lists the major differences between the various ap-
132 A Component-based Architecture for Open, Independently Extensible Distributed Systems

HTTP-based Management
proaches:

The CORBA Liaison (CL) interface approach is completely untyped because
all types are mapped to strings. Conversion between strings and the desired
datatype of the host language (e.g. C++) has to be done by the programmer,
although this is usually not necessary because in the case of CL, program-
mers should be accustomed to natively expressing values using strings.
This may be easy for simple types such as strings or numbers, but the com-
plexity for the programmer increases considerably for aggregate types such
as structs or sequences. Also, the probability of introducing errors in user-
written conversion functions increases. This trade-off, however, was accept-
ed by CL because its main goal was to create a lightweight model for net-
work management that is flexible (no compiled-in knowledge) and able to
be integrated into the web, which uses strings as the major datatype any-
way. Moreover, network management is still predominantly based on
SNMP, which uses mainly atomic datatypes such as strings or integers. The
programmer specifying the types in a string-based syntax which will be
checked at runtime by Proxy in the case of SNMP, or by the OSI stack in the
case of CMIP. Compared to the static approaches with their strong typing
enforced at compile time, GOM enforces typing at runtime using metadata.
Contrary to CL, which knows only the string type, it has types for represent-
ing classes (GenObj), attributes (Attribute), and values (Val, Integer, String,

CL
[Deri97a]

GOM
[Ban96] Static Approaches

Mapping Type Dynamic Semi-Dynamic Static

Mapping Tools Not Needed Off-line Compiler Off-line Compiler

Mapping
Repository

None
(uses the metadata

information used by the
OSI stack)

Metadata Repository C++ Code

Typing
[Mathews90]

Untyped (string) Runtime-type checked Strong

Type Checking Runtime
(by Liaison and the OSI

Stack)

Runtime
(using metadata)

Compile Time

Implementation
Size

Small
(≈80 Kb regardless of

the type/number of
managed objects)

Medium Large
(includes numerous

generated types/
methods)

ASN.1/CORBA
Type Mapping

All datatype are
mapped to a string.

Datatype are mapped
to a small set of GOM

types (15)

Every datatype is
mapped to one or more

CORBA types

CMIP/SNMP
vs. CORBA
Classes

N:1 N:15 N:M (N <= M)

CMIP Support Yes Partial
(missing support for M-
EVENT-REPORT and

M-ACTION)

Yes

SNMP Support Yes No
(no SNMP adapters
currently available)

Yes

Table 10. Comparison of Static vs. Dynamic Approaches
A Component-based Architecture for Open, Independently Extensible Distributed Systems 133

Liaison: Yasmin at Work
Struct, Sequence etc.). Whereas CL maps all types to strings, GOM maps them
to an instance of this set of fixed types, and the static approach maps each
type to a corresponding IDL type. Whereas the static approaches fully inte-
grate the translated code into the target type system using the target's native
types (e.g. C++), GOM offers an abstraction of the target's type system (ca.
15 types) as API to the users, whereas the API of CL is the single type string.
In the case of the static approaches, the API client may mix types of the tar-
get system and the generated code because they are the same, whereas us-
ing GOM, native (C++) types have to be converted to/from GOM types (e.g.
the int to instance of Integer). The dynamic approaches have two major ad-
vantages over the static ones: they typically produce smaller client applica-
tions and are much more flexible. As clients do not possess a priori
knowledge of classes available in the system, but rather use strings or meta-
data, they are independent of class modifications and can continue work-
ing, whereas clients using the static approach may need to be recompiled.
This is an essential asset in areas such as topology browsers and roaming
agents (cf. above) that do not know all the classes they will encounter when
compiled. Including at compile time a fixed set of classes may yield poten-
tially large client applications that have to pay (in terms of size) for all the
classes they carry with them even if only a few are actually used. In the dy-
namic approaches, when a client needs to handle a new/modified class, ei-
ther the latter's metadata is dynamically loaded (GOM) or it need not be
loaded if a string type represents all types (CL).

5.6. Rapid Network Management Application
Development

In the past few years, one of the most frequently used terms in the software
engineering field, and even in the network management field [Schmidt95],
is the word ÔvisualÕ. This term is often used to identify packages that allow
a certain task to be performed efficiently and easily by visually specifying a
certain activity in an interactive way. Although this term has often been
misused, it frequently refers to how rapidly applications can be built using
a certain tool. This is because:
¥ visual development is interactive and faster than classic edit-compile-

run application development. Hence it allows one to immediately see
the effects of a certain operation immediately without the need to build
and run the application;

¥ visual tools are simpler to use and more powerful than traditional tools/
languages, so average programmers can build very complex applica-
tions in a limited amount of time without having to be software gurus.

It is worth mentioning that visual developments also have some drawbacks
in terms of flexibility if the development tools do not support all the facili-
ties a developer needs, although they are present in the operating system
(for instance balloon help). Visual development is simply an aspect of appli-
cation development. To build an application visually does not necessarily
134 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Rapid Network Management Application Development
mean that the application can be built quickly. Moreover, the visual con-
struction process is no guarantee of ease of development. For this reason a
new term, RAD (Rapid Application Development), has been invented to
identify the tools and systems that allow applications to be built rapidly in
a relatively simple fashion. RAD tools are characterised by (most of) the fol-
lowing properties:
¥ the overall time needed to build an application is minimised;
¥ RAD tools exploit the visual development paradigm (the reverse is not

necessarily true);
¥ the development environment handles many low-level problems such

as application linking;
¥ RAD tools do not generate code but rather allow the composition of

basic elements in order to build the Þnal application.

In the past few years, research and industry have invested much effort in
the field of component-based applications and architectures [Joch96]
[Nierstrasz92] [Nierstrasz95] [Udell94] [Deri97d]. Software composition ap-
pears to be a very promising way to cut development time and to build ap-
plications that need to be often modified as requirements change [Chen93]
[Chen94].

Figure 34. Issues in Software Composition

RAD tools such as IBM VisualAgeª [IBM95b] or Borland Delphiª
[Pacheco96] provide a rich set of basic components ranging from visual in-
terfaces to remote application communication. As the component interface
usually follows a well-defined guideline such as OpenDoc and OLE, it is
possible to use the same component in different contexts and employ com-
ponents produced by different people. Quite often the component one
needs has already been built by someone else and put in a public repository.

Although RAD is becoming increasingly important in the software indus-
try, the network management world is apparently uninterested in this new

Construction Composabili ty

Makes blocks
easier to
compose

Makes
systems
easier to

adapt

Facilitates

Enables

Responding to changing
contracts/requirements

The construction of
building blocks

AdaptabilityEvolution

Software Task Technical Goal
A Component-based Architecture for Open, Independently Extensible Distributed Systems 135

Liaison: Yasmin at Work
technology. This is because:
¥ RAD is diffused primarily throughout the PC industry, whereas most

network management applications run on Unix boxes;
¥ RAD is usually employed to produce applications having a graphical

user interface with particular emphasis on database communication and
multimedia;

¥ RAD has to be simple enough to be used by an average programmer.
Hence programming languages used by RAD tools are usually simple
and (often) interpreted, so they are slightly less performant that lan-
guages such as C/C++ used in the management world.

The increasing use of PCs for everyday business has contributed to the re-
placement of many Unix terminals and demonstrated that a graphical inter-
face can quite often substitute for the shell interface. The obvious
consequence of this trend is that many old-fashioned character-based appli-
cations have acquired a graphical interface in order to be used not only by
administrators but also by advanced end users who need to control certain
critical resources for their activity. As most of these end users now have a
PC, they need applications that run on their PC with the same 'look and feel'
as the other applications they use, such as word processor or spreadsheets.

Figure 35. Trend in the Computer Industry: from Terminals to PCs

Nevertheless business-critical resources are still managed by an administra-
tor, which often uses a character-based application that is usually faster and
more powerful than an equivalent graphical user interface, especially for re-
petitive tasks. Owing to this tendency, it is becoming increasingly important
to develop and maintain simple yet powerful applications that run on PCs
and are a subset of the ones running on the corporate host and are used to
manage mission-critical resources. In addition, because many end users run
their applications on portable machines, it is necessary to ensure that man-
agement applications do not require large computing capabilities or rely on
local network resources, which may become a bottleneck when they are ac-
cessed remotely over a slow link.

Besides this trend, users of large management platforms realised that quite
often they need to develop or customise the applications part of the plat-
form suit their needs. Owing to the high costs of training and maintenance,
it is important that developers/user can develop/customise the applica-
tions they need in a relatively short time and that this task be performed by
average programmers and not by highly paid specialists.
136 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Rapid Network Management Application Development
In conclusion, it is becoming necessary to rapidly and easily develop simple
yet powerful management applications that run primarily on PCs, because:
¥ average end users are accustomed to simple graphical user interfaces

whilst administrators can still use the shell interface, which is more
powerful and faster but more difÞcult to use;

¥ average developers must be able to develop and maintain the applica-
tion their company needs without being experts of both PC application
development and network management;

¥ mobile computing demands simple applications that can run from
remote locations over slow links.

Once the necessity of developing management applications that may rely
partially on the corporate management platform is clear, it is time to decide
which platform the application has to run on and how complex the user in-
terface has to be. The following table compares three techniques that can be
used to build management applications efficiently.

In the first case the application is composed of several HTML/VRML pages
that allow people to manage network resources using a basic user interface.
End users interact with HTML elements such as buttons and menus, and an
HTTP server application interprets the user commands, which have been
mapped transparently to URLs. The developer is not responsible for the
user interface because the Web browser is the environment in which the ap-
plication runs, hence it is the one that handles the graphical appearance.
One advantage of this solution over the other two proposed approaches lies
in the simplicity of HTML/VRML, which makes it suitable whenever the in-
teraction user-management interface is limited. This is because HTML/
VRML are information description languages, which cannot handle dynam-
ic data because every time the data changes, a new HTML/VRML page has
to be generated. Aside from this limitation, HTML/VRML can be easily
handled by basic applications started by the HTTP server and built upon
simple tools such as the ones provided by the standard Unix environment.
Java and TCL are two programming languages available on almost every
platform. Java is a full-featured object-oriented programming language,
whereas TCL is an interpreted scripting language. Both languages are net-

HTML/VRML
Java, Java

Beans, JMAPI TCL RAD Tools

Development/
Maintenance Time

Average/Low Average Average Low

Development Skills Basic Average/High Average Average

Application Size
(Disk/Memory)

Small Average Large Average/Large

Platform
Independence

Yes Yes Yes No

Internet Awareness Yes Yes Low Low

Desktop Integration Average Average/High Very Low High

Dynamic Data
Handling

No Yes Yes Yes

Table 11. Comparison of Techniques for Rapid Application Development
A Component-based Architecture for Open, Independently Extensible Distributed Systems 137

Liaison: Yasmin at Work
work-aware and allow developers to build applications with a graphical ap-
pearance in a relatively short time [Wayner96]. Although platform
independence is usually regarded as a positive feature, it is worth mention-
ing that this characteristic prevents Java/TCL applications from fully inter-
acting with the environment in which they run, namely the desktop. Java/
TCL applications can hardly use local resources, print on oneÕs favourite
printer, or drag elements to the trashbin because they cannot rely on specific
characteristics of the environment in which they run. Nevertheless the pre-
vious statement has to be slightly changes since with the introduction of
JavaBeans, Java applications are now more integrated in the desktop al-
though their integration is still limited. Beside the desktop integration issue,
Java development tools are still quite primitive and unreliable, and hence
difficult to use by average programmers who are not familiar with object-
oriented programming, threads, and networks. In the case of TCL it is fairly
difficult to build relatively large applications due to the intrinsic language
limitations. Although this situation is likely to change in the near future,
Java/TCL are not yet suitable for developing large applications that have to
interact closely with the local environment and be developed by average
skilled programmers. Applications developed using a RAD tool are very
simple to develop and maintain because the development environment
masks their complexity and helps the developer during the graphical con-
struction of the application. In addition these applications are not meant to
be platform-independent, so they can fully exploit the local environment. In
conclusion, RAD tools are preferable to Java/TCL whenever emphasis is
placed on development complexity/cost and desktop integration rather
than on portability.

The following sections will show three methods to rapidly build applica-
tions using the facilities provided by Liaison. Developers will select the ap-
propriate method based on user requirements.

Development of HTML/VRML-based Management Applications
HTML/VRML applications are built by exploiting the basic HTML/VRML-
based CMIP/SNMP management facilities offered by Liaison. Developers
can:
¥ create HTML pages that contain HTML anchors pointing to URLs

deÞned in a format accepted by Liaison;
¥ develop new droplets or applications to implement any missing func-

tionality;
¥ exploit the shell commands provided by Liaison and based on the exter-

nal bindings that allow simple CMIP/SNMP operations to be per-
formed.

As HTML is quite powerful and easy to use, average programmers can rap-
idly create applications without having to learn complex development tools
but simply by composing URLs.

Development Management Applications using Java/TCL
Java external bindings enable the development of Java applets/applications
in a simple way using a string-value representation. These applets are able
138 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Rapid Network Management Application Development
to manage CMIP/SNMP resources exploiting LiaisonÕs services. Unfortu-
nately the creation of Java applications is still rather complicated and based
on the craftsman paradigm that everything has to be custom built for a cer-
tain task. Recently, the Java community acknowledged that it is necessary
to enable the creation of software components, called beans (see ÒJava
BeansÓ on page 42) that can be reused for various applications. Although
this seems the preferred way to create Java components, the beans are not
extremely simple to develop and do not allow developers to build applica-
tions visually (as of today). It is the author's opinion that it is necessary to
enable the visual composition of Java applications and that the classic edit-
compile-link time can be reduced by creating a development environment
in which the modifications can be tested while the application is being de-
veloped. In any case there is a large variety of Java development tools avail-
able on the market that facilitate the visual creation of applications and
allow graphical user interfaces to be built in a matter of minutes. Similar
considerations can be applied to the development of C++ applications that
exploit the C++ version of the external bindings.

In the case of TCL, it is possible to attach management capabilities by using
the C version of the bindings, seen above. Although TCL comes with the Tk
toolkit, which significantly simplifies the development of graphical applica-
tions, it suffers from the lack of a standard way to reuse code or to produce
reusable components in order to reduce development time/effort. This lim-
its reuse to the library level, which is quite primitive and not always
straightforward [Biggerstaff89]. Nevertheless the ability of TCL to write
code by binding small programs into large applications is a way to reuse
code to some extent and benefit from the many TCL programs/libraries
freely available on the network. Finally the advanced GUI facilities offered
by Tk make it reasonably simple to build network graphical applications in
a fraction of the time it takes to do so with conventional development tools
and languages.

Development of Management Applications Using RAD Tools
The development of applications using RAD tools is probably the most in-
teresting and promising way to build management applications rapidly be-
cause RAD tools:
¥ allow development time to be reduced dramatically;
¥ are so simple to use that even an average programmer can create an out-

standing application.

An application that formerly would have required several months of a
skilled programmerÕs time can now be done by an average developer in a
matter of weeks. Unfortunately RAD tools have hardly ever been used in
the area of network management, basically because of the lack of facilities
necessary to ÒglueÓ the RAD environment to the management environment,
which has never be done before. In order to fill this gap, Liaison provides C
external bindings, which are basically a C interface on top of the C++ bind-
ings packaged in a DLL (Dynamic Loadable Library) in order to be easily
called from within the RAD environment (see ÒApplication Side BindingsÓ
on page 125). C bindings come with a set of files, which can be used with
A Component-based Architecture for Open, Independently Extensible Distributed Systems 139

Liaison: Yasmin at Work
widely used Pascal/Basic environments, and some basic examples, which
allow developers to become productive quickly.
C bindings provide a set of functions that allow developers to take advan-
tage of CMIP and SNMP from within the RAD environment. The bindings
are multithread-aware and handle memory management. In other words
the bindings include a simple garbage collector, which ensures that the
strings passed/returned from/to the application are correctly freed. This
feature also simplifies the application development because programmers
do not have to allocate/free the memory of the strings used to communicate
with the bindings and makes the application more robust because it pre-
vents the application from crashing due to bad memory management. In
addition the parameters passed to the bindings are carefully verified to
eliminate the risk of crashing the entire application in case a bad value is
passed to the bindings. In order to demonstrate how easily and fast applica-
tions can be developed using RAD tools, an example is shown in the follow-
ing figure.

Figure 36. Simple SNMP MIB Explorer

This simple SNMP MIB explorer allows one to manipulate the SNMP MIB
of a remote host by exploiting the services of Liaison, which can run on a lo-
cal or a remote host. This application has been written by an average pro-
grammer in a couple of hours and it has the look and feel of the operating
system on which it runs. The same application written using different tools
or a different language would have been much more difficult to write and
would have required a much more skilled programmer with deep knowl-
edge of the underlying operating system. Similar applications supporting
the CMIP protocol and resembling the one just described have also been de-
veloped by the author.

Conclusion
Liaison provides three ways to develop management applications, includ-
ing a new method for rapid application development. Developers can select
among the following ways to create applications, depending on the user
140 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Final Remarks
needs and the global application requirements:
¥ HTML/VRML for simple static applications accessible remotely via

inexpensive Web browsers;
¥ Java/TCL for developing of platform-independent applications that

make use of external bindings in order to add management capabilities
without incurring high costs in terms of development time, application
complexity, and size (quite important if the application has to be down-
loaded on demand);

¥ RAD tools, which allow average programmers to develop outstanding
applications at a fraction of the time/cost needed to develop the same
application using traditional methods.

The era in which Òone management platform does everythingÓ is about to
end and will be replaced with one that enables users to build management
applications they need easily and rapidly. This does not mean that large and
powerful management platforms will disappear because such applications
constitute the backbone of corporate management systems. It means that in
the future, users will increasingly demand tools that allow them to write the
applications they need, tuned to their environment, instead of delegating
this task to specialised and expensive developers. One reason for the limited
diffusion of management tools lies in the cost of the tools and their extreme
complexity. This work is a small contribution towards the construction of
simple and powerful network management tools that can be used by many
people and not only by rich or large organisations but also by universities
and small institutions.

5.7. Final Remarks

Liaison traced a novel promising way to develop management applications.
Contrary to most current management applications, Liaison does not inte-
grate management functionality in a complex framework. Instead it offers
several services accessible concurrently from remote locations using the
HTTP protocol. Liaison is the only entity that handles directly the manage-
ment protocols and its idiosyncrasies. Management applications based on
Liaison range from simple web pages to complex graphical applications.
Users can decide, based on their needs, which level of sophistication and
ease of use they want. In any case, Liaison-based applications do not de-
mand significant computing resources, can be run from remote and can
scale up by simply issuing concurrent requests to multiple Liaison instanc-
es. The following table summarises the Liaison effort.

Liaison

Space
Requirements

< 1 Mb RAM, about 1 Mb disk space (depending on the configuration
and on the platform).

Source Code 16 Klocs (mainly C++, some C/Java code).

Press Review PC Week, Linux Magazine, Apple Developer Web Site.

Table 12. Liaison at a Glance
A Component-based Architecture for Open, Independently Extensible Distributed Systems 141

Liaison: Yasmin at Work
Besides all these features, there is still a significant amount of work to do.
The most important activities concern providing:
¥ secure droplets (for instance digitally signed droplets) to avoid security

problems;
¥ a more robust droplet architecture that prevents problems in a droplet

(for instance an operation which causes the droplet to crash) from affect-
ing the entire system;

¥ support for protocols other than HTTP, such as IIOP [IIOP] which is part
of CORBA version 2;

¥ extension of the Java external bindings to support the same functions
supported by the Java Management API (JMAPI) [Sun96b]. This will
allow JMAPI applet to exploit LiaisonÕs services.

Probably the most important achievement of Liaison has been the demon-
stration that it is possible to build efficient management applications which
seamlessly integrate the three major management models (OSI, SNMP, and
CORBA). In addition, because Liaison is freely available for download on
many platforms, many people have been able to experiment with it for free.
This is quite important especially considering that in OSI and CORBA (this
does not apply to SNMP) it is rare to find implementations with which one
can play freely, without having to purchase an expensive management plat-
form.

a. Note that XoJIDM and GOM are significantly incomplete and that other approaches shown in
earlier sections do not fully cover interdomain management.

Users > 2,000 Worldwide (in constant growth).

Currently
Supported
Platforms

AIX, OS/2, MacOS, Linux, Win95/NT.

Availability Free of charge from http://misa.zurich.ibm.com/Webbin/,
http://www.alphaworks.ibm.com/.

Research
Contribution

Liaison is the first management application that:
• allows users to manage networks using HTML/VRML;
• allows users to deliver a real, seamless, integrated multidomain man-

agement applicationa supporting CMIP, SNMP, and CORBA;
• enabled users to create simple, light, efficient management applica-

tions;
• brought software technologies such as software components into the

management world;
• introduced HTTP-based management;
• demonstrated that CMIP and CORBA management no longer have to

be considered a challenge;
• thanks to Yasmin, has been able to bring management capabilities to

platforms considered unsuitable for this task (for instance MacOS).

Papers 13 papers/disclosures have been written on this topic, including an
Internet Draft.

Liaison

Table 12. Liaison at a Glance
142 A Component-based Architecture for Open, Independently Extensible Distributed Systems

6 Validation
This chapter validates Yasmin against the thesis requirements previously
identified. The reader interested in a comparison of Liaison with relevant ef-
forts undertaken in the field of management systems is referred to the pre-
ceding chapter, and the section ÒEvaluating LiaisonÓ on page 203.

6.1. Thesis Validation

In order to validate this work it is necessary to return to ÒThesis Require-
mentsÓ on page 23 to see which requirements are satisfied and, if not, why.

Mandatory Issues
The following are the mandatory requirements placed on Yasmin.
1. Extensibility

YasminÕs extensibility has been achieved by splitting the architecture in
two parts: kernel services and user services. The kernel services are gen-
eral and are used by all applications based on Yasmin. The user services
contain the application-dependent services and are implemented using
droplets. As droplets can be added (at runtime) it is easy to extend
applications by adding new services and functionality which will then
be folded into a droplet. This mechanism allows extensibility in addition
to facilitating application tailoring, which can be done by adding/
removing droplets while the kernel application remains unchanged.

2. Evolution
Yasmin achieves evolution, like extensibility, through droplets. Applica-
tions that must modify their behaviour due to changing requirements
can do so by replacing droplets with new droplet versions. Diagonally,
because droplets are linked at runtime with the core application, they
can migrate to other networked machines, thus allowing the application
topology to evolve (at runtime) and be adapted to new network topolo-
gies.

3. Ease of use and development
Ease of use is determined by various factors. In the Þeld of open distrib-
uted systems, it is strongly inßuenced by the way installation, conÞgura-
tion, and tailoring are performed. As Yasmin is based on the idea that
A Component-based Architecture for Open, Independently Extensible Distributed Systems 143

Validation
[Taligent95a] resources should notify their presence to the operator and
not the other way round, Yasmin comes with a directory service which
permits locating relevant network resources on behalf of the user, hence
minimising the conÞguration. One side effect of this design choice is that
conÞguration Þles never become outdated. They are virtually absent
because the information is fetched automatically from the network.
Other ease of use aspects concern the provision of on-line help, whether
metadata can be accessed and the ability to prevent wrong requests from
being issued. As far as installation and tailoring are concerned, they are
facilitated by the droplet paradigm and by the fact that Yasmin-based
applications automatically load new droplet versions without human
intervention.

The ease of development is guaranteed by the fact that the droplet inter-
face is rather simple, thus limiting the amount of information that has to
cross it. This facilitates programming because the simpler programming
is, the fewer errors are made and the more productive the programmer
is. In addition, Yasmin-based applications do not statically link droplets,
hence the traditional Þnal linking step is not necessary. Moreover,
because droplets are individually linked, the link time is reduced and a
modiÞcation in a droplet does not inßuence the entire application,
which remains untouched.

4. Distributed environment support
Yasmin integrates facilities for peer communications and allows remote
services to be invoked. Based on user needs, it is possible to conÞgure
applications such that ÔheavyÕ services are performed on powerful hosts
or the load can be distributed over various instances of the same appli-
cation by assigning droplets appropriately. It is also possible to exploit
the network to improve application reliability through service replica-
tion by distributing the same droplet to multiple applications. In this
way, if an application that implements service X crashes, another remote
application can still offer service X.

5. Use of software components
This has been achieved by basing Yasmin on the droplet paradigm.

6. Promotion of reuse
Design reuse has been achieved though the use of droplets. They allow a
generic application which implements the core services to be developed,
and then can be reused on different Þelds by adding droplets.

Code reuse is achieved with droplets too. Moreover, because service
requests are issued using platform-independent protocols (in the case of
Liaison, the protocol is HTTP) it is possible to reuse services present on
hosts which use different operating systems. This is a more general deÞ-
nition of reuse based on service reuse rather than on code reuse.
144 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Thesis Validation
7. EfÞcient resource utilisation and ability to run on environments of
limited resources
Loading droplets on demand and delegating computational intensive
services to remote applications allow applications to run on hosts of lim-
ited computing power. Moreover because droplets are loaded on
demand and unloaded when no longer in use based on a certain user
policy, Yasmin-based applications make wise use of system resources
and avoid using unnecessary resources, and this, contributes to enhance
global system performance.

8. Portability and genericity
The use of personalities facilitates code portability and allows system-
dependent code not to cross the personality boundary. Platform-speciÞc
features such as multiprocessing and multithreading, when available,
are used by the personality layer, which is responsible for exploiting
platform-dependent features while not exposing them to the rest of the
application.

9. Based on open standards
Yasmin is fully documented hence it is not a black-box which uses pro-
prietary technologies. Yasmin does not deÞne new protocols nor does it
speciÞes the set of protocols that is suitable for a certain activity. Liaison,
a Yasmin-based application, is based on open protocols such as HTTP
and it fully supports management protocols without introducing Ôimple-
mentation shortcutsÕ like many programmers do whenever a certain
management protocol/service is difÞcult to implement. This proves that
applications built on open standards can be built using Yasmin.

10. Internet-awareness
Yasmin-based applications, such as Liaison, support remote communi-
cations and implement them using HTTP, an Internet protocol. This also
allowed a new management paradigm, HTTP-based management, to be
created and which is now quite well accepted in the industry.

11. Slim and efÞcient architecture
The architecture is very slim because all non-necessary services are
implemented inside droplets. Moreover the kernel is very efÞcient
because it merely glues the various droplets together without adding
further overhead. The efÞciency of the architecture is demonstrated in
ÒEvaluating LiaisonÓ on page 203, where the performance of Liaison is
analysed and compared with that of similar applications.

12. Full support for (management) standards
Yasmin does not impose particular limitations on the way applications
have to be implemented. This facilitates the implementation of manage-
ment standards that are quite complex, and hence difÞcult to be fully
supported. The proof of this claim is Liaison, which has supports HTTP,
CMIP, SNMP, and CORBA without any limitation and with good per-
formance (see ÒLiaison: Yasmin at WorkÓ on page 105).
A Component-based Architecture for Open, Independently Extensible Distributed Systems 145

Validation
13. Scalable and performant applications
Scalability of Yasmin-based applications is achieved by replicating the
same application on networked machines, i.e. by distributing the load
by transparently rerouting (delegation) requests. This allows the neces-
sary performance to be achieved. Even if a single application is used, the
performance achieved is satisfactory even on small machines as demon-
strated by Liaison.

14. Independence from speciÞc technologies and languages
The fact that Liaison has been ported on very different platforms dem-
onstrates that Yasmin is independent of speciÞc technologies. Moreover,
droplets do not rely on speciÞc C++ features and have been imple-
mented using a different language such as Java [Ban95].

Optional Issues
1. Full distributed environment support

As mentioned above, Yasmin fully exploits distributed environments
and allows droplets to be migrated and replicated using the peer serv-
ices part of the architecture.

2. Security support
Security is a very complex Þeld encompassing several aspects ranging
from peer authentication to encrypted communications. Because secu-
rity support varies according to the communication protocol being used,
its support has to be included in YasminÕs communication services (see
ÒCommunication ServicesÓ on page 98) that deal with all the communi-
cation issues. This is because the structure of Yasmin-based applications
should not vary whenever the communication protocol or the security
features being implemented vary.

In the case of Liaison the communication protocol being used is HTTP.
Liaison implements support for HTTP authentication, peer authentica-
tion and encrypted/secure communications via SSL (Secure Socket
Layer) an industry standard deÞned by Netscape. This is the maximum
security support currently deÞned for the HTTP protocol.

3. Ease of installation and tailoring
As mentioned above, this has been achieved through the use of droplets.

4. Support for visual application development
The author has experimented with visual development tools for the cre-
ation of management applications, as discussed in ÒRapid Network
Management Application DevelopmentÓ on page 134. The ßexibility of
Yasmin/Liaison allowed some glue software in the form of shared
libraries to be developed in order to interface rapid/visual development
tools with the management world. This allowed existing rapid/visual
development tools to be used for developing management applications
rather than having to create new ones merely for this purpose.
146 A Component-based Architecture for Open, Independently Extensible Distributed Systems

What’s New in Yasmin?
Secondary Issues
1. Exploitation of speciÞc platform features

This has been achieved by the use of personality, which allows platform-
speciÞc features to be exploited while preventing platform-dependent
code from crossing the personality boundary.

2. Integration with commercial products/frameworks and ability to
embed components into commercial frameworks
This issue has not been dropped because none of the available compo-
nents listed in ÒComponent-based ArchitecturesÓ on page 33 is suitable
for use in the context of network management. Moreover the integration
of Yasmin in commercial frameworks presents certain problems. This is
because Yasmin attempts to solve problems typical of conventional
frameworks, hence the integration of Yasmin into commercial frame-
works completely jeopardises this work.

6.2. What’s New in Yasmin?

In section 3.5. on page 68 it has been shown that none of the existing archi-
tectures and frameworks available on the market satisfy all the require-
ments listed in section 2.9. on page 23. This does not mean that Yasmin has
not adopted existing principles or techniques. In fact during YasminÕs
design phase interesting pieces of existing works have been adopted and
combined with novel ideas and concepts. The most relevant ones will be
given later in this section.

Existing Principles and Techniques Used in Yasmin
¥ The personality principle of the Machª kernel [Accetta86], in which a

thin layer masks operating system-dependent (hardware-dependent in
the case of Mach) services, thus allowing applications to be developed
independently of the underlying operating system (see ÒPersonality
Abstraction LayerÓ on page 92).

¥ Scalability through the replication on the network of (Yasmin-based)
server applications accessible from remote clients [Lindenberg90]
[Sawitzki92]. An application similar to the CORBA trader [OMG95] is
then responsible to transparently distribute client requests to servers
according to well-deÞned policies (for instance, load balance). Client
performance is then directly proportional to the number of the available
servers (see ÒScalabilityÓ on page 78).

¥ The proxy principle/pattern as described in [Shapiro86] and
[Gamma94] (see ÒWelcome to LiaisonÓ on page 109) which accesses
services/resources on behalf of other applications shielding them details
concerning their implementation and location.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 147

Validation
¥ Use of cooperation [Gr�goire94], delegation [Goldszmidt93] [Yemini91]
[Johnson91b] and subcontracting [Hamilton93] allows droplets to col-
laborate in order to obtain a global result (see ÒYasminÕs Design
ChoicesÓ on page 98).

¥ The system is able to transparently locate, register and load droplets
without any user intervention or conÞguration just like OpenDoc does
[Apple95] (see ÒDroplet ManagerÓ on page 93).

Principles and Techniques Introduced by Yasmin
¥ Ability to replace binary software components at runtime (see ÒYasminÕs

Design ChoicesÓ on page 98) in order to update and extend the global
application behaviour while the application is running.

¥ An application must be minimal (microkernel application): every service
or functionality provided by the application must be implemented
inside components which are glued using the basic facilities provided by
the application (see ÒConceiving YasminÓ on page 73). This allows the
whole application behaviour to be extended and modiÞed while the
application is running.

¥ Delayed events (see ÒEvent ManagerÓ on page 95) which allow periodic
tasks and activities that have to be performed at a certain time without
having to maintain a separate thread of execution for each of these tasks.
Repetitive tasks are quite common in network applications hence the
use of delayed events becomes very important as the number of these
periodic tasks increases. This is because the number of threads per
application is limited hence the classic way of implementing these tasks
using threads cannot be used as explained in ÒEvent ManagerÓ on
page 100.

¥ ÒFirewall-likeÓ droplet interface (see ÒDroplet InterfaceÓ on page 81)
which prevents external entities from having access to droplet internals.
This also prevents direct dependencies among components because
services provided by droplets can only be accessed via managers, part of
the architecture (see ÒService ManagerÓ on page 96 and ÒResource Man-
agerÓ on page 97). The reader interested in further details about the
implementation of the droplet interface is referred to the section ÒFrom
Theory to Practice: Implementing DropletsÓ on page 207.

¥ Simple component service signature which discourages developers to
pass complex datatype to services, hence forcing them to split complex
services into simpler cooperating services according to the well-known
Ôdivide et imperaÕ principle (see ÒService ManagerÓ on page 96).

6.2.1. Conclusion

This section has shown that Yasmin is a new architecture for software appli-
cations which combines existing ideas with new concepts. This is a very
common approach in the software engineering world, in which most of the
innovations are not completely new but are an evolution of well-known
principles wisely mixed with novel concepts.
148 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Further Remarks
6.3. Further Remarks

The goals contained in the section ÒResearch GoalsÓ on page 28 have been
fulfilled because:

1. Liaison has demonstrated (in particular see ÒRapid Network
Management Application DevelopmentÓ on page 134) that network
management applications can be developed with a relatively low effort
by averagely skilled programmers. This result has been achieved also
because Liaison has greatly simpliÞed the management protocols by
deÞning a simple object model based on strings. In addition the use of
external bindings combined with the scalability offered by Liaison allow
efÞcient applications that exploit the distributed environment to be
developed.

2. The use of the HTTP protocol to transport management requests and the
ability to manage networks using the web demonstrated that web-based
management is both feasible and very promising.

3. Yasmin makes extensive use of cooperation and delegation. This
allowed the distributed environment to be exploited because:

¥ cooperation avoids duplicating resources and services, thus encour-
aging reuse of existing resources, either local or remote;

¥ delegation is an effective way to avoid services duplication; an entity
(for instance the proxy) is able to serve N remote peers, hence to pre-
venting duplication of the same service N times;

¥ delegation and cooperation are used by Yasmin to achieve scalability
in a distributed environment (see ÒScalabilityÓ on page 78);

¥ applications based on external bindings exploit the client/server par-
adigm, which is suitable for a distributed environment.

4. external bindings and CI interfaces demonstrated that interdomain
network management is feasible and simple when a suitable
architecture is selected (Yasmin in this case).

For a comparison of Yasmin with other component-based architectures see
ÒComparison with Other ArchitecturesÓ on page 101. A similar comparison
has been compiled for Liaison and can be found in the chapter ÒLiaison:
Yasmin at WorkÓ on page 105. Finally, note that:
1. Yasmin, thanks to the use of droplets, has solved problems typical of

management applications such as:

¥ Ability to modify and extend applications at runtime.

¥ Resource usage
Droplets are loaded on demand and unloaded according to a
speciÞed policy (for instance limit system resource utilisation).
A Component-based Architecture for Open, Independently Extensible Distributed Systems 149

Validation
¥ Development time
Droplet modiÞcations do not affect the entire system, hence only the
pertinent droplet has to be modiÞed, compiled, and linked, saving
signiÞcant development time with respect to rebuilding the entire
application.

¥ Tailoring and conÞguration.
2. Liaison has demonstrated that:

¥ efÞcient, slim, simple, and powerful management applications can be
created;

¥ the distributed environment can be exploited for the purpose of man-
agement;

¥ Internet technologies can be used proÞtably in network management;

¥ development of management applications for interdomain manage-
ment is feasible and hence no longer a challenge.
150 A Component-based Architecture for Open, Independently Extensible Distributed Systems

7 Conclusion
7.1. Lessons Learned

This work has been and still is a challenge. It has integrated concepts from
the software engineering world with others derived from network man-
agement and human-computer interaction experience. It is not revolution-
ary in the sense that, besides the droplet and the delayed event concepts, it
has not invented something new such as a new programming language or
a new management protocol. The strong point of this work resides in hav-
ing distilled and enhanced known ideas and concepts such as software
components, and having applied them for the Þrst time to a new Þeld,
open distributed systems (see ÒWhatÕs New in Yasmin?Ó on page 147).
Mixing known technologies with totally new solutions (as far as the
authorÕs knowledge, droplets are the only type of binary software compo-
nents that can be reloaded and added at runtime to running applications)
allowed a new type of application to be created, which has contributed
solving typical problems that affect many applications such as being mono-
lithic and difÞcult to extend.

The section ÒYasminÕs Design ChoicesÓ on page 98 explains how key archi-
tecture components have been designed, what other possible design alter-
natives there have been, and why have been dropped. This section is very
important not only in terms of describing the motivation for some design
choices but also in terms of sharing with the reader some lessons learned
during YasminÕs design.

Yasmin and Liaison have shown that the Ôdivide et imperaÕ principle is still
valid. They have demonstrated that the complexity of activities such as net-
work management can be mastered if such a complexity is not able to pen-
etrate as far as the user application but is confined to the lower layers. In
other words, the underlying system on which the user application is based
must shield the application from the complexity of the underlying proto-
cols. In addition, whatever service is provided by the underlying system has
to be accessible from both local and remote clients when security allows
this. The use of cooperation and delegation has greatly prevented existing
functionality from being duplicated and allowed slim and efficient applica-
tions to be built.

This work demonstrated that often somebody else has invented the wheel
A Component-based Architecture for Open, Independently Extensible Distributed Systems 151

Conclusion
we need. Computer science is so broad that is likely that the solution we
need already exists and we merely have to adapt it to the current problem.
This is probably a broader definition of reuse (or recycling).

7.2. Which Results can People Reuse in Other
Projects?

Given the broad scope of this thesis, which encompasses two distinct areas
such as architectures and management of open systems, it is worthwhile to
summarise those results of this research that can be applied to other
projects.

Architectural Concepts
1. Architectures, as applications, are never completed. In order to support

evolution, an architecture for software applications must clearly
separate mandatory and optional components. Mandatory components
implement the set of services that are necessary to every application
built using the architecture. Optional components implement
application-speciÞc functionality. Mandatory components constitute the
application kernel, whereas optional ones are implemented in a way
that allows them to be loaded on demand by the application and
replaced while the application is running.

2. It is very difÞcult to know in advance a) the problem size, b) future
requirements, and c) the complete set of services an application must
support. The consequence of this is that every architecture must provide
a way to extend existing applications by adding new components.

3. Architectures last longer than applications that were developed using
them. Therefore an architecture must be fully speciÞed and allow room
for future additions. This is because as soon as the architecture is used to
implement applications/frameworks, it is too late to change it without
having also modifying the applications/frameworks which make use of
it. An application, on the other hand can be developed in several stages.

4. Generic users do not exist. Every user always has very speciÞc needs.
Therefore an architecture must allow applications to be built that can be
customised/adapted/tailored by the Þnal user and rather than only by
developers.

5. Architectures must be suitable for building applications that offer the
implemented services/functionality to other applications. This allows
incremental application development and avoids existing services/
functionality to be reimplemented every time a new application needs to
be developed.

6. Modern users are accustomed to application ease of use. Developers
increasingly demand architectures/frameworks that render their task
easier.
152 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Which Results can People Reuse in Other Projects?
7. An architecture that delegates too many key decisions to the developer
is not good. This is because this policy will increase the probability that
two applications developed using the same architecture cannot
interoperate or share/reuse functionality/services.

8. Performance is always an issue, although opinion regarding this aspect
diverge. An architecture that produces elegant applications with poor
performance is useless. Usually the best compromise is to balance
design and performance in order to obtain a good design with good
performance.

9. Architectures, as applications, must not be monolithic thus allowing
developers to incrementally develop their application/framework using
portions of it, without forcing them to implement the entire architecture
at once.

Implementation Issues
1. Droplets are very general and can be proÞtably used in different

contexts whenever:

¥ different object models, libraries or frameworks need to be combined
into the same application;

¥ it is necessary to achieve runtime application evolution;

¥ applications must provide many different functionalities most of
which will be used very seldom or only by speciÞc users; hence it is
necessary to load the functionality on demand only when needed;

¥ applications have many components that need to be selectively
updated without having to modify the entire application;

¥ applications can be split into different, autonomous parts, which can
then be built/modiÞed independently from the rest of the
application.

2. Use of delayed events is suitable whenever a need exists to perform
periodic tasks without having to use limited resources such as threads
that can instead be used for other application tasks.

3. Portability is always an issue, hence Òdirty tricksÓ must be avoided or
limited to very speciÞc parts of the code and not be spread through the
code. A developer should not assume that an application will always
run on the same operating system (version).

4. Object-oriented mechanisms should be wisely used. Their abuse can
produce unpleasant side effects such as the creation of monolithic
applications. A way to prevent these problems is to use droplets which
can be implemented internally using object-oriented mechanisms.

5. Hardware and software resources must always be wisely used because
sooner or later they will no longer sufÞce. Architectures and applications
must take this into account.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 153

Conclusion
6. An application can always be optimised. Therefore optimisation must be
performed at the end of the development cycle, and code should be
written in such a way that not the entire application will have to be
rewritten when optimised pieces of it are merged with an existing
application.

7.3. Open Issues

Owing to the time constraints imposed on a PhD thesis, this work focuses
on only a subset of open systems, namely network management. Indeed it
would be interesting to investigate in detail which aspects of open systems
have not been covered by this work. In particular it remains to be identified
how the architecture has to be extended and refined in order to satisfy re-
quirements present on open systems that are not relevant to network man-
agement.

Concerning software components, however there are generally numerous
open issues to which research has not yet been able to give general answers
[Szypersky95] such as:
1. Global Application Analysis

Component software is extensible by deÞnition, i.e. never complete. As
component-based applications similar to Yasmin are (runtime)
extensible, there is no Þnal integration phase in which all components
are added to the application. Therefore a global application analysis
cannot take place; it is only possible to guarantee that the components
are working correctly. Nothing can be said about the global application
behaviour. It would be necessary to identify the parameters to be taken
into account in order to perform a limited global application analysis.

2. Application Decomposition
What are the criteria to follow in order to decompose an application into
components, thereby minimising the coupling among components?

3. Application Safety
When a component-based application fails, it is not always simple to
identify where the problem occurred because a single component may
have modiÞed the global application which then failed while
performing other operations. Application safety means that invariants
can be guaranteed. What are the component/global invariants, how do
they have to be identiÞed and how can they be enforced in order to
guarantee application safety?

4. Component Robustness
When a new component is added or replaced at runtime, it might
happen that owing to a bug in the component, the component fails and
the entire application crashes. When an application deals with coarse-
grained components, it is possible to run components in separate
address spaces and make them interact via communication channels (for
154 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Open Issues
instance pipes or shared memory). In the case of droplets or coarse-
grained components, the application and the components share the
same address space, so if a component fails, the entire application
crashes. What are the mechanisms that prevent a global application
failure? Is it sufÞcient to have a sort of security ring like the ones used
for OS/2ª drivers [Young89], where components can be promoted as
soon as their robustness has been veriÞed?

5. Remote Component Communication
When can a component part of a remote application migrate and attach
to a remote application? What are the parameters involved in this choice
(performance, available resources)? Are these parameters static or do
they vary depending on the application type?

6. Memory Management
Especially in the case of Þne-grained components, component
interaction leads to cross references on the level of individual objects. In
a truly extensible system, it is quite difÞcult, if not impossible, to know
when an object can be released again. Not releasing an object no longer
in use may lead the application to use all the available memory. Even in
the cases of COM and DSOM, which keep an object reference count, the
system relies on the developer which is responsible for manipulating the
counters properly. Is there a solution to this problem or is to having a
system that implements a garbage collector the only way to circumvent
it?

In the case of Liaison, the issues listed above can be rephrased as follows:
1. Global Application Analysis

This is an open issue because Liaison is extensible at runtime, so a global
application analysis should be done at runtime, which would not be
useful (too late), however.

2. Application Decomposition
LiaisonÕs main application is very slim and every functionality is
implemented inside the droplets. Therefore this issue can be modiÞed as
follows: how can components be decomposed? What should their
granularity be? It is obvious that the smaller the granularity, the better is,
because this makes the application more ßexible, especially when
selective components have to be replaced. Unfortunately due to this
policy, the application may become more fragile because, the larger is
the number of components, the more invariants each component has to
respect.

3. Application Safety and Component Robustness
These are open issues in Liaison and their solution is left to future work
because there is no obvious or simple solution to the problem.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 155

Conclusion
4. Remote Components Communication
In the case of Liaison, components can be migrated quite simply by
copying them into the Droplets/ directory. To be investigated is whether
it is possible to create smart applications that can decide whether it is
preferable to migrate a component or use it remotely. Based on the
authorÕs experience, these smart applications can be created if and only
if the droplet interface (see ÒDroplet InterfaceÓ on page 81) is enhanced
by adding information that allows the application to decide whether it is
the case to migrate the droplet. Possible extensions are:

typedef struct {
 [...] /* Former Droplet Interface */
 unsigned short migrationSupport, requiredOStype, requiredOSversion;
 unsigned long minMemoryRequirements, minDiskSpaceRequirements;
} DropletInfo;

Figure 37. Enhanced Droplet Interface

5. Memory Management
Liaison solves this problem by delegation:

¥ all the memory allocated by a droplet is local to the droplet itself (i.e.
it is not passed to other droplets);

¥ the droplet that allocates the memory is responsible for releasing it;

¥ if a droplet X requests a service contained in droplet Y:

¥droplet X delegates to the SM to issue the service;

¥droplet Y executes (on behalf of the SM) the service request. Hence if
there is some memory manipulation involved, droplet Y
manipulates the memory local to the service (not droplet X);

¥if the service has to return a response, it is the responsibility of
service X to allocate the memory block, which will be passed to the
service request and which will contain the response.

7.4. Future Work

As in every other thing in life, this work is far from being completed. In
addition to the work identiÞed in ÒFurther RemarksÓ on page 149, the fol-
lowing items have also been identiÞed requiring future work:

1. Study how the droplet paradigm can be enhanced in terms of:

¥ Robustness
Droplets run on the same address space of the application that uses
them. If a droplet performs a wrong operation the entire application
is affected. It would be interesting to study how droplets can be
turned into truly independent units that do not share the same
address space.
156 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Future Work
¥ Security
Identify which security mechanisms have to be added to droplets in
order to avoid applications loading/running droplets that do not
satisfy the basic security requirements.

2. Enhance YasminÕs service manager (see ÒService ManagerÓ on page 96)
in order to support transparent marshalling/unmarshalling in the case
of remote requests.

3. Identify how new component types can be adapted and plugged into a
Yasmin-based application. For instance: how can a COM component be
wrapped in a droplet in order to use it from a Yasmin-based application?

4. Study the requirements for a visual application composer based on
droplets which is able to compose applications using some basic
droplets and to develop visually new droplets as well as the code to glue
droplets.

5. Investigate how Liaison can be extended to support new management
APIs such as JMAPI and further management protocols used for very
peculiar activities not covered in this thesis.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 157

Conclusion
158 A Component-based Architecture for Open, Independently Extensible Distributed Systems

8 Glossary
Architecture
See ÒSoftware ArchitectureÓ on page 161.

ASN.1
Standard OSI notation to define abstract syntax in order to allow data to be
exchanged between non heterogeneous hosts.

CMIP
Protocol used by CMIS to transfer management information. It defines the
procedures for information transmission between two applications (ab-
stract CMIP syntax), the procedures for protocol control, and the conform-
ance testing used to test CMIP implementations.

CMIS
General communication service used by OSI for system management. It is
used to exchange management operations and notifications among man-
aged objects. It defines the set of service primitives, their parameters, and
the information necessary to describe each service primitive.

Component
See ÒSoftware ComponentÓ on page 162.

Cooperation
Interaction of several components to achieve a collective task. The activities
of a cooperative entity are the result of the cooperation of its components,
rather than of a single entity.

CORBA (Common Object Request Broker Architecture)
Architecture defined by OMG which specifies how instances contained in
an heterogeneous environment can communicate with each other regard-
less of their physical location.

Delegation
Act of delegating certain activities (otherwise performed locally) to external
entities, which perform them on behalf of the requestor.

Droplet
Software component having the following specific properties:
¥ it is not statically linked to the application but is loaded at runtime;
A Component-based Architecture for Open, Independently Extensible Distributed Systems 159

Glossary
¥ it has the ability to be replaced (i.e. a new version of the droplet can
replace a previous one) at runtime while the application is running.

Extensible System
A system that allows functionality at runtime to be added which loads only
the functionality used currently. It adds further functionality only if neces-
sary.

Framework
A framework defines an architecture by specifying and restricting the way
architecture components interact.

GDMO
Notation defined by ISO in order to harmonise the management informa-
tion definition. GDMO is a formal language that allows people to specify
managed object characteristics such as attributes, properties, and behav-
iour.

HTML (HyperText Markup Language)
Simple markup language used to create hypertext documents that are port-
able from a platform to another. Such documents are identified by URLs
(Uniform Resource Locator) and are visualised by an HTML browser.

HTTP (HyperText Transfer Protocol)
Transport protocol used to transmit multimedia documents such as hyper-
text documents, images and video. In particular, it is the protocol used to
transport HTML documents.

HTTP-based Management
Concerns system and network management using the HTTP protocol.

Independently Extensible System
Extensible system that can cope with the late addition of extensions, possi-
bly developed by different people in complete ignorance of each other, with-
out requiring a global integrity check.

Interdomain Management
Management of multiple domains by means of a single domain. A domain
is a system by means of which management is accomplished.

Management Domain
Set of resources that share a common set of attributes or that are managed
by the same entity.

MIB (Management Information Base)
Database containing the managed objects that can be added, removed, and
modified by means of management protocols.

Managed Object
Any resource managed by an open system environment. A MO represents
160 A Component-based Architecture for Open, Independently Extensible Distributed Systems

an abstraction of logic or physical resources (for instance bridge, router,
protocol elements) and their properties. Each MO is characterised by a set
of attributes, operations that can be performed on the object, behaviour, and
asynchronous notifications.

Multithreading
Software application with multiple concurrent execution flows called
threads.

Network Management
Set of tools that allow heterogeneous networks to be controlled and man-
aged both locally and remotely.

Object
Instance of an abstract data type characterised by the following properties:
encapsulation, inheritance, and polymorphism.

Object Model
Provides an organised presentation of object concepts and terminology by
defining a partial model for computation that embodies the key character-
istics of such objects. The object model describes concepts useful for client
application such as the use of objects, object creation and identity, requests
and operations, types, and signatures. It then describes concepts related to
object implementations such as methods, execution engines, and activation.

Open System
System that conforms to open standards and is proven to be portable, not
relying on a specific topology and open to extensions and to changing re-
quirements (evolution). Because a system implements open standards it
must be able to interact with other systems that implement the same set of
standards.

OSI Management
OSI Management concerns the set of activities necessary to control, coordi-
nate, and monitor relevant OSI resources.

PICS (Protocol Implementation Conformance Statement)
Document provided by vendor of an OSI system or application, in which all
implemented capabilities are clearly specified for each implemented OSI
protocol.

SNMP (Simple Network Management Protocol)
Standard protocol used to manage Internet devices, made of SMI, MIB, and
SNMP itself. SMI and MIB define and monitor the set of managed objects by
using the SNMP protocol. The SNMP protocol allows management stations
to exchange management information in a client/server fashion.

Software Architecture
The structure of the components of a program/system, their interrelation-
ships, and principles governing their design and evolution over time.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 161

Glossary
Software Component
Static abstraction with bidirectional plugs, communication channels which
allow the component to interact and communicate with the outside world.
The word ÒstaticÓ highlights the fact that components are long-lived entities
which can be stored in a software database independently of the applica-
tions that have used it. Abstract means that the component shields the soft-
ware it encapsulates from the outside by putting an opaque boundary
around it. Bidirectional emphasises the fact that other components can com-
municate with the component but also that the component can communi-
cate with other components, i.e. peer-to-peer vs. client-server mode. If the
bidirectional constraint is relaxed, then the component is called plug-in, be-
cause other components can communicate with it but not the other way
round.

System Management
Set of mechanisms used to monitor, control, and coordinate OSI resources,
and standard communication protocols used to transmit management in-
formation (see also ÒNetwork ManagementÓ).

VRML (Virtual Reality Modeling Language)
Modeling language used to describe a set of 3D elements usually called a 3D
virtual world, which are then rendered by a VRML viewer.

Web-based Management
System and network management using web technologies.

World Wide Web
Allows people to work together by combining their knowledge in a web of
hypertext documents. It is a medium for communication using computers
as a largely invisible part of the infrastructure. The web was pioneered by
an English engineer who envisioned a system able to handle various Inter-
net protocols as well as different data formats using a single consistent user
interface.
162 A Component-based Architecture for Open, Independently Extensible Distributed Systems

9 Abbreviations
3DMF Quickdraw 3D Metafile Format
API Application Programming Interface
ASE Application Service Element
ASCII American National Standard Code for Information Interchange
ASN.1 Abstract Syntax Notation One
BER Basic Encoding Rules
CBS CollaBoration Services
CCITT Consultative Comitee on International Telephone and Telegraph
CD Committee Draft
CGI Common Gateway Interface
CL CORBA-Liaison
CMIP Common Management Information Protocol
CMISE Common Management Information Service Element
COM Component Object Model
CORBA Common Object Request Broker Architecture
CS Communication Services
DIS Draft International Standard
DLL Dynamic Loadable Library
DM Droplet Manager
DP Draft Proposal
DR Draft Recommendation
EDCDIC Extended Binary-Coded Decimal Interchange Code
EM Event Manager
GOM Generic Object Model
GUI Graphical User Interface
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IAB Internet Architecture Board
ID Internet Draft
A Component-based Architecture for Open, Independently Extensible Distributed Systems 163

Abbreviations
IDL Interface DeÞnition Language
IEC International Electrotechnical Commission
IETF Internet Engineering Task Force (http://www.ietf.org/)
IS International Standard
ISO International Standards Organization
ISODE ISO Development Environment
IT&T Information Technology and Telecommunication
ITU International Telecommunications Union
JDBC Java DataBase Connectivity
JMAPI Java Management API
LAN Local Area Network
LRPC Light Remote Procedure Call
MIB Management Information Base
MID Metadata Information Database
MO Managed Object
NCSA National Center for Supercomputing Applications
NM Network Management
NMF Network Management Forum
NMS Network Management System
OAS OpenDoc Automation Services
OCX OLE Controls eXtension
ODF OpenDoc Framework
OID Object IdentiÞer
OLE Object Linking and Embedding
OMG Object Management Group
ORB Object Request Broker
OOP Object-Oriented Programming
OSA Open Scripting Architecture
OSI Open Systems Interconnection
OSIMIS OSI Management Information Service
PEPY Presentation Element Parser Yacc-based
PICS Protocol Implementation Conformance Statement
PDU Protocol Data Unit
QTCM QuickTime Component Manager
RAD Rapid Application Development
RFC Request For Comment
RMI Remote Method Invocation
SDK Software Development Kit
SM Service Manager
164 A Component-based Architecture for Open, Independently Extensible Distributed Systems

SMI Structure of the Managed Information
SOM System Object Model
SNMP Simple Network Management Protocol
SQL Structured Query Language
SSL Secure Socket Layer
STL Standard Template Library
TCL Think Class Library
TCP/IP Transmission Control Protocol/Internet Protocol
URL Uniform Resource Locator
VBX VisualBasic eXtension
VM Virtual Machine
VRML Virtual Reality Modeling Language
WD Working Draft
WIMP Windows Input Mouse Pointers
XoJIDM NMF-X/Open Joint Inter-Domain Management Task Force
XOM X/Open OSI-Abstract-Data-Manipulation API
XMP X/Open Management Protocols API
A Component-based Architecture for Open, Independently Extensible Distributed Systems 165

Abbreviations
166 A Component-based Architecture for Open, Independently Extensible Distributed Systems

10 References
[3DMF] Apple Computers Inc., QuickDraw 3D MetaÞle Format (3DMF),
October 1995.

[Abowd93] G. Abowd, R. Allen and D. Garlan, Unsing Style to Understand
Descriptions of Software Architecture, Proceedings of ACS SIG-
SOFT Ô93, Redmondo Beach, California, December 1993.

[Accetta86] M. Accetta et al., Mach: A New Kernel Foundation for UNIX
Development, Proceedings of the Summer 1986 USENIX Con-
gerence, Atlanta, 1986.

[ACSE] International Standards Organization, Information Processings
Systems - OSI - Management Information Services - Service DeÞni-
tion for Association Control Service Element (ACSE), CCITT Rec-
ommendation X.217, ISO/IEC 8649, 1992.

[Adobe96] Adobe Systems Inc., Adobe Photoshop SDK, Version 3.05, Febru-
ary 1996.

[Apple89] Apple Computer Inc., MacApp 2.0: ProgrammerÕs Guide, 1989.

[Apple93] Apple Computer Inc., Inside Macintosh: More Macintosh Toolbox,
1993.

[Apple95] Apple Computer Inc., Components Made Easy, OpenDoc Techni-
cal White Paper, March 1995.

[Apple96] Apple Computer Inc., Human Interface Toolbox, WWDC '96 Edi-
tion, May 1996.

[ASN1] International Standards Organization, SpeciÞcation of Abstract
Syntax Notation One (ASN.1), CCITT Recommendation X.208,
ISO/IEC 8824, 1988.

[Atkinson91] C. Atkinson, Object-Oriented Reuse: Concurrency and Distribu-
tion, Addison-Wesley/ACM Press, 1991.

[Ban95] B. Ban and L. Deri, Abstract Factory Revised: a Design Pattern,
IBM Zurich Research Laboratory, RZ 2787, September 1995.

[Ban96] B. Ban, Towards a Generic Object-Oriented Model for Multi-
Domain Management, Proceedings of ECOOP '96 Workshop on
Systems and Network Management, Linz, Austria, July 1996.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 167

References
[Ban97] B. Ban, A Generic Management Model for CORBA, CMIP and
SNMP, PhD Thesis, University of Zurich, Institut f�r Informa-
tik, 1997.

[Barillau97] F. Barillau, L. Deri and M. Feridun, Network Management Using
Internet Technologies, Proceedings of INM Ô97, San Diego, April
1997.

[Bernard89] G. Bernard, A. Duda, Y. Haddad, and G. Harrus, Primitives for
Distributed Computing in a Heterogeneous Local Area Network
Environment, IEEE Transactions on Software Engineering,
December 1989.

[Biggerstaff89] T. Biggerstaff and A. Perlis, Software Reusability, Volume I, Con-
cepts and Models, ACM Press, 1989.

[Birrell84] A. Birrell and B. Nelson, Implementing Remote Procedure Calls,
ACM Transactions on Computer Systems, Vol. 2, February
1984.

[Booch91] G. Booch, Object-Oriented Design with Applications, ISBN 0-8053-
0091-0, Benjamin/Cummings, 1991.

[Booch96] G. Booch and J. Rumbaugh, UniÞed Modeling Language for
Object-Oriented Programming, Version 0.9, Rational Software
Corporation, 1996.

[Bourne83] S. R. Bourne, The UNIX System, Addison-Wesley, Reading, MA,
1983.

[Box95] D. Box, Building C++ Components Using OLE2, C++ Report, pp.
29-34, March-April 1995.

[Brockschmidt93] K. Brockschmidt, Inside OLE : The Fast Track to Building Powerful
Object-Oriented Applications, Microsoft Press, 1993.

[Brown90] P. Brown, Concepts and Paradigms of Object-oriented Program-
ming, OOPS Messenges, 1(1), August 1990.

[Budd91] T. Budd, An Introduction to Object-Oriented Programming, ISBN
0-201-54709-0, Addison-Wesley 1991.

[Caldiera91] G. Caldiera, V. Basili, Identifying and Qualifying Reusable Soft-
ware Components, IEEE Computer, 24(2), February 1991.

[Cardelli94] L. Cardelli, Obliq: A Language with Distributed Scope, Digital
Technical Report, 1994.

[CGI] NCSA, CGI SpeciÞcation 1.1, http://hoohoo.ncsa.uiuc.edu/
cgi/, National Center for Supercomputing Applications, March
1996.

[Chambers93] C. Chambers, The Cecil Language: SpeciÞcation and Rationale,
Technical Report 93-03-05, University of Washington, Seattle,
March 1993.

[Champeaux93] D. de Champeaux, D. Lea and P. Faure, Object-Oriented System
Development, Addison-Wesley, 1993.
168 A Component-based Architecture for Open, Independently Extensible Distributed Systems

[Chen93] D. J. Chen and S. K. Huang, Interface for Reusable Software Com-
ponents, Journal of OO Programming Languages, January 1993.

[Chen94] D. J. Chen and D. T.K. Chen, An Experimental Study of Using
Reusable Software, Journal of OO Programming Languages,
May 1994.

[Ciupke96] O. Ciupke and R. Schmidt, Components as Context-Independent
Units of Software, ACM Computing Surveys, December 1996.

[Claris93] Claris Corporation, Claris XTND SDK, Version 2.0, 1993.

[CMIP] International Standards Organization, Information Technology -
OSI, Common Management Information Protocol (CMIP) - Part 1:
SpeciÞcation, CCITT Recommendation X.711, ISO/IEC 9596-1,
1991.

[CMIS] International Standards Organization, Information Technology -
OSI, Common Management Information Service DeÞnition (CMIS),
CCITT Recommendation X.710, ISO/IEC 9595, 1990.

[CMIS++] NMF and X/Open, CMIS++: CMISE and ACSE++ Application
Programming Interface, Issue 1.0, Draft 8, January 1996.

[Coad91] P. Coad and E. Yourdon, Object Oriented Analysis, 2nd edition,
Prentice Hall, 1991.

[Collins89] W. Collins, K. Korostoff, The Reality of OSI Management, Net-
work World, N. 128, October 1989.

[Cook92] W. Cook, Interfaces and SpeciÞcation for the Smalltalk-80 Collection
Classes, Proceedings of Object-Oriented Programming Systems,
Languages and Applications, Vancouver, Canada, October
1992.

[Coplien95] O. Coplien and D. Schmidt, Pattern Languages of Program
Design, Addison-Wesley, 1995.

[Cox91] B. Cox, and A. Novobilski, Object-Oriented Programming: An
Evolutionary Approach, 2nd Edition, ISBN 0-201-54834-8, Addi-
son-Wesley, 1991.

[Crelier94] R. Crelier, Separate Compilation and Module Extension, PhD The-
sis no. 10650, Swiss Federal Institute of Technology Z�rich,
ETH Z�rich, 1994.

[Damocles95] Deutsche Telecom Berkom, Damocles v. 1.0, 1995.

[Deri92] L. Deri and P. Artico, System and Network Management, Proceed-
ings of AICA Ô92, Genova, Italy, July 1992.

[Deri95a] L. Deri and A. Weder, WebbinÕ CMIP, Poster proceeding of the
4th International WWW Conference, Darmstadt, Germany,
April 1995.

[Deri95b] L. Deri and E. Mattei, An Object-Oriented Approach to the Imple-
mentation of OSI Management, Computer Networks and ISDN
Systems, Vol. 27, 1995.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 169

References
[Deri95c] L. Deri, Droplets: Breaking Monolithic Applications Apart, IBM
Research Report RZ 2799, September 1995.

[Deri95d] L. Deri, Mapping Protocol Requests to URLs, IBM Technical Dis-
closure SZ8-95-054, December 1995.

[Deri95e] L. Deri, Java Dynamic Class Loader, IBM Research Report SZ8-
95-060, December 1995.

[Deri96a] L. Deri, SurÞn' Network Management Resources Across the Web,
Proceedings of 2nd Int. IEEE Workshop on Systems and Net-
work Management, Toronto, June 1996.

[Deri96b] L. Deri, Network Management for the 90s, Proceedings of ECOOP
'96 Workshop on Systems and Network Management, Linz,
Austria, July 1996.

[Deri96c] L. Deri, HTTP-based CMIP/SNMP Management, Internet Draft
Draft (draft-deri-http-mgmt-00.txt), November 1996.

[Deri97a] L. Deri and B. Ban, Static vs. Dynamic CMIP/SNMP Network
Management Using CORBA, Proceedings of IS&N Ô97, Como,
Italy, May 1997.

[Deri97b] L. Deri and D. Manikis, VRML: Adding 3D to Network Manage-
ment, Proceedings of IS&N Ô97, Como, Italy, May 1997.

[Deri97c] L. Deri, Rapid Network Management Application Development,
Proceedings of ECOOP '97 Workshop on Object Oriented Tech-
nology for Telecommunications Services Engineering,
Jyv�skyl�, Finland, June 1997.

[Deri97d] L. Deri, Yasmin: a Component-based Architecture for Software
Applications, IBM Research Report RZ 2899, Proceedings of
STEP Ô97, London, July 1997.

[Dittrich96] A. Dittrich and M. H�ft, Integration of a TMN-based Network
Management Platform into a CORBA-based Environment, Proceed-
ings of NOMS '96, 1996.

[DSOM] IBM Corporation, DSOM Development Toolkit, October 1994.

[Ellis90] M. Ellis and B. Stroustrup, The Annotated C++ Reference Manual,
Addison-Wesley, 1990.

[Gamma91] E. Gamma, Object-Oriented Software Development based on ET++:
Design Patterns, Class Library, Tools, PhD Thesis, University of
Zurich, Institut f�r Informatik, 1991.

[Gamma94] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1994.

[Garlan93] D. Garlan and M. Shaw, An Introduction to Software Architecture,
Advances in Software Engineering, Vol. 1, World ScientiÞc
Publishing Company, 1993.
170 A Component-based Architecture for Open, Independently Extensible Distributed Systems

[Garlan95] D. Garlan, R. Allen and J. Ockerbloom, Exploiting Style in Archi-
tectural Design Environments, Proceedings of ACM SIGSOFT
Ô94, ACM Press, December 1994.

[GDMO] International Standards Organization, Information Technology -
OSI - Management Information Services - Structure of Management
Information - Part 4: Guidelines for the DeÞnition of Managed
Objects, CCITT Recommendation X.722, ISO/IEC 10165-4,
1992.

[GDMO_XOM] X/Open Company Ltd., GDMO to XOM Translation Algorithm,
X/Open Document P319, ISBN 1-85912-023-7, March 1994.

[Geiger94] G. Geiger, W. Allen, A. Majtenyi and P. Reder, IBM cmipWorks:
Technical Paper, IBM Corporation, March 1994.

[Genilloud96] G. Genilloud, Towards a Distributed Architecture for Systems
Management, PhD Thesis no. 1588, Ecole Polytechnique F�d�-
rale de Lausanne, December 1996.

[Goldberg83] A. Goldberg and D. Robson, Smalltalk-80: The language and its
Implementation, Addison-Wesley, 1983.

[Goldszmidt93] G. Goldszmidt and G. Yemini, Evaluating Management Decisions
via Delegation, IEEE/IFIP Int. Symposium on Network Man-
agement, April 1993.

[Gr�goire94] J.-Ch. Gr�goire, Models and Support Mechanisms for Distributed
Management, Proceedings of DSOM Ô94, 1994.

[Halsall90] F. Halsall, N. Modiri, An Implementation of an OSI NM System,
IEEE Network Magazine, July 1990.

[Hamilton93] G. Hamilton, M. Powell and J. Mitchell, Subcontract: A Flexible
Base for Distributed Programming, Proceedings of the 14th Sym-
posium on Operating Systems Principles, Asheville NC,
December 1993.

[Helm90] R. Helm, I. Holland and D. Gangopadhyay, Contracts: Specify-
ing Behavioral Compositions in Object-Oriented Systems, ACM
SIGPLAN Notices, 25(10), October 1990.

[Hierro94] J. Hierro, Architectural Issues For Using Corba Technology in OSI
Systems Management, Append of draft to XoJDM forum, August
1994.

[Hook88] S. Hook, Objective-C Compiler Version 4: User Reference Manual,
StepStone Corporation, 1998.

[HP_DM] Hewlett-Packard Corporation, HP OpenView Distributed Man-
agement: Platform DeveloperÕs Kit, October 1996.

[HTML] D. Raggett, HyperText Markup Language SpeciÞcation Version 3.0
(HTML), Internet Draft, April 1995.

[HTTP] T. Berners-Lee, R. Fielding and H. Nielsen, HyperText Transfer
Protocol (HTTP/1.0), Internet Draft, October 1995.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 171

References
[Hudis96] I. Hudis and A. Sinclair, Introduction to HyperMedia Manage-
ment, Internet Draft, December 1996.

[IBM94a] IBM Corporation, SOM Development Toolkit: An Introductory
Guide to the System Object Model and its Accompanying Frame-
works, October 1994.

[IBM94b] IBM Corporation, The System Object Model (SOM) and the Com-
ponent Object Model (COM): a comparison of technologies summa-
rized, July 1994.

[IBM95a] IBM Corporation, Agent User's Guide for IBM NetView TMN
Portable Agent Facility, Release 2.1, IBM TMN Products, GC31-
8209-00, October 1995.

[IBM95b] IBM Corporation, IBM VisualAge SmallTalk: UserÕs Guide, 1995.

[IEEE94] IEEE Software, Software Reuse, 11(5), 1994.

[IIOP] Object Management Group, CORBA 2.0/IIOP SpeciÞcation, Ver-
sion 2.0, PTC/96-08-04, June 1995.

[ISO8825] International Standards Organization, Information Processings
Systems - OSI - SpeciÞcation for Basic Encoding Rules for Abstract
Syntax Notation One (ASN.1), CCITT Recommendation X.208,
ISO/IEC 8825, 1989.

[ISO9092-1] International Standards Organization, Text Communication -
Open System Interconnection - Remote Operations (ROSE): Model,
Notation and Service DeÞnition, CCITT Recommendation X.219,
ISO/IEC 9092-1, 1989.

[ISO9092-2] International Standards Organization, Text Communication -
Open System Interconnection - Remote Operations (ROSE): Protocol
SpeciÞcation, CCITT Recommendation X.229, ISO/IEC 9092-2,
1989.

[ISO10040] International Standards Organization, Information Processing
System - Open System Interconnection - System Management Over-
view, CCITT Recommendation X.701, ISO/IEC 10040, 1992.

[ISO10164-1] International Standards Organization, Information Processing
System - Open System Interconnection - Object Management Func-
tion, CCITT Recommendation X.730, ISO/IEC 10164-1, 1993.

[ISO10164-2] International Standards Organization, Information Processing
System - Open System Interconnection - State Management Func-
tion, CCITT Recommendation X.731, ISO/IEC 10164-2, 1993.

[ISO10164-3] International Standards Organization, Information Processing
System - Open System Interconnection - Objects and Attributes for
Representing Relationships, CCITT Recommendation X.732,
ISO/IEC 10164-3, 1993.

[ISO10164-4] International Standards Organization, Information Processing
System - Open System Interconnection - Alarm Reporting Function,
CCITT Recommendation X.733, ISO/IEC 10164-4, 1992.
172 A Component-based Architecture for Open, Independently Extensible Distributed Systems

[ISO10164-5] International Standards Organization, Information Processing
System - Open System Interconnection - Event Report Management
Function, CCITT Recommendation X.734, ISO/IEC 10164-5,
1993.

[ISO10164-6] International Standards Organization, Information Processing
System - Open System Interconnection - Log Control Function,
CCITT Recommendation X.735, ISO/IEC 10164-6, 1993.

[ISO10164-9] International Standards Organization, Information Processing
System - Open System Interconnection - Objects and Attributes for
Access Control, CCITT Recommendation X.741, ISO/IEC 10164-
9, 1995.

[ISO10164-10] International Standards Organization, Information Processing
System - Open System Interconnection - Accounting Meter Func-
tion, CCITT Recommendation X.742, ISO/IEC 10164-10, 1995.

[ISO10164-11] International Standards Organization, Information Processing
System - Open System Interconnection - Workload Monitoring
Function, CCITT Recommendation X.739, ISO/IEC 10164-11,
1995.

[ISO10165-1] International Standards Organization, Information Technology -
OSI - Management Information Services - Structure of Management
Information - Part 1: Management Information Model, CCITT Rec-
ommendation X.720, ISO/IEC 10165-1, 1992.

[ISO10165-2] International Standards Organization, Information Technology -
OSI - Management Information Services - Structure of Management
Information - Part 2: DeÞnition of Management Information, CCITT
Recommendation X.721, ISO/IEC 10165-2, 1992.

[ISO10165-5] International Standards Organization, Information Technology -
OSI - Management Information Services - Generic Management
Information, CCITT Recommendation X.721, ISO/IEC 10165-5,
1992.

[ISO7498-4] International Standards Organization, Information processing
systems - Open Systems Interconnection - Basic Reference Model -
Part 4: Management Framework, ISO/IEC 7498-4, 1989.

[ISODE] M. Rose, J. Onions, C. Robbins, The ISO Development Environ-
ment: User's Manual, Version 8.0, June 1992.

[Jander96] M. Jander, Web-based Management: Welcome to the Revolution,
Data Communications, pp. 39-53, November 21, 1996.

[JavaBeans] Sun Microsystems, JavaBeans: API SpeciÞcation, Version 1.00A,
JavaSoft, December 1996.

[Jazayeri95] M. Jazayeri, Component Programming: a Fresh Look at Software
Components, Fifth European Software Engineering Conference,
Barcelona, Spain, September 1995.

[Jeffree92] Jeffree et al., Technical Guide for OSI Management, Version 1.2,
British Crown, January 1992.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 173

References
[JMAPI] Sun Microsystems, Java Management API: ProgrammersÕs Guide,
Part No. 802-6616-01, Revision A, November 1996.

[Joch96] A. Joch, Killer Components, Byte Magazine, January 1996.

[Johnson88] R. Johnson and B. Foote, Designing Reusable Classes, Journal of
Object-Oriented Programming, June/July 1988.

[Johnson91a] R. Johnson and V. Russo, Reusing Object-Oriented Designs, Univ.
of Illinois, TR UIUCDCS 91-1696, 1991.

[Johnson91b] R. Johnson and J. Zweig, Delegation in C++ , JOOP, 4(11),
November 1991.

[Johnson93] R. Johnson, How to Design Frameworks, Notes from OOPSLA,
1993.

[Joseph90] C. Joseph, K. Muralidhar, Integrated Network Management in an
enterprise environment, IEEE Network Magazine, July 1990.

[Joymer92] I. Joymer, A C++ Critique, April 1992.

[Karlsoon95] E. Karlsson, Software Reuse: A Holistic Approach, ISBN 0-471-
95819-0, John Wiley & Sons, 1995.

[Kasteleijn97] W. Kasteleijn, Web based Management, M.Sc. Thesis, University
of Twente, Department of Computer Science, April 1997.

[Kernighan88] B. Kernighan and D. Ritchie, The C Programming Language,
Prentice Hall, 1988.

[Klerer88] S. Klerer, The OSI Management Architecture: an Overview, IEEE
Network, 2(2), March 1988.

[Knight94] G. Knight, S. Bhatti and L. Deri, Secure Remote Management in
the Esprit MIDAS Project, Proceedings of IFIP Ô94, Barcelona,
Spain, June 1994.

[Knight95] G. Knight, Wombats, University College of London, 1995.

[Knut73] D. Knut, The Art of Computer Programming, Vol. 1, 2 and 3, Add-
ison-Wesley, 1973.

[Kong96] Q. Kong and G. Chen, Integrating CORBA and TMN Environ-
ments, Proceedings of NOMS '96, 1996.

[Kr�ger92] C. Kr�ger, Software Reuse, ACM Computing Survey 24(2), June
1992.

[Leeb96] A. Leeb, A Flexible Object Architecture for Component Software,
MasterÕs Thesis, MIT, June 1996.

[Lewis95] T. Lewis, et al., Object-Oriented Application Frameworks, ISBN 1-
884777-06-6, Manning Publications, 1995.

[Lindenberg90] J. Lindenberg, NetWork Communications, Universit�t Karlsruhe,
Institut f�r Betriebs und Dialogsysteme, 1990.

[Linton87] M. Linton and P. Calder, The Design and Implementation of Inter-
views, Proceedings of USENIX C++ Workshop, Santa Fe, NM,
November 1987.
174 A Component-based Architecture for Open, Independently Extensible Distributed Systems

[L�hr93] P. L�hr, Concurrency Annotations for Reusable Software, Commu-
nications of the ACM, 36(9), September 1993.

[Maes87] P. Maes, Concepts and Experiments in Computational Reßection,
Proceedings of the 2nd OOPSLA Conference, pp. 147-155, 1987.

[Magee92] J. Magee, N. Dulay and J. Kramer, Structuring Parallel and Dis-
tributed Programs, Proceedings of Int. Workshop on COnÞgura-
ble Distributed Systems, London, March 1992.

[Magee95] J. Magee and J. Kramer, Modelling Distributed Software Architec-
tures, Proceedings of the 1st Int. Workshop on Architectures for
Software Systems, April 1995.

[Marais96] J. Marais, Design and Implementation of a Component Architecture
for Oberon, PhD Thesis no. 11697, Swiss Federal Institute of
Technology Z�rich, ETH Z�rich, 1996.

[Marben95] Marben Products, Inc., CMIP Agent Toolkit, Draft 1.2, Novem-
ber 1995.

[Mathews90] D. C. Mathews, Static and Dynamic Type Checking, Bancilhon &
Buneman, 1990.

[M�tzel96] K. M�tzel and W. Bischofberger, The Any Framework: A Prog-
matic Approach to Flexibility, Proceedings of 2nd USENIX Con-
ference of Object-Oriented Technologies and Systems, Toronto,
June 1996.

[McIlroy69] D. McIlroy, Mass-produced Software Components, NATO Confer-
ence, 1969.

[Metrowerks96] Metrowerks Corporation, Codewarrior IDE Plugin API SpeciÞca-
tion, Version 1.5, April 1996.

[Meyer87] B. Meyer, Reusability: The Case for Object-Oriented Design, IEEE
Software, 4(2), March 1987.

[Meyer88] B. Meyer, Object-Oriented Software Construction, Prentice Hall,
1988.

[Meyer95] K. Meyer, et al., Decentralizing Control and Intelligence in Network
Management, Proceedings Int. Symposium on Integrated Net-
work Management, May 1995.

[Micallef88] J. Micallef, Encapsulation: Reusability and Extensibility in Object
Oriented Programming Languages, Journal of OO Programming
Lang., April/May 1988.

[Microsoft92] Microsoft Corporation, Visual Basic, Microsoft Press, 1992.

[Microsoft93a] Microsoft Corporation, Object Linking and Embedding v.2
(OLE2): Programmer's Reference, Vols. 1 and 2, Microsoft Press,
1993.

[Microsoft93b] Microsoft Corporation, Component Objects: Technology Overview,
September 1993.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 175

References
[Microsoft95] Microsoft and Digital Corporation, The Component Object Model
SpeciÞcation, Draft Version 0.9, October 1995.

[Nackman94] L. Nackman and J. Barton, Base-Class Composition with Multiple
Derivation and Virtual Bases, IBM T.J. Watson Research Center,
1994.

[Nierstrasz90] O. Nierstrasz and M. Papathomas, Viewing Objects as Patterns of
Communicating Agents, Proceedings OOPSLA/ECOOP '90,
ACM SIGPLAN Notices, 25(10), October 1990.

[Nierstrasz92] O. Nierstrasz, S. Gibbs and D. Tsichritzis, Component-Oriented
Software Development, Communications of the ACM, 35(9), Sep-
tember 1992.

[Nierstrasz95] O. Nierstrasz and D. Tsichritzis, Object-Oriented Software Com-
position, ISBN 0-13-220674-9, Prentice Hall, 1995.

[OMG91] Object Management Group, The OMG Object Model v.0.9, Object
Management Group/Object Model Task Force, Boulder, CO,
1991.

[OMG92] Object Management Group, Object Management Architecture
Guide, OMG TC Document 92.11.1, Revision 2.0, September
1992.

[OMG95] Object Management Group, The Common Object Request Broker:
Architecture and SpeciÞcation, Revision 2.0, July 1995.

[OMNIPoint93] Network Management Forum, Discovering OMNIPoint, PTR
Prentice Hall, New Jersey, 1993.

[Ousterhout94] J. Ousterhout, The Tcl Language and the Tk Toolkit, Addison-Wes-
ley, 1994.

[OSIMIS] UCL Network and System Management, The OSI Management
Information Service: UserÕs Manual, Version 4, August 1996.

[Pacheco96] X. Pacheco and S. Teixeira, Delphi 2 DeveloperÕs Guide, 2nd edi-
tion, ISBN 0-672-30914-9, Borland Press, 1996.

[Pavlou91] G. Pavlou, G. Knight and S. Walton, Experience of Implementing
OSI Management Facilities, Proceedings of 2nd Int. Symposium
on Integrated Network Management, Washington, April 1991.

[Pavlou93] G. Pavlou, S. Bhatti and G. Knight, The OSI Management Infor-
mation Service: User's Manual, Version 1.0, University College of
London, February 1993.

[Pavlou96] G. Pavlou and T. Tin, A CMIS-capable Scripting Language and
Associated Lightweight Protocol for TMN Applications, IEEE Com-
munications, 34(9), September 1996.

[Petzold95] C. Petzold, Programming Windows 95, Microsoft Programming
Series, Microsoft Press, 1995.

[PÞster96] C. PÞster and C. Szypersky, Why Objects Are Not Enough, Pro-
ceedings of 1st Int. Component Users Conference (CUC Ô96),
Munich, Germany, July 1996.
176 A Component-based Architecture for Open, Independently Extensible Distributed Systems

[Quinn93] P. Quinn and G. Preoreasa, Reconciling Object Models for Systems
and Network Management, UNIX System Laboratories Inc., 1993.

[Qwerin91] N. Qwerin, Open Systems: a Handbook, November 1991.

[Reilly97] J. Reilly, P. Niska, L. Deri and D. Gantenbein, Enabling Mobile
Network Managers, Proceedings of the 6th Int. WWW
Conference, Santa Clara, CA, April 1997.

[RFC1155] M. Rose and K. McCloghrie, Structure and Identification of
Management Information for TCP/IP-based internets, RFC 1155,
May 1990.

[RFC1156] K. McCloghrie and M. Rose, Management Information Base for
Network Management of TCP/IP-based Internets, RFC 1156, May
1990.

[RFC1158] M. Rose, Management Information Base for Network Management of
TCP/IP-based Internets: MIB-II, RFC 1158, May 1990.

[RFC1351] J. Davin, J. Galvin and K. McCloghrie, SNMP Administrative
Model, RFC 1351, July 1992.

[RFC1352] J. Galvin, K. McCloghrie and J. Davin, SNMP Security Protocols,
RFC 1352, July 1992.

[RFC1902] J. Case, K. McCloghrie, M. Rose and S. Waldbusser, Structure
of Management Information for Version 2 of the Simple Network
Management Protocol (SNMPv2), RFC 1902, January 1996.

[RFC1905] J. Case, K. McCloghrie, M. Rose and S. Waldbusser, Protocol
Operations for Version 2 of the Simple Network Management Proto-
col (SNMPv2), RFC 1905, January 1996.

[RFC1907] J. Case, K. McCloghrie, M. Rose and S. Waldbusser,
Management Information Base for Version 2 of the Simple Network
Management Protocol (SNMPv2), RFC 1907, January 1996.

[Rice95] J. Rice, A. Farquhar, P. Piernot and T. Gruber, Lessons Learned
Using the Web as as Application Interface, Knowledge Sharing
Technology Project, Stanford University, 1995.

[Rochkind85] M. Rochkind, Advanced Unix Programming, Prentice Hall, 1985.

[Rose89] M. Rose, The ISO Development Environment: UserÕs Manual, The
Wollongong Group, 5.0 edition, March 1989.

[Rose90] M. Rose, The Open Book: a Practical Perspective on OSI, ISBN 0-
13-643016-3, Prentice Hall, 1990.

[Rumbaugh91] J. Rumbaugh and others, Object Oriented Modeling and Design,
Prentice Hall, 1991.

[Rumbaugh94] J. Rumbaugh, The Life of an Object Model: how the Object Model
Changes During Development, Journal of Object-Oriented Pro-
gramming, March/April 1994.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 177

References
[Rutt94] T. Rutt, Comparison of the OSI management, OMG and Internet
management Object Models, report of Joint XOpen/NM Forum
Inter-Domain Management Task Force, March 1994.

[Sawitzki92] G. Sawitzki, The Network Project: Distributed Computing on the
Macintosh, develop, Issue 11, August 1992.

[Schmidt95] C. Schmidt and M. Sevcik, Do-It-Yourself TMN Applications by
Visual Programming Methods, IEEE Communications Magazine,
November 1995.

[Sch�nw�lder95] J. Sch�nw�lder and H. Langend�rfer, Tcl Extensions for Network
Management Applications, Comp. Science Dept., Univ. Of Braun-
schweig, May 1995.

[Sch�rfeld94] U. Sch�rfeld, D. Gantenbein, Bilingual Agent: DSOM Access to
X.700 Agent, IBM Zurich Research Laboratory, March 1994.

[SGI94] Silicon Graphics Inc., OpenInventor C++ Reference Manual, Add-
ison-Wesley, 1994.

[Shapiro86] M. Shapiro, Structure and Encapsulation in Distributed Systems:
the Proxy Principle, 6th Int. Conference on Distributed Comput-
ing Systems, Boston, Mass., May 1986.

[Shaw94] M. Shaw and D. Garlan, Characteristics of Higher-level Languages
for Software Architecture, CMU Technical Report CMU-CS-94-
210, Carnagie Mellon University, December 1994.

[Shaw95a] M. Shaw and D. Garlan, Formulations and Formalisms in Software
Architecture, Vol. 1000, Springer-Verlag Lecure Notes in Com-
puter Science, 1995.

[Shaw95b] M. Shaw, Architectural Issues in Software Reuse: itÕs not just the
functionality, itÕs the packaging, Proceedings on the Symphosium
on Software Reuse, April 1995.

[Shaw96] M. Shaw and D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline, Prentice Hall, 1996.

[SimpleTimes] The Simple Times Newsletter,Emerging Management Technolo-
gies, http://www.simple-times.org/, 4(3), July 1996.

[Sloman94] M. Sloman, Network and Distributed Systems Management, Addi-
son-Wesley, 1994.

[Smith92] D. Smith and J. Susser, A Component Architecture for Personal
Computer Software, in Languages for Developing User Inter-
faces, ed. B. Myers, Jones & Bartlett, 1992.

[SNMP] J. Case, M. Fedor, M. Schoffstall and C. Davin, Simple Network
Management Protocol (SNMP), RFC 1157, May 1990.

[Solstice] Sun Microsystems, Solstice TMN Agent Toolkit, 1996.

[Soukouti95] N. Soukouti, Managing OSI Objects Using a CORBA Manager,
Append of draft to XoJIDM Forum, 1995.
178 A Component-based Architecture for Open, Independently Extensible Distributed Systems

[Staringer94] W. Staringer, Constructing Applications from Reusable Compo-
nents, IEEE Software, 11(5), September 1994.

[Stevens90] R. Stevens, Unix Network Programming, ISBN 0-13-949876-1,
Prentice Hall, 1990.

[Stroustrup91] B. Stroustrup, The C++ Programming Language, Second Edition,
Addison-Wesley, 1991.

[Sun96a] Sun Microsystems, The Java Programming Language, ISBN-0-201-
63455-4, Addison-Wesley, 1996.

[Sun96b] Sun Microsystems, Java Management API (JMAPI): ProgrammerÕs
Guide, Part No. 802-6616-01, November 1996.

[Symantec93a] Symantec Corporation, Bedrock Architecture, 1993.

[Symantec93b] Symantec Corporation, THINK Class Library Guide, 1993.

[Szypersky95] C. Szypersky, Component-Oriented Programming: A ReÞned Vari-
ation on Object-Oriented Programming, The Oberon Tribune, 1(2),
December 1995.

[Szypersky96] C. Szypersky, Independently Extensible Systems: Software Engi-
neering Potential and Challenges, Proceedings of 19th Australa-
sian Computer Science Conference, Melbourne, Australia,
February 1996.

[Taligent93] Taligent Inc., Leveraging Object-Oriented Frameworks, 1993.

[Taligent94] Taligent Inc., Taligent's Guide to Designing Programs: Well-Man-
nered Object-Design in C++, Addison-Wesley, 1994.

[Taligent95a] S. Cotter and M. Potel, Inside Taligent Technology, ISBN 0-201-
40970-4, Addison-Wesley, October 1995.

[Taligent95b] Taligent Inc., The Power of Frameworks, Addison-Wesley, 1995.

[Tanenbaum96] A. Tanenbaum, Computer Networks, 3rd Edition, ISBN 0-13-
349945-6, Prentice Hall, 1996.

[Theimer89] M. Theimer and K. Lantz, Finding Idle Machines in a Worksta-
tion-Based Distributed System, IEEE Transactions on Software
Engineering, November 1989.

[Tin95] T. Tin, G. Pavlou and R. Shi, Tcl-MCMIS: Interpreted Manage-
ment Access Facilities, Proceedings of DSOM '95, October 1995.

[TMN++96] X/Open and Network Management Forum, TMN++: CMIP
APIs, Preliminary SpeciÞcation, 1996.

[Tsichritzis89] D. Tsichritzis, Object-Oriented Development for OpenSystems,
Proceedings of IFIP Ô89, North-Holland, San Francisco, August
1989.

[Udell94] J. Udell, Componentware, Byte, May 1994.

[Ungar87] D. Ungar and R. Smith, Self: The Power of Simplicity, OOPSLA
Ô87 Conference Proceedings, October 1987.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 179

References
[URL] T. Berners-Lee, Uniform Resource Locators (URL), Internet Draft,
03/21/1994.

[Vertel97] Vertel Corporation and Microsoft Corporation, Accessing TMN
Through Web-Based Enterprise Management, White Paper, Febru-
ary 1997.

[VRML] G. Bell, A. Parisi and M. Pesce, The Virtual Reality Modeling Lan-
guage (VRML), Version 1.0, May 1995.

[Wall96] L. Wall, T. Christiansen and R. Schwartz, Programming Perl,
Second Edition, ISBN 1-56592-149-6, OÕReilly & Associates,
1996.

[Waskiewicz95] F. Waskiewicz, An Object-Oriented Framework for Manufacturing
Applications, OMG BOMSIG, Ottawa, Canada, 1995.

[Wayner96] P. Wayner, Net Programming for the Masses, Byte, February 1996.

[Wayt94] G. Wayt, Software's Chronic Crisis, ScientiÞc American, Septem-
ber 1994.

[Weck96] W. Weck, Independently Extensible Component Frameworks, Insti-
tute of ScientiÞc Computing, ETH Z�rich, 1996.

[Wirfs-Brock90] R. Wirfs-Brock, B. Wilkerson and L. Wiener, Designing Object-
Oriented Software, Prentice Hall, 1990.

[Wegner87] P. Wegner, Dimensions of Object-Based Language Design, Proceed-
ings of OOPSLA '87, ACM SIGPLAN Notices, Vol. 22, Orlando,
Florida, December 1987.

[Weinand88] A. Weinand, E. Gamma and R. Marty, ET++: An Object-oriented
Application Framework in C++, ACM OOPSLA Ô88 Conference
Proceedings, San Diego, CA, 46-57, September 1988.

[XMP] X/Open Company Ltd., Systems Management: Management Pro-
tocol API (XMP), X/Open Document C306, ISBN 1-85912-027-
X, March 1994.

[XOBJ] Finsiel S.p.A., X/OBJ Agent Platform: User Documentation, 1994.

[XoJIDM95a] Joint Inter-Domain Working Group, X/Open and Network
Management Forum, Inter-Domain Management SpeciÞcations:
SpeciÞcation Translation, April 1995.

[XoJIDM95b] Joint Inter-Domain Working Group, X/Open and Network
Management Forum, Inter-Domain Management SpeciÞcations:
Preliminary CORBA/CMISE Interaction Translation Architecture,
April 1995.

[XOM] X/Open Company Ltd., OSI-Abstract-Data Manipulation API
(XOM), X/Open Document C315, ISBN 1-85912-008-3, Febru-
ary 1994.

[Yang96] Z. Yang and K. Duddy, CORBA: a Platform for Distributed Object
Computing, Operating Systems Review, 30(2), April 1996.
180 A Component-based Architecture for Open, Independently Extensible Distributed Systems

[Yemini91] Y. Yemini, G. Goldszmidt and S. Yemini, Network Management
by Delegation, Proceedings of 2nd Int. Symphosium on Inte-
grated Network Management, April 1991.

[Young89] M. Young, Software tools for OS/2: Creating Dynamic Link Librar-
ies, ISBN 0-201-51787-6, July 1989.

[Zwemmer96] M. Zwemmer, F. van Hengstum and M. Sinderen, Developing a
SNMP Protocol Entity in Object-Oriented Perl, Proceedings of
ECOOP '96 Workshop on Systems and Network Management,
Linz, Austria, July 1996.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 181

References
182 A Component-based Architecture for Open, Independently Extensible Distributed Systems

A Network Management
1.1. OSI Network Management

1.1.1. The OSI Management Standards

ISO (International Standards Organization), the international organisation
for standardisation, and IEC (International Electrotechnical Commission),
the international electrotechnical committee, collaborate in a programme of
international standardisation for information technology, of which OSI
(Open Systems Interconnection) is part. CCITT (Consultative Committee on
International Telephone and Telegraph), the equivalent of OSI in the tele-
communications world, is responsible for international recommendations
governing interworking between public communication networks. Years
ago, CCITT joined with ISO/IEC in an effort to develop standards for OSI.
In the area of OSI network management, ISO/IEC and CCITT have jointly
published a set of core standards. In addition, the two organisations will
publish further standards and recommendations focusing on their respec-
tive interests, which do not overlap. For example, CCITT has released some
recommendations concerning the management of the internals of public
data networks and public telephone exchanges topics, which are not rele-
vant to ISO/IEC.
The development of new standards and recommendations follows a well
specified procedure. Once a topic of interest has been identified, a working
group is formed. This group then produces drafts, which are circulated and
reviewed by member organisations. Within ISO/IEC, when a draft docu-
ment can potentially become a standard, it is turned into a Working Draft
(WD). It then progresses to a Committee Draft (CD) also known as Draft Pro-
posal (DP), and then Draft International Standard (DIS) before becoming rati-
fied as a full International Standard (IS). Owing to this long process and to the
set of formal ballots necessary, a CD is turned into an IS in not less than two
years from submission of the CD. CCITT has Draft Recommendations (DR),
which are turned into Recommendations on a four-year cycle although expe-
dited procedures can be used when necessary. The relative slowness of the
standardisation process is one reason that pushed many organisations to
pay more attention to Internet standards, which are approved in a shorter
amount of time, making them more suitable for rapidly changing technolo-
gy.
Many management standards are currently under development, especially
A Component-based Architecture for Open, Independently Extensible Distributed Systems 183

in the area of telecommunications networks, where new digital technolo-
gies are replacing analog ones. The following table contains a summary of
the core OSI management standards.

Table 1. Core OSI Standards

1.1.2. OSI Reference Model

In order to reduce their complexity, computer networks have been divided
into layers, where layer N of host A talks with layer N of host B. The rules
and the conventions used during the communication are called N-layer pro-
tocols. Entities that are part of the same layer but on different hosts are called
peer processes. Data are not transmitted directly from layer N of host A to lay-
er N of host B but they cross the layers N..1 of each host according to the fol-
lowing picture.

Table 2. Layered Network Communications

Between two adjacent services there is an interface which defines the primi-
tives and the services offered by a level to the one immediately below it. The

ISO/IEC CCITT Standard Name

7498-4 X.700 OSI Management Framework

8824 X.208 Specification of Abstract Syntax Notation One (ASN.1)

8825 X.209 Basic Encoding Rules for Abstract Syntax Notation One (BER)

9072-1 X.219 Remote Operations: Model, Notation and Service Definition (ROSE)

9072-2 X.229 Remote Operations: Protocol Specification

9595 X.710 Common Management Information Service (CMIS)

9596-1 X.711 Common Management Information Protocol (CMIP)

10040 X.701 Systems Management Overview

10164-1 X.730 Object Management Function

10164-2 X.731 State Management Function

10164-3 X.732 Objects and Attributes for Representing Relationships

10164-4 X.733 Alarm Reporting Function

10164-5 X.734 Event Report Management Function

10164-6 X.735 Log Control Function

10164-9 X.741 Objects and Attributes for Access Control

10164-10 X.742 Accounting Meter Function

10164-11 X.739 Workload Monitoring Function

10165-1 X.720 Management Information Model (MIM)

10165-2 X.721 Definition of Management Information (DMI)

10165-4 X.722 Guidelines for the Definition of Managed Objects (GDMO)

10165-5 X.724 Generic Management Information (GMI)

Layer N

Layer N-1

Layer 1

Layer N

Layer N-1

Layer 1
184 A Component-based Architecture for Open, Independently Extensible Distributed Systems

OSI Network Management
set of these levels, usually called a stack, is the network architecture. The ar-
chitecture specification contains the information necessary to enable people
to write software applications or build network devices which can operate
with the specified protocols.
OSI has defined a seven-layer network architecture, usually called the OSI
Stack, and denoted the OSI Reference Model.

Figure 1. OSI Reference Model (OSI Stack)

Note that the OSI Reference Model is not a network architecture because it
does not exactly specify the services and the protocols used by each layer
but simply defines how each layer is supposed to behave.

The physical layer is responsible for the transmission of bits through a phys-
ical communication channel to a directly connected peer. In addition, it has
to guarantee that every bit sent has been received by the peer. At this layer
the mechanical and electrical specifications, the interface types, and the
physical medium are defined.
The data-link layer is responsible for reliably transmitting data to a directly
connected peer. This is done by splitting data into data frames (typically of
100 bytes), sending them sequentially, and handling the acknowledge
frames returned by the peer. Because the physical layer transmit bits with-
out caring about their structure, the data-link layer is responsible for split-
ting data into frames and packing them into the original structure.
The network layer is responsible for the operations concerning the various
subnetworks. It has to be able to find a path through which data can arrive
to the final destination (routing), to control traffic congestion (for instance
through a push-back mechanism), to convert the information (for instance
to encode the receiver address), and to split data into smaller units.
The transport layer receives data from the session layer, and splits them into
smaller units, which are sent to the network layer. This entire process is per-
formed in an efficient way in order to shield the session from the underlying
network technology used. In addition, the transport has to guarantee that
data sent/received are in the same order and that different data flows are
multiplexed on the same channel.
The session layer allows hosts to establish communication sessions (either
simplex or duplex) over which data are exchanged. This layer also allows
data to be transferred in different sessions without having to do it at one
time. In this way it is possible to transfer data over unreliable connections
by exchanging data at different times when the connection is up.

Application

Presentation

Session

Transport

Network

Data-link

Physical
A Component-based Architecture for Open, Independently Extensible Distributed Systems 185

The presentation layer deals with the syntax and the semantics of the ex-
changed information by converting data from different representations (for
instance ASCII and EDCDIC), by compressing and encrypting data in order
to save transmission time, and by guaranteeing privacy and authentication.
Application layer protocols, mostly used by end users, include network vir-
tual terminal, file transfer, electronic mail and other general purpose servic-
es.

1.1.3. ASN.1

Up to the presentation level of the OSI stack, data are exchanged in binary
format. At the application level, data are much more complex and have to
be represented using a notation independent of the format of the data being
exchanged. The OSI language for abstract syntax representation is ASN.1.
Its main characteristic is the separation of the data structure from its binary
representation.
The ASN.1 datatype is defined as the set of data with a certain name that can
assume a limited range of values. Each variable is a member of a certain da-
tatype which limits the set of values that the variable can have. The concept
of datatype is equivalent to the one present on strong typed programming
languages like Pascal and Modula-2. The ASN.1 datatype are:

DataType ::= BuiltinType | DefinedType
BuiltinType ::= BooleanType | IntegerType | OctetStringType | NullType |
 SequenceType| SequenceOfType | SetType | SetOfType |
 ChoiceType | SelectionType | TaggedType | AnyType |
 ObjectIdentifierType | CharacterStringType | UsefulType
DefinedType ::= ExternalTypereference | typereference

where a typereference is an arbitrary number of letters, numbers and under-
scores (_). Among the built-in types, the AnyType is the most important one.
It is used to represent the type of a component whose type is known only at
runtime (it is similar to the void* of the C language). Each datatype is asso-
ciated with a tag to distinguish it among different types. Tags can be used in
different contexts, hence they have been divided into four classes:
¥ universal, used for the types deÞned in the ASN.1 standard [ASN1];
¥ application, used by OSI application layer standards;
¥ private, used by companies and institutions for applications they

develop which need not be standardised;
¥ context-speciÞc, class used when tag value depends on the context in

which the tag is used.

The TaggedType notation is (words all caps are ASN.1 reserved words):

TaggedType ::= Tag Type | Tag IMPLICIT Type
Tag ::= {Class ClassNumber}
ClassNumber ::= number | DefinedValue
Class ::= UNIVERSAL | APPLICATION | PRIVATE | empty

Users can employ ASN.1 as a programming language by defining macros
which are a notation defined by the user to combine language structures. A
macro definition specifies the syntax for the type definition and its value. Mac-
186 A Component-based Architecture for Open, Independently Extensible Distributed Systems

OSI Network Management
roDefinition syntax is:

MacroDefinition ::= macroreference
 MACRO
 “::=“
 BEGIN
 MacroBody
 END
MacroBody ::= TypeProduction
 ValueProduction
 SupportingProductions
TypeProduction ::= TYPE NOTATION
 “::=“
 MacroAlternativeList
ValueProduction ::= VALUE NOTATION
 “::=“
 MacroAlternativeList
SupportingProductions ::= ProductionList| empty
ProductionList ::= Production| ProductionList Production
Production ::= productionreference
 “::=“
 MacroAlternativeList

ASN.1 macros are extensively used by SNMP to specify MIB definitions (see
ÒThe SNMP ProtocolÓ on page 190).

1.1.4. CMISE

The Common Management Information Service Element (CMISE) is a
member of the OSI Application Service Element (ASE) which is contained in
layer seven of the OSI stack. CMISE defines the services and transfer proce-
dures for CMIP Data Units (CMIP-PDUs). CMISE implementations are used
by System Management Applications (SMAs). Such SMAs offer system
management services by providing mechanisms for monitoring and con-
trolling resources of a system management environment made up of man-
aging and managed systems. Each of these systems need some SMA for
their management process. Inside the SMAs, CMISE provides a way to ex-
change information and commands.
CMISE sits on top of ROSE and ACSE. ROSE services are invoked directly
by CMISE, which uses them to exchange management information. CMIP-
PDUs travel over an association (CMIP is a connection-oriented service) es-
tablished using ACSE between two management entities. There is no direct
communication between CMIP and ACSE primitives. Instead a CMISE user
establishes an association using ACSE and reports the association establish-
ment to CMISE. CMISE service primitives are divided into two groups:
primitives for notification exchange and for operation exchange.

CMISE Service Mode Description

m-event-report C/Ua Returns a notification concerning a managed object

m-get C Requests information about a managed object (attributes)

m-cancel-get C Cancels a previous m-get request still in progress

m-set C/U Sets one or more attributes of a managed object

m-action C/U Requests a CMISE user to perform an action on a managed
object
A Component-based Architecture for Open, Independently Extensible Distributed Systems 187

Table 3. CMISE Services

CMISE allows MOs, on which the operation has to be performed, to be se-
lected by means of scoping and filtering mechanisms. Scoping identifies in
the containment tree the objects to which the filtering can be applied. The
filtering specifies the set of conditions a MO must satisfy in order to be se-
lected for the requested management operation. For some service primi-
tives, CMIS offers a synchronisation parameter, which specifies how the
operation has to be performed, namely atomically or best-effort.

CMIS services are divided into five functional units. Namely:
1. Kernel

All the seven services are part of a kernel. Linked responses (multiple
responses for a single request), scoping, Þltering, and synchronisation
are not supported.

2. Multiple Object Selection
It provides scoping and Þltering support to the kernel services.

3. Filter
It provides Þltering support to the kernel services.

4. Multiple Reply
It provides linked responses support to the kernel services.

5. Extended Service
It provides additional services support to the ones described so far
(extended service is not usually implemented).

The CMIS functional units are negotiated at the time of association estab-
lishment. In other words when an ACSE association is established, the peers
agree on the set of the functional units that will be supported by the associ-
ation. If no agreement is reached, the association cannot be established. The
negotiation of functional units is necessary because the implementation of
the CMISE is quite complex and mechanisms such as synchronisation are
usually not supported by CMISE implementations because they are difficult
to implement. Therefore, the negotiation of functional units allows the im-
plementation to be simplified by not supporting functional units other than
the kernel (mandatory).

a. C stands for confirmed service, U stands for unconfirmed service.

m-create C Requests the creation of a new managed object instance

m-delete C Requests the deletion of a new managed object instance

CMISE Service Mode Description
188 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Internet Network Management
1.2. Internet Network Management

1.2.1. Internet Standards

The Internet Engineering Task Force (IETF) is the body which takes care of the
standardisation process within the Internet community. IETF is divided
into working groups with a narrow focus on a certain topic, coordinated by a
chair person who oversees precise goals and milestones. Working groups
meet three times a year and group members subscribe to specific mailing
lists where the issues are discussed. There is no formal voting, disputes are
resolved by discussion and demonstration on the mailing lists, and final de-
cisions are made via e-mail, never at meetings. Each working group produc-
es Internet documents which can be either Internet Drafts (ID) or RFCs
(Request For Comments). During the development of a specification, draft
versions of the document are made available for informal review and com-
ment in the form of an ID. An ID is a working document without a status of
any kind, which is freely distributed and mirrored world wide on certain In-
ternet hosts (the European host is nic.nordu.net) by the IETF Secretariat.
When an ID remains unchanged for more than six months it is deleted. At
any time, an ID may be replaced by a more recent version of the same spec-
ification, restarting the six-month timeout period. An ID can be turned into
an RFC, which is a standard-related specification released under the general
direction of the IAM (Internet Architecture Board) under the direct respon-
sibility of the RFC editor.
Within the Internet standards process, RFCs are divided into three catego-
ries according to their maturity level: proposed standard, draft standard,
and standard. Proposed standards are complete, credible specifications
which have been demonstrated to be useful and which are pending for be-
tween six months and two years, at which point they are either elevated, de-
preciated, or recycled. Draft standards require multiple (at least two),
independent and interoperable implementations of the standard being pro-
posed and take from four months to two years before being either elevated,
depreciated, recycled, or turned back into a proposed standard. Internet
standards must demonstrate operation stability and can pend forever until
they are depreciated to historic (see below).
Not every specification is on the standard track, because it may be intended
for eventual standardisation but it is not yet mature. Specifications which
are not on the standards track are labelled according to one of the three off-
track maturity levels: experimental, informational, or historic.

The table below contains a summary of the core Internet standards for net-
work management.

RFC RFC Name

1155 Structure and Identification of Management Information

1156 Management Information Base for Network Management

1157 A Simple Network Management Protocol (SNMP)

1158 Management Information Base for Network Management: MIB-II
A Component-based Architecture for Open, Independently Extensible Distributed Systems 189

1.2.2. The SNMP Protocol

SNMP is a simple polling protocol used to manage Internet networks. It al-
lows a centralised NMS to query SNMP agents, and to retrieve and modify
the information contained on the MIB of such agents. SNMP is much sim-
pler than CMIP and consists only of three types of operations:
¥ Get retrieves information from the MIB;
¥ Set alters the MIB information;
¥ Trap reports on an event.

In the cases of Get and Set, NMS is the initiator of the operation, whereas in
the case of Trap the SNMP agent sends the Trap to the NMS when a specific
situation occurs. Other operations are emulated by these simple operations.
The Create operation is emulated using a Set on a nonexistent MIB variable,
which is then created and added to the MIB. Deletion of MIB variables is
emulated using a Set of a MIB variable to a non valid value. Creation and
deletion of MIB instances can be performed only if the MIB supports these
operations. In fact most of the MIB variables represent real resources such
as Ethernet cards or bridges, which can be created/deleted only if the re-
source is physically added/removed to the system. The three types of oper-
ations are performed with a set of only five SNMP primitives:

Table 4. SNMP Primitives

As MIB variables are ordered according to their OID (Object Identifier) val-
ue, it is possible to walk the MIB using the Get-next-request primitive. In the
SNMP version 2, which is currently being standardised, new primitives
have been added to SNMP, mainly to improve the efficiency of the protocol
and to reduce the number of SNMP requests necessary to perform an oper-
ation (for instance the retrieval of all the network devices connected to a ma-
chine).

1351 SNMP Administrative Model

1352 SNMP Security Protocols

1902 Structure of Management Information for SNMPv2

1905 Protocol Operations for SNMPv2

1907 Management Information Base for SNMPv2

SNMP Primitive Description

Get-request Queries the SNMP agent to fetch one or more MIB variables

Get-next-
request

Queries the SNMP agent to fetch the next MIB variable after the specified
one

Set-request Requests the SNMP agent to set the specified MIB variable

Get-response Response containing the return value of a XXX-request

Trap Report about an event returned by the SNMP agent

RFC RFC Name
190 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Internet Network Management
Additional SNMPv2 Primitives are:

Table 5. Additional SNMPv2 Primitives

As SNMP uses only basic syntax types such as strings or numbers, aggre-
gate types are emulated through the use of tables. Each table row contains
an element, whereas each column represents an element of the aggregate
type. For instance the table below shows how a C struct can be mapped to a
SNMP table.

Table 6. SNMP Tables vs. C Struct

SNMP implements basic authentication in order to prevent intruders from
performing destructive operations. Authentication is based on the community
string, which is a plain string containing a sort of password which allows
the SNMP agent to identify the remote peer. In SNMPv2 further mecha-
nisms will probably be present in order to enforce not only authentication
but also privacy.

1.2.3. Management Naming Scheme: Object Identifiers

Object identiÞers (OIDs) are used to identify uniquely objects relevant for
network management. They are used by both OSI and Internet and are
deÞned in ASN.1 as a sequence of integers usually represented in a human-
friendly format such as integers separated by periods (for instance 1.3.6.1).
OIDs have been designed to be unique and ßexible, allowing standards
organisations and companies to deÞne their own OIDs in a unique way.
Therefore, OIDs form a tree structure as represented in the following Þg-
ure.

SNMPv2 Primitive Description

Get-bulk-request Allows the NMS to retrieve large blocks of data efficiently

Inform-request Allows NMS-to-NMS communications

C Struct SNMP Table

struct SimpleStruct {
 char* name;
 int age;
};

Luca 28

Bela 31

Robert 30

SNMP Entry

Legend: Table Walk Order
A Component-based Architecture for Open, Independently Extensible Distributed Systems 191

Figure 2. OID Tree Structure

Companies that need to assign OIDs must register with the corresponding
body (ISO for OSI, IETF for Internet) and receive a number. Supposing that
a company that wants to define a SNMP MIB has received from IETF the
number Y, then the company can define OIDs under the subtree 1.3.6.1.4.Y
and is then responsible for its subtree.

root

ccitt (0) iso (1) joint-iso-ccitt(2)

org (3)

dod (6)

internet (1)

directory (1) mgmt(2) experimental (3) private (4)

mib (1)

system (1) interfaces (2) at (3) ip (4) icmp (5) tcp (6) udp (7)
192 A Component-based Architecture for Open, Independently Extensible Distributed Systems

B Application Side Bindings
As seen in ÒApplication Side BindingsÓ on page 125, external bindings are
used by management applications to communicate transparently using
HTTP with a mid-level manager such as Liaison. The following sections
show the bindings interface.

2.1. Diagram Notation

The diagram notation used throughout this thesis is the uniÞed modeling
language [Booch96], which is a uniÞcation of the Booch and OMT methods.
This uniÞcation provides the basis for a de facto standard for object-ori-
ented analysis.

The unified method is a design method for specifying, visualising, and doc-
umenting object-oriented systems under development. It defines a number
of diagrams, which are projections upon the elements of a model:
1. class diagram,
2. use case diagram,
3. message trace diagram,
4. object message diagram,
5. state diagram,
6. module diagram,
7. platform diagram.

In the remainder of this section, the class diagrams used in this thesis are ex-
amined. Class diagrams show the logical static structure of a system: its con-
tents and their relationships to each other. Class diagrams show generic
descriptions of possible systems. Object diagrams show particular instantia-
tions of systems and their behaviour. Class diagrams contain classes where-
as object diagrams contain objects, although it is possible to mix classes and
objects for various purposes.
Classes are drawn as a solid line box with three compartments. The class
name is placed in the top compartment, a list of attributes in the middle one
and a list of operations in the bottom one. Types, initial values, and return
types are optional.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 193

Figure 3. SimpleClass Class Diagram

Attributes and operations can be omitted. Omitting a compartment makes
no statement about the absence of attributes and operation, whereas an
empty compartment declares that there are no elements in that part.

Inheritance is the relationship between a superclass and its subclasses. In-
heritance is drawn as a solid line from the subclass to its superclass with an
unfilled triangular arrowhead on the superclass end.

Figure 4. Class Diagram: Inheritance

Associations between classes are shown as solid lines between classes. Asso-
ciations may have names and direction arrows. Each end of an association
is called a role, which may have a name that shows how its class is viewed
by the other class(es). A role also indicates the multiplicity of its class, which
defines how many instances of the class can be associated with one instance
of the other class.

Figure 5. Class Diagram: Association

An aggregation relationship is indicated by placing a diamond on the role at-
tached to the whole class.

Figure 6. Class Diagram: Aggregation

2.2. Java/C++ Bindings

As stated in ÒApplication Side BindingsÓ on page 125, Java and C++ bind-

SimpleClass

TypeName variableName;

ReturnType methodName(MethodInType paramName);

Subclass 1 Subclass 2

SubRootClass

RootClass

Instructions CPU
executes

Computer CPU
contains
194 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Java/C++ Bindings
ings are quite similar. Owing to space constraints, only C++ bindings are
shown.

Figure 7. Class Information

class Information {
protected:
 ProxyHandle *proxy;

 private:
 HashTable *hash;

 void Plain2HTMLString(char* in, char* out);

 public:
 Information();
 ~Information();
 Information* clone();
 void UseProxy(char* address);
 void SetAttribute(char* name, char* value, int copyValue=1);
 char* GetAttribute(char* name);
 void RemoveAttribute(char* name);
 char** GetAttributes();
 char** GetAttributeKeys();
 void RemoveAllAttributes();
 void CopyValue(Information* in);
 char* Marshall();
 void print();
};

Figure 8. Class ProxyHandle

void UseProxy(char* address);
void SetAttribute(char* name, char* value, int copyValue);
char* GetAttribute(char* name);
void RemoveAttribute(char* name);
char** GetAttributes();
char** GetAttributeKeys();
void RemoveAllAttributes();
void CopyValue(Information* in);
char* Marshall();
void print();

Information

HashTable *hashTable;

int sockId
char *host, errMsg[512], *buffer

void SendStringWithCr(char* s);
char* ReceiveStringWithCr();
void SkipHTTPResponseHeader();
void SendHTTPRequest(char* url);
Information** SendRequest(char* op, char* context,
 Information* input);
char* SendOffLineRequest(char* operation, char* context,
 char* input);
Information* SendOffLineReqWithMultipleOut(char* op,
 char* context, char* input);

ProxyHandle
A Component-based Architecture for Open, Independently Extensible Distributed Systems 195

class ProxyHandle {

 private:
 int sockId;
 char *host, errMsg[512], *buffer;

 void SendStringWithCr(char* s);
 char* ReceiveStringWithCr();
 void SkipHTTPResponseHeader();
 void SendHTTPRequest(char* url);

public:
 ProxyHandle(char* host=NULL /* Local */) /* throw(char*) */;
 ~ProxyHandle();
 Information** SendRequest(char* operation, char* context,

 Information* input);
 char* SendOffLineRequest(char* operation, char* context, char* input);
 Information* SendOffLineReqWithMultipleOut(char* operation,

 char* context, char* input);
};

Figure 9. Class CMIPObj

#define CMIP_GET "CMIP_Get"
#define CMIP_SET "CMIP_Set"
#define CMIP_DELETE "CMIP_Delete"
#define CMIP_CREATE "CMIP_Create"
#define CMIP_ACTION "CMIP_Action"
#define CMIP_EVR "CMIP_Evr"
#define ASN_METADATA "ASN_Metadata"
#define OID_MAPPING "OID_Mapping"
#define GET_ACTIONS "Get_Actions"
#define GET_NM_BIND "Get_NameBindings"

class CMIPObj: public Information {
private:
 char *agentAET, *efdObjInst, *rootDN;

CMIPObj

void SetAgentAET(char* aet);
void SetObjectClass(char* val);
char* GetObjectClass();
void SetObjectInstance(char* val);
char* GetObjectInstance();
void CMIPCreateObject();
void CMIPDeleteObject();
Information** CMIPDeleteContainedInstances();
void CMIPGetAttributes();
Information** CMIPGetContainedInstances();
void CMIPSetAttributes();
Information** CMIPSetContainedInstances();
void CMIPPerformAction(int confirmed);
Information** CMIPPerformActionContainedInstances(int conf);
Information* GetActions();
Information* GetNameBindings();
int NotificationsAvailable();
void CreateEFD(char* systemInstance, char* filter);
void DeleteEFD();
Information* WaitForNotifications(int timeout);
char* GetSyntaxInfo(char* syntax);
char* ConvertOID(char* oid);

char *agentAET, *efdObjInst, *rootDN;
196 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Java/C++ Bindings
 char* SendOffLineRequest(char* type, char* val);
 void CMIPPerformSingleOperation(char* opName, int confirmed=0);
 Information** CMIPPerformScopedOperation(char* opName, int confirmed=0);

public:
 CMIPObj(char* aet="MIBCTL");
 ~CMIPObj();
 CMIPObj* clone();
 void SetAgentAET(char* aet);
 void SetObjectClass(char* val);
 char* GetObjectClass();
 void SetObjectInstance(char* val);
 char* GetObjectInstance();
 void CMIPCreateObject();
 void CMIPDeleteObject();
 Information** CMIPDeleteContainedInstances();
 void CMIPGetAttributes();
 Information** CMIPGetContainedInstances();
 void CMIPSetAttributes();
 Information** CMIPSetContainedInstances();
 void CMIPPerformAction(int confirmed=0);
 Information** CMIPPerformActionContainedInstances(int confirmed=0);
 Information* GetActions();
 Information* GetNameBindings();
 int NotificationsAvailable();
 void CreateEFD(char* systemInstance, char* filter);
 void DeleteEFD();
 Information* WaitForNotifications(int timeout);
 char* GetSyntaxInfo(char* syntax);
 char* ConvertOID(char* oid);
};

Figure 10. Class SNMPObj

#define SNMP_GET "SNMP_Get"
#define SNMP_GET_NEXT "SNMP_GetNext"
#define SNMP_SET "SNMP_Set"
#define SNMP_WALK "SNMP_Walk"
#define SNMP_ATTR_INFO "SNMP_Attr_Info"
#define SNMP_OID_MAPPING "SNMP_OID_Map"

class SNMPObj: public Information {
 private:
 char* snmpAgtAddr;
 int snmpAgtPort;

 char* SendOffLineRequest(char* type, char* val);
 void SNMPPerformSingleOperation(char* opName);

SNMPObj

char* snmpAgtAddr;
int snmpAgtPort;

char* SendOffLineRequest(char* type, char* val);
void SNMPPerformSingleOperation(char* opName);
void SetSnmpAgentAddress(char* remAgt, int remAgtPort);
Information** SNMPWalk() ;
void SNMPGetAttribute();
void SNMPGetNextAttribute();
void SNMPSetAttribute();
char* SNMPGetAttributeInfo(char* syntax);
char* ConvertOID(char* oid);
A Component-based Architecture for Open, Independently Extensible Distributed Systems 197

 public:
 SNMPObj();
 SNMPObj(char* remAgt, int remAgtPort=160);
 ~SNMPObj();
 SNMPObj* clone();
 void SetSnmpAgentAddress(char* remAgt, int remAgtPort=160);
 Information** SNMPWalk();
 void SNMPGetAttribute();
 void SNMPGetNextAttribute();
 void SNMPSetAttribute();
 char* SNMPGetAttributeInfo(char* syntax);
 char* ConvertOID(char* oid);
 };

2.3. C Bindings

/******************** Information *************************/

void UseProxy(char* theObj, char* address);
char* GetAttribute(char* theObj, char* oid);
void SetAttribute(char* theObj, char* oid, char* value);
void RemoveAllAttributes(char* theObj);
void ResetAttributeList(char* theObj);
void GetNextAttributeListElement(char* theObj, char** oid, char** value);
void DeleteInformationObj(char* infoObj);

/****************** (Information**) ***********************/

char* GetNextListElement(char* theObj);

/******************** SNMPObj *************************/

char* GetSNMPAttribute(char* LiaisonHost, int LiaisonPort,
 char* SNMPAgentHost, int SNMPport,
 char* community, char* attrId); /* Shortcut */

char* CreateSNMPObject(char* remAgt, int remAgtPort);
void DeleteSNMPObj(char* snmpObj);

void SetSnmpAgentAddress(char* snmpObj, char* remAgt, int remAgtPort);
void SNMPGetAttribute(char* snmpObj);
char* SNMPWalk(char* snmpObj);
void SNMPGetNextAttribute(char* snmpObj);
void SNMPSetAttribute(char* snmpObj);
char* SNMPGetAttributeInfo(char* snmpObj, char* syntax);
char* ConvertSNMPOID(char* snmpObj, char* syntax);

/******************** CMIPObj *************************/

char* CreateCMIPObject(char* agentAET);
void DeleteCMIPObj(char* cmipObj);

void SetAgentAET(char* cmipObj, char* aet);
void SetObjectClass(char* cmipObj, char* val);
char* GetObjectClass(char* cmipObj);
void SetObjectInstance(char* cmipObj, char* val);
char* GetObjectInstance(char* cmipObj);
void CMIPCreateObject(char* cmipObj);
void CMIPDeleteObject(char* cmipObj);
char* CMIPDeleteContainedInstances(char* cmipObj);
198 A Component-based Architecture for Open, Independently Extensible Distributed Systems

CORBA-Liaison Interfaces
void CMIPGetAttributes(char* cmipObj);
char* CMIPGetContainedInstances(char* cmipObj);
void CMIPSetAttributes(char* cmipObj);
char* CMIPSetContainedInstances(char* cmipObj);
void CMIPPerformAction(char* cmipObj, int confirmed);
char* CMIPPerformActionContainedInstances(char* cmipObj, int confirmed);
char* GetActions(char* cmipObj);
char* ConvertOID(char* cmipObj, char* oid);
char* GetNameBindings(char* cmipObj);
char* ConvertOID(char* cmipObj, char* oid);
int NotificationsAvailable(char* cmipObj);
void CreateEFD(char* cmipObj, char* systemInstance, char* filter);
void DeleteEFD(char* cmipObj);
char* WaitForNotifications(char* cmipObj, int timeout);
char* GetSyntaxInfo(char* cmipObj, char* syntax);
char* ConvertOID(char* cmipObj, char* oid);

2.4. CORBA-Liaison Interfaces

CORBA-Liaison interfaces have been implemented using DSOM, IBMÕs
ORB implementation. Nevertheless, as we do not rely on any specific char-
acteristic of DSOM, similar considerations can be made for other CORBA
implementations. The code fragments contained within the__SOMIDL__ pre-
processor directive are hints to DSOM, and do not affect the portability of
these bindings.

Figure 11. Interface DSOMInformation

interface DSOMInformation: SOMObject {
 void SetAttribute(in string name, in string value);
 string GetAttribute(in string name);
 void RemoveAttribute(in string name);
 sequence <string> GetAttributes();
 sequence <string> GetAttributeKeys();
 void RemoveAllAttributes();

#ifdef __SOMIDL__
 implementation {
 abstract;
 somInit : override;
 somUninit : override;
 privateInformationPtr : noset;
 dllname="DSOMBindings.dll";
 releaseorder: SetAttribute, GetAttribute, RemoveAttribute,
 GetAttributes, GetAttributeKeys, RemoveAllAttributes;

DSOMInformation

Information* theObject;

void SetAttribute(in string name, in string value);
string GetAttribute(in string name);
void RemoveAttribute(in string name);
sequence <string> GetAttributes();
sequence <string> GetAttributeKeys();
void RemoveAllAttributes();
A Component-based Architecture for Open, Independently Extensible Distributed Systems 199

 Information* theObject;
 passthru C_xih = "#include \"ProxyBindings.h\""
 "extern ProxyHandle *globalProxy; /* global instance */";
 };
#endif
};

Figure 12. Interface DSOMSNMPObj

interface DSOMSNMPObj: DSOMInformation {
 void SetSnmpAgentAddress(in string host, in short port);
 sequence <DSOMInformation> SNMPWalk();
 void SNMPGetAttribute();
 void SNMPGetNextAttribute();
 void SNMPSetAttribute();
 string SNMPGetAttributeInfo(in string syntax);
 string ConvertOID(in string oid);

#ifdef __SOMIDL__
 implementation {
 somInit : override;
 somUninit : override;
 dllname="DSOMBindings.dll";
 releaseorder: SetSnmpAgentAddress, SNMPWalk, SNMPGetAttribute,
 SNMPGetNextAttribute, SNMPSetAttribute,
 SNMPGetAttributeInfo, ConvertOID;
 };
#endif
};

DSOMSNMPObj

void SetSnmpAgentAddress(in string host, in short port);
sequence <DSOMInformation> SNMPWalk();
void SNMPGetAttribute();
void SNMPGetNextAttribute();
void SNMPSetAttribute();
string SNMPGetAttributeInfo(in string syntax);
string ConvertOID(in string oid);
200 A Component-based Architecture for Open, Independently Extensible Distributed Systems

CORBA-Liaison Interfaces
Figure 13. Interface DSOMCMIPObj

interface DSOMCMIPObj: DSOMInformation {

 void SetAgentAET(in string aet);
 void SetObjectClass(in string value);
 string GetObjectClass();
 void SetObjectInstance(in string value);
 string GetObjectInstance();
 void CMIPCreateObject();
 void CMIPDeleteObject();
 sequence <DSOMInformation> CMIPDeleteContainedInstances();
 void CMIPGetAttributes();
 sequence <DSOMInformation> CMIPGetContainedInstances();
 void CMIPSetAttributes();
 sequence <DSOMInformation> CMIPSetContainedInstances();
 void CMIPPerformAction(in unsigned short confirmed);§
 sequence <DSOMInformation> CMIPPerformActionContainedInstances(
 in unsigned short confirmed);
 DSOMInformation GetActions();
 DSOMInformation GetNameBindings();
 unsigned short NotificationsAvailable();
 void CreateEFD(in string systemInstance, in string filter);
 void DeleteEFD();
 DSOMInformation WaitForNotifications(in short timeout);
 string GetSyntaxInfo(in string syntax);
 string ConvertOID(in string oid);

#ifdef __SOMIDL__
 implementation {
 somInit : override;
 somUninit : override;
 dllname="DSOMBindings.dll";
 releaseorder: SetAgentAET, SetObjectClass, GetObjectClass,
 SetbjectInstance, GetObjectInstance, CMIPCreateObject,
 CMIPDeleteObject, CMIPDeleteContainedInstances, CMIPGetAttributes,
 CMIPGetContainedInstances, CMIPSetAttributes,
 CMIPSetContainedInstances, CMIPPerformAction,

DSOMCMIPObj

void SetAgentAET(in string aet);
void SetObjectClass(in string value);
string GetObjectClass();
void SetObjectInstance(in string value);
string GetObjectInstance();
void CMIPCreateObject();
void CMIPDeleteObject();
sequence <DSOMInformation> CMIPDeleteContainedInstances();
void CMIPGetAttributes();
sequence <DSOMInformation> CMIPGetContainedInstances();
void CMIPSetAttributes();
sequence <DSOMInformation> CMIPSetContainedInstances();
void CMIPPerformAction(in unsigned short confirmed);§
sequence <DSOMInformation> CMIPPerformActionContainedInstances(

 in unsigned short confirmed);
DSOMInformation GetActions();
DSOMInformation GetNameBindings();
unsigned short NotificationsAvailable();
void CreateEFD(in string systemInstance, in string filter);
void DeleteEFD();
DSOMInformation WaitForNotifications(in short timeout);
string GetSyntaxInfo(in string syntax);
string ConvertOID(in string oid);
A Component-based Architecture for Open, Independently Extensible Distributed Systems 201

 CMIPPerformActionContainedInstances, GetActions, GetNameBindings,
 NotificationsAvailable, CreateEFD, DeleteEFD, WaitForNotifications,
 GetSyntaxInfo, ConvertOID;
 };
#endif
};
202 A Component-based Architecture for Open, Independently Extensible Distributed Systems

C Implementation Issues
This chapter evaluates the performance of Liaison, describes how droplets
have been implemented in Liaison, and contains code fragments of some
parts of Liaison that can be used to learn how the application has been
implemented.

IMPORTANT

The code fragments contained in this chapter have been written by Luca Deri and are copyrighted
International Business Corporation 1995-1997. This code may be used free of charge for non-com-
mercial research purposes only.

3.1. Evaluating Liaison

In order to evaluate LiaisonÕs features and performance it is necessary to
Þnd a set of applications against which Liaison will be compared. Because
Liaison implements many types of functionality ranging from simple net-
work browsing using a Web browser to advanced CORBA management,
the comparisons below are listed according to the different categories. For
each category, Liaison is compared with a commercial or state-of-the-art
application.

Web-based Management
In this area there are no applications supporting both CMIP and SNMP as
Liaison does. Therefore Liaison is compared just for the CMIP side with a
commercial browser produced by IBM called MBE and part of the IBM
TMN product suite.

Liaison IBM TMN MBE

Architecture Client/Server
(Liaison/Web browser)

Monolithic
(MBE does all)

Server Platform AIX, OS/2, MacOS,
Win95/NT, Linux

Not applicable.

Client Platform Virtually All
(the client application is a

 web browser)

AIX

Prerequisites IBM OSI Stack IBM OSI Stack, X11 Server
A Component-based Architecture for Open, Independently Extensible Distributed Systems 203

Table 7. CMIP browser comparison: Liaison vs. IBM TMN MBE

From the table above it is evident that web-based management has several
advantages with respect to conventional applications especially in terms of
ease of customisation and security. Nevertheless the major advantage of Li-
aison is due to its client/server architecture. LiaisonÕs client is a convention-
al web browser available on virtually every platform, whereas IBMÕs MBE
runs only on AIX. In addition, Liaison is capable at exploiting AIX features
such as multithreading which are not used by MBE. This is a major advan-
tage especially in terms of performance, because LiaisonÕs performance is
limited only by the OSI stack, whereas MBE cannot issue more than one re-
quest at a time. Finally, thanks to Yasmin, LiaisonÕs memory requirements
are very limited, the application is slim, and it allows multiple clients to con-
nect to the same Liaison application. This is a great advantage in large or-
ganisations where multiple users can share the same Liaison instead of each
having to start an application, as it happens in the case of IBMÕs MBE.

Java Management
As in the previous case, it is not possible to compare Liaison with imple-
mentations that support both CMIP and SNMP because there are none
available. Thus, Liaison will be compared with the market leader applica-
tion for SNMP management. Liaison is not compared with the JMAPI

a. Application scriptability is the ability to use a scripting language that allows batch tasks to be
executed.

Configuration None Required
(it must be performed by the

system administrator)

Application Size
(including shared
libraries)

≈900 Kb
(Liaison: only the CMIP side)

5.7 Mb
(not including

OSF Motif™ libraries)

Memory Usage 1 Mb 3.5 Mb

User
Customisation

Yes Very Limited
(Window Colours)

Security HTTP Security and
SSL (Secure Socket Layers)

None

Scriptabilitya Yes Very Limited (macro)

Throughout
(operations per
second)

Limited by the OSI stack 1

Wizard Yes
(M-CREATE, M-ACTION)

No

Metadata Access Yes Yes

Metadata
Configuration

No Yes
(it must be performed by the

system administrator)

Multiple Concur-
rent Requests

Yes No

Remote Access Yes No

Liaison IBM TMN MBE
204 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Evaluating Liaison
[JMAPI], because at the moment version 1 has not yet been released.

The main difference between the two implementations is the architecture.
Liaison implements SNMP in the server side whereas the client side is very
light in order to:
¥ have short client application download time;
¥ use a small amount of memory on the client side, which is usually a web

browser with limited resources;
¥ create small client applications.

AdventNet instead is a classic monolithic application which implements
everything in Java, providing high portability and platform independence.
Currently, the performance of Java VMs are not outstanding hence both im-
plementations suffer from poor performance. Nevertheless Liaison per-
forms differently with respect to AdventNet because Liaison performs most
of its computations on the server side, a fast multithreaded application,
whereas AdventNet is implemented completely in Java. As seen before,
SNMP is suitable for LAN management, and LAN response times are usu-
ally fast. This means that in the case of Liaison, the performance loss due to
client/server communication is balanced by the much higher throughput
that Liaison has with respect to AdventNet. On average the performance of

a. The AdventNet web site address is http://www.adventnet.com/.
Table 7. Java-based management comparison: Liaison vs. AdventNet

Liaison’s Java Bindings AdventNeta

Architecture Client/Server
(Liaison/Java Applet)

Monolithic
(everything is implemented in the

Java Size)

Server Application
Size

480 Kb
(Liaison: only the SNMP side)

0 Kb
(everything is

implemented in Java)

Java Classes Size 9 Kb 81 Kb

Configuration None
(New MIBs are compiled automatically)

Supported SNMP
Version

V1 V1
(V2 in a future release)

Memory Usage at
the Client Side

Minimal
(this is because the Java classes

delegate the processing to Liaison)

Medium
(the client must load
MIBs information)

Load on the Cli-
ent Side due to
SNMP

Minimal
(this is because the Java classes

delegate the processing to
Liaison)

Medium
(all the computations are per-

formed on the client size)

Throughout
(operations per
second)

High
(Limited by the bandwidth

available between Liaison/Applet)

Low/Medium
(limited by the speed

of the Java VM)

Metadata Access Yes No

Ability to mix
applets with HTML

Yes No

SNMP Program-
ming Skills
Required

Minimal
(developers deal only with strings
which are converted transparently

to real types)

Advanced
(developers must know exactly

the type of the MIB attributes they
are manipulating)
A Component-based Architecture for Open, Independently Extensible Distributed Systems 205

Liaison vs. that of AdventNet is comparable, but when the management ap-
plication has to perform several operations at once or manage several devic-
es, LiaisonÕs performance is better than that of AdventNet. In addition, if
LiaisonÕs performance is not sufficient, it is possible to start multiple Liaison
instances and distribute client requests to those applications in order to ob-
tain a performance improvement proportional to the number of active Liai-
son applications.
In conclusion, although Liaison needs to be ported on a specific platform in
order to be used, LiaisonÕs client/server application offers a better perform-
ance than AdventNet, provides scalability, minimal client download time,
and low memory requirements on the client side.

NOTE

Because Liaison is accessible using the standard HTTP protocol, it is not necessary to port Liaison
on every platform, but it is sufficient to be able to find a machine attached to the LAN running Liai-
son. There is a high probability that the machine exists because Liaison has been already ported on
most of the platforms currently being used.

CORBA-based Management
Comparing Liaison with similar efforts undertaken in the area of CORBA-
based management is not an easy task because there is a lot of information
available concerning implementation issues but very little regarding the
measurement of application performance. Therefore Liaison is compared
only with [Genilloud96] and only with respect to CMIP, which contains
some information about memory requirement and application perform-
ance.

Table 8. CORBA-based management comparison: Liaison vs. Genilloud’s Proxy-agent

It is not possible to evaluate application performance owing to the lack of

Liaison’s
CORBA Bindings

Proxy-agent
[Genilloud96]

Architecture Client/Server
(Liaison/CORBA client)

Client/Server
(Proxy-agent/CORBA client)

Memory Usage at
the Server Side

≈700 Kb
(related to the CMIP

CORBA-related droplets)

3.4 Mb
(it includes support for the
AMT-C-System MOC only)

Memory Usage at
the Client Side

≈100 Kb
(regardless of the type/number of

managed objects)

650 Kb
(it includes support for the
AMT-C-System MOC only)

Server Application
Size

≈900 Kb
(only the CMIP side)

≈3 Mb
(this is a speculation considering

the memory requirements)

Client Application
Size

≈80 Kb
(regardless of the type/number of

managed objects)

≈500 Mb
(this is a speculation considering

the memory requirements)

Memory required
for the Creation of
a Simple CORBA
Proxy Object

A few Kb
(regardless of the managed

object class)

2 Mb

Memory Needed
to Provide Sup-
port for a MOC

None
(regardless of the type/number of

the MOC attributes)

204 Kb
206 A Component-based Architecture for Open, Independently Extensible Distributed Systems

From Theory to Practice: Implementing Droplets
performance data concerning Proxy-agent and because of the inability to
compare the two implementations on a fair scenario. The reason for this is
mainly related to the different OSI stacks and CORBA implementations be-
ing used. In general Proxy-agentÕs performance should be slightly better
that LiaisonÕs, because Liaison performs dynamic CMIP-CORBA transla-
tion which produces a limited runtime overhead. In general the perform-
ance of the two implementations should be equivalent because LiaisonÕs
CMIP-CORBA translation is very simple; hence this overhead is very limit-
ed. In the tests I have conducted, the overhead due to the translation is
much less than 10% of the total time needed by an OSI client to issue the
same operation without any translation, hence the performance is quite rea-
sonable.

Conclusion
 From the above comparisons, it results that:
¥ the beneÞts of Yasmin with respect to conventional applications do not

have a negative impact on the performance of Yasmin-based applica-
tions such as Liaison;

¥ the use of droplets limits the application size and the memory require-
ments as droplets are loaded only when needed;

¥ Yasmin has really overcome problems such as monolithic application
structure and limited tailoring without introducing major limitations;

¥ the client/server architecture of Liaison-based applications (for instance
for Java-based management) has several advantages in terms of scalabil-
ity and limited client requirements, which abundantly balance the mini-
mal performance loss due to the client/server communications.

In conclusion, this section demonstrates that Yasmin has kept its promises
not only in terms of architecture but also in terms of application require-
ments and net performance.

3.2. From Theory to Practice: Implementing
Droplets

Section ÒDropletsÓ on page 80 covers droplets. It defines a droplet, de-
scribes its properties, shows how droplets look, and how applications use
the services implemented inside them. This section shows how LiaisonÕs
droplets are implemented explaining step by step what developers have to
do in order to create a new droplet which can be added to their copy of Li-
aison downloaded from the network.

What do I have to store inside a droplet?
A droplet must contain services and functionality that are of general use.
Private routines and internal information should not be exported outside
the droplet because there is no need of doing so. Remember: keep the drop-
let simple and avoid showing private information which may be altered in
A Component-based Architecture for Open, Independently Extensible Distributed Systems 207

future versions of the droplet to external applications.

What does a droplet look like?
The skeleton of a droplet is the following.

#include "ProxyBasicIncludes.h"
#include "Proxy.h"

static JumpInfo jumpInformation[] =
{
 TOOL_VERSION,
 LOAD_ON_DEMAND,
 INFINITE_LIFETIME,
 "This is the droplet name", /* For instance /SNMP/GET */
 "This field describes what this droplet does",
 InitProc, /* Pointer to the function called when the droplet is first loaded */
 TermProc, /* Pointer to the function called when the droplet is unloaded */
 ExternFunction, /* Pointer to droplet’s main function
 RemServices, /* Pointer to the list of services available from remote */
 LocServices /* Pointer to the list of services available only locally */
};

JumpInfo* JumpProc() { return(jumpInformation); }

static void ExternFunction(int peerSocket, char* reqString,
 char* queryString, int httpdPort)
{
 /* This is the droplet’s main function */
}

Supposing we develop a LiaisonÕs droplet for issuing a function that selects
records from an SQL database, the droplet name will be /SQL/SELECT, the Ex-
ternFunction function will parse the HTTP arguments and return the re-
sponse over the socket peerSocket used by the remote client to issue the
request.
If the droplet has to issue the following SQL command “SELECT cust_num,
cust_name FROM customer WHERE cust_num < 5100 ORDER BY cust_name;” and the de-
veloper believes that another droplet may need to issue the SQL SELECT
command, it is wise to create a service called SQL_SELECT that allows a droplet
to issue the SQL SELECT command. In this case LocServices will be defined
as follows:

static LocalService locServices[] = {
 { SQL_SELECT, /* Pointer to the function which implements the service */
 "SQL_SELECT", /* Name of the service */
 "Service which implements the SQL SELECT",
 "", /* Write here what are the input parameters */
 "" /* Write here what the service returns */ },
};

In case the service is accessible remotely, RemService will contain the follow-
ing entry:

static RemoteService remServices[] = {
 { SQL_SELECT_REMOTE, /* Pointer to the function which implements the service */
 "SQL_SELECT", /* Name of the service */
 "Service which implements the SQL SELECT",
 "", /* Write here what are the input parameters */
208 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Liaison’s Code Fragments
 "" /* Write here what the service returns */ },
};

NOTE

The implementation of SQL_SELECT is different from the SQL_SELECT_REMOTE implementation
because in the remote version the input/output parameters (if present) are strings that contain the
input/output in a marshalled form. Basically SQL_SELECT_REMOTE first has to unmarshall the input
parameter, then call SQL_SELECT, and finally marshall the response.

What are the services exported by a droplet?
Owing to the droplet structure, the only global symbol that can be exported
is JumpProc(), which returns the pointer to the droplet entry point. Readers
may ask why the droplet entry point is not directly jumpInformation. The rea-
son is that some operating systems allow as shared library entry point only
a function and not a symbols such as jumpInformation.
In any case, if the droplet has several symbols that can be exported (i.e. they
are not static), the linker prevents their export because the only exported
symbol is JumpProc__Fv, which corresponds to JumpProc(). Even supposing that
the user wants to export further symbols, LiaisonÕs droplet manager loads
the droplets and searches for JumpProc(), which is always used as entry point.

Conclusion
Building droplets is relatively simple. Things are even simpler if a droplet
wizard, which drives the developers through droplet development, is used.
Droplet consistency and adherence to the rules is enforced by the linker
which exports only one global symbol, JumpProc(), and which prevents a
droplet from being built if the information contained in the droplet inter-
face, jumpInformation, is not correct.

3.3. Liaison’s Code Fragments

This chapter contains some Þles used to implement Liaison. The Þrst two
Þles are the core Þles Proxy.h and Proxy.cpp, which implement the core part
of Liaison. Then a Þle containing a personality is shown. Finally an exam-
ple containing a droplet is presented. Please note that these Þles cannot be
used to implement a Liaison-like application, but are included only for
non-commercial research purposes.

Proxy.h
#ifndef _PROXY_H_
#define _PROXY_H_

class Proxy;

#include "ProxyGlobals.h"
#include "ProxyService.h"
#include "ProxyTable.h"
#include "ProxyTypes.h"
#include "ProxyTools.h"
#include "ProxyMsg.h"
A Component-based Architecture for Open, Independently Extensible Distributed Systems 209

class JumpEntry; /* Forward Declaration */

#ifndef STHREAD
class ThreadController {
public:
 CondVariable *condVariable;

 ThreadController();
 ~ThreadController();
 int GetNumEntries();
 void PushEntry(int, char*);
 void PopEntry(int*, char*);

private:
 RequestBkt waitingSockets[32];
 int popIdx, pushIdx, numEntries;
 MutexSemaphore *threadMutex;
};
#endif

class SecurityEntry {
public:
 char *header, *trailer, *user;
 SecurityEntry();
 ~SecurityEntry();
};

class Proxy
{
private:
 FILE *logFile, *httpLogFile;
 char *localHostName;
 short callUpdateTools, numProtectedURLs;

#ifndef STHREAD
 long toolUpdateThreadId;
#endif
 int reloadDroplets;
 int httpDaemonPort; /* Port used by the default HTTPd */
 RPCSockStruct rpcSockets[MAX_RPC_SOCKETS];
 HashTable *passwds, *hostAddresses;
 SecurityEntry *protectedURLs[48];

 /* Tool management infos */
 ToolMgr toolMgr;
 EventQueue *eventQueue;
 EventHandlerEntry evtHdlr[MAX_HANDLED_EVENT+1];

 void InitSNMP();
 void ReadPasswordFile();
 int LoadTools();
 void UnloadTools();
 void InstallBasicEvtHandlers();
 void ProcessQueuedEvent();
 void ProcessRPCRequest();
 void WriteLogEntry(FILE* file, char* msg);
 int DecodeString(char *bufcoded, unsigned char *bufplain, int outbufsize);
 int ClientAuthorized(char*, char*, char*);
 int ReadURLConfigurationFile(char* name);
 int ReadPasswordConfigurationFile(char* name);

public:
 unsigned short numHttpThreads;
210 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Liaison’s Code Fragments
 int httpSocket, sendUDPSocket, sendUDPSocketPort, rpcSocket;
 int rpcSocketPort, sendTCPSocket, sendTCPSocketPort;
 Personality activePersonality;
#ifndef STHREAD
 ThreadController *httpThreadController;
#endif

 Proxy();
 ~Proxy();
#ifndef STHREAD
 MutexSemaphore mutexUpdateSem, mutexTCPSocket, mutexUDPSocket, mutexLoadTools;
#endif

 void Listen();
 void ProcessRequest(int newSockFd, char* udpBuf);
 void ToggleToolsUpdate(int value) { callUpdateTools=value; }
 inline int GetToolsUpdateState() { return(callUpdateTools); }
 int UpdateTools();
 int LoadTool(ToolInfo*); /* Explicitly load a tool */
 void UnloadToolByName(char* name, int removeFromFileList=1);

 /* Services available for other classes */
 int GetHTTPDaemonPort() { return(httpDaemonPort); }
 int OpenTcpSocket(int* port);
 int OpenUDPSocket(int* port);
 void PrintSocketError(int err);
 int TranslateBody(int, int, char*, Symbols*, char[], int*,
 int*, char*[], char[]);
 Symbols GetToken(int, int, char[], int *indentLevel, char[]);
 char* Type2Name(int typeValue, int* indentLevel, short* simpleType);
 int InsertAnchor(char* name, int* theAnchorIdx, char* theAnchorList[]);
 int SendString(int peerSocket, char* theString);
 inline char* GetLocalHostName() { return localHostName; };
 inline int GetTCPSocketPort() { return sendTCPSocketPort; };
 inline int GetTCPSocket() { return sendTCPSocket; };
 inline int GetUDPSocketPort() { return sendUDPSocketPort; };
 inline int GetUDPSocket() { return sendUDPSocket; };
#ifndef STHREAD
 inline MutexSemaphore* GetTCPSocketMutex() { return(&mutexTCPSocket); };
 inline MutexSemaphore* GetUDPSocketMutex() { return(&mutexUDPSocket); };
 inline MutexSemaphore* GetUpdateMutex() { return(&mutexUpdateSem); };
#endif

 /* Local/Remote Service facilities */
 int CallLocalService(char* serviceName, void* in_data, void* out_data);
 int CallService(Message* theMsg, char* remoteHostName,
 int remoteHostPort, int sockWithRemPeer);
 void HandleRemoteServiceCall(InParam* parm, OutParam*, int sockWithRemPeer);
 void ProcessRPCRequest(int sockFd);
 /* whoever can dynamically provide a service */
 void ProvideLocalService(LocalService*);
 void ProvideRemoteService(RemoteService*);

 /* Event facilities */
 int InstallEventHandler(int componentId, int eventType,
 EvtHandlerProc eventHandler);
 int RemoveEventHandler(int componentId, int eventType);
 int PostEvent(EventInfo* eventInfo);

 /* Support facilities */
 void LogMsg(char* msg);
 int HTML2PlainString(char* in, char* out);
 void Plain2HTMLString(char* in, char* out);
 void Plain2HTMLDisplayString(char* in, char* out);
A Component-based Architecture for Open, Independently Extensible Distributed Systems 211

 void PrintConnectionRefusedError(int);
 void PrintInvalidDataError(int);
 int hex2int(char c);
 char* Err2Str(int errId);
 int IsAnOID(char* theStr);
 int IsOctetString(char*);
 char* OctStr2Long(char*, char*, int);
 char* OctStr2Real(char*, char*, int);
 char* OctStr2String(char*, char*);

 int IssueMIBRequest(void*, char*, int, int);
 void Lookup2HTML(int peerSocket, int infraSock, char* reqString);
 inline ToolInfo* GetDroplet(char* toolName)
 { return(toolMgr.GetToolByName(toolName)); }
};

Proxy* GetProxy();
#endif /* Proxy.h */

Proxy.cpp
#include "ProxyBasicIncludes.h"
#include "Proxy.h"

extern char shortVersStr[], applName[], threadSupport[], localDirString[];
static int numRunningComponents;
static Proxy* _HTTPproxy;

#define ENABLE_LOG
//#define THREAD_DEBUG

/* Prototypes */
void IncrementNumComponents();
void DecrementNumComponents();
int readline(int sockId, char* buffer, int bufferSize);
int sendstring(int sockId, char* buffer, int bufferSize);
void RemoveJunk(char* str);

typedef struct {
 int theSocket;
 char theDataSocket[256];
} ThreadArgs;

typedef struct {
 RPCSockStruct *socks;
 int sockId;
} RPCThreadArgs;

/* Function prototypes */
extern "C" {
 THREAD_RET_TYPE ServeRPCRequest(void* thrArgs);
 THREAD_RET_TYPE CheckToolDirectory(void* notUsed);
 THREAD_RET_TYPE CreateHTTPServer(void* notUsed);
}
/* End of Function prototypes */

void IncrementNumComponents()
{
#ifndef STHREAD
 (_HTTPproxy->mutexUpdateSem).access(); /* Block tools update process */
 numRunningComponents++;
 (_HTTPproxy->mutexUpdateSem).release(); /* Enable tools update process */
212 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Liaison’s Code Fragments
#endif
}

void DecrementNumComponents()
{
#ifndef STHREAD
 (_HTTPproxy->mutexUpdateSem).access(); /* Block tools update process */
 numRunningComponents--;
 (_HTTPproxy->mutexUpdateSem).release(); /* Enable tools update process */
#endif
}

#ifndef STHREAD
THREAD_RET_TYPE CreateHTTPServer(void*)
{
 static int thId=0;
 int sockId, _thId=thId++;
 char udpBuf[256];

#ifdef THREAD_DEBUG
 printf("CreateHTTPServer\n");
#endif

 _HTTPproxy->activePersonality.SetThreadAttributes();

 for(;;)
 {
 if(_HTTPproxy->httpThreadController->GetNumEntries() == 0)
 _HTTPproxy->httpThreadController->condVariable->Wait();

 if(_HTTPproxy->httpThreadController->GetNumEntries() > 0)
 _HTTPproxy->httpThreadController->PopEntry(&sockId, udpBuf);
 else
 sockId = -1;

if(sockId != -1)
{
#ifdef THREAD_DEBUG
 char tmpStr[32];

 sprintf(tmpStr, "Processing Request (%d) [Id=%d]", sockId, _thId);
 _HTTPproxy->LogMsg(tmpStr);
#endif
 _HTTPproxy->ProcessRequest(sockId, udpBuf);
#ifdef THREAD_DEBUG
 sprintf(tmpStr, "Completed processing (%d) [Id=%d]", sockId, _thId);
 _HTTPproxy->LogMsg(tmpStr);
#endif
}
#ifdef THREAD_DEBUG
 else
 _HTTPproxy->LogMsg("Nothing to do");
#endif
 }

 _HTTPproxy->activePersonality.CleanUpThread();
 _HTTPproxy->LogMsg("Leaving Thread...");

 THREAD_RET_VALUE
}
#endif

THREAD_RET_TYPE ServeRPCRequest(void* thrArgs)
{

A Component-based Architecture for Open, Independently Extensible Distributed Systems 213

 RPCThreadArgs *args=(RPCThreadArgs*)thrArgs;

 IncrementNumComponents();

 args->socks[args->sockId].blocked = 1; /* Nobody else can use it */
 _HTTPproxy->ProcessRPCRequest(args->socks[args->sockId].sockId);
 args->socks[args->sockId].blocked = 0; /* Unlocked */

 DecrementNumComponents();

 THREAD_RET_VALUE
}

THREAD_RET_TYPE CheckToolDirectory(void* notUsed)
{
 for(;_HTTPproxy->GetToolsUpdateState();)
 {
 DoSleep(SLEEP_TIME_TOOLS_UPDATE);

 // _HTTPproxy->LogMsg("About to update tools...");

#ifndef STHREAD
 (_HTTPproxy->GetUpdateMutex())->access(); /* Block tools update process */

if(numRunningComponents == 0)
{
 // _HTTPproxy->LogMsg("Updating tools...");
 _HTTPproxy->UpdateTools();
}

/* Enable tools update process */
(_HTTPproxy->GetUpdateMutex())->release();
#else
 _HTTPproxy->UpdateTools();
#endif
 /* LogMsg("End update..."); */
 }

 THREAD_RET_VALUE
}

Proxy::Proxy()
{
 int i, basePort;
 char tmpStr[256];
 char* _basePort = getenv("BASE_PORT");

 printf("Welcome to %s v.%s [%s%s personality]\nWritten by Luca Deri (lde@zu-
rich.ibm.com)\n"
 "Copyright IBM 1995-96, All Rights Reserved.\n\n",
 applName, shortVersStr, personalityName, threadSupport);

 logFile = stdout;
 httpLogFile = fopen("http.log", "a");

 hostAddresses = new HashTable(256, FREE_DATA_AND_KEY_MEMORY);
 callUpdateTools = 1; /* Tools have to be updated */
 numHttpThreads = 8; /* # threads used to serve HTTP requests */

 LogMsg("Initialization. Wait please...");

 _HTTPproxy = this;
 numRunningComponents = 0;
214 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Liaison’s Code Fragments
 eventQueue = new EventQueue;

 /* Reset Event Handler List */
 for(i=0; i<=MAX_HANDLED_EVENT; i++)
 evtHdlr[i].theEvtHandler = (EvtHandlerProc)NULL;

 tmpStr[0] = '\0';
 gethostname(tmpStr, 256);
 localHostName = _strdup(tmpStr);

 if(_basePort != NULL)
 {
 basePort = atoi(_basePort);
 if(basePort < 1024)
{
 LogMsg("The base port you've selected is < 1024. The default port "
 "is used instead.");
 basePort = RECORDING_PORT;
}
 else
{
 sprintf(tmpStr, "The base port is %d [HTTP port is %d]", basePort, basePort+2);
 LogMsg(tmpStr);
}
 }
 else
 basePort = RECORDING_PORT;

 /* Socket used for the communications with the remote peers */
 i=basePort+2 /* HTTP Listen port */;
 if((httpSocket = OpenTcpSocket(&i)) < 0)
 {
 LogMsg("Please check whether there's a Proxy already running");
 LogMsg("Fatal error. Shutting down...");
 exit(-1);
 }

 /* Socket used for RPC-like communications */
 rpcSocketPort=basePort+1 /* RPC_PORT */;
 if((rpcSocket = OpenTcpSocket(&rpcSocketPort)) < 0)
 {
 LogMsg("Please check whether there's a Proxy already running");
 LogMsg("Fatal error. Shutting down...");
 exit(-1);
 }

 /* Socket used for the communications with the remote peers */
 sendTCPSocketPort=0, sendTCPSocket=0;
 if((sendTCPSocket = OpenTcpSocket(&sendTCPSocketPort)) < 0)
 {
 LogMsg("Please check whether there's a Proxy already running");
 LogMsg("Fatal error. Shutting down...");
 exit(-1);
 }

 /* Socket used for the communications with the YP server and IT */
 sendUDPSocketPort=basePort /* RECORDING_PORT */;
 if((sendUDPSocket = OpenUDPSocket(&sendUDPSocketPort)) < 0)
 {
 LogMsg("Please check whether there's a Proxy already running");
 LogMsg("Fatal error. Shutting down...");
 exit(-1);
 }
A Component-based Architecture for Open, Independently Extensible Distributed Systems 215

 InstallBasicEvtHandlers();

 if(LoadTools() != 0)
 {
 LogMsg("Problems loading external tools.");
 return;
 }

 ReadPasswordFile();

 if(getenv("DROPLET_RELOAD") != NULL)
 reloadDroplets = 1;
 else
 reloadDroplets = 0;

#ifndef STHREAD
 /* NOTE:
 In OS/2 the DLLs cannot be modified while they are in use
 and therefore only new tools can be added. Due to this a
 thread can load such tools and do not care about anything
 else. */

 if(reloadDroplets)
 activePersonality.CreateThread(CheckToolDirectory, NULL, &toolUpdateThreadId);
#endif

 char *httpdPort = getenv("HTTP_SRVR_PORT");

 if(httpdPort != NULL)
 httpDaemonPort = atoi(httpdPort);
 else
 httpDaemonPort = 80; /* Default Port */

#ifdef LEAKS
 InitProc();
#endif
 LogMsg("Proxy ready to serve requests.");

#ifndef STHREAD
 httpThreadController = new ThreadController();

 for(i=0; i<numHttpThreads; i++) /* 8 = max num threads active for HTTP */
 activePersonality.CreateThread(CreateHTTPServer, NULL, NULL);
#endif
}

Proxy::~Proxy()
{
 static int calledDestructor=0;
 int i;

 if(calledDestructor == 0)
 {
 LogMsg("Called Proxy::~Proxy");
 calledDestructor = 1;

 fclose(httpLogFile);

 delete localHostName;

#ifndef STHREAD
 delete httpThreadController;
216 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Liaison’s Code Fragments
#endif

#ifdef LEAKS
 TermProc();
#endif

 UnloadTools();

#ifndef STHREAD
 activePersonality.KillThread(toolUpdateThreadId);
#endif

 CloseSocket(httpSocket);
 CloseSocket(sendUDPSocket);
 CloseSocket(sendTCPSocket);
 CloseSocket(rpcSocket);

 for(i=0; i<MAX_RPC_SOCKETS; i++)
 if(rpcSockets[i].sockId != -1)
 CloseSocket(rpcSockets[i].sockId);

 LogMsg("Communication sockets closed successfully.");

 for(i=0; i<numProtectedURLs; i++)
 delete protectedURLs[i];

 delete hostAddresses;
 delete passwds;

 if(eventQueue != NULL) delete eventQueue;
 // exit(0);
 }
}

void Proxy::Listen()
{
 int i, newSockFd, maxFd, rc;
 SOCK_LEN_TYPE length;
#ifdef STHREAD
 long expireTime;
 struct timeval wait_time;
#endif
 sockaddr_in from;
 struct fd_set sockMask;
 char udpBuf[256];
 struct sockaddr source;

 length = sizeof(from);

 for(;;)
 {
 newSockFd = -1;
 maxFd=0;
 FD_ZERO(&sockMask);

 FD_SET(httpSocket, &sockMask);
 FD_SET(sendUDPSocket, &sockMask);
 FD_SET(rpcSocket, &sockMask);

 for(i=0; i<MAX_RPC_SOCKETS; i++)
 if((rpcSockets[i].sockId != -1) && (rpcSockets[i].blocked == 0))
 {
 FD_SET(rpcSockets[i].sockId, &sockMask);
A Component-based Architecture for Open, Independently Extensible Distributed Systems 217

 if(rpcSockets[i].sockId > maxFd) maxFd = rpcSockets[i].sockId;
 }

 if(httpSocket > maxFd) maxFd = httpSocket;
 if(sendUDPSocket > maxFd) maxFd = sendUDPSocket;
 if(rpcSocket > maxFd) maxFd = rpcSocket;

 maxFd++; /* Necessary for select */

#ifdef STHREAD
 expireTime = eventQueue->GetNextEventExpireTime();

 if((reloadDroplets != 0) || (expireTime != -2 /* No Events */))
{
 if(expireTime == -1)
 {
 /* Process the event */
 ProcessQueuedEvent();
 continue;
 }
 else if(expireTime != -2)
 {
 expireTime = expireTime-time(NULL);
 if(expireTime < 0)
 {
 /* Process the event */
 ProcessQueuedEvent();
 continue;
 }
 else if(expireTime > SLEEP_TIME_TOOLS_UPDATE)
 expireTime = SLEEP_TIME_TOOLS_UPDATE;
 }
 else
 expireTime = SLEEP_TIME_TOOLS_UPDATE;

 wait_time.tv_sec = expireTime, wait_time.tv_usec = 0;
 rc = select(maxFd, &sockMask, 0, 0, &wait_time);
}
else
 rc = select(maxFd, &sockMask, 0, 0, NULL /* Infinite timeout */);
#else
 rc = select(maxFd, &sockMask, 0, 0, NULL /* Infinite timeout */);
#endif

#ifndef STHREAD
/* These instructions are needed to block the current request until
 the UpdateTools() is in progress */
(_HTTPproxy->GetUpdateMutex())->access(); /* Block tools update process */
(_HTTPproxy->GetUpdateMutex())->release();
#endif

if(rc > 0)
 {
 if(FD_ISSET(httpSocket, &sockMask))
 {
 newSockFd = accept(httpSocket, (sockaddr*)&from, &length);

 if(newSockFd < 0)
 continue; // Accept failed
 else
 udpBuf[0] = '\0';

#ifdef SOCK_OPTS
 int buffer = 8192; /* 8Kb is the new socket buffer */
218 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Liaison’s Code Fragments
 (void)setsockopt(newSockFd, SOL_SOCKET, SO_SNDBUF, (char *)&buffer, size-
of(buffer));

#endif
 }
 else if(FD_ISSET(sendUDPSocket, &sockMask))
 {
 //UD* Something has arrived on the UDP socket */
 newSockFd = sendUDPSocket;

 length = sizeof(struct sockaddr);
 if((rc = recvfrom(sendUDPSocket, udpBuf, 256, 0, &source, &length)) < 0)
{
 perror("recvfrom");
 udpBuf[0] = '\0';
}
 else
udpBuf[rc] = '\0';
 }
 else if(FD_ISSET(rpcSocket, &sockMask)) /* RPC-like request */
 {
 RPCThreadArgs args;

 newSockFd = accept(rpcSocket, (sockaddr*)&from, &length);

 // DO NOT CLOSE THE SOCKET
 /* NOTE: for sure there is space because the max number of accepted
 connection is set to 8 (<MAX_RPC_SOCKETS) by the listen() call
 contained in Proxy::OpenTcpSocket */
 for(i=0; i<MAX_RPC_SOCKETS; i++)
 if(rpcSockets[i].sockId == -1)
 {
 rpcSockets[i].sockId = newSockFd;
 break;
 }

 args.socks = rpcSockets;
 args.sockId = i;

 activePersonality.CreateThread(ServeRPCRequest, (void*)&args, NULL);
 newSockFd = -1; /* Do not ask for additional processing */
 }
 else
 {
 /* Check Open RPC-Sockets */
 for(i=0; i<MAX_RPC_SOCKETS; i++)
 if((rpcSockets[i].sockId != -1)
 && (FD_ISSET(rpcSockets[i].sockId, &sockMask)))
 if(i != MAX_RPC_SOCKETS) /* Something has been found */
 {
 /* Check whether we're received data or whether the remote peer
 has closed the connection */
 rc = recv(rpcSockets[i].sockId, udpBuf, 1, MSG_PEEK /* Do not
 remove data from the socket */);
 if(rc > 0)
 {
 RPCThreadArgs args;
 /* Please note that 'newSockFd = -1' */
 args.socks = rpcSockets;
 args.sockId = i;

 activePersonality.CreateThread(ServeRPCRequest, (void*)&args, NULL);
 }
 else
A Component-based Architecture for Open, Independently Extensible Distributed Systems 219

{
 /* The peer has closed the connection */
 /* printf("Closing socket %d\n", rpcSockets[i].sockId); */
 CloseSocket(rpcSockets[i].sockId);
 rpcSockets[i].sockId = -1;
}
 }
 else
 LogMsg("Program check: received data from an unknown socket");
 }

 if(newSockFd != -1)
 {
 /* In this case the accept has really received a request. It might
 be happened that the alarm time has elapsed and therefore a call
 to UpdateTools has been made */

#ifndef STHREAD
 httpThreadController->PushEntry(newSockFd, udpBuf);
#ifdef THREAD_DEBUG
 LogMsg("Posted new Request");
#endif
 httpThreadController->condVariable->Signal();
#else
 ProcessRequest(newSockFd, udpBuf);
#endif
 }
}
#ifdef STHREAD
else
if(rc == 0) /* Timeout */
 {
 /**/
 // (void)_HTTPproxy->CallLocalService("ReceiveNotifications", NULL, NULL);
 /**/
 expireTime = eventQueue->GetNextEventExpireTime();
 if((expireTime != -2) && ((expireTime-time(NULL)) < 0)) /* Event in queue */
 ProcessQueuedEvent();
 else
 _HTTPproxy->UpdateTools();
 }
#endif
else
 perror("select failed");
 }
}

void Proxy::ProcessQueuedEvent()
{
 while(eventQueue->NumEventsAvailable() > 0)
 {
 EventInfo* theEvent;
 int eventType;

 theEvent = eventQueue->GetEvent();
 eventType = theEvent->GetEventType();

 if(!(((eventType<MIN_SYSTEM_EVENT) || (eventType>MAX_HANDLED_EVENT))
 || (evtHdlr[eventType].theEvtHandler == NULL)))
{
 /* The event handler MUST delete the event if necessary */
 evtHdlr[eventType].theEvtHandler(theEvent);
220 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Liaison’s Code Fragments
 /* LogMsg("Event processed"); */
 break; /* An event has been processed */
}
 else
LogMsg("Event discarded");
 }
}

int readline(int sockId, char* buffer, int bufferSize)
{
 int len, rc;

 for(len=0;;len++)
 {
 rc = recv(sockId, &buffer[len], 1, 0);
 if((rc != 1) || buffer[len] == '\n')
 break;
 }

 return(len);
}

int sendstring(int sockId, char* buffer, int bufferSize)
{
 int rc, len=0;

 if((bufferSize == 0) || (buffer == NULL))
 return(0);

 while(len < bufferSize)
 {
 rc = send(sockId, &buffer[len], bufferSize-len, 0);
 /* printf("rc=%d\n", rc); */

 if(rc <= 0)
 break; /* Error (peer has disconnected ?) */
 else
 len += rc;
 }

 return(len);
}

static void ReadGarbage(int sockId, char* pw)
{
 char aChar, lastChar, preLastChar, lineStr[256];
 int rc, idxChar=0;

 preLastChar = '\r';
 lastChar = '\n';

 for(;;)
 {
 rc = recv(sockId, &aChar, 1, 0);

 if(rc != 1)
 {
 idxChar=0;
 break; /* Empty line */
 }
 else
 {
 /* printf("%c", aChar); */

A Component-based Architecture for Open, Independently Extensible Distributed Systems 221

 if((aChar == '\n') && (lastChar == '\r') && (preLastChar == '\n'))
 {
 idxChar=0;
 break;
 }
 else
 {
 if(aChar == '\n')
 {
 lineStr[idxChar-1] = '\0';
 idxChar=0;
 if(strncmp(lineStr, "Authorization: Basic ", 21) == 0)
 strcpy(pw, &lineStr[21]);
 }
 else
 {
 if(idxChar<256)
 lineStr[idxChar++] = aChar;
 }

 preLastChar = lastChar;
 lastChar = aChar;
 }
 }
 }
}

int Proxy::ClientAuthorized(char* password,
 char* dropletName, char* urlTrailer)
{
 char outBuffer[64], *user, *pw, url[384];
 int i, rc, len, access=1 /* Access granted */;

 i = DecodeString(password, (unsigned char*)outBuffer, 64);

 if(i == 0)
 {
 user = "", pw = "";
 outBuffer[0] = '\0';
 }
 else
 {
 outBuffer[i] = '\0';

 for(i=0; i<64; i++)
if(outBuffer[i] == ':')
 {
 outBuffer[i] = '\0';
 user = outBuffer;
 break;
 }

 pw = &outBuffer[i+1];
 }

 // printf("%s-%s\n", user, pw);
 strcpy(url, dropletName);
 strcat(url, "/");
 i = strlen(url);
 strncpy(&url[i], urlTrailer, 384-i);

 // printf("%s\n", url);

 for(i=0; i<numProtectedURLs; i++)
222 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Liaison’s Code Fragments
 {
 len = strlen(protectedURLs[i]->header);
 rc = 1;

 if(strncmp(protectedURLs[i]->header, url, len) == 0)
{
 if(protectedURLs[i]->trailer[0] != '\0')
 {
 len = strlen(protectedURLs[i]->trailer)-len;
 if(strstr(&url[len], protectedURLs[i]->trailer) == NULL)
continue;
 }

 if(rc == 1)
 {
 if(strcmp(protectedURLs[i]->user, user) != 0)
{
 access = 0; /* Access Denied: in case there is not another rule
 that matches, the default is access denied */
 continue;
}
 else
{
 char* _pw = (char*)passwds->RetrieveEntry(user);

 if((_pw == NULL) || (strcmp(pw, _pw) == 0))
 return(1);
 else
 return(0);
 }
 }
 }
}
 return(access);
}

void RemoveJunk(char* str)
{
 int len = strlen(str), i, idx;
 char *out;

 out = new char[len+12 /* Just to be safe */];

 for(i=0, idx=0; i<len; i++)
 {
 switch(str[i])
{
case ' ':
case '\t':
 if((idx>0)
 && (out[idx-1] != ' ')
 && (out[idx-1] != '\t'))
 out[idx++] = str[i];
 break;
default:
 out[idx++] = str[i];
 break;
}
 }

 out[idx] = '\0';
 strcpy(str, out);
 delete out;
}

A Component-based Architecture for Open, Independently Extensible Distributed Systems 223

int Proxy::ReadURLConfigurationFile(char* name)
{
 FILE *fd;
 char tmpStr[512];
 int i, starIdx, nameIdx, line=0;
 SecurityEntry *se;

 if((fd = fopen(name, "r")) == NULL)
 {
 sprintf(tmpStr, "Unable to read file '%s'", name);
 LogMsg(tmpStr);
 return -1;
 }

 while(fgets(tmpStr, 512, fd))
 {
 nameIdx=-1, starIdx=-1;
 line++;
 tmpStr[strlen(tmpStr)-1] = '\0'; /* Remove final '\n' */

 switch(tmpStr[0])
{
case '\n':
case '\0':
case '#':
 break;

default:
 RemoveJunk(tmpStr); /* Remove uneeded spaces/tabs */

 for(i=0; tmpStr[i] != '\0'; i++)
 switch(tmpStr[i]) {
 {
 case '\t':
 case ' ':
 if(nameIdx == -1)
 {
 nameIdx=i;
 tmpStr[i] ='\0';
 }
 break;
 case '*':
 if(starIdx != -1) /* Double star */
 {
 sprintf(tmpStr, "Invalid line %d (file: %s) [too many stars]",
 line, name);
 LogMsg(tmpStr);
 }
 else
 {
 starIdx = i;
 tmpStr[i] ='\0';
 }
 break;
 }
 }
}

if((nameIdx != -1) && (starIdx == -1))
{
 sprintf(tmpStr, "Invalid line %d (file: %s) [missing star]", line, name);
 LogMsg(tmpStr);
224 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Liaison’s Code Fragments
}
else if((nameIdx != -1) && (tmpStr[0] == '\0'))
{
 sprintf(tmpStr, "Invalid line %d (file: %s) [star at the beginning of a line]",
line, name);
 LogMsg(tmpStr);
}
else if(nameIdx != -1)
{
 se = new SecurityEntry;
 se->header= _strdup(tmpStr);
 se->trailer = _strdup(&tmpStr[starIdx+1]);
 se->user = _strdup(&tmpStr[nameIdx+1]);
 protectedURLs[numProtectedURLs++] = se;
}
 }

 fclose(fd);
 return 0;
}

int Proxy::ReadPasswordConfigurationFile(char* name)
{
 FILE *fd;
 char tmpStr[512];
 int i, nameIdx;

 if((fd = fopen(name, "r")) == NULL)
 {
 sprintf(tmpStr, "Unable to read file '%s'", name);
 LogMsg(tmpStr);
 return -1;
 }

 while(fgets(tmpStr, 512, fd))
 {
 nameIdx=-1;
 tmpStr[strlen(tmpStr)-1] = '\0'; /* Remove final '\n' */

 switch(tmpStr[0])
{
case '\0':
case '\n':
case '#':
 break;

default:
 RemoveJunk(tmpStr); /* Remove uneeded spaces/tabs */

 for(i=0; tmpStr[i] != '\0'; i++)
 switch(tmpStr[i]) {
 {
 case '\t':
 case ' ':
if(nameIdx == -1)
 {
 nameIdx=i;
 tmpStr[i] ='\0';
 }
break;
 }
 }
}

A Component-based Architecture for Open, Independently Extensible Distributed Systems 225

 if(nameIdx != -1)
 passwds->AddEntry(_strdup(tmpStr), _strdup(&tmpStr[nameIdx+1]));
 }

 fclose(fd);
 return 0;
}

void Proxy::ReadPasswordFile() {

 numProtectedURLs = 0;
 passwds = new HashTable(256, FREE_DATA_AND_KEY_MEMORY);

 if((ReadPasswordConfigurationFile("passwd") == -1)
 || (ReadURLConfigurationFile("urlProtection") == -1))
 {
 LogMsg("WARNING: Security disabled.");
 return;
 }
}

void Proxy::ProcessRequest(int newSockFd, char* inData)
{
#define PAD 10
 char *queryString, *httpStringRepository,
 *reqString, tmpStr[256], password[64];
 int operation;
 ToolInfo* toolInfo;
 struct fd_set mask;
 struct timeval wait_time;
 struct sockaddr_in peerName;
 SOCK_LEN_TYPE peerNameLen=sizeof(peerName);
 struct stat statInfo;

 IncrementNumComponents();

 // printf("--> Proxy::ProcessRequest\n");

 if(newSockFd == sendUDPSocket)
 {
 /* UDP socket connection */
 char *toolName=NULL;

 if(isdigit(inData[0]))
 {
 reqString = &inData[4];
 queryString = NULL;
 inData[3] = '\0';
 operation = atoi(inData);

 if(operation == 40) /* PROXY_YP_SERVER=40 - ProxyGlobals.h */
 toolName = "/HTTP/YP_Server";
 }
 else
{
 /* This might be an old stack which send the message that we're going
 ot use for the CMIP discovery. We assume that it will be able to
 handle the message */

 toolName = "/HTTP/YP_Server";
}

226 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Liaison’s Code Fragments
 if(toolName == NULL)
{
 sprintf(tmpStr, "Received unknown UDP message [%d-%s]", operation, reqString);
 LogMsg(tmpStr);
 DecrementNumComponents();
 return;
}
 else
toolInfo = GetDroplet(toolName); /* Get the requested tool */

 if(toolInfo == NULL)
{
 DecrementNumComponents();
 return;
}
 }
 else /* HTTP Request */
 {
 int numBytes=0, rc, len, i, numSlash=0;
 char lastChar, *name, logEntry[96];

 httpStringRepository = new char[4096];

 while(numBytes < 4095)
{
 rc = recv(newSockFd, &httpStringRepository[numBytes], 1, 0);

 if((rc < 0) || (httpStringRepository[numBytes] == '\n'))
 break;

 numBytes++;
}

 //printf("--> HTTP Request [1] (%d)\n", numBytes);

 if((rc == -1) || (numBytes < 4)
 || (strncmp(httpStringRepository, "GET ", 4) != 0))
 /* Client disconnected or wrong msg */
{
 httpStringRepository[numBytes] = '\0'; /* Just to be safe */

 if(rc == -1)
 {
#ifdef PRINT_INFORMATIVE_MESSAGES
 _HTTPproxy->LogMsg("Client disconnected while sending request");
 /* No error message is sent since the client disconnected already */
#else
 ; /* Nothing to do */
#endif
 }
 else
 {
#ifdef PRINT_INFORMATIVE_MESSAGES
 char s[96];

 if(numBytes > 40)
{
 httpStringRepository[38] = '.';
 httpStringRepository[39] = '.';
 httpStringRepository[40] = '\0';
}

 sprintf(s, "Unknown HTTP req. '%s' (client abort ?)", httpStringRepository);
 _HTTPproxy->LogMsg(s);
A Component-based Architecture for Open, Independently Extensible Distributed Systems 227

#endif
 SendString(newSockFd, "HTTP/1.0 500 Unknown request (client abort?)\n"); /
* Send error response */
 }

 delete httpStringRepository;
 CloseSocket(newSockFd);
 DecrementNumComponents();
 return;
}

memset(&httpStringRepository[numBytes+1], '\0', 8); /* Make sure there's no gar-
bage at the end */
//printf("--> HTTP Request [2]\n");

if(getpeername(newSockFd, (sockaddr*)&peerName, &peerNameLen) == 0)
{
#ifdef ENABLE_LOG
 struct hostent *peerAddr;
 char* addr;
 int len;

 sprintf(logEntry, "%ld", peerName.sin_addr.s_addr);

 addr = (char*)hostAddresses->RetrieveEntry(logEntry);

 if(addr == NULL)
 {
 peerAddr = gethostbyaddr((char*)&peerName.sin_addr.s_addr, 4, AF_INET);
 if(peerAddr != NULL)
 {
 hostAddresses->AddEntry(_strdup(logEntry), _strdup(peerAddr->h_name));
 sprintf(logEntry, "[%s] ", peerAddr->h_name);
 }
 else
 logEntry[0] = '\0';
 }
 else
 sprintf(logEntry, "[%s] ", addr);
#else
 logEntry[0] = '\0';
#endif

 len = strlen(httpStringRepository);
 if((len>=11) && (strncmp(&httpStringRepository[len-11], " HTTP/1.0", 9) == 0))
 {
 httpStringRepository[numBytes-9] = '\0';
 if(len>30)
 {
 char c = httpStringRepository[25];
 httpStringRepository[25] = '\0';
 strcat(logEntry, &httpStringRepository[4]);
 httpStringRepository[25] = c;
 strcat(logEntry, "...");
}
else
 strcat(logEntry, &httpStringRepository[4]);

 httpStringRepository[numBytes-9] = '\0';
 strcat(httpStringRepository, "HTTP/1.0\r\n");
 memset(&httpStringRepository[numBytes+1], '\0', 8); /* Make sure there's
 no garbage at the end */
 }
 else
228 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Liaison’s Code Fragments
 {
 if(len>30)
 {
 char c = httpStringRepository[25];
 httpStringRepository[25] = '\0';
 strcat(logEntry, &httpStringRepository[4]);
 httpStringRepository[25] = c;
 strcat(logEntry, "...");
 }
 else
 strcat(logEntry, &httpStringRepository[4]);

 httpStringRepository[len-1] = '\0'; /* Remove final '\n' */
 }
}
else
 logEntry[0] = '\0';

 WriteLogEntry(httpLogFile, logEntry); /* Write and entry into the log file */

 /* If the name is of type "/zzz/bbb cccc" then the toolname is "/zzz/bbb" */
 name = &httpStringRepository[4];

 if(name[0] == '/')
{
 len=strlen(name);

 for(i=1; i<len; i++)
 if((name[i] == '/'))
 {
 numSlash++;
 if(numSlash == 2)
 break;
 }
 else if((name[i] == '?') || (name[i] == ' '))
 {
 numSlash = 2;
 break;
 }

 if(numSlash == 2)
 {
 lastChar = name[i];
 name[i] = '\0';
 }
 }
 else
{
 i = 5;
 lastChar = name[i];
}

#ifndef LEAKS
 toolInfo = toolMgr.GetToolByName(name); /* Get the requested tool */

 if((toolInfo == NULL)
 || (toolInfo->jumpInfo->toolProc == NULL)
 || (toolMgr.LockTool(toolInfo) == NULL))
{
 FILE *fd;
 int idx, insIdx, stop;

 name[i] = lastChar; /* Restore */
 strcpy(tmpStr, localDirString); /* It specifies the local directory */
A Component-based Architecture for Open, Independently Extensible Distributed Systems 229

 for(idx=1, insIdx=strlen(tmpStr), stop=0; stop == 0; idx++, insIdx++)
 {
 switch(httpStringRepository[idx+4])
{
case ' ':
case '\r':
case '\n':
 stop=1;
 tmpStr[insIdx] = '\0';
 break;
default:
 tmpStr[insIdx] = httpStringRepository[idx+4]; /* +4 discards 'GET ' */
 break;
 }
}

 // printf("File = '%s'\n", tmpStr);
 if(fileDividerChar != '/')
 {
 int dividerIdx;

 for(dividerIdx=0; tmpStr[dividerIdx] != '\0'; dividerIdx++)
 if(tmpStr[dividerIdx] == '/')
 tmpStr[dividerIdx] = fileDividerChar;
 }

 fd = fopen(tmpStr, "rb");

 if(fd != NULL)
 {
 if(strncmp(&httpStringRepository[idx+4], "HTTP/1.0", 8) == 0)
 {
 time_t theTime = time(NULL);
 char tmpBuffer[96];
 stat(tmpStr, &statInfo);

 ReadGarbage(newSockFd, password);
 SendString(newSockFd, "HTTP/1.0 200 Document follows\n");

 /* Thu, 25 Jul 1996 13:47:57 GMT */
 strftime(tmpBuffer, 95, "Date: %a, %d %b %Y %H:%M:%S %Z\n",
 localtime(&theTime));
 SendString(newSockFd, tmpBuffer);

 SendString(newSockFd, "Server: IBM Liaison\n");

 if(strncmp(&tmpStr[strlen(tmpStr)-4], ".gif", 4) == 0)
 SendString(newSockFd, "Content-type: image/gif\n");

 strftime(tmpBuffer, 95, "Last-modified: %a, %d %b %Y %H:%M:%S %Z\n",
 localtime(&statInfo.st_mtime));
 SendString(newSockFd, tmpBuffer);
 sprintf(tmpBuffer, "Content-length: %d\n\n", statInfo.st_size);
 SendString(newSockFd, tmpBuffer);
}
else
{
 //ReadGarbage(newSockFd, password);
 SendString(newSockFd, "HTTP/1.0 200 Document follows\n\n");
}

for(;;)
{

230 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Liaison’s Code Fragments
 numBytes = fread(tmpStr, sizeof(char), 255, fd);
 if(numBytes <= 0) break;
 rc = sendstring(newSockFd, tmpStr, numBytes);
 if(rc != numBytes)
 break;
 }
 fclose(fd);
 }
 else
 {
 /* Tool NOT found: consult the HTTP daemon, if any, otherwise
 return an error */
 struct sockaddr_in addr;
 int err, len, listenSocket;

 listenSocket = socket(AF_INET, SOCK_STREAM, 0);
 bzero((char*)&addr, sizeof(addr));
 addr.sin_family = AF_INET;
 addr.sin_addr.s_addr = INADDR_ANY;
 addr.sin_port = htons(httpDaemonPort);
 err = connect(listenSocket, (struct sockaddr *)&addr, sizeof(addr));
 if(err != 0)
{
 SendString(newSockFd, "<HEAD><TITLE>404 Not Found</TITLE></HEAD>");
 SendString(newSockFd, "<BODY><H1>404 Not Found</H1>");
 SendString(newSockFd, "The requested URL can not be handled by this serv-
er.<P><hr>");
 sprintf(httpStringRepository, "IBM %s v.%s [%s personality]",
 applName, shortVersStr, personalityName);
 SendString(newSockFd, httpStringRepository);
 SendString(newSockFd, "<p>Copyright IBM 1995-96, All Right Reserved.\n");
 SendString(newSockFd, "</BODY>");
}
 else
{
 int contentLength=0;

 httpStringRepository[numBytes-1] = '\r';
 httpStringRepository[numBytes] = '\n';
 httpStringRepository[numBytes+1] = '\0';
 /* _HTTPproxy->LogMsg(httpStringRepository); */

 /* printf("Requested: %s\n", httpStringRepository); */
 send(listenSocket, httpStringRepository, strlen(httpStringRepository), 0);

 #define ACCEPT_HTTP "Accept: image/gif, image/x-xbitmap, image/jpeg, image/
pjpeg, */*\r\n\r\n"
 send(listenSocket, ACCEPT_HTTP, strlen(ACCEPT_HTTP), 0);

 FD_ZERO (&mask);
 FD_SET (listenSocket, &mask);
 wait_time.tv_sec = 60, wait_time.tv_usec = 0;
 if (select(listenSocket+1, &mask, 0, 0, &wait_time) == 1)
 {
 for(len=1 /* Dummy value != 0 */;len > 0;)
{
 len = readline(listenSocket, httpStringRepository, 4096);

 /* printf("%d\n", len); */

 if(len == 0)
 {
 int bytesToRead;
A Component-based Architecture for Open, Independently Extensible Distributed Systems 231

 sendstring(newSockFd, "\n", 1);

 /* Now the document comes */
 while(contentLength > 0)
 {
 if(contentLength > 4096)
 bytesToRead = 4096;
 else
 bytesToRead = contentLength;

 len = recv(listenSocket, httpStringRepository, bytesToRead, 0);
 contentLength -= len;

 rc = sendstring(newSockFd, httpStringRepository, len);
 if(rc < 0) break; /* Partner disconnected ? */
 /* printf("- %d\n", len); */
 }
 break; /* End of the for loop */
 }
 else if(len > 0)
 {
 if(strncmp(httpStringRepository, "Content-length", 14) == 0)
{
 httpStringRepository[len] = '\0';
 contentLength = atoi(&httpStringRepository[16]);
 httpStringRepository[len] = '\n';
}

 len++;
 rc = sendstring(newSockFd, httpStringRepository, len);
 if(rc < 0) break; /* Partner disconnected ? */
 }
}
 }
 else
 {
 SendString(newSockFd, "<HEAD><TITLE>404 Not Found</TITLE></HEAD>\n");
 SendString(newSockFd, "<BODY><H1>404 Not Found</H1>\n");
 SendString(newSockFd, "The requested URL can not be handled by standard
HTTP server:\n"
 " [reason: timeout].<P><hr>\n");
 SendString(newSockFd, "IBM ZRL Proxy Server. Copyright IBM
1995-96, All Right Reserved.\n");
 SendString(newSockFd, "</BODY>\n");
 }
}

 CloseSocket(listenSocket);
 }

 CloseSocket(newSockFd);
 delete httpStringRepository;
 DecrementNumComponents();
 return;
}
 else
#endif
{
 int boundary=-1, j, readGarbage=0;
 char *tmpPtr = &name[i+1];

 len = strlen(tmpPtr);
 if((len>=11) && (strncmp(&tmpPtr[len-11], " HTTP/1.0", 9) == 0))
 {
232 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Liaison’s Code Fragments
 memset(&tmpPtr[len-11], '\0', 11); /* Make sure there's not garbage at the
end */
 readGarbage=1;
 }

 switch(lastChar)
 {
 case '?':
 reqString = "";
 queryString = &name[i+1];
 break;
 case ' ':
 reqString = "";
 queryString = "";
 break;
 case '/':
 reqString = &name[i+1];

 for(i=0, j=strlen(tmpPtr);i<j; i++)
if((tmpPtr[i] == ' ') || (tmpPtr[i] == '\r'))
 break;
else
 if(tmpPtr[i] == '?')
 {
 tmpPtr[i] = '\0';
 boundary = i;
 }

 if(boundary != -1)
queryString = &tmpPtr[boundary+1];
 else
queryString = "";
 break;
 }

 /* Receive data on the socket */
 if(readGarbage)
 ReadGarbage(newSockFd, password);
}
 }

#ifndef LEAKS
 /* Verify authorization */
 if(ClientAuthorized(password, toolInfo->toolName, reqString))
 toolInfo->jumpInfo->toolProc(newSockFd, reqString, queryString,
 HTTP_LISTEN_PORT /* Port used by the remote HTTPD */);
 else
 {
 SendString(newSockFd, "HTTP/1.0 401 Unauthorized to access the document\n");
 SendString(newSockFd, "Server: IBM Liaison\n");
 SendString(newSockFd, "Content-Type: text/html\n\n");
 SendString(newSockFd, "<HTML>\n<HEAD>\n<TITLE>Error</TITLE>\n</
HEAD>\n<BODY>\n"
 "<H1>Error 401</H1>\nUnauthorized to access the document\n</BODY>\n</HTML>\n");
 }

 toolMgr.UnlockTool(toolInfo); /* Used to decrement the usage counter */
#else
 ExternFunction(newSockFd, reqString, queryString, HTTP_LISTEN_PORT /* Port used
by the remote HTTPD */);
#endif

 if(newSockFd != sendUDPSocket)
 {
A Component-based Architecture for Open, Independently Extensible Distributed Systems 233

 delete httpStringRepository; /* Delete now: after the processing */
 CloseSocket(newSockFd);
 }
 else
 {
 if(reqString != NULL) delete reqString;
 if(queryString != NULL) delete queryString;
 }

 DecrementNumComponents();

#undef PAD
}

Proxy* GetProxy() {
 return(_HTTPproxy);
}

Linux_Personality.cpp
#define _PROXY_TOOLS_C_ /* Do not remove it */

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <dirent.h>
#define __STR31__
#include <string.h>
#include <signal.h>
#include <dlfcn.h> /* dlopen... */

#ifndef STHREAD
extern "C" {
#include <pthread.h>
}
#endif

#include "Proxy.h"
#include "ProxyTools.h"

#define VERBOSE

static JumpInfo* (*jumpProc)();

char applName[] = "Liaison";
char personalityName[] = "Linux (x86)";

char fileDividerChar = '/';
char localDirString[] = "./"; /* It specifies the local directory */

extern "C" {
 void Terminate(int signalId);
 void IgnoreSignal(int signalId);
} // Prototype

class IdxEntry {
public:
 char* name;
 ino_t fileModDate;
 int loadOnDemand;
 char* locServices;
 char* remServices;

 IdxEntry();
 ~IdxEntry();
234 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Liaison’s Code Fragments
};

IdxEntry::IdxEntry() {
 name = NULL;
 locServices = NULL;
 remServices = NULL;
}

IdxEntry::~IdxEntry() {
 if(name != NULL) delete name;
 if(locServices != NULL) delete locServices;
 if(remServices != NULL) delete remServices;
}

extern "C" {
 void Terminate(int signalId)
 {
 char tmpStr[64];
 Proxy *HTTPproxy = GetProxy();

 sprintf(tmpStr, "Caught signal %d. Shutting down Proxy...", signalId);
 HTTPproxy->LogMsg(tmpStr);
 delete HTTPproxy;
 exit(0);
 }

 void IgnoreSignal(int signalId) {
 // printf("IgnoreSignal: %d\n", signalId);
 signal(signalId, IgnoreSignal);
 }

}

Personality::Personality()
{
 /* freopen("/dev/null", "r", stderr); */
 SetThreadAttributes(); /* For the main thread */
}

Personality::~Personality()
{
 ;
}

unsigned long Personality::GetDropletModificationDate(char* dllName)
{
 char path[96];
 struct stat statInfo;

 sprintf(path, "Droplets%c%s", fileDividerChar, dllName);

 if(stat(path, &statInfo) != 0)
 return(0); /* error */
 else
 return(statInfo.st_mtime);
}

int Personality::CreateToolIdx(char* dir)
{
 int numElems=0, createNewIdx=0;
 DIR* directoryPointer;
 struct dirent* dp;
 char tmpStr[512], tmpFile[255], indexPath[32], dropletName[48];
A Component-based Architecture for Open, Independently Extensible Distributed Systems 235

 time_t indexModificationTime;
 Proxy* HTTPproxy = GetProxy();

 indexModificationTime = GetDropletModificationDate("index");

 if(indexModificationTime > 0 /* The index file exists */)
 {
 sprintf(tmpStr, "%s/", dir);
 directoryPointer = opendir(tmpStr);

 if(directoryPointer == NULL)
return(-1);

 while((dp=readdir(directoryPointer)) != NULL)
{
 strcpy(tmpStr, dp->d_name);

 if((tmpStr[0] != '.') /* It could either be "." or ".." */
 && (strcmp(&tmpStr[strlen(tmpStr)-4], ".dll") == 0))
 {
 numElems++;

 if(GetDropletModificationDate(tmpStr) > indexModificationTime)
{
 createNewIdx = 1;
 break;
}
 }
}

 if(numElems == 0) createNewIdx = 1; /* Empty directory */
 closedir(directoryPointer);
 }
 else
 createNewIdx = 1;

 if(createNewIdx)
 {
 FILE *fd;
 void *moduleHdl, *myProc;
 JumpInfo* tmpJmp;
 int i;
 HashTable *ht;
 IdxEntry *idxEntry;

 /*** [1] Read the old index file first ***/
 ht = new HashTable(64, FREE_DATA_AND_KEY_MEMORY);
 sprintf(tmpStr, "Droplets%cindex", fileDividerChar);

 if((fd = fopen(tmpStr, "r")) != NULL)
{
 do
 fgets(tmpStr, 512, fd); /* Skip Comment */
 while(tmpStr[0] == '#');

 while(fgets(tmpStr, 512, fd))
 {
 idxEntry = new IdxEntry;

 tmpStr[strlen(tmpStr)-1] = '\0'; /* Remove final '\n' */
 strcpy(dropletName, tmpStr);

 fgets(tmpStr, 512, fd);
 tmpStr[strlen(tmpStr)-1] = '\0'; /* Remove final '\n' */
236 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Liaison’s Code Fragments
 idxEntry->name = strdup(tmpStr);

 fgets(tmpStr, 512, fd);
 sscanf(tmpStr, "%ul", &idxEntry->fileModDate);

 fgets(tmpStr, 512, fd);
 sscanf(tmpStr, "%d", &idxEntry->loadOnDemand);

 fgets(tmpStr, 512, fd);
 idxEntry->locServices = strdup(tmpStr);

 fgets(tmpStr, 512, fd);
 idxEntry->remServices = strdup(tmpStr);

 ht->AddEntry(strdup(dropletName), idxEntry);
 }

 fclose(fd);
}

 /*** [2] Scan the directory ***/
 time_t tp = time(NULL);

#ifdef VERBOSE
 HTTPproxy->LogMsg("- Creating new droplet index file");
#endif

 sprintf(tmpStr, "%s/", dir);
 directoryPointer = opendir(tmpStr);

 sprintf(indexPath, "Droplets%cindex", fileDividerChar);
 fd = fopen(indexPath, "w+");

 if((directoryPointer == NULL) || (fd == NULL))
{
 delete ht;
 return(-1);
}

 fprintf(fd, "###\n");
 fprintf(fd, "# Droplet index file \n");
 fprintf(fd, "# -- \n");
 fprintf(fd, "# Date: %s", ctime(&tp));
 fprintf(fd, "# Format: \n");
 fprintf(fd, "# dropletFileName[str] <cr> \n");
 fprintf(fd, "# dropletName[str] <cr> \n");
 fprintf(fd, "# fileId[ulong] <cr> \n");
 fprintf(fd, "# loadOnDemand[0/1] <cr> \n");
 fprintf(fd, "# localServices[str*] <cr> \n");
 fprintf(fd, "# remoteServices[str*] <cr> \n");
 fprintf(fd, "# \n");
 fprintf(fd, "###\n");
 fprintf(fd, "\n"); /* Do not forget this */

 while((dp=readdir(directoryPointer)) != NULL)
{
 strcpy(tmpStr, dp->d_name);

 if((tmpStr[0] != '.') /* It could either be "." or ".." */
 && (strcmp(&tmpStr[strlen(tmpStr)-4], ".dll") == 0))
 {
 idxEntry = (IdxEntry*)ht->RetrieveEntry(tmpStr);
 if((idxEntry != NULL) && (idxEntry->fileModDate == GetDropletModification-
Date(tmpStr)))
A Component-based Architecture for Open, Independently Extensible Distributed Systems 237

{
 /* The file is not modified hence it doesn't have to be loaded */

 fprintf(fd, "%s\n", tmpStr); /* dropletFileName */
 fprintf(fd, "%s\n", idxEntry->name); /* dropletName */
 fprintf(fd, "%lu\n", idxEntry->fileModDate); /* modif. time */
 fprintf(fd, "%d\n", idxEntry->loadOnDemand); /* loadOnDemand */
 fprintf(fd, "%s", idxEntry->locServices); /* local services */
 fprintf(fd, "%s", idxEntry->remServices); /* remote services */
}
 else
{
 if((idxEntry != NULL) && (idxEntry->name != NULL))
 HTTPproxy->UnloadToolByName(idxEntry->name, 0); /* IMPORTANT: Unload the tool
first */

 if((LoadModule(tmpStr, &moduleHdl) == 0) /* All right */
 && (GetModuleEntryPoint(moduleHdl, &myProc) == 0))
 {
 jumpProc = (JumpInfo*(*)())myProc;
 tmpJmp = jumpProc();

 if(tmpJmp->version == TOOL_VERSION)
{
 fprintf(fd, "%s\n", tmpStr); /* dropletFileName */
 fprintf(fd, "%s\n", tmpJmp->toolName); /* dropletName */
 fprintf(fd, "%lu\n", GetDropletModificationDate(tmpStr));/* modification Time
*/

 if(tmpJmp->loadOnDemand == DONT_LOAD_ON_DEMAND)
 fprintf(fd, "1\n");
 else
 fprintf(fd, "0\n");

 if(tmpJmp->services)
 for(i=0; tmpJmp->services[i].servName != NULL; i++)
 {
if(i == 0)
 fprintf(fd, "%s", tmpJmp->services[i].servName);
else
 fprintf(fd, " %s", tmpJmp->services[i].servName);
 }
 fprintf(fd, "\n"); /* End of list of local services */

 if(tmpJmp->remServices)
 for(i=0; tmpJmp->remServices[i].servName != NULL; i++)
 {
if(i == 0)
 fprintf(fd, "%s", tmpJmp->remServices[i].servName);
else
 fprintf(fd, " %s", tmpJmp->remServices[i].servName);
 }
 fprintf(fd, "\n"); /* End of list of local services */
}
 else
{
 sprintf(tmpStr, "Unable to load '%s': bad version [%0.3hd]",
 tmpJmp->toolName, tmpJmp->version);
 HTTPproxy->LogMsg(tmpStr);
}

 UnloadModule(moduleHdl);
 }
}

238 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Liaison’s Code Fragments
 }
}

 fclose(fd);
 closedir(directoryPointer);
 delete ht;
#ifdef VERBOSE
 HTTPproxy->LogMsg("- index file created successfully");
#endif
 return(2); /* Newly created file */
 }
 else
 return(0); /* Nothing has been created */
}

int Personality::LoadModule(char* dllName, void** dllHandle)
{
 char *poldlibpath;
 int result;
 char tmpStr[64];
 Proxy* HTTPproxy = GetProxy();

 dlerror(); /* Reset error msg */

 sprintf(tmpStr, "%s", dllName);
 (*dllHandle) = dlopen(tmpStr, RTLD_GLOBAL); /* Load the library */

#ifdef VERBOSE
 sprintf(tmpStr, "Load [%p] %s", (*dllHandle), dllName);
 HTTPproxy->LogMsg(tmpStr);
#endif

 if((*dllHandle) == NULL)
 {
 char errMsg[128];

 sprintf(errMsg, "Unable to load droplet '%s' [%s]", tmpStr, dlerror());
 HTTPproxy->LogMsg(errMsg);

 result = 1;
 }
 else
 result = 0;

 return (result);
}

int Personality::UnloadModule(void* dll_handle)
{
 int rc;
 Proxy* HTTPproxy = GetProxy();
 char tmpStr[64];

 errno = 0;
 rc = dlclose(dll_handle);
 if(rc != 0)
 {
 sprintf(tmpStr, "Unload returned %d [errno=%d] %p", rc, errno, dll_handle);
 HTTPproxy->LogMsg(tmpStr);
 }
#ifdef VERBOSE
 else
 {
A Component-based Architecture for Open, Independently Extensible Distributed Systems 239

 sprintf(tmpStr, "Unload OK [%p]", dll_handle);
 HTTPproxy->LogMsg(tmpStr);
 }
#endif

 return(rc);
}

int Personality::GetModuleEntryPoint(void* dll_handle, void** pproc_addr)
{

 (*pproc_addr) = dlsym(dll_handle, "JumpProc__Fv");

 if(((char*)dlerror()) != 0)
 return(-1);
 else
 return(0);
}

void Personality::CreateThread(THREAD_RET_TYPE(*FuncPtr)(void *),
 void* thrArgs, long* _threadId)
{
 int rc=0;

#ifndef STHREAD
 static pthread_t sharedId;
 pthread_t *threadId;

 if(_threadId != NULL)
 {
 threadId = new pthread_t;
 (*_threadId) = (long)threadId;
 }
 else
 threadId = &sharedId;

 rc = pthread_create(threadId, NULL, FuncPtr, thrArgs);

#else /* STHREAD */
 FuncPtr(thrArgs);
#endif
}

void Personality::KillThread(long threadId) {
#ifndef STHREAD

 if(threadId == 0)
 return; /* Nothing to cancel */

 pthread_t *_threadId = (pthread_t*)threadId;

 int rc = pthread_kill(*_threadId, 15 /* SIGTERM */);

 delete _threadId;
#endif

}

void Personality::SetThreadAttributes()
{
 static short i=0; /* Under 4.x the signals will be set just once */

 if(i == 0)
 {
240 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Liaison’s Code Fragments
 signal(SIGCLD, IgnoreSignal); /* Avoid zombie processes */
 signal(SIGPIPE, IgnoreSignal); /* Don't die when a client is killed */
 //sigignore(SIGPIPE);
 signal(SIGTERM, Terminate);
 signal(SIGINT, Terminate);
 signal(SIGQUIT, Terminate);
 i=1;
 }
}

void Personality::CancelCurrentThread() {
#ifndef STHREAD
 pthread_exit(NULL);
#endif
 printf("Thread canceled");
}

void Personality::CleanUpThread() {
 /* This function cleans up any memory that the thread allocated
 during its execution */
#ifndef STHREAD
 pthread_exit(NULL);
#endif
}

extern "C" {
 int soclose(int fd) {
 return(close(fd));
 }
}

/***/

#ifndef STHREAD

MutexSemaphore::MutexSemaphore() {
 int rc;

 if ((mutex_sem = (void *) new pthread_mutex_t) == NULL) {
 GetProxy()->LogMsg("MutexSemaphore::MutexSemaphore: new failed");
 return;
 }

 rc = pthread_mutex_init((pthread_mutex_t *) mutex_sem, NULL);
}

MutexSemaphore::~MutexSemaphore() {
 pthread_mutex_unlock((pthread_mutex_t *) mutex_sem);
 pthread_mutex_destroy((pthread_mutex_t *) mutex_sem);
 delete (pthread_mutex_t *) mutex_sem;
}

int MutexSemaphore::access() {
 int rc = pthread_mutex_lock((pthread_mutex_t *) mutex_sem);
 if (rc)
 return(NOTOK);
 else
 return(OK);
}

int MutexSemaphore::release() {
 int rc = pthread_mutex_unlock((pthread_mutex_t *) mutex_sem);
A Component-based Architecture for Open, Independently Extensible Distributed Systems 241

 if (rc)
 return(NOTOK);
 else
 return(OK);
}

/***/

CondVariable::CondVariable() {
 int rc;

 pthread_mutex_t *_mutex;
 pthread_cond_t *_condvar;

 _mutex = new pthread_mutex_t;
 _condvar = new pthread_cond_t;

 mutex = (void*)_mutex;
 condvar = (void*)_condvar;

 pred = 0;

 rc = pthread_mutex_init((pthread_mutex_t*)mutex, NULL);
 rc = pthread_cond_init((pthread_cond_t*)condvar, NULL);
}

CondVariable::~CondVariable() {
 pthread_mutex_destroy((pthread_mutex_t*)mutex);
 pthread_cond_destroy((pthread_cond_t*)condvar);
}

int CondVariable::Wait() {
 int rc;

 if((rc = pthread_mutex_lock((pthread_mutex_t*)mutex)) != 0) /* lock mutex */
 return rc;

 pred = 1; /* set predicate to 1 */

 // if pred is 1: wait in a loop until it is 0
 // if pred is 0: proceed
 while(pred != 0)
 rc = pthread_cond_wait((pthread_cond_t*)condvar, (pthread_mutex_t*)mutex);

 rc = pthread_mutex_unlock((pthread_mutex_t*)mutex); /* unlock mutex */
 return rc;
}

int CondVariable::Signal() {
 /* lock mutex */
 int rc = pthread_mutex_lock((pthread_mutex_t*)mutex);
 if(rc)
 {
 printf("CondVariable::Signal [1]: rc=%d\n", rc);
 return rc;
 }

 /* set pred to 0 */
 pred = 0;

 rc = pthread_cond_signal((pthread_cond_t*)condvar);
242 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Liaison’s Code Fragments
 if(rc) printf("CondVariable::Signal [2]: rc=%d\n", rc);

 /* unlock mutex */
 rc = pthread_mutex_unlock((pthread_mutex_t*)mutex);
 if(rc) printf("CondVariable::Signal [3]: rc=%d\n", rc);

 return rc;
}

#endif

void DoSleep(int secs) {
 sleep(secs);
}

A Component-based Architecture for Open, Independently Extensible Distributed Systems 243

A
ACSE 53, 187
Aggregation 40
Architectural Instance 13
Architectural Style 13
ASN.1 52, 55, 59, 112, 123, 159, 186

B
Basic 140
BER 123

C
C Bindings 127, 198
C++ 125, 136, 194
CCITT 183
Cecil 44
CGI 48, 107, 113
Class Diagram 193
CMIP 19, 53, 122, 130, 159, 187
CMIS 53, 159
CMISE 53, 187
Coarse Grained Component 16
COM 38
Component Engine 44
Component Manager 46
Configuration Management 54
Cooperation 159
CORBA 19, 106, 129, 159
CORBA-Liaison 130
CORBA-Liaison Interface 199

D
Delayed Event 95, 100, 148
Delegation 159
DLL 41, 139
DNS 76
Droplet 115, 142, 159
DSOM 102, 130, 131, 199

E
ET++ 16
Evolution 17
Extensible System 17, 160
External Bindings 125, 149, 193

F
Fault Management 54
Fine Grained Component 15
Flexible 16
Flexible Components 44
Framework 14, 160

G
GDMO 51, 59, 112, 123, 160
GOM 68, 128, 132
GUI 73

H
HP OpenView 63
HTML 106, 116, 137, 160
HTTP 106, 108, 122, 149, 160
HTTP-based Management 121, 124

I
IBM 123, 130
IBM NetView 63
IDL 36, 57, 130
IEC 183
IETF 16, 109, 189, 192
IIOP 142

Implementation Repository 58
Independently Extensible System 17, 160
Interaction Translation 59
Inter-Domain Management 66
Inter-domain Management 29, 160
Interface 57, 184
Interface Repository 57
International Standard 183
Internet Draft 189
ISO 16, 183, 192
ISODE 62
ITU 17

J
Java 107, 125, 137
Java Beans 16, 42
Java IDL 43
Java RMI 43
Java VM 107
JDBC 43
JMAPI 64, 142

L
Liaison 79, 108, 149

M
MacOS 112
Macro 186
Managed Object 50, 160
Management Domain 160
Metadata 116
MIB 52, 55, 160, 187
Mobility 111
Multithreading 161

N
Network Managemen 161
Network Management 19
NMS 55

O
Object 161
Object Class 51
Object Diagram 193
Object Identifier 191
Object Model 57, 161
Object System 57
Obliq 44
OCX 16, 41, 42
ODPart 36
OLE 16, 35, 38, 41, 135
OLE Automation 39
OMG 57
OOP 20
Open Scripting Architecture 35
Open System 17, 161
OpenDoc 16, 33, 135
ORB 58
OS/2 155
OSA 102
OSI 183
OSI Environment 50
OSI Management 161
OSI Network Management 50
OSI Reference Model 184, 185
OSI Stack 51, 185
OSI System Management 53
OSIMIS 63
244 A Component-based Architecture for Open, Independently Extensible Distributed Systems

P
Part Editor 36
Pascal 36, 140
PEPY 63
Performance Management 54
Perl 66
Pickle 43
PICS 26, 161
Plug-in 15, 48, 162
PPP 115
Prototype-based Programming 44
Proxy 108, 109

Q
QuickTime 46

R
RAD 127, 135
Recommendation 183
Reference Architecture 14
Reuse 76
RFC 189
RMI 65
Robustness 156
ROSE 53, 187
RPC 40, 53

S
Scalability 76
Scotty 128
Security 157
Security Management 54
Self 44
Shared Library 125
Shell Applications 49
SLIP 115
SMAE 53
SmallTalk 36, 87
Smalltalk 16
SMASE 53
SMI 55
SNMP 19, 54, 122, 130, 140, 161, 190
Software Architecture 13, 161
Software Component 15, 21, 162

SOM 35, 36
Specification Translation 59
SQL 63
Stack 185
Standard 16
STL 16
Sun Solstice 63
Symantec Bedrock 21
System Management 162

T
Taligent CommonPoint 21
TCL 16, 66, 112, 122, 129, 137
Tcl-MCMIS 128
TCP/IP 55, 115
TMN++ 106
Trap 55

U
UDP 124
Unified Modeling Language 193
Unix 122, 123, 136
URL 107, 124

V
VBX 16, 42
Virtual Machine 107
VRML 118, 137, 138, 162

W
Web-based Management 111, 162
Windows 40
Windows Objects 40
Working Draft 183
World Wide Web 162

X
XMP 59, 64, 106, 122, 128
XoJIDM 58, 129, 132
XOM 59, 63, 106, 122

Y
Yasmin 73, 149
A Component-based Architecture for Open, Independently Extensible Distributed Systems 245

246 A Component-based Architecture for Open, Independently Extensible Distributed Systems

Curriculum Vitæ
Education

Work Experience

Publications
1. L. Deri, Yasmin: a Component-based Architecture for Software Applications,

IBM Research Report RZ 2899, Proceedings of STEP Ô97, London, July
1997.

2. L. Deri, Rapid Network Management Application Development,
Proceedings of ECOOP '97 Workshop on Object Oriented Technology
for Telecommunications Services Engineering, Jyv�skyl�, Finland, June
1997.

3. L. Deri and D. Manikis, VRML: Adding 3D to Network Management,
Proceedings of IS&N Ô97, Como, Italy, May 1997.

Surname: Deri
First Name: Luca
Date of Birth: September 24th, 1968, Pisa, Italy.
E-mail: lde@zurich.ibm.com, deri@iam.unibe.ch.
WWW: http://www.zurich.ibm.com/~lde/

http://iamwww.unibe.ch/~deri/

Nov. 1988 - Apr. 1992 University of Pisa, department of Computer Sci-
ence: master degree on Computer Science.

1982 - 1988 Scientific Grammar School "U.Dini" in Pisa.

Since August 1993 Guest Scientist at the IBM Zurich Research Lab-
oratory as member of the Network Management
Group, Zurich, Switzerland.

Jan. - Aug. 1993 Research Fellow at the UCL (University College
of London), London, United Kingdom.

June 1991 - Dec. 1992 Tecsiel S.p.A. an IRI-STET Company, Pisa, Italy.
A Component-based Architecture for Open, Independently Extensible Distributed Systems 247

Curriculum Vitæ
4. L. Deri and B. Ban, Static vs. Dynamic CMIP/SNMP Network Management
Using CORBA, Proceedings of IS&N Ô97, Como, Italy, May 1997.

5. F. Barillaud, L. Deri and M. Feridun, Network Management using Internet
Technologies, Proceedings of INM Ô97, San Diego, May 1997.

6. J. Reilly, P. Niska, L. Deri and D. Gantenbein, Enabling Mobile Network
Managers, Proceedings of the 6th Int. WWW Conference, Santa Clara,
CA, April 1997.

7. L. Deri, HTTP-based CMIP/SNMP Management, Internet Draft,
November 1996.

8. L. Deri, Network Management for the 90s, Proceeding of ECOOP '96
Workshop on Systems and Network Management, Linz, Austria, July
1996.

9. L. Deri, SurÞn' Network Management Resources Across the Web,
Proceedings of 2nd Int. IEEE Workshop on Systems and Network
Management, Toronto, June 1996.

10. L. Deri and B. Ban, Java Dynamic Class Loader, IBM Research Report,
December 1995.

11. B. Ban and L. Deri, Object Factory Revised: a Design Pattern, IBM
Research Report, September 1995.

12. L. Deri, Droplets: Breaking Monolithic Applications Apart, IBM Research
Report, September 1995.

13. L. Deri and A. Weder, WebbinÕ CMIP, Poster Proceedings of 3rd Int.
WWW Conference, Darmstadt, Germany, April 1995.

14. L. Deri and E. Mattei, An Object-Oriented Approach to the Implementation
of OSI Management, Computer Networks and ISDN Systems, Vol. 27,
1995.

15. S. Bhatti, L. Deri and G. Knight, Secure Remote Management in the
ESPRIT MIDAS Project, Proceedings of ULPAA'94 (Upper Layer
Protocols Architectures and Applications), Barcelona, Spain, June 1994.

16. L. Deri and P. Artico, System and Network Management, Proceedings of
AICA Ô92, Genova, Italy, July 1992.

17. L. Deri, Basi di Dati, Booklet about database systems published at the
university press of the University of Pisa, 1988.

Invited Talks
1. Systems and Network Management, Seminar held at Scuola Normale

Superiore, Pisa, Italy, December 19-20, 1996.
2. Modern Network Management, CHOOSE-SI Meeting, Bern, December 12,

1996.
3. Breaking Network Management Complexity Apart, Rapid Ô96, Bern,

September 1996.
4. SurÞnÕ Network Resources Across the Web, Telecom PTT, Bern, February

1996.
248 A Component-based Architecture for Open, Independently Extensible Distributed Systems

	Abstract
	Sommario
	Summary
	1 About this Book
	1.1. The Road Behind
	1.2. Acknowledgments
	1.3. Structure of this Book
	1.3.1. Special Font

	1.4. Types of Notes
	1.4.1. Coding Conventions

	2 Introduction
	2.1. Architectures and Framework Basics
	2.2. Software Components
	2.3. Open Systems: What are They?
	2.4. From Open Distributed Systems to Network 2.4....
	2.5. Merging Network Management with 2.5. Componen...
	2.5.1. From Class Libraries to Component Factories...

	2.6. Thesis Motivation
	2.7. The Vision: Component-based Open, 2.7. Indepe...
	2.8. Thesis Scope
	2.9. Thesis Requirements
	2.10. Research Goals
	2.11. Research Contributions
	2.12. Thesis Outline

	3 Related Research
	3.1. Component-based Architectures
	3.1.1. OpenDoc
	3.1.2. Microsoft Object Linking and Embedding
	3.1.3. Java Beans
	3.1.4. Flexible Components
	3.1.5. Apple QuickTime Component Manager

	3.2. Plug-in Software Components
	3.2.1. CGI Applications
	3.2.2. Shell Applications
	3.2.3. Plug-in Components

	3.3. Network Management Standards
	3.3.1. OSI Network Management
	3.3.2. Internet Network Management
	3.3.3. OMG Network Management
	3.3.4. Comparison of Network Management Architectu...

	3.4. Network Management Research
	3.4.1. OSI and Internet Management
	3.4.1.1. ISODE
	3.4.1.2. Classic Management Platforms
	3.4.1.3. XOM/XMP
	3.4.1.4. Java Management API
	3.4.1.5. Web-based Management
	3.4.1.6. TCL/Perl-based Management

	3.4.2. Interdomain Management
	3.4.2.1. Static Mapping
	3.4.2.2. Dynamic Mapping

	3.5. Do We Really Need Yet Another Architecture?

	4 Yasmin: the Architecture
	4.1. Introduction
	4.2. Conceiving Yasmin
	4.3. Yasmin at a Glance
	Application Domain
	Architectural Goals
	Architectural Style
	Genericity
	Scalability
	Reuse
	Interoperability

	4.4. Droplets
	4.4.1. Droplet Interface
	4.4.2. The Service Interface
	4.4.3. Comparison with Other Software Components

	4.5. Yasmin Components
	4.5.1. Personality Abstraction Layer
	4.5.2. Droplet Manager
	4.5.3. Event Manager
	4.5.4. Service Manager
	4.5.5. Resource Manager
	4.5.6. Collaboration Services
	4.5.7. Communication Services

	4.6. Yasmin’s Design Choices
	4.7. Comparison with Other Architectures
	4.8. Final Remarks

	5 Liaison: Yasmin at Work
	5.1. Introduction
	5.2. Motivation
	5.3. Welcome to Liaison
	5.4. Web-based Management
	5.5. HTTP-based Management
	5.5.1. Application Side Bindings
	5.5.2. CORBA Interfaces

	5.6. Rapid Network Management Application 5.6. Dev...
	5.7. Final Remarks

	6 Validation
	6.1. Thesis Validation
	6.2. What’s New in Yasmin?
	6.2.1. Conclusion

	6.3. Further Remarks

	7 Conclusion
	7.1. Lessons Learned
	7.2. Which Results can People Reuse in Other 7.2. ...
	7.3. Open Issues
	7.4. Future Work

	8 Glossary
	9 Abbreviations
	10 References
	1.1. OSI Network Management
	1.1.1. The OSI Management Standards
	1.1.2. OSI Reference Model
	1.1.3. ASN.1
	1.1.4. CMISE

	1.2. Internet Network Management
	1.2.1. Internet Standards
	1.2.2. The SNMP Protocol
	1.2.3. Management Naming Scheme: Object Identifier...

	2.1. Diagram Notation
	2.2. Java/C++ Bindings
	2.3. C Bindings
	2.4. CORBA-Liaison Interfaces
	3.1. Evaluating Liaison
	3.2. From Theory to Practice: Implementing 3.2. Dr...
	3.3. Liaison’s Code Fragments

	Curriculum Vitæ

