
to Understand Software Evolution

Modeling History

vorgelegt von

Tudor Gîrba
von Rumänien

Inauguraldissertation der 
Philosophisch-naturwissenschaftlichen

Fakultät der Universität Bern

Leiter der Arbeit:

Prof. Dr. Stéphane Ducasse
Prof. Dr. Oscar Nierstrasz 

Institut für Informatik und 
angewandte Mathematik





to Understand Software Evolution

Modeling History

vorgelegt von

Tudor Gîrba
von Rumänien

Inauguraldissertation der Philosophisch-naturwissenschaftlichen Fakultät der Universität Bern

Leiter der Arbeit:

Prof. Dr. Stéphane Ducasse
Prof. Dr. Oscar Nierstrasz 

Institut für Informatik und 
angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, 14.11.2005 Der Dekan:
 
Prof. Dr. P. Messerli





Acknowledgments

The work presented here goes well beyond the words and pictures, and into the
very intimate corners of my existence. This work only holds what can be repre-
sented, while the real value lies somewhere in between me and the people that
surrounded me.

I am grateful to Stéphane Ducasse and to Oscar Nierstrasz for giving me the op-
portunity to work at Software Composition Group based only on my engagement
that I will be an “even better student.” Stef, you were always energetic and sup-
ported me in so many ways. Oscar, you gave me the balance I needed at difficult
times. Thank you both for being more than my supervisors.

I thank Harald Gall for promptly accepting to be an official reviewer, as well as for
the good time we had at various meetings. I thank Gerhard Jăger for accepting to
chair the examination.

Radu Marinescu was my first contact with research, yet it was not only research
that he introduced me to. We had great and fruitful times together. Radu, I am
grateful for many things, but most of all for the time we spent around a black
liquid.

Michele Lanza pushed and promoted me with every occasion he could find. Michele,
thank you for all the discussions, projects and the cool trips. I hope they will never
stop.

Roel Wuyts encouraged me all along the way, and together with his wife, Inge,
shared their house with me during my first days in Berne. Roel and Inge, thank
you for making me feel like at home in a foreign country.

Jean-Marie Favre was always fun to work with. Jean-Marie, thank you for intro-



ducing me to the different facets of the meta world.

I thank Serge Demeyer for offering to review this dissertation. Serge, I was sur-
prised and I was delighted.

Many thanks go to the Software Composition Group members. I thank Orla Greevy
for trusting me and for reviewing this dissertation. I thank Gabriela Arévalo for
the patience of sharing her incredible skills of dealing with the curse of the mod-
ern man: the bureaucracy. I thank Alex Bergel for not being tired of playing
chess, Markus Gälli for the small-but-not-short-talks, Marcus Denker for always
being calm and supportive, Laura Ponisio for encouraging me to eat healthier,
Matthias Rieger for the best movie discussions, and Juan Carlos Cruz for the
nice parties. Thanks go to Sander Tichelaar for never being upset with my bad
jokes, Adrian Lienhard and Nathanael Schärli for showing me the Swiss way, and
Therese Schmid for her kindness throughout the years.

Much of this work came out from the collaboration with my diploma students:
Thomas Bühler, Adrian Kuhn, Mircea Lungu, Daniel Raţiu, Mauricio Seeberger.
Daniel was my first diploma student and he had the patience of transforming my
indecision from the beginning into something constructive. Mircea always found
a way to make me exercise other perspectives. Thomas was a hard worker. Adrian
and Mauricio made a great and joyful team together. Thank you all for treating
me as your peer.

I am grateful to my Hilfsassistants – Niklaus Haldiman, Stefan Ott and Stefan
Reichhart – for making my life so easy during the ESE lecture.

I thank the people at the LOOSE Research Group: Iulian Dragoş, Rãzvan Fil-
ipescu, Cristina Marinescu, Petru Mihancea, Mircea Trifu. I also thank the people
that I met throughout my computer related existence, and that influenced me in
one way or another: Bobby Bacs, Dan Badea, Dan Corneanu, Ştefan Dicu, Danny
Dig, Bogdan Hodorog, Radu Jurcã, Gerry Kirschner, Rãzvan Pocaznoi, Adi Pop,
Adi Trifu.

Much of me roots in the years of high-school, and for that I thank: Ciprian Ghir-
dan, Sorin Kertesz, Şerban Filip, Bogdan Martin, Cosmin Mocanu, Sergiu Ţent. I
thank Andrei Mitraşcã for not being tired of talking nonsense with me, and I thank
Codruţ and Bianca Morariu for being the best “finuţi” me and Oana have.

I thank Rãzvan and Silvia Tudor for the many visits to Bern, and I hope these
visits will not stop.



Sorin and Camelia Ciocan took me in their home when I was alone. Thank you for
being the friends you are for both me and Oana.

Nothing would have been possible were it not for my beloved parents. I thank you
for being patient with me when I did not understand, and for believing in me when
you did not understand. Thank you for keeping me safe and happy.

I thank Sorin, Corina and Ovidiu for taking care of my parents.

I will never forget the countless trips to and from Budapest together with Adina
and Claudiu Pantea. Thank you for the support and cheer.

Aura and Ionicã Popa made me part of their family as if this was the most natural
thing of all. Thank you for being the great in-laws that you are.

The joy of these years came from the love of my wife, and if I had success it
was due to her unconditional support. Oana, my thanks to you extend beyond
reasons, although there are plenty of reasons. This work is dedicated to you and
your smile.

October 23, 2005
Tudor Gı̂rba





To Oana





Abstract

Over the past three decades, more and more research has been spent on under-
standing software evolution. The development and spread of versioning systems
made valuable data available for study. Indeed, versioning systems provide rich
information for analyzing software evolution, but it is exactly the richness of the
information that raises the problem. The more versions we consider, the more
data we have at hand. The more data we have at hand, the more techniques we
need to employ to analyze it. The more techniques we need, the more generic the
infrastructure should be.

The approaches developed so far rely on ad-hoc models, or on too specific meta-
models, and thus, it is difficult to reuse or compare their results. We argue for the
need of an explicit and generic meta-model for allowing the expression and com-
bination of software evolution analyses. We review the state-of-the-art in software
evolution analysis and we conclude that:

To provide a generic meta-model for expressing software evolu-
tion analyses, we need to recognize the evolution as an explicit
phenomenon and model it as a first class entity.

Our solution is to encapsulate the evolution in the explicit notion of history as a
sequence of versions, and to build a meta-model around these notions: Hismo. To
show the usefulness of our meta-model we exercise its different characteristics by
building several reverse engineering applications.

This dissertation offers a meta-model for software evolution analysis yet, the con-
cepts of history and version do not necessarily depend on software. We show how
the concept of history can be generalized and how we can obtain our meta-model
by transformations applied on structural meta-models. As a consequence, our
approach of modeling evolution is not restricted to software analysis, but can be
applied to other fields as well.





Table of Contents

1 Introduction 1
1.1 The Problem of Meta-Modeling Software Evolution . . . . . . . . . . . 2
1.2 Our Approach in a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Structure of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Approaches to Understand Software Evolution 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Version-Centered Approaches . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Analyzing the Changes Between Two Versions . . . . . . . . . . 13
2.2.2 Analyzing Property Evolutions: Evolution Chart . . . . . . . . . 14
2.2.3 Evolution Matrix Visualization . . . . . . . . . . . . . . . . . . . 16
2.2.4 Discussion of Version-Centered Approaches . . . . . . . . . . . 18

2.3 History-Centered Approaches . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 History Measurements . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Manipulating Historical Relationships: Historical

Co-Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Manipulating Historical Entities: Hipikat and Release

Meta-Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.4 Discussion of History-Centered Approaches . . . . . . . . . . . 24

2.4 Towards a Common Meta-Model for Understanding Software Evolution 25
2.5 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Hismo: Modeling History as a First Class Entity 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



3.2 Hismo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Building Hismo Based on a Snapshot Meta-Model . . . . . . . . . . . 32
3.4 Mapping Hismo to the Evolution Matrix . . . . . . . . . . . . . . . . . 34
3.5 History Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Grouping Histories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.7 Modeling Historical Relationships . . . . . . . . . . . . . . . . . . . . . 41
3.8 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Yesterday’s Weather 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Yesterday’s Weather in a Nutshell . . . . . . . . . . . . . . . . . . . . . 49
4.3 Yesterday’s Weather in Detail . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Yesterday’s Weather in Jun, CodeCrawler and JBoss . . . . . . 55
4.4.2 The Evolution of Yesterday’s Weather in Jun . . . . . . . . . . . 59

4.5 Variation Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7 Summarizing Yesterday’s Weather . . . . . . . . . . . . . . . . . . . . . 64
4.8 Hismo Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 History-Based Detection Strategies 67
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 The Evolution of Design Flaw Suspects . . . . . . . . . . . . . . . . . . 69
5.3 Detection Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 God Class Detection Strategy . . . . . . . . . . . . . . . . . . . . 70
5.3.2 Data Class Detection Strategy . . . . . . . . . . . . . . . . . . . 71
5.3.3 Detection Strategy Discussion . . . . . . . . . . . . . . . . . . . 71

5.4 History Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.1 Measuring the Stability of Classes . . . . . . . . . . . . . . . . . 72
5.4.2 Measuring the Persistency of a Design Flaw . . . . . . . . . . . 73

5.5 Detection Strategies Enriched with Historical Information . . . . . . . 74
5.6 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.7 Variation Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.9 Summarizing History-Based Detection Strategies . . . . . . . . . . . . 84



5.10Hismo Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Characterizing the Evolution of Hierarchies 87
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2 Characterizing Class Hierarchy Histories . . . . . . . . . . . . . . . . . 89

6.2.1 Modeling Class Hierarchy Histories . . . . . . . . . . . . . . . . 89
6.2.2 Detecting Class Hierarchies Evolution Patterns . . . . . . . . . 89

6.3 Class Hierarchy History Complexity View . . . . . . . . . . . . . . . . 91
6.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4.1 Class Hierarchies of JBoss . . . . . . . . . . . . . . . . . . . . . 94
6.4.2 Class Hierarchies of Jun . . . . . . . . . . . . . . . . . . . . . . 96

6.5 Variation Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.7 Summary of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.8 Hismo Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 How Developers Drive Software Evolution 105
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2 Data Extraction From the CVS Log . . . . . . . . . . . . . . . . . . . . 107

7.2.1 Measuring File Size . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2.2 Measuring Code Ownership . . . . . . . . . . . . . . . . . . . . 109

7.3 The Ownership Map View . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.3.1 Ordering the Axes . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3.2 Behavioral Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.4.1 Outsight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.4.2 Ant, Tomcat, JEdit and JBoss . . . . . . . . . . . . . . . . . . . 118

7.5 Variation Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.7 Summarizing the Approach . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.8 Hismo Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8 Detecting Co-Change Patterns 125
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.2 History Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.3 Concept Analysis in a Nutshell . . . . . . . . . . . . . . . . . . . . . . . 128



8.4 Using Concept Analysis to Identify Co-Change Patterns . . . . . . . . 129
8.4.1 Method Histories Grouping Expressions. . . . . . . . . . . . . . 130
8.4.2 Class Histories Grouping Expressions . . . . . . . . . . . . . . 131
8.4.3 Package Histories Grouping Expression . . . . . . . . . . . . . 132

8.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.7 Summary of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.8 Hismo Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9 Van: The Time Vehicle 137
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
9.2 Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.3 Browsing Structure and History . . . . . . . . . . . . . . . . . . . . . . 139
9.4 Combining Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

10 Conclusions 147
10.1Discussion: How Hismo Supports Software Evolution Analysis . . . . 149
10.2Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A Definitions 155

Bibliography 156



List of Figures

1.1 Details of the relationship between the History, the Version and the Snapshot. 5

2.1 The evolution chart shows a property P on the vertical and time on the hori-
zontal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 The Evolution Matrix shows versions nodes in a matrix. The size of the nodes
is given by structural measurements. . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Historical co-change example. Each ellipse represents a module and each
edge represents a co-change relationship. The thickness of the edge is given
by the number of times the two modules changed together. . . . . . . . . . . . 22

2.4 The Release History Meta-Model shows how Feature relates to CVSItem. . . . 24

2.5 The different analyses built using Hismo and the different features of Hismo
they use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Details of the relationship between the History, the Version and the Snapshot.
A History has a container of Versions. A Version wraps a Snapshot and adds
evolution specific queries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Hismo applied to Packages and Classes. . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 An excerpt of Hismo as applied to FAMIX, and its relation with a snapshot
meta-model: Every Snapshot (e.g., Class) is wrapped by a corresponding Ver-
sion (e.g., ClassVersion), and a set of Versions forms a History (e.g., ClassHis-
tory). We did not represent all the inheritance and association relationships
to not affect the readability of the picture. . . . . . . . . . . . . . . . . . . . . . 33

3.4 Mapping Hismo to the Evolution Matrix. Each cell in the Evolution Matrix
represents a version of a class. Each column represents the version of a
package. Each line in the Evolution Matrix represents a history. The entire
matrix displays the package history. . . . . . . . . . . . . . . . . . . . . . . . . . 35



3.5 Examples of history measurements and how they are computed based on
structural measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Examples of EP, LEP and EEP history measurements. The top part shows the
measurements computed for 5 histories. The bottom part shows the compu-
tation details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 HistoryGroup as a first class entity. . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Using Hismo for modeling historical relationships. . . . . . . . . . . . . . . . . . 42

3.9 Using Hismo for co-change analysis. On the bottom-left side, we show 6 ver-
sions of 4 modules: a grayed box represent a module that has been changed,
while a white one represents a module that was not changed. On the bottom-
right side, we show the result of the evolution of the 4 modules as in Figure 2.3
(p.22). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.10Transforming the Snapshot to obtain corresponding History and Version and
deriving historical properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.11Obtaining the relationships between histories by transforming the snapshot
meta-model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 The detection of a Yesterday’s Weather hit with respect to classes. . . . . . . . 52

4.2 The computation of the overall Yesterday’s Weather. . . . . . . . . . . . . . . . 53

4.3 YW computed on classes with respect to methods on different sets of versions
of Jun, CodeCrawler and JBoss and different threshold values. . . . . . . . . . 56

4.4 The class histories that provoked a hit when computing YW(Jun40,NOM,10,10)
and their number of methods in their last version. In this case study, the big
classes are not necessarily relevant for the future changes. . . . . . . . . . . . 57

4.5 The class histories that provoked a hit when computing YW(CC40,NOM,5,5)
and their number of methods in their last version. In this case study, the big
classes are not necessarily relevant for the future changes. . . . . . . . . . . . 58

4.6 YW computed on packages with respect to the total number of methods on
different sets of versions of JBoss and different threshold values. . . . . . . . . 59

4.7 The package histories provoking a hit when computing YW(JBoss40,NOM,10,10)
and their number of methods in their last version. In this case study, the big
packages are not necessarily relevant for the future changes. . . . . . . . . . . 59

4.8 The evolution of the values of YW(Jun40,NOM,10,10) when applied to classes.
The diagram reveals phases in which the predictability increases and during
which changes are more focused (e.g., the first part of the history) and phases
in which the predictability decreases and changes are more unfocused (e.g.,
the second part of the history). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Examples of the computation of the Stab and Pers measurements. . . . . . . . 74



5.2 God Classes detected in version 200 of Jun case-study and their history prop-
erties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Data Classes detected in version 200 of the Jun case study and their history
properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Summary of the results of the history-based detection strategies as applied on
Jun. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 An example of the Hierarchy Evolution Complexity View. Hierarchy Evolution
Complexity View (right hand side) summarizes the hierarchy history (left hand
side). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 A Hierarchy Evolution Complexity View of the evolution of the largest hierarchy
from 14 versions of JBoss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 A Hierarchy Evolution Complexity View of the evolution of five hierarchies from
14 versions of JBoss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 A Hierarchy Evolution Complexity View of the evolution of six hierarchies from
the 40 versions of Jun. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5 A modified Hierarchy Evolution Complexity View of the evolution of six hierar-
chies from the Jun case study. The node width is given by the instability of
number of methods and the height is given by the last number of methods. . . 99

7.1 Snapshot from a CVS log. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2 The computation of the initial size. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.3 Example of ownership visualization of two files. . . . . . . . . . . . . . . . . . . 110

7.4 Example of the Ownership Map view. The view reveals different patterns:
Monologue, Familiarization, Edit, Takeover, Teamwork, Bug-fix. . . . . . . . . . 111

7.5 Number of commits per team member in periods of three months. . . . . . . . 115

7.6 The Ownership Map of the Outsight case study. . . . . . . . . . . . . . . . . . . 117

7.7 The Ownership Map of Ant, Tomcat, JEdit, and JBoss. . . . . . . . . . . . . . . 119

8.1 Example of applying formal concept analysis: the concepts on the right are
obtained based on the incidence table on the left. . . . . . . . . . . . . . . . . . 128

8.2 Example of applying concept analysis to group class histories based on the
changes in number of methods. The Evolution Matrix on the left forms the in-
cidence table where the property Pi of element X is given by “history X changed
in version i.” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.3 Parallel inheritance detection results in JBoss. . . . . . . . . . . . . . . . . . . . 133



9.1 VAN and MOOSE. MOOSE is an extensible reengineering environment. Dif-
ferent tools have been developed on top of it (e.g.,VAN is our history analysis
tool). The tools layer can use and extend anything in the environment in-
cluding the meta-model. The model repository can store multiple models in
the same time. Sources written in different languages can be loaded either
directly or via intermediate data formats. . . . . . . . . . . . . . . . . . . . . . . 140

9.2 VAN gives the historical semantic to the MOOSE models. . . . . . . . . . . . . . 141
9.3 Screenshots showing the Group Browser the Entity Inspector. On the top part,

the windows display snapshot entities, while on the bottom part they display
historical entities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9.4 Screenshots showing CODECRAWLER. On the top part, it displays class hi-
erarchies in a System Complexity View, while on the bottom part it displays
class hierarchy histories in a Hierarchy Evolution Complexity View. . . . . . . . 143

9.5 Screenshots showing CHRONIA in action: interaction is crucial. . . . . . . . . . 144



Chapter 1

Introduction

The coherence of a trip is given by the clearness of the goal.

During the 1970’s it became more and more apparent that keeping track of soft-
ware evolution was important, at least for very pragmatic purposes such as un-
doing changes. Early versioning systems like the Source Code Control System
(SCCS) made it possible to record the successive versions of software products
[Rochkind, 1975]. At the same time, text-based delta algorithms were developed
[Hunt and McIlroy, 1976] for understanding where, when and what changes ap-
peared in the system. Some basic services were also added to model extra or meta
information such as who changed files and why. However only very rudimentary
models were used to represent this information – typically a few unstructured
lines of text to be inserted in a log file.

While versioning systems recorded the history of each source file independently,
configuration management systems attempted to record the history of software
products as a collection of versions of source files. This arose research inter-
ests on the topic of configuration management during 1980’s and 1990’s, but the
emphasis was still on controlling and recording software evolution.

The importance of modeling and analyzing software evolution was pioneered in
the early 1970’s with the work of Lehman [Lehman and Belady, 1985], yet, it was
only in recent years that extensive research has been carried out on exploiting the



CHAPTER 1. INTRODUCTION

wealth of information residing in versioning repositories for purposes like reverse
engineering or cost estimation. Problems like software aging [Parnas, 1994] and
code decay [Eick et al., 2001] gained increasing recognition both in academia and
in industry.

The research effort spent on the issue of software evolution shows the importance
of the domain. Various valuable approaches have been proposed to analyze as-
pects of software evolution for purposes like identifying driving forces in software
evolution [Buckley et al., 2005; Capiluppi et al., 2004; Lehman and Belady, 1985],
like prediction [Hassan and Holt, 2004; Zimmermann et al., 2004], or like reverse
engineering [Ball and Eick, 1996; Collberg et al., 2003; Fischer et al., 2003b;
Lanza and Ducasse, 2002; Van Rysselberghe and Demeyer, 2004; Wu et al.,
2004b]. However, if we are to understand software evolution as a whole, we need
means to combine and compare the results of the different analyses.

1.1 The Problem of Meta-Modeling Software Evolu-
tion

To combine or compare analyses we need a common meta-model, because a com-
mon meta-model allow for a uniform expression of analyses.

Short Incursion into Meta-Modeling

To model is to create a representation of a subject so that reasonings can be for-
mulated about the subject. The model is a simplification of the subject, and its
purpose is to answer some particular questions aimed towards the subject [Bézivin
and Gerbé, 2001]. In other words, the model holds the elements of the subject that
are relevant for the purpose of the reasoning. For example, a road map is a model
of the actual physical space, and its purpose is to answer questions regarding the
route to be taken. The same map is completely useless, when one would want to
answer the question of where is the maximum precipitation point.

Several classes of models may exist for a given subject, each of these classes of
models being targeted for some particular reasonings. Hence, not all models rep-
resent the same elements of the subject. That is to say, a model is built according
to a description of what can go into a class of models: the meta-model [Seidewitz,
2003]. For example, we can have several types of maps representing the same

2



1.1. THE PROBLEM OF META-MODELING SOFTWARE EVOLUTION

physical space. Each of these types of maps will represent characteristics of the
physical space based on a specification: a road map might only show circles to
represent places and lines to represent roads, while a precipitation map will use
colors to represent the amount of precipitation in a region.

To understand a model one must understand its meta-model. A particular reason-
ing is dependent on what can be expressed on the respective underlying model,
that is, it is dependent on the meta-model. Given an unknown reasoning, the
basic step towards understanding it is to understand the meta-model.

In our map example, we need to understand the map to understand the reason-
ings built on it, and for understanding the map we need to understand what is
represented in the map. For example, someone looks at the map to find the path
from A to B, and she decides that the next step is to get to C. If we want to question
why she chose C, we need to first understand the notation of the map and then to
check if indeed C is the right choice.

The Problem of Meta-Modeling Software Evolution

Current approaches to analyze software evolution typically focus on only some
traits of software evolution, and they either rely on ad-hoc models (i.e., models that
are not described by an explicit meta-model), or their meta-models are specific to
the goals of the supported analysis.

A meta-model describes the way the domain can be represented by the model,
that is, it provides bricks for the analysis. An explicit meta-model allows for un-
derstanding those bricks. Understanding the bricks allows for the comparison of
the analyses built on top. Without an explicit meta-model, the comparison and
combination of results and techniques becomes difficult.

Many approaches rely on the meta-model provided by the versioning system, and
often no semantic units are represented (e.g., packages, classes or methods), and
there is no information about what exactly changed in a system. For example, it
is difficult to identify classes which did not add any method recently, but changed
their internal implementation.

There is no explicit entity to which to assign the properties characterizing how
the entity evolved, and because of that, it is difficult to combine the evolution
information with the version information. For example, we would like to know
whether a large class was also changed a lot.

3



CHAPTER 1. INTRODUCTION

Problem Statement:

Because current approaches to analyze software evolution rely
on ad-hoc models or on too specific meta-models, it is difficult to
combine or compare their results.

The more versions we consider, the more data we have at hand. The more data we
have at hand, the more difficult it is to analyze it. The more data we have, the more
techniques we need to employ on understanding this data. The more techniques
we need, the more generic the infrastructure (either theoretical or physical) should
be.

Research Question:

How can we build a generic meta-model that enables the expres-
sion and combination of software evolution analyses?

1.2 Our Approach in a Nutshell

Thesis:

To provide a generic meta-model for expressing software evolu-
tion analyses, we need to recognize the evolution as an explicit
phenomenon and model it as a first class entity.

In this dissertation we propose Hismo as an explicit meta-model for software evo-
lution. Hismo is centered around the notion of history as a sequence of ver-
sions.

Figure 1.1 (p.5) displays the core of our meta-model displaying three entities: His-
tory, Version and Snapshot. The Snapshot is a placeholder for the entities whose
evolution is under study (e.g., class, file). A History holds a set of Versions, where
the Version adds the notion of time to the Snapshot.

With this scheme, time information is added on top of the structural information,
that is, the structural information can exist without any reference to history, but
can still be manipulated in the historical context. In other words, Hismo can be
built on top of any snapshot meta-model without interfering with the existing
meta-model. In this way, with Hismo we can reuse analyses at the structural level
and extend them in the context of evolution analysis.

4



1.3. CONTRIBUTIONS

Snapshot

A Version adds the notion of 
time to a Snapshot

a Snapshot is a placeholder 
for File, Class etc.

AbstractEntity

History
1* Version

date: Date

History, Version and 
Snapshot are all Entities

History is an ordered set of 
Versions accordging to the dates

Figure 1.1: Details of the relationship between the History, the Version and the Snapshot.

History and Version are generic entities, and they need to be specialized for partic-
ular Snapshot entities. That is, for each Snapshot entity we have a corresponding
History and Version entity. Building the historical representation for different
Snapshot entities is a process that depends only on the type of the entities. Be-
cause of this property, we can generalize our approach of obtaining Hismo through
a transformation applied to the snapshot meta-model. In this way, Hismo is not
necessarily tied to software evolution analysis, but it is applicable to any snapshot
meta-model.

To show the expressiveness of Hismo we describe how several software evolution
analyses can be expressed with it. As a simple use of Hismo, we define differ-
ent measurements for histories that describe how software artifacts evolved. We
present different examples of historical measurements and history manipulations
and show different reverse engineering analyses we have built over the years.
Each of these examples exercises different parts of Hismo (see next Section for
details).

1.3 Contributions

The novelty of this dissertation resides in providing a generic meta-model for soft-
ware evolution [Gı̂rba et al., 2004c; Ducasse et al., 2004]. Our meta-model con-

5



CHAPTER 1. INTRODUCTION

tinuously evolved as a result of exercising it from the points of view of different
reverse engineering analyses that we built over time:

1. Knowing where to start the reverse engineering process can be a daunting
task due to size of the system. Yesterday’s Weather is a measurement show-
ing the retrospective empirical observation that the parts of the system which
changed the most in the recent past also suffer important changes in the near
future. We use Yesterday’s Weather for guiding the first steps of reverse engi-
neering by pin-pointing the parts that are likely to change in the near future
[Gı̂rba et al., 2004a].

2. Traditionally, design problems are detected based on structural information.
Detection strategies are expressions that combine several measurements to
detect design problems. We define history-based detection strategies to use
historical measurements to refine the detection of design problems [Raţiu et
al., 2004].

3. Understanding the evolution of software systems is a difficult undertaking
due to the size of the data. Hierarchies typically group classes with similar
semantics. Grasping an overview of the system by understanding hierarchies
as a whole reduces the complexity of understanding as opposed to under-
standing individual classes. We developed the Hierarchy Evolution Complex-
ity View visualization to make out different characteristics of the evolution of
hierarchies [Gı̂rba et al., 2005b; Gı̂rba and Lanza, 2004].

4. Conway’s law states that “Organizations which design systems are constrained
to produce designs which are copies of the communication structures of
these organizations” [Conway, 1968]. Hence, to get the entire picture one
must understand the interaction between the organization and the system.
We exploit the author information related to a commit in the versioning sys-
tem to detect what are the zones of influence of developers and what are their
behaviors [Gı̂rba et al., 2005a].

5. As systems evolve, changes can happen to crosscut the system’s structure
in a way not apparent at the structural level. Understanding how changes
appear in the system can reveal hidden dependencies between different parts
of the system. We used concept analysis to detect co-change patterns, like
parallel inheritance [Gı̂rba et al., 2004b].

6. Hismo is implemented in VAN, a tool built on top of the MOOSE reengineer-
ing environment [Ducasse et al., 2005]. MOOSE supports the integration of
different reengineering tools by making the meta-model explicit and by pro-

6



1.4. STRUCTURE OF THE DISSERTATION

viding mechanisms to extend the meta-model as needed by the particular
analysis [Nierstrasz et al., 2005]. The tools built on top, take as input en-
tities with their properties and relationships. VAN extends the meta-model
with the Hismo and provides several evolution analyses also by using tools
built on MOOSE. For example, it uses CODECRAWLER to visualize the histo-
ries.

1.4 Structure of the Dissertation

Chapter 2 (p.11) browses the state-of-the-art in the analysis of software evolu-
tion, the focus being on making explicit the underlying meta-models of the
different approaches. The result of the survey is summarized in a set of re-
quirements for a meta-model for software evolution: (1) different abstraction
and detail levels, (2) comparison of property evolutions, (3) combination of
property evolutions, (4) historical selection, (5) historical relationships, and
(6) historical navigation.

Chapter 3 (p.29) introduces Hismo, our meta-model for understanding software
evolution. We show how Hismo centers around the notion of history as a
first class entity, and how one can obtain a history representation starting
from the meta-model of the structure. The following chapters show several
approaches for software evolution analysis, each of them exercising a part of
Hismo.

Chapter 4 (p.47) describes the Yesterday’s Weather measurement as an exam-
ple of how to combine several historical properties into one analysis. The
problem addressed is to identify the parts of the system to start the reverse
engineering process from, and the assumption is that the parts that are likely
to get changed in the near future are the most important ones. Yesterday’s
Weather shows the retrospective empirical observation that the parts of the
system which changed the most in the recent past also suffer important
changes in the near future. We apply this approach to three case studies
with different characteristics, and show how we can obtain an overview of
the evolution of a system and pinpoint the parts that might change in the
next versions.

A detection strategy is a an expression that combines measurements to detect de-
sign problems [Marinescu, 2004]. In Chapter 5 (p.67) we extend the concept

7



CHAPTER 1. INTRODUCTION

of detection strategy with historical information to form history-based detec-
tion strategies. That is, we include historical measurements to refine the
design flaws detection. History-based detection strategies show how, based
on Hismo, we can express predicates that combine properties observable at
the structural level with properties observable in time.

Chapter 6 (p.87) presents an approach to understand how a set of given class
hierarchies as a whole have evolved over time. The approach builds on a
combination of historical relationships and historical properties. We propose
a set of queries to detect several characteristics of hierarchies: how old they
are, how much were the classes changed, and how were the inheritance
relationships changed.

As systems change, the knowledge of the developers becomes critical for the pro-
cess of understanding the system. Chapter 7 (p.105) presents an approach to
understand how developers changed the system. We visualize how files were
changed, by displaying the history of a file as a line and coloring the line
according to the owners of the file over the time. To detect zones of influence
of a particular developer, we arrange the files according to a clustering de-
pending on the historical distance given by how developers changed the file:
two files are closer together if they are changed in approximately the same
periods.

Chapter 8 (p.125) introduces our approach of using Formal Concept Analysis to
group entities that change in similar ways. Formal Concept Analysis takes
as input elements with properties and returns concepts formed by elements
with a set of common properties. As elements we use histories, and for
each history we consider it has the property i if it “was changed in the ith
version.” We use the detailed information to distinguish different types of
changes according to the different types of concepts we are interested in.

Much of the development of Hismo comes from our experience with implementing
our assumptions in our prototype named VAN, built on top of the MOOSE

reengineering environment [Ducasse et al., 2005; Nierstrasz et al., 2005].
Chapter 9 (p.137) describes our prototype infrastructure. It implements Hismo
and our approaches to understand software evolution. The chapter em-
phasizes how the usage of Hismo allows for the combination of techniques.
For example, we show how we use two other tools (CodeCrawler [Lanza and
Ducasse, 2005] and ConAn [Arévalo, 2005]) for building evolution analysis.

In Chapter 10 (p.147) we discuss how Hismo leverages software evolution analysis

8



1.4. STRUCTURE OF THE DISSERTATION

by re-analyzing the requirements identified in Chapter 2 (p.11) from the point
of view of analyses built on Hismo . The chapter ends with an outlook on the
future work opened by our approach.

We use several evolution and meta-modeling related terms throughout the dis-
sertation (e.g., evolution). In Appendix A (p.155) we provide the definitions for
the most important of these terms.

9



CHAPTER 1. INTRODUCTION

10



Chapter 2

Approaches to Understand
Software Evolution

Things are what we make of them.

Current approaches to understand software evolution typically rely on ad-hoc mod-
els, or their meta-models are specific to the goals of the supported analysis. We aim
to offer a meta-model for software evolution analysis. We review the state of the art
in software evolution analysis and we discuss the meta-models used. As a result
we identified several activities the meta-model should support:

1. It should provide information at different abstraction and detail levels,

2. It should allow comparison of how properties changed,

3. It should allow combination of information related to how different properties
changed,

4. It should allow analyses to be expressed on any group of versions,

5. It should provide information regarding the relationships between the evolution
of different entities, and

6. It should provide means to navigate through evolution.



CHAPTER 2. APPROACHES TO UNDERSTAND SOFTWARE EVOLUTION

2.1 Introduction

In the recent years much research effort have been dedicated to understand soft-
ware evolution, showing the increasing importance of the domain. The main chal-
lenge in software evolution analysis is the size of the data to be studied: the more
versions are taken into account, the more data. The more data we have at hand,
the more techniques we need to analyze it.

Many valuable approaches have been developed to analyze different traits of soft-
ware evolution. However, if we are to understand software evolution as a whole, we
need means to combine and compare the results of the different analyses.

The approaches developed so far rely on ad-hoc models, or their meta-models are
specific to the goals of the supported analysis. Because of this reason it is difficult
to combine or compare the results of the analyses.

Our goal is to build on the current state-of-the-art and to offer a common infras-
tructure meta-model for expressing software evolution analyses. To accomplish
this task, we review several approaches for analyzing software evolution, the tar-
get being to identify the requirements of the different analyses from the point of
view of a common evolution meta-model.

The most straightforward way to gather the requirements would be to analyze the
different meta-models. Unfortunately, in most of the cases, the meta-models are
not detailed (most of the time they are not even mentioned). In these cases we
infer the minimal meta-models required for the particular analysis.

From our literature survey we identified two major categories of approaches de-
pending on the granularity level of information representation: version-centered
approaches and history-centered approaches. Version-centered approaches con-
sider version as a representation unit, while the history-centered approaches con-
sider history (i.e., an ordered set of versions) as representation unit.

While in the version-centered approaches, the means is to present the version in-
formation and let the user detect the patterns, in the version-centered approaches
the aim is to summarize what happened in the history according to a particular
point of view. For example, a graphic plotting the values of a property in time
is a version-centered approach; on the other hand, a measure of how a property
evolved over time is a history-centered approach.

12



2.2. VERSION-CENTERED APPROACHES

Structure of the Chapter

We discuss the version-centered approaches in Section 2.2 (p.13), and the history-
centered approaches in Section 2.3 (p.19). While discussing the different ap-
proaches, we emphasize their requirements from the point of view of a common
meta-model. Each of the two sections ends with a discussion of the approaches.
Section 2.4 (p.25) concludes the chapter with an overall description of the gathered
requirements

2.2 Version-Centered Approaches

The version-centered analyses use a version as a representation granularity. In
general, they target the detection of when something happened in history. We
identify three classes of approaches and we take a look at each.

2.2.1 Analyzing the Changes Between Two Versions

Comparing two versions is the basis of any evolution analysis. We enumerate
several approaches that focus on finding different types of changes.

Diff was the first tool used for comparing the differences between two versions of
a file [MacKenzie et al., 2003]. Diff is able to detect addition or deletion of lines of
text and it provides the position of these lines in the file. This tool is not useful
when the analysis requires finer grained data about what happened in the system,
because it does not provide any semantic information of what exactly changed in
the system (e.g., in terms of classes or functions).

In another work, Xing and Stroulia used a Diff-like approach to detect different
types of fine-grained changes between two versions of a software system. They
represented each version of the system in an XMI format [XMI 2.0, 2005] and then
applied UML Diff to detect changes like: addition/removal of classes, methods and
fields; moving of classes, methods, fields; renaming of classes, methods, fields.
Several applications have been based on this approach [Xing and Stroulia, 2004a;
Xing and Stroulia, 2004b; Xing and Stroulia, 2004c].

Demeyer et al. used the structural measurements to detect refactorings like re-
name method, or move method [Demeyer et al., 2000]. They represented each

13



CHAPTER 2. APPROACHES TO UNDERSTAND SOFTWARE EVOLUTION

version with a set of metrics, and then identify changes based on analyzing the
change in the measurements.

Antoniol and Di Penta used the similarity in vocabulary of terms used in the code
to detect refactorings like: rename class, split class, or merge class [Antoniol and
Di Penta, 2004]. They represented versions of classes with vectors holding the
relevance of the different terms used in the system for the particular class, and
they compare the distance between the vectors of different versions to detect the
refactorings.

Holt and Pak proposed a detailed visualization of the changes of dependencies
between two versions of several modules [Holt and Pak, 1996]. On the same
structural representation of the modules, they show the new dependencies, the
removed dependencies or the common dependencies.

Burd and Munro defined a set of measurements to quantify the dominance re-
lations which are used to depict the complexity of the calls. They correlated the
changes in these measurements with the types of maintainability activities [Burd
and Munro, 1999].

Version control systems allow for descriptions of the modifications. These descrip-
tions hide the meaning of the change, but usually, they are just ad-hoc text entries
without any structure. Mockus and Votta analyzed these descriptions to classify
the changes [Mockus and Votta, 2000]. They could distinguish between corrective,
adaptive, inspection, perfective, and other types changes.

Summary:

Software evolution analyses need information for detecting
changes at different levels of abstraction.

2.2.2 Analyzing Property Evolutions: Evolution Chart

Since 1970 research is spent on building a theory of evolution by formulating laws
based on empirical observations [Lehman et al., 1998; Lehman, 1996; Lehman
and Belady, 1985; Lehman et al., 1997; Ramil and Lehman, 2001]. The obser-
vations are based on the interpretation of evolution charts which represent some
property on the vertical axis (e.g., number of modules) and time on the horizon-
tal axis (see Figure 2.1 (p.15)). Gall et al. employed the same kind of approach
while analyzing the evolution of a software system to identify discrepancies be-
tween the evolution of the entire system and the evolution of its subsystems

14



2.2. VERSION-CENTERED APPROACHES

P

t

Figure 2.1: The evolution chart shows a property P on the vertical and time on the hori-
zontal.

[Gall et al., 1997]. Recently, the same approach has been used to characterize
the evolution of open source projects [Godfrey and Tu, 2000; Capiluppi, 2003;
Capiluppi et al., 2004].

This approach is useful when we need to reason about the evolution of a single
property, but it makes it difficult to reason in terms of more properties at the same
time, and provides only limited ways to compare how the same property evolved
in different entities. That is why, typically, the charts are used to reason about
the entire system, though the chart can represent any type of entity.

In Figure 2.1 (p.15) we give an example of how to use the evolution charts to com-
pare multiple entities. In the left part of the figure we display a graph with the
evolution of a property P of an entity – for example it could represent number of
methods in a class (NOM). From the figure we can draw the conclusion that P is
growing in time. In the right part of the figure we display the evolution of the
same property P in 12 entities. Almost all graphs show a growth of the P property
but they do not have the same shape. Using the graphs alone it is difficult to say
which are the differences between the evolution of the different entities.

Summary:

Software evolution analyses need to compare the information on
how properties evolved.

If we want to correlate the evolution of property P with another property Q, we
have an even more difficult problem, and the evolution chart does not ease the
task significantly. Chuah and Eick used so called “timewheel glyphs” to display
several evolution charts where each chart was rotated around a circle [Chuah
and Eick, 1998]. Each evolution chart plotted a different property: number of
lines added, the errors recorded between versions, number of people working etc..

15



CHAPTER 2. APPROACHES TO UNDERSTAND SOFTWARE EVOLUTION

versions

shrinking

growing

idle

growing/shrinking

class

# of
attributes

# of
methods

1 2 3 4 5

Class A

Class B

Class C

Class D

Legend:

Figure 2.2: The Evolution Matrix shows versions nodes in a matrix. The size of the nodes
is given by structural measurements.

They indeed used several evolution charts to allow the analysis to combine the
information of how different properties evolved, but they only made use of the
overall charts shape, and not the detailed differences.

Summary:

Software evolution analyses need to combine the information on
how properties evolved.

2.2.3 Evolution Matrix Visualization

Visualization has been also used to reason about the evolution of multiple prop-
erties and to compare the evolution of different entities. Lanza and Ducasse ar-
ranged the classes of the history in an Evolution Matrix shown in Figure 2.2 (p.16)

[Lanza and Ducasse, 2002]. Each rectangle represents a version of a class and
each line holds all the versions of that class (the alignment is realized based on
the name of the class). Furthermore, the size of the rectangle is given by different
measurements applied on the class version. From the visualization different evo-
lution patterns can be detected such as continuous growth, growing and shrinking
phases etc.

Rysselberghe and Demeyer used a scatter plot visualization of the changes to
provide an overview of the evolution of systems [Van Rysselberghe and Demeyer,

16



2.2. VERSION-CENTERED APPROACHES

2004]. They used the visualization to detect patterns of change like: unstable com-
ponents, coherent entities, design evolution and productivity fluctuations.

Jingwei Wu et al. used the spectograph metaphor to visualize how changes occur
in software systems [Wu et al., 2004a]. They used colors to denote the age of
changes on different parts of the systems.

Jazayeri analyzed the stability of the architecture by using colors to depict for each
version of a file how recent are the changes. From the visualization he concluded
that old parts tend to stabilize over time [Jazayeri, 2002].

Taylor and Munro used a variation of an Evolution Matrix to visualize file changes
with a technique called revision towers [Taylor and Munro, 2002]. The purpose of
the visualization was to provide a one-to-one comparison between changes of two
files over multiple versions.

Voinea et al. present a tool called CVSscan that places the analysis at the text
line level [Voinea et al., 2005]. They distinguish actions like: deletion of line,
insertions of line and modifications of a line. Given a file, they show all versions
of each line and map on each version different characteristics, like authors or line
status.

With these visualizations, we can reason in terms of several properties at the same
time, and we can compare different evolutions. The drawback of the approach
resides in the implicitness of the meta-model: there is no explicit entity to which
to assign the evolution properties. Because of that it is difficult to combine the
evolution information with the version information. For example, we would like to
know if the growing classes are large classes, like expressed by the following code
written in the Object Constraint Language (OCL) [OCL 2.0, 2003]:

context Class

-- should return true if the class is large and if it was detected as being growing
derive isGrowingLargeClass: self.isLargeClass() & self.wasGrowing()

The above code shows how we would like to be able to put in one single automatic
query, both evolution information (self.wasGrowing()), and structural information
(self.isLargeClass()). We would only be able to express this if self would know both
about the structure and about the evolution.

17



CHAPTER 2. APPROACHES TO UNDERSTAND SOFTWARE EVOLUTION

Summary:

Software evolution analyses need to combine the information on
how properties evolved with the information from the structural
level.

Another drawback here is that the more versions we have, the more nodes we
have, the more difficult it gets to detect patterns when they are spread over a
large space.

2.2.4 Discussion of Version-Centered Approaches

The version-centered models allow for the comparison between two versions, and
they provide insights into when a particular event happened in the evolution (e.g.,
a class grew instantly). The visual technique is to represent time on an axis
and place different versions along this axis and make visible where the change
occurred (e.g., using color, size, position).

Some of the analyses also used version-based techniques to compare the way dif-
ferent entities evolved over time. For example, the evolution chart was used to
compare the evolution of different systems to detect patterns of change like con-
tinuously growing systems. The Evolution Matrix was also used to detect change
patterns like growing classes or idle classes (i.e., classes that do not change). A
major technical problem is that the more versions we have the more information
we have to interpret.

Furthermore, when patterns are detected, they are attached to structural entities.
For example, the authors said that they detected growing and idle classes, yet,
taking a closer look at the Evolution Matrix, we see that it is conceptually incor-
rect because a class is just one rectangle while growing and idle characterize a
succession of rectangles. That is, we can say a class is big or small, but grow-
ing and idle characterizes the way a class has evolved. From a modeling point of
view, we would like to have an explicit entity to which to assign the growing or idle
property: the history as an encapsulation of evolution.

18



2.3. HISTORY-CENTERED APPROACHES

2.3 History-Centered Approaches

History-centered approaches have history as an ordered set of versions as rep-
resentation granularity. In general, they are not interested in when something
happened, but they rather seek to detect what happened and where it happened.
In these approaches, the individual versions are no longer represented, they are
flattened.

The main idea behind having a history as the unit of representation is to sum-
marize the evolution according to a particular point of view. History-centered
approaches often gather measurements of the history to support the understand-
ing of the evolution. However, they are often driven by the information contained
in repositories like Concurrent Versioning System (CVS)1, and lack fine-grained
semantic information. For example, some approaches offer file and folder changes
but give no semantic information about what exactly changed in a system (e.g.,
classes or methods).

We present three approaches characterizing the work done in the context of history-
centered evolution analyses.

2.3.1 History Measurements

The history measurements aim to quantify what happened in the evolution of
an entity. Examples of history measurements are: age of an entity, number of
changes in an entity, number of authors that changed the system etc.

Ball and Eick developed multiple visualizations for showing changes that appear
in the source code [Ball and Eick, 1996]. For example, they show what is the
percentage of bug fixes and feature addition in files, or which lines were changed
recently.

Eick et al. described Seesoft, a tool for visualizing line oriented software statistics
[Eick et al., 1992]. They proposed several types of visualization: number of modi-
fication reports touching a line of code, age, stability of a line of code etc..

Mockus et al. implemented a tool called SoftChange for characterizing software
evolution in general [Mockus et al., 1999]. They used history measurements like:
the age of a file, the average lines of code added/deleted in a change, the total
number of changes happening at a certain hour etc.

1See https://www.cvshome.org/.

19



CHAPTER 2. APPROACHES TO UNDERSTAND SOFTWARE EVOLUTION

Mockus and Weiss used history measurements for developing a method for pre-
dicting the risk of software changes [Mockus and Weiss, 2000]. Examples of the
measurements were: the number of modules touched, the number of developers
involved, or the number of changes.

Eick et al. proposed several visualizations to show how developers change using
colors and third dimension [Eick et al., 2002]. For example they showed a matrix
where each row corresponds to an author, each column corresponds to a mod-
ule, and each cell in the matrix shows the size of the changes performed by the
developer to the module.

Collberg et al. used graph-based visualizations to display which parts of class
hierarchies were changed [Collberg et al., 2003]. They provide a color scale to
distinguish between newer and older changes.

Xiaomin Wu et al. visualized the change log information to provide for an overview
of the active places in the system as well as of the authors activity [Wu et al.,
2004b]. They display measurements like the number of times an author changed
a file, or the date of the last commit.

Chuah and Eick presented a way to visualize project information in a so called
“infobug” [Chuah and Eick, 1998]. The name of the visualization comes from a
figure looking like a bug. They mapped on the different parts of the “infobug”
different properties: evolution aspects, programming languages used, and errors
found in a software component. They also presented a time wheel visualization to
show the evolution of a given characteristic over time.

Typically, in the literature we find measurements which are very close to the type
of information available in the versioning systems. As versioning systems provide
textual information like lines of code added/removed, the measurements too only
measure the size of the change in lines of code. Even though lines of code can
be a good indicator for general overviews, it is not a good indicator when more
sensitive information is needed. For example, if 10 lines of code are added in a
file, this approach does not distinguish whether the code was added to an existent
method, or if several completely new methods were added.

Summary:

Software evolution analyses need to combine the information on
how properties evolved.

20



2.3. HISTORY-CENTERED APPROACHES

2.3.2 Manipulating Historical Relationships: Historical
Co-Change

Gall et al. aimed to detect logical coupling between parts of the system [Gall et al.,
1998] by identifying the parts of the system which change together. They use this
information to define a coupling measurement based on the fact that the more
times two modules were changed at the same time, the more strongly they were
coupled.

Pinzger and coworkers present a visualization of evolution data using a combi-
nation of Kiviat diagrams and a graph visualization [Pinzger et al., 2005]. Each
node represents a module in the system and an edge connecting two nodes the
historical dependencies between the two modules. For example, to the width of
the edge the authors map the co-change history of the two modules. Each node
in the graph is displayed using a Kiviat diagram to show how different measure-
ments evolved. They use both code and file measurements. In this model, the
authors see the nodes and edges from both the structural perspective and from
the evolution perspective.

Hassan et al. analyzed the types of data that are good predictors of change prop-
agation, and came to the conclusion that historical co-change is a better mech-
anism than structural dependencies like call-graphs [Hassan and Holt, 2004].
Zimmermann et al. defined a measurement of coupling based on co-changes [Zim-
mermann et al., 2003].

Zimmermann et al. aimed to provide a mechanism to warn developers about the
correlation of changes between functions. The authors placed their analysis at
the level of entities in the meta-model (e.g., methods) [Zimmermann et al., 2004].
They presented the problems residing in mining the CVS repositories, but they did
not present the meta-model [Zimmermann and Weißgerber, 2004].

Similar work was carried out by Ying et al. [Ying et al., 2004]. The authors ap-
plied the approach on two large case studies and analyzed the effectiveness of
the recommendations. They concluded that although the “precision and recall
are not high, recommendations can reveal valuable dependencies that may not be
apparent from other existing analyses.”

Xing and Stroulia used the fine-grained changes provided by UML Diff to look for
class co-evolution [Xing and Stroulia, 2004a; Xing and Stroulia, 2004b]. They took
the type of changes into account when reasoning, and they distinguished between
intentional co-evolution and “maintenance smells” (e.g., Shotgun Surgery).

21



CHAPTER 2. APPROACHES TO UNDERSTAND SOFTWARE EVOLUTION

D

A

B

C

Legend:

X module X

co change 
relationship

Figure 2.3: Historical co-change example. Each ellipse represents a module and each edge
represents a co-change relationship. The thickness of the edge is given by the number of
times the two modules changed together.

Eick et al. used the number of files changed in the same time as an one indicator
of code decay [Eick et al., 2001]. They reported on a large case study that changes
are more dispersed at the end of the project, which they interpreted as a sign of
code decay.

Burch visualized the co-change patterns in a matrix correlation [Burch et al.,
2005]. In their visualization, each line and column is given by a file, and the color
of each point is given by the confidence of the co-change relationship between the
two files. The confidence is a historical measurement and it is computed as the
“number of changes of a pair of items relative to the number of changes of a single
item.”

In general, the result of the co-change analysis is that two entities (e.g., files)
have a relationship if they were changed together. Gall et al. provided a visual-
ization, as in Figure 2.3 (p.22), to show how modules changed in the same time
[Gall et al., 2003]. The circles represent modules, and the edges represent the co-
change relationship: the thicker the edge, the more times the two modules were
changed in the same time. In this representation the structural elements from
the last version (i.e., the modules) are linked via a historical relationship (i.e., the
co-change relationship). In a similar visualization Eick et al. used the color to
denote the strength of the relationship between the co-changed modules [Eick et
al., 2002].

As in the case of the Evolution Matrix (e.g., where classes were said to be growing),
in this case too there is a conceptual problem from the modeling point of view: co-
change actually links the evolution of the entities and not a particular version of
the entities. We would like to have a reification of the evolution (i.e., history), to be
able to relate it to the co-change relationship.

22



2.3. HISTORY-CENTERED APPROACHES

Summary:

Software evolution analyses need information about how histories
are related from a historical perspective.

2.3.3 Manipulating Historical Entities: Hipikat and Release
Meta-Models

Fischer et al. modeled bug reports in relation to version control system (CVS)
items [Fischer et al., 2003b]. Figure 2.4 (p.24) presents an excerpt of the Release
History meta-model. The purpose of this meta-model is to provide a link between
the versioning system and the bug reports database. This meta-model recognizes
the notion of the history (i.e., CVSItem) which contains multiple versions (i.e.,
CVSItemLog). The CVSItemLog is related to a Description and to BugReports.
Furthermore, it also puts the notion of Feature in relation with the history of an
item. The authors used this meta-model to recover features based on the bug re-
ports [Fischer et al., 2003a]. These features get associated with a CVSItem.

The main drawback of this meta-model is that the system is represented with only
files and folders, and it does not take into consideration the semantic software
structure (e.g., classes or methods). Because it gives no information about what
exactly changed in a system, this meta-model does not offer support for analyzing
the different types of change. Recently, the authors started to investigate how to
enrich the Release History Meta-Model with source code information [Antoniol et
al., 2004].

C̆ubranić and Murphy bridged information from several sources to form what
they call a “group memory” [C̆ubranić and Murphy, 2003]. C̆ubranić detailed the
meta-model to show how they combined CVS repositories, mails, bug reports and
documentation [C̆ubranić, 2004].

Draheim and Pekacki presented the meta-model behind Bloof [Draheim and Pekacki,
2003]. The meta-model is similar to CVS: a File has several Revisions and each
Revision has attached a Developer. They used it for defining several measure-
ments like the Developer cumulative productivity measured in changed LOC per
day.

23



CHAPTER 2. APPROACHES TO UNDERSTAND SOFTWARE EVOLUTION

CVSItem CVSItemLog CVSItemLog
Description

Feature BugReport BugReport
Description

*
*

11*1

11

*
*

Figure 2.4: The Release History Meta-Model shows how Feature relates to CVSItem.

Summary:

Software evolution analyses need information about how histories
are related from a historical perspective.

2.3.4 Discussion of History-Centered Approaches

While in the version-centered analyses, the approach was to present the version
information and let the user detect the patterns, in the above examples, the aim
is to summarize what happened in the history according to a particular point of
view.

For example, an evolution chart displays the versioning data and the user can
interpret it in different ways according to the point of view: she can see whether
it grows or not, she can see whether it fluctuates or not and so on. As opposed
to that, the history measurements encode these points of view and return the
values that summarize the evolution. In this case, it is not the reengineer who
has to identify the trends or patterns in the history, with the possibility of missing
important information.

In general, analyses are influenced by the type of information available. For ex-
ample, as versioning systems offer information related to the changes of the lines
of code, the analyses, too, use addition/deletion of lines code as an indicator of
change. While this might be suitable for general overviews, it is not enough for
detailed analyses. For example, if we want to detect signs of small fixes, we might
look for classes where no method has been added, while only the internal imple-
mentation changed.

24



2.4. TOWARDS A COMMON META-MODEL FOR UNDERSTANDING SOFTWARE EVOLUTION

2.4 Towards a Common Meta-Model for Understand-
ing Software Evolution

A common meta-model for software evolution analysis should allow the expression
of all of the above analyses and more. Below we present the list with the different
needs of software evolution analyses:

Software evolution analyses need detailed information for detect-
ing changes at different levels of abstraction.

Software evolution analyses need to compare the information on
how properties evolved.

Software evolution analyses need to combine the information on
how properties evolved with the information from the structural
level.

Software evolution analyses need to combine the information on
how properties evolved.

Software evolution analyses need information about how histories
are related from a historical perspective.

Taking the above list as an input we synthesize a list of features an evolution
meta-model should support:

Different abstraction and detail levels. The meta-model should provide informa-
tion at different levels of abstraction such as files, packages, classes, meth-
ods for each analyzed version. For example, CVS meta-model offers informa-
tion about how source code changed (e.g., addition, removals of lines of code),
but it does not offer information about additions or removals of methods in
classes.

The meta-model should support the expression of detailed information about
the structural entity. For example, knowing the authors that changed the
classes is an important information for understanding evolution of code own-
ership.

Comparison of property evolutions. The meta-model should offer means to easily
quantify and compare how different entities evolved with respect to a certain
property. For example, we must be able to compare the evolution of number
of methods in classes, just like we can compare the number of methods in

25



CHAPTER 2. APPROACHES TO UNDERSTAND SOFTWARE EVOLUTION

classes. For that, we need a way to quantify how the number of methods
evolve and afterwards we need to associate such a property with an entity.

Combination of different property evolutions. The meta-model should allow for
an analysis to be based on the evolution of different properties. Just like
we reason about multiple structural properties, we want to be able to reason
about how these properties have evolved. For example, when a class has only
a few methods, but has a large number of lines of code, we might conclude it
should be refactored. At the same time, adding or removing the lines of code
in a class while preserving the methods might lead us to conclude that the
change was a bug-fix.

Historical relationships. The meta-model should provide information regarding
the relationships between the evolution of different entities. For example,
we should be able to reason about how two classes changed the number of
children in the same time.

Besides the above ones, we introduce two additional generic requirements:

Historical navigation. The meta-model should provide relations between histories
to allow for navigation. For example, we should be able to ask our model
which methods ever existed in a particular class, or which classes in a par-
ticular package have been created in the last period of time.

Historical selection. The analysis should be applicable on any group of versions
(i.e., we should be able to select any period in the history).

26



2.5. ROADMAP

2.5 Roadmap

In Chapter 3 (p.29), we present Hismo, our meta-model for software evolution. To
validate Hismo we used it in several novel analyses that we present in Chapters
4-8.

In each of these chapters we present the analysis in detail, and at the end of the
chapter we discuss which part of Hismo does the analysis exercise in a section
called Hismo Validation. Figure 2.5 (p.27) shows schematically the chapters, the
titles of the analyses, and the different features of Hismo they use.

Chapter 4.
Yesterday's Weather

Chapter 5.
History-Based Detection Strategies

Chapter 6.
Understanding Hierarchies Evolution

Chapter 7.
How Developers Drive Software Evolution

Chapter 8.
Detecting Co-Change Patterns

Different abstraction and detail levels

History selection

Historical navigation

Comparison of properties evolution

Combination of properties evolution

Historical relationships

Figure 2.5: The different analyses built using Hismo and the different features of Hismo
they use.

27



CHAPTER 2. APPROACHES TO UNDERSTAND SOFTWARE EVOLUTION

28



Chapter 3

Hismo: Modeling History as a
First Class Entity

Every thing has its own flow.

Our solution to model software evolution is to model history as a first class entity.
A history is an ordered set of versions and it encapsulates the evolution. History
and version are generic concepts and they must be applied to particular entities like
packages or classes. We show how starting from any snapshot meta-model we can
obtain the historical meta-model through meta-model transformation.



CHAPTER 3. HISMO: MODELING HISTORY AS A FIRST CLASS ENTITY

3.1 Introduction

The previous chapter reviews several approaches to understanding software evo-
lution and discusses their needs from the meta-model point of view. We identified
several characteristics of a meta-model that supports all these analyses: (1) differ-
ent abstraction and detail levels, (2) comparison of property evolutions, (3) combi-
nation of property evolutions, (4) historical selection, (5) historical relationships,
and (6) historical navigation.

In this chapter we introduce Hismo, our solution of modeling history to support
software evolution analyses: explicitly model history as an ordered set of ver-
sions.

Structure of the chapter

In the next section we introduce the generic concepts of history, version and snap-
shot, and discuss their generic relationships. In Section 3.6 (p.39) we introduce the
notion of group as a first class entity and we discuss the properties of a group of
histories. In Section 3.3 (p.32) we show how we build Hismo based on a snapshot
meta-model, and in Section 3.4 (p.34) we provide an example of how Hismo can be
mapped to the Evolution Matrix. In Section 3.5 (p.35) we define historical properties
and we show how they summarize the evolution. In Section 3.7 (p.41) we discuss
the problem of modeling historical relationships. In Section 3.8 (p.43) we generalize
Hismo by showing how it is possible to generate the historical meta-model starting
from the snapshot meta-model.

3.2 Hismo

The core of Hismo is based on three entities: History, Version and Snapshot. Fig-
ure 3.1 (p.31) shows the relationships between these entities in a UML 2.0 diagram
[Fowler, 2003]:

Snapshot. This entity is a placeholder that represents the entities whose evolu-
tion is studied i.e., file, package, class, methods or any source code artifacts.
The particular entities are to be sub-typed from Snapshot as shown in Fig-
ure 3.3 (p.33).

30



3.2. HISMO

snapshot

* 1

0..1

0..1

/succ

/pred

rank
Version

rank: integer
date: Date
referenceVersion: Version

1

history

0..1

version

HasVersion

Snapshot

-- the versions are ordered according to the dates  
ranks = self.HasVersion.rank->sortedBy( i | i )
ranks->for(r1,r2 | r1 < r2 implies versions[r1].date < versions[r2].date

rank = self.history.rank

AbstractEntity

History
ranks[*]: integer
referenceHistory: History
select(filter: Predicate): History

Figure 3.1: Details of the relationship between the History, the Version and the Snapshot.
A History has a container of Versions. A Version wraps a Snapshot and adds evolution
specific queries.

Version. A Version adds the notion of time to a Snapshot by relating the Snapshot
to the History. A Version is identified by a time-stamp and it knows the
History it is part of. A Version can exist in only one History. Based on its
rank in the History, Version has zero or one predecessor and zero or one
successor. Each Version has a reference to the so called referenceVersion
which provides a fixed point in the historical space.

History. A History holds a set of Versions. The relationship between History
and Version is depicted with a qualified composition which depicts that in
a History, each Version is uniquely identified by a rank. From a History we
can obtain a sub-History by applying a filter predicate on the set of versions.
Each History has a reference to the so called referenceHistory which defines
the historical space.

In Hismo, we add time information as a layer on top of the snapshot information.
As such, the snapshot data can exist without any reference to history but can still
be manipulated in the context of software evolution. Because of this, Hismo can
be built on top of any snapshot meta-model without interfering with the existing
meta-model. There are many meta-models describing structural information, and
many analyses are built on these meta-models. With our approach of augmenting

31



CHAPTER 3. HISMO: MODELING HISTORY AS A FIRST CLASS ENTITY

time information on top of structural information, we can reuse the analyses at
structural level and incorporate them in the evolution analysis.

History, Version and Snapshot are abstract and generic entities, and as such,
the core of Hismo is not tied to any meta-model. These concepts are generic in
the sense that they do not hold any specific information for a particular analysis.
They provide a framework in which evolution information is represented, but to
actually make the meta-model useful one has to apply these concepts on specific
entities.

For example, we argued that we need detailed information about the different en-
tities in the system such as packages, classes, methods. Figure 3.3 (p.33) shows an
example of how Hismo looks like when applied to the FAMIX meta-model [Demeyer
et al., 2001].

3.3 Building Hismo Based on a Snapshot Meta-Model

In this section we unveil the details of how to apply the generic concepts of History,
Version and Snapshot to specific snapshot meta-models.

We start by taking a detailed look at Hismo applied to Packages and Classes (see
Figure 3.2 (p.33)). There is a parallelism between the version entities and the his-
tory entities: Each version entity has a corresponding history entity. Also, the
relationship at version level (e.g., a Package has more Classes) has a correspon-
dent at the history level (e.g., a PackageHistory has more ClassHistories).

Figure 3.3 (p.33) shows an overview of the history meta-model based on a larger
source-code meta-model. Here we use FAMIX, a language independent source
code meta-model [Demeyer et al., 2001]. The details of the full meta-model are
similar to the one in Figure 3.2 (p.33).

The snapshot entities (e.g., Method) are wrapped by a Version correspondent (e.g.,
MethodVersion) and the Versions are contained in a History (e.g., MethodHistory).
A History does not have direct relation with a Snapshot entity, but through a
Version wrapper as shown in Figure 3.1 (p.31). We create Versions as wrappers for
SnapshotEntities because in a Version we store the relationship to the History:
a Version is aware of the containing History and of its position in the History
(i.e., it knows the predecessor and the successor). Thus, we are able to compute
properties for a particular Version in the context of the History. For example,
having a Version we can navigate to the previous or the next Version.

32



3.3. BUILDING HISMO BASED ON A SNAPSHOT META-MODEL

ClassVersion
name

1package

0..1class

PackageHistory

name

rank
0..1

version

1

history
PackageVersion

name

ClassHistory rank
0..1

version

1

history

1packageHistory

0..1classHistory

Class
name

1package

0..1class

Package

name

1

snapshot

*

1

snapshot

*

Figure 3.2: Hismo applied to Packages and Classes.

rank

AbstractEntity

Class Method

Attribute Access

Snapshot

Inheritance ...

0..1

1
Version

*

1

Class
History

Method
History

Attribute
History

Access
History

Inheritance
History ...

Class
Version

Method
Version

Attribute
Version

Access
Version

Inheritance
Version ...

History

Figure 3.3: An excerpt of Hismo as applied to FAMIX, and its relation with a snapshot
meta-model: Every Snapshot (e.g., Class) is wrapped by a corresponding Version (e.g.,
ClassVersion), and a set of Versions forms a History (e.g., ClassHistory). We did not rep-
resent all the inheritance and association relationships to not affect the readability of the
picture.

33



CHAPTER 3. HISMO: MODELING HISTORY AS A FIRST CLASS ENTITY

The Entity Identity Problem

A problem raised in the literature is that of what we call entity identity: having
two entities at two different moments of time, how do we know whether they are
two versions of the same history. This problem can also be found in the literature
under the name of origin analysis [Antoniol and Di Penta, 2004; Zou and Godfrey,
2003].

The most common way to recover the identity is by the name of the entity, that
is, if we have two entities with the same name and the same type in two versions,
then they are considered to be two versions of the same history. Of course, such
approaches fail to recognize refactorings like renaming or moving. Various ap-
proaches have been proposed to solve this problem: using information retrieval
techniques [Antoniol and Di Penta, 2004], using string matching or entities fin-
gerprints [Zou and Godfrey, 2003].

In our definition, the history is a set of versions, therefore, it also encapsulates
the entity identity. We did not specify the algorithm to be used when determining
entity, because it is the responsibility of the implementation to determine how
the identity is defined. For example, it is possible to first determine the histories
based on names and then detect renaming refactorings and merge the histories
that are detected as being renamed.

3.4 Mapping Hismo to the Evolution Matrix

In this section we describe how Hismo maps to the Evolution Matrix (see Figure 3.4
(p.35)). In the upper part of the figure we represent Hismo applied to Packages and
Classes where a package contains several classes, while in the lower part we show
two Evolution Matrices. As described in Section 2.2.3 (p.16), a row represents the
evolution of an entity, a class in this case, and a column all the entities of one
version – package in this case. As such, In Figure 3.4 (p.35) each cell in the matrix
represents a ClassVersion and each column represents a PackageVersion.

In Hismo, a history is a sequence of versions, thus, each line in an Evolution Matrix
represents a ClassHistory (left matrix). Moreover, the whole matrix is actually a
line formed by PackageVersions (right matrix), which means that the whole matrix
can be seen as a PackageHistory (left matrix).

In the upper part we also represent the relations we have between the entities. On

34



3.5. HISTORY PROPERTIES

Hismo

Evolution
Matrix

ClassVersion
/rank
name

1package

0..1class

PackageHistory

name

rank
0..1

version

1

history
PackageVersion

name

ClassHistory rank
0..1

version

1

history

1packageHistory

0..1classHistory

Figure 3.4: Mapping Hismo to the Evolution Matrix. Each cell in the Evolution Matrix
represents a version of a class. Each column represents the version of a package. Each
line in the Evolution Matrix represents a history. The entire matrix displays the package
history.

the right part we show that a PackageVersion has multiple ClassVersions, while
on the left side we show that in a PackageHistory there are multiple ClassHisto-
ries.

3.5 History Properties

As discussed in Section 2.3.1 (p.19), history measurements quantify the changes
in the history according to a particular interest. The benefit of the historical mea-
surements is that we can understand what happened with an entity without a
detailed look at each version – i.e., the measurements summarize changes into
numbers which are assigned to the corresponding histories.

The shortcoming with most of the existing measurements is that they do not take
into account the semantic meaning of the system structure, but they typically rely
on primary data like lines of code, files and folders. Such measurements are of

35



CHAPTER 3. HISMO: MODELING HISTORY AS A FIRST CLASS ENTITY

limited use when we need fine grained information.

Figure 3.5 (p.38) gives an example how we can use the detailed information in
Hismo to define historical measurements:

Evolution of a property P (EP). This measurement is defined both for a Version
and for a History (H). For a Version, it is defined as the absolute difference
of P with the previous version:

(i > 1) EPi(H,P ) = |Pi(H)− Pi−1(H)| (3.1)

For a History it is defined as the sum of the absolute difference of P in sub-
sequent versions. This measurement can be used as an overall indicator of
change.

(1 6 j < k 6 n) EPj..k(H,P ) =
∑k

i=j+1 EPi(H,P ) (3.2)

Latest Evolution of P (LEP). While EP treats each change the same, with LEP
we focus on the latest changes by a weighting function 2i−maxRank which
decreases the importance of a change as the version i in which it occurs is
more distant from the latest considered version maxRank.

(1 6 j < k 6 n) LEPj..k(H,P ) =
∑k

i=j+1 EPi(H,P )2i−k (3.3)

Earliest Evolution of P (EEP). It is similar to LEP, only that it emphasizes the early
changes by a weighting function 2i−minRank which decreases the importance
of a change as the version i in which it occurs is more distant from the first
considered version minRank.

(1 6 j < k 6 n) EEPj..k(H,P ) =
∑k

i=j+1 EPi(H,P )2k−i+1 (3.4)

Given a History we can obtain a sub-History based on a filtering predicate applied
on the versions. Therefore, whichever properties we can compute on Histories, we

36



3.5. HISTORY PROPERTIES

can also compute on the sub-Histories.

In Figure 3.6 (p.38) we show an example of applying the defined history measure-
ments to 5 histories of 5 versions each.

— During the displayed history of D (5 versions) P remained 2. That is the reason
why all three history measurements were 0.

— Throughout the histories of class A, of class B and of class E the P property was
changed the same as shown by the Evolution of P (EP = 7). The Latest and the
Earliest Evolution of P (LEP and EEP) values differ for the three class histories
which means that (i) the changes are more recent in the history of class B (ii)
the changes happened in the early past in the history of class E and (iii) in the
history of class A the changes were scattered through the history more evenly.

— The histories of class C and E have almost the same LEP value, because of the
similar amount of changes in their recent history. The EP values differ heavily
because class E was changed more throughout its history than class C.

The above measurements depend on the P property. For example, P can be the
number of methods of a class (NOM), or the number of lines of code of a method
(LOC). As a consequence, in the case of EP we talk about ENOM, when P is NOM,
or about ELOC when P is LOC. We use the above measurements in Chapter 4 (p.47)

and in Chapter 6 (p.87).

In a similar fashion, we define other measurements. Here is a non-exhaustive
list:

Age. It counts the number of versions in the history. We use this measurement
in Chapter 6 (p.87).

Additions of P / Removals of P. These measurements sum the additions or re-
movals of a property P. Additions are a sign of increase in functionality, while
removals are a sign of refactoring. We use the Additions of P measurement
in Chapter 8 (p.125).

Number of Changes of P. It counts in how many versions the property P changed
with respect to the previous version.

Stability of P. It divides the Number of Changes of P by the number of versions -
1 (i.e., the number of versions in which P could have changed). We use this
measurement in Chapter 5 (p.67).

History Maximum / Minimum / Average. These measures the maximum, mini-

37



CHAPTER 3. HISMO: MODELING HISTORY AS A FIRST CLASS ENTITY

rank
History

/EP: Real
/LEP:Real
/EEP: Real
minRank: Integer
maxRank: Integer
select(filter: Predicate): History

Version
/EP: Real

history

1

versions

0..1

EP = Sequence {minRank+1..maxRank}->collect(i | self.versions[i]. EP)->sum()
LEP = Sequence {minRank+1..maxRank}->collect(i | self.versions[i]. EP*2.exp(i-maxRank))->sum()
EEP = Sequence {minRank+1..maxRank}->collect(i | self.versions[i]. EP*2.exp(minRank-i+1))->sum()

*

EP = (prev.P-self.P).abs()

DerivedFrom

0..1

*

root

subHistories

Snapshot
P: real

1*

Figure 3.5: Examples of history measurements and how they are computed based on
structural measurements.

2 3 4

2 24 2

2 2

B

C

D

EP LEP
7

7

0

3.50

5.75

3 1.25

0

2 4 3 5A

2E 7 1.50

2 2

0 4

9

3

3

1 2 3 4 5

EEP
3.25

1.37

2.12

0

5.25

2

7

3

2

versions

EP =

LEP =

 = 7

= 3.50

2 4 3 5A 7

2 212

2*2-1 2*201*2-22*2-3

+++

+++

EEP = = 3.252*2-2 2*2-31*2-12*20 +++

Legend:

x a version with
property P=x

Figure 3.6: Examples of EP, LEP and EEP history measurements. The top part shows the
measurements computed for 5 histories. The bottom part shows the computation details.

38



3.6. GROUPING HISTORIES

mum or the average value of P over the versions. We use these measurements
in Chapter 6 (p.87).

Persistence of a version Condition. It counts the number of versions in which the
Condition is true over the total number of versions. We use this measurement
in Chapter 5 (p.67).

Beisdes measurements, other historical properties can be defined. Here are some
examples of boolean properties [Lanza and Ducasse, 2002]:

Persistent. A persistent entity is an entity that was present in all versions of the
system. We use this property in Chapter 6 (p.87).

Removed. A history is removed if its last version is not part of the system history’s
last version. We use this property in Chapter 6 (p.87).

Day-fly. Day-fly denotes a history that is Removed and that is 1 version old.

The above measurements and properties do not make use of the actual time infor-
mation from the versions. For example, Age is measured in number of versions,
while it could be measured in the actual time spanned from the beginning until
the end of the history. In the context of this dissertation we use the measurements
and properties as described above, however we believe there is great potential in
considering the actual time dimension.

3.6 Grouping Histories

One important feature when analyzing entities is grouping. It is important because
we need to be able to reason about a collection of entities like we reason about
individual entities. For example, having at hand a group of classes, we would like
to identify the root class of the classes in the group, or to get the average of a
property P.

In the same way, we want to be able to manipulate a group of histories. For exam-
ple, we would like to know which are the top three most changed class histories
in the latest period.

Figure 3.7 (p.40) shows the UML diagram of our model in which an AbstractGroup,
Group and HistoryGroup are first class entities. In general, we can ask an Ab-
stractGroup for the average of a numerical property P, or we can select the entities
with the highest values of a property P.

39



CHAPTER 3. HISMO: MODELING HISTORY AS A FIRST CLASS ENTITY

AbstractEntity

Group
*

histories

*

entities

*

*
HistoryGroup

selectTopOfPFromVersions(leftRank, rightRank, threshold: Integer)

selectTopOfPFromVersions(leftRank, rightRank, threshold: Integer):
   pValues = collect(eachHistory | 
                               eachHistory->PFromVersions(leftRank, rightRank)).
   topPValues = pValues->sort->firstValues(threshold).
   select(eachHistory | 
              topPValues->includes(eachHistory->PFromVersions(leftRank, rightRank))).

PFromVersions(leftRank, rightRank: Integer):
   subHistory = self.select(eachVersion | 
                                         eachVersion.rank >=leftRank & 
                                         eachVersion.rank <= rightRank).
   subHistory.P

AbstractGroup
/averageOfP: Real
selectTopOfP(threshold: Integer)

History

PFromVersions(leftRank, rightRank: Integer): Real

Figure 3.7: HistoryGroup as a first class entity.

40



3.7. MODELING HISTORICAL RELATIONSHIPS

A HistoryGroup is a Group that holds histories instead of generic entities and
it defines specific queries. In the figure, we give the example of selecting the
histories that have the highest historical property P computed only on a selection
of histories based on specified versions. This particular query is used in Chapter 4
(p.47).

3.7 Modeling Historical Relationships

In this section we detail how we model relationships between histories.

Modeling Historical Relationships Recovered From Explicit Snapshot Rela-
tionships

In the previous sections we showed how to model the history of a snapshot entity
like classes or packages. But, in a snapshot meta-model we can model explicitly
structural relationships like inheritance or invocations. Having the relationship
as a first class entity, allows us to model the corresponding history in exactly the
same fashion as we did for structural entities.

Figure 3.8 (p.42) shows an example of how to model inheritance relationships.
Starting from “an InheritanceSnapshot links two Classes”, we build the version
representation “an InheritanceVersion links two ClassVersions” and the history
representation “an InheritanceHistory links two ClassHistories.” In Chapter 6 (p.87)

we give an example of how we can use this meta-model for understanding how
hierarchies as a whole evolved.

Modeling Historical Relationships Recovered From Evolution

We can infer historical relationships not only from explicit structural relationships,
but from how different entities evolved. In Section 2.3.2 (p.21) we reviewed a num-
ber of evolution analyses based on the assumption that two entities are related if
they are changed in the same time. We dedicate this section in showing how we
model co-change as explicit historical relationships.

Two versions of two entities are related through co-change relationship if they
are both changed with respect to their respective previous versions. In the same

41



CHAPTER 3. HISMO: MODELING HISTORY AS A FIRST CLASS ENTITY

2 classVersions

* inheritanceVersions

ClassVersion

Inheritance
Version

2 classHistories

* inheritanceHistories

ClassHistory

Inheritance
History

rank

rank Class
Snapshot

Inheritance
Snapshot

2 classes

* inheritances

Figure 3.8: Using Hismo for modeling historical relationships.

D

A

B

C

2 moduleVersions

* coChangeVersions

ModuleVersion

CoChange
ModuleVersion

2 moduleHistories

* coChangeHistories

ModuleHistory

CoChange
ModuleHistory

rank

rank

Hismo

Co-Change

Module
Snapshot

ver 1 ver 2 ver 3 ver 4 ver 5 ver 6

Figure 3.9: Using Hismo for co-change analysis. On the bottom-left side, we show 6 ver-
sions of 4 modules: a grayed box represent a module that has been changed, while a white
one represents a module that was not changed. On the bottom-right side, we show the
result of the evolution of the 4 modules as in Figure 2.3 (p.22).

42



3.8. GENERALIZATION

line, we define a CoChangeHistory to represent the relationship between two his-
tories.

Figure 3.9 (p.42) shows an example of how to model co-changes between mod-
ules. On the bottom part we represent the example from Figure 2.3 (p.22): On
the bottom-left side we show 6 versions of 4 modules (A, B, C, D) and how they
changed from one version to the other (a change is marked with gray). On the
bottom-right we show the historical representation. The resulting picture is the
same as in Figure 2.3 (p.22) only the meta-model is different. We no longer repre-
sent the Modules as ellipses, but ModuleHistories, and the co-change is an explicit
historical relationship (i.e., CoChangeModuleHistory).

From the historical point of view, co-change and inheritance are similar, as they
both transform into relationships between histories. The only difference between
them is that in the case of co-change relationship there is no snapshot entity
wrapped by the CoChangeVersion.

3.8 Generalization: Transforming Snapshot Meta-
Models into History Meta-Models

In the previous sections we gave examples of how to build the history meta-model
based on a snapshot meta-model. In this section, we generalize the approach
and show how we can use meta-model transformations for obtaining the history
meta-model.

In Figure 3.10 (p.44) we show in details the transformation which generates from
a Class entity in the snapshot meta-model the corresponding ClassHistory and
ClassVersion entities. Thus, a ClassHistory is a sequence of ClassVersions. Also
the model allows us to define history properties based on structural properties.

The bold text in the figure shows how the result only depends on the Snapshot
and its properties. For example, having the number of Lines of Code (LOC) as an
attribute in a Class, we can derive the minimum or the maximum lines of code in
the history. In the figure we show how we derive the Evolution of Lines of Code,
as the sum of the absolute differences of the lines of code in subsequent versions.
The history properties obtained in this manner, characterize and summarize the
evolution.

Figure 3.11 (p.44) shows how we can obtain the relationships between the meta-

43



CHAPTER 3. HISMO: MODELING HISTORY AS A FIRST CLASS ENTITY

ClassVersion
/versionId
/evolutionOfLOC: integer

0..1

version

1

history
Class

LOC: integer
model

transformation

ClassHistory
/maxLOC: integer
/minLOC: integer
/evolutionOfLOC: integer
...

rank

evolutionOfLOC = Sequence {minId+1..maxId}->collect(i | self.versions[i]. evolutionOfLOC)->sum()

evolutionOfLOC = (prev.value(LOC)-self.value(LOC)).abs()

Figure 3.10: Transforming the Snapshot to obtain corresponding History and Version and
deriving historical properties.

ClassVersion
/versionId
name

1package

0..1class

PackageHistory

name

versionId
0..1

version

1

history
PackageVersion

name

ClassHistory versionId
0..1

version

1

history

1 /packageHistory

0..1 /classHistory

Class
name

1package

0..1class

Package

name
model

transformation

code 
generation

PackageHistory>>classHistories
  histories := Dictionary new.
  self versions do: [:eachPackageVersion |
    eachPackageVersion classes do:[ :eachClass |
      history := histories 
           at: eachClass uniqueName 
           ifAbsentPut: [ClassHistory new].
      history addLast: eachClass
     ]  
  ]
  ^histories values.

Figure 3.11: Obtaining the relationships between histories by transforming the snapshot
meta-model.

44



3.9. SUMMARY

model entities starting from the structural relationships. On the left side of the
figure we have a Package containing multiple Classes. After the transformation
we have the PackageHistory as containing multiple ClassHistories. On the down-
right side of the figure we see the generated code in Smalltalk for obtaining the
ClassHistories starting from a PackageHistory. Similarly to Figure 3.10 (p.44), the
bold text in the figure shows how the algorithm only depends on the Snapshots
and their relationships.

3.9 Summary

In this chapter we introduced Hismo, our meta-model which explicitly models his-
tory as a collection of versions. In Hismo, the historical perspective is added on
top of the snapshot perspective. As a result, we can reuse the analyses built at
structural level in the historical context.

We gave examples of different historical properties, and we gave evidence of how
such measurements can be used to characterize histories. We introduced the no-
tion of grouping histories and we showed how we can define queries that take
into account the historical properties. We completed the meta-model picture by
showing how we build historical relationships based both on snapshot relation-
ships (e.g., inheritance history) and on evolution (e.g., co-change). Furthermore,
we generalized our approach, by showing how the historical meta-model can be
obtained by transforming the snapshot meta-model.

The next chapters discuss several evolution analyses, each one exercising a dif-
ferent part of the meta-model (see Section 2.5 (p.27)). Each chapter has a similar
structure: first we discuss in detail the approach to show its relevance for reverse
engineering, and in the end we show how Hismo supports the expression of the
approach.

45



CHAPTER 3. HISMO: MODELING HISTORY AS A FIRST CLASS ENTITY

46



Chapter 4

Yesterday’s Weather
Selecting Histories and Combining Historical Properties

Yesterday is a fact.
Tomorrow is a possibility.

Today is a challenge.

Knowing where to start reverse engineering a large software system, when no in-
formation other than the system’s source code itself is available, is a daunting task.
Having the history of the code could be of help if this would not imply analyzing a
huge amount of data. In this chapter we present an approach for identifying can-
didate parts of the system for reverse engineering and reengineering efforts. Our
solution is based on summarizing the changes in the evolution of object-oriented
software systems by defining history measurements. Our approach, named Yester-
day’s Weather, is a measurement based on the retrospective empirical observation
that the parts of the system which changed the most in the recent past also suffer
important changes in the near future. We apply this approach on three case studies
with different characteristics and show how we can obtain an overview of the evolu-
tion of a system and pinpoint the parts that might change in the next versions.

Yesterday’s Weather is an example of how to build complex historical measurements
by combining historical properties computed on selections of histories.



CHAPTER 4. YESTERDAY’S WEATHER

4.1 Introduction

When starting a reverse engineering effort, knowing where to start is a key ques-
tion. When only the code of the application is available, the history of a software
system could be helpful as it holds valuable information about the life of the sys-
tem, its growth, decay, refactoring operations, and bug-fixing phases. However,
analyzing a software system’s history is difficult due to the large amount of com-
plex data that needs to be interpreted. Therefore, history analysis requires one to
create higher level views of the data.

The basic assumption of this dissertation is that the parts of the system that need
to change are those that need to be understood first. We can find out about the
tendencies of changes by looking at the past ones. However, not every change in
the history of the system is relevant for the future changes. For example, the parts
of a system which changed in its early versions are not necessarily important1 for
the near future: Mens and Demeyer suggested that the evolution-prone parts
of a system are those which have changed a lot recently [Mens and Demeyer,
2001].

We aim to measure how relevant it is to start reverse engineering the parts of the
system which changed the most in the recent past. Based on historical infor-
mation, we identify the parts of the system that changed the most in the recent
past and check the assumption that they are likely to be among the most changed
ones in the near future. If this assumption held many times in the system history,
then the recently changed parts are good candidates for reverse engineering. Our
experiments show that important changes do not necessarily imply that they only
occur in the largest parts (e.g., in terms of lines of code). Therefore identifying the
big parts in the last version of a software system is not necessarily a good indicator
for future changes.

We concentrate on the evolution of object-oriented systems, where by the parts of
a system we understand structural entities like packages, classes or methods. We
identify the parts that are likely to change by defining evolutionary measurements
that summarize the history of those parts. We show the relevance of these mea-
surements in our approach which we name Yesterday’s Weather. Our approach
is similar to the historical observation of the weather: a way of guessing what
the weather will be like today is to think it will stay the same as yesterday. This
heuristic can have very high success rates, however, its success is not the same in
all places: In the Sahara desert the chance that the weather stays the same from

1By important we denote the fact that these parts will be affected by changes.

48



4.2. YESTERDAY’S WEATHER IN A NUTSHELL

one day to the next is higher than in Belgium, where the weather can change in
a few hours. Therefore, to use such a heuristic for “successful weather forecasts”,
we need to know how relevant the heuristic is for the place we want to use it. We
obtain the relevancy by analyzing the historical information about the climate of
the place we are interested in.

Yesterday’s Weather is a measurement applied on a system history and it charac-
terizes the “climate” of a software system. More specifically, Yesterday’s Weather
provides an indication that allows one to evaluate the relevance of starting reverse
engineering from the classes that changed the most recently.

Structure of the Chapter

We start by presenting an overview of Yesterday’s Weather in Section 4.2 (p.49). In
Section 4.3 (p.50) we go into the details of computing and interpreting Yesterday’s
Weather. In Section 4.4 (p.54) we present the results obtained on three case studies
and then discuss the variation points of our approach. In Section 4.5 (p.60) we
discuss different variation points of our approach. Section 4.6 (p.63) presents the
related work. In Section 4.7 (p.64) we summarize the approach, and we conclude
the chapter with a discussion on how the usage of Hismo makes the expression of
Yesterday’s Weather simple (Section 4.8 (p.65)).

4.2 Yesterday’s Weather in a Nutshell

We define Yesterday’s Weather (YW ) to be the retrospective empirical observation
of the phenomenon that at least one of the heavily changed parts in the recent
history is also among the most changed parts in the near future.

Our approach consists in identifying, for each version of a subject system, the
parts that were changed the most in the recent history and in checking if these
are also among the most changed parts in the successive versions. We count
the number of versions in which this assumption holds and divide it by the total
number of analyzed versions to obtain the value of Yesterday’s Weather.

Example. Suppose that we want to analyze how classes change and for a sys-
tem YW yields a value of 50%. This means that the history of the system has
shown that in 50% of the cases at least one of the classes that was changed a

49



CHAPTER 4. YESTERDAY’S WEATHER

lot in the recent past would also be among the most changed classes in the near
future.

YW characterizes the history of a system and is useful from a reverse engineering
point of view to identify parts that are likely to change in the next version. On one
hand we use such information to make out progressive development phases in
the evolution of the system (e.g., what is/was the current focus of development?).
In phases where the developers concentrate on a certain part of the system, the
evolution would be fairly easy to predict. During repairing phases due to bug
reports or little fixes the developers change the software system apparently at ran-
dom places which leads to a decrease of predictability (i.e., the weather becomes
unstable). On the other hand it also gives a general impression of the system (i.e.,
how stable is the climate of the whole system?). By interpreting the YW we identify
that the changes are either focused on some parts over a certain period of time, or
they move unpredictably from one place to another.

Example. If the YW value of a software system S1 is 10%, this implies that the
changes in the system were rather discontinuous – maybe due to new development
or bug fix phases. If the YW yields an 80% value for a system S2, this implies the
changes in the system were continuous. In such a system, we say it is relevant to
start the reverse engineering from the classes which were heavily changed lately,
while this is not the case in system S1.

4.3 Yesterday’s Weather in Detail

Before defining the YW function, we introduce the notion of top n of entities out of
an original set S of entities with the highest P property value:

(0 < n < 1) TopP (S, n) = S′

˛̨̨̨
˛̨̨̨ S′ ⊆ S,

|S′| = n

∀x ∈ S′, ∀y ∈ S − S′

P (x) > P (y)

(4.1)

To check the Yesterday’s Weather assumption with respect to classes, for a system
version i, we compare the set of class histories with the highest LENOM1..i values
(the candidates set) with the set of the class histories with the highest EENOM i..n

values (the really-changed set). The Yesterday’s Weather assumption holds if the
intersection of these sets is not empty, that is at least one class history belongs

50



4.3. YESTERDAY’S WEATHER IN DETAIL

to both sets. This means that for the classes in version i at least one of the
recently most changed classes is among the most changed classes in the near
future relative to version i. If the assumption holds for version i we have a hit (as
shown in Equation 4.2 (p.51) and Figure 4.1 (p.52)).

In general, we formally define the Yesterday’s Weather hit function at version i

applied to a set of histories S with respect to a property P and given two threshold
values t1 and t2 as follows:

(i > 1; t1, t2 ≥ 1)

Y Wi(S, P, t1, t2) =


1, T opLEP1..i

(S, t1) ∩ TopEEPi..n
(S, t2) 6= ∅

0, T opLEP1..i
(S, t1) ∩ TopEEPi..n

(S, t2) = ∅ (4.2)

The overall Yesterday’s Weather is computed by counting the hits for all versions
and dividing them by the total number of possible hits. Thus, we obtain the result
as a percentage with values between 0% and 100%.

We formally define the Yesterday’s Weather applied to n versions of a set of histo-
ries S with respect to a property P and given two threshold values t1 and t2 as in
Equation 4.3 (p.51).

(n > 2; t1, t2 ≥ 1)

Y W1..n(S, P, t1, t2) =

Pn−1
i=2 Y Wi(S, P, t1, t2)

n− 2
(4.3)

Example. In Figure 4.1 (p.52) we present an example of how we check Yesterday’s
Weather with respect to a certain version. We display 6 versions of a system with
7 classes (A-G). We want to check Yesterday’s Weather when considering the 4th
version to be the present one. Therefore, the versions between 1 to 3 are the past
versions, and the 5th and 6th are the future ones.

We also consider the dimensions of the candidates and the really-changed set to
be 3, that is, we want to check the assumption that at least one of the top three
classes which were changed in the recent history will also be among the top three
most changed classes in the near future. We draw circles with a continuous line
around the A, C and F classes to mark them as being the top three classes which
changed the most in the recent history with respect to the 4th version. A, C and F
are candidates for a Yesterday’s Weather hit: While B changed recently, it is not

51



CHAPTER 4. YESTERDAY’S WEATHER

hit

Legend:

a candidate history 
(i.e., in TopLENOM1..i 

)

a really-changed history
(i.e., in TopEENOMi..n 

)

2 4 3 5 6 7

2 3 4 9 9

1 3 3 4

2 2 2 2 2 2

1 5 4

1 2 4 7 3 6

3 4 5 4 6 3

past
versions

present
version

future
versions

A

B

C

D

E

F

G

Figure 4.1: The detection of a Yesterday’s Weather hit with respect to classes.

a candidate because A, C and F changed more than B and in this case we only
concentrate on the top three most changed classes. We marked with a dotted circle
the classes which change the most in the next versions after the 4th one. We get
a hit if the intersection between the continuous line circles and the dotted circles
is not empty. In the presented example we get a hit because of class F.

In Figure 4.2 (p.53) we show how we compute the overall Yesterday’s Weather for
a system history with 10 versions. The grayed figures show that we had a hit in
that particular version, while the white ones show we did not. In the example
we have 6 hits out of possible 10, making the value of Yesterday’s Weather to be
60%.

Yesterday’s Weather Interpretation

Suppose we have to analyze a system history with 40 versions, where each version
consists on average of 400 classes, and suppose we compute YW(S1,NOM,20,20)
and get a result of 10%: The “climate” of the system is unpredictable with respect
to the important changes. In such a “climate” it is not relevant to consider the

52



4.3. YESTERDAY’S WEATHER IN DETAIL

System

 Versions

2 3 4 5 6 7 8 9 10 11

YW1..12 = 
6 hits

10 possible hits
= 60% 

Figure 4.2: The computation of the overall Yesterday’s Weather.

latest changed classes to be important for the next versions.

If, on the other hand, we compute the YW(S2,NOM,5,5) and get a result of 80%, it
means that during the analyzed period in 80% of the versions at least one of the
5 classes that changed the most in the recent past is among the 5 classes that
change the most in the near future. Therefore, we have a great chance to find,
among the first 5 classes which were heavily changed recently, at least one class
which would be important (from a reverse engineering point of view) for the next
version.

The value of YW depends on the dimensions of the sets we want to compare. For
example, on each line in the table in Figure 4.3 (p.56) we display different results
we obtained, on the same history, depending on the sizes of the sets. For example,
for 40 versions of Jun, when we considered the LENOM1..i set size to be 5 and the
EENOM i..n set size to be 5, the YW was 50% (i.e., YW(Jun, NOM,5,5) = 50%). When
the LENOM1..i set size was 10 and the EENOM i..n set size was 10, the YW was 79%
(YW(Jun, NOM,10,10) = 79%).

In YW(S, candidates, really-changed) the dimensions of the candidates and really-
changed sets represent thresholds that can be changed to reduce or enlarge the
scope of the analysis. Thus, using higher thresholds increases the chance of a hit
but also increases the scope, while by using lower tresholds we reduce the scope,
but we also reduce the probability to have a hit. Both thresholds have specific
interpretations:

1. The candidates set threshold represents the number of the parts which changed
the most in the recent past. The lower this threshold is the more accurate
the assumption is. For example, imagine that for one system we choose a LE

53



CHAPTER 4. YESTERDAY’S WEATHER

threshold of 1 and an EE threshold of 5 and we get a YW value of 60% (i.e.,
YW(S1,P,1,5) =60%). For another similar system we get YW(S2,P,3,5) =60%. It
means that in the first system you have a 60% chance that the part identified
as changing the most in the recent past will be among the 5 parts that change
the most in the near future, while in the second system, we have to inves-
tigate three candidate parts to have a 60% chance of finding one important
part for the near future.

2. The size of the really-changed set is the second threshold and it shows how
important – i.e., how affected by changes – the candidates are. The lower
this threshold is, the more important the candidates are. Suppose we have
YW(S1,P,5,5) = 60% in one system and YW(S2,P,5,1) = 60% in another system.
It means that in the first system we have a 60% chance that one candidate
will be among the first 5 important parts in the next versions, while in the
second system we have a 60% chance that one of the candidates will be the
most important part in the next version.

4.4 Validation

Our approach measures the relevance of starting reverse engineering from the
latest changed parts of the system. As a validation, we compute our approach on
three available case studies with different characteristics (Jun, CodeCrawler and
JBoss), and discuss the results from the threshold values and the history sample.
We also compare the results obtained by YW against the size of different parts
of the system and conclude that big size is not a reliable indicator for the future
changes.

Jun2 is a 3D-graphics framework currently consisting of more than 700 classes
written in Smalltalk. The project started in 1996 and is still under development.
As experimental data we took every 5th version starting from version 5 (the first
public version) to version 200. The time distance between version 5 and version
200 is about two years, and the considered versions were released about 15-
20 days apart. In the first analyzed version there were 160 classes, in the last
analyzed version there were 740 classes. In total there were 814 different classes
which were present in the system over this part of its history, and there were 2397
methods added or removed.

2See http://www.srainc.com/Jun/.

54



4.4. VALIDATION

CodeCrawler3 is a language independent reverse engineering tool which combines
metrics and software visualization. In the first analyzed version there were 92
classes and 591 methods, while in the last analyzed version there were 187 classes
and 1392 methods. In the considered history, there were 298 different classes
present in the system over the considered history and 1034 methods added or
removed in subsequent versions.

JBoss4 is an open source J2EE application server written in Java. The versions we
selected for the experiments were at two weeks distance from one another starting
from the beginning of 2001 until 2003. The first version has 632 classes and 102
packages, the last one has 4015 classes and 509 packages.

We chose these case studies because of their differences. Jun and JBoss have
been developed by a team of developers while CodeCrawler is a single developer
project. Furthermore, Jun and CodeCrawler are written in Smalltalk, while JBoss
is written in Java.

4.4.1 Yesterday’s Weather in Jun, CodeCrawler and JBoss

Figure 4.3 (p.56) presents the results of the YW for the case studies for different
number of versions while keeping the thresholds constant. High values (e.g., 79%
for Jun or more than 90% for CodeCrawler) denote a stable climate of the case
studies: the changes either went slowly from one part to another of the system, or
the changes were concentrated into some classes.

When we choose more distance between releases, we take into consideration the
accumulation of changes between the releases: the candidate parts are not nec-
essarily heavily changed in just one version, but they could be changed over more
versions.

Jun. When we doubled the thresholds when analyzing 40 versions of Jun, we
obtained 29% more in the YW value (i.e., YW(Jun40, NOM, 5, 5) = 50% becomes
YW(Jun40, NOM, 10, 10) = 79%). Moreover, when we doubled the thresholds when
analyzing 10 versions, we more than doubled the YW value (i.e., YW(Jun10, NOM,
5, 5) = 37% becomes YW(Jun10, NOM, 10, 10) = 87%). These facts show that in
Jun there were classes which were changed over a long period of time, but these
changes are not identified when we analyze versions which are closer to each
other.

3See http://www.iam.unibe.ch/ scg/Research/CodeCrawler/.
4See http://sourceforge.net/projects/jboss/.

55



CHAPTER 4. YESTERDAY’S WEATHER

History sample YW(3,3)

40 versions of Jun (Jun40) 40%

20 versions of Jun (Jun20) 39%

10 versions of Jun (Jun10) 37%

40 versions of CodeCrawler (CC40) 68%

20 versions of CodeCrawler (CC20) 61%

10 versions of CodeCrawler (CC10) 62%

40 versions of JBoss (JBoss40) 11%

20 versions of JBoss (JBoss20) 28%

10 versions of JBoss (JBoss10) 50%

YW(5,5)

50%

55%

37%

92%

94%

100%

26%

38%

63%

YW(10,10)

79%

77%

87%

100%

100%

100%

53%

67%

63%

Figure 4.3: YW computed on classes with respect to methods on different sets of versions
of Jun, CodeCrawler and JBoss and different threshold values.

To show the relevance of YW we display the class histories that provoked a hit
when computing YW(Jun40,NOM,10,10) for 40 versions of Jun (see Figure 4.4
(p.57)). We focused on the size of the classes in terms of number of methods
and determined that YW predicts changes in classes which are not necessarily
big classes (e.g., JunOpenGLPerspective). We grayed the classes which provoked
a hit when computing YW and which were not in the top 10 of the biggest classes
in the last version. 17 out of 22 classes are not in the first 10 classes in terms
of number of method: in Jun a big class is not necessarily an important class in
terms of future changes.

CodeCrawler. CodeCrawler is a project developed mainly by one developer, and
as such can be considered a system with a focused and guided development with
little external factors. This assumption is backed up by the data which reveals very
high YW values for low thresholds, resulting in a “stable climate” of the system.
Note that CodeCrawler is much smaller than Jun, the thresholds must thus be
seen as relatively lax.

Figure 4.5 (p.58) displays, using the same notation as in Figure 4.4 (p.57), the class
histories that provoked a hit in YW(5,5). As in the case of Jun, the hits were not
necessarily provoked by big classes and not all big classes provoked a hit. This

56



4.4. VALIDATION

YW(Jun40, NOM, 10,10) Hit Classes NOM

JunOpenGLDisplayModel 150
JunWin32Interface 104
JunBody 85
JunOpenGL3dObject 75
JunOpenGL3dObject_class 71
JunOpenGL3dNurbsSurface 55
JunLoop 55
Jun3dLine 51
JunOpenGLProjection 48
JunUNION 47
JunOpenGL3dCompoundObject 41
JunPolygon 34
JunBody_class 31
JunVertex 30
JunOpenGL3dVertexesObject 23
JunOpenGL3dCompoundObject_class 21
JunOpenGL3dVertex 19
JunUNION_class 19
JunOpenGL3dPolygon 15
JunOpenGLPerspective 12
JunOpenGLTestController 9
JunOpenGLTestView 1

In top 10 biggest
classes in the 
last version

NOT in top 10 biggest
classes in the 
last version

Figure 4.4: The class histories that provoked a hit when computing YW(Jun40,NOM,10,10)
and their number of methods in their last version. In this case study, the big classes are
not necessarily relevant for the future changes.

57



CHAPTER 4. YESTERDAY’S WEATHER

YW(CC40, NOM, 5,5) Hit Classes NOM

CCDrawing 123
CCAbstractGraph 99
CCGraph 69
CCNode 47
CodeCrawler 42
CCConstants_class 39
CCEdge 36
CCControlPanel 29
CCGroupNodePlugIn 25
CCModelSelector 24
CCRepositorySubcanvas 17
CodeCrawler_class 15
CCService 0

In top 10 biggest
classes in the 
last version

NOT in top 10 biggest
classes in the 
last version

Figure 4.5: The class histories that provoked a hit when computing YW(CC40,NOM,5,5) and
their number of methods in their last version. In this case study, the big classes are not
necessarily relevant for the future changes.

shows that in CodeCrawler there is not always a relationship between changes and
size. Therefore, identifying the big classes from the last version, is not necessarily
a good indicator for detecting classes which are important, in terms of change, for
the next versions.

JBoss. JBoss is a significantly larger system than the Jun. When we applied YW
on the classes of JBoss, we did not obtain a high value: In JBoss it is less relevant
to start reverse engineering from the latest changed classes.

The highest values were obtained when analyzing versions 2 months apart from
each other (i.e., 10 versions in total). This is an indicator that there are classes
that change over a longer period of time, and that these changes do not show
when analyzing more finer grained versions.

We applied YW on the packages of JBoss with respect to methods and we displayed
the results in Figure 4.6 (p.59). In Figure 4.7 (p.59) we show the packages that
provoked a hit. In this case too, we see that the hits are not only provoked by the
largest packages.

58



4.4. VALIDATION

History sample YW(3,3)

40 versions of JBoss (JBoss40) 21%

20 versions of JBoss (JBoss20) 17%

10 versions of JBoss (JBoss10) 13%

YW(5,5)

45%

50%

63%

YW(10,10)

82%

100%

100%

Figure 4.6: YW computed on packages with respect to the total number of methods on
different sets of versions of JBoss and different threshold values.

YW(JBoss40,NOM,10,10) Hit Packages NOM

org::jboss::util 715
org::jboss::ejb 513
org::jboss::management::j2ee 436
org::jboss::ejb::plugins::cmp::jdbc 396
org::jboss::security 172
org::jboss::system 140
org::jboss::naming 100

In top 10 biggest
packages in the 
last version

NOT in top 10 biggest
packages in the 
last version

Figure 4.7: The package histories provoking a hit when computing YW(JBoss40,NOM,10,10)
and their number of methods in their last version. In this case study, the big packages are
not necessarily relevant for the future changes.

In all three considered case studies we detected that the size of different parts of
the systems is not necessarily a good indicator for predicting future changes.

4.4.2 The Evolution of Yesterday’s Weather in Jun

In Figure 4.8 (p.60) we represent a chart which shows Jun’s evolution of Yesterday’s
Weather over time. The points in the chart show the value of Yesterday’s Weather
until that version: in version 15 Yesterday’s Weather is 100%, drops in version
25, grows again until version 100 and then finally has an oscillating descending
shape.

Based on this view we can detect phases in the evolution where the changes were
focused and followed by other changes in the same part of the system (the ascend-
ing trends in the graph) and phases where the changes were rather unfocused (the
descending trends in the graph). In the first half of the analyzed versions, in 90%

59



CHAPTER 4. YESTERDAY’S WEATHER

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Predictable Climate Less Predictable Climate

Jun versions

YW
(J

un
, N

O
M

, 1
0,

 1
0)

Figure 4.8: The evolution of the values of YW(Jun40,NOM,10,10) when applied to classes.
The diagram reveals phases in which the predictability increases and during which changes
are more focused (e.g., the first part of the history) and phases in which the predictability
decreases and changes are more unfocused (e.g., the second part of the history).

of the cases at least one class which was in the top 10 of the most changed classes
in the last period was also in the top 10 of the most changed classes in the next
version. In the last 20 versions that we analyzed, the probability drops. Therefore,
in the first half of the analyzed period the development was more continuous and
focused than in the second half.

4.5 Variation Points

In this section we explain the impact of the decisions we took when defining the
YW measurement.

On the impact of the weighting function

The LENOM measure weighs each change using the function 2i−k (see Section 3.5
(p.35)). This function actually acts like a window over the complete history of the

60



4.5. VARIATION POINTS

changes by considering as relevant only the last four versions. This window is
important as it lowers the impact of early development. For example, if a big class
was developed in the early versions but now suffers only bug-fixes, it will not be
selected as a candidate for future important changes. Increasing the window size
favors the candidacy of the large classes in the system, even if they are not chang-
ing anymore, and reduces the relevancy of the prediction. Note that although the
value of LENOM takes into account only the last four versions, the YW measure-
ment is computed over the complete history.

On the impact of the at least condition

With the current YW assumption we consider to have a hit if at least one part
which was heavily changed recently also gets changed a lot in the next versions. If
we have YW(S,P,10,10) = 60%, we do not know if the assumption held for 10 out of
the 10 candidate part histories or just for one of them. YW gives relevant results
in two cases:

1. High value of YW when considering low thresholds. Low thresholds (e.g., 5)
mean low scope (both of candidates or of the importance of the really-changed
entities), and if for such low thresholds we obtain a high YW value, we can
characterize the changes as being continuous, and therefore it is relevant to
look at the most recently changed classes to detect one which will probably
undergo an important change during the near future, e.g., the next versions.

2. Low value of YW when considering high thresholds. When obtaining low YW
values for high thresholds, we can characterize the changes as being dis-
continuous, and therefore looking at the most recently changed parts is not
necessarily relevant for the future changes in the system.

In Figure 4.1 (p.52) the hit is provoked by one out of three candidates. Yet, in
another version the hit could be provoked by more candidates. A possible en-
hancement of Yesterday’s Weather would be to compute an average of the number
of parts that matched the YWi assumption. The result of this average would com-
plement the YW value, by showing its overall accuracy. For example, if the YW
value is high, then the higher the value of this average is, the more important
parts for reengineering are likely to be identified with the YW heuristic.

61



CHAPTER 4. YESTERDAY’S WEATHER

On the impact of the release period

Another variation point when computing Yesterday’s Weather is the release period.
If we consider the release period of one week, we focus the analysis on immediate
changes. If, on the other hand, we consider the release period of half a year, we
emphasize the size of the changes that accumulate in the histories.

Example. Suppose that when we consider the release period of a big system of one
week we obtain YW(S,P,5,5) = 60% and when we consider the release period of half
a year we obtain YW(S,P,5,5) = 20%. It means that from one week to another the
development is quite focused, and the bigger parts of the system tend to stabilize
over a long period of time, thus leading to apparently unexpected changes, e.g.,
bug-fixing, patching, small functionality increase all over the system.

The variation of YW allows one to fine-tune the information. It is the combination
of short and focused releases and the decrease of YW that allows one to conclude
that the system stabilizes - that is, the parts that were changed in the past are
no longer changed in the future. Note that, by considering longer release periods,
the additions and removals of methods from the same class between consecutive
releases will not show in the history measurements.

On the impact of the number of versions

The number of versions represents another variation point when computing YW .
Increasing or decreasing the number of versions affects the overall YW , but has
little effect on the value of individual YWi. The longer the considered history, the
less important is a hit/non-hit in the overall YW . By increasing the number of
versions while keeping the same period between versions, we let the early changes
affect the overall YW . Therefore, when keeping the period between versions con-
stant, by increasing the number of versions we obtain a long-term trend, while by
decreasing the number of versions we concentrate on the short-term trend.

On the impact of the granularity level

YW can be applied at any level of abstraction. We showed the results we obtained
on classes and packages with respect to adding and removing methods. Such
analysis requires the knowledge about the structure of the system. When such

62



4.6. RELATED WORK

information is not available, YW can be applied, for example, on files and folders
with respect to adding and removing lines of code.

4.6 Related Work

Measurements have traditionally been used to deal with the problem of analyzing
the history of software systems. Ramil and Lehman explored the implication of the
evolution metrics on software maintenance [Ramil and Lehman, 2001]. They used
the number of modules to describe the size of a version and define evolutionary
measurements which take into account differences between consecutive versions.
Recently, the same approach has been employed to characterize the evolution of
open source projects [Godfrey and Tu, 2000; Capiluppi, 2003; Capiluppi et al.,
2004].

Jazayeri analyzed the stability of the architecture by using colors to depict the
changes. Based on the visualization he analyzed how the old code tends to stabi-
lize over time [Jazayeri, 2002].

Rysselberghe and Demeyer used a simple visualization to provide an overview of
the evolution of systems: they displayed a plot chart, where each dot represents
a commit of the corresponding file [Van Rysselberghe and Demeyer, 2004]. Based
on the visualization they detected patterns of evolution.

Jingwei Wu et al. used the spectograph metaphor to visualize how changes occur
in software systems [Wu et al., 2004a]. They used colors to denote the age of
changes on different parts of the systems.

These approaches make use of raw data provided by the versioning system: fold-
ers, files and lines of text. As opposed to that, our approach takes into considera-
tion the structure of the system and makes use of the semantics of changes.

Burd and Munro defined a set of measurements to quantify the dominance re-
lations which are used to depict the complexity of the calls. They correlated the
changes in these measurements with the types of maintainability activities [Burd
and Munro, 1999].

Gold and Mohan defined a framework to understand the conceptual changes in
an evolving system [Gold and Mohan, 2003]. Based on measuring the detected
concepts they could differentiate between different maintenance activities.

63



CHAPTER 4. YESTERDAY’S WEATHER

Grosser, Sahraoui and Valtchev applied Case-Based Reasoning on the history of
object-oriented system as a solution to a complementary problem to ours: to pre-
dict the preservation of the class interfaces [Grosser et al., 2002]. They also con-
sidered the interfaces of a class to be the relevant indicator of the stability of a
class. Sahraoui et al. employed machine learning combined with a fuzzy approach
to understand the stability of the class interfaces [Sahraoui et al., 2000].

Our approach differs from the above mentioned ones because we consider the his-
tory to be a first class entity and define history measurements which are applied to
the whole history of the system and which summarize the evolution of that system.
Thus we do not have to analyze manually in detail evolution charts. The drawback
of our approach consists in the inherent noise which resides in compressing large
amounts of data into numbers.

Fischer et al. analyzed the evolution of systems in relation with bug reports to
track the hidden dependencies between features [Fischer et al., 2003a]. Demeyer
et al. proposed practical assumptions to identify where to start a reverse engineer-
ing effort: working on the most buggy part first or focusing on clients most impor-
tant requirements [Demeyer et al., 2002]. These approaches, are based on infor-
mation that is outside the code, while our analysis is based on code alone.

In a related approach, Hassan et al. analyzed the types of data that are good
predictors of change propagation, and came to the conclusion that historical co-
change is a better mechanism than structural dependencies like call-graph [Has-
san and Holt, 2004].

4.7 Summarizing Yesterday’s Weather

One of the most important issues when starting reverse engineering is knowing
where to start. When only the code of the application is available, the history
of a software system could be of help. However, analyzing the history is difficult
because of the interpretation of large quantities of complex data. We presented our
approach of summarizing the history by defining history measurements.

We use the term Yesterday’s Weather to depict the retrospective empirical obser-
vation that at least one of the parts of the system that were heavily changed in
the last period will also be among the most changed parts in the near future. We
computed it on three case studies and showed how it can summarize the changes
in the history of a system. We use the approach to pinpoint parts of the system in

64



4.8. HISMO VALIDATION

the latest version which would make good candidates for a first step in reverse en-
gineering. We looked closely at how the big changes are related with the size of the
classes and packages, and validated our approach by showing that big changes
can occur in classes and packages which are not big in terms of size (i.e., number
of methods). Thus, our approach is useful to reveal candidates for reengineering
which are otherwise undetectable if we only analyze the size of the different parts
of the system’s last version.

When reverse engineering, we should take the auxiliary development information
into account. For example, we could correlate the shape of the evolution of Yester-
day’s Weather with the changes in the team or with the changes in the develop-
ment process. An example of an analysis of the history of the developers is shown
in Chapter 7 (p.105). In the future, we would like to correlate Yesterday’s Weather
with such information from outside the source code.

4.8 Hismo Validation

The approach consists of identifying, for each version of a subject system, the
parts that were changed the most in the recent history and in checking if these
are also among the most changed parts in the successive versions. The YW value
is given by the number of versions in which this assumption holds divided by the
total number of analyzed versions. Below we give an OCL code for computing YW
for a SystemHistory with respect to classes:

context SystemHistory

-- returns true if the YW assumption holds for a given version versionRank
derive versionYW(versionRank):

yesterdayTopHistories = self.classHistories->selectTopLENOMFromVersions(minRank, versionRank-1).
todayTopHistories = self.classHistories->selectTopEENOMFromVersions(versionRank, maxRank).
yesterdayTopHistories->intersectWith(todayTopHistories)->isNotEmpty().

-- answers the number of versions in which the assumption holds
-- divided by the total number of analyzed versions
derive overallYW:

ywVersionResults = Sequence(minRank+2..maxRank-1)->collect(i | self.versionYW(i).
ywVersionResults->sum() / (maxRank-minRank-2)

65



CHAPTER 4. YESTERDAY’S WEATHER

The code reveals several features of Hismo :

— We navigate the meta-model by asking a SystemHistory for all the ClassHisto-
ries (self.classHistories).

— classHistories->selectTopLENOMFromVersions(minRank, versionRank-1) returns the class
histories that are in the top of LENOM (Latest Evolution of Number of Meth-
ods) in the period between the first version (minRank) and the version before the
wanted version (versionRank-1). That is, it returns the classes that were changed
the most in the recent history. This predicate implies applying a historical
measurement (i.e., LENOM) on a selection of a history, and then ordering the
histories according to the results of the measurement.

— Similarly, classHistories->selectTopEENOMFromVersions(versionRank, maxRank) returns
the class histories that are the most changed in the early history between the
wanted version (versionRank) and the last version (maxRank).

— The result of versionYW is given by the intersection of the past changed class his-
tories and the future changed class histories yesterdayTopHistories->intersectWith(
todayTopHistories)->isNotEmpty(). This simple intersection is possible because the
yesterdayTopHistories and todayTopHistories are subsets of all classHistories.

66



Chapter 5

History-Based Detection
Strategies
Combining Historical Properties with Structural Properties

From an abstract enough point of view,
any two things are similar.

As systems evolve and their structure decays, maintainers need accurate and au-
tomatic identification of the design problems. Current approaches for automatic
detection of design problems take into account only a single version of a system,
and consequently, they miss essential information as design problems appear and
evolve over time. Our approach is to use the historical information of the suspected
flawed structure to increase the accuracy of the automatic problem detection. Our
means is to define measurements which summarize how persistent the problem was
and how much maintenance effort was spent on the suspected structure. We apply
our approach to a large scale case study and show how it improves the accuracy of
the detection of God Classes and Data Classes, and additionally how it adds valu-
able semantic information about the evolution of flawed design structures.

This approach shows how to combine historical properties with snapshot proper-
ties.



CHAPTER 5. HISTORY-BASED DETECTION STRATEGIES

5.1 Introduction

Maintenance effort is reported to be more than half of the overall development
effort and most of the maintenance effort is spent on adapting and introducing
new requirements, rather than in repairing errors [Bennett and Rajlich, 2000;
Sommerville, 2000]. One important source of maintainability problems is the
accumulation of poor or improper design decisions. This is the reason why, during
the past years, the issue of identifying and correcting design problems became an
important concern for the object-oriented community [Fowler et al., 1999; Riel,
1996; Demeyer et al., 2002].

Various analysis approaches have been developed to automatically detect where
the object-oriented design problems are located, but these approaches only make
use of the information found in the last version of the system (i.e., the version
which is maintained) [Ciupke, 1999; Marinescu, 2001]. For example, they look for
improper distribution of functionality among classes of a system without asking
whether or not it raised maintenance problems in the past.

We argue that the evolution information of the problematic classes over their life-
time can give useful information to system maintainers. We propose a new ap-
proach which enriches the detection of design problems by combining the analy-
sis based on a single version with the information related to the evolution of the
suspected flawed classes over time.

We show how we apply our approach when detecting two of the most well known
design flaws: Data Class and God Class. Marinescu detected these flaws by ap-
plying measurement-based rules to a single version of a system [Marinescu, 2002;
Marinescu, 2004]. He named these rules detection strategies. The result of a de-
tection strategy is a list of suspects: design structures (e.g., classes) which are
suspected of being flawed. We enlarge the concept of detection strategies by tak-
ing into account the history of the suspects (i.e., all versions of the suspects). We
define history measurements which summarize the evolution of the suspects and
combine the results with the classical detection strategies.

Structure of the Chapter

After we present the metaphor of our approach, we briefly describe the concept
of detection strategy and discuss the detection of Data Classes and God Classes
(Section 5.3 (p.69)). In Section 5.5 (p.74) we define the history measurements needed

68



5.2. THE EVOLUTION OF DESIGN FLAW SUSPECTS

to extend the detection strategies and discuss the way we use historical informa-
tion in detection strategies. We then apply the new detection strategies on a large
open source case study and discuss in detail the results (Section 5.6 (p.77)).We give
an overview of the related work in Section 5.8 (p.83), we summarize the approach
in Section 5.9 (p.84). In Section 5.10 (p.85) we discuss the approach pointing out
the benefits of using Hismo.

5.2 The Evolution of Design Flaw Suspects

Design flaws (e.g., God Class or Data Class) are like human diseases - each of them
evolves in a special way. Some diseases are hereditary, others are acquired during
the life-time. The hereditary diseases are there since we were born. If physicians
are given a history of our health status over time they can give their diagnostic in
a more precise way. Moreover there are diseases (e.g., benign tumors) with which
our organism is accustomed and thus, they represent no danger for our health
and we don’t even consider them to be diseases any more.

In a similar fashion we use the system’s evolution to increase the accuracy of the
design flaw detection. We analyze the history of the suspects to see whether the
flaw caused problems in the past. If in the past the flaw proved not to be harmful
then it is less dangerous. For example, in many cases, the generated code needs
no maintenance so the system which incorporates it can live a long and serene
life no matter how the generated code appears in the sources (e.g., large classes
or unreadable code).

The design flaws evolve with the system they belong to. As systems get older their
diseases are more and more prominent and need to be more and more taken into
account.

5.3 Detection Strategies

A detection strategy is a generic mechanism for analyzing a source code model
using metrics. It is defined by its author as the quantifiable expression of a rule,
by which design fragments that are conformant to that rule can be detected in the
source code [Marinescu, 2002].

Detection strategies allow one to work with measurements at a more abstract level,

69



CHAPTER 5. HISTORY-BASED DETECTION STRATEGIES

which is conceptually much closer to our real intentions in using metrics (e.g., for
detecting design problems). The result of applying a detection strategy is a list
of design structures suspected of being flaed. Using this mechanism it becomes
possible to quantify several design flaws described in the literature [Riel, 1996;
Fowler et al., 1999].

We present below the detection strategies for Data Class and God Class. Their
presentation will also clarify the structure of a detection strategy.

5.3.1 God Class Detection Strategy

God Class “refers to a class that tends to centralize the intelligence of the system.
An instance of a God Class performs most of the work, delegating only minor
details to a set of trivial classes and using the data from other classes“ [Marinescu,
2002].

To detect a God Class we look for classes which use a lot of data from the classes
around them while either being highly complex or having a large state and low
cohesion between methods. The God Class detection strategy is a quantified
measurement-based rule expressing the above description (see Equation 5.1 (p.70)).
We introduce below the measurements used:

— Access to Foreign Data (ATFD) represents the number of external classes from
which a given class accesses attributes, directly or via accessor-methods [Mari-
nescu, 2002].

— Weighted Method Count (WMC) is the sum of the statical complexity of all meth-
ods in a class [Chidamber and Kemerer, 1994]. We considered the McCabe’s
cyclomatic complexity as a complexity measure [McCabe, 1976].

— Tight Class Cohesion (TCC) is the relative number of directly connected meth-
ods [Bieman and Kang, 1995].

— Number of Attributes (NOA) [Lorenz and Kidd, 1994].

GodClass(S) = S′

∣∣∣∣∣∣∣∣
S′ ⊆ S,

∀C ∈ S′

(ATFD(C) > 40) ∧ ((WMC(C) > 75)∨
((TCC < 0.2) ∧ (NOA > 20)))

(5.1)

70



5.3. DETECTION STRATEGIES

5.3.2 Data Class Detection Strategy

Data Classes “are classes that have fields, getting and setting methods for the
fields, and nothing else. Such classes are dumb data holders and are almost
certainly being manipulated in far too much detail by other classes” [Fowler et al.,
1999].

To detect a Data Class we look for classes which have a low complexity and high
exposure to their internal state (i.e., a lot of either accessor methods or public
attributes). The Data Class detection strategy in Equation 5.2 (p.71) uses the fol-
lowing measurements:

— Weight of a Class (WOC) is the number of non-accessor methods in the inter-
face of the class divided by the total number of interface members [Marinescu,
2001].

— Number of Methods (NOM) [Lorenz and Kidd, 1994].

— Weighted Method Count (WMC) [Chidamber and Kemerer, 1994].

— Number of Public Attributes (NOPA) is defined as the number of non-inherited
attributes that belong to the interface of a class [Marinescu, 2001].

— Number of Accessor Methods (NOAM) is defined as the number of the non-
inherited accessor-methods declared in the interface of a class [Marinescu,
2001].

DataClass(S) = S′

∣∣∣∣∣∣∣∣∣
S′ ⊆ S,

∀C ∈ S′

((WMC(C)
NOM(C) < 1.1) ∧ (WOC(C) < 0.5))∧

((NOPA(C) > 4) ∨ (NOAM(C) > 4))

(5.2)

5.3.3 Detection Strategy Discussion

As shown in the Equation 5.1 (p.70) and Equation 5.2 (p.71) the detection strategies
are based on a skeleton of measurements and thresholds for each measurement
(e.g., ATFD > 40). While the measurements skeleton can be obtained by translat-
ing directly the available informal rules (e.g., heuristics or bad smells), the partic-
ular sets of thresholds are mainly chosen based on the experience of the analyst.

71



CHAPTER 5. HISTORY-BASED DETECTION STRATEGIES

As this experience can differ from person to person the thresholds represent the
weak point of the detection strategies.

The process of using detection strategies to detecting design flaws is not fully au-
tomated. Indeed, detection strategies are automated, but the result of a detection
strategy is a list of suspects which requires further human intervention to verify
the flaw.

5.4 History Measurements

We refine the detection of design flaws by taking into consideration how stable the
suspects were in the past and how long they have been suspected of being flawed.
We name persistently flawed1 the entities which were suspects a large part of
their life-time (i.e., more than 95% of their life time). Thus we further introduce
two measurements applied on the history of a suspect: Stab and Pers.

5.4.1 Measuring the Stability of Classes

We consider that a class was stable with respect to a measurement M between
version i − 1 and version i if there was no change in the measurement. As an
overall indicator of stability, we define the Stab measurement applied on a class
history H as a fraction of the number of versions in which there was a change
in the M measurement over the total number of versions - 1 (see Equation 5.3
(p.72)).

(i > 1) Stabi(H,M) =
{

1, Mi(H)−Mi−1(H) = 0
0, Mi(H)−Mi−1(H) 6= 0

(n > 2) Stab1..n(H,M) =
∑n

i=2 Stabi(H,M)
n− 1

(5.3)

The Stab measurement returns a value between 0 and 1, where 0 means that the
history was changed in all versions and 1 means that it was never changed.

1The adjective persistent is a bit overloaded. In this dissertation we use its first meaning: existing
for a long or longer than usual time or continuously. Merriam-Webster Dictionary

72



5.4. HISTORY MEASUREMENTS

The functionality of classes is defined in their methods. For the purpose of the
current analysis, we consider that a class was changed if at least one method was
added or removed. Thus, we will use Stab with respect to the Number of Methods
of a class (NOM).

5.4.2 Measuring the Persistency of a Design Flaw

We define the Pers measurement of a flaw F for a class history H with n ver-
sions, i.e., 1 being the oldest version and n being the most recent version (see
Equation 5.4).

(i ≥ 1) Suspecti(H,F ) =
{

1, Hi is suspect of flaw F

0, Hi is not suspect of flaw F

(n > 2) Pers1..n(H,F ) =
∑n

i=1 Suspecti(H,F )
n

(5.4)

The Pers measurement returns a value between 0 and 1, and it tells us in what
measure the birth of the flaw is related with the design stage or with the evolution
of the system. For example, if for a history Pers is 1, it means that the flaw was
present from the very beginning of the history.

Example. The top part of Figure 5.1 (p.74) presents 5 class histories and the results
of the Stab and Pers measurements, and the bottom part shows in details how we
obtain the values for the two measurements in the case of A. We can interpret the
persistent flaws in one of the following ways:

1. The developers are conscious of these flaws and they could not avoid making
them. This could happen because of particularities of the modeled system -
the essential complexities [Brooks, 1987] - or the need to meet other quality
characteristics (e.g., efficiency).

2. The developers are not conscious of the flaws. The cause for this can be
either the lack of expertise in object-oriented design or the trade-offs the
programmers had to do due to external constraints (e.g., time pressure).

The flaws which are not persistent are named volatile, and are the result of the
system’s evolution. These situations are usually malignant because they reveal

73



CHAPTER 5. HISTORY-BASED DETECTION STRATEGIES

2 2 4

1 3

2 2

B

C

D

Stab Pers(F)
50%

66%

100%

80%

50%

50% 33%

0%

4 4 3 3A

E 0% 0%

2 2

4

3

0

1 2 3 4 5

2

7

3

versions

Stab

Pers(F)

 2/4 = 50%

4/5 = 80%

4 4 3 3A 7

1 001 Legend:

x a version with
property P=x

a version with
flaw F

0 1 1 1 1

Figure 5.1: Examples of the computation of the Stab and Pers measurements.

the erosion of the initial design. They have two major causes:

1. The apparition of new (usually functional) requirements which forced the
developers to modify the initial design to meet them.

2. The accumulation of accidental complexity in certain areas of the system due
to the changing requirements [Brooks, 1987].

From the point of view of maintenance, we are interested mainly in the detecting
the erosion of the original design.

5.5 Detection Strategies Enriched with Historical In-
formation

We use the history measurements to enrich the God Class and Data Class detec-
tion strategies. The detection strategies used here are based on the work of Raţiu
[Raţiu, 2003]. In Equation 5.5 (p.75) and in Equation 5.6 (p.75) we define the Stable-
GodClass and PersistentGodClass detection strategies. The rest of the detection
strategies used further are defined in a similar fashion. The only difference is that

74



5.5. DETECTION STRATEGIES ENRICHED WITH HISTORICAL INFORMATION

while stability is measured for a class in isolation, the instability for a class is
measured relatively to the other classes within the system.

StableGodClass(S1..n) = S′

∣∣∣∣∣∣
S′ ⊆ GodClass(Sn),
∀C ∈ S′

Stab(C) > 95%
(5.5)

PersGodClass(S1..n) = S′

∣∣∣∣∣∣
S′ ⊆ GodClass(Sn),
∀C ∈ S′

Pers(C,GodClass) > 95%
(5.6)

God Classes and Stability. God Classes are big and complex classes which en-
capsulate a great amount of system’s knowledge. They are known to be a source
of maintainability problems [Riel, 1996]. However, not all God Classes raise prob-
lems for maintainers. The stable God Classes are a benign part of the God Class
suspects because the system’s evolution was not disturbed by their presence. For
example, they could implement a complex yet very well delimited part of the sys-
tem containing a strongly cohesive group of features (e.g., an interface with a
library).

On the other hand, the changes of a system are driven by changes in its fea-
tures. Whenever a class implements more features it is more likely to be changed.
God Classes with a low stability were modified many times during their life-time.
Therefore, we can identify God Classes which have produced maintenance prob-
lems during their life from the set of all God Classes identified within the system.
The unstable God Classes are the malignant sub-set of God Class suspects.

God Classes and Persistency. The persistent God Class are those classes which
have been suspects for almost their entire life. Particularizing the reasons given
above for persistent suspects in general, a class is usually born God Class because
one of the following reasons:

1. It encapsulates some of the essential complexities of the modeled system.
For example, it can address performance problems related to delegation or it
can belong to a generated part of the system.

2. It is the result of a bad design because of the procedural way of regarding
data and functionality, which emphasis a functional decomposition instead
of a data centric one.

75



CHAPTER 5. HISTORY-BASED DETECTION STRATEGIES

It is obvious that God Classes which are problematic belong only to the latter cate-
gory because in the first category the design problem can not be eliminated.

God Class suspects which are volatile obtained the God Class status during their
lifetime. We argue that persistent God Classes are less dangerous than those
which are not persistent. The former were designed to be large and important
classes from the beginning and thus are not so dangerous. The latter more likely
occur due to the accumulation of accidental complexity resulted from the repeated
changes of requirements and they degrade the structure of the system.

Data Classes and Stability. Data Classes are lightweight classes which contain
only little functionality. While God Classes carry on the work, Data Classes are
only dumb data providers whose data is used from within other (possible many)
classes. Modifications within Data Classes require a lot of work from program-
mers, as the principle of locality of change is violated. Thus, regarding the efforts
implied by their change, programmers are less likely to change Data Classes.
Based on this, we infer that the more relevant functionality a Data Class contains
the higher are its chances to become the subject of a change. From this point of
view, “classic” Data Classes, which are nothing else but dumb data carriers with
a very light functionality, should be rather stable.

Data Classes and Persistency. Persistent Data Classes represent those classes
which were born with this disease. They break from the beginning of their life the
fundamental rule of object-oriented programming which states that data and its
associated functionality should stay together. Particularizing the reasons which
could lead to persistent Data Classes we obtain that:

1. The class is used only as a grouping mechanism to put together some data.
For example such a class can be used where is necessary to transmit some
unrelated data through the system.

2. There was a design problem as Data Classes do not use any of the mecha-
nisms specific to object-oriented programming (i.e., encapsulation, dynamic
binding or polymorphism). The data of these classes belong together but the
corresponding functionality is somewhere else.

Data Classes which are volatile are classes which got to be Data Class during
their life. A class can become a Data Class either by requirements change in
the direction of functionality removal or by refactorings. Functionality removal
while keeping the data is unlikely to happen. Furthermore by properly applying
the refactorings as defined in [Fowler et al., 1999] we can not get classes with
related data but no functionality (i.e., the malignant set of Data Classes). The only

76



5.6. VALIDATION

Data Classes we are likely to get are those which belong to the harmless category,
because the class is used only as a modularization mechanism for moving easily
unrelated data.

5.6 Validation

We applied our approach to three case studies: two in-house projects and Jun2,
a large open source 3D-graphics framework written in Smalltalk. As experimental
data we chose every 5th version starting from version 5 (the first public version) to
version 200. In the first analyzed version there were 160 classes while in the last
analyzed version there were 694 classes. There were 814 different classes which
were present in the system over this part of its history. Within these classes 2397
methods were added or removed through the analyzed history.

We first applied the detection strategies and then the suspects were both manually
inspected at the source-code level and looked-up in Jun’s user manual. Based on
the manual inspection we determined which suspects were false positives, how-
ever we did not have access to any internal expertise.

The history information allowed us to distinguish among the suspects provided by
single-version detection strategies, the harmful and harmless ones. This distinc-
tion among suspects drives the structure of the entire section.

The analysis shows how, by adding information related to the evolution of classes,
the accuracy of the detection results was improved on this case-study, both for
God Classes and Data Classes. Additionally, it shows that the history of the
system adds valuable semantic information about the evolution of flawed design
structures.

Harmless God Classes. The God Classes which are persistent and stable during
their life are the most harmless ones. They lived in symbiosis with the system
along its entire life and raised no maintainability problems in the past.

When taking a closer look at the Figure 5.2 (p.78) which present the God Class
suspects we observe that more than 20% of them are persistent and stable (5
out of 24). These classes in spite of their large size, did not harm the system’s
maintainability in the past, because the developers did not need to change them,
so it is unlikely that they will harm it in the future. Almost all of these classes

2See http://www.srainc.com/Jun/.

77



CHAPTER 5. HISTORY-BASED DETECTION STRATEGIES

GodClass Suspect Persistent

JunHistogramModel x
JunLispCons x
JunLispInterpreter x
JunSourceCodeDifference x
JunSourceCodeDifferenceBrowser x
JunChartAbstract x

Volatile Stable

x
x
x
x
x

Unstable

x
JunOpenGLGraph x x
JunOpenGLDisplayModel x x
JunOpenGLShowModel x x
JunUNION x x
JunImageProcessor_class x

24 14 10 7 12

JunOpenGLRotationModel x
JunUniFileModel x
JunVoronoi2dProcessor x
JunMessageSpy
JunOpenGLDisplayLight
Jun3dLine

x
x
x

x
x

x
JunBody_class x x
JunEdge x x
JunLoop x x
JunOpenGL3dCompoundObject x x
JunOpenGL3dObject_class x x
JunPolygon x x
JunBody x

Total

Figure 5.2: God Classes detected in version 200 of Jun case-study and their history prop-
erties.

78



5.6. VALIDATION

belong to particular domains which are weakly related with the main purpose of
the application. We can observe this even by looking at their names. In Jun these
classes belong to a special category named “Goodies” which means that they are
optional add-ons.

— JunLispInterpreter is a class that implements a Lisp interpreter, one of the
supplementary utilities of Jun. This is an example of a GodClass that models
a matured utility part of the system.

— JunSourceCodeDifferenceBrowser is used to support the evolution of Jun. It
belongs to the effort of the developers to support the evolution of the library
itself.

Continuing to look at the Figure 5.2 (p.78) we notice that some of the God Classes
were stable during their lifetime even if they were not necessarily persistent. The
manual inspection revealed that some of these classes were born as skeletons of
God Classes and waited to be filled with functionality at a later time. Another
part of them was not detected to be persistent because of the hard thresholds of
the detection strategies. We can consider these classes to be a less dangerous
category of God Classes.

— JunOpenGLDisplayLight is a GUI class (i.e., a descendant of UI.ApplicationModel),
which suddenly grew in version 195.

— JunMessageSpy is a helper class which is used for displaying profiling infor-
mation for messages. It also belongs to the ’Goodies’ category. This class was
detected as being God Class from the beginning because of the hard thresholds
used in the detection strategy.

Harmful God Classes. The God Classes which were both volatile and unstable
are the most dangerous ones. Looking at the Figure 5.2 (p.78) we can easily see
that almost 30% of the God Classes are harmful (7 out of 24). They grew as a
result of complexity accumulation over the system’s evolution and presented a lot
of maintainability problems in the past. The inspection of volatile unstable God
Classes reveals that they all belong to the core of the modeled domain, which is
in this case graphics.

— JunOpenGL3dCompoundObject implements the composition of more 3D ob-
jects. Its growth is the result of a continuous accumulation of complexity from
version 75 to version 200.

— JunBody models a single 3D solid element. Between version 100 and 150 its

79



CHAPTER 5. HISTORY-BASED DETECTION STRATEGIES

DataClass Suspect Persistent

JunParameter x
JunPenTransformation x
JunVoronoi2dTriangle x
JunVrmlTexture2Node x
Jun3dTransformation x
JunVrmlIndexedFaceSetNode20 x

Volatile Stable

x
x
x
x

Unstable

JunVrmlTransformNode x
JunHistoryNode x
JunVrmlMaterialNode x
JunVrmlNavigationInfoNode x
JunVrmlViewPointNode x

11 7 4 4 0Total

Figure 5.3: Data Classes detected in version 200 of the Jun case study and their history
properties.

complexity grew by a factor of 3.

— JunEdge element represents a section where 2 faces meet. It had a continuous
growth of WMC complexity between versions 10 and 155.

Harmless Data Classes. We consider volatile Data Classes to be less dangerous.
The manual inspection revealed that the accessor methods of these classes are not
used from exterior classes. They are used only as local wrappers for their instance
variables or as instance initializers from their meta-classes.

Harmful Data Classes. The most dangerous Data Classes are those which were
designed that way from the beginning. The manual inspection revealed that 3 out
of 7 of these Data Classes (i.e., almost 50% of persistent Data Classes) are used
from within other classes.

— JunVoronoi2dTriangle has its accessors used from within JunVoronoi2dProcessor
which is a persistent God Class.

— Jun3dTransformation is used from JunOpenGL3dObject class which is a volatile
God Class.

— JunParameter is used from within JunParameterModel.

80



5.6. VALIDATION

Suspects Detected

Classic GodClass Suspects 24
Harmless GodClass Suspects 5
Harmful GodClass Suspects 12
Not Classified GodClass Suspects 7

Classic DataClass Suspects 11

False Positives

---
0
0
---

---
Harmless DataClass Suspects 7 4
Harmful DataClass Suspects 4 0
Not Classified DataClass Suspects 0 ---

Figure 5.4: Summary of the results of the history-based detection strategies as applied on
Jun.

The other 4 persistent Data Class suspects proved to be false positives as the
manual inspection of the suspects proved that their accessors are used only from
within their class or for initialization from their meta-class.

Summary. Figure 5.4 (p.81) summarises the results of the case-study analysis,
showing explicitly the accuracy improvement compared with the single-version
detection strategies.

From the total of 24 classes which were suspect of being God Classes using the
classic detection strategies, there were 5 of them detected to be harmless and 7
of them detected to be harmful. After the manual inspection, no false positives
were found. There were 12 suspects being God Classes which were not classified
as being either harmful or harmless. This category of suspects require manual
inspection as the time information could not improve the classic detection.

The classic Data Class detection strategies detected 11 suspects. 7 of these were
detected as being harmful and the other 4 detected to be harmless. After the
manual inspection, we found 4 false positives out of 7 of the Data Classes detected
as being harmful.

81



CHAPTER 5. HISTORY-BASED DETECTION STRATEGIES

5.7 Variation Points

During the experiments we had to choose among many different possibilities to
deal with the time information. We consider necessary a final discussion centered
on the possible variations of this approach. Thus, the purpose of this section is to
put the chosen approach in a larger context driving in the same time the directions
for future work.

On the variations of the stability measurement

We consider a class unstable if at least one method was added or removed re-
gardless of the kind of method. Therefore, we ignored the changes produced at a
lower level (e.g., bug-fixes) and do not distinguish the quality of changes. A pos-
sible solution would be to sum the number of changes in successive versions and
complement the Stab measurement with size information.

Also, the Stab measurement considers all changes equal, regardless of the period
of time in which they appeared. Another possible extension is to consider just the
latest changes by weighting each change with the distance from the last version
analyzed.

On the impact of the number of analyzed versions

The more versions we consider in our analysis, the more we favor the capture of
the small changes in the Stab measurement.

On the impact of the starting point of the analyzed history

We found out that persistent and stable God Classes are harmless because they
usually implement an optional and standalone feature (e.g., a code browser in a
3D framework). These classes are part of the initial design, as persistency means
the existence of the flaw almost since the very beginning of the class life. If we
consider the analyzed period to be from the middle of their actual life, we cannot
detect whether they were really persistent. Therefore, for persistency we need to
consider the history from the beginning of the system’s history.

82



5.8. RELATED WORK

On the impact of the threshold values

The thresholds represent the weakest point of the detection strategies because
they are established mainly using the human experience. In this chapter the
time information is used to supplement the lack of precision for particular sets of
thresholds [Raţiu, 2003].

Mihancea developed a “tuning machine” which tries to infer automatically the
proper threshold values [Mihancea and Marinescu, 2005]. This approach is based
on building a repository of design fragments that have been identified by engineers
as being affected by a particular design problem, and based on this reference
samples, the “tuning machine” selects those threshold values that maximize the
number of correctly detected samples. The drawback of the approach is that the
examples repository must be large enough to allow a proper tuning, and collecting
these samples is not easy.

Another approach to deal with setting the thresholds is based on statistical analy-
sis of the common values found in a database of projects [Lanza et al., 2006].

5.8 Related Work

During the past years, different approaches have been developed to address the
problem of detecting design flaws. Ciupke employed queries usually implemented
in Prolog to detect “critical design fragments” [Ciupke, 1999]. Tourwe et al. also
explored the use of logic programming to detect design flaws. van Emden et
al. detected bad smells by looking at code patterns [van Emden and Moonen,
2002]. As mentioned earlier, Marinescu defined detection strategies which are
measurement-based rules aimed to detect design problems [Marinescu, 2001;
Marinescu, 2002; Marinescu, 2004]. Visualization techniques have also been used
to understand design [Demeyer et al., 1999].

These approaches have been applied on one single version alone, therefore miss-
ing useful information related to the history of the system. Our approach is to
complement the detection of design fragments with history information of the sus-
pected flawed structure.

Demeyer et al. analyzed the history of three systems to detect “refactorings via
change metrics” [Demeyer et al., 2000]. Krajewski defined a methodology for ana-
lyzing the history of software systems [Krajewski, 2003].

83



CHAPTER 5. HISTORY-BASED DETECTION STRATEGIES

These approaches used measurements as an indicator of changes from one ver-
sion to another. We consider history to be a first class entity and define history
measurements which summarize the entire evolution of that entity.

Visualization techniques in combination with measurements were also used to
understand history information [Lanza and Ducasse, 2002; Jazayeri et al., 1999;
Jazayeri, 2002]. As opposed to visualization, our approach is automatic and it
reduces the scope of analysis, yet we believe that the two approaches are comple-
mentary.

In [Fischer et al., 2003a] the authors used information outside the code history
and looked for feature tracking, thus gaining semantic information for software
understanding. Our approach differs as we only make use of the code history.
Another approach was developed by Gall et al. to detect hidden dependencies
between modules, but they considered the module as unit of analysis while we
base our analysis on detailed structural information from the code [Gall et al.,
1998].

Jun has been the target of evolution research, however the focus was to use the
history information to describe the development process and the lessons learnt
from developing Jun [Aoki et al., 2001].

5.9 Summarizing History-Based Detection Strategies

We refined the original concept of detection strategy, by using historical infor-
mation of the suspected flawed structures. Using this approach we showed how
the detection of God Classes and Data Classes can become more accurate. Our
approach leads to a twofold benefit:

1. Elimination of false positives by filtering out, with the help of history informa-
tion, the harmless suspects from those provided by a single-version detection
strategy.

2. Identification of most dangerous suspects by using additional information on
the evolution of initial suspects over their analyzed history.

To consolidate and refine the results obtained on the Jun case study, the approach
needs to be applied further on large-scale systems. We also intend to extend
our investigations towards the usage of historical information for detecting other
design flaws.

84



5.10. HISMO VALIDATION

The Stab measurement does not take into consideration the sizes of the change.
We would like to investigate how this indicator of stability could be improved by
considering the number of methods changed between successive versions. Other
interesting investigation issues are: the impact on stability of other change mea-
surements (e.g., lines of code) and the detection of periodic appearing and disap-
pearing of flaws.

5.10 Hismo Validation

Originally, the detection strategies only took into account structural measure-
ments. We used Hismo to extend the detection strategies with the time dimension.
For example, we use the historical information to qualify God Classes as being
harmless if they were stable for a large part of their history. Below we present how
we define the expression with Hismo:

context ClassHistory

-- returns true if the ClassHistory is a GodClass in the last version and
-- it did not change the number of methods in more then 95% of the versions
derive isHarmlessGodClass:

(self.versions->last().isGodClass()) &
(self.stabilityOfNOM > 0.95)

The code shows the predicate isHarmlessGodClass defined in the context of a ClassHis-
tory. The predicate is an example of how we can use in a single expression both
historical information (i.e., stability of number of methods) and structural informa-
tion (i.e., God Class characteristic in the last version) to build the reasoning.

One variation of the approach is in using other stability indicators than the changes
in the number of methods. For example, we can use changes in the number of
statements of the class. The simplicity of the above OCL code, easily allows for the
replacement of the self.stabilityOfNOM with self.stabilityOfNOS.

85



CHAPTER 5. HISTORY-BASED DETECTION STRATEGIES

86



Chapter 6

Characterizing the Evolution
of Hierarchies
Combining Historical Relationships and Historical
Properties

Problem solving efficiency grows
with the abstractness level of problem understanding.

Analyzing historical information can show how a software system evolved into
its current state, which parts of the system are stable and which have changed
more. However, historical analysis implies processing a vast amount of information
making the interpretation of the results difficult. Rather than analyzing individual
classes, we aim to analyze class hierarchies as they group classes according to sim-
ilar semantics. We use historical measurements to define rules by which to detect
different characteristics of the evolution of class hierarchies. Furthermore, we dis-
cuss the results we obtained by visualizing them using a novel polymetric view. We
apply our approach on two large open source case studies and classify their class
hierarchies based on their history.

With this analysis we show how to use relationship histories and how to combine
history properties.



CHAPTER 6. CHARACTERIZING THE EVOLUTION OF HIERARCHIES

6.1 Introduction

History holds useful information that can be used when reverse engineering a sys-
tem. However, analyzing historical information is difficult due to the vast amount
of information that needs to be processed, transformed, and understood. There-
fore, we need higher level views of the data which allow the reverse engineer to
ignore the irrelevant details.

We concentrate on describing and characterizing the evolution of class hierarchies.
Class hierarchies provide a grouping of classes based on similar semantics thus,
characterizing a hierarchy as a whole reduces the complexity of understanding big
systems. In particular, we seek answers to the following questions:

1. How old are the classes of a hierarchy? On one hand, the old classes may
be part of the original design and thus hold useful information about the
system’s design. On the other hand, a freshly introduced hierarchy might
indicate places where future work will be required.

2. Were there changes in the inheritance relationships? Changes in the inheri-
tance relationships might indicate class renaming refactorings, introduction
of abstract classes, or removal of classes.

3. Are classes from one hierarchy modified more than those from another one?
Understanding which parts of the system changed more is important because
they might be also changed in the future [Gı̂rba et al., 2004a].

4. Are the changes evenly distributed among the classes of a hierarchy? If we
find that the root of the hierarchy is often changed, it might indicate that
effort was spent to factor out functionality from the subclasses and to push
it to the superclass, but it might also be a sign of violations of the open-closed
principle [Meyer, 1988].

We are set to detect four characteristics of class hierarchy evolution: (1) the age
of the hierarchy, (2) the inheritance relationship stability, (3) the class size sta-
bility, and (4) the change balance. We quantify these characteristics in a set of
measurements-based rules, and define a language for describing different evolu-
tion patterns of class hierarchies.

To analyze the obtained results we developed a visualization called Hierarchy Evo-
lution Complexity View, an evolutionary polymetric view [Lanza, 2003]. We use
software visualization because visual displays allow the human brain to study
multiple aspects of complex problems – like reverse engineering – in parallel [Stasko

88



6.2. CHARACTERIZING CLASS HIERARCHY HISTORIES

et al., 1998]. We validated our approach on two open source case studies written
in Java and Smalltalk.

The contributions of this chapter are: (1) the characterization of class hierarchy
evolution based on explicit rules which detect different change characteristics, and
(2) the definition of a new polymetric view which takes into account the history of
entities.

Structure of the chapter

In Section 6.2 (p.89) we define rules to detect different evolution patterns of the
evolution of class hierarchies and in Section 6.3 (p.91) we introduce the visualiza-
tion based on the historical measurements measurements. In Section 6.4 (p.93) we
apply our approach on two large case studies. We discuss variation points of our
approach (Section 6.5 (p.98)) and we browse the related work (Section 6.6 (p.101)).
We summarize the chapter in Section 6.7 (p.102) and in Section 6.8 (p.103) we end
with a discussion of the approach from the point of view of using Hismo.

6.2 Characterizing Class Hierarchy Histories

6.2.1 Modeling Class Hierarchy Histories

We consider a class hierarchy history as being a group of class histories and
a group of inheritance histories. To measure class hierarchy histories, we ap-
ply group operators like average (Avg), maximum (Max) and total (Tot). Thus we
have the average age of the class histories in a class hierarchy Ch as given by:
Avg(ClassAge,Ch).

6.2.2 Detecting Class Hierarchies Evolution Patterns

We formulate a vocabulary based on four characteristics: (1) hierarchy age, (2)
inheritance relationship stability, (3) class size stability, and (4) change balance.
These four characteristics are orthogonal with each other. For example, the same
hierarchy can be old but at the same time can have unstable classes.

We use the history measurements to define rules to qualify a class hierarchy based
on the four characteristics:

89



CHAPTER 6. CHARACTERIZING THE EVOLUTION OF HIERARCHIES

1. How old is a hierarchy? We distinguish the following types of hierarchy his-
tories based on the average age of their class histories:

— Newborn. A newborn hierarchy is a freshly introduced hierarchy (i.e., on
the average the age of the class histories is no more than a tenth of the
age of the system).

Avg(ClassAge, Ch) < 0.1 ∗ SystemAge

— Young. A young hierarchy is older than a newborn hierarchy, but its age
is less than half of the system age.

Avg(ClassAge, Ch) > 0.1 ∗ SystemAge ∧
Avg(ClassAge, Ch) < 0.5 ∗ SystemAge

— Old. Old hierarchies have been in the system for a long time, but not for
the entire life of the system.

Avg(ClassAge, Ch) > 0.5 ∗ SystemAge ∧
Avg(ClassAge, Ch) < 0.9 ∗ SystemAge

— Persistent. We say a hierarchy is persistent if the classes were present in
almost all versions of the system (i.e., in more than 90% of the system
versions).

Avg(ClassAge, Ch) > 0.9 ∗ SystemAge

2. Were there changes in the inheritance relationship? We divide the hierarchies
into two categories:

— Solid. We define a hierarchy as being solid when the inheritance relation-
ships between classes are stable and old.

Tot(RemovedInh, Ch) < 0.3 ∗NOInh(Ch)

— Fragile. A hierarchy is fragile when there are many inheritance relation-
ships which disappear.

Tot(RemovedInh, Ch) > 0.3 ∗NOInh(Ch)

90



6.3. CLASS HIERARCHY HISTORY COMPLEXITY VIEW

3. Are classes from one hierarchy modified more than classes from another
hierarchy? From the stability of size point of view we detect two kinds of
hierarchies:

— Stable. In a stable hierarchy the classes have few methods and statements
added or removed compared with the rest of the system.

Avg(ENOM, Ch) < Avg(ENOM, S) ∧
Avg(ENOS, Ch) < Avg(ENOS, S)

— Unstable. In an unstable hierarchy many methods are being added and
removed during its evolution.

Avg(ENOM, Ch) > Avg(ENOM, S) ∨
Avg(ENOS, Ch) > Avg(ENOS, S)

4. Are the changes evenly distributed among the classes of a hierarchy? We
distinguish two labels from the change balance point of view:

— Balanced. In a balanced hierarchy, the changes are evenly performed
among its classes.

Avg(ENOM, Ch) > 0.8 ∗Max(ENOM, Ch)

— Unbalanced. An unbalanced hierarchy is one in which the changes are
not equally distributed in the classes.

Avg(ENOM, Ch) < 0.8 ∗Max(ENOM, Ch)

6.3 Class Hierarchy History Complexity View

To analyze the results we obtain when applying the rules defined in the previous
section, we use visualization as it allows one to identify cases where different
characteristics apply at the same time for a given hierarchy. The visualization we
propose is called Hierarchy Evolution Complexity View and is a polymetric view

91



CHAPTER 6. CHARACTERIZING THE EVOLUTION OF HIERARCHIES

A

B

D

C

E

ver .1 ver. 2 ver. 3 ver. 4 ver. 5

A A A A A

B B B B BC C C

D D D E

Figure 6.1: An example of the Hierarchy Evolution Complexity View. Hierarchy Evolution
Complexity View (right hand side) summarizes the hierarchy history (left hand side).

[Lanza, 2003]. Hierarchy Evolution Complexity View uses a simple tree layout to
seemingly display classes and inheritance relationships. What is new is that it
actually visualizes the histories of classes and of inheritance relationships.

Nodes and edges which have been removed while the system was evolving (i.e.,
they are not present anymore) have a cyan color. The color of the class history
nodes, and the width of the inheritance edges represent their age: the darker the
nodes and the wider the edges, the more grounded in time they are, i.e., the longer
they have been present in the system. Thus, lightly colored nodes and thin edges
represent younger classes and inheritance relationships.

The width of the class history node is given by the Evolution of Number of Methods
(i.e., ENOM ) while the height is given by the fifth part of the Evolution of Number
of Statements (i.e., ENOS/5). We chose to divide ENOS by 5 because in the case
studies we analyzed there was an average of 5 statements per method. Thus, the
wider a node is, the more methods were added or removed in subsequent versions
in that class history; the greater the height of a node is, the more statements were
added or removed in subsequent versions in that class history.

We chose to use ENOM and ENOS because we wanted to see the correlation be-
tween changes in the behavior of a class and its internal implementation changes.

Example. In Figure 6.1 (p.92) we show an example of such a view in which we
display an imaginary hierarchy history. From the figure we infer the following
information:

— Classes A and B are in the system from the very beginning, and they appear

92



6.4. VALIDATION

colored in black. The inheritance relationship between these classes is black
and thick marking that the relationship is old. Class E is small and white,
because it was recently introduced in the system.

— Class C was removed from the system and is colored in cyan. Class D has been
introduced after several versions as a subclass of C, but in the last version it
has become a subclass of A.

— Class B is small because there were no changes detected in it. Classes A and
D have the same width, but class D appears to have less statements added
or removed because the node is more wide than tall. Class C is much taller
compared to its width, denoting a greater implementation effort.

Based on the visualization we can detect two more characteristics:

— Heterogeneous. We characterize a class hierarchy history as being heteroge-
neous if the class histories have a wide range of ages. Such a hierarchy will
appear colored with a wide range of grays.

— Unstable Root. In a hierarchy with an unstable root, the root node is large
compared with the rest of the nodes.

6.4 Validation

For our experiments we chose two open source systems: JBoss1 and Jun2.

JBoss. For the first case study, we chose 14 versions of JBoss. JBoss is an
open source J2EE application server written in Java. The versions we selected for
the experiments were at two months distance from one another starting from the
beginning of 2001 until the end of 2003. The first version has 628 classes, the
last one has 4975 classes.

Jun. As a second case study we selected 40 versions of Jun. Jun is a 3D-graphics
framework written in Smalltalk currently consisting of more than 700 classes.
As experimental data we took every 5th version starting from version 5 (the first
public version) to version 200. The time distance between version 5 and version
200 is about two years, and the considered versions were released about 15-20
days apart. In terms of number of classes, in version 5 of Jun there are 170
classes while in version 200 there are 740 classes.

1See http://www.jboss.org.
2See http://www.srainc.com/Jun/.

93



CHAPTER 6. CHARACTERIZING THE EVOLUTION OF HIERARCHIES

Figure 6.3 (p.96) and Figure 6.4 (p.97) show some of the results we obtained on
six large hierarchies of both case studies. The results are accompanied by the
visualizations.

6.4.1 Class Hierarchies of JBoss

Figure 6.2 (p.95) shows the largest hierarchy in JBoss (ServiceMBeanSupport), and
Figure 6.3 (p.96) shows five other hierarchies from JBoss: JBossTestCase, Stats, J2EE-
ManagedObject, MetaData and SimpleNode (we name the hierarchies according to
the names of their root classes). On the bottom part of the figure we show the
characterization of each hierarchy according to the proposed characteristics. For
space reasons Figure 6.2 (p.95) is scaled with a 0.5 ratio (i.e., zoomed out) as com-
pared with the Figure 6.3 (p.96).

ServiceMBeanSupport is a large hierarchy with nodes and edges of different colors
and shapes: As a whole, we classify it as heterogeneous from the age point of
view, fragile from the inheritance relationship point of view, and unstable and
unbalanced from the changes point of view.

The J2EEManagedObject is a sub-hierarchy of ServiceMBeanSupport and is heteroge-
neous and unbalanced from the point of view of performed changes and is fragile
in terms of inheritance. In the visualization the hierarchy is displayed with nodes
colored in various grays and with many cyan edges and nodes.

JBossTestCase is composed of classes of different age. On average, the nodes are
rather small, meaning that the classes were stable. The hierarchy is heteroge-
neous from the class age point of view which shows that the tests were continu-
ously developed along the project. Also, because most of the nodes are small it
means that most of the classes are stable both from the methods and from the
implementation point of view. In the unstable classes there were more implemen-
tation changes than methods added or removed. Also, once the test classes were
created not many test methods were added or removed afterwards.

The Stats hierarchy has been recently introduced and did not yet experience major
changes.

MetaData is represented with nodes of different sizes colored either in dark colors
or in cyan: It is an old hierarchy which is unstable and unbalanced from the
performed changes point of view. The edges are either thick and dark or cyan,
and as the number of removed edges are not high, we characterize the inheritance
relationships as being solid.

94



6.4. VALIDATION

ServiceMBeanSupport

J2EEManagedObject

Figure 6.2: A Hierarchy Evolution Complexity View of the evolution of the largest hierarchy
from 14 versions of JBoss.

95



CHAPTER 6. CHARACTERIZING THE EVOLUTION OF HIERARCHIES

JBossTestCase

Stats MetaData SimpleNode
J2EE

ManagedObject

Hierarchy AGE

ServiceMBeanSupport Old, Heterogeneous
JBossTestCase Old, Heterogeneous
J2EEManagedObject Old, Heterogeneous
Stats Newborn
MetaData Old
Simple Node Old

Inheritance

Fragile
Solid
Fragile
Solid
Solid
Solid

Stability

Unstable
Stable
Unstable
Stable
Unstable
Stable

Change Balance

Unbalanced
Balanced
Unbalanced
Balanced
Unbalanced
Balanced

Figure 6.3: A Hierarchy Evolution Complexity View of the evolution of five hierarchies from
14 versions of JBoss.

The SimpleNode hierarchy is fairly old and experienced very few changes during its
lifetime, making it thus a very stable hierarchy.

6.4.2 Class Hierarchies of Jun

Figure 6.4 (p.97) shows six of the hierarchies of Jun: Topology, CodeBrowser, Open-
GL3dObject, Vrml, OpenGLDisplayModel, and ProbabilityDistribution. We accompany the
visualization with the characterization of each hierarchy according to the proposed
characteristics.

The Topology hierarchy is the largest and oldest hierarchy in the system. In the fig-
ure, we marked the two sub-hierarchies: AbstractOperator and TopologicalElement.
The TopologicalElement sub-hierarchy is composed of classes which were changed

96



6.4. VALIDATION

Probability
Distribution

Vrml

Topology
OpenGL

DisplayModel
Code

Browser
Topological

Element
Abstract
Operator

Chart

Hierarchy AGE

Topology Old
CodeBrowser Newborn
OpenGL3dObject Old
Vrml Persistent
OpenGLDisplayModel Old
ProbabilityDistribution Old

Inheritance

Solid
Solid
Fragile
Fragile
Solid
Solid

Stability

Unstable
Stable
Unstable
Stable
Stable
Stable

Change Balance

Unbalanced
Balanced
Unbalanced, Unstable Root
Balanced
Balanced, Unstable Root
Balanced

OpenGL
3dObject

OpenGL3d
Primitive
Object

Figure 6.4: A Hierarchy Evolution Complexity View of the evolution of six hierarchies from
the 40 versions of Jun.

a lot during their life time. Three of the leaf classes were detected as being God
Classes (see Chapter 5 (p.67)). A large part of the AbstractOperator hierarchy has
been in the system from the first version, but there is a young sub-hierarchy which
looks different.

The CodeBrowser hierarchy is thin and lightly colored, meaning that it has been
recently added to the system.

The OpenGL3dObject hierarchy experienced three times an insertion of a class in
the middle of the hierarchy: There are removed inheritance relationships colored
in cyan.

The Vrml hierarchy proved to have undergone extensive renaming refactorings: We

97



CHAPTER 6. CHARACTERIZING THE EVOLUTION OF HIERARCHIES

see many removed nodes and removed inheritance relationships. Even the root
class has been removed at a certain point in time: The original hierarchy has thus
been split into two distinct hierarchies.

The OpenGLDisplayModel hierarchy has an old and unstable root. This is denoted
by a large rectangle colored in dark gray. The Chart sub-hierarchy is thin and
lightly colored denoting it is newborn.

ProbabilityDistribution is an old hierarchy and very stable from the inheritance rela-
tionships point of view. Also, the classes in the hierarchy were changed very little
during their history.

6.5 Variation Points

On the impact of the release period

A variation point when computing E measurement is the release period. If, for
example, we consider the release period of one week, we focus the analysis to
immediate changes. If we consider the release period of half a year, we emphasize
the size of the changes that accumulate in the class histories.

On the impact of the number of analyzed versions

The number of versions is another variation point when computing the measure-
ments. By increasing the number of analyzed versions we obtain a long-term
indicator of effort, while by decreasing the number of versions we concentrate on
the short-term indicator of effort.

On the impact of the threshold values

Changing the threshold used for characterizing the evolution is also a variation
point. For example, instead of using 10% of the total number of system versions
for qualifying a class hierarchy as young, we can use 3 versions as the threshold
(that is the classes should be introduced no later than 2 versions ago).

98



6.5. VARIATION POINTS

OpenGL
3dObject

Probability
Distribution

Vrml

Topology OpenGL
DisplayModel

Code
Browser

Chart

Topological
Element

Abstract
Operator OpenGL3d

Primitive
Object

Figure 6.5: A modified Hierarchy Evolution Complexity View of the evolution of six hier-
archies from the Jun case study. The node width is given by the instability of number of
methods and the height is given by the last number of methods.

On the variations of the visualization

In our visualization we sought answers to four questions regarding the age of the
hierarchy, the inheritance relationship stability, the class size stability and the
change balance. The purpose of the visualization is to provide an overview of
the evolution of hierarchies, but is of limited use when a deep understanding is
required.

However, we are convinced that the information that one can extract from the
analysis we propose and the use of an evolutionary polymetric view such as the
Hierarchy Evolution Complexity View is useful: It reveals information about the
system which would be otherwise difficult to extract (e.g., knowing that a hier-
archy is stable/unstable in time is valuable for deciding maintenance effort and
doing quality assessment). In addition, we have to stress that polymetric views,
as we implement them, are intrinsically interactive and that just looking at the
visualization is only of limited value. Indeed, the viewer must interact with the
visualization to extract finer-grained and more useful information, e.g., accessing

99



CHAPTER 6. CHARACTERIZING THE EVOLUTION OF HIERARCHIES

the source code.

Example. In Figure 6.4 (p.97) one would like to know what class has been removed
from the Topology hierarchy and also why, since this quite large hierarchy has
been very stable in terms of inheritance relationships. The viewer can do so by
pointing and inspecting the cyan class history node.

Figure 6.5 (p.99) shows a modified Hierarchy Evolution Complexity View applied on
the Jun hierarchies. In this view we used for the width and the height of the
nodes other measurements, namely the last number of methods (NOM) as the
height and the instability of the number of methods (INOM) as the width. The
instability of the number of methods is computed as the number of versions in
which the number of methods changed over the total number of versions in which
it could have changed.

While in the original view the nodes dimensions show the correlation between
implementation effort, and the behavior addition and removal effort, this view
shows the correlation of the actual size in terms of number of methods and the
number of times methods were added or removed in the classes. Thus, in this
view we can detect whether the instability is correlated with actual size.

In Figure 6.5 (p.99), the CodeBrowser hierarchy, is newborn and appears small in
the original view, but the modified view shows that the classes are among the
tallest displayed, meaning that the classes are rather big in size, but there were
no changes in them.

In the Topology hierarchy the TopologicalElement hierarchy appeared to be unstable
in the original view, but in the modified view it appears as the classes were not
changed many times, because the nodes are not very wide. The rest of the Topology
hierarchy is stable, except for one class which, even if it is younger than the rest,
was changed many times.

In the OpenGLDisplayModel hierarchy there is a correlation of the instability of
number of methods and the size of the root class because the node is tall and
wide. On the other hand, the Chart hierarchy is newborn and appears small in
the original view, while in this view the root is tall meaning that it is a large
class.

The OpenGL3dObject hierarchy also has a large and unstable root. The OpenGL3d-
PrimitiveObject class appears as being small in size, but it changed its number
of methods many times, because it is not tall, but it is wide. Also, its direct
subclasses have about the same width, but their height differs. This means that

100



6.6. RELATED WORK

those classes changed their number of methods about the same amount of times
although their actual size differs.

The classes in the ProbabilityDistribution hierarchy appear small and stable. In the
Vrml hierarchy the size of the classes vary, but the classes are stable.

6.6 Related Work

Burd and Munro analyzed the influence of changes on the maintainability of soft-
ware systems. They defined a set of measurements to quantify the dominance
relations which are used to depict the complexity of the calls [Burd and Munro,
1999].

Lanza’s Evolution Matrix visualized the system’s history in a matrix in which each
row is the history of a class [Lanza and Ducasse, 2002]. A cell in the Evolution
Matrix represents a class and the dimensions of the cell are given by evolutionary
measurements computed on subsequent versions. Jazayeri analyzed the stability
of the architecture by using colors to depict the changes [Jazayeri, 2002]. Jing-
wei Wu et al. used the spectograph metaphor to visualize how changes occur in
software systems [Wu et al., 2004a]. Rysselberghe and Demeyer use a simple vi-
sualization based on information in version control systems to provide an overview
of the evolution of systems [Van Rysselberghe and Demeyer, 2004].

Our approach differs from the above mentioned ones because we consider history
to be a first class entity and define history measurements which are applied on the
whole history of an entity and which summarize the evolution of that entity. The
authors already used the notion of history to analyze how changes appear in the
software systems [Gı̂rba et al., 2004a]. The drawback of our approach consists
in the inherent noise which resides in compressing large amounts of data into
numbers.

Taylor and Munro visualized CVS data with a technique called revision towers
[Taylor and Munro, 2002]. Ball and Eick developed visualizations for showing
changes that appear in the source code [Ball and Eick, 1996]. These approaches
reside at a different granularity level, i.e., files, and thus does not display source
code artifacts as in our approach.

Gulla proposed different visualizations of C code versions, but to our knowledge
there was no implementation [Gulla, 1992]. For example, he displayed several ver-
sions of the structure and let the user identify the changes, by superimposing the

101



CHAPTER 6. CHARACTERIZING THE EVOLUTION OF HIERARCHIES

figures. Holt and Pak proposed a detailed visualization of the old and new depen-
dencies between modules [Holt and Pak, 1996]. Collberg et al. used graph-based
visualizations to display the changes authors make to class hierarchies [Collberg
et al., 2003]. However, they did not give any representation of the dimension of
the effort and of the removals of entities.

Another metrics-based approach to detect refactorings of classes was developed by
Demeyer et al. [Demeyer et al., 2000]. While they focused on detecting refactor-
ings, we focus on offering means to understand where and how the development
effort was spent in a hierarchy.

6.7 Summary of the Approach

This approach set to answer four questions: (1) How old are the classes of a
hierarchy?, (2) Were there changes in the inheritance relationship?, (3) Are classes
from one hierarchy modified more than those from another one?, and (4) Are the
changes evenly distributed among the classes of a hierarchy?

The history of a system holds the information necessary for answering the above
questions, but the analysis is difficult due to the large amount of data. We ap-
proached this problem by defining the history as a first class entity and then we
defined history measurements which summarize the evolution of an entity.

Based on the questions we formulated a vocabulary of terms and we used the
measurements to formulate rules to characterize the evolution of class hierachies.
Furthermore, we displayed the results using a new polymetric view of the evolution
of class hierarchies called Hierarchy Evolution Complexity View.

We applied our approach on two large open source projects and showed how we
could describe the evolution of class hierarchies.

In the future, we want to investigate possibilities of using other measurements
and of adding more semantic information to the view we propose. For example,
we want to add information like refactorings that have been performed.

102



6.8. HISMO VALIDATION

6.8 Hismo Validation

The presented approach exercises several characteristics of Hismo: it combines
historical properties with historical relationships.

Originally, polymetric views were only used for analyzing structural information
(e.g., the hierarchy of classes). Figure 6.1 (p.92) shows an example of how the
evolution over 5 versions of a hierarchy (left side) is summarized in one polymetric
view (right side). On the left hand side we represent the hierarchy structure in
each version – i.e., classes as nodes and inheritance relationships as edges. On
the right hand side we display ClassHistories as nodes and InheritanceHistories
as edges. The color of each node represents the age of the ClassHistory: the darker
the node the older the ClassHistory. The size of the node denotes how much it was
changed: the larger the node, the more the ClassHistory was changed. Both the
thickness and the color of the edge represent the age of the InheritanceHistory.
Furthermore, the cyan color denotes removed histories.

Below we show how the queries presented can be expressed with Hismo. For
example, the Newborn query:

Avg(ClassAge, Ch) < 0.1 ∗ SystemAge

. . . can be expressed like:

context HistoryGroup

-- returns true if the average age of the class histories is lower than 10% of the system age
derive newborn:

self.averageOfAge < 0.1 * self.referenceHistory->age

103



CHAPTER 6. CHARACTERIZING THE EVOLUTION OF HIERARCHIES

104



Chapter 7

How Developers Drive
Software Evolution
Manipulating Historical Relationships

In the end, no two things are truly independent.

As systems evolve their structure change in ways not expected upfront, and the
knowledge of the developers becomes more and more critical for the process of un-
derstanding the system. That is, when we want to understand a certain issue of
the system we ask the knowledgeable developers. Yet, in large systems, not every
developer is knowledgeable in all the details of the system. Thus, we would want
to know which developer is knowledgeable in the issue at hand. In this chapter we
make use of the mapping between the changes and the author identifiers provided
by versioning repositories to recover their zones and periods of influence in the sys-
tem. We first define a measurement for the notion of code ownership. We use this
measurement to define the Ownership Map visualization to understand when and
how different developers interacted in which way and in which part of the system.
We report the results we obtained on several large systems.

The Ownership Map visualization is an example of how to use historical relation-
ships.



CHAPTER 7. HOW DEVELOPERS DRIVE SOFTWARE EVOLUTION

7.1 Introduction

Software systems need to change in ways that challenge the original design. Even
if the original documentation exists, it might not reflect the code anymore. In
such situations, it is crucial to get access to developer knowledge to understand
the system. As systems grow larger, not all developers know about the entire
system, thus, to make the best use of developer knowledge, we need to know
which developer is knowledgeable in which part of the system.

From another perspective, Conway’s law states that “Organizations which design
systems are constrained to produce designs which are copies of the communica-
tion structures of these organizations” [Conway, 1968]. That is, the shape of the
organization reflects on the shape of the system. As such, to understand the sys-
tem, one also has to understand the interaction between the developers and the
system [Demeyer et al., 2002].

In this chapter we aim to understand how the developers drove the evolution of
the system. In particular we provide answers to the following questions:

— How many authors developed the system?

— Which author developed which part of the system and in which period?

— What were the behaviors of the developers?

In our approach, we assume that the original developer of a line of code is the
most knowledgeable in that line of code. We use this assumption to determine
the owner of a piece of code (e.g., a file) as being the developer that owns the
largest part of that piece of code. We make use of the ownership to provide a
visualization that helps to understand how developers interacted with the system.
The visualization represents files as lines, and colors these lines according to the
ownership over time.

Contrary to similar approaches (e.g., [Van Rysselberghe and Demeyer, 2004]), we
give a semantic order to the file axis (i.e., we do not rely on the names of the files)
by clustering the files based on their history of changes: files committed in the
same period are related [Gall et al., 1998].

We implemented our approach in Chronia, a tool built on top of the Moose reengi-
neering environment [Ducasse et al., 2005]. As CVS is a de facto versioning sys-
tem, our implementation relies on the CVS model. Our aim was to provide a
solution that gives fast results, therefore, our approach relies only on information

106



7.2. DATA EXTRACTION FROM THE CVS LOG

from the CVS log without checking out the whole repository. As a consequence,
we can analyze large systems in a very short period of time, making the approach
usable in the very early stages of reverse engineering.

To show the usefulness of our solution we applied it on several large case stud-
ies. We report here some of the findings and discuss different facets of the ap-
proach.

Structure of the Chapter

In Section 7.2 (p.107) we define how we measure the code ownership. In Section 7.3
(p.109), we use this measurement to introduce our Ownership Map visualization of
how developers changed the system. Section 7.4 (p.113) shows the results we ob-
tained on several large case studies, and Section 7.5 (p.120) discusses the approach
including details of the implementation. Section 7.6 (p.121) presents the related
work. We conclude and present the future work in Section 7.7 (p.123), and we
discuss the approach from the point of view of Hismo in Section 7.8 (p.124).

7.2 Data Extraction From the CVS Log

This section introduces a measurement to characterize the code ownership. The
assumption is that the original developer of a line of code is the most knowledge-
able in that line of code. Based on this assumption, we determine the owner of
a piece of code as being the developer that owns the most lines of that piece of
code.

The straightforward approach is to checkout all file versions ever committed to the
versioning repository and to compute the code ownership from diff information
between each subsequent revisions fn−1 and fn. From an implementation point of
view this implies the transfer of large amounts of data over the network, and long
computations.

We aim to provide for an approach that can provide the results fast on projects
which are large and have a long history. As CVS is a very common versioning
system, we tuned our approach to work with the information CVS can provide.
In particular we compute the ownership of the code based only on the CVS log
information.

107



CHAPTER 7. HOW DEVELOPERS DRIVE SOFTWARE EVOLUTION

Below we present a snippet from a CVS log. The log lists for each version fn of
a file, the time tfn of its commit, the name of its author αfn , some state infor-
mation and finally the number of added and removed lines as deltas afn

and rfn
.

We use these numbers to recover both the file size sfn
, and the code ownership

ownα
fn

.

----------------------------
revision 1.38
date: 2005/04/20 13:11:24; author: girba; state: Exp; lines: +36 -11
added implementation section
----------------------------
revision 1.37
date: 2005/04/20 11:45:22; author: akuhn; state: Exp; lines: +4 -5
fixed errors in ownership formula
----------------------------
revision 1.36
date: 2005/04/20 07:49:58; author: mseeberg; state: Exp; lines: +16 -16
Fixed math to get pdflatex through without errors.
----------------------------

Figure 7.1: Snapshot from a CVS log.

7.2.1 Measuring File Size

Let sfn
be the size of revision fn, measured in number of lines. The number of

lines is not given in the CVS log, but can be computed from the deltas afn
and

rfn
of added and removed lines. Even though the CVS log does not give the initial

size sf0 , we can give an estimate based on the fact that one cannot remove more
lines from a file than were ever contained. We define sfn as in Figure 7.2 (p.108):
we first calculate the sizes starting with an initial size of 0, and then in a second
pass adjust the values with the lowest value encountered in the first pass.

time

size

s'f0
 = 0 =

sf0
 = 

s′f0
:= 0

s′fn
:= s′fn−1

+ afn−1 − rfn

sf0 := |min{s′x}|
sfn

:= sfn−1 + afn
− rfn

Figure 7.2: The computation of the initial size.

This is a pessimistic estimate, since lines that never changed are not covered by
the deltas in the CVS log. This is an acceptable assumption since our main focus

108



7.3. THE OWNERSHIP MAP VIEW

is telling the story of the developers, not measuring lines that were never touched
by a developer. Furthermore in a long-living system the content of files is entirely
replaced or rewritten at least once if not several times. Thus the estimate matches
the correct size of most files.

7.2.2 Measuring Code Ownership

A developer owns a line of code if he was the last one that committed a change to
that line. In the same way, we define file ownership as the percentage of lines he
owns in a file. And the overall owner of a file is the developer that owns the largest
part of it.

Let ownα
fn

be the percentage of lines in revision fn owned by author α. Given the file
size sfn

, and both the author αfn
that committed the change and afn

the number
of lines he added, we defined ownership as:

ownα
f0

:=
{

1, α = αf0

0, else

ownα
fn

:= ownα
fn−1

sfn
− afn

sfn

+

{
afn

sfn
, α = αfn

0, else

In the definition we assume that the removed lines rfn are evenly distributed over
the ownership of the predecessor developers fn−1.

7.3 The Ownership Map View

We introduce a the Ownership Map visualization as in Figure 7.3 (p.110). The
visualization is similar to the Evolution Matrix [Lanza and Ducasse, 2002]: each
line represents a history of a file, and each circle on a line represents a change to
that file.

The color of the circle denotes the author that made the change. The size of the
circle reflects the proportion of the file that got changed i.e., the larger the change,
the larger the circle. And the color of the line denotes the author who owns most
of the file.

Bertin assessed that one of the good practices in information visualization is to
offer to the viewer visualizations that can be grasped at one glance [Bertin, 1974].

109



CHAPTER 7. HOW DEVELOPERS DRIVE SOFTWARE EVOLUTION

The colors used in our visualizations follow visual guidelines suggested by Bertin,
Tufte and Ware - e.g., we take into account that the human brain is capable of
processing fewer than a dozen distinct colors [Tufte, 1990; Ware, 2000].

In a large system, we can have hundreds of developers. Because the human eye is
not capable of distinguishing that many colors, we only display the authors who
committed most of all changes using distinct colors; the remaining authors are
represented in gray. Furthermore, we also represent with gray files that came into
the CVS repository with the initial import, because these files are usually sources
from another project with unknown authors and are thus not necessarily created
by the author that performed the import. In short, a gray line represents either
an unknown owner, or an unimportant one.

File A

File B

commit by the green author
followed by the ownership

small commit by the blue author.
the file is still ownedby the green author

file removed by 
the blue author

file present from
the first import

file created by the
green author

Time

Figure 7.3: Example of ownership visualization of two files.

In the example from Figure 7.3 (p.110), each line represents the lifetime of a file;
each circle represents a change. File A appears gray in the first part as it originates
from the initial import. Later the green author significantly changed the file, and
he became the owner of the file. In the end, the blue author deleted the file. File B
was created by the green author. Afterwards, the blue author changed the file, but
still the green author owned the largest part, so the line remains green. At some
point, the red author committed a large change and took over the ownership. The
file was not deleted.

7.3.1 Ordering the Axes

Ordering the Time Axis. Subsequent file revisions committed by the same au-
thor are grouped together to form a transaction of changes i.e., a commit. We use
a single linkage clustering with a threshold of 180 seconds to obtain these groups.
This solution is similar to the sliding time window approach of Zimmerman et al.

110



7.3. THE OWNERSHIP MAP VIEW

Takeover
by the Green author

Teamwork
between the Green and Red authors

Familiarization
of the Blue author

Edit
by the Green author

Bug-fix
by the Yellow author

Expansion
of the Blue author

Monologue
of the Green author

Figure 7.4: Example of the Ownership Map view. The view reveals different patterns:
Monologue, Familiarization, Edit, Takeover, Teamwork, Bug-fix.

when they analyzed co-changes in the system [Zimmermann et al., 2004]. The
difference is that in our approach the revisions in a commit do not have to have
the same log comment, thus any quick subsequent revisions by the same author
are grouped into one commit.

Ordering the Files Axis. A system may contain thousands of files; furthermore,
an author might change multiple files that are not near each other if we would
represent the files in an alphabetical order. Likewise, it is important to keep an
overview of the big parts of the system. Thus, we need an order that groups
files with co-occurring changes near each other, while still preserving the overall
structure of the system. To meet this requirement we split the system into high-
level modules (e.g., the top level folders), and order inside each module the files by
the similarity of their history. To order the files in a meaningful way, we define a
distance metric between the commit signature of files and order the files based on
a hierarchical clustering.

Let Hf be the commit signature of a file, a set with all timestamps tfn of each of its
revisions fn. Based on this the distance between two commit signatures Ha and
Hb can be defined as the modified Hausdorff distance 1 δ(Ha,Hb):

D(Hn,Hm) :=
∑

n∈Hn

min2{|m− n| : m ∈ Hm}

1The Hausdorff metric is named after the german mathematician Felix Hausdorff (1868-1942) and
is used to measure the distance between two sets with elements from a metric space.

111



CHAPTER 7. HOW DEVELOPERS DRIVE SOFTWARE EVOLUTION

δ(Ha,Hb) := max{D(Ha,Hb), D(Hb,Ha)}

With this metric we can order the files according to the result of a hierarchical
clustering algorithm [Jain et al., 1999]. From this algorithm a dendrogram can
be built: this is a hierarchical tree with clusters as its nodes and the files as its
leaves. Traversing this tree and collecting its leaves yields an ordering that places
files with similar histories near each other and files with dissimilar histories far
apart from each other.

The files axes of the Ownership Map views are ordered with average linkage clus-
tering and larger-clusters-first tree traversal. Nevertheless, our tool Chronia allows
customization of the ordering.

7.3.2 Behavioral Patterns

The Overview Map reveals semantic information about the work of the developer.
Figure 7.4 (p.111) shows a part of the Ownership Map of the Outsight case study
(for more details see Section 7.4.1 (p.114)). In this view we can identify several
different behavioral patterns of the developers:

Monologue. Monologue denotes a period during which all changes and most files
belong to the same author. It shows on a Ownership Map as a unicolored
rectangle with change circles in the same color.

Dialogue. As opposed to Monologue, Dialogue denotes a period with changes
done by multiple authors and mixed code ownership. On a Ownership Map
it is denoted by rectangles filled with circles and lines in different colors.

Teamwork. Teamwork is a special case of Dialogue, where two or more developers
commit a quick succession of changes to multiple files. On a Ownership Map
it shows as circles of alternating colors looking like a bunch of bubbles. In
our example, we see in the bottom right part of the figure a collaboration
between Red and Green.

Silence. Silence denotes an uneventful period with nearly no changes at all. It
is visible on an Ownership Map as a rectangle with constant line colors and
none or just few change circles.

Takeover. Takeover denotes a behavior where a developer takes over a large
amount of code in a short amount of time - i.e., the developer seizes owner-
ship of a subsystem in a few commits. It is visible on a Ownership Map as a

112



7.4. VALIDATION

vertical stripe of single color circles together with an ensuing change of the
lines to that color. A Takeover is commonly followed by subsequent changes
done by the same author. If a Takeover marks a transition from activity to
Silence we classify it as an Epilogue.

Familiarization. As opposed to Takeover, Familiarization characterizes an ac-
commodation over a longer period of time. The developer applies selective
and small changes to foreign code, resulting in a slow but steady acquisition
of the subsystem. In our example, Blue started to work on code originally
owned by Green, until he finally took over ownership.

Expansion. Not only changes to existing files are important, but also the expan-
sion of the system by adding new files. In our example, after Blue familiarized
himself with the code, he began to extend the system with new files.

Cleaning. Cleaning is the opposite of expansion as it denotes an author that
removes a part of the system. We do not see this behavior in the example.

Bugfix. By bug fix we denote a small, localized change that does not affect the
ownership of the file. On a Ownership Map it shows as a sole circle in a color
differing from its surrounding.

Edit. Not every change necessarily fulfills a functional role. For example, clean-
ing the comments, changing the names of identifiers to conform to a naming
convention, or reshaping the code are sanity actions that are necessary but
do not add functionality. We call such an action Edit, as it is similar to the
work of a book editor. An Edit is visible on a Ownership Map as a vertical
stripe of unicolored circles, but in difference to a Takeover neither the owner-
ship is affected nor is it ensued by further changes by the same author. If an
Edit marks a transition from activity to Silence we classify it as an Epilogue.

7.4 Validation

We applied our approach on several large case studies: Outsight, Ant, Tomcat,
JEdit and JBoss. Due to the space limitations we report the details from the
Outsight case study, and we give an overall impression on the other four well-
known open source projects.

Outsight. Outsight is a commercial web application written in Java and JSP. The
CVS repository goes back three years and spans across two development iterations

113



CHAPTER 7. HOW DEVELOPERS DRIVE SOFTWARE EVOLUTION

separated by half a year of maintenance. The system is written by four developers
and has about 500 Java files and about 500 JSP files.

Open-source Case Studies. We choose Ant, Tomcat, JEdit, and JBoss to illustrate
different fingerprints systems can have on an Ownership Map. Ant has about 4500
files, Tomcat about 1250 files, JEdit about 500 files, and JBoss about 2000 files.
The CVS repository of each project goes back several years.

7.4.1 Outsight

The first step to acquire an overview of a system is to build a histogram of the
team to get an impression about the fluctuations of the team members over time.
Figure 7.5 (p.115) shows that a team of four developers is working on the sys-
tem. There is also a fifth author contributing with changes in the last two periods
only.

Figure 7.6 (p.117) shows the Ownership Map of our case study. The upper half are
Java files, the bottom half are JSP pages. The files of both modules are ordered
according to the similarity of their commit signature. For the sake of readability we
use S1 as a shorthand for the Java files part of the system, and S2 as a shorthand
for the JSP files part. Time is cut into eight periods P1 to P8, each covering three
months. The paragraphs below discuss each period in detail, and show how to
read the Ownership Map in order to answer our initial questions.

The shorthands in paranthesis denote the labels R1 to R15 as given on Figure 7.6
(p.117).

Period 1. In this period four developers are working on the system. Their collab-
oration maps the separation of S1 and S2: while Green is working by himself
on S2 (R5), the others are collaborating on S1. This is a good example of Mono-
logue versus Dialogue. A closer look on S1 reveals two hotspots of Teamwork
between Red and Cyan (R1,R3), as well as large mutations of the file struc-
ture. In the top part multiple Cleanings happen (R2), often accompanied by
Expansions in the lower part.

Period 2. Green leaves the team and Blue takes over responsibility of S2. He starts
doing this during a slow Familiarization period (R6) which lasts until the end
of P3. In the meantime Red and Cyan continue their Teamwork on S1 (R4)
and Red starts adding some files, which foreshadow the future Expansion in
P3.

114



7.4. VALIDATION

Red
Cyan
Green
Blue

710 278 969 3 5 0 1062 297
223 251 265 158 11 34 141 65
1427 7 0 0 0 0 1431 401
216 125 501 471 66 100 2 0
0 0 0 0 0 0 8 16

P1 P2 P3 P4 P5 P6 P7 P8

Yellow

3000
commits

Figure 7.5: Number of commits per team member in periods of three months.

Period 3. This period is dominated by a big growth of the system, the number of
files doubles as large Expansions happen in both S1 and S2. The histogram
in Figure 7.5 (p.115) identifies Red as the main contributor. The Expansion of
S1 evolves in sudden steps (R9), and as their file base grows the Teamwork
between Red and Cyan becomes less tight. The Expansion of S2 happens in
small steps (R8), as Blue continues to familiarize himself with S2 and slowly
but steady takes over the ownership of most files in this subsystem (R6). Also
an Edit of Red in S2 can be identified (R7).

Period 4. Activity moves down from S1 to S2, leaving S1 in a Silence only broken
by selective changes. Table 7.5 (p.115) shows that Red left the team, which
consists now of Cyan and Green only. Cyan acts as an allrounder providing
changes to both S1 and S2, and Blue is further working on S2. The work of
Blue culminates in an Epilogue marking the end of this period (R8). He has
now completely taken over ownership of S2, while the ownership of subsystem
S1 is shared between Red and Cyan.

Period 5 and 6. Starting with this period the system goes into maintenance. Only
small changes occur, mainly by author Blue.

Period 7. After two periods of maintenance the team resumes work on the system.
In Table 7.5 (p.115) we see how the composition of the team changed: Blue
leaves and Green comes back. Green restarts with an Edit in S2 (R11), later

115



CHAPTER 7. HOW DEVELOPERS DRIVE SOFTWARE EVOLUTION

followed by a quick sequence of Takeovers (R13) and thus claiming back the
ownership over his former code. Simultaneously, he starts expanding S2 in
Teamwork with Red (R12).

First we find in S1 selective changes by Red and Cyan scattered over the sub-
system, followed by a period of Silence, and culminating with a Takeover by
Red in the end i.e., an Epilogue (R14). The Takeover in S1 stretches down into
S2, but there being a mere Edit. Furthermore we can identify two selective
Bug-fixes (R10) by author Yellow who is a new team member.

Period 8. In this period, the main contributors are Red and Green: Red works in
both S1 and S2, while Green remains true to S2. As Red mainly finished in
the previous period his work on S1 with an Epilogue, his activity now moves
down to S2. There we find an Edit (R15) as well as the continuation of the
Teamwork between Red and Green (R12) in the Expansion started in P7. Yet
again, as in the previous period, we find small Bug-fixes applied by Yellow.

To summarize these finding we give a description of each author’s behavior, and
in what part of the system he is knowledgeable.

Red author. Red is working mostly on S1, and acquires in the end some knowl-
edge of S2. He commits some edits and may thus be a team member being
responsible for ensuring code quality standards. As he owns a good part of
S1 during the whole history and even closed that subsystem at the end of P7
with an Epilogue, he is the most knowledgeable developer in S1.

Cyan author. Cyan is the only developer that was in the team during all periods,
thus he is the developer most familiar with the history of the system. He
worked mostly on S1 and he owned large parts of this subsystem till the end
of P7. His knowledge of S2 depends on the kind of changes Red introduced
in his Epilogue. A quick look into the CVS log messages reveals that Red’s
Epilogue was in fact a larger than usual Edit and not a real Takeover: Cyan
is as knowledgeable in S1 as Red.

Green author. Green only worked in S2, and he has only little impact on S1. He
founded S2 with a Monologue, lost his ownership to Blue during P2 to P6, but
in P7 he claimed back again the overall ownership of this subsystem. He is
definitely the developer most knowledgeable with S2, being the main expert
of this subsystem.

Blue author. Blue left the team after P4, thus he is not familiar with any changes
applied since then. Furthermore, although he became an expert on S2 through

116



7.4. VALIDATION

pe
rio

ds

P1
P2

P3
P4

P5
-6

P7
P8

S2: JSP FilesS1: Java Files

R1
: 

Te
am

w
or

k
R2

: 
Cl

ea
ni

ng

R3
-4

: 
Te

am
w

or
k

R9
: 

Ex
pa

ns
io

n

R5
: 

M
on

ol
og

ue
R6

: 
Fa

m
ili

ar
iz

at
io

n

R7
: 

Ed
it

R8
: 

Ex
pa

ns
io

n

R1
0:

 
Bu

g-
fix

R1
1:

 E
di

t

R1
2:

 E
xp

an
si

on
, 

Te
am

w
or

k

R1
3:

 T
ak

eo
ve

rR1
4:

 T
ak

eo
ve

r, 
Ep

ilo
g

R15: Edit

Figure 7.6: The Ownership Map of the Outsight case study.

117



CHAPTER 7. HOW DEVELOPERS DRIVE SOFTWARE EVOLUTION

Familiarization, his knowledge might be of little value since Green claimed
that subsystem back with multiple Takeovers and many following changes.

Yellow author. Yellow is a pure Bug-fix provider.

7.4.2 Ant, Tomcat, JEdit and JBoss

Figure 7.6 (p.117) shows the Ownership Map of four open-source projects: Ant,
Tomcat, JEdit, and JBoss. The views are plotted with the same parameters as
the map in the previous case study, the only difference is that vertical lines slice
the time axis into periods of twelve instead of three months. Ant has about 4500
files with 60000 revisions, Tomcat about 1250 files and 13000 revisions, JEdit
about 500 files and 11000 revisions, and JBoss about 2000 files with 23000 revi-
sions.

Each view shows a different but common pattern. The paragraphs below discuss
each pattern briefly.

Ant. The view is dominated by a huge Expansion. After a development period,
the very same files fall victim to a huge Cleaning. This pattern is found in many
open-source projects: Developers start a new side-project and after growing up, it
moves to an own repository, or the side-project ceases and is removed from the
repository. In this case, the spin-off is the ceased Myrmidon project, a develop-
ment effort as potential implementation of Ant2, a successor to Ant.

Tomcat. The colors in this view are, apart from some large blocks of Silence, well
mixed. The Ownership Map shows much Dialogue and hotspots with Teamwork.
Thus this project has developers that collaborate well.

JEdit. This view is dominated by one sole developer who is the driving force
behind the project. This pattern is also often found in open-source projects: a
single author contributes with about 80% of the code.

JBoss. The colors in this view indicate that the team underwent large fluctuations.
We see twice a sudden change in the color of both commits and code ownership:
once mid 2001 and once mid 2003. Both changes are accompained by Cleanings
and Expansions. Thus the composition of the team changed twice significantly,
and the new teams restructured the system.

118



7.4. VALIDATION

Ant

JBoss

JEdit

Tomcat

Figure 7.7: The Ownership Map of Ant, Tomcat, JEdit, and JBoss.

119



CHAPTER 7. HOW DEVELOPERS DRIVE SOFTWARE EVOLUTION

7.5 Variation Points

On the exploratory nature of the implementation

We implemented our approach in CHRONIA, a tool built on top of the MOOSE

reengineering environment [Ducasse et al., 2005]. Figure 9.5 (p.144) emphasizes
the interactive nature of our tool.

On the left hand side of Figure 9.5 (p.144) we show CHRONIA visualizing the overall
history of the project, which provides a first overview. Since there is too much
data we cannot give the reasoning only from this view, thus, CHRONIA allows
for interactive zooming. For example, in the window on the lower right, we see
CHRONIA zoomed into the bottom right part of the original view. Furthermore,
when moving the mouse over the Ownership Map, we complement the view by also
highlighting in the lists on the right the current position on both time and file axis.
These lists show all file names and the timestamps of all commits. As CHRONIA

is built on top of MOOSE, it makes use of the MOOSE contextual menus to open
detailed views on particular files, modules or authors. For example, in the top right
window we see a view with metrics and measurements of a file revision.

On the scalability of the visualization

Although CHRONIA provides zooming interaction, one may lose the focus on the
interesting project periods. A solution would be to further abstract the time and
group commits to versions that cover longer time periods. The same applies to the
file axis grouping related files into modules.

On the decision to rely on CVS log only

Our approach relies only on the information from the CVS log without checking
out the whole repository. There are two main reasons for that decision.

First, we aim to provide a solution that gives fast results; e.g., building the Own-
ership Map of JBoss takes 7,8 minutes on a regular 3 GHz Pentium 4 machine,
including the time spent fetching the CVS log information from the Apache.org
server.

120



7.6. RELATED WORK

Second, it is much easier to get access to closed source case studies from industry,
when only metainformation is required and not the source code itself. We consider
this an advantage of our approach.

On the shortcomings of CVS as a versioning system

As CVS lacks support for true file renaming or moving, this information is not
recoverable without time consuming calculations. To move a file, one must remove
it and add it later under another name. Our approach identifies the author doing
the renaming as the new owner of the file, where in truth she only did rename it.
For this reason, renaming directories impacts the computation of code ownership
in a way not desired.

On the perspective of interpreting the Ownership Map

In our visualization we sought answers to questions regarding the developers and
their behaviors. We analyzed the files from an author perspective point of view,
and not from a file perspective point of view. Thus the Ownership Map tells the
story of the developers and not of the files e.g., concerning small commits: subse-
quent commits by different author to one file do not show up as a hotspot, while
a commit by one author across multiple files does. The later being the pattern we
termed Edit.

7.6 Related Work

Analyzing the way developers interact with the system has attracted only few re-
search. A visualization similar to Ownership Map is used to visualize how authors
change a wiki page [Viégas et al., 2004].

Xiaomin Wu et al. visualized the change log information to provide an overview of
the active places in the system as well as of the authors activity [Wu et al., 2004b].
They display measurements like the number of times an author changed a file, or
the date of the last commit.

Measurements and visualization have long been used to analyze how software
systems evolve.

121



CHAPTER 7. HOW DEVELOPERS DRIVE SOFTWARE EVOLUTION

Ball and Eick developed multiple visualizations for showing changes that appear
in the source code [Ball and Eick, 1996]. For example, they showed what is the
percentage of bug fixes and feature addition in files, or which lines were changed
recently.

Chuah and Eick proposed three visualizations for comparing and correlating dif-
ferent evolution information like the number of lines added, the errors recorded
between versions, number of people working etc. [Chuah and Eick, 1998].

Rysselberghe and Demeyer used a scatter plot visualization of the changes to
provide an overview of the evolution of systems and to detect patterns of change
[Van Rysselberghe and Demeyer, 2004].

Jingwei Wu et al. used the spectrograph metaphor to visualize how changes occur
in software systems [Wu et al., 2004a]. They used colors to denote the age of
changes on different parts of the systems.

Jazayeri analyzed the stability of the architecture by using colors to depict the
changes [Jazayeri, 2002]. From the visualization he concluded that old parts tend
to stabilize over time.

Lanza and Ducasse visualized the evolution of classes in the Evolution Matrix
[Lanza and Ducasse, 2002]. Each class version is represented using a rectangle.
The size of the rectangle is given by different measurements applied on the class
version. From the visualization different evolution patterns can be detected such
as continuous growth, growing and shrinking phases etc.

The difference between our approach and the above visualizations is that we do
display the files as they appear in the system structure, but we order them based
on the how they were committed to help the reverse engineer make out devel-
opment phases. Furthermore, our analysis focuses on authors and not on the
structure of the system.

Another relevant reverse engineering domain is the analysis of the co-change his-
tory.

Gall et al. aimed to detect logical coupling between parts of the system by iden-
tifying the parts of the system which change together [Gall et al., 1998]. They
used this information to define a coupling measurement based on the fact that
the more times two modules were changed at the same time, the more they were
coupled.

Zimmerman et al. aimed to provide mechanism to warn developers about the cor-

122



7.7. SUMMARIZING THE APPROACH

relation of changes between functions. The authors placed their analysis at the
level of entities in the meta-model (e.g., methods) [Zimmermann et al., 2004]. The
same authors defined a measurement of coupling based on co-changes [Zimmer-
mann et al., 2003].

Hassan et al. analyzed the types of data that are good predictors of change prop-
agation, and came to the conclusion that historical co-change is a better mecha-
nism than structural dependencies like call-graph [Hassan and Holt, 2004].

The difference between our approach and the co-change analysis is that we mea-
sure the distance between files based on the Hausdorf metric of the commit time
stamps, and not only based on the exact co-change.

7.7 Summarizing the Approach

In this chapter we set out to understand how the developers drove the evolution
of the system. In particular we ask the following questions:

— How many authors developed the system?

— Which author developed which part of the system?

— What were the behaviors of the developers?

To answer them, we define the Ownership Map visualization based on the notion of
code ownership. In addition we semantically group files that have a similar commit
signature leading to a visualization that is not based on alphabetical ordering of
the files but on co-change relationships between the file histories. The Ownership
Map helps in answering which author is knowledgeable in which part of the system
and also reveals behavioral patterns. To show the usefulness we implemented the
approach and applied it on several case studies. We reported some of the findings
and we discussed the benefits and the limitations as we perceived them during
the experiments.

In the future, we would like to investigate the application of the approach at other
levels of abstraction besides files, and to take into consideration types of changes
beyond just the change of a line of code.

123



CHAPTER 7. HOW DEVELOPERS DRIVE SOFTWARE EVOLUTION

7.8 Hismo Validation

The Hausdorf metric measures the distance between two sets from the same met-
ric space. We used it to measure the distance between the time-stamps of the
commits of different file histories. The smaller this distance is, the more similarly
the two files were changed. We then used a clustering to group files that were
changed in a similar way.

Below we give the distance between two file histories as expressed in Hismo:

context FileHistory

-- returns the distance between the current file history and the parameter
derive hausdorfDistanceTo(anotherHistory: FileHistory):

self.versions->sum(eachVersion |
anotherHistory->versions->min(anotherVersion |

(anotherVersion.date - eachVersion.date ) * (anotherVersion.date - eachVersion.date)
)

)

We used this distance to cluster the histories, much in the same way as Gall et al.
used the exact co-change [Gall et al., 2003]. The modeling decisions are discussed
in Section 3.7 (p.41).

124



Chapter 8

Detecting Co-Change
Patterns
Detecting Historical Relationships Through Version
Comparison

Correlations are where we see them.

Software systems need to change over time to cope with new requirements, and
due to design decisions, the changes happen to crosscut the system’s structure. Un-
derstanding how changes appear in the system can reveal hidden dependencies
between different parts of the system. We propose the usage of concept analysis to
identify the parts of the system that change in the same way and in the same time.
We apply our approach at different levels of abstraction (i.e., method, class, pack-
age) and we detect fine grained changes (i.e., statements were added in a class,
but no method was added there). Concept analysis is a technique that identifies
entities that have the same properties, but it requires manual inspection due to the
large candidates it detects. We propose a heuristic that dramatically eliminates the
quality of the detection. We apply our approach on one large case study and show
how we can identify hidden dependencies and detect bad smells.

We show how we detect co-change relationships by analyzing similar changes using
detailed version comparison.



CHAPTER 8. DETECTING CO-CHANGE PATTERNS

8.1 Introduction

Software systems need to change over time to cope with the new requirements
[Lehman and Belady, 1985]. As the requirements happen to crosscut the system’s
structure, changes will have to be made in multiple places. Understanding how
changes appear in the system is important for detecting hidden dependencies
between its parts.

In the recent period work has been carried out to detect and interpret groups
of software entities that change together [Gall et al., 1998; Itkonen et al., 2004;
Zimmermann et al., 2004]. Yet, the detection is based on change information
concerning one property, and is mostly based on file level information.

We propose the use of formal concept analysis to detect groups of entities that
changed in the same way in several versions. Formal concept analysis is a tech-
nique that identifies sets of elements with common properties based on an in-
cidence table that specifies the elements and their properties [Ganter and Wille,
1999].

To identify how entities changed in the same way, we use historical measurements
to detect changes between two versions. We build an Evolution Matrix [Lanza and
Ducasse, 2002] annotated with the detected changes, and we use the matrix as
an incidence table where history represents the elements and changed in version
x represents the xth property of the element.

Also, for building the matrix of changes, we make use of logical expressions which
combine properties with thresholds and which run on two versions of the system
to detect interesting entities. In this way, we can detect changes that take into
account several properties.

Example. ShotgunSurgery appears when every time we have to change a class,
we also have to change a number of other classes [Fowler et al., 1999]. We would
suspect a group of classes of such a bad smell, when they repeatedly keep their
external behavior constant and change the implementation. We can detect this
kind of change in a class in the versions in which the number of methods did not
change, while the number of statements changed.

We can apply our approach on any type of entities we have defined in the meta-
model. In this chapter we show how we detect groups of packages, classes and
methods.

126



8.2. HISTORY MEASUREMENTS

Structure of the Chapter

In the next section we briefly define two generic historical measurements. We
describe Formal Concept Analysis in a nutshell in Section 8.3 (p.128). We show how
we use FCA to detect co-change patterns, and we show how we apply it on different
levels of abstractions (Section 8.4 (p.129)). We discuss the results we obtained when
applying our approach on a large open source case study (Section 8.5 (p.132)). In
Section 8.7 (p.134) we conclude and present the future work, and in Section 8.8
(p.135) we discuss the approach from the point of view of Hismo.

8.2 History Measurements

We use two generic historical measurements to distinguish between different types
of changes.

Addition of a Version Property (A). We define a generic measurement, called
addition of a version property P , as the addition of that property between version
i− 1 and i of the history H:

(i > 1) Ai(P, H) =

(
Pi(H)− Pi−1(H), Pi(H)− Pi−1(H) > 0

0, Pi(H)− Pi−1(H) 6 0
(8.1)

Evolution of a Version Property (E). We define a generic measurement, called
evolution of a version property P , as being the absolute difference of that property
between version i− 1 and i:

(i > 1) Ei(P, H) = |Pi(H)− Pi−1(H)| (8.2)

We instantiate the above mentioned measurements by applying them on different
version properties of different types of entities:

— Method: NOS (number of statements), CYCLO (MCCabe cyclomatic number
[McCabe, 1976]).

— Class: NOM (number of methods), WNOC (number of all subclasses).

127



CHAPTER 8. DETECTING CO-CHANGE PATTERNS

Legend:

a binary relation between the 
element on the row and the property 
on the column 

X

{all elem}
{no prop}

{D, B}
{P2, P4}

{A, D}
{P2, P6}

{A, E, C}
{P5, P6}

{A, D, B}
{P2}

{A, E, C, D}
{P6}

{D}
{P2 P4,P6}

{A}
{P2,P5,P6}

{C}
{P3,P5,P6}

{no elem}
{all prop}

Legend:
a concept representing X 
and Y having in common 
property P1 and P2

{X, Y}
{P1, P2}

FCA

P1 P2 P3 P4 P5 P6

X X X

X X

X X X

X X X

X X

A

B

C

D

E

el
em

en
ts

properties

Incidence Table Concept Latice

Figure 8.1: Example of applying formal concept analysis: the concepts on the right are
obtained based on the incidence table on the left.

— Package: NOCls (number of classes), NOM (number of methods).

The E measurement shows a change of a certain property, while the A measure-
ment shows the additions of a certain version property.

8.3 Concept Analysis in a Nutshell

Formal concept analysis is a technique that identifies meaningful groupings of
elements that have common properties.

Figure 8.1 (p.128) gives a schematic example of the technique. The input is specified
in the form of a so called incidence table which encodes binary relations between
the set of elements and the set of properties. The output is a lattice of concepts,
where each concept is a tuple of a set of elements and a set of common properties.
For example, elements A and D have two properties in common: P2 and P6.

128



8.4. USING CONCEPT ANALYSIS TO IDENTIFY CO-CHANGE PATTERNS

2 3 3 3 4 6

3 3 5 5 8 9

1 3 3 4 4 6

Legend:

a class version with x methodsx

1 2 3 4 5 6
versions

A

B

C

D

E

a class version in which the number 
of methods changed from the 
previous version

x

{all hist}
{no ver}

{D, B}
{v2, v4}

{A, D}
{v2, v6}

{A, E, C}
{v5, v6}

{A, D, B}
{v2}

{A, E, C, D}
{v6}

{D}
{v2, v4, v6}

{A}
{v2, v5, v6}

{C}
{v3, v5, v6}

{no hist}
{all ver}

Legend:
a concept representing X 
and Y changing together 
in version v1 and v2

6 5 6 7

4 5 5 6 6

{X, Y}
{v1, v2}

FCA

Incidence Table Concept Latice

Figure 8.2: Example of applying concept analysis to group class histories based on the
changes in number of methods. The Evolution Matrix on the left forms the incidence table
where the property Pi of element X is given by “history X changed in version i.”

Formal concept analysis is a generic technique working with elements and prop-
erties in general. To apply it in a particular context we need to map our interests
on the elements and properties. We present in the next section the mapping we
use to detect co-change patterns.

8.4 Using Concept Analysis to Identify Co-Change
Patterns

On the left side of Figure 8.2 (p.129) we display an example of an Evolution Matrix in
which each square represents a class version and the number inside a square rep-
resents the number of methods in that particular class version. A grayed square
shows a change in the number of methods of a class version as compared with the

129



CHAPTER 8. DETECTING CO-CHANGE PATTERNS

previous version (Ei(NOM) > 0).

We use the matrix as an incidence table, where the histories are the elements and
the properties are given by “changed in version i”. Based on such a matrix we
can build a concept lattice. On the right side of figure we show the concept lattice
obtained from the Evolution Matrix on the left.

Each concept in the lattice represents all the class histories which changed certain
properties together in those particular versions. In the given example, class his-
tory A and D changed their number of methods in version 2 and version 6.

We do not only want to detect entities that change one certain property in the
same time, but we want to detect entities that change several properties, and/or
do not change other properties. For example, to detect parallel inheritances it is
enough to just look at the number of children of classes; but, when we want to look
for classes which need to change the internals of the methods in the same time
without adding any new functionality, we need to look for classes which change
their size, but not the number of methods.

We encode this change detection in expressions consisting of logical combination
of historical measurements. These expressions are applied at every version on the
last two versions. In the example from Figure 8.2 (p.129), we used as expression
Ei(NOM) > 0 and we applied it on class histories.

In the following sections we introduce several expressions applicable on packages,
classes and respectively methods.

8.4.1 Method Histories Grouping Expressions.

Parallel Complexity. A set of methods are effected by Parallel Complexity when
a change in the complexity in one method involves changes in the complexity
of other methods. As a measure of complexity we used the McCabe cyclomatic
number. Classes with parallel complexity could reveal parallel conditionals.

ParallelComplexity : (Ai(CY CLO) > 0) (8.3)

Parallel Bugs. We name a change a bug fix, when no complexity is added to the
method, but the implementation changes. When we detect such repetitive bug

130



8.4. USING CONCEPT ANALYSIS TO IDENTIFY CO-CHANGE PATTERNS

fixes in more methods in the same versions, we group those methods in a Paral-
lel Bugs group. Such a group, might give indications of similar implementation
which could be factored out. As an implementation measure we used number of
statements.

ParallelBugs : (Ei(NOS) > 0) ∧ Ei(CY CLO) = 0) (8.4)

8.4.2 Class Histories Grouping Expressions

Shotgun Surgery. The Shotgun Surgery bad-smell is encountered when a change
operated in a class involves a lot of small changes to a lot of different classes
[Fowler et al., 1999]. We detect this bad smell, by looking at the classes which do
not change their interface, but change their implementation together.

ShotgunSurgery = (Ei(NOM) = 0 ∧ Ei(NOS) > 0) (8.5)

Parallel Inheritance. Parallel Inheritance is detected in the classes which change
their number of children together [Fowler et al., 1999]. Such a characteristic is
not necessary a bad smell, but gives indications of a hidden link between two
hierarchies. For example, if we detect a main hierarchy and a test hierarchy as
being parallel, it gives us indication that the tests were developed in parallel with
the code.

ParallelInheritance = (Ai(WNOC) > 0) (8.6)

Parallel Semantics. Methods specify the semantics of a class. With Parallel
Semantics we detect classes which add methods in parallel. Such a characteristic
could reveal hidden dependencies between classes.

ParallelSemantics = (Ai(NOM) > 0) (8.7)

131



CHAPTER 8. DETECTING CO-CHANGE PATTERNS

8.4.3 Package Histories Grouping Expression

Package Parallel Semantics. If a group of classes is detected, as having parallel
semantics, we would want to relate the containing packages as well. Package
Parallel Semantics detects packages in which some methods have been added, but
no classes have been added or removed.

PackageParallelSemantics = (Ei(NOCls) = 0) ∧ (Ai(NOM) > 0) (8.8)

8.5 Validation

For our experiments we chose 41 versions of JBoss1. JBoss is an open source
J2EE application server written in Java. The versions we selected for the exper-
iments are at two weeks distance from one another starting from the beginning
of 2001 until the end of 2002. The first version has 632 classes, the last one
has 4276 classes (we took into consideration all test classes, interfaces and inner
classes).

In the followings we will only discuss the ParallelInheritance results we obtained
on JBoss.

After applying the mechanism described above, we obtained 68 groups of class
histories which added subclasses in the same time. Manual inspection showed
there were a lot of repetitions (due to the way the concept lattice is built), and
just a limited number of groups were useful. Furthermore, inside a group not all
classes were relevant for that particular group.

For example, in 19 versions a class was added in the JBossTestCase hierarchy
(JBossTestCase is the root of the JBoss test cases). Another example is ServiceM-
BeanSupport which is the root of the largest hierarchy of JBoss. In this hierarchy,
classes were added in 18 versions. That means that both JBossTestCase and Ser-
viceMBeanSupport were present in a large number of groups, but they were not
necessarily related to the other classes in these groups.

1See http://www.jboss.org.

132



8.5. VALIDATION

ClassHistories Versions

org::jboss::system::ServiceMBeanSupport24
org::jboss::test::JBossTestCase 19 20 27 28 29 30 32 33 34 37 38 39 40 41 

javax::ejb::EJBLocalHome
javax::ejb::EJBLocalObject 24 41 28 30 32 36 37 38 23

Figure 8.3: Parallel inheritance detection results in JBoss.

These results showed that applying only concept analysis produced too many false
positives. That is why we added a filtering step. The filtering step consists in iden-
tifying and removing from the groups the entities that changed their relevant prop-
erties (i.e., according to the expression) more times than the number of properties
detected in a group:

FilteringRule =
groupV ersions

totalChangedV ersions
> threshold (8.9)

In our experiments, we chose the threshold to be 3/4. For example, if JBossTestCase
was part of a group of classes which changed their number of subclasses in 10
versions, we would rule the class out of the group. We chose an aggressive thresh-
old to reduce the number of false positives as much as possible, in the detriment
of having true negatives.

After the filtering step, we obtained just two groups. In Figure 8.3 (p.133) we show
the class histories and the versions in which they changed the number of chil-
dren.

In the first group we have two classes which changed their number of children
15 times: ServiceMBeanSupport and JBossTestCase. The interpretation of this group
is that the largest hierarchy in JBoss is highly tested. A similar observation was
made in Chapter 6 (p.87). With that occasion we detected that the JBossTestCase
hierarchy is heterogeneous from the age of the classes point of view.

The second group detects a relationship between the EJB interfaces: EJBLocalHome
and EJBLocalObject. This is due to the architecture of EJB which requires that a
bean has to have a Home and an Object component.

133



CHAPTER 8. DETECTING CO-CHANGE PATTERNS

8.6 Related Work

The first work to study the entities that change together was performed by Gall
et al. [Gall et al., 1998]. The authors used the change information to define a
proximity measurement which they use to cluster related entities. The work has
been followed up by the same authors [Gall et al., 2003] and by Itko et al. [Itkonen
et al., 2004].

Shirabad et al. employed machine learning techniques to detect files which are
likely to need to be changed when a particular file is changed [Shirabad et al.,
2003].

As opposed to the previous approaches, Zimmerman et al. placed their analysis
at the level of classes and methods [Zimmermann et al., 2004]. Their focus was to
provide a mechanism to warn developers that: “Programmers who changed these
functions also changed . . . ”. Their approach differs from ours because they only
look at syntactic changes, while we identify changes based on the semantics of the
changes. Furthermore, our approach takes into consideration different changes
in the same time.

Davey and Burd proposed the usage of concept analysis to detect evolutionary con-
cepts, but there was no implementation evidence [Davey and Burd, 2001].

Detection of problems in the source code structure has long been a main issue in
the quality assurance community. Marinescu [Marinescu, 2002] detected design
flaws by defining detection strategies. Ciupke employed queries usually imple-
mented in Prolog to detect “critical design fragments” [Ciupke, 1999]. Tourwe et
al. also explored the use of logic programming to detect design flaws [Mens et
al., 2002]. van Emden and Moonen detected bad smells by looking at code pat-
terns [van Emden and Moonen, 2002]. These approaches differ from ours because
they use only the last version of the code, while we take into account historical
information. Furthermore, van Emden and Moonen proposed as future research
the usage of historical information to detect Shotgun Surgery or Parallel Inheri-
tance.

8.7 Summary of the Approach

Understanding how a system changes can reveal hidden dependencies between
different parts of the system. Moreover, such dependencies might reveal bad

134



8.8. HISMO VALIDATION

smells in the design.

Analyzing the history of software systems can reveal parts of the system that
change in the same time and in the same way. We proposed the usage of for-
mal concept analysis, a technique that identifies elements with common proper-
ties based on an incidence table specifying binary relations between elements and
properties.

To detect the changes in a version, we used expressions that combine different
properties to detect complex changes. By applying these queries on every version
we obtained an Evolution Matrix annotated with the change information which we
then used as input for a concept analysis machine. In other words, we used as
elements histories and as properties we used the knowledge of “changed in version
i”. The results were groups of histories that change together and the versions in
which they changed.

An important contribution of our approach is given by the automatic filtering of
the raw results of the concept analysis machine: a history is relevant to a concept,
if it was not changed in much more versions than the ones in the concept.

According to our algorithm the effectiveness of the approach is highly affected
by the value of the threshold. When the threshold is high (i.e., close to 1) we
aggressively remove the false positives but we risk missing true negatives. Further
work is required to identify the best value for the threshold.

In the future we would also like to apply our approach on more case studies and
analyze in depth the results we obtain at different levels of abstraction.

8.8 Hismo Validation

Having history as a first class entity, allowed a straight forward mapping to the
elements of the incidence table. To identify the xth property, we computed for
the xth version the expression detecting the change. Having historical properties
made it easy to encode the expressions.

Below we give the OCL code expressed on Hismo for the ShotgunSurgery expres-
sion defined for a ClassVersion:

135



CHAPTER 8. DETECTING CO-CHANGE PATTERNS

context ClassVersion

-- returns true if the the number of methods did not change
-- and the number of statements changed with respect to the previous version
derive hasShotgunSurgerySymptom:

(self.ENOM = 0) &
(self.ENOS > 0)

136



Chapter 9

Van: The Time Vehicle
Implementing Hismo to Combine Analysis Tools

Every successful trip needs a suitable vehicle.

In the end, a meta-model is just a specification. The claim of this dissertation is
that a common meta-model allows for the combination of analyses. In this chapter
we detail VAN, our software evolution analysis tool which implements Hismo as the
underlying meta-model. Hismo offers a space in which both time and structure are
represented in a uniform way. We show how we can use the same tools to build
analyses both on time and on structure. We also show how several analyses can
be combined.



CHAPTER 9. VAN: THE TIME VEHICLE

9.1 Introduction

From our experience, when it comes to understanding systems, it is not enough
to have prefabricated report generators, but it is crucial to have the ability to
interactively investigate the system under discussion. The investigation becomes
more difficult as more data is involved, because the more data we need to analyze,
the more analyses we need to apply, and different analyses are implemented by
different people in different tools. To make all these tools work together, we need
a generic infrastructure that integrates them in a dynamic way.

MOOSE is an environment for integrating such tools [Ducasse et al., 2005; Nier-
strasz et al., 2005]. The philosophy of MOOSE is to build one space in which all en-
tities are described explicitly and in which all analysis tools coexist. MOOSE grown
to be a generic environment for reverse engineering exactly because it changed
continuously to integrate all the tools built on top of it in a coherent infrastruc-
ture.

Some of the tools built on MOOSE are:

CODECRAWLER – CODECRAWLER is a visualization tool implementing polymetric
views [Lanza and Ducasse, 2003; Ducasse and Lanza, 2005]. It is based on a
graph notion where the nodes and edges in the graph can wrap the entities in
the model. For example, the Hierarchy Evolution Complexity View presented
in Chapter 6 (p.87) is a polymetric view.

CONAN – CONAN is a concept analysis tool that manipulates concepts as first
class entities [Arévalo et al., 2004; Arévalo et al., 2005]. Its target is to de-
tect different kinds of patterns in the model based on combining elements
and properties. An example of the usage of concept analysis is shown in
Chapter 8 (p.125).

CHRONIA – CHRONIA is an implementation of a CVS protocol to allow direct con-
nectivity to CVS repositories, and it implements several CVS analyses [Gı̂rba
et al., 2005a]. An example, is presented in Chapter 7 (p.105).

HAPAX – HAPAX implements information retrieval techniques for analyzing the
semantical information residing in the names of the identifiers and in the
comments from the source code [Kuhn et al., 2005].

TRACESCRAPER – TRACESCRAPER analyzes the dynamic traces from different
perspectives. For example it offers measurements and visualizations for dy-
namic traces [Greevy and Ducasse, 2005a]. TRACESCRAPER uses VAN to

138



9.2. ARCHITECTURAL OVERVIEW

analyze the evolution of dynamic traces.

VAN – VAN is our software evolution analysis tool. It implements Hismo and
several analyses presented in this dissertation. It interacts with several other
tools for implementing different analyses.

In this chapter we pay special attention to the internal implementation of VAN

and its influence on Hismo, We also show how the capabilities of MOOSE allow
for the combination of tools and how the central meta-model plays a major role.
For example, VAN interacts with other tools like CODECRAWLER and CONAN to
implement some of the analyses presented in this dissertation.

Structure of the Chapter

In the next section we provide an overview of position of VAN in the overall architec-
ture of MOOSE. Section 9.3 (p.139) shows how we use the same tools to manipulate
both structure and history. We present how we used other tools in Section 9.4
(p.141), and we conclude in Section 9.5 (p.145).

9.2 Architectural Overview

Figure 9.2 (p.141) shows the position of VAN in the overall architecture of MOOSE.
The default meta-model of MOOSE is FAMIX, a language independent meta-model
[Demeyer et al., 2001]. MOOSE has a repository that can store multiple models
providing the necessary infrastructure for holding and managing multiple ver-
sions.

At the core of VAN is the implementation of Hismo . In our implementation, Hismo
is built on top of FAMIX. The first step towards using the historical analyses is
to manually set the history. After selecting the versions we want to analyze,
all the histories are computed (e.g., ClassHistories, MethodHistories) based on
names.

9.3 Browsing Structure and History

MOOSE offers generic tools for manipulating entities and properties. The GENERIC

BROWSER allows one to manipulate a list of entities in an spreadsheet like way,

139



CHAPTER 9. VAN: THE TIME VEHICLE

Model 
Repository

Import / Export Interface

CodeCrawler

Polymetric
Views

Van

Hismo
History Tools

FAMIX
Meta 
Model

Basic 
Analysis 

Tools

Moose

Tools

Conan

Concept
Analysis

Figure 9.1: VAN and MOOSE. MOOSE is an extensible reengineering environment. Different
tools have been developed on top of it (e.g., VAN is our history analysis tool). The tools
layer can use and extend anything in the environment including the meta-model. The
model repository can store multiple models in the same time. Sources written in different
languages can be loaded either directly or via intermediate data formats.

and it also allows for expressions of detection strategies (see Chapter 5 (p.67)) to
obtain a sub-group. Each entity has properties, and MOOSE provides an ENTITY

INSPECTOR to view these properties.

As in Hismo histories are a explicit entities, we can manipulate them exactly like we
do with snapshot entities. Figure 9.3 (p.142) emphasizes the parallelism between
manipulating structure and history: on the top part we show snapshot entities,
and on the bottom part we show historical entities. On each part, we display a
GROUP BROWSER and an ENTITY INSPECTOR. The differences are marked with bold
labels on the figure. For example, in the GROUP BROWSER on the top, we display
a group of Classes sorted by NOM, while in the ENTITY INSPECTOR on the bottom
we display a group of ClassHistories ordered by ENOM.

Chapter 5 (p.67) presents history-based detection strategies as extensions to regu-
lar detection strategies. On the bottom part of each GROUP BROWSER there is an
editor for detection strategies. For example, on the top part of the figure, we have
selected the GodClass detection strategy to be applied on the group of classes.
Similarly, on the bottom part, we have selected the Stable GodClass detection
strategy.

In Chapter 6 (p.87) we present the Hierarchy Evolution Complexity View, a poly-

140



9.4. COMBINING TOOLS

Figure 9.2: VAN gives the historical semantic to the MOOSE models.

metric view showing ClassHistories and InheritanceHistories. CODECRAWLER im-
plements the polymetric views and displays them based on a graph representa-
tion of the data. Originally, CODECRAWLER used the polymetric views to display
structural entities. One of these views was the System Complexity View, which
displays classes as nodes and inheritances as edges. Figure 9.4 (p.143) shows the
parallelism between the two views.

MOOSE aims to integrate the tools built on top by providing a registration mech-
anism that allows the tool to register itself to the context that it knows how to
manipulate. This information is used to generate the menu for an entity. For ex-
ample, CODECRAWLER registers the System Complexity View to a group of classes.
In this way, every time we select a group of classes we can invoke CODECRAWLER

to visualize them in a System Complexity View. Having history as an explicit en-
tity, we use the registration mechanism to allow tools to manipulate histories.
For example, we register the Hierarchy Evolution Complexity View for a group of
ClassHistories.

9.4 Combining Tools

VAN uses CODECRAWLER for visualizing the Hierarchy Evolution Complexity View.
As described before, CODECRAWLER relies on a graph model and it typically maps
entities to nodes and relationships to edges. Using Hismo, the mapping was
straight forward: ClassHistories map to nodes and InheritanceHistories map to
edges.

We also use CONAN, a Formal Concept Analysis tool, to detect co-change patterns
(see Chapter 8 (p.125). In this case too, the bridge was straight forward, because

141



CHAPTER 9. VAN: THE TIME VEHICLE

Entity Inspector

The list of properties of the class

The different types of entities
in the snapshot model Group Browser The list of classes ordered by NOM

The NOM
values

The GodClass detection strategy 
to be applied on the class group

Entity Inspector

The list of properties of the class history

The different types of histories
in the reference history Group Browser The list of class histories ordered by ENOM

The ENOM
values

The Stable GodClass detection strategy 
to be applied on the class history group

Snapshot
View

History
View

Figure 9.3: Screenshots showing the Group Browser the Entity Inspector. On the top part,
the windows display snapshot entities, while on the bottom part they display historical
entities.

142



9.4. COMBINING TOOLS

CodeCrawler

Classes and inheritance relationships 

CodeCrawler

Class histories  and inheritance relationship histories 

Snapshot
View

History
View

Figure 9.4: Screenshots showing CODECRAWLER. On the top part, it displays class hier-
archies in a System Complexity View, while on the bottom part it displays class hierarchy
histories in a Hierarchy Evolution Complexity View.

143



CHAPTER 9. VAN: THE TIME VEHICLE

Chronia - the overall picture

Chronia - a zoomed part and a contextual menu 

Moose Entity Browser - 
details on the selected File

Figure 9.5: Screenshots showing CHRONIA in action: interaction is crucial.

CONAN manipulates entities and properties. We provided histories as entities and
“changed in version i” as properties.

Chapter 7 (p.105) introduces the Ownership Map visualization to display how au-
thors changed the files in a CVS repository. We implemented the visualization in
CHRONIA. To do so, we first implemented a CVS-like meta-model and we imple-
mented the visualization on top. Due to the size of the data, it was not enough to
just build a static visualization tool, but we needed an interactive tool. Figure 9.5
(p.144) shows the interactive nature of the tool. In particular, the explicitness of
the meta-model allows us to use the MOOSE default tools. For example, we can
inspect the FileHistory from the visualization in the ENTITY INSPECTOR.

Another tool built on Van was QUALA [Bühler, 2004]. QUALA aimed to detect

144



9.5. SUMMARY

phases in history, by defining a phase as being a first class entity. QUALA used
CODECRAWLER to display the detected phases.

9.5 Summary

MOOSE is an environment for reengineering, and several tools are built on top of it.
The philosophy of MOOSE is to integrate reengineering tools by making the meta-
model explicit. VAN is a version analysis tool implementing Hismo and several
evolution analyses. By making history an explicit entity, we used the mechanisms
of MOOSE to integrate tools for analyzing software evolution.

145



CHAPTER 9. VAN: THE TIME VEHICLE

146



Chapter 10

Conclusions

What we can governs what we wish.

Understanding software evolution is important as evolution holds information that
can be used in various analyses like reverse engineering, prediction, change im-
pact, or in developing general laws of evolution.

We have reviewed various approaches used to exploit the history of data regarding
the evolution of software systems. These approaches typically focus on only some
traits of the evolution and most of them do not rely on explicit an meta-model, and
because of that, it is difficult to compare and combine the results.

In this dissertation we argue for the need for an explicit meta-model that allows
for the expression and combination of software evolution. Based on our literature
survey we have gathered requirements for such a meta-model: (1) different ab-
straction and detail levels, (2) comparison of property evolutions, (3) combination
of different property evolutions, (4) historical selection, (5) historical relationships,
and (6) historical navigation.

Our solution is to model evolution explicitly. We introduced Hismo, a meta-model
centered around the notion of history as an encapsulation of evolution. We argued
that Hismo is not tightly dependent on any particular structural construct and
that it can be obtained by transforming the snapshot meta-model. In this way,
our approach is not even restricted to software analysis, but can be applied to



CHAPTER 10. CONCLUSIONS

other fields as well.

As a validation of our meta-model we showed several analyses build on Hismo:

History properties show how to summarize the evolution into properties attached
to histories. Historical measurements like Evolution of Number of Methods,
are an example of such properties. Such properties allow for historical com-
parison.

Yesterday’s Weather is a complex historical measurement based on the assump-
tion that the latest changed parts also change in the near future. It shows
how relevant it is to start reverse engineering from the latest changed parts
of the system.

History-based detection strategies are expressions that combine measurements
at the snapshot level with historical measurements. We show how using
them we can refine the detection of design flaws.

Hierarchy Evolution Complexity View combines the manipulation of historical re-
lationships with historical properties to offer a means to understand the evo-
lution of class hierarchies as a whole.

We built the Ownership Map visualization to detect how developers drive software
evolution. The analysis is placed at the file level and it shows how developers
changed the system. We made use of historical relationships to order the
files to provide for a meaningful visualization.

Co-change analysis attracted extensive research. Besides showing how the cur-
rent state-of-the-art research can be expressed in terms on Hismo, we also
proposed a novel approach that makes use of concept analysis to detect co-
change patterns. We showed how we can group histories to detect patterns
like parallel inheritance.

Several other analyses were built using our approach, but were not covered in this
dissertation:

Phase detection. Buehler developed an approach to detect phases in histories
[Bühler, 2004]. A phase is a selection of a history in which each version
complies to a certain expression. For example, he detected growth phases
by looking for versions that present additions as compared with the previous
version.

Trace evolution. Greevy et al. analyzed the evolution of execution traces to char-
acterize the evolution of features [Greevy et al., 2005]. The authors recovered

148



10.1. DISCUSSION: HOW HISMO SUPPORTS SOFTWARE EVOLUTION ANALYSIS

the mapping between the features and the code by analyzing the execution
traces of the features [Greevy and Ducasse, 2005b]. They modeled the Trace
as first class entity, and they analyzed the evolution of the traces by defining
TraceHistories, and by using historical measurements. For example, they
detect how classes changed from being used in only one feature, to being
used in several features.

Refactorings detection. Dig and Johnson used version information to detect refac-
torings based on different heuristics [Dig and Johnson, 2005]. The goal was
to analyze how many of the changes that break the API are due to refactor-
ings. They performed the experiment using our VAN tool.

We implemented Hismo and the presented history analyses in our tool called VAN.
VAN is built on top of the MOOSE reengineering environment. MOOSE philosophy
recognizes that successful reengineering needs to combine several techniques.
Several tools have been built over the years in the MOOSE environment, VAN being
one of them. We showed how the implementation of Hismo made it possible to
combine several tools for accomplishing the required analysis.

10.1 Discussion: How Hismo Supports Software Evo-
lution Analysis

The above applications show how Hismo satisfies the desired activities:

Different abstraction and detail levels. Hismo takes into account the structure
of the system. We gave examples of history measurements which take into
account different semantics of change (e.g., changes in number of methods,
number of statements) on different entities (e.g., packages, classes, meth-
ods). As we show Hismo can be applied on any software entities which can
play the role of a Snapshot. In this dissertation we present analyses at dif-
ferent levels of abstractions: system, class, method or file.

Furthermore, having detailed information about each version, we can also
define the version properties (e.g., number of methods) in terms of history
(e.g., “number of methods in version i”). Thus, all the things we can find out
from one version can be found out having the entire history. This allows for
combining structural data with evolution data in the same expression. For
example, we can detect the harmless God Classes by detecting those that did
not add or remove methods (Chapter 5 (p.67)).

149



CHAPTER 10. CONCLUSIONS

Comparison of property evolutions. History describes the evolution. History mea-
surements are a way to quantify the changes and they allow for the com-
parison of different entity evolutions. For example, the Evolution of Number
of Methods lets us assess which classes changed more in terms of added or
removed methods.

Combination of different property evolutions. Some of the evolution analyses need
to combine property evolutions with structural properties. For example, the
Hierarchy Evolution Complexity View combines different property evolutions
(Chapter 6 (p.87)), and the history-based detection strategies combines prop-
erty evolutions with structural information (Chapter 5 (p.67)).

Historical selection. Given a history we can filter it to obtain a sub-history. As
the defined analyses are applicable on a history, and a selection of a history
is another history, the analyses described in this dissertation can be applied
on any selection. For example, Yesterday’s Weather (Chapter 4 (p.47)) applies
the measurements on selections of histories to identify latest changed parts
or early changed parts.

Historical relationships. In the same way we reason about the relationships be-
tween structural relationships, we can reason about the historical relation-
ships. In Chapter 6 (p.87) we present Hierarchy Evolution Complexity View as
an example of how to reason about the inheritance histories between class
histories.

Historical navigation. Based on the structural relationship “a Package has Classes”
we can build the relationship “a PackageHistory has ClassHistories”. This
can be generalized to any structural relationship and thus, at the history level
we can ask a PackageHistory to return all ClassHistories – i.e., all Classes
which ever existed in that Package. An example of the usefulness of this
feature is given in Chapter 4 (p.47), where we show how we can implement
Yesterday’s Weather for a SystemHistory.

10.2 Open Issues

On the Types of Data Taken Under Study

Most of the analyses deal with source code alone. Yet, reverse engineering needs
information about the physical and social environment in which the software was

150



10.2. OPEN ISSUES

developed.

Chapter 7 (p.105) presents an example of how to use the author information to
recover development patterns. A promising research has been carried out in the
Hipikat project [C̆ubranić and Murphy, 2003]. Other interesting projects correlate
the bug information with the change information [Fischer et al., 2003a; Fischer et
al., 2003b].

For example an interesting path was explored by the work on analyzing the se-
mantics of code to recover domain concepts [Kuhn et al., 2005]. We would like
to employ similar techniques to correlate these concepts with the author and bug
information to identify what type of work each concept required.

We believe that to elevate the quality of the analysis, we need to take more types
of data into account. In this direction, we believe that Hismo opens the possibility
for such an undertaking because it provides the modeling solution.

On How History Could Influence Forward Engineering

We modeled history as being a collection of versions. We took this decision because
our focus was reverse engineering and the current state-of-the-art in versioning
tools only gave us individual versions.

In fact, a better solution would be to manipulate the entire spectrum of changes as
they happen in the development environment, and not just manipulate arbitrary
snapshots. That is, a better solution would be to analyze the actual evolution,
rather than rebuilding the evolution out of individual versions and recovering the
changes based on diff analysis. Although the current data was not available, we
believe that this is the next step in managing software evolution.

On the Different Ways to Recover and Manipulate Entity Identity

We refer to entity identity as being the mechanism through which two versions
are decided to be part of the same history. In the applications presented here, we
reduced entity identity to name identity. That is, when two entities of the same
type have the same name in two different versions, they are considered to be part
of the same history.

According to this algorithm, when an entity is renamed, its identity is lost. In
Chapter 3 (p.29), we discussed two heuristics to deal with this problem [Antoniol

151



and Di Penta, 2004; Zou and Godfrey, 2003]). These heuristics recover the identity
based on some internal properties of the entity. A possibility to complement these
heuristics would be to allow the reverse engineer to manually check the results
and to take different decisions like merging the histories.

Entity identity is a problem because versioning system do not consider evolution
to be a continuous process, but a discrete one. In this case too, keeping the
changes as they happened (including their semantics) would make the analysis
easier and more precise.

On the Manipulation of Branches

In this dissertation, we modeled history as a sequence of versions which implies
a linear version alignment. In the future, we would like to investigate the impli-
cations of modeling history as a partially ordered set of versions to represent time
as a graph. Such a model would allow manipulation of branches.

152



Closing Words

We cannot find the flow of things unless we let go.

This entire work is about providing for a model to better understand software
evolution. Models are the way we understand the world. They provide a finite
representation and they answer questions instead of the real world by allowing for
executable reasonings to be expressed on them.

Yet, models are not an end, they are a means. No matter how good a model is, it
is still a finite representation, while the real world is infinite.

Modeling is just a step in the process of understanding. To understand the world
in its entirety, we need to go beyond models. We need to resonate with the all its
details.

October 23, 2005
Tudor Gı̂rba



154



Appendix A

Definitions

Entity

— An entity is something that has separate and distinct existence in objective or
conceptual reality [Soanes, 2001].

Snapshot, Version, Evolution and History

— A snapshot is the structure of an entity at a particular moment in time.

Examples of snapshots are classes, methods etc.

— A version is a snapshot of an entity placed in the context of time.

For example, in the context of CVS, version is denoted by revision.

— The evolution is the process that leads from one version of an entity to another.

— A history is the reification which encapsulates the knowledge about evolution
and version information.

Following the above definitions, we say that we use the history of a system to
understand its evolution. Furthermore, the evolution refers to all changes from a
version of an entity to another. Sometimes, however, we need to refer to only the
change of a particular property of that entity. That is why we define:

— Property evolution denotes how a particular property evolved in an entity.

— Historical property denotes a characteristic of a history.



For example, the age of a file in CVS is a historical property.

Model and Meta-model

— A model is a simplification of a system built with an intended goal in mind. The
model should be able to answer questions in place of the actual system [Bézivin
and Gerbé, 2001].

— A meta-model is a specification model for a class of systems under study where
each system under study in the class is itself a valid model expressed in a
certain modeling language [Seidewitz, 2003].

We use different terms for different types of models and meta-models:

— A snapshot meta-model, or a structural meta-model is a meta-model which de-
scribes the structure of a class of systems at a certain moment in time.

Examples of snapshot meta-models are UML or FAMIX.

— An evolution model is a simplified view on the evolution of a system.

Examples of evolution models include the date sequence of each release, a chart
showing team allocation over time for a given set of modules, the modifications
performed etc.

— An evolution meta-model is a meta-model which describes a family of evolution
models.

For instance, in each versioning systems there is an evolution meta-model that
specifies which kind of information is kept about evolution.

— A history meta-model is an evolution meta-model which models history as a
first class entity.

Entity identity

— Entity identity denotes the mechanism through which two versions are decided
to be part of the same history.

156



Bibliography

[Antoniol and Di Penta, 2004] Giuliano Antoniol and Massimiliano Di Penta. An
automatic approach to identify class evolution discontinuities. In IEEE Inter-
national Workshop on Principles of Software Evolution (IWPSE04), pages 31–40,
September 2004.

[Antoniol et al., 2004] Giuliano Antoniol, Massimiliano Di Penta, Harald Gall, and
Martin Pinzger. Towards the integration of versioning systems, bug reports and
source code meta-models. In Workshop on Software Evolution Through Transfor-
mation (SETra 2004), pages 83–94, 2004.

[Aoki et al., 2001] Atsushi Aoki, Kaoru Hayashi, Kouichi Kishida, Kumiyo
Nakakoji, Yoshiyuki Nishinaka, Brent Reeves, Akio Takashima, and Yasuhiro
Yamamoto. A case study of the evolution of jun: an object-oriented open-source
3d multimedia library. In Proceedings of International Conference on Software
Engineering (ICSE), 2001.

[Arévalo et al., 2004] Gabriela Arévalo, Frank Buchli, and Oscar Nierstrasz. De-
tecting implicit collaboration patterns. In Proceedings of WCRE ’04 (11th Work-
ing Conference on Reverse Engineering), pages 122–131. IEEE Computer Society
Press, November 2004.

[Arévalo et al., 2005] Gabriela Arévalo, Stéphane Ducasse, and Oscar Nierstrasz.
Discovering unanticipated dependency schemas in class hierarchies. In Pro-
ceedings of CSMR ’05 (9th European Conference on Software Maintenance and
Reengineering), pages 62–71. IEEE Computer Society Press, March 2005.

[Arévalo, 2005] Gabriela Arévalo. High Level Views in Object Oriented Systems
using Formal Concept Analysis. PhD thesis, University of Berne, January 2005.



[Ball and Eick, 1996] Timothy Ball and Stephen Eick. Software visualization in
the large. IEEE Computer, pages 33–43, 1996.

[Bennett and Rajlich, 2000] Keith Bennett and Vaclav Rajlich. Software mainte-
nance and evolution:a roadmap. In ICSE — Future of SE Track, pages 73–87,
2000.

[Bertin, 1974] Jacques Bertin. Graphische Semiologie. Walter de Gruyter, 1974.

[Bézivin and Gerbé, 2001] Jean Bézivin and Olivier Gerbé. Towards a precise def-
inition of the omg/mda framework. In Proceedings of Automated Software Engi-
neering (ASE 2001), pages 273–282. IEEE Computer Society, 2001.

[Bieman and Kang, 1995] J.M. Bieman and B.K. Kang. Cohesion and reuse in an
object-oriented system. In Proceedings ACM Symposium on Software Reusability,
April 1995.

[Brooks, 1987] Frederick P. Brooks. No silver bullet. IEEE Computer, 20(4):10–19,
April 1987.

[Buckley et al., 2005] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid,
and Günter Kniesel. Towards a taxonomy of software change. Journal on Soft-
ware Maintenance and Evolution: Research and Practice, pages 309–332, 2005.

[Bühler, 2004] Thomas Bühler. Detecting and visualizing phases in software evo-
lution. Diploma thesis, University of Bern, September 2004.

[Burch et al., 2005] Michael Burch, Stephan Diehl, and Peter Weißgerber. Visual
data mininng in software archives. In Proceedings of 2005 ACM Symposium on
Software Visualization (Softviz 2005), pages 37–46, St. Louis, Missouri, USA,
May 2005.

[Burd and Munro, 1999] Elizabeth Burd and Malcolm Munro. An initial approach
towards measuring and characterizing software evolution. In Proceedings of the
Working Conference on Reverse Engineering, WCRE ’99, pages 168–174, 1999.

[Capiluppi et al., 2004] Andrea Capiluppi, Maurizio Morisio, and Patricia Lago.
Evolution of understandability in OSS projects. In Proceedings of the 8th Eu-
ropean Conference on Software Maintenance and Reengineering (CSMR 2004),
pages 58–66, 2004.

[Capiluppi, 2003] Andrea Capiluppi. Models for the evolution of OS projects.
In Proceedings of the International Conference on Software Maintenance (ICSM
2003), pages 65–74, 2003.

158



[Chidamber and Kemerer, 1994] Shyam R. Chidamber and Chris F. Kemerer. A
metrics suite for object oriented design. IEEE Transactions on Software Engi-
neering, 20(6):476–493, June 1994.

[Chuah and Eick, 1998] Mei C. Chuah and Stephen G. Eick. Information rich
glyphs for software management data. IEEE Computer Graphics and Applica-
tions, pages 24–29, July 1998.

[Ciupke, 1999] Oliver Ciupke. Automatic detection of design problems in object-
oriented reengineering. In Proceedings of TOOLS 30 (USA), pages 18–32, 1999.

[Collberg et al., 2003] Christian Collberg, Stephen Kobourov, Jasvir Nagra, Jacob
Pitts, and Kevin Wampler. A system for graph-based visualization of the evo-
lution of software. In Proceedings of the 2003 ACM Symposium on Software
Visualization, pages 77–86. ACM Press, 2003.

[Conway, 1968] Melvin E. Conway. How do committees invent ? Datamation,
14(4):28–31, April 1968.

[Davey and Burd, 2001] John Davey and Elizabeth Burd. Clustering and concept
analysis for software evolution. In Proceedings of the 4th international Work-
shop on Principles of Software Evolution (IWPSE 2001), pages 146–149, Vienna,
Austria, 2001.

[Demeyer et al., 1999] Serge Demeyer, Stéphane Ducasse, and Michele Lanza. A
hybrid reverse engineering platform combining metrics and program visualiza-
tion. In Francoise Balmas, Mike Blaha, and Spencer Rugaber, editors, Proceed-
ings WCRE ’99 (6th Working Conference on Reverse Engineering). IEEE, October
1999.

[Demeyer et al., 2000] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz.
Finding refactorings via change metrics. In Proceedings of OOPSLA ’2000 (Inter-
national Conference on Object-Oriented Programming Systems, Languages and
Applications), pages 166–178, 2000.

[Demeyer et al., 2001] Serge Demeyer, Sander Tichelaar, and Stéphane Ducasse.
FAMIX 2.1 — The FAMOOS Information Exchange Model. Technical report,
University of Bern, 2001.

[Demeyer et al., 2002] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz.
Object-Oriented Reengineering Patterns. Morgan Kaufmann, 2002.

159



[Dig and Johnson, 2005] Daniel Dig and Ralph Johnson. The role of refactorings
in API evolution. In Proceedings of 21st International Conference on Software
Maintenance (ICSM 2005), pages 389–398, September 2005.

[Draheim and Pekacki, 2003] Dirk Draheim and Lukasz Pekacki. Process-centric
analytical processing of version control data. In International Workshop on Prin-
ciples of Software Evolution (IWPSE 2003), pages 131–136, 2003.

[Ducasse and Lanza, 2005] Stéphane Ducasse and Michele Lanza. The class
blueprint: Visually supporting the understanding of classes. IEEE Transactions
on Software Engineering, 31(1):75–90, January 2005.

[Ducasse et al., 2004] Stéphane Ducasse, Tudor Gı̂rba, and Jean-Marie Favre.
Modeling software evolution by treating history as a first class entity. In Work-
shop on Software Evolution Through Transformation (SETra 2004), pages 71–82,
2004.

[Ducasse et al., 2005] Stéphane Ducasse, Tudor Gı̂rba, Michele Lanza, and Serge
Demeyer. Moose: a collaborative and extensible reengineering Environment. In
Tools for Software Maintenance and Reengineering, RCOST / Software Technol-
ogy Series, pages 55–71. Franco Angeli, 2005.

[Eick et al., 1992] Stephen G. Eick, Joseph L. Steffen, and Sumner Eric E., Jr.
SeeSoft—a tool for visualizing line oriented software statistics. IEEE Transac-
tions on Software Engineering, 18(11):957–968, November 1992.

[Eick et al., 2001] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J. S. Marron,
and Audris Mockus. Does code decay? assessing the evidence from change
management data. IEEE Transactions on Software Engineering, 27(1):1–12,
2001.

[Eick et al., 2002] Stephen G. Eick, Todd L. Graves, Alan F. Karr, Audris Mockus,
and Paul Schuster. Visualizing software changes. Software Engineering,
28(4):396–412, 2002.

[Fischer et al., 2003a] Michael Fischer, Martin Pinzger, and Harald Gall. Analyz-
ing and relating bug report data for feature tracking. In Proceedings of the 10th
Working Conference on Reverse Engineering (WCRE 2003), pages 90–99, Novem-
ber 2003.

[Fischer et al., 2003b] Michael Fischer, Martin Pinzger, and Harald Gall. Populat-
ing a release history database from version control and bug tracking systems.

160



In Proceedings of the International Conference on Software Maintenance (ICSM
2003), pages 23–32, September 2003.

[Fowler et al., 1999] Martin Fowler, Kent Beck, John Brant, William Opdyke, and
Don Roberts. Refactoring: Improving the Design of Existing Code. Addison Wes-
ley, 1999.

[Fowler, 2003] Martin Fowler. UML Distilled. Addison Wesley, 2003.

[Gall et al., 1997] Harald Gall, Mehdi Jazayeri, René R. Klösch, and Georg Traus-
muth. Software evolution observations based on product release history. In
Proceedings of the International Conference on Software Maintenance 1997 (ICSM
’97), pages 160–166, 1997.

[Gall et al., 1998] Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logi-
cal coupling based on product release history. In Proceedings of the International
Conference on Software Maintenance 1998 (ICSM ’98), pages 190–198, 1998.

[Gall et al., 2003] Harald Gall, Mehdi Jazayeri, and Jacek Krajewski. Cvs release
history data for detecting logical couplings. In International Workshop on Princi-
ples of Software Evolution (IWPSE 2003), pages 13–23, 2003.

[Ganter and Wille, 1999] Bernhard Ganter and Rudolf Wille. Formal Concept Anal-
ysis: Mathematical Foundations. Springer Verlag, 1999.

[Gı̂rba and Lanza, 2004] Tudor Gı̂rba and Michele Lanza. Visualizing and charac-
terizing the evolution of class hierarchies. In WOOR 2004 (5th ECOOP Workshop
on Object-Oriented Reengineering), 2004.

[Gı̂rba et al., 2004a] Tudor Gı̂rba, Stéphane Ducasse, and Michele Lanza. Yes-
terday’s Weather: Guiding early reverse engineering efforts by summarizing the
evolution of changes. In Proceedings of ICSM 2004 (20th International Conference
on Software Maintenance), pages 40–49. IEEE Computer Society Press, 2004.

[Gı̂rba et al., 2004b] Tudor Gı̂rba, Stéphane Ducasse, Radu Marinescu, and
Daniel Raţiu. Identifying entities that change together. In Ninth IEEE Workshop
on Empirical Studies of Software Maintenance, 2004.

[Gı̂rba et al., 2004c] Tudor Gı̂rba, Jean-Marie Favre, and Stéphane Ducasse. Us-
ing meta-model transformation to model software evolution, 2004. 2nd Interna-
tional Workshop on Meta-Models and Schemas for Reverse Engineering (ATEM
2004).

[Gı̂rba et al., 2005a] Tudor Gı̂rba, Adrian Kuhn, Mauricio Seeberger, and
Stéphane Ducasse. How developers drive software evolution. In Proceedings of

161



International Workshop on Principles of Software Evolution (IWPSE), pages 113–
122. IEEE Computer Society Press, 2005.

[Gı̂rba et al., 2005b] Tudor Gı̂rba, Michele Lanza, and Stéphane Ducasse. Char-
acterizing the evolution of class hierarchies. In Proceedings of CSMR 2005 (9th
European Conference on Software Maintenance, pages 2–11, 2005.

[Godfrey and Tu, 2000] Michael Godfrey and Qiang Tu. Evolution in open source
software: A case study. In Proceedings of the International Conference on Soft-
ware Maintenance (ICSM 2000), pages 131–142. IEEE Computer Society, 2000.

[Gold and Mohan, 2003] Nicolas Gold and Andrew Mohan. A framework for un-
derstanding conceptual changes in evolving source code. In Proceedings of Inter-
national Conference on Software Maintenance 2003 (ICSM 2003), pages 432–439,
September 2003.

[Greevy and Ducasse, 2005a] Orla Greevy and Stéphane Ducasse. Characteriz-
ing the functional roles of classes and methods by analyzing feature traces.
In Proceedings of WOOR 2005 (6th International Workshop on Object-Oriented
Reengineering), July 2005.

[Greevy and Ducasse, 2005b] Orla Greevy and Stéphane Ducasse. Correlating
features and code using a compact two-sided trace analysis approach. In Pro-
ceedings of CSMR 2005 (9th European Conference on Software Maintenance and
Reengineering, pages 314–323. IEEE Computer Society Press, 2005.

[Greevy et al., 2005] Orla Greevy, Stéphane Ducasse, and Tudor Gı̂rba. Analyz-
ing feature traces to incorporate the semantics of change in software evolution
analysis. In Proceedings of ICSM 2005 (21th International Conference on Soft-
ware Maintenance), pages 347–356. IEEE Computer Society Press, September
2005.

[Grosser et al., 2002] David Grosser, Houari A. Sahraoui, and Petko Valtchev. Pre-
dicting software stability using case-based reasoning. In Proceedings of the 17th
IEEE International Conference on Automated Software Engienering (ASE ’02),
pages 295–298, 2002.

[Gulla, 1992] Bjorn Gulla. Improved maintenance support by multi-version visu-
alizations. In Proceedings of the 8th International Conference on Software Main-
tenance (ICSM 1992), pages 376–383. IEEE Computer Society Press, November
1992.

162



[Hassan and Holt, 2004] Ahmed Hassan and Richard Holt. Predicting change
propagation in software systems. In Proceedings of 20th IEEE International Con-
ference on Software Maintenance (ICSM’04), pages 284–293. IEEE Computer So-
ciety Press, September 2004.

[Holt and Pak, 1996] Richard Holt and Jason Pak. GASE: Visualizing software
evolution-in-the-large. In Proceedings of Working Conference on Reverse Engi-
neering (WCRE 1996), pages 163–167, 1996.

[Hunt and McIlroy, 1976] James Hunt and Douglas McIlroy. An algorithm for dif-
ferential file comparison. Technical Report CSTR 41, Bell Laboratories, Murray
Hill, NJ, 1976.

[Itkonen et al., 2004] Jonne Itkonen, Minna Hillebrand, and Vesa Lappalainen.
Application of relation analysis to a small java software. In Proceedings of
the Conference on Software Maintenance and Reengineering (CSMR 2004), pages
233–239, 2004.

[Jain et al., 1999] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A
review. ACM Computing Surveys, 31(3):264–323, September 1999.

[Jazayeri et al., 1999] Mehdi Jazayeri, Harald Gall, and Claudio Riva. Visualizing
Software Release Histories: The Use of Color and Third Dimension. In Pro-
ceedings of ICSM ’99 (International Conference on Software Maintenance), pages
99–108. IEEE Computer Society Press, 1999.

[Jazayeri, 2002] Mehdi Jazayeri. On architectural stability and evolution. In
Reliable Software Technlogies-Ada-Europe 2002, pages 13–23. Springer Verlag,
2002.

[Krajewski, 2003] Jacek Krajewski. QCR - A methodology for software evolution
analysis. Master’s thesis, Information Systems Institute, Distributed Systems
Group, Technical University of Vienna, April 2003.

[Kuhn et al., 2005] Adrian Kuhn, Stéphane Ducasse, and Tudor Gı̂rba. Enriching
reverse engineering with semantic clustering. In Proceedings of Working Con-
ference On Reverse Engineering (WCRE 2005), pages ??–??, November 2005. to
appear.

[Lanza and Ducasse, 2002] Michele Lanza and Stéphane Ducasse. Understand-
ing software evolution using a combination of software visualization and soft-
ware metrics. In Proceedings of LMO 2002 (Langages et Modèles à Objets, pages
135–149, 2002.

163



[Lanza and Ducasse, 2003] Michele Lanza and Stéphane Ducasse. Polymetric
views — a lightweight visual approach to reverse engineering. IEEE Transac-
tions on Software Engineering, 29(9):782–795, September 2003.

[Lanza and Ducasse, 2005] Michele Lanza and Stéphane Ducasse. Codecrawler
— an extensible and language independent 2d and 3d software visualization
tool. In Tools for Software Maintenance and Reengineering, RCOST / Software
Technology Series, pages 74–94. Franco Angeli, 2005.

[Lanza et al., 2006] Michele Lanza, Radu Marinescu, and Stéphane Ducasse.
Object-Oriented Metrics in Practice. Springer-Verlag, 2006. to appear.

[Lanza, 2003] Michele Lanza. Object-Oriented Reverse Engineering — Coarse-
grained, Fine-grained, and Evolutionary Software Visualization. PhD thesis, Uni-
versity of Berne, May 2003.

[Lehman and Belady, 1985] Manny Lehman and Les Belady. Program Evolution –
Processes of Software Change. London Academic Press, 1985.

[Lehman et al., 1997] Manny Lehman, Dewayne Perry, Juan Ramil, Wladyslaw
Turski, and Paul Wernick. Metrics and laws of software evolution – the nineties
view. In Metrics ’97, IEEE, pages 20–32, 1997.

[Lehman et al., 1998] Manny Lehman, Dewayne Perry, and Juan Ramil. Impli-
cations of evolution metrics on software maintenance. In Proceedings of the
International Conference on Software Maintenance (ICSM 1998), pages 208–217,
1998.

[Lehman, 1996] Manny Lehman. Laws of software evolution revisited. In Euro-
pean Workshop on Software Process Technology, pages 108–124, 1996.

[Lorenz and Kidd, 1994] Mark Lorenz and Jeff Kidd. Object-Oriented Software Met-
rics: A Practical Guide. Prentice-Hall, 1994.

[MacKenzie et al., 2003] David MacKenzie, Paul Eggert, and Richard Stallman.
Comparing and Merging Files With Gnu Diff and Patch. Network Theory Ltd.,
2003.

[Marinescu, 2001] Radu Marinescu. Detecting design flaws via metrics in object-
oriented systems. In Proceedings of TOOLS, pages 173–182, 2001.

[Marinescu, 2002] Radu Marinescu. Measurement and Quality in Object-Oriented
Design. Ph.D. thesis, Department of Computer Science, ”Politehnica” University
of Timişoara, 2002.

164



[Marinescu, 2004] Radu Marinescu. Detection strategies: Metrics-based rules for
detecting design flaws. In Proceedings of ICSM ’04 (International Conference on
Software Maintenance), pages 350–359. IEEE Computer Society Press, 2004.

[McCabe, 1976] T.J. McCabe. A measure of complexity. IEEE Transactions on
Software Engineering, 2(4):308–320, December 1976.

[Mens and Demeyer, 2001] Tom Mens and Serge Demeyer. Future trends in soft-
ware evolution metrics. In Proceedings IWPSE2001 (4th International Workshop
on Principles of Software Evolution), pages 83–86, 2001.

[Mens et al., 2002] Kim Mens, Tom Mens, and Michel Wermelinger. Maintaining
software through intentional source-code views. In Proceedings of SEKE 2002,
pages 289–296. ACM Press, 2002.

[Meyer, 1988] Bertrand Meyer. Object-oriented Software Construction. Prentice-
Hall, 1988.

[Mihancea and Marinescu, 2005] Petru Mihancea and Radu Marinescu. Towards
the optimization of automatic detection of design flaws in object-oriented soft-
ware systems. In Proceedings of European Conference on Software Maintenance
(CSMR 2005), pages 92–101, 2005.

[Mockus and Votta, 2000] Audris Mockus and Lawrence Votta. Identifying rea-
sons for software change using historic databases. In Proceedings of the In-
ternational Conference on Software Maintenance (ICSM 2000), pages 120–130.
IEEE Computer Society Press, 2000.

[Mockus and Weiss, 2000] Audris Mockus and David Weiss. Predicting risk of
software changes. Bell Labs Technical Journal, 5(2), April 2000.

[Mockus et al., 1999] Audris Mockus, Stephen Eick, Todd Graves, and Alan Karr.
On measurements and analysis of software changes. Technical report, National
Institute of Statistical Sciences, 1999.

[Nierstrasz et al., 2005] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Girba.
The story of Moose: an agile reengineering environment. In Proceedings of
ESEC/FSE 2005, pages 1–10. ACM, 2005. Invited paper.

[OCL 2.0, 2003] Uml 2.0 object constraint language (ocl) specification, 2003.
http://www.omg.org/docs/ptc/03-10-14.pdf.

[Parnas, 1994] David Lorge Parnas. Software Aging. In Proceedings of ICSE ’94
(International Conference on Software Engineering), pages 279–287. IEEE Com-
puter Society / ACM Press, 1994.

165



[Pinzger et al., 2005] Martin Pinzger, Harald Gall, Michael Fischer, and Michele
Lanza. Visualizing multiple evolution metrics. In Proceedings of SoftVis 2005
(2nd ACM Symposium on Software Visualization), pages 67–75, St. Louis, Mis-
souri, USA, May 2005.

[Raţiu et al., 2004] Daniel Raţiu, Stéphane Ducasse, Tudor Gı̂rba, and Radu
Marinescu. Using history information to improve design flaws detection. In
Proceedings of CSMR 2004 (European Conference on Software Maintenance and
Reengineering), pages 223–232, 2004.

[Raţiu, 2003] Daniel Raţiu. Time-based detection strategies. Master’s thesis, Fac-
ulty of Automatics and Computer Science, ”Politehnica” University of Timişoara,
September 2003. Supervised by Tudor Gı̂rba and defended at Politehnica Uni-
versity of Timisoara, Romania.

[Ramil and Lehman, 2001] Juan F. Ramil and Meir M. Lehman. Defining and
applying metrics in the context of continuing software evolution. In Proceedings
of the Seventh International Software Metrics Symposium (Metrics 2001), pages
199–209, 2001.

[Riel, 1996] Arthur J. Riel. Object-Oriented Design Heuristics. Addison Wesley,
1996.

[Rochkind, 1975] Marc Rochkind. The source code control system. IEEE Trans-
actions on Software Engineering, 1(4):364–370, 1975.

[Sahraoui et al., 2000] Houari A. Sahraoui, Mounir Boukadoum, Hakim Lounis,
and Frédéric Ethève. Predicting class libraries interface evolution: an inves-
tigation into machine learning approaches. In Proceedings of 7th Asia-Pacific
Software Engineering Conference, 2000.

[Seidewitz, 2003] Ed Seidewitz. What models mean. IEEE Software, 20:26–32,
September 2003.

[Shirabad et al., 2003] Jelber Sayyad Shirabad, Timothy C. Lethbridge, and Stan
Matwin. Mining the maintenance history of a legacy software system. In Inter-
national Conference on Software Maintenance (ICSM 2003), pages 95–104, 2003.

[Soanes, 2001] Catherine Soanes, editor. Oxford Dictionary of Current English.
Oxford University Press, July 2001.

[Sommerville, 2000] Ian Sommerville. Software Engineering. Addison Wesley,
sixth edition, 2000.

166



[Stasko et al., 1998] John T. Stasko, John Domingue, Marc H. Brown, and
Blaine A. Price, editors. Software Visualization — Programming as a Multime-
dia Experience. The MIT Press, 1998.

[Taylor and Munro, 2002] Christopher M. B. Taylor and Malcolm Munro. Revision
towers. In Proceedings of the 1st International Workshop on Visualizing Software
for Understanding and Analysis, pages 43–50. IEEE Computer Society, 2002.

[Tufte, 1990] Edward R. Tufte. Envisioning Information. Graphics Press, 1990.

[C̆ubranić and Murphy, 2003] Davor C̆ubranić and Gail Murphy. Hipikat: Rec-
ommending pertinent software development artifacts. In Proceedings of the 25th
International Conference on Software Engineering (ICSE 2003), pages 408–418,
Washington, DC, USA, 2003. IEEE Computer Society.

[C̆ubranić, 2004] Davor C̆ubranić. Project History as a Group Memory: Learning
From the Past. Ph.D. thesis, University of British Columbia, December 2004.

[van Emden and Moonen, 2002] Eva van Emden and Leon Moonen. Java quality
assurance by detecting code smells. In Proc. 9th Working Conf. Reverse Engi-
neering, pages 97–107. IEEE Computer Society Press, October 2002.

[Van Rysselberghe and Demeyer, 2004] Filip Van Rysselberghe and Serge De-
meyer. Studying software evolution information by visualizing the change his-
tory. In Proceedings of The 20th IEEE International Conference on Software Main-
tenance (ICSM 2004), September 2004.

[Viégas et al., 2004] Fernanda Viégas, Martin Wattenberg, and Kushal Dave.
Studying cooperation and conflict between authors with history flow visual-
izations. In In Proceedings of the Conference on Human Factors in Computing
Systems (CHI 2004), pages 575–582, April 2004.

[Voinea et al., 2005] Lucian Voinea, Alex Telea, and Jarke J. van Wijk. CVSscan:
visualization of code evolution. In Proceedings of 2005 ACM Symposium on Soft-
ware Visualization (Softviz 2005), pages 47–56, St. Louis, Missouri, USA, May
2005.

[Ware, 2000] Colin Ware. Information Visualization. Morgan Kaufmann, 2000.

[Wu et al., 2004a] Jingwei Wu, Richard Holt, and Ahmed Hassan. Exploring soft-
ware evolution using spectrographs. In Proceedings of 11th Working Confer-
ence on Reverse Engineering (WCRE 2004), pages 80–89. IEEE Computer Society
Press, November 2004.

167



[Wu et al., 2004b] Xiaomin Wu, Adam Murray, Margaret-Anne Storey, and Rob
Lintern. A reverse engineering approach to support software maintenance: Ver-
sion control knowledge extraction. In Proceedings of 11th Working Conference on
Reverse Engineering (WCRE 2004), pages 90–99. IEEE Computer Society Press,
November 2004.

[Xing and Stroulia, 2004a] Zhenchang Xing and Eleni Stroulia. Data-mining in
support of detecting class co-evolution. In Proceedings of the 16th International
Conference on Software Engineering & Knowledge Engineering (SEKE 2004),
pages 123–128, 2004.

[Xing and Stroulia, 2004b] Zhenchang Xing and Eleni Stroulia. Understanding
class evolution in object-oriented software. In Proceedings of the 12th Interna-
tional Workshop on Program Comprehension (IWPC 2004), pages 34–43, 2004.

[Xing and Stroulia, 2004c] Zhenchang Xing and Eleni Stroulia. Understanding
phases and styles of object-oriented systems’ evolution. In Proceedings of the
20th International Conference on Software Maintenance (ICSM 2004), pages 242–
251. IEEE Computer Society Press, 2004.

[XMI 2.0, 2005] Xml metadata interchange (xmi), v2.0, 2005.
http://www.omg.org/cgi-bin/doc?formal/05-05-01.

[Ying et al., 2004] Annie Ying, Gail Murphy, Raymond Ng, and Mark Chu-Carroll.
Predicting source code changes by mining change history. Transactions on Soft-
ware Engineering, 30(9):573–586, 2004.

[Zimmermann and Weißgerber, 2004] Thomas Zimmermann and Peter Weißger-
ber. Preprocessing cvs data for fine-grained analysis. In Proceedings 1st Inter-
national Workshop on Mining Software Repositories, pages 2–6, 2004.

[Zimmermann et al., 2003] Thomas Zimmermann, Stephan Diehl, and Andreas
Zeller. How history justifies system architecture (or not). In 6th International
Workshop on Principles of Software Evolution (IWPSE 2003), pages 73–83, 2003.

[Zimmermann et al., 2004] Thomas Zimmermann, Peter Weißgerber, Stephan
Diehl, and Andreas Zeller. Mining version histories to guide software changes.
In 26th International Conference on Software Engineering (ICSE 2004), pages
563–572, 2004.

[Zou and Godfrey, 2003] Lijie Zou and Michael W. Godfrey. Detecting merging and
splitting using origin analysis. In Proceedings of the 10th Working Conference on
Reverse Engineering (WCRE 2003), pages 146–154, November 2003.

168





2002-2005
PhD student and 
assistant at Software 
Composition Group,
University of Berne,
Switzerland

2001-2002
Co-Founder of the
LOOSE Research Group, 
Politehnica University
of Timișoara, Romania

1996-2001
Student at the 
Politehnica University
of Timișoara, Romania 

Tudor Gîrba is born in 
Romania, on August 8, 
1977, and he is a 
Romanian citizen.

2001-2002
Software engineer and 
coach at Sava 
Technologies SRL, 
Timișoara, Romania

1997-2000
Programmer and 
designer at Piron, an 
independent group of 
game developers

2005
Consultant at Sweng. 
Software Engineering 
GmbH, Berne, 
Switzerland

Over the past three decades, more and more research has been 
spent on understanding software evolution. The development and 
spread of versioning systems made valuable data available for 
study. Indeed, versioning systems provide rich information for 
analyzing software evolution, but it is exactly the richness of the 
information that raises the problem. The more versions we consider, 
the more data we have at hand. The more data we have at hand, the 
more techniques we need to employ to analyze it. The more 
techniques we need, the more generic the infrastructure should be. 

The approaches developed so far rely on ad-hoc models, or on too 
specific meta-models, and thus, it is dif ficult to reuse or compare 
their results. We argue for the need of an explicit and generic meta-
model for allowing the expression and combination of software 
evolution analyses. We review the state-of-the-art in software 
evolution analysis and we conclude that: 

To provide a generic meta-model for expressing software 
evolution analyses, we need to recognize the evolution as an 
explicit phenomenon and model it as a first class entity. 

Our solution is to encapsulate the evolution in the explicit notion of 
history as a sequence of versions, and to build a meta-model around 
these notions: Hismo. To show the usefulness of our meta-model we 
exercise its different characteristics by building several reverse 
engineering applications. 

This dissertation offers a meta-model for software evolution analysis 
yet, the concepts of history and version do not necessarily depend 
on software. We show how the concept of history can be generalized 
and how we can obtain our meta-model by transformations applied 
on structural meta-models. As a consequence, our approach of 
modeling evolution is not restricted to software analysis, but can be 
applied to other fields as well.

to Understand Software Evolution

Modeling History


	Front Cover
	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	Introduction
	The Problem of Meta-Modeling Software Evolution
	Our Approach in a Nutshell
	Contributions
	Structure of the Dissertation

	Approaches to Understand Software Evolution
	Introduction
	Version-Centered Approaches
	Analyzing the Changes Between Two Versions
	Analyzing Property Evolutions: Evolution Chart
	Evolution Matrix Visualization
	Discussion of Version-Centered Approaches

	History-Centered Approaches
	History Measurements
	Manipulating Historical Relationships: Historical  Co-Change
	Manipulating Historical Entities: Hipikat and Release  Meta-Models
	Discussion of History-Centered Approaches

	Towards a Common Meta-Model for Understanding Software Evolution
	Roadmap

	Hismo: Modeling History as a First Class Entity
	Introduction
	Hismo
	Building Hismo Based on a Snapshot Meta-Model
	Mapping Hismo to the Evolution Matrix
	History Properties
	Grouping Histories
	Modeling Historical Relationships
	Generalization
	Summary

	Yesterday's Weather
	Introduction
	Yesterday's Weather in a Nutshell
	Yesterday's Weather in Detail
	Validation
	Yesterday's Weather in Jun, CodeCrawler and JBoss
	The Evolution of Yesterday's Weather in Jun

	Variation Points
	Related Work
	Summarizing Yesterday's Weather
	Hismo Validation

	History-Based Detection Strategies
	Introduction
	The Evolution of Design Flaw Suspects
	Detection Strategies
	God Class Detection Strategy
	Data Class Detection Strategy
	Detection Strategy Discussion

	History Measurements
	Measuring the Stability of Classes
	Measuring the Persistency of a Design Flaw

	Detection Strategies Enriched with Historical Information
	Validation
	Variation Points
	Related Work
	Summarizing History-Based Detection Strategies
	Hismo Validation

	Characterizing the Evolution of Hierarchies
	Introduction
	Characterizing Class Hierarchy Histories
	Modeling Class Hierarchy Histories
	Detecting Class Hierarchies Evolution Patterns

	Class Hierarchy History Complexity View
	Validation
	Class Hierarchies of JBoss
	Class Hierarchies of Jun

	Variation Points
	Related Work
	Summary of the Approach
	Hismo Validation

	How Developers Drive Software Evolution
	Introduction
	Data Extraction From the CVS Log
	Measuring File Size
	Measuring Code Ownership

	The Ownership Map View
	Ordering the Axes
	Behavioral Patterns

	Validation
	Outsight
	Ant, Tomcat, JEdit and JBoss

	Variation Points
	Related Work
	Summarizing the Approach
	Hismo Validation

	Detecting Co-Change Patterns
	Introduction
	History Measurements
	Concept Analysis in a Nutshell
	Using Concept Analysis to Identify Co-Change Patterns
	Method Histories Grouping Expressions.
	Class Histories Grouping Expressions
	Package Histories Grouping Expression

	Validation
	Related Work
	Summary of the Approach
	Hismo Validation

	Van: The Time Vehicle
	Introduction
	Architectural Overview
	Browsing Structure and History
	Combining Tools
	Summary

	Conclusions
	Discussion: How Hismo Supports Software Evolution Analysis
	Open Issues

	Definitions
	Bibliography
	Back Cover

