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Abstract

The maintenance, reengineering, and evolution of object-oriented software systems has become a vital
matter in today’s software industry. Although most systems start off in a clean and well-designed state,
with time they tend to gradually decay in quality, unless the systems are reengineered and adapted to the
evolving requirements. However, before suchlegacysoftware systems can be reengineered and evolved,
they must be reverse engineered,i.e., their structure and inner working must be understood. This is difficult
because of several factors, such as the sheer size of the systems, their complexity, their domain specificity,
and in general the bad state legacy software systems are in.

In this thesis we propose a visual approach to the reverse engineering of object-oriented software sys-
tems by means ofpolymetric views, lightweight visualizations of software enriched with metrics and other
types of semantic information about the software,e.g., its age, version, abstractness, location, structure,
function, etc.

We present and discuss several polymetric views which allow us to understand three different aspects
of object-oriented software, namely

1. coarse-grained aspects which allow for the understanding of very large systems,

2. fine-grained aspects which allow for the understanding of classes and class hierarchies,

3. and evolutionary aspects, which enable us to recover and understand the evolution of a software
system.

The combination of these three types of information can greatly reduce the time needed to gain an
understanding of an object-oriented software system.

Based on the application of our polymetric views, we present our reverse engineering methodology
which we validated and refined on several occasions in industrial settings. It allows us to explore and
combine these three approaches into one single visual approach tounderstand software.
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Chapter 1

Introduction

Reverse engineering existing software systems has become an important problem that needs to be tack-
led. It is defined by Chikosfky and Cross as “the process of analyzing a subject system to identify the
system’s components and their relationships, and to create representations of the system in another form or
at a higher level of abstraction” [CHIK 90]. It is the prerequisite for the maintenance, reengineering, and
evolution of software systems. Since an unwary modification of one part of a system can have a negative
impact,e.g., break, other parts of the system, one needs first to reverse engineer,e.g., have an informed
mental model of the software, before the software system can be modified or reengineered.

Sommerville [SOMM 00] and Davis [DAVI 95] estimate that the cost of software maintenance accounts
for 50% to 75% of the overall cost of a software system. It would thus seem advisable to rewrite software
systems as soon as they fail to fulfill their requirements. However, certain software systems are too valuable
to be replaced or to be rewritten, because their sheer size and complexity makes such a feat too expensive
for the owning company in terms of time and money. In the case of suchlegacysoftware systems it is more
advisable to first reverse engineer and then maintain, reengineer, and evolve such systems. By adapting
them to new requirements [CASA 98, RUGA 98] the lifetime of these systems can be extended and thus
increase the return of investment of their owners. Indeed, the longer a software system can be used, the
better it pays off for the company that developed it.

We have focused ourselves on the reverse engineering ofobject-orientedlegacy systems, mainly be-
cause most current software systems are written in languages implementing this paradigm, and because it
is notagethat turns a piece of software into a legacy system, but therate at which it has been developed
and adapted [DEME 02]. Moreover, early adopters of object-oriented technology are discovering that the
benefits they expected to achieve by switching to objects have been very difficult to realize [DEME 02]
and find themselves with present and future legacy systems implemented with object-oriented technol-
ogy. Moreover, reverse engineering object-oriented software systems comes with additional challenges
[W ILD 92] compared to non-object-oriented systems, such as polymorphism, late-binding, incremental
class definitions, etc.

1.1 The Problem

Reverse engineering software systems, especially large legacy systems, is technically difficult, because
they typically suffer from several problems, such as developers no longer available, outdated development
methods that have been used to write the software, oudated or completely missing documentation, and in
general a progressive degradation of design and quality.

The goal of a person who is reverse engineering a software system is to build progressively refined
mental models of the system [STOR 99] to be able to make informed decisions regarding the software.
While this is not a complex problem for small software systems, where code reading and inspection is
often enough, in the case of legacy software systems which tend to be large – hundreds of thousands or
millions of lines of poorly documented code are no exception – this becomes a hard problem because
of their sheer size and complexity, and because of the problems afflicting such systems [PARN 94]. In

1



2 CHAPTER 1. INTRODUCTION

order to build a progressively refined mental model of a software system, the reverse engineer must gather
information about the system which helps him in this process.

This leads us to the following research question:
How does a reverse engineer gather the kind of information that he needs in order to build a mental

model of an object-oriented software system which allows him to make informed decisions regarding its
maintenance, reengineering, and evolution?In other words,what do we need to know about a software
system to understand it?

We argue that the necessary information resides at various granularity levels,e.g., we need to know
and combine information at a coarse-grained level (information about the whole system and its overall
structure), at a fine-grained level (information about the structure of classes and class hierarchies), and
information at an evolutionary level (information about the evolution of the system and the classes). Our
research question can thus be broken down into concrete and simpler research questions, such as:

• How big is the software system and how is it structured?

• What is the architecture of the system and what are the subsystems?

• Where are the most important classes and class hierarchies which represent the problem domain and
make the whole software work?

• How are class hierarchies built?

• What is the quality of the software, are all subsystems and/or classes of the same quality, or are there
better and worse parts in terms of implementation and reusability?

• What are the design and implementation plans of classes and class hierarchies,i.e, how do these look
from the inside?

• Where have design patterns [GAMM 95] been used and which ones?

• How did a class or a set of classes or a complete system evolve until its present state?

The goal of this thesis is to provide answers for these and other questions listed in Chapter 2 by using
a lightweight approach based on software visualization enriched with software metrics information. We
call these visualizationspolymetric views. The polymetric views we present in this thesis reside at the
granularity levels mentioned previously and aim at providing concrete information about a software system
useful for its reverse engineering. Moreover, our approach aims at supporting existing reverse engineering
approaches and not to replace them.

1.2 A Short Reverse Engineering State-of-the-Art

There are many approaches to reverse engineering software systems, such as:

• reading the existing documentation and source code. This is difficult when the documentation is
obsolete, incorrect or not present at all. Reading the source code is a widely used practice, but does
not scale up, as reading millions of lines of code would take weeks or months without necessarily
increasing the understanding of the system by the reader. Moreover, at the beginning of a reverse
engineering process one does not seek detailed information, but rather wants to have a general view
of the system.

• running the software and/or generate and analyze execution traces. The use of dynamic information,
e.g., information gathered during the execution of a piece of software, has also been used in the
context of reverse engineering [RICH 99], but has drawbacks in terms of scalability (traces of a few
seconds can become very big) and interpretation (thousands of message invocation can hide the
important information one is looking for).

2
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• interviewing the users and developers. This can give important insights into a software system, but
is problematic because of the subjective viewpoints of the interviewed people and because it is hard
to formalize and reuse these insights.

• using various tools (visualizers, slicers, query engines, etc.) to generate high-level views of the
source code. Tool support is provided by the research community in various ways, and visualization
tools like Rigi [MÜ 86] and ShrimpViews [STOR 95] are widely used.

• analyzing the version history. Still a young research field, understanding the evolution of a piece of
software is done using techniques like graph rewriting, visualization, concept analysis, clustering,
and data mining. The insights gained is useful to understand the past of a piece of software and to
possibly predict its future.

• assessing a software system and its quality by using software metrics. Software metrics tools are
used to assess the quality and quantity of source code by computing various metrics which can be
used to detect outliers and other parts of interest, for example cohesive classes, coupled subsystems,
etc.

Several of these approaches succeed in tackling various problems, but come with advantages and dis-
advantages due to the challenges they all face: They mustscale up, because legacy software systems tend
to be very large, and they must be flexible and applicable in different contexts, as there is no such thing as
a standard reverse engineering context,i.e., every legacy system comes with its own problems and flaws.
Moreover, they must be simple and straight-forward to use, because in the fast-paced software industry
there is little time to reverse engineer software systems,i.e., reverse engineering did not yet receive serious
attention, as is also underlined by the scarce application of these approaches in the development process of
software companies.

This is bound to change, as software maintenance is regarded more and more as part of the life-cycle
of software systems,e.g, the boundary between software development and software maintenance is be-
coming fuzzy. This is also further emphasized by the recent emergence of lightweight, agile, and iterative
development methodologies like eXtreme Programming [COCK 01, BECK 00] that support anevolution-
ary view of software: software systems are never finished, they are rather constantly under development.
Lehman’s software evolution laws state that software systems must be continually adapted else they be-
come progressively less satisfactory [LEHM 85]. Put in simpler words, only dead software systems do not
evolve.

1.3 Our Approach

In this thesis we propose a lightweight reverse engineering approach based on simple software visualiza-
tions enriched with software metrics, which we callpolymetric views. Polymetric views permit to enrich
a visualization with up to five different software metrics, two for the size, two for the position, and one
for the color of each node. We implemented a tool calledCodeCrawler[L ANZ 03] which supports the
polymetric views.

In Figure 1.1 we see CodeCrawler showing an example polymetric view called SYSTEM COMPLEXITY.
It visualizes classes as nodes and inheritance relationships as edges. The class nodes are enriched with the
metrics NOA (number of attributes) for the width, NOM (number of methods) for the height, and LOC
(lines of code) for the color. This view permits us to answer questions about the size of the system, about
the location of big classes, about the size of classes, etc.

Moreover, our visualizations are interactive,e.g., the user can not only see but also interact (zoom,
move, remove, hide, etc.) with the polymetric views. We believe that by making such interactions possible,
the gap between the software and the reverse engineer’s mental model of the software can be further nar-
rowed. We do not think that our software visualizations alone are enough to tackle the problems of reverse
engineering, but claim that our approach is aimed at supporting and complementing other techniques, like
the ones listed above, in order to enhance and facilitate the comprehension of software systems. We ar-
gue that simple and lightweight reverse engineering approaches can be exploited faster than heavyweight
approaches, and support existing practices instead of replacing them.

3



4 CHAPTER 1. INTRODUCTION

Figure 1.1: The polymetric view SYSTEM COMPLEXITY applied on CodeCrawler.

According to the program cognition model vocabulary proposed by Littmanet al. [L ITT 96] we support
an approach of understanding that isopportunisticin the sense that it is not based on asystematicline-by-
line understanding butas needed. Moreover, to locate our approach in the general context of cognitive
models [LITT 96] [VON 96], our approach is intended to support the understanding of theimplementation
plansat the language level,i.e., classes and methods.

We have developed polymetric views targeting three different granularity levels at which we want to
gather information about an object-oriented software system, namely at acoarse-grained, fine-grained,
and evolutionarylevel.

1. Coarse-grained polymetric views.The target of the coarse-grained polymetric views is to visualize
very large software systems, for which we seek to obtain an initial understanding of their structure
and their properties. This information is useful for identifying the parts of a subject system which
need to be further analyzed, and to obtain an overall view that reduces the complexity inherent in
such systems. We present a selection of coarse-grained polymetric views, which transmit to the
viewer a great deal of information (e.g., complete systems are being visualized) in a short time span.
The coarse-grained views can answer questions about the overall structure of a system, about the
detection of particular software artifacts, and provide a first impression of a subject system. Further-
more based on the coarse-grained views we introduce anapproachto guide software developers in
the first steps of a reverse engineering process of an unknown system.

2. Fine-grained polymetric views: the class blueprint.Theclass blueprintview enables us to focus
on the understanding of the core elements of object-oriented programming languages, namely classes
and class hierarchies. The goal is to obtain an understanding of the inner structure of one class
or several classes at once. Furthermore it it useful for detecting patterns in the implementation of
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classes and class hierarchies. These patterns help to answer questions regarding the internal structure
of classes and class hierarchies and are also useful for the detection of design patterns.

3. Evolutionary software polymetric views: the evolution matrix. Theevolution matrixview visu-
alizes the evolution of classes and of software systems by displaying several versions of a software
system at once, thus simplifying the interpretation of the displayed information. Furthermore it is
useful for detecting patterns in the evolution of classes and software systems.

In this thesis we claim that the presented polymetric views enhance the reverse engineering process
and provide insights into the structure of object-oriented software software systems at various levels of
understanding, namely coarse-grained understanding of large software systems, fine-grained understanding
of classes and class hierarchies, and the understanding of the evolution of software systems and classes.

1.4 Contributions

The contributions of this thesis can be summarized as follows:

• The concept of apolymetric view, a lightweight software visualization technique enriched with soft-
ware metrics information. At one glance polymetric views can transmit a great deal of information
to a reverse engineer that would otherwise be hard to retrieve and/or combine.

• The presentation and discussion of several polymetric views which all target coarse-grained reverse
engineering. These views help to answer questions regarding the overall structure and architecture
of a system, help to detect outliers, and give a first general impression of a subject system.

• The development of a reverse engineering methodology based on the coarse-grained polymetric
views which is applicable during the first stages of a reverse engineering process.

• The concept of theclass blueprintview, a fine-grained polymetric view that visualizes the internal
structure of one or more classes.

• Based on our blueprint visualization we identify and categorize several types of patterns that reveal
information about implementation aspects of the classes. These patterns help to answer questions
regarding the fine-grained details of an object-oriented system and provide information about classes
and class hierarchies in terms of code quality, coding conventions, detection of design patterns, etc.

• The concept of theevolution matrixview, an evolutionary polymetric view targeted at the visualiza-
tion of the evolution of object-oriented software systems.

• The evolution matrix enables us to identify patterns that reveal information about the evolution of
classes and of systems.

1.5 Thesis Outline

This dissertation is structured as follows:

• In Chapter 2 we introduce the problem domains of reverse engineering and software visualization in
detail and point out current approaches, as well as advantages and drawbacks of those solutions.

• In Chapter 3 we introduce and discuss the concept of thepolymetric views. Polymetric views are
lightweight software visualizations enriched with metrics information.

• In Chapter 4 we present a reverse engineering approach based on coarse-grained software visualiza-
tion which mainly targets large scale software systems by means ofpolymetric views. We call the
presented viewscoarse-grained, because they are mainly applicable to large software systems,i.e.,
many of the views scale up. We present several views and discuss them in the context of a reverse
engineering methodology which can be used to reverse engineer large software systems.

5



6 CHAPTER 1. INTRODUCTION

• In Chapter 5 we present a fine-grained approach which aims at understanding single classes and
class hierarchies by means of a specific visualization calledclass blueprint. The class blueprint
view supports opportunistic code-reading,i.e., it helps us to understand the inner structure of one
or several classes by visualizing a semantically augmented call- and access-graph of the methods
and the attributes of classes. Besides the technical aspects that the class blueprint implies, we es-
tablish a vocabulary which identifies the most common and specificvisual patterns, i.e., recurrent
graphical situations. This vocabulary is the basis of a language that reverse engineers can use when
communicating with each other.

• In Chapter 6 we provide an approach which takes into account the evolution of software systems and
is able to visualize it by means of a visualization calledevolution matrix. The evolution matrix allows
for a quick understanding of (1) the evolution of classes within object-oriented software systems and
the (2) the evolution of the systems themselves. Furthermore we provide a vocabulary of class
evolution behavior based onvisual patternswe detect in the evolution matrix view.

• In Chapter 7 we conclude by summarizing the main contributions of our work and give also an
outlook on possible future work in this research field.

• In Appendix A we then add some technical discussions, mainly about the implementation of our tool
CodeCrawlerandthe Moose Reengineering Environment.

6



Chapter 2

Object-Oriented Reverse Engineering

2.1 Introduction

The maintenance, reengineering, and evolution of software systems has become a vital matter in today’s
software industry. The law ofsoftware entropydictates that most systems with time tend to gradually
decay in quality, unless the systems are maintained and adapted to the evolving requirements. However,
many requirements (changing platforms, new functionalities demanded by the users, the fixing of errors,
etc.) cannot be anticipated and are hard to fulfill because of the system’s original design and architecture:
systems are not prepared to support new platforms, embrace emerging standards, satisfy new customer
needs, and leverage better understood technological advancements. Therefore they must be adapted to do
so.

When companies face the decision to maintain and/or reengineer a software system, they must evaluate
whether to rewrite the system from scratch. Sommerville [SOMM 00] and Davis [DAVI 95] estimate that
the cost of software maintenance accounts for 50% to 75% of the overall cost of a software system, and
it would thus seem advisable to rewrite software systems as soon as they fail to fulfill their requirements.
Moreover, a lot of software systems can be upgraded, or simply be thrown away and be replaced when they
no longer serve their purposes.

However, certain software systems (legacysoftware systems) are too valuable to be replaced or to be
rewritten, because their sheer size and complexity makes such a feat too expensive for the owning company
in terms of time and money. In such cases it is more advisable to maintain, reengineer, and evolve such
systems by adapting them to new requirements [CASA 98, RUGA 98] in order to extend their lifetime and
to increase the return of investment of their owners. Indeed, the longer a software system can be used, the
better it pays off for the company that developed it.

The lifetime of a software system can be extended by maintaining and/or reengineering it. Both soft-
ware maintenance and reengineering can be seen as part of a general software evolution process,e.g., the
software is evolved in order to keep its value and to cope with new requirements: Lehman’s software
evolution laws state software systems must be continually adapted else they become progressively less
satisfactory [LEHM 85].

Before a software system can be reengineered and/or maintained the system must bereverse engineered,
e.g., a mental model of the software needs to be built which allows for taking informed decisions. Reverse
engineering software systems is difficult due to their sheer size and complexity. However, it is aprerequisite
for their maintenance, reengineering and evolution.

Maintaining and evolving existing software systems is difficult because of several reasons, such as
the accelerating turnover of developers, the increasing size and complexity of software systems, and the
constantly changing requirements of software systems. Theselegacy systemsare large, mature, and com-
plex software systems, which are valuable to a company and must therefore be maintained and evolved
[CASA 98, RUGA 98].

However, as Parnas [PARN 94] assessed, most legacy systems suffer from typical problems:

• The original developers are no longer available, and often inexperienced developers without system
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8 CHAPTER 2. OBJECT-ORIENTED REVERSE ENGINEERING

or domain knowledge are assigned to maintain and evolve the systems.

• Outdated software development methods and/or programming languages have been used to originally
develop the system, and it is hard to find people knowing these techniques or willing to learn them.

• Extensive modifications and patches have been applied to the system, triggering a phenomenon called
architectural drift, which makes it hard to understand the original design of the system.

• The documentation is outdated, incomplete or completely missing.

Since legacy systems tend to be large – hundreds of thousands of lines of poorly documented code
are no exception – there is a definite need for effective approaches which help in program understanding
and problem detection. We have focused ourselves on object-oriented legacy systems [WILD 92], mainly
because most current systems are written using this paradigm, and because it is notagethat turns a piece
of software into a legacy system, but therateat which it has been developed and adapted [DEME 02].

Moreover, compared with procedural systems, the reengineering and reverse engineering ofobject-
oriented software systems poses many additional challenges [WILD 92], such as polymorphism, late-
binding, incremental class definitions by means of inheritance, the dynamic semantics ofself and this.
Furthermore, in object-oriented systems the domain model is spread over classes residing in different hi-
erarchies and/or subsystems. Indeed, the problem of reverse engineering object-oriented software systems
needs to be tackled.

Structure of the chapter. In Section 2.2 we discuss reverse engineering as part of the reengineering
life-cycle of software, present a state-of-the-art and discuss the problems and challenges that reverse engi-
neering poses, as well as the constraints it has. We then introduce our approach based on a combination of
software visualization and software metrics in Section 2.3.

2.2 Object-Oriented Reverse Engineering

Reverse engineering is part of thereengineering life-cycle[RAJL 00] [DEME 02]. Chikofsky and Cross de-
fine reengineering as “the examination and the alteration of a subject system to reconstitute it in a new form
and the subsequent implementation of the new form.” [CHIK 90]. Forward engineering, on the other hand,
is defined as “the traditional process of moving from high-level abstractions and logical, implementation-
independent designs to the physical implementation of a system” [CHIK 90].

Therefore, if forward engineering is about moving from high-level views of requirements and models
toward concrete realizations, then reverse engineering is about going backward from some concrete real-
ization to more abstract models, and reengineering is about transforming concrete implementations to other
concrete implementations.

Figure 2.1 illustrates this idea:

• Forward engineeringcan be understood as being a process that moves from high-level and abstract
models and artifacts to increasingly concrete ones.

• Reverse engineeringreconstructs higher-level models and artifacts from code.

• Reengineeringis a process that transforms one low-level representation to another, while recreating
the higher-level artifacts along the way [DEME 02].

2.2.1 General Approaches to Reverse Engineering

The goal of a person that is reverse engineering a software system is to build progressively refined mental
models of the system [STOR 99] to be able to make informed decisions regarding the software. While this
is not a complex problem for small software systems, where code reading and inspection is often enough,
in the case of legacy software systems which tend to be large – hundreds of thousands or millions of
lines of poorly documented code are no exception – this becomes a hard problem because of their sheer
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Figure 2.1: The reengineering life-cycle of software.

size and complexity, and because of the problems afflicting such systems [PARN 94]. In order to build
a progressively refined mental model of a software system, the reverse engineer must gather information
about the system which helps him in this process.

There are many approaches to reverse engineering software systems, such as:

• reading the existing documentation and source code. Various people have investigated code inspec-
tion, code reading, and code review practices [DEKE 02, HEND 02, DEME 02]. Using this approach
is difficult when the documentation is obsolete, incorrect or not present at all. Reading the source
code is a widely used practice, but does not scale up, as reading millions of lines of code would
take weeks or months without necessarily increasing the understanding of the system by the reader.
Moreover, at the beginning of a reverse engineering process one does not seek detailed information,
but rather wants to have a general view of the system.

• running the software and/or generate and analyze execution traces. The use of dynamic information,
e.g., information gathered during the execution of a piece of software, has also been used in the con-
text of reverse engineering [RICH 99, JERD 97, RICH 02], but has drawbacks in terms of scalability
(traces of a few seconds can become very big) and interpretation (thousands of message invocation
can hide the important information one is looking for).

• interviewing the users and developers. This can give important insights into a software system, but
is problematic because of the subjective viewpoints of the interviewed people and because it is hard
to formalize and reuse these insights. Moreover, it can be hard to find developers that have been
part of the development team over long periods of time and thus possess knowledge about a software
system’s complete lifetime.

• using various tools (visualizers, slicers, query engines, etc.) and techniques (visualization, clustering,
concept analysis, etc.) to generate high-level views of the source code. Tool support is provided by
the research community in various ways, and visualization tools like Rigi [MÜ 86] and ShrimpViews
[STOR 95] are widely used.

9



10 CHAPTER 2. OBJECT-ORIENTED REVERSE ENGINEERING

• analyzing the version history, as for example done by Jazayeri [JAZA 99]. Still a young research
field, understanding the evolution of a piece of software is done using techniques like graph rewrit-
ing, visualization, concept analysis, clustering, and data mining. The insights gained are useful to
understand the past of a piece of software and to possibly predict its evolution in the future.

• assessing a software system and its quality by using software metrics. Software metrics tools are
used to assess the quality and quantity of source code by computing various metrics which can be
used to detect outliers and other parts of interest, for example cohesive classes, coupled subsystems,
etc.

In this thesis we present an approach which using software visualization enriched with metrics infor-
mation enables us to generate high-level views and thus build a mental model of a system.

Although the term ’legacy system’ is often associated with systems written in older programming lan-
guages, recent object-oriented systems suffer from similar problems. Moreover, reengineering is becoming
part of modern software development processes and thus also plays a major role in the development of
systems written in recent object-oriented programming languages like Java.

2.2.2 Challenges and Goals in Object-Oriented Reverse Engineering

Challenges

Compared with procedural systems, the reverse engineering of object-oriented software systems poses
many additional challenges [WILD 92]. We list some of them:

• Polymorphism and late-binding make traditional tool analyzers like program slicers inadequate.
Data-flow analyzers are more complex to build especially in presence of dynamically typed lan-
guages.

• The use of inheritance and incremental class definitions, together with the dynamic semantics ofself
andthis, make applications more difficult to understand.

• The domain model of the applications is spread over classes residing in different hierarchies and/or
subsystems and it is difficult to pinpoint the location of a certain functionality.

• Contrary to procedural systems, where a top-down reverse engineering approach can work because
of the structured decomposition of an application, in the case of object-oriented systems the first
question a reverse engineer has to answer is where to start the reverse engineering process.

Apart from these problems, the increased power and flexibility that object-oriented programming brought
to developers can also be harmful, as in the case of misuse of inheritance or the violation of encapsulation.
This is mainly due to the fact that programmers still have problems to completely understand the concepts
behind object-oriented programming. Casais [CASA 98] states that “[...] experience demonstrates that
software developers have trouble imparting object-oriented applications or components with the generality
and adaptability needed for diverse and changing requirements.”

Goals

Chikofsky and Cross state that“The primary purpose ofreverse engineeringa software system is to in-
crease the overall comprehensibility of the system for both maintenance and new development”[CHIK 90].
They list six key reverse engineering objectives:

1. Cope with complexity

2. Generate alternate views

3. Recover lost information

4. Detect side effects

10
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5. Synthesize higher abstractions

6. Facilitate reuse

Before starting a reverse engineering process it is therefore essential to decide which primary goals to
pursue and which ones are only of secondary importance. Moreover, the listed objectives must be broken
down into concrete research questions whose answer we are seeking. The approaches listed previously
are useful to follow one or more of these key objectives, for example visualization can generate alternate
views, while software metrics can recover lost information. We argue that these objectives are too general
to be realistic goals, but are composed of smaller and much more concrete objectives.

2.3 Our Work: Scope, Constraints, and Goals

As we have seen, the goal of reverse engineering a large legacy software system is to build a progressively
refined mental model of the system in order to make informed decisions regarding the system. Building
such a mental model requires gathering information about the system. We have seen that there are various
approaches to gather the needed information. We argue that the necessary information resides at various
granularity levels. In the case of object-oriented systems we think there are three complementary granu-
larity levels, namely coarse-grained information about large software systems, fine-grained information of
classes and class hierarchies, and the information about the evolution of software systems and classes.

In this thesis we propose a lightweight approach that permits to retrieve the information at these various
levels. We think the approach must be lightweight at this time, as industry is resistant against disrupting
their development process with new approaches. A lightweight approach, which does not replace existing
approaches, but complements them, has a greater chance of success.

2.3.1 Scope

Our work combines the two techniques of software visualization and software metrics and uses this com-
bination to enable us to reverse engineer object-oriented software systems.

Software Visualization

Software visualization is defined as “the use of the crafts of typography, graphic design, animation, and
cinematography with modern human-computer interaction and computer graphics technology to facilitate
both the human understanding and effective use of computer software.” [Sta 98]. It is a specialization ofin-
formation visualization, whose goal is to visualize any kind of abstract data, while in software visualization
the sole focus lies on visualizing software.

Information Visualization. Information visualization is defined as “the use of computer-supported,
interactive, visual representations of abstract data to amplify cognition.” [Car 99]. It derives from several
communities. Starting with Playfair (1786), the classical methods of plotting data were developed. In
1967, Jacques Bertin, a French cartographer, published his theory inthe semiology of graphics[BERT 74].
This theory identifies the basic elements of diagrams and describes a framework for their design. Edward
Tufte published a theory of data graphics that emphasized maximizing the density of useful information
[TUFT 90, TUFT 97]. Both Bertin’s and Tufte’s theories have been influential in the various communities
that led to the development of information visualization.

The goal of information visualization is tovisualize any kind of data. Note that the above definition
of information visualization does not necessarily imply the use of vision for perception: visualizing does
not necessarily involvevisualapproaches, but any kind ofperceptiveapproach. Data can be perceived by
a person by using the senses at our disposition,i.e., apart from seeing the data, a person can also hear it
(information auralization) and/or touch it (by using virtual reality technology). It must be emphasized that
most information visualization systems involve using computer graphics which render the data using 2D-
and/or 3D-views of the data. Applications in information visualization are so frequent and common, that
most people do not notice them: examples include metereology (weather maps), geography (street maps),
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12 CHAPTER 2. OBJECT-ORIENTED REVERSE ENGINEERING

geology, medicine (computer-aided displays to show the inner of the human body), transportation (train
tables and metro maps), etc.

In short, information visualization is about visualizing almost any kind of data in almost any kind of
way, while software visualization is about visualizing software.

The field of software visualization can be divided in two separate areas [Sta 98]:

1. Program visualizationis the visualization of actual program code or data structures in either static or
dynamic form. The approach of the polymetric views presented in this thesis belongs to a sub-area
of program visualization, namelystatic code visualization, because we visualize (object-oriented)
source code by using only information which can bestaticallyextracted from the source code without
the need to actually run the system.

2. Algorithm visualizationis the visualization of higher-level abstractions which describe software. A
good example isalgorithm animation, which is the dynamic visualization of an algorithm and its
execution. This was mainly done to explain the inner working of algorithms like sort-algorithms.
In the meantime this discipline has lost importance, mainly because the advancement in computer
hardware and the possibility to use standard libraries containing such algorithms have shifted the
focus away from the implementation of such algorithms.

Software visualization and reverse engineering.Software visualization has been widely used by
the reverse engineering research community during the past two decades [Sta 98, STOR 97, STOR 98,
M.-A 01]. Many of them provide ways to uncover and navigate information about software systems.
We omit an in-depth discussion about software visualization work here, as we discuss it in the subsequent
chapters in a more context-relevant way. Our approach does not differ very much from existing software
visualization techniques, but adds a dimension of understanding more by allowing us to enrich the visual-
ization with software metrics information.

Software Metrics

“What is not measurable make measurable.” (Galileo Galilei)

Metrics have long been studied as a way to assess the quality and complexity of software [FENT 96],
and recently this has been applied to object-oriented software as well [LORE 94] [HEND 96].

In a reverse engineering context software metrics are interesting because they can be used to assess
the quality and complexity of a system and because they are known to scale up. Furthermore, metrics are
a good means to control the quality and the state of a software system during the development process
[FENT 96]. However, metric measurements often come in huge tables that are hard to interpret, and this is
even more difficult when metrics are combined to generate yet other metrics.

Formally, metrics measure certain properties of a software system by mapping them to numbers (or
other symbols) according to well-defined, objective measurement rules. The measurement results are then
used to describe, judge, or predict characteristics of the software system with respect to the property that
has been measured. Usually, measurements are made to provide a foundation of information upon which
decisions about software engineering tasks can both be planned and performed better.

Metrics can be divided in two groups [LORE 94]:

1. Design Metrics.These metrics are used to assess the size and in some cases the quality, size and
complexity of software. They take a look at the quality of the project’s design at a particular point in
the development cycle. Design metrics tend to be more locally focused and more specific, thereby
allowing them to be used effectively to directly examine and improve the quality of the product
components.

2. Project Metrics.They deal with the dynamics of a project, with what it takes to get to a certain point
in the development life cycle and how to know you’re there. They can be used in a predictive manner,
for example to estimate staffing requirements. Being at a higher level of abstraction, they are less
prescriptive and more fuzzy but are more important from an overall project perspective.

12
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In this work we have decided to usedirect measurementmetrics,e.g., metrics which can be computed
directly from the source code without using any other kind of information. We have taken choice in order
to comply with the principle to use a lightweight approach.

2.3.2 Constraints

We developed our approach in the context of the European Esprit project FAMOOS, whose main results
have been summarized in a reengineering handbook [Duc 99] which was the basis for a book on object-
oriented reengineering patterns [DEME 02]. The goal of the project was to reengineer several large in-
dustrial object-oriented software systems. The industrial setting of the FAMOOS project introduced the
following constraints:

• Simplicity. In software industry, reengineers face many problems,i.e., short time constraints, little
tool support, and limited manpower. It is for this reason that we wanted our results to be reproduce-
able by software engineers at their workplace, without having to rely on complex or expensive tools.
Moreover, by choosing a simple, lightweight approach, we were able to get results quickly, in order
to evaluate whether certain ideas were viable or not.

• Scalability. We wanted to make sure that our approach could handle the size of industrial systems,
which can be of several millions of lines of code. Scalability is on one hand guaranteed by the
use of software metrics, since metrics can be computed independently from the size of the system.
On the other hand our approach allowed us to generate, test and accept/reject new ideas in short
iteration cycles. After starting the development of our approach and the implementation of our tools
to validate the approach, we repeatedly tested them in industrial settings to see whether they were
actually viable and could indeed scale up.

• Language Independence.In order to handle software systems written in different languages, we
developed FAMIX [DEME 01, TICH 01], a language independent metamodel. Our implementation
in Smalltalk of the FAMIX metamodel, called the Moose Reengineering Environment [DUCA 00],
is discussed in Appendix A.

• Short Time. The amount of time to reverse engineer the subject systems was very short, and ranged
from one or two days to maximum one week. This is too short for a complete reverse engineering,
and we thus aimed more at getting araw understandingof the systems.

2.3.3 Goals

When reverse engineering a software system it is of key importance to have clear goals in mind. The six
objectives listed by Chikofsky and Cross [CHIK 90] are too general to be directly usable as concrete goals.
We make here a canonical list of goals we want to achieve when reverse engineering a system,e.g., the
following is a list of questions and goals we want to test our approach against. Moreover, we can divide the
goals in three complementary sets which target different levels of understanding, namely coarse-grained,
fine-grained, and evolutionary understanding.

In the context of object-oriented legacy systems we settled on the following goals:

• Coarse-grained Goals:

1. Assess the overall quality of the system.

2. Gain an overview of the system in terms of size, complexity, and structure.

3. Locate and understand the most important classes and inheritance hierarchies,i.e., find the
classes and hierarchies that represent a core part of the system’s domain and understand their
design, structure in terms of implementation, and purpose in terms of functionality.

4. Identify exceptional classes in terms of size and/or complexity compared to all classes in the
subject system. These may be candidates for a further inspection or for the application of
refactorings.

13



14 CHAPTER 2. OBJECT-ORIENTED REVERSE ENGINEERING

5. Identify exceptional methods in terms of size and/or complexity compared to the average of
the methods in the subject system. These may be candidates for a further inspection regarding
duplicated code or for the application of refactorings.

6. Locate unused,e.g., dead code. This can be unused attributes, methods that are never invoked
or that have commented method bodies, unreferenced classes, etc.

• Fine-grained Goals:

1. Understand the concrete implementation of classes and class hierarchies, and detect common
patterns or coding styles. Look for signs of inconsistencies like the use of accessors.

2. Identify the possible presence of design patterns or occasions where design patterns could be
introduced to ameliorate the system’s structure.

3. Build a mental image of a class in terms of method invocations and state access.

4. Understand the class/subclass roles.

5. Identify key methods in a class.

• Evolutionary Goals:

1. Understand the evolution of object-oriented software systems in terms of size and growth rate.

2. Understand at which point in time classes have been introduced into a system and at which
moment they have been removed.

3. Understand how classes grow and shrink in terms of the number of methods and the number of
attributes.

4. See if there are patterns in the evolution of classes. Such patterns help to understand the con-
dition of a class in a time perspective,e.g., how resistant to software evolution processes is
a class, is it changed with every release of a system, or are there classes which are virtually
immune to software evolution?

The result of a reverse engineering process is therefore not necessarily a list of problematic classes or
subsystems, even if the identification of possible design defects is a valuable piece of information. The goal
of a reverse engineer is to understand the overall structure of the application, to gain a better understanding
of the inheritance relationships between classes, and to gain an overview of the methods and the way they
are organized. Indeed, we are looking for the bad use as well as the good use of object-oriented design. In
that sense, knowing that an inheritance hierarchy is well designed is also valuable information.

Moreover, in a reengineering context the fact that a class may have a design problem does not necessar-
ily imply that the class should be redesigned. Indeed, if a badly designed class or subsystem accomplishes
the work it has been assigned to, without having a negative impact on the overall working of the system,
there is no point in changing it. However, being aware of such information is still valuable for getting a
better mental model of the system.

2.4 Conclusions

In this chapter we analyzed the problems of reverse engineering in general and of reverse engineering for
object-oriented systems in particular. We have seen that the maintenance and evolution of legacy software
systems constitute major problems that software engineers need to tackle, because the systems in question
are too complex and too valuable to be replaced or to be rewritten from scratch. We discussed the limits and
benefits of present approaches to solve those problems and then positioned our own approach (presented in
detail in Chapter 3), which is a lightweight combination of software visualization and software metrics.

From a common set of abstract reverse engineering objectives we derived a set of goals that we want to
obtain and against which we will evaluate our work.

14



Chapter 3

The Polymetric View

In this chapter we present the different aspects of our approach, which ultimately leads to the construction
of lightweight software visualizations enriched with software metrics. We call these visualizationspoly-
metric views.

Structure of the chapter. First we present how we use metrics to enrich our visualizations (Sec-
tion 3.1). Then we present a selection of the metrics at our disposal (Section 3.2). Finally we present
which ingredients are needed to yield visualizations, illustrate two examples of such polymetric views, and
discuss how a polymetric view is to be interpreted.

3.1 The Principle

We use two-dimensional visualizations to display software. More precisely we use nodes (rectangles) to
display software entities or abstractions of them, while we use edges to represent relationships between
the entities. This is a widely used practice in information visualization and software visualization tools.
Ware claims that “other possible graphical notations for showing connectivity would be far less effective”
[WARE 00]. We enrich this basic visualization technique by rendering up to 5 metric measurements on a
single node simultaneously, as we see in Figure 3.1.

Figure 3.1: Up to 5 metrics can be visualized on one node.
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16 CHAPTER 3. THE POLYMETRIC VIEW

• Node Size.The width and the height of a node can each render one metric measurement. The bigger
these measurements are, the bigger the node is in one or both of the dimensions.

• Node Color. The color interval between white and black can be used render another metric measure-
ment. The convention is that the higher the metric value is, the darker the node is. Thus light gray
represents a smaller metric measurement than dark gray. We opted against using different colors, be-
cause nominal colors cannot reflect quantities. Tufte [TUFT 01] states that “Despite our experiences
with the spectrum in science textbooks and rainbows, the mind’s eye does not readily give a visual
ordering to colors. Because they do have a natural visual hierarchy, varying shades of gray show
varying quantities better than color”. There are exceptions to this rule, for example weather maps
use a spectrum which ranges from blue to red to denote warm and cold temperatures, although in
this case the distinction between warm and cold introduces again a nominal ordering.

• Node Position. The X and Y coordinates of the position of the node can also reflect two metrics
measurements. This requires the presence of an absolute origin within a fixed coordinate system.
Not all layouts can exploit position metrics, as some of them implicitly dictate the position of the
nodes (e.g., a tree layout).

In measurement theory, this procedure of rendering metrics on two-dimensional nodes is calledmea-
surement mapping, and fulfills the representation condition, which asserts that “a measurement mapping
M must map entities into numbers and empirical relations into numerical relations in such a way that the
empirical relations preserve and are preserved by the numerical relations” [FENT 96]. In other words, if a
numbera is bigger than a numberb, the graphical representation ofa andb must preserve this fact.

Because we want to have interactive visualizations,e.g., the viewer must be able to interact with the
visualization, we defined our measurement mapping function considering a real-world issue: in order for
the user to be able to click on a node, the node must have a certain size. On the other hand the size of the
node must render the underlying metric measurement as truthfully as possible. The first idea which comes
to mind is a direct one-to-one mapping. However, this idea must be rejected because if a measurement
is zero the node will have no dimension. We have considered several possible solutions [LANZ 99] for
this problem, and have finally settled on defining a minimal node size (MNS) value, to which the metric
measurement is directly added. We settled on having MNS = 4, this value can however be easily changed.
In Table 3.1 we see how our measurement mapping function behaves on certain input values by assuming
that MNS = 4.

Metric Measurement Resulting Node Width/Height
0 4
1 5
2 6
5 9
10 14
100 104

Table 3.1: An exemplification of our measurement mapping function based on a minimal node
size (MNS) of 4.

3.2 Software Metrics

In our polymetric views we make extensive use of object-oriented software metrics. In the wide array
of possible metrics [LORE 94] [HEND 96] [FENT 96] we selecteddesign metrics, i.e., metrics that can be
extracted from the source code entities themselves. These metrics are usually used to assess the size and in
some cases the quality and complexity of software.
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The metrics we use are termeddirect measurementmetrics because their computation involves no other
attributes or entities [FENT 96]. We don’t make use ofindirect measurementwhere metrics are combined
to generate new ones, because themeasurement mappingpresented in the previous section works best
with direct measurements. Examples of indirect metrics includeprogrammer productivity, defect detection
densityor module defect density, as well as more code-oriented ones likeCBO and RFC, presented in
[CHID 94]. We chose to use metrics that can be extracted from source code entities, and which have a
simple and clear definition. As such we don’t usecomposite metrics, which raise the issue of dimensional
consistency [HEND 96].

Class Metrics
Name Description
HNL Number of classes in superclass chain of class
NAM Number of abstract methods
NCV Number of (static) class variables
NIA Number of inherited attributes
NIV Number of instance variables
NME Number of methods extended,i.e., redefined in subclass by invoking the same method on

a superclass
NMI Number of methods inherited,i.e., defined in superclass and inherited unmodified by

subclass
NMO Number of methods overridden,i.e., redefined compared to superclass
NOA Number of attributes (NOA = NIV + NCV)
NOC Number of immediate subclasses of a class
NOM Number of methods
WLOC Sum of LOC over all methods
WMSG Sum of message sends in a class
WNMAA Number of all accesses on attributes
WNOC Number of all descendant classes
WNOS Sum of statements in all method bodies of class
WNI Number of invocations of all methods

Table 3.2: A list of the class metrics used in this thesis.

Method Metrics
Name Description
LOC Method lines of code
NMA Number of methods added,i.e., defined in subclass and not in superclass
MHNL Class HNL in which method is implemented
MSG Number of method message sends
NOP Number of (input) parameters
NI Number of invocations of other methods within method body
NMAA Number of accesses on attributes
NOS Number of statements in method body

Table 3.3: A list of the method metrics used in this thesis.

In Table 3.2, Table 3.3, and Table 3.4 we list all the software metrics mentioned in this thesis. The
metrics are divided into three groups, namely class, method and attribute metrics,i.e., these are the entities
the metric measurements are assigned to. Since one of our main constraints is to reengineer systems
written in different object-oriented languages we have chosen to include in our metrics engine metrics
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18 CHAPTER 3. THE POLYMETRIC VIEW

Attribute Metrics
Name Description
AHNL Class HNL in which attribute is defined
NAA Number of times directly accessed. Note that NAA = NGA + NLA
NGA Number of direct accesses from outside of its class
NLA Number of direct accesses from within its class

Table 3.4: A list of the attribute metrics used in this thesis.

whose computation does not depend on any language-specific features, but can be based directly on our
language-independent metamodel, which we present in Section A.

3.3 The Actual Visualization: A Polymetric View

An actual polymetric view depends on three ingredients, (1)a layout, (2) a set of metrics, and (3)a set of
entities.

1. A layout. A layout takes into account the choice of the displayed entities and their relationships and
issues like whether the complete display should fit on the screen, whether space should be minimized,
whether nodes should be sorted, etc. Some layouts make sense for all purposes, while others are
better suited for special cases (e.g., a tree layout is better suited for the display of an inheritance
hierarchy than a circle layout).

We implemented a small set of simple layouts [LANZ 99] and list below the essential ones. As part
of our lightweight approach, we chose to implement only simple ones, although more advanced and
powerful layouting techniques [BATT 99] are also interesting in this context. The essential layouts
we used are Tree, Scatterplot, Histogram, Checker and Stapled. We have chosen to use these layouts
because of their simplicity and because of the advantages discussed below.

• Tree.Positions all entities according to some hierarchical relationship. See Figure 3.2 for an ex-
ample. This layout is essential to visualize hierarchical structures. In the case of object-oriented
programming languages this applies especially for classes and their inheritance relationships.

• Scatterplot.Positions nodes in an orthogonal grid (origin in the upper left corner) according to
two measurements. Entities with two identical measurements will overlap. This algorithm is
useful for comparing two metrics in large populations. See Figure 4.10 for an example. This
layout is very scalable, because the space it consumes is due to the measurements of the nodes
and not to the actual number of nodes.

• Histogram.Positions nodes along a vertical axis depending on one measurement. Nodes with
the same measurement are then positioned in rows, one beside the other. See Figure 4.6 for an
example. This layout is useful for analyzing the distribution of a population with regard to a
certain metric.

• Checker. Sorts nodes according to a given metric and then places them into several rows in
a checkerboard pattern. It is useful for getting a first impression, especially for the relative
proportions between the measurements of the visualized nodes. See Figure 4.3 for an example.
This layout’s advantage is that is uses little space to layout large numbers of nodes. Moreover,
since the nodes are sorted according to a certain metric, it can also be used to easily detect
outliers.

• Stapled. Sorts nodes according to the width metric, renders a second metric as the height
of a node and then positions nodes one besides the other in a long row. This layout is used
to detect exceptional cases for metrics that usually correlate, because it normally results in a
steady declining staircase, while exceptions break the steady declination. See Figure 4.9 for an
example.
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2. The metrics. We incorporate up to 5 metrics selected from the set of metrics presented in Section 3.2
into a polymetric view, as we have seen in Section 3.1. The choice of the metrics heavily influences
the resulting visualization, as well as its interpretation.

3. The entities. Certain views are better suited for small parts of the system, while others can handle
a complete large system. The reverse engineer must choose which parts or entities of the subject
system he wants to visualize. These choices are part of the methodology discussed in depth in
Chapter 4.

3.4 Two Example Polymetric Views

The System Complexity View

Figure 3.2 provides a first example: it shows a tree layout of nodes enriched with metrics information. The
nodes represent classes, while the edges represent the inheritance relationships between them. The size of
the nodes reflects the number of attributes (width) and the number of methods (height) of the classes, while
the color tone represents the number of lines of code of the classes. In this case the position of the nodes
does not reflect metric measurements, as the nodes’ position is implicitly given by the tree layout.

Figure 3.2: The SYSTEM COMPLEXITY view. This visualization of classes uses a tree layout. The
edges represent inheritance relationships. The metrics we use to enrich the view are NOA (the
number of attributes of a class) for the width and NOM (the number of methods of a class) for the
height. The color shade represents WLOC (the number of lines of code of a class).

The combination of the tree layout, the metrics mentioned above and the selection of classes as nodes
and inheritance relationships as edges yields a polymetric view that we call SYSTEM COMPLEXITY view.
It visualizes classes as nodes, while the edges represent inheritance relationships. The metrics we use to
enrich this view are NOA (the number of attributes of a class) for the width and NOM (the number of
methods of a class) for the height. The color shade represents WLOC (the number of lines of code of a
class). We discuss this view’s properties and its interpretation in a reverse engineering context in more
detail in Chapter 4.
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20 CHAPTER 3. THE POLYMETRIC VIEW

The Method Efficiency Correlation View

Figure 3.3 provides a second example: it shows a correlation layout of methods nodes. In this case we do
not use any size or color metrics, but only the two position metrics: the horizontal position of the nodes
represents LOC (the lines of code), while the vertical position of the nodes represents NOS (the number of
statements in the method body).

Figure 3.3: The METHOD EFFICIENCY CORRELATION view. This visualization of methods uses a
correlation layout. The metrics we use to enrich the view are LOC (the number of line of code of
a method) for the horizontal position and NOS (the number of statements in a method body) for
the vertical position.

The combination of the correlation layout, the used position metrics and the choice of visualizing
methods as nodes yields a view which we call METHOD EFFICIENCY CORRELATION view. We discuss
this view’s properties and its interpretation in a reverse engineering context in more detail in Chapter 4.

3.5 Interpretation of a Polymetric View

The polymetric views are revealers ofsymptomswhich reside at a purely visual level,i.e., they can be
small dark nodes or large nodes, or even nodes at a certain position. These symptoms provide information
about the subject system and support the decision process of which next view should be applied on which
part of the system by the reverse engineer. Not all views lead to other views, but they may also result in
specific reengineering actions that represent the next logical step after the detection of defects. For example
detecting a “god class”, defined by Riel [RIEL 96] as a class that has grown over the years ending up with
too many responsibilities, may lead to a necessary splitting of the class. For example, long methods can
be analyzed to see if they contain duplicated code or if they can be split up into smaller, more reusable
methods [ROBE 97], etc.
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3.6 Useful Polymetric Views

Since our approach allows one to combine a subset of the presented metrics with a layout algorithm on
any kind of software artifacts, there is a great number of possible views. However, many of those are
similar to others (e.g., by exchanging the width and height metrics) and many others do not help the reverse
engineering process. We identified a number ofusefulviews, i.e., polymetric views that are useful for the
reverse engineering process, and present a subset of them in the next chapter.

3.7 Discussion

We shortly discuss several questions that may arise regarding the polymetric views.

• 2D vs 3D.One may argue that using three-dimensional displays instead of two-dimensional ones
could further increase the amount of information conveyed by the polymetric views. Brown and
Najork [Sta 98] advocate the use of 3D over 2D in software visualizations for the following reasons:

1. Expressing fundamental information about structures that are inherently two-dimensional.This
means we could visualize yet another metric. However, our experiments and experience have
shown that the meaningful combination of metrics and visualization techniques already put a
strain on the viewer, the gain that would result from having the possibility to visualize a metric
more would thus only be marginal.

2. Uniting multiple views of an object.This means that 3D can be used as a multiple 2D view. In
our visualizations we use multiple windows to reach the same effect.

3. Capturing a history of a two-dimensional view.In Chapter 6 we present and discuss a polymet-
ric view which allows us to visualize the evolution of software entities without needing to use
the third dimension.

The main reason why we chose not to use three-dimensional displays is that we consistently wanted
to use lightweight approaches, and the added complexity in terms of graphical output and navigation
would have contradicted this.

• Composite metrics. One could argue that the more complex and expressive the metrics are, the
more they information they convey. For example we could use metrics like LCOM (low cohesion of
methods) [CHID 94] to display classes.

However, although this may yield interesting results (as we discuss in the chapter on future work), we
believe that using direct measurement metrics which can be extracted from the source code without
needing other information complies more with our lightweight approach and also prevents us from
meddling with composite metrics, many of which still lack a clear and widely recognized definition.
Moreover, composite metrics are often not natural numbers, but only fractions (for example between
0 and 1), and such numbers would need to be multiplied in order to have a visual impact on our
views. However, this would not fit our measurement mapping approach described previously.

• Other Visual Variables. Bertin [BERT 74] established a vocabulary of visual variables which can be
used to encode information. In the polymetric views we use for example the variables of size, color,
and position. We could enhance the polymetric views even further by using other visual variables like
shape (class nodes look differently than method nodes, for example with rounded corners), texture
design, texture orientation, etc.

This is part of our future work, Bertin and Tufte have both shown that one can find a better-than-
average way of displaying information. Moreover, the number of polymetric views that we found by
using 5 visual variables is already great, and adding more visual variables must be done carefully to
prevent a visual overload.
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Chapter 4

Coarse-grained Software Visualization

4.1 Introduction

Reverse engineering large object-oriented software systems is a task which needs to be performed sys-
tematically, otherwise one risks getting lost in unimportant details. Since the systems in question are too
large to be understood by reading the code, there is a need for a systematic approach. Moreover, since
the object-oriented paradigm does not support a reading order (i.e., the domain model is distributed across
classes, hierarchies, and subsystems without an explicit beginning or end), as in the case of procedural
programming languages, the reverse engineer needs to know where to start looking into the system in order
to understand its structure. The goal of the first phase of a reverse engineering (e.g., the first week) is to
gain a general impression of the system (what are we looking at?) and to get to know the particularities
of the system (what are we looking for?). This goal can be broken down into concrete questions whose
answer we are seeking at the beginning, which is a subset of the goals identified in Chapter 2.

Summary. In this chapter we try to answer a set of concrete reverse engineering questions by using
coarse-grained polymetric views. We present several polymetric views1, grouped in clusters, which are
useful for the reverse engineering of large object-oriented software systems. With these coarse-grained
polymetric views we are targeting the first phase (e.g., the first week) of a reverse engineering process,
because in this phase a reverse engineer forms his first mental picture of the system [STOR 99]. We call the
views presented herecoarse-grained, because they are mainly applicable to complete and large software
systems,i.e., many of these views scale up. The grouping of the views into clusters eases the reading, but
does also provide guidelines of the context in which certain polymetric views can be applied. Moreover,
we present a reverse engineering approach based on the polymetric views, which not only discusses what
to look for in certain views, but also suggests which polymetric views to apply in which situations.

Contributions. The contributions of this chapter are the following:

• The definition and description of several coarse-grainedpolymetric views, lightweight software visu-
alizations enriched with software metrics information. By applying these views to an object-oriented
software system, we show that we can answer a set of concrete reverse engineering questions.

• The presentation of a reverse engineering approach based on these polymetric views, which targets
the first phase of a reverse engineering process, and which is useful to guide a reverse engineer.

Structure of the chapter. In Section 4.2 we start by discussing the goals of the process that must
take place in order to reverse engineer a large software system. We then motivate the need for a reverse
engineering approach and introduce our own approach. In Section 4.3 we exemplify it by applying several
polymetric views on the same case study and by discussing the views in detail. We then make an evaluation

1This chapter is an extended version of the articlePolymetric Views - A Lightweight Visual Approach to Reverse Engineering,
accepted for publication in the journal IEEE Transactions on Software Engineering, IEEE Press.
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of the case study and report on our industrial experiences. Finally we discuss related work (Section 4.4)
and then conclude in Section 4.5 by discussing our findings and evaluating future work.

4.2 The Reverse Engineering Process

Before starting a reverse engineering, it is essential to decide which primary goals to pursue and which
ones are only of secondary importance. In the following, we present a short canonical list of primary goals
we have inferred from our own reverse engineering experience, and which is a subset of the goals listed in
Chapter 2. From the first phase of a reverse engineering process we expect to obtain the following results:

• Assess the overall quality of the system

• Gain an overview of the system in terms of size, complexity, and structure.

• Locate and understand the most important classes and inheritance hierarchies,i.e., find the classes
and hierarchies that represent a core part of the system’s domain and understand their design, struc-
ture in terms of implementation, and purpose in terms of functionality.

• Identify exceptional classes in terms of size and/or complexity compared to all classes in the subject
system. These may be candidates for a further inspection or for the application of refactorings.

• Identify exceptional methods in terms of size and/or complexity compared to the average of the
methods in the subject system. These may be candidates for a further inspection regarding duplicated
code or for the application of refactorings.

• Locate unused,e.g., dead code. This can be unused attributes, methods that are never invoked or that
have commented method bodies, unreferenced classes, etc.

We would like to stress that the result of a reverse engineering process is therefore not necessarily a
list of problematic classes or subsystems, even if the identification of possible design defects is a valuable
piece of information. The goal of a reverse engineer is to understand the overall structure of the application,
to gain a better understanding of the inheritance relationships between classes, and to gain an overview of
the methods and the way they are organized. Indeed, we are looking for the bad use as well as the good
use of object-oriented design. In that sense, knowing that an inheritance hierarchy is well designed is also
valuable information.

Moreover, in a reengineering context the fact that a class may have a design problem does not necessar-
ily imply that the class should be redesigned. Indeed, if a badly designed class or subsystem accomplishes
the work it has been assigned to, without having a negative impact on the overall working of the system,
there is no point in changing it. However, since reengineers are often not the original developers of the
system they are maintaining, being aware of such information is still valuable for getting a better mental
model of the system.

4.2.1 A Reverse Engineering Approach Based on Clusters of Polymetric Views

Our approach is based on clusters that loosely group coarse-grained polymetric views depending on the
situation encountered by the reverse engineer and the information provided by the view. Each of these
clusters is presented in detail in the following sections. We identified four clusters: First Contact, Inheri-
tance Assessment, Candidate Detection, and Class Internal which is discussed in Chapter 5. The views in
each cluster provide answers to the questions listed previously, and also answer minor questions that can
be derived from those.

In Figure 4.1 we have represented the four clusters of useful views in the context of time. Note that
during the process the reverse engineer navigates back and forth from view to view, depending on the
encountered symptoms and on the goals of the reverse engineering process. The primary goal is to get an
initial understanding of the system which helps the reverse engineer to develop a first mental model of the
legacy system [DEME 02].
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Time

Detection
Candidate

First
Contact

Inheritance
Assessment

Class
Internal

Figure 4.1: Our reverse engineering approach. It is based on 4 clusters whose views are applied
at different times during the process.

• First Contact. The first thing to do with a subject system is to gain an overview. We would like to
know how big and complex the system is and in which way it is structured. The views in this cluster
provide answers to the following questions: How big is the system and how is it composed: only
of standalone classes, or of some (maybe large) inheritance hierarchies? Is the system composed of
many small classes or are there some really big ones? Where in the system do these large classes
reside? This cluster contains the views SYSTEM HOTSPOTS, SYSTEM COMPLEXITY, ROOT CLASS

DETECTION and IMPLEMENTATION WEIGHT DISTRIBUTION.

• Inheritance Assessment.Inheritance is a key aspect of object-oriented programming languages,
and thus represents an important perspective from which to understand applications. Inheritance
can be used in different ways, for example as pure addition of functionality in the subclasses or
as an extension of the functionality provided by the superclasses. The views in this cluster help
in the analysis of inheritance and provide answers to the following questions: How are inheritance
hierarchies structured and how do they make use of inheritance? Are subclasses merely adding new
functionality of redefining the functionality defined in the superclasses? This cluster contains the
views INHERITANCE CLASSIFICATION and INHERITANCE CARRIER.

• Candidate Detection. One of the primary goals of a reverse engineer is to detect candidates for a
more in-depth analysis which may be either cases where further investigation is necessary or where
code refactorings are needed. The views in this cluster help in this problem detection process and
provide answers to the following questions: Where are the large (small) classes or methods? Are
there methods which contain dead code or attributes which are never used? This cluster contains
the views DATA STORAGE CLASS DETECTION, METHOD EFFICIENCY CORRELATION, DIRECT

ATTRIBUTE ACCESSand METHOD LENGTH DISTRIBUTION.

• Class Internal. Understanding classes is a key activity in object-oriented programming, since classes
represent the primary abstractions from which applications are built. The main problem of this task
is to quickly grasp the purpose of a class and its inner structure. We present and discuss the most
important polymetric view in this cluster, the CLASS BLUEPRINT view, in the next chapter. However,
note that several of the views belonging to the other clusters can easily be applied on single classes
as well, and can thus be found in this chapter.

4.2.2 The Need for a Reverse Engineering Approach

We applied our approach on several large industrial applications ranging from a system of approximately
1.2 Million lines in C++ to a Smalltalk framework of approximately 3000 classes (600 kLOC). During our
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experiments we were able to quickly gain an overall understanding of the analyzed applications, identify
problems and point to classes or subsystems for further investigation.

Moreover we learned that the approach is preferably applied during the first contact with a software
system, and provides maximum benefit during the one or two first weeks of the reverse engineering process.

We have already presented a first version of our approach [DUCA 01a], and now present an extended
and elaborated version. Ideally such an approach defines which views to apply depending on the short-
term and long-term goals of the reverse engineer, what the paths are between the different views, and on
what parts of the system the next view should be applied. Such an approach is difficult to elaborate for the
following reasons:

• There is no unique or ideal path through the views.

• Different views can be applied at the same stage depending on the current context.

• The decision to use a certain view most of the time depends on some interactions with the currently
displayed view.

• The views can be applied to different entities implying some navigation facility between the different
views.

• A view displays a system from a certain perspective that emphasizes a particular aspect of the system.
However, the view has to be analyzed and the code understood to determine if the details revealed
by the view are interesting for further investigation.

• The views are heavily customizable. For instance exchanging two metrics is very easy, but it may
result in completely different views. The reverse engineer must steer this process in order to apply
useful views and customize those views to get other useful views.

4.3 A Reverse Engineering Scenario

In this section we introduce shortly the case study and then illustrate our reverse engineering approach by
presenting and discussing several useful views in detail. We also present the application of the views on
the case study. At the end on this section we summarize our findings and present some of the industrial
case studies we have performed.

Reporting about a case study is quite difficult without sacrificing the exploratory nature of our ap-
proach. Indeed, the idea is that different views provide different yet complementary perspectives on the
software. Consequently, a concrete and unambiguous reverse engineering strategy should be to apply the
views in some predefined order, but the exact order varies depending on the kind of system at hand and
the kind of questions driving the reverse engineering effort. Therefore, readers should read this case study
report as one possible use case, keeping in mind that reverse engineers always customize their approach to
a particular reverse engineering project.

Some Facts about the Case Study.The system we report on is called Duploc (version 2.16a), which
is a tool for the detection of duplicated code [DUCA 99]. We have chosen Duploc as case study because it
is a freely obtainable application, so that the results presented here can be replicated and verified by others.
We have already done a preliminary case study on an older version from 1999 of Duploc [LANZ 99], and
are curious to see how Duploc has evolved in the meantime. Duploc has become quite a large system,
as we see in Table 4.1, and is thus complex enough to justify a reverse engineering. Duploc detects code
duplication by means of a two-dimensional visualization of each line in a matrix, as we see in Figure 4.2.

Note that the numbers presented in Table 4.1 include metaclasses and stub classes.

• Metaclasses are included because in Smalltalk we consider a metaclass as being a different entity
than a class. In Smalltalk metaclasses encode class behavior, in simple words we could say that
metaclasses implement thestaticmethods. Note that this is not completely correct, as metaclasses
have much more power, but such a discussion is out of the scope of this thesis.
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Entities Amount
Classes 758
Methods 5493
Attributes 794

Relationships Amount
Inheritance Relationships 634
Method Invocations 19327
Attribute Accesses 30682

Table 4.1: An overview of the size of the Duploc case study.

Figure 4.2: A screenshot from the Duploc case study.

• Stub Classes are included for reasons of completeness: We have selected all classes which belong
to the Duploc application, but since the Duploc classes also inherit from other classes or reference
them, we include these other classes as empty stub classes.

Therefore the actual number of classes in the Duploc application is smaller, namely 317. The numbers
in the table are derived like this: 758 = 317 (classes) + 317 (metaclasses) + 62 (stub classes) + 62 (stub
metaclasses). The other metrics in the table are however correct, since stub classes are considered empty
in our model.

4.3.1 Reverse Engineering a System

Reverse engineering a system is a non-linear procedure and is difficult to present as a sequential text. For
reasons of simplicity we discuss the views of each of the clusters, show their application to the case study
and put them into relation according to our approach presented in Section 4.2, as well as depending on the
situations encountered during the reverse engineering of Duploc.

In the remainder of this section we present several of these views in detail. Every view comes with a
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small description which includes the name of the view, the used layout, the scope of the view, the entities
which it visualizes, and a list of the used metrics, and an optional sort criterion according to which the nodes
have been sorted, and which in some cases influences the position of the nodes. Moreover, we provide a
detailed description of the view which includes the following: First a short presentation of the idea behind
the view, then a list of the symptoms the viewer should watch out for, and finally possible variations of a
view and their effects. Interspersed in the text we also point out other related views which could be applied.
Then we apply the views on the case study and discuss the findings.
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4.3.2 First Contact Views

The main purpose of these views is to obtain a first overview of a subject system. This cluster contains the
following views:

1. SYSTEM HOTSPOTSV IEW

2. SYSTEM COMPLEXITY V IEW

3. ROOT CLASS DETECTION V IEW

4. IMPLEMENTATION WEIGHT DISTRIBUTION V IEW
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SYSTEM HOTSPOTSV IEW

Layout Checker
Nodes Classes
Edges -
Scope Full System
Metrics
Size NOA (number of attributes) NOM (number of methods)
Color -
Position - -
Sort Width
Example Figure 4.3

Description

This simple view helps to identify large and small classes and scales up to very large systems. It relates
the number of methods with the number of attributes of a class. The nodes are sorted according to the
number of methods, which makes the identification of outliers easy.

Reverse Engineering Goals

This view gives a general impression of the system in terms of overall size (how many nodes are there?)
and in terms of the size of the classes (are there any really large nodes and how many large nodes are there?)

Symptoms

1. Large nodes represent voluminous classes that may be further investigated.

2. Tall, narrow nodes represent classes which define many methods and few or no attributes.

3. Wide nodes are classes with many attributes. When such nodes show a 1:2 width-height ratio it
may represent a class whose main purpose is to be a data structure implementing mostly accessor
methods.

Variations

1. If we use the lines of code (WLOC) or the number of methods (NOM), as we see in Figure 4.3 for
rendering both the width and height of the nodes, we obtain a slightly different view which helps
to assess the whole system in terms of raw measure: are there any big classes and how big are they
actually?

2. In the case of Smalltalk classes, we can color metaclasses differently and check how they distribute
themselves across the display. Should there now be large, colored nodes at the bottom of the display,
it may be a sign that these metaclasses have too many responsibilities or that they function facades
or as bridges to other classes [GAMM 95].

3. Further evidence can be gained from the color, which can be used to reflect the number of lines of
code of a class. Should a tall class have a light color it means that the class contains mostly short
methods.

Scenario

In Figure 4.3 we see all the Duploc classes. The classes in the bottom row contain more than 100
methods and should be further investigated. They areDuplocPresentationModelController (107 methods),
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Figure 4.3: A SYSTEM HOTSPOTSview (Variation 1+2) of Duploc. The nodes represent all the
classes, while the size of the nodes represent the number of methods they define. The grey
nodes represent metaclasses.

RawMatrix (107), DuplocSmalltalkRepository (116) and DuplocApplication (117 methods).We have col-
ored the nodes representing metaclasses with grey. Note the bottom-most grey node which is the metaclass
DuplocGlobalswith 59 methods. This class, as suggested as well by the name, is a holder for global values.
However, instead of using the metaclass, one suggestion to the developer is to apply the singleton design
pattern instead [GAMM 95].

This view shows that Duploc is a system of more than 300 classes, where the largest classes contain
more than 100 methods. It also shows an impressive number of very small classes implementing few
methods.
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SYSTEM COMPLEXITY V IEW

Layout Tree
Nodes Classes
Edges Inheritance
Scope Full System
Metrics
Size NOA (number of attributes) NOM (number of methods)
Color WLOC (lines of code)
Position - -
Sort -
Example Figure 4.4

Description

This view is based on the inheritance hierarchies of a subject system and gives clues on its complexity
and structure. For very large systems it is advisable to apply this view first on subsystems, as it takes quite
a lot of screen space. The goal of this view is to classify inheritance hierarchies in terms of the function-
ality they represent in a subject system. If we want to understand the inner working at a technical level of
inheritance hierarchies we apply the views of the inheritance assessment cluster.

Reverse Engineering Goals

The view helps to identify and locate the important inheritance hierarchies, but also shows whether
there are large classes not part of a hierarchy (possibly god classes [RIEL 96]). Like all views of the first
contact cluster it also answers the question about the size of the subject system. Moreover, it helps to detect
exceptional classes in terms of number of methods (tall nodes) or number of attributes (wide nodes).

Symptoms

1. Tall, narrow nodes represent classes with few attributes and many methods. When such nodes ap-
pear within a hierarchy, applying the INHERITANCE CLASSIFICATION view or the INHERITANCE

CARRIER view helps to qualify the semantics of the inheritance relationships in which the classes
are involved, as we see in the discussion of those views.

2. Deep or large hierarchies are definitively subsets of the system on which the views of the inheritance
assessment cluster should be applied to refine their understanding.

3. Large, standalone nodes represent classes with many attributes and methods without subclasses. It
may be worth looking at the internal structure of the class to learn if the class is well structured or if
it could be decomposed or reorganized.

Variations

1. A valuable variation of this view is the INHERITANCE CLASSIFICATION view discussed later in this
chapter.

Scenario

We perform a manual preprocessing which consists of removing the classObject, which is the root
class of the Smalltalk language. We do this in order to focus on the use of inheritance within Duploc:
Since many classes inherit directly fromObjectthis view would be distorted if we included it in our view.
We see the resulting SYSTEM COMPLEXITY view in Figure 4.4. We can see now that Duploc is in fact
mainly composed of classes which are not organized in inheritance hierarchies. Indeed, there are some very
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Figure 4.4: A SYSTEM COMPLEXITY view on Duploc. The nodes represent the classes, while the
edges represent inheritance relationships. As metrics we use the number of attributes (NOA) for
the width, the number of methods (NOM) for the height and the number of lines of code (WLOC)
for the color.

large classes which do not have subclasses. The largest inheritance hierarchies are five and six levels deep.
Noteworthy hierarchies seem to be the ones with the following root classes:AbstractPresentationMod-
elControllerState, AbstractPresentationModelViewState, DuplocSourceLocation. By manually inspecting
the first one, with the root classAbstractPresentationModelControllerStatewith 31 descendants, we infer
that it seems to be the application of thestatedesign pattern [GAMM 95, ALPE 98] for the controller part
of an MVC pattern. Such a complex hierarchy within Duploc is necessary, since Duploc does not make
any use of advanced graphical frameworks, but uses the basic standard VisualWorks GUI framework. Fol-
lowing this track of investigation we look for the other signs of the MVC pattern and find a hierarchy with
AbstractPresentationModelViewStateas root class with 12 descendants, which seems to constitute the view
part of the MVC pattern.

This view shows that Duploc consists of several very small hierarchies composed of small classes and
two bigger hierarchies, where one represents the domain model of Duploc (the Model hierarchy), and the
other one contains all GUI-related classes (the ApplicationModel hierarchy).
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ROOT CLASS DETECTION V IEW

Layout Scatterplot
Nodes Classes
Edges -
Scope Full System
Metrics
Size - -
Color -
Position WNOC (number of descendants) NOC (number of subclasses)
Sort -
Example Figure 4.5

Description

This view helps in identifying therootsof inheritance hierarchies by putting in relation the number of
direct subclasses with the number of descendant classes,i.e., all direct and indirect subclasses. This view
is mainly useful for very large systems, where a view like SYSTEM COMPLEXITY may have problems to
represent the whole system on one screen.

Reverse Engineering Goals

This view helps to identify the roots of the large inheritance hierarchies, and depending on the number
of nodes that are more to the right also gives an impression of the overall use of inheritance in the system.

Symptoms

1. Nodes to the right of the display have many descendants.

2. Nodes to the bottom of the display have many direct subclasses.

Figure 4.5: A ROOT CLASS DETECTION view (Variation 1) of Duploc. The horizontal position of the
class nodes renders the number of descendants of each class, while the vertical position renders
the number of immediate subclasses of each class.

Variations

1. If we use a different color to denote abstract classes, we are able to see whether the top-level classes
(the nodes to the right and bottom of the display) are declared as such, as we would expect.
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Scenario

We expect that this view will confirm our findings obtained with the SYSTEM COMPLEXITY view.
Indeed, as we see in Figure 4.5 there are two classes which stand out from the others,AbstractPresenta-
tionModelControllerState, PMCSwith 31 and 30 descendants, The latter is the sole direct subclass of the
former. We have colored the classes in case they are abstract, and see thatPMCSis not abstract, although at
the top of the largest inheritance hierarchy. After a short verification, we see that in factPMCShas in turn
abstract subclasses. Note that this is possible – although not advisable – in Smalltalk, because there are no
constructs at the language level which declare a class as being abstract, like in the case of C++ and Java. In
Smalltalk the abstractness of a class is implied by declaring one of its methods as abstract. However, this
is an idiom and not enforced at a language level.

This view shows that Duploc has only two major inheritance hierarchies, as is denoted by only two
outlying nodes.
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IMPLEMENTATION WEIGHT DISTRIBUTION V IEW

Layout Histogram
Nodes Classes
Edges -
Scope Full System
Metrics
Size NOM (number of methods) -
Color HNL (hierarchy nesting level)
Position - NOM (number of methods)
Sort -
Example Figure 4.6

Description

This view gives a qualitative overview of complete systems by categorizing them astop-heavy, bottom-
heavy or mixed. The histogram lays out the classes according to their size, while the color metric reflects
the metric HNL, i.e., the depth of a class within an inheritance hierarchy. Note that this view must be
looked at in general terms: the purpose is not to inspect and qualify each single node, but to look at the
display as a whole.

Reverse Engineering Goals

This view helps to gain a general impression of the system in terms of the use of inheritance and the
size of the classes.

Figure 4.6: An IMPLEMENTATION WEIGHT DISTRIBUTION view of Duploc. The width and vertical
position of the class nodes represents the number of methods, while the color represents the
hierarchy nesting level, e.g., the depth of the classes within an inheritance hierarchy.
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Symptoms

1. Dark nodes at the bottom of the display represent large classes deep within a hierarchy. Such systems
are bottom-heavy, because these symptoms reveal that the larger classes in the system are mainly at
the bottom of inheritance hierarchies, which may be a result of abuse of abstraction mechanisms.

2. Light nodes at the bottom of the display reveal that the large classes in the system reside in the higher
levels of the inheritance hierarchies, which may be also a problem, as subclassing large and complex
classes can be difficult.

3. The light and dark nodes are evenly distributed across the display, which classifies the system as
being mixed.

Variations

None

Scenario

We gather from Figure 4.6 that according to the definition of this view, Duploc is a top-heavy system,
i.e., the main weight of its implementation resides in the top-level classes.

This view shows that Duploc does not have very large classes, because the histogram would have been
taller then. It also shows that there are few large classes towards the bottom of the inheritance hierarchies.
This is also due to the fact that Duploc consists mostly of small inheritance hierarchies.
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4.3.3 Inheritance Assessment Views

These views help to understand and qualify the use of inheritance in a subject system. This cluster contains
the following views:

1. INHERITANCE CLASSIFICATION V IEW

2. INHERITANCE CARRIER V IEW

3. INTERMEDIATE ABSTRACT V IEW
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INHERITANCE CLASSIFICATION V IEW

Layout Tree
Nodes Classes
Edges Inheritance
Scope Subsystem
Metrics
Size NMA (number of methods added) NMO (number of methods overridden)
Color NME (number of methods extended)
Position - -
Sort -
Example Figure 4.7

Description

This view qualifies the inheritance relationships by displaying the amount of added methods relative to
the number of overridden or extended methods. By extended methods we mean methods which contain a
super call to a method with the same signature defined in one of the superclasses.

Reverse Engineering Goals

This view helps to understand the use of inheritance in class hierarchies, and reveals whether a hier-
archy is built on code reuse through extending and overriding methods, or on mere addition of functionality.

Figure 4.7: An INHERITANCE CLASSIFICATION view of the Model hierarchy in Duploc. The width
and height of the class nodes represents the number of added methods and the number of
overridden methods, while the color represents the number of extended methods.

Symptoms

1. Flat, light nodes represent classes where a lot of methods have been added but where few methods
have been overridden or extended. In this case the semantic of the inheritance relationship is an
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addition of functionality by the subclasses.

2. Tall, possibly darker nodes represent classes where a lot of methods have been overridden and/or
extended. They may represent classes that have specialized hook methods [GAMM 95]. If the nodes
are dark, it means that many methods have been extended, which hints at a higher degree of reuse of
functionality.

Variations

None

Scenario

We have selected only one hierarchy, the one indicated as theModelhierarchy in Figure 4.4, to demon-
strate the application of this view. We see in Figure 4.7 that theModelhierarchy is mainly composed of flat,
lightly colored nodes: these classes mainly add functionality (denoted by their width) without really over-
riding or extending functionality defined in the superclasses. We also see there are some exceptions: the
subclasses of the two widest class nodes (RawMatrixandAbstractRawSubMatrix) with 96 and 72 added
methods define several methods which are then overridden or extended by their subclasses. For exam-
ple the two subclasses (SymmetricRawMatrixandAsymmetricRawMatrix) of RawMatrixheavily override
functionality, as is indicated by their tall, narrow shape: both override 33 methods and add only 4, respec-
tively 9, methods.

This view applied on theModelhierarchy of Duploc shows that inheritance is used in both senses,e.g.,
there are parts of this hierarchy where classes add new methods, and other parts where classes reuse and
complement the functionality defined in their superclasses by extending or overriding methods.
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INHERITANCE CARRIER V IEW

Layout Tree
Nodes Classes
Edges Inheritance
Scope Subsystem
Metrics
Size WNOC (number of descendants) NOM (number of methods)
Color WNOC (number of descendants)
Position - -
Sort -
Example Figure 4.8

Description

This view helps to detect classes with a certain impact on their subclasses in terms of functionality,i.e.,
it helps us see which classes transmit the most functionality to their subclasses.

Reverse Engineering Goals

The goal of this view is to refine the understanding of a class hierarchy and see which classes have the
most impact on their subclasses.

Figure 4.8: An INHERITANCE CARRIER view of one hierarchy in Duploc. The width and the color of
the class nodes represents the number of descendants, while the height represents the number
of methods.
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Symptoms

1. Tall, dark nodes represent classes that define a lot of behavior and have many descendants. Therefore
these classes have a certain importance for the (sub)system in question.

2. Flat, light nodes represent classes with little behavior and few descendants.

3. Flat, dark nodes represent classes with little behavior and many descendants. They can be the ideal
place to put code factored out from the subclasses.

Variations

None

Scenario

Figure 4.8 shows this view for theModel hierarchy. It shows that the classes which are carrying the
weight of the implementation in this hierarchy are first of all the classesAbstractPresentationModelCon-
trollerStateandPMCS, where the latter is the sole subclass of the former. These classes are emphasized in
this view because of their darker color.

This view helped us to identify in the largest class hierarchy of Duploc those two classes which have
the most impact on the subclasses of this hierarchy and therefore constitute important information about
this hierarchy.
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INTERMEDIATE ABSTRACT V IEW

Layout Tree
Nodes Classes
Edges Inheritance
Scope Subsystem
Metrics
Size NOM (number of methods) NMA (number of methods added)
Color NOC (number of subclasses)
Position - -
Sort -
Example -

Description

This view identifies classes that are nearly empty in the middle of inheritance hierarchies. It uses the
number of subclasses (NOC) as color metric, while for the size metrics we use the number of methods
(NOM) and the number of methods which have been added compared to the superclass (NMA). Such
classes are of some interest, because functionality defined in their subclasses can be pushed up into the
intermediate abstract classes, in order to prevent or reduce code duplication.

Reverse Engineering Goals

This view helps to locate within inheritance hierarchies classes which are nearly empty and therefore
constitute places where one could factor code out from their subclasses into those intermediate classes.

Symptoms

1. Flat, dark nodes represent classes in which few or no methods have been added, but which have
many direct subclasses. Further investigation may reveal that these classes implement some abstract
behavior.

Variations

1. Instead of NOC, one could also use WNOC (the number of descendants) for the color, although in
large hierarchies the noise generated by other classes may obfuscate the detection of an intermediate
abstract class.

Scenario

This view did not yield results in the case of Duploc,i.e., Duploc does not contain an intermediate
abstract class.
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4.3.4 Candidate Detection Views

These views help to identify candidates for further inspection,e.g., interesting software artifacts like
classes, methods, and attributes in terms of size, complexity, and other particularities. Often these can-
didates represent places where it is useful to apply refactorings. This cluster contains the following views:

1. DATA STORAGE CLASS DETECTION V IEW

2. METHOD EFFICIENCY CORRELATION V IEW

3. DIRECT ATTRIBUTE ACCESSV IEW

4. METHOD LENGTH DISTRIBUTION V IEW
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DATA STORAGE CLASS DETECTION V IEW

Layout Stapled
Nodes Classes
Edges -
Scope Subsystem
Metrics
Size NOM (number of methods) WLOC (lines of code)
Color NOM (number of methods)
Position - -
Sort Width
Example Figure 4.9

Description

This view relates the number of methods (NOM) with the lines of code (WLOC) of classes and in-
terprets this information in the context of a subsystem or small system. Ideally this view should return a
nice staircase pattern from left to right, since the nodes are sorted according to the first metric and the two
metrics are related. Note that this view works in any setting, i.e., since it puts two values in relation it
doesn’t matter how big the actual measurements are.

Figure 4.9: A DATA STORAGE CLASS DETECTION view on the largest classes in terms of number
of methods of Duploc. The color and height metrics represents the number of lines of code of
each class, while the width represents the number of methods. The nodes are sorted according
to their width.

Reverse Engineering Goals
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This view helps to detect data storage classes,e.g., classes which mainly hold data and do not have
complex behavior. Such classes are normally heavily used by other classes which want to access the infor-
mation contained in the data storage classes. Moreover, it also helps to detect classes with an exceptional
average length of the methods compared to the rest of the subject system.

Symptoms

1. The staircase effect is broken by nodes which are too tall. These represent classes which have long
methods compared to the classes which comply with the staircase pattern.

2. The staircase pattern is broken by nodes which are too short. These classes, given a certain number
of methods, do not have the expected length in terms of lines of code. Such classes are often data
storage classes,i.e., classes which have short, simple methods, possibly only accessor methods. Data
storage classes may point to sets of coupled classes being brittle to changes.

Variations

1. To enhance the detection of data storage classes we can use the number of attributes (NOA) as color
metric, because data storage classes often have many attributes.

Scenario

We see in Figure 4.9 that the fourth class from the right,DuplocPresentationModelControlleris very
short (265 line of code) compared to the great number of methods (107) indicated by the position on the
right. Upon closer inspection we see that the class contains dozens of one-line methods which return con-
stant values. We also see the inverse case for the first tall class on the left namedExternalSortComparer
which contains 12 methods for a total length of 330 lines. Through a manual verification by code reading
we have indeed assessed that this class contains methods which can be refactored by splitting them up in
smaller, more reusable pieces.

This view helped us to identify several candidates which are possibly data storage classes, and manual
verifications have proved us right in most of the cases. Moreover it also helped us to identify classes with
overly long methods which are candidates for method splitting refactorings.
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METHOD EFFICIENCY CORRELATION V IEW

Layout Correlation
Nodes Methods
Edges -
Scope Full System
Metrics
Size - -
Color -
Position LOC (lines of code) NOS (number of statements)
Sort -
Example Figure 4.10

Description

This very scalable view shows all methods using a scatterplot layout with the lines of code (LOC) and
the number of statements (NOS) as position metrics. As the two metrics are related (each line may contain
statements) we end up with a display of all methods, many of which align themselves along a certain cor-
relation axis.

Reverse Engineering Goals

The goal of this view is to help detect (1) overly long methods, (2) methods with dead code, (3) badly
formatted methods.

Figure 4.10: A METHOD EFFICIENCY CORRELATION view of Duploc. As horizontal position metric
we use the lines of code, while for vertical metrics we use the number of statements.

Symptoms

1. Nodes to the right of the display represent long methods and should be further investigated as candi-
dates for split method refactorings [FOWL 99, BECK 97].

2. Nodes to the very left and top of the display represent empty methods.

3. Nodes to the top of the display, but not necessarily to the left, represent methods containing only
commented lines and thus possibly represent dead code.

4. Nodes to the left and more to the bottom of the display represent methods which are probably hard
to read, as they contain several statements on each line. In this case one should check whether there
are formatting rules within the application which are being violated.

Variations
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1. This view can be enriched using size metrics as well. One useful variation is using the number of
parameters (NOP) for the size of the nodes, which reveals not only long methods but methods with
many input parameters as well.

Scenario

We can see in Figure 4.10 how well this view scales up: the figure shows nearly 5000 of Duploc’s
methods. Several method nodes seem to be good candidates for further investigations. All the methods
longer than a certain number of lines (for example 30 or 50, depending on the average length of methods in
the subject system) should be inspected. Note in this regard that the average length of Smalltalk methods
is around 7 lines [KLIM 96]. We can also see that there are many methods at the top of the display which
therefore do not contain many statements. Upon closer inspection we can see this is partly due to code
which is commented out (in some cases dead code), partly this is also due to very long comments written
by the developer to explain what the methods are actually doing. Another insight which can come from
this view is a general assessment of the system. We have seen that the methods tend to align themselves
along a certain correlation axis. Depending on the age of the system the axis changes its angle: methods
are written and corrected all the time, and slowly get messy with many statements on few lines. In this
regard Duploc can still be considered a young system.

This view helped us to detect several methods which were too long compared to the rest of the system,
as well as dead code methods,e.g., methods with commented bodies. The actual concrete result of this
view is usually to produce a list of candidates which can be used for (1) documentation, and (2) future
inspection and eventually application of refactorings.
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DIRECT ATTRIBUTE ACCESSV IEW

Layout Checker
Nodes Attributes
Edges -
Scope Full System
Metrics
Size NAA (number of total direct accesses) NAA (number of total direct accesses
Color NAA (number of total direct accesses)
Position - -
Sort Width
Example Figure 4.11

Description

This view uses for all visualized attribute nodes (scales up to complete systems) the number of direct
accesses (NAA) for the width, height and color of each node, and sorts the nodes according to this metric.
It can be used to assess the usage of attributes in a system, as well as for the detection of unused attributes.

Reverse Engineering Goals

The goal of this view is to get an impression of how attributes are accessed and used. It can answer
questions about the type of accesses (direct/indirect over accessor methods) and helps to detect dead,e.g.,
unused attributes.

Symptoms

1. Small nodes at the top of the display represent attributes which are never accessed and may point to
dead code.

2. Large, dark nodes at the bottom point to attributes which heavily directly accessed, which may lead
to problems, in case the internal implementation changes. For such nodes one should also check
whether accessor methods have been defined, and if yes why they are not always being used.

Variations

1. Instead of using as size and color metric the number of direct global accesses, we can use either the
number of accesses via accessor methods to reveal how heavily these accessor methods are actually
used.

2. We can use as size and color metric the number of direct accesses by subclasses, in order to reveal
coupling aspects of classes within inheritance hierarchies.

3. We can use the number of local accesses (NLA) (from within the class where the attribute resides)
for the width and the number of global accesses (NGA) (from outside of the class) for the height.
Normally the attributes rendered like this should be as flat as possible, and in cases where this does
not apply, a deeper inspection could be useful, since tall, narrow nodes represent attributes which are
heavily accessed from outside of its defining class by means of direct accesses.

Scenario

In Figure 4.11 we use a slight variation of the regular view definition and render for the width and
the height the number of local, respectively the number of non-local accesses, while the color renders the
total number of direct accesses. We see that Duploc uses a considerable number of attributes. The top row
contains 11 attributes which are never accessed, and can therefore be removed. The bottom row contains
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Figure 4.11: A DIRECT ATTRIBUTE ACCESS view (Variation 3) of Duploc. The width of each
attribute node represents the number of direct local accesses from within its defining class (NLA).
The height of each node represents the number of accesses from outside of its class (NGA), while
the color represents the number of total direct accesses. The nodes are sorted according to the
color metrics.

the most heavily accessed attributes. For example the attributebvcmbelonging to classBinValueColorerIn-
terfaceis directly accessed 77 times. Upon closer inspection we see that in fact the class defines accessor
methods, but they are not consistently used, which may be risky. Note also the tall, narrow attribute node
at the bottom of this view. This attribute is heavily accessed directly from outside of its containing class.
In such a case we suggest to define accessor methods and invoke them instead of directly accessing the
attribute.

We have seen that this view helped to detect unused attributes in Duploc, as well as heavily accessed
attributes, and also identified attributes which methods access in an inconsistent style,e.g., sometimes
directly, sometimes indirectly over the accessor methods.
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METHOD LENGTH DISTRIBUTION V IEW

Layout Histogram
Nodes Methods
Edges -
Scope Class(es)
Metrics
Size LOC (lines of code) -
Color -
Position - LOC (lines of code)
Sort Width
Example Figure 4.12, Figure 4.13

Description

This view is mainly applied on single classes or small groups of classes. It reveals the shape of a class
in terms of the distribution of the methods according to their length. This view is usually applied in parallel
to other views.

Reverse Engineering Goals

This view, mainly applied to single classes or small groups of classes reveals which methods are the
longest.

Figure 4.12: A METHOD LENGTH DISTRIBUTION view of the class DuplocApplication. The width
of each method node and the vertical position is represented by the number of lines (LOC)
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Figure 4.13: A METHOD LENGTH DISTRIBUTION view of the class DuplocPresentationModelCon-
troller. The width of each method node and the vertical position is represented by the number of
lines (LOC)

Symptoms

1. Wide nodes at the bottom represent the longest methods, and are candidates for refactorings.

2. Nodes which are standing farther away represent exceptional cases. For example if all the methods
of a class have 10 or less lines of code, and one method has 25 lines of code it will separate itself
from the other methods in the view.

3. Small nodes at the very top represent empty methods.

Variations

1. For the color we can also use the number of invocations (NI) or the number of statements (NOS). As
both metrics are in relation with the length of a method, this variation helps to detect dead code, in
case we have light nodes at the bottom of the display.

Scenario

We show two example classes of Duploc. From the first example class, DuplocApplication, shown in
Figure 4.12 we gather that in this class most of the methods are very short, with a few very long methods
compared to the average length of the methods in this class. These exceptions could be closer inspected
for a possible method splitting refactoring. A stark counterexample is provided by the class DuplocPresen-
tationModelController, shown in Figure 4.13, which shows that this class contains only very short methods.

This view helped us to see that the two classes we showed look quite different regarding the length of
the methods they contain.
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4.3.5 Case Study Evaluation

Our approach provides us with an initial understanding of the case study and helps us to identify some of
the key classes without having to dive into the details. Indeed, one of the major problems with large sys-
tems is to get an overview and some initial understanding without getting lost in their intrinsic complexity.
The reverse engineering approach based on clusters of views helps us stay focused at the different levels of
understanding we want to gain. We cannot present all the results we obtained during this case study, as this
would go beyond the scope of this chapter. We rather limit ourselves to draw some specific conclusions
from the major findings obtained during this case study, and some general conclusions from other case
studies we have performed.

First Contact Views. The views in this cluster help us to get an impression of the size and structure of
a system, and in more detail to see how a system’s major hierarchies are composed and where larger classes
are located. In the present case, we have seen that Duploc is composed of several standalone classes, and
that a major part of Duploc is dedicated to the management of the graphical user interface. A first list of
prominent classes and hierarchies of the system is useful to get an orientation. Especially on very large
case studies, this cluster’s views help to obtain results quickly. This is important for the reverse engineer in
order to decide in which direction the reverse engineering process must go.

Inheritance Assessment Views.The views in this cluster are useful for the understanding of the
complex mechanisms which come with inheritance. We can classify inheritance relationships and detect
important classes in large hierarchies. Especially for larger hierarchies, which however this case study did
not contain, this cluster’s views reduce the time to understand complete inheritance hierarchies. In one spe-
cial case, we reverse engineered a system which contained very large inheritance hierarchies, with several
hundreds of classes and where in one case the root class, had 97 direct subclasses. The views obtained after
visualizing this hierarchy led us to coin the termflying saucerhierarchy, because of its very flat shape.

Candidate Detection Views.The views in this cluster help us to identify many candidates for closer
examination and possibly the application of refactorings. The problem with those candidates is that their
number can be great. In one industrial case study we presented a list of all methods longer than 100
lines. The list contained several dozens of methods. Since the system was written in Smalltalk, where the
average length of a method is ca. 6 lines, the chief developer asked us to generate a list with all methods
being longer than 20 lines instead, which resulted in a list with several hundreds of methods. This little
anecdote shows the dangers of the views contained in this cluster: the reverse engineer can easily produce
long lists of suspicious code fragments, but the usefulness of such an approach is doubtful: in the end it is
the software company that decides on which parts of their system they want to spend time and money for
reengineering. In the case of Duploc, it is difficult to present the results in detail, because all the detected
candidates must be examined, and this would go far beyond the scope of this chapter.

4.3.6 Industrial Experiences

We have validated our approach in several academic and industrial experiences, some of which we list in
detail in Table 4.3.6. However, due to non-disclosure agreements with the industrial partners, we cannot
deliver a detailed report on those experiences.

Members of our team went to work on industrial applications in a “let’s see what we can tell them
about their system” way. The common point about these experiences was that the subject systems were of
considerable size and that there were narrow time constraints. This led us to mainly get an understanding
of the system and produce overviews. We were also able to point out potential design problems and on the
medium-sized case study we even had the time to propose possible redesigns of the system. Taking the
time constraints into account, we obtained very satisfying results: the (often initially sceptical) developers
were surprised to learn some unknown aspects of their system. On the other hand they typically knew
already about many of the problems we found.

Industrial Curiosities. Due to non-disclosure agreements we are not allowed to report on the experi-
ences we made with industrial case studies. Nonetheless, we have anonymized two screenshots taken from
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Case Study Language Size Time Frame
Lines Classes

1 C++ 1.2 MLOC >2300 classes 1 Week
2 C++/Java 120 kLOC >400 classes 1 Week
3 Smalltalk 600 kLOC >2500 classes 3 Days
4 COBOL 40 kLOC - 3 Days
5 C++ 28kLOC 70 classes 2 Days
6 Smalltalk - 700 classes 3 Days

Table 4.2: A list of some of the industrial case studies to which CodeCrawler was applied to.

the 1.2 MLOC C++ case study and show them below.

In Figure 4.14 we see a SYSTEM HOTSPOTSview of 1.2 million lines of code of C++. Although heavily
compressed this view allows us to identify the largest classes in the system as well detect several hundred
structs, displayed as small nodes at the top.

Figure 4.14: A SYSTEM HOTSPOTSview of a large industrial case study consisting of 1.2 million
lines of code of C++. The nodes at the top represent classes without methods and are actually
C++ structs.

In Figure 4.15 we see a SYSTEM COMPLEXITY view of one large hierarchy. The large amount of
direct subclasses of the root class gives the hierarchy a particular shape: we called this pattern aflying
saucerhierarchy.
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Figure 4.15: A SYSTEM COMPLEXITY view of a large hierarchy yields a form which we called flying
saucer : the root class has 97 direct subclasses.

4.4 Related Work

Software Visualization

The graphical representations of software used in the field of software visualization, a sub-area of informa-
tion visualization [WARE 00][Car 99], have long been accepted as comprehension aids to support reverse
engineering. Indeed, software visualization itself has become one of the major approaches in reverse engi-
neering. Priceet al. have presented an extensive taxonomy of software visualization, with several examples
and tools [PRIC 93].

Many tools make use of static information to visualize software, like Rigi [MÜ 86], Hy+ [CONS 93],
SeeSoft [EICK 92], ShrimpViews [STOR 95], GSee [FAVR 01], and the FIELD environment [REIS 90], to
name but a few prominent examples.

Substantial research has also been conducted on runtime information visualization, called program vi-
sualization. Various tools and approaches make use of dynamic (trace-based) information such as Program
Explorer [LANG 95], Jinsight and its ancestors [PAUW 93][PAUW 99] and Graphtrace [KLEY 88]. Various
approaches have been discussed like in [KAZM 95] or [JERD 97] where interactions in program execu-
tions are being visualized. In our current approach we do not exploit dynamic information. Richner has
conducted research on the combination of static and dynamic information [RICH 02][RICH 99], where the
static information is provided by the Moose Reengineering Environment.

Several systems make use of the third dimension by rendering software in 3D. Brown and Najork
explore three distinct uses of 3D [Sta 98], namely (1) expressing fundamental information about structures
that are inherently two-dimensional, (2) uniting multiple views of an object, and (3) capturing a history of
a two-dimensional view. They exemplify these uses by showing screen dumps of views developed with
the Zeus algorithm animation system [BROW 91]. However, they also state that “the potential use of 3D
graphics for program visualization is significant and mostly unexplored”. Some of the systems cited above
make both use of 2D and 3D visualizations.

Until now we have refrained from using 3D for our visualizations, mainly because it would contradict
the lightweight constraint. However, we consider the exploration of the use of 3D as possible future work.

Metrics

Metrics have long been studied as a way to assess the quality and complexity of software [FENT 96], and
recently this has been applied to object-oriented software as well [LORE 94] [HEND 96]. Metrics profit
from their scalability and, in the case of simple ones, from their reliable definition. However, simple mea-
surements are hardly enough to sufficiently and reliably assess software quality [DEME 99a]. Some metric
tools visualize information using diagrams for statistical analysis, like histograms and Kiviat diagrams.
Datrix [MAYR 96], TAC++ [FIOR 98a] [FIOR 98b] and Crocodile [LEWE 98] are tools that exhibit such
visualization features. However, in all these tools the visualizations are mere side effects of having to an-
alyze large quantities of numbers. In our case, the visualization is an inherent part of the approach, hence
we do not visualize numbers, but constructs as they occur in source code.
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Methodological Approach

To the best of our knowledge none of the approaches we reference in this thesis presents a reverse engineer-
ing approach, which can help a reverse engineer to apply a certain tool or technique. Storeyet al. present
in [STOR 99] some basic ideas on how to build a mental model during software exploration, but do not
provide the much-needed, yet difficult to obtain, empirical evidence. We suppose this is because of thead
hocnature of reverse engineering tools (including ours) and because software industry has not yet adopted
such tools as concrete aids for their development process.

4.5 Conclusion

Software reverse engineering is a complex and difficult task, mainly because of the sheer size and complex-
ity of software legacy systems. Several approaches have been developed to support the reverse engineering
process, yet many of them fail because their scalability is limited or because they are too complex them-
selves. Two promising approaches,software visualizationandsoftware metricsboth have their respective
advantages and drawbacks. Our solution combines both approaches and exploits their advantages, while it
minimizes their drawbacks.

4.5.1 Summary

In this chapter we have presented a reverse engineering approach based on clusters ofpolymetric views,
lightweight visualizations enriched with metrics. This approach enables us to quickly gain insights into the
inner structure of large software legacy systems and helps us to detect problems.

Furthermore, we have illustrated our approach by applying different views and by thus reverse engi-
neering a case study. We have been able to understand different aspects of the case study, among which
an overview of the application, a discussion on the used inheritance mechanisms, the detection of design
patterns, the detection of several places where in-depth examinations are needed, as well as propositions
on where possible refactorings could be applied.

The views presented in this chapter have been applied on several large industrial legacy systems written
in different languages like Smalltalk, Java, and C++. The systems in question ranged in size from 100
kLOC to more than 1 MLOC. We are not allowed to report on the experiences obtained there due to non-
disclosure agreements.

4.5.2 Benefits

The main benefits of our approach are the following:

• Scalability.Each polymetric view is able to transmit a great amount of information to the viewer in a
condensed way. Furthermore, most of the presented views scale up to large systems,e.g., more than
100 kLOC.

• Simplicity. The presented polymetric views are lightweight software visualizations, whose simplicity
makes them easily adaptable to new contexts and programming languages.

• Approach. The presented approach provides guidance to a reverse engineer in the most delicate
phase of a reverse engineering process, namely the beginning. By discussing the views in detail, the
purpose and usability of each view is presented. We thus minimize the risk of getting lost during the
reverse engineering.

• Customizability.The polymetric views are easily customizable, mainly by changing the metrics or
the layouts. These changes are necessary, because every legacy system has particularities to which
the polymetric views must be adapted to. In that sense the polymetric views are helpful because they
emphasize the relative differences between the visualized entities. By that we mean that for example
overly large classes will stand out in the SYSTEM HOTSPOTSview, unregarded from the average size
of the classes in the subject system.
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4.5.3 Limits

Our approach is limited in the following ways:

• Visual language.The presented views constitute a visual language which first must be learned by the
viewer. In order to correctly interpret what he sees, the viewer must first learn what to look for in a
polymetric view. Based on the amount of knowledge he gathers, the viewer can apply the approach
more efficiently.

• Ad-hoc approach.The approach presented here cannot be used like a step-by-step process, but
heavily depends on the context that a reverse engineer encounters. For example while in one case
studies having methods of more than 100 lines may be exceptional, in another case it may be the
average length. It does not mean that the latter system is worse in quality, it is just different.

4.5.4 Future Work

In the future we plan to investigate the following ideas:

• Language specific views.Since FAMIX is language-independent we have focused on developing
views in this context. We believe there are views which exploit language specific information, for
example modifier information in languages like C++ and Java or metaclasses in Smalltalk.

• New entities and relationships.The introduction of new entities and relationships, which may but
do not need to have an equivalent in software could help to generate new views based on these new
artifacts. A way to interactively generate these artifacts can be supported by grouping mechanisms,
similar to the ones implemented in Rigi [M̈U 86], which group entities and relationships according
to certain rules (i.e., naming conventions, types, etc.).

• Usability and navigation.The extensive use of direct-manipulation idioms [COOP95], especially
those relevant to the reverse engineering process , should further increase the malleability and flex-
ibility of our tools. The introduction of navigation mechanisms, which reduce the latency between
one view and the next one, can further increase the efficiency of the reverse engineering process.

• 3D. The use of the third dimension can help exploit and visualize more semantic information, al-
though we believe that this research generates results which cannot be classified as “lightweight”
anymore.
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Chapter 5

Fine-grained Software Visualization:
The Class Blueprint

5.1 Introduction

It has been measured that in the maintenance phase software professionals spend at least half of their time
analyzing software to understand it [CORB 89] and that code reading is a viable verification and testing
strategy [BASI 87] [BASI 97] [HEND 02]. As we already mentioned, Sommerville [SOMM 00] and Davis
[DAVI 95] estimate that the cost of software maintenance accounts for 50% to 75% of the overall cost of
a software system. These facts show that understanding source code is one of the hardest tasks in the
maintenance of software systems.

Furthermore nowadayslegacy systemsare not only limited to procedural languages but are also written
in object-oriented languages. Contrary to what one may think, the object-oriented programming paradigm
has but exacerbated this problem, since in object-oriented systems the domain model of the application
is distributed across the whole system and the behavior is distributed across inheritance hierarchies with
late-binding [WILD 92] [CASA 97] [Duc 99]. Moreover, reading object-oriented code is more difficult
than reading procedural code [DEKE 02]. Indeed, in addition to the difficulties introduced by the technical
aspects of object-oriented languages such as inheritance and polymorphism [WILD 92], the reading order
of a class’ source code is not relevant as it was in most of the procedural languages where the order of
the procedures was important and the use of forward declarations required. This lack of reading order is
emphasized in languages such as Smalltalk,e.g.,a language based upon a powerful integrated development
environment (IDE) in which the concept of files is only used for external code storage but not for code
editing. Moreover, even for file-based languages like Java, IDEs like Eclipse are literally eclipsing the
importance of source files and putting forwardcode browsingpractice as in Smalltalk.

In such a context understanding classes is of key importance as classes are the cornerstone of the object-
oriented programming paradigm and the primary abstraction from which applications are built. Therefore
there is a definitive need to support the understanding of classes and their internal structure. In the past,
work has been done to support the understanding of object-oriented applications [KLEY 88] [LANG 95]
[M END 95]. Some other work focused on analyzing the impact of graphical notation to support program
understanding based on control-flow [HEND 02]. However such approaches were on one hand powerful
for supporting the identification of design patterns but on the other hand too generic and not fine tuned for
the specific purpose of class understanding.

Summary. In this chapter we present a simple approach to ease the understanding of classes by visual-
izing a semantically augmented call- and access-graph of the methods and attributes of classes1. We only

1This chapter is an extended version of the articleThe Class Blueprint: Visually Supporting the Understanding of Classes, submit-
ted for publication to IEEE Transactions on Software Engineering, which is based on our articleA Categorization of Classes based
on the Visualization of their Internal Structure: the Class Blueprint, published in the OOPSLA 2001 Proceedings (Conference on
Object-Oriented Programming, Systems, Languages, and Applications), pp. 300 - 311, ACM Press, 2001.
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take into account the internal static structure of a class and focus on the way methods call each other and
access attributes and the way the classes use inheritance. We leave out the run-time behavior of a system.

We have coined the termclass blueprint, a visualization of a semantically augmented call-graph and its
specific semantics-based layout. The objective of our visualization is to help a programmer to develop a
mental shape of the classes he browses and to offer a support for reconstructing the logical flow of method
calls. In such a setup our approach reveals the “taste” of a class in terms of its call-graph and internal struc-
ture. However our approach does not magically provide a detailed understanding of a class’ functionality.
Besides the presentation of the technical aspects that the class blueprint implies, we establish a vocabulary
that we developed based on the insights we obtained during several case studies. This vocabulary identifies
the most common and specificvisual patterns, i.e., recurrent graphical situations we encountered during
the validation of this work over several large case studies. We believe that this vocabulary can be the basis
of a language (in a similar vein to the use of design patterns [GAMM 95]) that reverse engineers can use
when communicating with each other. We would like to stress the fact that the results presented in this
chapter (and the whole thesis) are language independent as we base our work on a language independent
meta-model for object-oriented source code representation [DEME 01]. However, most of our experiences
have been conducted on applications developed in Smalltalk, although we applied our approach on case
studies written in C++ and Java as well.

Contributions. The contributions of this chapter are the following:

• The definition of theclass blueprint, a polymetric view which helps to achieve fine-grained reverse
engineering goals. It helps to understand the concrete implementation of classes and class hier-
archies, and detect common patterns or coding styles. Using this view we can look for signs of
inconsistencies like the use of accessors. The class blueprint can be used to identify the possible
presence of design patterns or occasions where design patterns could be introduced to ameliorate the
system’s structure.

• The identification ofpatternsthat represent recurring situations and the discussion of their meaning
in terms of implementation.

• The definition of a vocabulary based on these patterns.

Structure of the chapter. We start by discussing the challenges that the understanding of classes
involves, and by making precise the context of this chapter and its constraints (Section 5.2). In Section 5.3
we present the concept of the class blueprint and discuss two examples (Section 5.4). Based on the class
blueprint, visual patterns are identified in Section 5.5. In Section 5.6 and Section 5.7 we then present several
patterns and an analysis of the class blueprints (Section 5.8). We conclude (Section 5.11) the chapter with
a discussion of the obtained results, the related work (Section 5.10), and an outlook on our future work.

5.2 The Challenge of Supporting Class Understanding

As our overall objective is to help reengineers to build a mental image of a class, we chose to visualize the
essence of a class, therefore we restrict ourselves to methods, method invocations, attributes, and attribute
accesses. According to the program cognition model vocabulary proposed by Littmanet al. [L ITT 96] we
support an approach of understanding that isopportunisticin the sense that it is not based on asystematic
line-by-line understanding but as needed. Moreover, to locate our approach in the general context of
cognitive models [LITT 96] [VON 96], our approach is intended to support theimplementation plansat the
language level,i.e., working at code chunks, here classes and methods.

Mayrhauser and Vans mention that the cognition processes work at all levels of abstraction simultane-
ously as programmers build a mental model of the code [VON 96]. Our approach is based on the visual
identification of hotspots at the class level or hierarchy level which then are verified with opportunist code
reading. In this sense, our claim is not that graphical visualization is better than text reading even if we
believe that our approach eases the process [PETR 95]. Our approach creates a synergetic context between
the two where blueprints reveal the way classes are built, help raising hypotheses, or questions that are then
verified by reading some piece of code.
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Classes are the cornerstone of object-oriented programming. They act as factories of objects and define
the behavior of their instances. Understanding classes is then a primary task when reverse engineering an
object-oriented legacy system. However classes are difficult to understand for the following reasons:

1. Contrary to procedural languages, the method definition order in a file is not important [DEKE 02].
There is no simple and apparent top-down call decomposition, even if some languages propose the
visibility notion (private, protected, and public). This problem is emphasized in the context of inte-
grated development environments (IDE) which disconnect the method definition from their physical
storage medium. For example, in the Smalltalk environment, even if the IDE proposes advanced
classifications such as method categories, the source file is just a storage medium and is not used to
edit code.

2. Classes are organized into inheritance hierarchies in which at each level behavior can be extended,
overridden, or simply added. Understanding how a subclass fits within its parent context is complex
because late-binding provides a powerful instrument to build template and hook methods [GAMM 95]
that allow children behavior to be called in the context of their ancestors. The presence of late-
binding leads to “yoyo effects” when walking through a hierarchy and trying to follow the call-flow
[W ILD 92].

3. Classes define state and the procedures that act on this state. It is important to understand how the
state is accessed, presented, if at all, to the class’s clients, and how subclasses access this state.

Even if we display method invocations and attribute accesses we only consider the call-flow and not
the control-flow of the methods. Furthermore, since classes do not stand alone, but exist within inheritance
hierarchies, our approach supports the understanding of the class within an inheritance tree. Working at a
call-flow level also supports the late-binding property of object-oriented programming in which a subclass
can define methods that are called by superclass methods in replacement of their own methods.

For the visualization itself the solution we propose takes into account the physical limits of a screen,
i.e., a class blueprint must fit in one or exceptionally two screens of normal size. Bertin [BERT 74] assessed
that one of the good practices in information visualization is to offer to the viewer visualizations which can
be grasped at one glance (e.g., without the need of scrolling or moving around). Furthermore the colors
used in our visualizations also follow visual guidelines inferred by Bertin, Tufte [TUFT 90, TUFT 97], and
Ware [WARE 00].

Work has already been done for supporting the understanding of object-oriented systems at the class
level. GraphTrace proposes to visualize concurrent animated views to understand the way a system be-
haves [KLEY 88]. ObjectExplorer [LANG 95] uses both dynamic and static information that the reengineer
can query and visualize via simple graphs to understand and verify his hypotheses. Using basic graph vi-
sualizations to represent various relationships, Mendelzon and Sametinger [MEND 95] show that they can
express metrics, constraints verification, and design pattern identification. Crosset al., more in the lines
of procedural languages, have been proposing and validating new control structure diagrams to support the
reading of the applications’ control flow [CROS98] [HEND 02].

The work presented in this chapter emerged from industrial code reverse engineering projects and is
the result of several refinements to maximize the ease of understanding. Besides the industrial case studies
on which we are not allowed to report, we performed several case studies on open-source software:

• Squeak, an open source multimedia Smalltalk which has been developed over the last years (1800
classes) [INGA 97].

• Duploc, a tool identifying code duplication in an language independent manner (160 classes).

• Moose, our own tool (200 classes).

Case study. In this chapter we use as case study the JUN framework: Jun is a freely available 3D
graphic multi-media library that supports topology and geometry. It thus represents a fairly big system,
which allows to have reproduceable and verifiable results. Its considerable size makes it a representative
system for a reverse engineering. We analyzed version 398, which consists of more than 700 classes,
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15’000 methods, and 2’000 attributes. The interesting aspect of Jun is its variety as it models a wide
spectrum of domains: different format readers and writers, different composite structures (HTML, VRML),
various complex rendering algorithms, even a Prolog interpreter and a Lisp compiler and interpreter. Jun
is a mature and professionally developed system.

5.3 The Class Blueprint

This section introduces the concept of theclass blueprint, a visual way of supporting the understanding
of classes. A class blueprint is a semantically augmented visualization of the internal structure of a class,
which displays an enriched call-graph with a semantics-based layout. It is augmented in various aspects
that are explained in the subsequent sections:

• A class blueprint is structured according tolayersthat group the methods and attributes.

• The nodes representing the methods and attributes contained in a class are colored according to
semantic information,i.e., whether the methods are abstract, overriding other methods, returning
constant values, etc.

• The nodes vary in size depending on source code metrics information.

5.3.1 The Layered Structure of a Class Blueprint

Initialization
Layer

Interface
Layer

Implementation
Layer

Accessor
Layer

Attributes
Layer

INVOCATION SEQUENCE 

Figure 5.1: A class blueprint decomposes a class into layers.

A class blueprint decomposes a class into layers and assigns the attributes and methods of the class
to each layer based on the heuristics described below. In Figure 5.1 we see an empty template of a class
blueprint.

The layers support a call-graph notion in the sense that a method node on the left connected with
another node on the right is either invoking or accessing the node on the right that represents a method or
an attribute. From left to right we identify the following layers:initialization layer, external interface layer,
internal implementation layer, accessor layer, and attribute layer. The first three layers and the methods
contained therein are placed from left to right according to the method invocation sequence,i.e., if method
m1 invokes methodm2, m2 is placed to the right ofm1and connected with an edge.

For each layer we present the conditions that methods must fulfill in order to belong to a certain layer.
Note that the conditions listed below follow a lightweight approach and are not to be considered as com-
plete. However, we have seen that they are sufficient for our purposes.

A class blueprint contains the following layers:

1. Initialization Layer. The methods contained in this first layer are responsible for creating an object
and initializing the values of the attributes of the object. A method belongs to this layer if one of the
following conditions holds:

• The method name contains the substring “initialize” or “init”.
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• The method is a constructor.

• In the case of Smalltalk, where methods can be clustered in method protocols, if the methods
are placed within protocols whose name contains the substring “initialize”.

In this layer there should also be the static initializers for Java, however we do not take them into
account, as they are not covered by our metamodel [DEME 01].

2. External Interface Layer. The methods contained in this layer represent the interface of a class to
the outside world. A method belongs to this layer if one the following conditions holds:

• It is invoked by methods of the initialization layer.

• In languages like Java and C++ which support modifiers (e.g., public, protected, private) it is
declared aspublicor protected.

• It is not invoked by other methods within the same class,e.g., it is a method invoked from
outsideof the class by methods of collaborator classes or subclasses. Should the method be
invoked both inside and outside the class, it is placed within the implementation layer.

We do not include accessor methods to this layer, but to a dedicated layer as we show later on. We
consider the methods of this layer to be theentry pointsto the functionality provided by the class.

3. Internal Implementation Layer. The methods contained in this layer represent the core of a class
and are not supposed to be visible to the outside world. A method belongs to this layer if one of the
following conditions holds:

• In languages like Java and C++ if it is declared asprivate.

• The method is invoked by at least one method defined in the same class.

4. Accessor Layer.This layer is composed of accessor methods,i.e.,methods whosesoletask is to get
and set the values of attributes.

5. Attribute Layer. The attribute layer contains all attributes of the class. The attributes are connected
to the methods in the other layers by means ofaccess relationshipsthat connect the methods with
the attributes they access.

5.3.2 Representing Methods and Attributes

We represent methods and attributes using colored boxes (nodes) of various size and position them within
the layers presented previously. We map metrics information on the size of the method and attribute nodes,
and map semantic information on their colors.

Mapping Metrics Information on Size

The width and height of the nodes reflect metric measurements of the represented entities, as illustrated in
Figure 5.2. This approach has first been developed in the context of thepolymetric views(see Chapter 4).

The class blueprint view visualizes method nodes and attributes nodes.

• Method nodes.In the context of a class blueprint, the metrics used for the nodes representing the
methods are lines of code for the height and the number of invocations for the width.

• Attribute nodes.The metrics used for the boxes representing the attributes are the number of direct
accesses from methods within the class for the width and the number of direct accesses from outside
of the class for the height. The choice of these measures allows one to identify how attributes are
accessed.

In Figure 5.3 we see how we distinguish a caller from a callee: the caller has outgoing edges at the
bottom, while the callee has in-going edges at the top. Furthermore, the blueprint layout algorithm places
the callee to the right of a caller.
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Figure 5.2: A graphical representation of methods and attributes using metrics: the metrics are
mapped on the width and the height of a node.

Figure 5.3: The caller has outgoing edges at the bottom, while the callee has in-going edges at
the top.

Mapping Semantic Information on Color

The call-graph is augmented not only by the size of its nodes but also by their color. In a class blueprint
the colors of nodes and edges represent semantic information extracted from the source code analysis. The
colors play therefore an important role in conveying added information, as Bertin [BERT 74] and Tufte
[TUFT 90] have extensively discussed. Table 5.1 presents the semantic information we add to a class
blueprint and the associated colors.

Certain semantic information such as whether a method is delegating to another object is computed
by analyzing the method abstract syntax tree (AST) and by identifying certain patterns. For example we
qualify as delegating, a method invoking exactly thesamemethod on an attribute (pattern 2) or a method
invocation (pattern 1). In addition to those patterns we consider also the case when the method is returning
a value usinĝ in Smalltalk (pattern 3 and 4). Note that such an analysis is language dependent but does
not pose any problem in practice.

Pattern 1: delegating to invocation result.

methodX
self yyy methodX

Pattern 2: delegating to an attribute.

methodX
instVarY methodX

Pattern 3: delegating to an attribute with return.

methodX
ˆ self yyy methodX

Pattern 4: delegating to invocation result with return.
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Description Color
Attribute blue node
Abstract method cyan node
Extending method. A method which performs asuperinvocation. orange node
Overriding method. A method redefinitionwithouthidden method invocation. brown node
Delegating method. A method which delegates the invocation,i.e., forwards the
method call to another object.

yellow node

Constant method. A method which returns aconstantvalue. grey node
Interface and Implementation layermethod. white node
Accessor layermethod. Getter. red node
Accessor layermethod. Setter. orange node

Invocationof a method. blue edge
Invocationof an accessor. Semantically it is the same as a direct access. blue edge
Accessto an attribute. cyan edge

Table 5.1: In a class blueprint semantic information is mapped on the colors of the nodes and
edges.

methodX
ˆ instVarY methodX

The fact that a method is abstract is also extracted from the analysis of the method AST as in Smalltalk
the only way to specify that a method is abstract is to invoke the methodsubclassResponsibility
(see Pattern 5). For Java and C++, specific language constructs make the analysis simpler.

Pattern 5: Abstract method.

methodX
self subclassResponsibility

Note that the color associations shown in Table 5.1 are not mutually exclusive. Therefore, a node could
have more than one color assigned to it. In such a case the color determined by the source code analysis
takes precedence over the color given by the layer a certain node belongs to, as this information conveys
usually more semantics.

5.3.3 The Layout Algorithm of a Class Blueprint

The algorithm used to layout the nodes in a class blueprint first assigns the nodes to their layers and then
sequentially lays out the layers. Within each of the first three layers, nodes are placed using a horizontal tree
layout algorithm: if methodm1invokes methodm2, m2is placed to the right ofm1and both are connected
by an edge which represents the invocation relationship. In case a methodm1 accesses an attributea1,
the edge connectingm1 anda1 represents an access relationship, as is denoted by the color of the edge.
In the last two layers the nodes are placed using a vertical line layout,i.e., the nodes are placed vertically
below each other. Although the layout algorithm can be considered lightweight, it shows acceptable results
in terms of visual quality. The complex structure of a method invocation graph allows for cycles because
of recursive calls, therefore the tree layout algorithm used as part of the overall blueprint layout is cycle-
resistant.

In Figure 5.4 we see a template blueprint. We see that there are 2 initialization methods and 3 interface
methods. We also see that some of its accessors (the ones in the ellipse) are not invoked and therefore
unused and that one of the attributes (A) is not accessed by the methods of this class. The next section
presents two real class blueprints in detail.
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Initialization AccessorInterface

A

Layer Layer
Internal
Implementation Layer

Attribute
Layer

INVOCATION SEQUENCE

Layer

Figure 5.4: The methods and attributes are positioned according to the layer they have been
assigned to.

5.4 Detailing Blueprints

To show how the class blueprint visualization allows one to represent a condensed view of a class’ methods,
call flow, and attribute accesses, we detail two classes which implement two different domain entities of
the JUN framework: the first one defines the concept of a 3D graph for OpenGL mapping and the second
is a rendering algorithm. We present the blueprints and some piece of code to show how the graphical
representation is extracted from the source code and how the graphical representation reflects the code it
represents, building a trustable model. To help the reader to understand the first blueprint we also show on
the right of the figure a deviated blueprint in which the method names are shown on the boxes that represent
them. The left part of Figure 5.5 shows the blueprint of the classJunOpenGL3dGraphAbstract which
we describe hereafter. As the named blueprint on the right in Figure 5.5 shows, this kind of representation
does not scale well in practice.

The code shown is Smalltalk code, however being fluent in Smalltalk is not important as we are only
concerned by method invocations and attribute accesses2.

Note that some of the figures may contain several patterns whose discussion not always precedes the
figures. However, the captions of the figures make use of the complete pattern vocabulary presented in this
chapter.

5.4.1 Example 1: An Abstract Class

The class blueprint shown in Figure 5.5 has the following structure:

• One initialization layer method. This method calledinitialize is positioned on the left. As
shown, it extends (invokes) a superclass method with the same name, hence the node color is orange.
It accesses directly two attributes as the cyan line shows it. The code of the methodinitialize
is the following one:

initialize

2In Smalltalk, attributes as local variables are read simply by using the attribute name in an expression. They are written using the
:= construct. In a first approximation messages follow the patternreceiver methodName1: arg1 name2: arg2 which
is equivalent to the C++ syntax receiver.methodName1name2(arg1, arg2). HencebidiagNorm := self bidiagonalize:
superDiag assigns in the variablebidiagNorm the result of the methodbidiagonalize .
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Figure 5.5: Left: An blueprint of the class JunOpenGL3dGraphAbstract, which represents
OpenGL three-dimensional graphs. Right: The same class displayed with method names.

super initialize.
displayObject := nil.
displayColor := nil

• Several external interface layer methods.Note that many of them have a yellow color,i.e., they
delegate the functionality. The following methodasPointArray is a delegating method.

asPointArray
ˆself displayObject asPointArray

The reader may be intrigued by the fact that there are yellow nodes, hence delegating methods, that
neither invoke other methods nor access any attribute. This is the case of thelispCons method
whose code is shown hereafter. In fact such methods delegate the invocation to the metaclass. This
happens because of Smalltalk semantics that specify that any class is an instance of its metaclass. It
is good practice to factor constants at the metaclass level as in the present case. A similar situation
would occur in Java when a method delegates to a static variable. Note that we decided not to
introduce a specific analysis to cope with this Smalltalk specific point to let our approach be as
general as possible.

lispCons
ˆself class lispCons

The five grey nodes in the interface layer are methods returning constant values as illustrated by
the following methodisArc . This method illustrates a typical practice to share a default behavior
among the hierarchy of classes.

isArc
ˆ false

• A small internal implementation layer with two sub-layers. Here we show that the blueprint
granularity resides at the method level, as the visualization does not specifically represent control
flow constructs. The methoddisplayObject performs a lazy initialization,i.e., it initializes the
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attributes only when the attributes are accessed and acts as a template method [GAMM 95] by calling
the methodcreateDisplayObject which is represented as a cyan node as it is abstract. The
methodcreateDisplayObject should then be defined in the subclasses.

displayObject
displayObject isNil

ifTrue:
[displayObject := self createDisplayObject].

ˆdisplayObject

createDisplayObject
ˆself subclassResponsibility

• Two accessors.There is a read-accessor,color , displayed as the red accessor node and a write-
accessor,setValue: displayed as the rightmost orange accessor node.

• Two attributes. Note that the read-accessor reads one attribute, while the write-accessor writes the
other one. However no method uses the write-accessor. The attributes are also directly accessed: the
initialize method accesses both, while two other methods do also directly access the attributes
which is an inconsistent coding practice.

5.4.2 Example 2: An Algorithm

Figure 5.6: A blueprint of the class JunSVD. This class blueprint shows patterns of the type Single
Entry, Structured Flow and All State.

The second class blueprint presented in Figure 5.6 displays the classJunSVD implementing the algo-
rithm of the same name. Looking at the blueprint we get the following information.

• No initialization layer method. This is reflected by the fact that the left layer is empty.

• Three external interface layer methods.Two of them access directly the attributes of the class. We
also see that the second external interface layer method is actually an entry point to all the methods
in the internal implementation layer.

• An internal implementation layer composed of nine methods in five sub-layers.The class is
actually written in a clearly structured way. Therefore the class blueprint can also be used to infer
a reading order of the methods contained in this class. The blueprint shows us that for example, the
nodeA which represents the methodcompute shown hereafter invokes the methodsbidiago-
nalize: , epsilon , anddiagonalize:with: .
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compute
| superDiag bidiagNorm eps |
m := matrix rowSize.
n := matrix columnSize.
u := (matrix species unit: m) asDouble.
v := (matrix species unit: n) asDouble.
sig := Array new: n.
superDiag := Array new: n.
bidiagNorm := self bidiagonalize: superDiag.
eps := self epsilon * bidiagNorm.
self diagonalize: superDiag with: eps.

• Three read accessor methods.Although three read-accessors have been defined, they are not used
by methods of this class, because they do not have any in-going blue edges that would exemplify
their use.

• Six attributes. All the attributes in this class are accessed by several methods,i.e.,all the state of the
class is accessed by the methods. The blueprint also reveals that the attributes are heavily accessed.
The nodes marked asA, B,andC consistently accessall the attributesmatrix , n, m, sig , v , and
u. To understand how this particular behavior is possible we show the code of the methodgener-
alizedInverse (C). After reading the code we understand easily that this particular behavior for
a class is normal for an algorithm and we can mentally acknowledge that the other methods are built
in a similar fashion.

generalizedInverse
| sp |
sp := matrix species new: n by: m.
sp doIJ:

[:each :i :j |
sp

row: i
column: j
put: ((i = j and:

[( sig at: j) isZero not])
ifTrue: [( sig at: j) reciprocal]
ifFalse: [0.0d])].

ˆ( v product: sp)
product: u transpose

5.4.3 Class Blueprints and Inheritance

Understanding classes in presence of inheritance is difficult as the flow of program is not local to a single
class but distributed over hierarchies, as mentioned by Wild [WILD 92] and Lange [LANG 95]. Class
blueprints increase their value when seen in the light of inheritance. In this case we visualize every class
blueprint separately and put the subclasses below the superclasses according to a simple tree layout.

In Figure 5.7 we see a concrete inheritance hierarchy of class blueprints. The superclass defines some
behavior that is then specialized by each of the three subclasses namedJunColorChoiceHSB , Jun-
ColorChoiceSBH , JunColorChoiceHBS . The blueprint of this hierarchy reveals immediately that
the subclasses have been developed to fit exactly the superclass and nothing more. The subclasses do
not define any extra behavior, the superclass is the class to be analyzed in order to understand the whole
hierarchy.

We see that the root class defines several abstract methods that represent color component such as
brightness, hue, and color (denoted by the cyan color) and which are overridden (denoted by the brown
color) in the three small subclasses. As there is the same number of brown nodes than cyan one, there is a
good chance that the subclasses are concrete classes.

The method namedcolor (A) is a template method [GAMM 95] that calls three abstract methods as
confirmed by the definition of the methodcolor hereafter.

color
ˆColorValue
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Figure 5.7: A class blueprint visualization of an inheritance hierarchy with the class JunColor-
Choice as root class. The root class contains an Interface pattern, while each of the subclasses
is a pure Overrider. Furthermore, each subclass is a pure Siamese Twin.

hue: self hue
saturation: self saturation
brightness: self brightness

We see that the methodsxy: (B), andxy (C) play a central role in the design of the class as they are
both called by several of the methods of each subclass, as confirmed by the following method of the class
JunColorChoiceSBH :

JunColorChoiceSBH>>brightness: value
((value isKindOf: Number)

and: [0.0 <= value and: [value <= 1.0]])
ifTrue: [self xy: self xy x @ 1 - value]

These examples show that the blueprints are useful to fulfill our fine-grained reverse engineering goals,
namely:

1. Understand the concrete implementation of classes and class hierarchies, and detect common patterns
or coding styles. Look for signs of inconsistencies like the use of accessors.

2. Identify the possible presence of design patterns or occasions where design patterns could be intro-
duced to ameliorate the system’s structure.

3. Build a mental image of a class in terms of method invocations and state access.

4. Understand the class/subclass roles.

5. Identify key methods in a class.
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Blueprints act as revealers in the sense that they raise questions, support hypotheses or clearly show
important information. When questions are raised, code reading helps confirming the visualization hints
or information. However, code reading is not always necessary but used sparingly on identified methods.
There is a definitive synergy between the visual images generated by the blueprint and the code reading.
Class blueprints allow one to characterize classes but also represent an important communication means,
as we present in the coming sections.

5.5 A Vocabulary based on Patterns in the Class Blueprints

While the approach is already an excellent vehicle to support the understanding of classes, it also provides
the basis to develop a visual vocabulary that enables programmers to communicate recurrent situations
they encounter. Indeed, recurrent situations in the code produce similarblueprint patternsin terms of node
colors and flow structure. These (blueprint) patterns stem from the experiences we obtained while applying
our approach on several industrial case studies. We subdivide the discussion of the patterns in two separate
sections depending on the context in which a blueprint is presented:

1. Single class perspective, where we look at a single blueprint without considering surrounding sub-
or superclasses (Section 5.6).

2. Inheritance perspective, where we extend the context to the inheritance hierarchy where the class
resides (Section 5.7).

We use the termpureclass blueprint when it is composed of only one and exclusively one pattern. Note
that the only kind of collaboration between classes we discuss in this chapter is inheritance.

It is important to understand that even if some of the patterns could be automatically identified by our
tool, the identification of patterns is based on a human interpretation of a blueprint. There are advantages
and disadvantages letting the reengineer identify patterns: the advantages are that the human mind can
deal with non-regular information and still extract useful pieces, which is really important in the current
context. The disadvantage are that the reengineer should be trained to analyze the blueprint and that he
may wrongly interpret the pattern. However, this is normally not a problem as the code mapping is simple
and the reengineer can quickly look at the code to confirm his hypothesis. In the future we want to evaluate
how to automate the identification of non-regular and trivial patterns and whether this is worth the effort.
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5.6 Single Class Blueprint Patterns

In this part we present the patterns that blueprints contain without considering surrounding sub- and super-
classes. Note that one class blueprint may contain several patterns. The blueprint patterns in this section
are grouped according to the following criteria:

• size(Section 5.6.1)

• distribution layer(Section 5.6.2)

• semantics(Section 5.6.3)

• call-flow (Section 5.6.4)

• andstate usage(Section 5.6.5)

Note that this grouping is not strict and is mainly used to ease the reading of the chapter.
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5.6.1 Size-based Blueprint Patterns

Figure 5.8: A class blueprint visualization of an inheritance hierarchy with the class JunPrologEn-
tity as root class.

Four simple patterns describe classes regarding their size:Single, Micro, Large Implementation, and
Giant.

Single

This pattern is composed of one node. It describes classes that only consist of one method (see the root
class of the hierarchy in Figure 5.8). This happens in the following cases:

1. The class in question represents dead code or has not been completely implemented yet.

2. It is the result of code sharing among hierarchies. It often represents methods defining single default
values or testing methods in the form ofisSomething()as shown by the following method definition.
See the discussion of theSingle Constant Definerpattern for more details. The single method of the
root class in Figure 5.8 has the following definition:

JunPrologEntity>>isJunPrologEntity
ˆtrue

When the method is not a method simply defining a constant but has a certain complexity, it is
worth to look at it as it represents common behavior shared among several classes and often used to
distinguish between several kinds of classes. In an inheritance hierarchy consisting of fifteen classes,
not shown as blueprints in this chapter, implementing probability distribution, we found two single
classes at the top of the hierarchy whose main purposes was to factor out two different ways of
computing a distribution as shown by the following definitions:

JunDiscreteProbability>>distribution: aCollection
| t |
t := 0.0.
aCollection do: [:i | t := t + (self density: i)].
ˆt
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JunContinousProbability>>distribution: aCollection
| t aStream x1 x2 y1 y2 |
t := 0.0.
aStream := ReadStream on: aCollection.
x2 := aStream next.
y2 := self density: x2.
[x1 := x2.
x2 := aStream next]

whileTrue:
[y1 := y2.
y2 := self density: x2.
t := t + (x2 - x1 * (y2 + y1))].

ˆt * 0.5

3. This may occur when classes are subclasses of large classes of which they specialize only a limited
default behavior or constant definitions.

Large Implementation

Figure 5.9: The blueprint of the class JunSourceCodeSaver contains a Large Implementation, a
Single Entry, and a Structured Flow pattern at the bottom.

This pattern is characterized by implementation layers containing many nodes often structured in sev-
eral sub-layers. The overall percentage in nodes number and screen space of the implementation layer
dominates all the other layers. It describes classes that have a large implementation decomposed in several
methods with numerous invocations between those methods. In Figure 5.9 we see that the classJun-
SourceCodeSaver has a small public interface and a large internal implementation layer with large
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methods and 6 sub-layers. The role of this class is to save in a proprietary format the code of the applica-
tion. As in Smalltalk classes are objects too, the code of this class is mainly extracting information from
classes and transforming into strings that are finally stored on disk. This explains the impressive size of
certain methods.

Micro

This pattern is composed of only a couple of nodes. It describes a small class that is composed of only
a couple of methods (see class annotated as emphF in Figure 5.8). This often occurs in subclasses that
specialize behavior.

Giant

A really large number of nodes and invocations composes the entire blueprint. This pattern describes a huge
class that is composed of hundreds of methods. Normally the blueprint layout algorithm is not efficient
enough to support the understanding of such classes, although often patterns are recognizable. Such classes
can have a complex initialization structure producing very long methods. Usually classes revealing aGiant
pattern are classes having too much responsibilities and thus require a closer inspection.
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5.6.2 Layer Distribution-based Blueprint Patterns

Three patternsThree Layers, Wide Interface, andInterfaceare based on the distribution of methods in the
blueprint layers.

Figure 5.10: The root class is a combination of a nearly pure Interface and a Constant Definer
pattern, while the subclass (JunAngle) is a combination of a Wide Interface and a Funnel pattern.

Three Layers

Graphically this pattern is composed of three to four colored bands with few nodes: one or two white bands
for the interface layer, one red for the accessor, and one blue for attributes. This pattern describes classes
that have few methods, some accessors, and some attributes. Usually these classes are small and implement
primitive behavior and access to data. In Figure 5.8 we see that the class annotated asA belongs to this
category.
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Interface

Graphically the pattern present one predominant interface layer. It occurs when a class acts as an interface,
which is frequent for abstract superclasses. It also occurs when the class acts as a pool of constants. In the
Smalltalk programming language there is no construct for defining constant values, therefore class methods
are often used to return constant values. Such classes can also contain aConstant Definerpattern as shown
by the top class blueprint in Figure 5.10.

Wide Interface

Graphically this pattern is composed of a large interface layer proportionally to the rest of the class. A
Wide Interfaceblueprint is one that offers many entry points to its functionality proportionally to its im-
plementation layer (see Figure 5.10 and to a certain extent Figure 5.5). Examples of such classes are GUI
classes with many buttons on the user interface which implement a method for every button the user can
press.
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5.6.3 Semantics-based Blueprint Patterns

As in class blueprints we map semantic information to node and edge colors, we identify the patterns
Delegate, Data Storage, Constant Definer, Accessor User, Direct Access, andAccess Mixtureby looking
at which colors are present in a blueprint and where the nodes with those colors are located.

Delegate

Graphically this pattern is composed of yellow nodes often found in the interface layer.Delegatedescribes
a class which defines delegating methods,i.e., it forwards invocations to attributes or to accessor invoca-
tions. A Delegatecan be an indication for design patterns such asFacadeor Wrapper[GAMM 95]. The
class in Figure 5.11 (repeated from Figure 5.5) shows aDelegatepattern. The class annotated asB in
Figure 5.8 also presents aDelegatepattern.

Figure 5.11: The class blueprint of the class JunOpenGL3dGraphAbstract : it mainly consists of
a Delegate pattern.
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Data Storage

Graphically this pattern presents mainly two layers, one red of accessors and one blue of attributes, and
sometimes also has one extra method to initialize the attributes. TheData Storagepattern describes a
class which mainly defines accessors to attributes. Such a class usually does not implement any complex
behavior, but merely stores and retrieves data for other classes. The implementation layer is often empty.
Looking for duplicated logic in the clients of such classes is usually a good way to reduce duplicated code
and to enforce law of Demeter [LIEB 89], [DEME 02].

Figure 5.12: The class blueprint of the class JunJfifColorComponent : it contains a Data Storage
and a Three Layers pattern.

Figure 5.12 shows a class presenting some aspects of theData Storagepattern, but is not limited to this.
This class could also be categorized as aThree Layerseven if the number of accessors is large compared to
the other methods defined in the class. Not being able to exactly categorize the class is not a problem as the
key point is that the reengineer now knows that the class seems to act as a data repository with some extra
behavior. Reading briefly the methodnextSample (the biggest method node in this blueprint), confirms
this hypothesis as this method generates new colors using the attributes of the object.
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Constant Definer

Figure 5.13: The class blueprint of the class JunAngleAbstract : it contains a distinct Constant
Definer pattern.

Graphically this pattern is composed of grey nodes often residing in the interface layer. It describes
a class which defines methods that return constant values such as integers, booleans, or strings. Pure
Constant Definerblueprints are rare as a class is seldom limited to define constants. The class blueprint in
Figure 5.13, which is the root class shown in Figure 5.10, and the one in Figure 5.5 both contain aConstant
Definerpattern.
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Accessor User/ Direct Access/ Access Mixture

Graphically these three patterns are linked to the consistency in which edges arrive to attributes and acces-
sors. These three patterns which are mutually exclusive describe the use of accessors in classes.

Figure 5.14: A class blueprint visualization of an inheritance hierarchy with the class JunProlo-
gEntity as root class.

In the case ofAccessor User, two accessors (the getter and the setter) have been consistently defined
for every attribute in the class and the attributes are not accessed directly. In the case ofDirect Access, no
accessors at all have been defined, and the attributes are always accessed directly. In the case ofAccess
Mixture, there is an inconsistent definition and use of the accessors. These patterns reveal the programming
styles and whether they are followed. It is an important information when lazy initialization has to be
introduced in the class as all the accesses to the state should be done via a single method implementing the
lazy schema. In Figure 5.8 the class blueprintA shows anAccessor Userpattern,i.e., for every attribute
there are two accessors and the attributes are only accessed via the accessors. In Figure 5.14 the classC
is an example of aDirect Accesspattern, while within the same hierarchy the class blueprintE shows a
Access Mixturepattern. This indicates a lack of coding conventions.
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5.6.4 Call-flow-based Blueprint Patterns

Based on the call-flow between the methods, we identify the following patterns:Single Entry, Structured
Flow, Method Clumps, andFunnel.

Single Entry

Graphically this pattern is composed of a minimal, often limited to one node, interface layer but connected
to all the nodes of the larger implementation layers.Single Entrydescribes a class which has very few or
only one method in the external interface layer acting as entry point to the functionality of the class. It then
has a large implementation layer with several levels of calls. Such classes are designed to deliver only little
yet complex functionality. Classes which implement a specific algorithm (e.g., parsers) show this pattern.
Figure 5.15 shows twoSingle Entrypatterns in one class blueprint. The two distinctive entry points are the
root nodes of two separate method invocation trees. We deduce that the class provides for two separate,
probably complementary, functionalities as they access the same attributes.

Figure 5.15: The class blueprint of the class JunBmpImageStream with two Single Entry patterns.
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Structured Flow

Graphically this pattern presents a cluster of methods structured in a deep and often narrow invocation
tree. This pattern reveals that the developer has decomposed an implementation into methods that invoke
each other and possibly reuse some parts. It supports the reading of the methods. A typical example is the
decomposition of a complex algorithm into pieces. The bottom of the class blueprint in Figure 5.16 shows
a well pronouncedStructured Flowpattern.

Figure 5.16: The Structured Flow pattern of the class JunSourceCodeSaver.
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Method Clumps

Graphically this pattern is composed of one large or huge node surrounded by some tiny nodes. It contains
clusters of methods each with one very large method that is calling many of small methods. The large
methods are not structured following a functional decomposition, but have a monolithic structure (one big
chunk of code). Figure 5.17 shows twoMethod Clumpspatterns, the large nodes represent methods having
more than 100 lines of code. They are the direct translation of the GNU diff algorithm written in C. To give
an idea of the disproportionality between those methods and the small ones, note that the average number
of lines of a Smalltalk method is 7 [KLIM 96].

Figure 5.17: The Method Clumps pattern of the class JunGNUDiff.
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Funnel

Graphically this pattern is composed of an inverse (right-to-left) tree of nodes whose root is on the right,
forming a funnel.Funneldescribes a group of methods that all converge towards a final functionality. It
often occurs when a complex data structure is used that can be accessed by various interfaces. Identifying
the final functionality is often the key to understand how data abstraction is used in the class. In addition,
in Smalltalk metaclasses providing multiple examples or initialization possibilities exhibit this behavior.
Figure 5.18 and the bottom blueprint in Figure 5.10 presentFunnelpatterns.

Figure 5.18: A Funnel pattern in the class blueprint of the class JunMovieHandle.
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5.6.5 State Usage-based Blueprint Patterns

The way the attributes of a class are accessed by the methods creates patterns that provide important
semantical information about the class. Three highly identifiable and recurrent blueprints occur:Sharing
Entries, Splittable State, andAll State.

Sharing Entries

Graphically the attribute nodes are accessed uniformly by groups of method nodes. This pattern represents
the fact that multiple methods access the same state. Therefore it reveals a certain cohesion of the class
regarding its state management. An example of such a pattern is emphasized in Figure 5.19 where nearly
all methods access the third attribute from the top. Figure 5.15 presentsSharing Entriespatterns as the two
groups of method forming theSingle Entrypattern access the same state.

Figure 5.19: A Sharing Entries pattern in the class blueprint of the class JunMovieHandle.

Splittable State

Graphically this pattern presents two, rarely more, clearly separated groups of method nodes accessing two
distinct set of attribute (blue) nodes. It occurs when a class is defined around several groups of methods
each accessing only a subset of the class state. Classes presenting this pattern are showing a low cohesion
and may be split if necessary. This pattern occurs with classes such as user interface classes, whose main
purpose is to group together independent classes.Splittable Stateis rare, we included it in this section (and
not in the section on rare blueprints) because it complements the other two blueprints presented here. We
could not find one in the Jun case study, therefore omit a figure.
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All State

Graphically this pattern presents groups of method nodes that have edges arriving toall the blue attribute
nodes. It is semantically orthogonal to the other two and describes the fact that a group of methods accesses
all the attributes of a class. When the class presents aSingle Entryit often presents also theAll State
blueprint. The inverse is not true. Figure 5.20 shows an example where we see that all the attributes in the
class are accessed by the two methods annotated asA. This remarkable behavior is also exhibited by the
Figure 5.6 and the bottom blueprints in Figure 5.24.

Figure 5.20: The class blueprint of the class JunBmpImageStream with an All State pattern.
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5.7 Blueprint Patterns in the Context of Inheritance

The blueprints support class understanding within the context of their inheritance hierarchy. Within hierar-
chies some specific and recurrent patterns occur as well.

Micro Specializer

Graphically this pattern shows a small class blueprint composed of a couple of short methods,i.e., mostly
small brown or orange nodes. It denotes a small class which defines overriding and/or extending methods.
Such classes are mainly used to specialize well identified behavior and they benefit from the structure and
behavior of their superclasses. In Figure 5.8 we see some examples of theMicro Specializerblueprint.

Siamese Twin

This pattern is special because it is based on the similarity between two or more blueprints of sibling
classes, in terms of methods, attributes, method invocations, and attribute accesses. This happens when the
programmer forgot to refactor the common functionality into the superclass of the siamese twins or when
the superclass implements complex logic that should be extended in a similar way in the subclasses. The
three subclasses in Figure 5.21 are siamese twins, especially the one on the left and the one on the right
override exactly the same methods. The bottom blueprints in Figure 5.24 present two largeSiamese Twin
patterns, which is rare in this size.

Figure 5.21: A class blueprint visualization of an inheritance hierarchy with the class JunColor-
Choice as root class. Each subclass contains a pure Siamese Twin pattern.

Island

Graphically this pattern presents a class blueprint without any edge going out or coming from other class
blueprints. Island reveals classes that do not communicate with their superclasses, sibling classes, or
subclasses. The communication between the class and its superclass is only performed via the template
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methods of the superclass. Note that such a class can also define new methods and new attributes. In
Figure 5.22 we see that the subclass does neither invoke methods nor access attributes of its superclass.
Furthermore we see that the subclass does neither override nor extend any methods of the superclass,
since this would be visible as brown or orange method nodes: the subclass does not communicate with its
superclass.

Figure 5.22: The subclass in this case shows an Island pattern, as it does not communicate at
all with its superclass.

Adder/ Extender/ Overrider

Graphically this pattern presents class blueprints that are mainly white (adding), orange (extending), or
brown (overriding). These patterns present the way classes add, extend, or override inherited behavior.
The weight of these patterns,i.e., the number of methods in one of these three colors compared with the
total number of methods is an indication on the way the class fits within its inheritance hierarchy. The
rightmost subclass in Figure 5.8 is a pure adder as it is completely white, while all the other subclasses
denote heavyOverriderpatterns,e.g., have many overriding methods. None of these classes is extending
superclass behavior. We also see that in Figure 5.23 the two subclasses are combinations ofOverriderand
Adderblueprints, denoted by the presence of several brown and white method nodes.
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Figure 5.23: A nearly pure Template class blueprint of the root class JunParametricSection. The
two subclasses are both heavy Overrider blueprints.

Template

Graphically this pattern shows a blueprint with a possibly small implementation layer and several cyan
nodes,i.e., abstract methods. It reveals that a class is not limited to an interface and that it defines some
abstract methods. These classes are often mature classes. The class at the top of the hierarchy in Figure 5.7
is a good example of mature design: the class defines some template methods [GAMM 95] and abstract
hook methods specializing the behavior inherited from its superclass. Figure 5.23 and Figure 5.5 both
show aTemplatepattern.
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5.8 Analysis of Blueprint Patterns

As we saw in the preceding sections, a pattern reveals a specific aspect of a class. Such an aspect can
be thenqualifieddepending on its presence in the class and/orcombinedwith other patterns. Based on
our experience we learned that the two pattern qualifications that convey the most semantics are when a
blueprint ispure, i.e., the class blueprint contains only one single pattern and when the blueprint isheavy,
i.e., a certain pattern has a strong presence in the class.

The fact that a class exhibits a single or several patterns acts as a reinforcing action for the understanding
of the class, its role and also often its quality in terms of coding conventions or design. Pattern combinations
are often the logical result of good design practices and presenting them here does not represent something
newper se. However, in the context of class understanding they are an important validation of our approach
showing that the patterns reveal class design and support a quick understanding of classes. During our
experiences identifying one of the following combinations always accelerated the generation and validation
of the hypothesis relative to the role or design of the subject class.

5.8.1 Frequent Blueprint Pattern Combinations

Single Constant Definer

Graphically this combination is a blueprint with one grey node. This combination (SingleandConstant
Definer) occurs often in the context of rich and important hierarchies. It represents a class consisting
of only one method which returns a constant value. The location of the class within the hierarchy gives
complementary information. This pattern often appears in two contexts:

• When the class is in the middle or top of the hierarchy, it reveals a default value shared by a large
number of classes. This default value is often used as a way to discriminate over the type of an
object in the form of methods namedisOfTypeXY(), (e.g., is2DExtrapolator, is3DExtrapolator, is-
VRML97..., etc.). Looking for the senders of such testing methods may reveal hidden explicit type-
checks and therefore a lack of polymorphism and late-binding use in the system [DEME 02].

• When occurring on leaf classes, aSingle Constant Defineroften represents the definition of constants
that specify hook methods of more complex schema as for example the various tags of the HTML
language in the context of HTML generation.

This combination is efficient because on one hand it allows us to identify quickly the methods that
could be misused and thus compromise the design of an application and on the other hand it shows a good
use of object-oriented programming in the sense of reuse and customization.

Funnel, Wide Interface, and Accessor User

A Funnelis often a sign of good practice such as code functionality reuse and decomposition. Combined
with Wide InterfaceandAccessor Userit is clearly the sign of good decomposition and encapsulation as
all the accesses to the underlying representation go via disciplined access to instance state. Figure 5.18
presents aWide Interfacecombined with aFunnel.

Large Implementationand Wide Interface

Unfortunately not all the classes present aesthetic blueprints. This is especially true in the case of legacy
systems where the system went through several years of maintenance andad-hocevolution. One of the
most popular pattern combination isLarge ImplementationandWide Interface, which has some common-
alities with Riel’s definition of agod class[RIEL 96].

Delegateand Wide Interface

Obviously when a class delegates methods to another class its interface includes more methods thus stress-
ing the interface layer of the blueprint. Figure 5.5 and the classB in Figure 5.8 show this pattern combina-
tion.
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Single Entryand Large Implementation

Frequently classes with a large implementation layer structure also their functionalities asSingle Entry,
i.e., having a simple interface but a deep and narrow invocation tree. This happens often for scanners and
parsers as their internal behavior is logically decomposed. In Figure 5.6 we see that the second node in the
external interface layer is the entry point to a cluster of methods that represents this combination.

Siamese Twinand Micro Specializer

This combination is really frequent in rich hierarchies where the leaf classes take advantage of the ab-
straction and templates specified in the superclasses. The superclasses structure well-defined templates
for functionalities that their subclasses then have just to specify. The subclasses in Figure 5.7 are such
combinations.

5.8.2 Rare Blueprint Pattern Combinations

Figure 5.24: A nearly pure Interface class blueprint of the root class JunGeometry. The first
subclass is a nearly pure Template blueprint, while the two leaf classes are combinations of the
Overrider, and All State blueprint. Moreover they are Siamese Twin blueprints compared with
each other.
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Pure Interface

Graphically this pattern presents a blueprint having only methods in the interface layer. The root class in
Figure 5.24 is a nearly pureInterfaceblueprint (with only one method in the implementation layer). This
pattern may occur in the following cases:

• As a leaf class with overriding methods a pureInterfacecan be an incarnation of the NullObject
design pattern which only defines default behavior that is most of the time absorbing messages or
returning default values [WOOL 98].

• As a class near the top of an inheritance hierarchy, a pureInterfacereveals a class only implementing
method signatures. In such a situation the pureInterfacenormally defines abstract methods. A pure
Interfacewithout abstract methods is definitively a place to look further to see why none of the
methods is abstract.

Pure Interfaceand Constant Definer

This combination represents a class whose methods are only returning constants. When a pureInterfaceis
also aConstant Definer, it reveals that the class mainly represents a common set of values. In Smalltalk
metaclasses exhibit this combination as there is no explicit constant definition via CONST-like constructs.
The root class in Figure 5.24 is a good example of this combination.

Pure Overrider

As we mentioned earlier, anOverrider is often combined with aMicro or a Siamese Twinpattern. Pure
overriders are rare because this implies that the superclass achieves a good level of design and that the
domain allows one to structure subclasses by only defining a given set of methods. They reveal that the
abstraction defined in the superclasses has been designed cautiously and can be reused by just redefining a
precise set of methods. They are a good sign regarding the quality of the hierarchy. By looking manually
at the overridden methods and checking whether all the sibling classes override consistently these methods
allows one to focus on the class variation points and understand the key behavior of the classes. Each of
the three subclasses shown in Figure 5.7 is a pureOverrider.

Extenderand Overrider

From our experience, patterns present less signs related to the extension of a functionality than its redefini-
tion except for instance initialization phases. Our hypothesis is that extension is a more complex act than a
local redefinition. The combination of these two is then rare and often points to a mature design.

5.9 Tool Support: CodeCrawler and Moose

To obtain the class blueprint visualizations we use CodeCrawler as visualization tool and Moose as meta-
model and provider of the metrics and semantic information (see Appendix A). Our tool CodeCrawler
supports the synergy between opportunist reading of the code and the visualization of classes in the fol-
lowing ways:

• Interactivity. The blueprint visualizations do not merely represent source code, as in the case of
static visualizations (e.g., static pictures which cannot be manipulated), but they support direction
manipulation. When the proposed layout does not suit the reengineer wishes, he can select, move, or
delete connected, recursively connected, or not connected nodes.

• Code Proximity. At any moment the reengineer can access the code by clicking on any node and
see the corresponding definition at the level of a method, at the level of the class, and using code
browsers presenting superclasses and subclasses. Moreover he has the possibility to see permanently
a floating window showing the code of the node over which the mouse pointer is passing.
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5.10 Related Work

Among the various approaches to support reverse engineering that have been proposed in the literature,
graphical representations of software have long been accepted as comprehension aids [PRIC 93] [Sta 98].

Many tools make use of static information to visualize software, like Rigi [TILL 94], Hy+ [CONS 93]
[M END 95], SeeSoft [EICK 92], Dali [KAZM 99], ShrimpViews [STOR 95], TANGO [STAS 90], as well
as commercial tools like Imagix3 to name but a few of the more prominent examples. However, most
publications and tools that address the problem of large-scale static software visualization treat classes
as the smallest unit in their visualizations. There are some tools, for instance the FIELD programming
environment [REIS 90] or Hy+ [CONS 93] [MEND 95] which have visualized the internals of classes, but
usually they limited themselves to showing method names, attributes, etc. and use simple graphs without
added semantical information.

Substantial research has also been conducted on runtime information visualization. Various tools and
approaches make use of dynamic (trace-based) information such as Program Explorer [LANG 95], Jinsight
and its ancestors [PAUW 93] [PAUW 99], Graphtrace [KLEY 88] or [RICH 99]. Various approaches have
been discussed like in [JERD 97] where interactions in program executions are being visualized, to name
but a few.

Nassi and Shneiderman proposed flowcharts to represent in a more dense manner the code of pro-
cedures [NASS 73]. Warnier/Orr-diagrams allow us to describe the organization of data and procedures
[H IGG 87]. Both approaches only deal with procedural code and control-flow. Crosset al. defined and val-
idated the effectiveness of Control Structure Diagrams (CSD) [CROS98] [HEND 02], which is a graphical
representation that depicts the control-structure and module-level organization of a program. Even if CSD
has been adapted from Ada to Java, it still does not take into account the fact that a class exists within an
hierarchy and in presence of late-binding.

We provide a visualization of the internal structure of classes in terms of their implementations and in
the context of their inheritance relationships with other classes. In this sense our approach proposes a new
dimension in the understanding of object-oriented systems.

5.11 Conclusion

As in object-oriented programming, classes are the primary abstractions based on which applications are
built, we focus on supporting the reengineer to understand the internal structure of classes and how class
behavior is developed in the context of the inheritance hierarchy in which it is defined. Our approach is
based on the synergy between the class blueprint visualization and opportunist code reading [LITT 96] as
the visualization helps building hypothesis, raising questions that a selective code reading verifies. As such
it supports an understanding at multiple levels of abstractions [VON 96].

5.11.1 Summary

In this chapter we have presented theclass blueprint, a polymetric view targeted at the understanding
of classes and class hierarchies. The class blueprint visualizes the internal structure of classes,e.g., an
augmented call-graph enriched with metrics and semantic information. The class blueprint permits to
identify patterns that help to understand the structure of classes. We have identified and described several
of these patterns. Furthermore we have used the class blueprints on a case study and have discussed and
verified our findings.

5.11.2 Benefits

The main benefits of our approach are the following:

3see http://www.imagix.com
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• Reduction of complexity.Using a visualization namedclass blueprintwe can make assumptions
about a class without having to read the whole source code. This “taste” of the class, which con-
veys the purpose of a class, appears in two contexts: the class in isolation and the class within its
inheritance hierarchy.

• Identification of key methods.The class blueprint by condensing the class stresses, some of its
aspects. Based on the resulting signs shown by the blueprint, the reengineer builds hypotheses and
gains insights on the structure and internal implementation of a class. The blueprint helps toselect
the relevantmethods whose reading validates or invalidates the hypotheses of the reengineer.

• A common vocabulary.The recurrent patterns created by the blueprints define a common vocabulary
for the class. This vocabulary supports the communication between reengineers during a reverse
engineering process, in a similar manner to design patterns that constitute a vocabulary for design
solutions.

• Programming style detection.After the display of several blueprints, the observer starts to identify
common patterns in different blueprints. These patterns reflect the programming style of the de-
veloper,i.e., in some case studies we are able to recognize which developer wrote the blueprinted
classes.

5.11.3 Limits

Our approach is limited in the following ways:

• Layout Algorithm. The approach presented here relies heavily on an efficient layout algorithm in
terms of space and readability. Especially in the case of very large classes,i.e., having hundreds of
methods, it may happen that the only real statement we can make is that the class is large (theGiant
blueprint). However, patterns often occur in such classes providing important pieces of information.

• Functionality. The blueprint of a class can give the viewer a “taste” of the class at one glance.
However, it does not show the actual functionality the class provides. The approach proposed here
is thus complementary to other approaches used to understand classes.

• Collaboration.We do not address collaboration aspects between classes for the time being.

• Static Analysis.The approach presented here does not make use of dynamic information. This means
we are ignoring runtime information about which methods get actually invoked in a class. This is
especially relevant in the context of polymorphism and switches within the code. In this sense the
class blueprint can be seen as a visualization of every possible combination of method invocations
and attribute accesses.

5.11.4 Future work

In the future we plan to investigate the following ideas:

• Collaboration.Apply the class blueprint view on classes which are not within the same inheritance
hierarchy, but which collaborate with each other. However this can be complex because of the
presence of late-binding and the possible high number of method invocations between classes.

• Cognitive Science.The visualization algorithm presented here and the methodology coming with it
are bothad hoc, and build empirically on several years of experimentation. It shows little connection
with research from the field of cognitive science. We would like to understand more deeply how our
approach fits into more general approaches such as the one proposed by Ware [WARE 00], Bertin
[BERT 74], and Tufte [TUFT 90] [TUFT 01].
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• Qualitative Empirical Analysis.We would like to have an empirical usability analysis and qual-
itative validation of our approach by letting reverse engineers use our system and to collect their
experiences. A second possibility we want to explore is to do a controlled experiment on the reverse
engineering “efficiency” of two groups of users.

• Quantitative Empirical Analysis.We have already made a first quantitative validation of the class
blueprints [LANZ 01a], where for two different case studies we have listed the number of different
blueprints we have found. Since in the meantime our vocabulary has changed, we want to make such
an experiment again with our refined categorization of blueprints. What we have already seen in the
mentioned case study is that the frequency of certain blueprints heavily depends on the case study
and the coding conventions that have been used.

• Languages.The proposed approach has been developed to be applicable to any class-based object-
oriented language. We already visualized C++ and Java classes as blueprints. A first observation
was that the language or the mapping between the language to the blueprint layers still influences
the blueprint. We plan to identify the variation points by applying the visualizations to a number of
other object-oriented languages.

• Pattern Recognition.The use of techniques from the field of image processing and pattern recog-
nition could eventually be used to automatically recognize the blueprint patterns. We are currently
investigating the possibility of a cooperation with a research group working in artificial intelligence.
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Chapter 6

Evolutionary Software Visualization:
The Evolution Matrix

6.1 Introduction

Coping with huge amounts of data is one of the major problems of software evolution research, as several
versions of the same software must be analyzed in parallel. A technique which can be used to reduce this
complexity issoftware visualization, as a good visual display allows the human brain to study multiple
aspects of complex problems. Another useful approach when dealing with large amounts of data aresoft-
ware metrics. Metrics can help to assess the complexity of software and to discover software artifacts with
unusual measurements.

Summary. In this chapter we present a polymetric view calledevolution matrix[L ANZ 01b] 1 that
allows for an understanding of the evolution of classes within object-oriented software systems and the
evolution of the systems themselves. Moreover the evolution matrix acts as a revealer of certain specific
situations that occur during system evolution such as pulsating classes that grow and shrink during the life-
time of the system. We define a simple vocabulary to describe such specific behaviors. The intention is to
build a vocabulary for software evolution. Note that even if the results we present are obtained on software
systems written in Smalltalk, the approach presented here does not depend on a particular programming
language, as our underlying metamodel is language-independent [DUCA 00, DEME 01]. With the evolution
matrix view we want to achieve the following evolutionary reverse engineering goals:

1. Understand the evolution of object-oriented software systems in terms of size and growth rate.

2. Understand at which point in time classes have been introduced into a system and at which moment
they have been removed.

3. See if there are patterns in the evolution of classes. Such patterns help to understand the condition
of a class in a time perspective,e.g., how resistant to software evolution processes is a class, is it
changed with every release of a system, or are there classes which are virtually immune to software
evolution?

Contributions. The contributions of this chapter are the following:

• The definition of theevolution matrix, a polymetric view which visualizes the evolution of the classes
of a software system, and provides an understanding of the evolution of classes and of a whole
system. The evolution matrix lets the viewer identifyevolutionary patternswhich help to understand
(1) the evolution of the whole system, and (2) the evolution of single classes,

1This chapter is an extended version of the articleUnderstanding Software Evolution using a Combination of Software Visual-
ization and Software Metrics, published in the LMO 2002 Proceedings (Languages et Modelesá Objets), pp. 135 - 149, Hermes
Publications, 2002.
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• The definition of a vocabulary based on these evolutionary patterns detected using the evolution
matrix view.

Structure of the chapter. The chapter is structured as follows: in the next section (Section 6.2) we
present the evolution matrix view, and, based on that, a categorization of classes (Section 6.3). Afterwards
we apply and discuss our approach on some case studies (Section 6.4). We conclude the chapter by dis-
cussing the benefits and limits of our approach, as well as related work. Finally, we give an outlook on our
future work in this area.

6.2 The Evolution Matrix

In this section we present the polymetric viewevolution matrix, which supports the understanding of the
evolution of the classes of a software system. We discuss the view and then show an example matrix. At the
end of this section we introduce a categorization of classes based on their visualization within the evolution
matrix.

6.2.1 The Layout Algorithm of the Evolution Matrix

Version1 Version 2 Version 3 Version 4

...

TIME

Class 

Class A

Class B

D

Class F

Class C

Figure 6.1: A schematic display of the Evolution Matrix. Classes A,D and F are alphabetically
ordered and stay since version 1. Classes B and C appeared after version 2.

The evolution matrix displays the evolution of the classes of a software system. It has the following
properties:

• Each column of the matrix represents a version of the software.

• Each row represents the different versions of the same class.
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• Two classes in two different versions are considered the same if they have the same name.

• Within the columns the classes are sorted alphabetically in case they appear for the first time in the
system. Otherwise they are placed at the same vertical position as their predecessors. This order is
important because it allows one to represent the continuous flow of development of existing classes
and stresses the development of new ones.

Figure 6.1 presents a schematic evolution matrix where the rows 5 and 6 represents new classes added
in the system after the second release.

The evolution matrix allows us to make statements on the evolution of an object-oriented system at the
system level. However, as the granularity at system level is too coarse, the evolution matrix is enhanced
with additional information using metrics.

6.2.2 Characteristics at System Level

FIRST VERSION
OF THE SYSTEM

REMOVED CLASSES

LAST VERSION

MAJOR LEAP
IN THE 

EVOLUTION

TIME (VERSIONS)

GROWTH PHASE STABILIZATION PHASE

DAYFLY

PERSISTENT

Figure 6.2: System level evolution aspects using the Evolution Matrix.

As we see schematically in Figure 6.2 at system level we are able to recover the following information
regarding the evolution of a system:

• Size of the system.The number of present classes within one column is the number of classes of
that particular version of the software. Thus the height of the column is an indicator of the system’s
size in terms of classes. The leftmost column is an indicator for theinitial size of the system, while
the rightmost column is an indicator for thefinal size of the system.

• Addition and removal of classes.The classes which have been added to the system at a certain
point in time can easily be detected, as they are they are added at the bottom of the column of that
version. Removed classes can easily be detected as well, as their absence will leave empty spaces on
the matrix from that version on.
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• Growth and stabilization phases in the evolution.The overall shape of the evolution matrix is an
indicator for the evolution of the whole system. A growth phase is indicated by an increase in the
height of the matrix, while during a stabilization phase (no classes are being added) the height of the
matrix will stay the same. When a certain number of new classes are added they create aleap phase.

6.2.3 The Difference Evolution Matrix

The major drawback of the evolution matrix is that is renders absolute metric values,e.g., the number of
methods of a class, and since once is more interested in the changes between different versions of a class,
we also visualize the relative values between different versions,e.g., the number of added methods, in a
slightly changed evolution matrix that we calldifference evolution matrix. In Figure 6.10 we see such a
difference evolution matrix which only renders as metric measurements the differences between subsequent
versions of the classes. This has the advantage that growth phases are emphasized visually.

6.3 A Categorization of Classes based on the Evolution Matrix

We present here a categorization of classes based on the recurrentpatternswe detect in the evolution matrix
view. The categorization stems from the experiences we obtained while applying our approach on several
case studies. A large part, but not all, of the vocabulary used here is taken out of the domain of astronomy.
We do so because we have found that some of the names from this domain convey well the described types
of evolution. This vocabulary is of utmost importance because a complex context and situation, like the
evolution of software, can be communicated to another person in an efficient way. This idea comes from
the domain of design patterns [GAMM 95].

During our case studies we have encountered several ways in which a class can evolve over its lifetime.
We list here the most prominent types. Note that the categories introduced here are not mutually exclusive,
i.e., a class can behave like aPulsar for a certain part of its life and then become aWhite Dwarf for the
rest of its life. We first present the category which stems from thepresenceof a class within the matrix,
and then the one which comes from the shape and the changes in shape of the classes.

6.3.1 Presence-based Patterns

Besides characterizing the evolution at system level, the evolution matrix provides some information about
the classes themselves.

Two specific situations are worth being mentioned:

1. Dayfly classes.A Dayflyclass has a very short lifetime,i.e., it often exists only during one or two
versions of the system. Such classes may have been created to try out an idea which was then
dropped.

2. Persistentclasses.A Persistentclass has the same lifespan as the whole system. It has been there
from the beginning and is therefore part of the original design.Persistentclasses should be examined,
as they may represent cases of dead code that no developer dares to remove as there is no one being
able to explain the purpose of that class.

In Figure 6.3 we see schematic displays of these two patterns. The black nodes denoteDayflypatterns,
while the gray nodes denotePersistentpatterns.

Note that the system level view provided by the evolution matrix is not precise enough. Hence, a
stabilization phase only describes the fact that classes stayed over multiple versions of the system. Nothing
is said about the quality of the changes if any occurred. Such information is crucial for understanding a
system, that is why the evolution matrix is enhanced using software metrics.
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Figure 6.3: The visualization of Dayfly and Persistent classes.

6.3.2 Shape-based Patterns

Pulsar

A Pulsarclass grows and shrinks repeatedly during its lifetime, as we see in Figure 6.4. The growth phases
are due to additions of functionality, while the shrinking phases are most probably due to refactorings and
restructurings of the class. Note that a refactoring may also make a class grow, for example when a long
method is broken down into many shorter methods.Pulsarclasses can be seen as hot places in the system:
for every new version of the system changes on aPulsarclass must be performed.

Figure 6.4: The Visualization of a Pulsar class.Note that the shape may change depending on
the metrics associated with the representation.

Supernova

A Supernovais a class which suddenly explodes in size, and eventually becomes aRed Giantclass. The
reasons for such an explosive growth may vary, although we have already made out some common cases:

• Major refactorings of the system which have caused a massive shift of functionality towards a class.

• Data storage classes which mainly define attributes whose values can be accessed. Due to the simple
structure of such classes it is easy to make such a class grow rapidly.
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• So-calledsleeperclasses. A class which has been defined a long time ago but is waiting to be
filled with functionality. Once the moment comes the developers may already be certain about the
functionality to be introduced and do so in a short time.

Supernovaclasses should be examined closer as their accelerated growth rate may be a sign of unclean
design or introduce new bugs into the system.

Figure 6.5: The visualization of a Supernova class.

White Dwarf

A White Dwarf is a class who used to be of a certain size, but due to varying reasons lost the functionality
it defined to other classes, and slowly dwindles to become anIdle class. We can see a schematic display of
a White Dwarf class in Figure 6.6.White Dwarf classes should be examined for signs of dead code,i.e.,
they may be obsolete and therefore be removed.

Figure 6.6: The visualization of a White Dwarf class.

Red Giant

A Red Giantclass can be seen as a permanent god class [RIEL 96], which over several versions keeps
on being very large. We can see a schematic display of aRed Giantclass in Figure 6.7. God classes
tend to implement too much functionality and are quite difficult to refactor, for example using a split class
refactoring [FOWL 99].

Idle

An Idle class is one which does not change over several versions of the software system it belongs to. We
can see a schematic display of anIdle class in Figure 6.8.

We list here a few reasons which may lead to anIdle class:

• Dead code. The class may have become obsolete at a certain point in time, but was not removed for
varying reasons.
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Figure 6.7: The visualization of a Red Giant class.

Figure 6.8: The visualization of an Idle class.

• Good design.Idle classes can have a good implementation or a simple structure which makes them
resistant to changes affecting the system.

• The class belongs to a subsystem on which no work is being performed.

6.4 Illustration of the Approach

In this section we present two case studies whose evolution we have visualized using the approach described
above. We shortly introduce each case study, and then show and discuss them.

6.4.1 MooseFinder

MooseFinder [STEI 01] is a small to medium sized application written in VisualWorks Smalltalk by one
developer in little more than one year as part of a diploma thesis. We have taken 38 versions of the software
as a case study.

Discussion.In Figure 6.9 we can see the evolution matrix of MooseFinder. We see that the first version
on the left has a small number of classes and that of those only few survived until the last version,i.e., are
Persistentclasses. We can also see there have been two major leaps and one long phase of stabilization.
Note that the second leap is in fact a case of massive class renaming: many classes have been removed in
the previous version and appear as added classes in the next version. There is also a version with a few
Dayflyclasses. The classes themselves rarely change in size except the class annotated as a renamedPulsar
class, which at first sight seems to be one of the central classes in the system.

The Difference Evolution Matrix. Figure 6.10 presents the same system where the difference metrics
are represented. It reveals even more the sudden increases in size of certain classes. The interesting property
of this view is that emphasizes changes. For example, having two flat boxes following each others shows
that the class grows over the two versions. This view allows also to see where attributes have been added,
e.g., graphically this would mean to have nodes which are taller than the minimal node height.

6.4.2 Supremo

Supremo [KONI 01] is also written in VisualWorks Smalltalk. We have taken 21 versions of this applica-
tion as a case study.
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Figure 6.9: The Evolution Matrix of MooseFinder.

Discussion. In Figure 6.11 we see the evolution matrix of Supremo. We see that there is apart from
a stabilization phase a constant growth of the system with three major growth phases. Note that the last
growth phase is due to a massive renaming of classes. There are severalPulsar classes which strike the
eye, some of which have considerable size. We can also see that from the original classes only two are
Persistent, i.e., the whole system renewed itself nearly completely. Figure 6.12 presents the same system
using the differential view which emphasizes the changes made.

6.5 Tool Support: CodEVolver

In order to obtain the evolution matrix view we had to extend CodeCrawler, especially by providing the
loading facilities,i.e., we had to put in place a mechanism which allows us to load several versions of
the same software in parallel, and then get the necessary information by querying the different models.
This extension of CodeCrawler called CodEVolver (see screenshots in this chapter) integrates neatly with
CodeCrawler. We describe and discuss the architecture of CodeCrawler, and the way it can be extended as
in this case, in Appendix A.

6.6 Related Work

Among the various approaches to understand software evolution that have been proposed in the litera-
ture, graphical representations of software have long been accepted as comprehension aids. Holt and Pak
[HOLT 96] present a visualization tool called GASE to elucidate the architectural changes between different
versions of a system.

Raysideet al. [RAYS 98] have built a tool called JPort for exploring evolution between successive
versions of the JDK. Their intent was to provide a tool for detecting possible problem areas when developers
wish to port their Java tools across versions of the JDK. They provide evolution analysis at the level of
Reuse Contracts [STEY 96].
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Figure 6.10: The Difference Evolution Matrix of MooseFinder.

In [JAZA 99, RIVA 98] Riva presents work which has similarities with ours,i.e., they also visualize
several versions of software (at subsystem level) using colors. Through the obtained colored displays they
can make conclusions about the evolution of a system. Their approach differs as they do not have actual
software artifacts but only information about software releases. This implies that they cannot verify the
correctness of their informations. Our approach allows us to enrich the display using metrics information
as well as being able to access every version of the software artifacts.

Burd and Munro have been analyzing the calling structure of source code [BURD 99]. They trans-
formed calling structures into a graph using dominance relations to indicate call dependencies between
functions. Dominance trees were derived from call-directed-acyclic-graphs [BURD 99]. The dominance
trees show the complexity of the relationships between functions and potential ripple effects through change
propagation.

Gall and Jazayeri examined the structure of a large telecommunication switching system with a size
of about 10 MLOC over several releases [GALL 97]. The analysis was based on information stored in a
database of product releases, the underlying code was neither available nor considered. They investigated
first in measuring the size of components, their growth and change rates. The aim was to find conspicuous
changes in the gathered size metrics and to identify candidate subsystems for restructuring and reengineer-
ing. A second effort on the same system focused on identifying logical coupling among subsystems in a
way that potential structural shortcomings could be identified and examined [GALL 98].
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Figure 6.11: The Evolution Matrix of Supremo.

Sahrarouiet al. [SAHR 00, LOUN 98] present another aspect of the research on software evolution
which is the prediction of the evolution. Our current focus is to understand the evolution even if our long
term goal is to gain a better prediction on which parts of the system will cause problems.

6.7 Conclusion

We presented an approach for helping the understanding of system evolution which is based on theevo-
lution matrix, a polymetric view which displays classes on a two-dimensional matrix and enriches the
visualization of the classes with metrics information. The evolution matrix can thus compress the vast
amount of information contained in the evolution of a software system into a view which can be grasped
in one glance. The matrix permits to observe the evolution of the whole system (by looking at the shape of
the matrix) and the evolution of single classes (by looking at how the classes evolve from left to right).

6.7.1 Benefits

The evolution matrix helped us to provide answers to the evolutionary reverse engineering goals we have
set:

• It helped us to understand the evolution of object-oriented software systems in terms of size and
growth rate.
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Figure 6.12: The Difference Evolution Matrix of Supremo.

• It helped to understand at which point in time classes have been introduced into a system and at
which moment they have been removed.

• It let us detect patterns in the evolution of classes.

6.7.2 Limits

The presented approach has the following limitations:

• It is fragile regarding the renaming of the classes. Right now we consider a class similar to the
subsequent versions if it has the same name. This assumption is too limitating and we plan to remove
it by applying some simple heuristics to identify renamed classes such as a percentage of common
methods and attributes.

• The view itself is not scalable in the sense that the evolution matrix of a very large system would fit
on one screen only by zooming out, and this would decrease the interactivity, since we want to be
able to interact with each version of each class. We think that the introduction of grouping techniques
could increase the scalability of the evolution matrix.
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6.7.3 Future Work

In the future we plan to investigate the following ideas:

• We would like to apply the evolution matrix at other levels of granularity. In particular, we want to
be able to reason in terms of subsystems, packages or applications because these concepts represent
conceptually linked classes in large applications. In such a context we would like to understand
the evolution of subsystems, inside them and between them when for example a class is changing
subsystem.

• Applying other metrics such the number of lines of codes in combination with the number of methods
or statements in the class should be investigated to see if we can qualify the actual changes,i.e., new
methods can be added as the results of code refactoring while in the same time the number of lines
can decrease.

• The choice of the case studies is also another factor that we would like to analyze. Indeed, the rates
of changes may be quite different with longer periods between releases. In our experiences we have
access to all the versions made by the developers and could not really assess major versions.

• we plan to apply the same approach to several versions of large systems like Squeak, Java Swing,
VisualWorks Smalltalk and the Microsoft Foundation Classes (MFC) where the time spent between
two versions can be months or years.
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Chapter 7

Conclusions

In this chapter we summarize the contributions made in this dissertation, discuss the benefits of our ap-
proach, and point to directions for future work.

7.1 Contributions

In this dissertation we presented a new, lightweight approach to enrich software visualizations with metrics
and other semantic information. We call these enriched visualizationspolymetric views. The polymetric
views are customizable and can be easily adapted to different contexts. We used the polymetric views
in three different reverse engineering contexts, namely (1) coarse-grained software visualization, (2) fine-
grained software visualization, and (3) evolutionary software visualization.

• Coarse-grained software visualization. We presented and discussed several polymetric views aimed
at the first phase of a reverse engineering process. During that stage, the reverse engineer needs to
build a mental image of the software system he is analyzing. We presented a reverse engineering
approach based on clusters of polymetric views. Such an approach is needed, because the reverse
engineer not only needs to know what he is currently looking at, but he also needs to know which
are the next steps,i.e., which part or aspect of the system he wants to understand comes next. Using
the coarse-grained views we were able to reach the coarse-grained reverse engineering goals we had
set up, namely:

– Assess the overall quality of the system

– Gain an overview of the system in terms of size, complexity, and structure.

– Locate and understand the most important classes and inheritance hierarchies,i.e., find the
classes and hierarchies that represent a core part of the system’s domain and understand their
design, structure in terms of implementation, and purpose in terms of functionality.

– Identify exceptional classes in terms of size and/or complexity compared to all classes in the
subject system. These may be candidates for a further inspection or for the application of
refactorings.

– Identify exceptional methods in terms of size and/or complexity compared to the average of
the methods in the subject system. These may be candidates for a further inspection regarding
duplicated code or for the application of refactorings.

– Locate unused,e.g., dead code. This can be unused attributes, methods that are never invoked
or that have commented method bodies, unreferenced classes, etc.

• Fine-grained software visualization.We presented and discussed the polymetric viewclass blueprint,
a semantically augmented call- and access-graph of the methods and the attributes of classes. The
class blueprint helps to understand and develop a mental image of the visualized classes. The class
blueprint view provides the following benefits:
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– Reduction of complexity.It helps to make assumptions about a class without having to read the
whole source code. This “taste” of the class, which conveys the purpose of a class, appears in
two contexts: the class in isolation and the class within its inheritance hierarchy.

– Identification of key methods.By condensing the informations contained in a class, it stresses
some of its aspects. Based on the resulting signs shown by the blueprint, the reengineer builds
hypotheses and gains insights on the structure and internal implementation of a class. The
blueprint helps toselect the relevantmethods whose reading validates or invalidates the hy-
potheses of the reengineer.

– A common vocabulary.The recurrent visual patterns created by the blueprints define a common
vocabulary for the class. This vocabulary supports the communication between reengineers
during a reverse engineering process, in a similar manner to design patterns that constitute a
vocabulary for design solutions.

– Programming style detection.After the display of several blueprints, the observer starts to
identify common visual patterns in different blueprints. These patterns reflect the programming
style of the developer,i.e., in some case studies we are able to recognize which developer wrote
the blueprinted classes.

• Evolutionary software visualization.We presented and discussed the polymetric viewevolution ma-
trix. It allows for an understanding of the evolution of classes within object-oriented systems and
the evolution of the systems themselves. Moreover the evolution matrix acts as a revealer of cer-
tain specific situations that occur during system evolution such as pulsating classes that grow and
shrink during the lifetime of the system. We defined a simple vocabulary to describe such specific
behaviors. The evolution matrix view provides the following benefits:

– It provides system wide views that help to understand essential changes during the evolution of
an application.

– It provides a finer understanding of the class evolution.

– It builds a vocabulary to describe system and class evolution.

– It scales well. However, we expect to have some screen limitation problems with huge systems.
Working at another level of abstraction will be required.

We claimed that the polymetric views can help to greatly reduce the complexity of a reverse engineering
process. Moreover, the added metrics and semantic information increase the amount of information that
is visually transmitted to the viewer. The polymetric views supportopportunistic code reading, i.e., the
goal of the polymetric views is not to replace code reading, but to point the viewer to locations of interest.
To validate our claim we applied different polymetric views on several case studies, some of which are
presented in this thesis, with the goal of understanding the subject systems.

7.2 Future Work

The future work pertinent to each one of the three different aspects we have covered in this thesis (coarse-
grained, fine-grained, and evolutionary understanding) is discussed in the respective chapters.

In this section we present several ideas that could not be realized or implemented, largely due to a lack
of time and a lack of human resources. The future work described here does not necessarily have a direct
connection to what we discussed in this thesis. Nonetheless we would like to present it here:

• Software visualization, whose roots lie mainly in information visualization, is limited by this legacy.
Most of the time ideas from information visualization are applied on static systems, for example
websites, databases, and large documents. Software systems on the other hand are constantly being
evolved by their developers and maintainers and can be regarded as living systems. This difference
calls for a much higher degree of flexibility and above all interactivity which visualization tools must
offer. The fact that most software developers still think in terms ofedit-compile-runcycles may be
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one of the major reasons for the lack of success of software visualization tools which use mainly
graphical approaches (as opposed to other visualizations,e.g., textual enhancements like the use of
color editing, different fonts, hypertext, etc.).

The future work would thus consist in developing highly interactive development environments
which would make the distinction between forward and reverse engineering / reengineering super-
fluous.

• Visualization of software evolution is still a largely unexploited research field. This may be due to
the fact that software evolution research is still focused on managing the huge sets of data and noise
which denote this research topic. We think that an approach based on alevel of detail(LOD), as
used in 3D and Virtual Reality,e.g., games like so-called first-person shooters, which allows one to
increase the granularity of the observed information at will, may decrease the encountered problems
and thus increase the quality of the information one wants to see.

In this context we think that the use of animation,i.e., moving pictures of evolving software systems,
could delegate the task of noise reduction to the human eye and brain. On the other hand we are
aware that animation on its own is not enough, because in software evolution the main interest does
not lie in observation, but in comparing different versions. In the case of animations, the axis of
(development) time would be mapped on the axis of (animation) time, which makes comparisons
difficult, if not impossible. However, by adding the right information one could even profit from
animation techniques, if not only to obtain a high-level view of the evolution of a complete software
system. Here again the right information is the key to interesting results.

• As presented in Chapter 2 software visualization does not necessarily mean a visual display but
can include other means as well. An interesting, yet under-exploited, research topic is software
auralization, which visualizes software using sounds. It has mainly been used for rendering the
dynamic behavior of software,e.g., each time a program passes through a certain loop a sound is
generated, or the pitch of the generated sound varies according to the state a program is in.

Although it doesn’t make much sense to use this technique for the auralization of the static structure
of software, it could be used for rendering evolving software. For example a sound could be gener-
ated whose pitch changes according to the size of the system. Several other paths could be explored
in this topic, but once again this research is heavily dependent on having as much information,i.e.,
version information of the examined system, as possible.

Examples of such pieces of information are the commit-time, the developer’s name tag, and of course
the version number. Other important pieces of information are the developer’s comments, their
size and the content. Knowing when, how, and what a developer says about the system he’s being
developing could be interesting.

• Software evolution research depends on having consistent sets of information about evolving sys-
tems, i.e., the granularity level of the available information heavily influences the quality of the
research. Although interesting experiments have been conducted even with as little information as
the version numbers of subsystems [RIVA 98], high-quality research depends on having as much in-
formation as possible. This is where versioning systems like CVS or RCS can provide a great deal
of information, although the granularity level is still only of released versions and not at the level
of micro-changes, for example the addition and removal of methods. Versioning systems should not
be used as external tools as they are right now, but should be neatly integrated into development
environments, in order to provide as much information about the evolution of software as possible.

An example of such the information is the tracing of browsers, which allows one to observe the
behaviorof programmers during the forward and reverse engineering phases of a software system’s
evolution, as can already be done in the StarBrowser [WUYT ] by the SmallBrother plugin. Recov-
ering such information would however involve a tight integration with the development environment
at hand. This again would involve an invisibility of such a plugin or extension,i.e., the plugin must
not disturb or change the behavior of the developers during their programming.
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7.3 Closing Words

All too often research conducted in the field of software visualization, a descendant of information visu-
alization, is ignoring the great insights obtained by people like Bertin and more recently Tufte, Ware, and
Stasko and others. This generated in the last few years dozens of software visualization tools that mainly
offer the same functionalities and introduce little new insights. We believe that in order for software visu-
alization to become a respected, serious, and established research field, software visualization researchers
should settle on a common benchmark which would allow one to accept and/or reject new/old ideas and to
discuss these ideas more critically.

The greatest problem that software visualization faces, is that it is a unique conjunction of various
aspects and techniques and requires from researchers a wide range of talents among which

• a deep sense of esthetics,

• a thorough knowledge in software engineering, software reengineering and software reverse engi-
neering,

• a vast experience in programming languages and integrated development environments (IDEs),

• a solid talent in developing software to efficiently implement new ideas,

• a good basis in human-computer interaction (HCI).

Sadly, no teaching or research institution currently offers such a broad range of disciplines or even tries
to aggregate them into an interdisciplinary course.
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Chapter 8

Epilogue

Even though we believe that the contributions made in this thesis may be helpful, as long as there is no
tight integration of software visualization tools with current development environments, only a little part
of their benefits will flow into mainstream software development and its industry.

However, it will stay a promising and interesting research field because of its complexity, reality, and
beauty.

In that sense: we are going to see...

Michele Lanza

Aprile 27, 2003
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Appendix A

CodeCrawler - Implementation

A.1 Introduction

In this chapter we discuss the implementation of CodeCrawler1. CodeCrawler is the software visualization
tool we have implemented during the past years and which made possible all the visualizations presented
here. In this chapter we discuss the implementation of CodeCrawler according to five aspects and then
generalize the lessons learned into design guidelines and recommendations for the implementation of soft-
ware visualization tools. We hope these lessons can ultimately be used profitably by researchers in this
field in case they want to start a new implementation or enhance an existing implementation of a software
visualization tool.

CodeCrawler’s implementation changed and evolved in order to cope with the new requirements our
research generated. Its current design is thus able to solve most of the problems we encountered with static
software visualizations. Moreover, several of the lessons learned with CodeCrawler can be generalized into
more common design guidelines and recommendations which apply to other kinds of software visualization
tools as well.

We identify five key issues pertinent to the implementation of a software visualization tool:

1. the overall architecture, i.e., the way the software visualization tool as a whole is structured. A
clear separation of its three main subsystems,e.g., the core, the visualization engine, and the meta-
model, provides for the higher flexibility that is necessary to be resistant against software evolution
processes.

2. the internal architecture, i.e., the design of the core domain model. Although simple at first sight,
the domain model must be designed for extensibility, since the added and new requirements in terms
of the functionality needed by the users have an impact on it.

3. the visualization engine, i.e., the way information is visualized. Since software visualization tools
have special needs, an off-the-shelf visualization library does not offer the degree of freedom needed
by the software visualization tool provider. On the other hand writing a complete visualization library
from scratch is a cumbersome and lengthy process that should not burden the software visualization
tool provider. We describe a compromise solution that largely satisfied our needs.

4. the metamodel, i.e., the way data is collected and stored. This part, not directly related to software
visualization, but to more general and common reverse engineering issues, should also be separated
from a software visualization tool and be reused as an external and well-defined source of function-
alities.

1This chapter is an extended version of the articleCodeCrawler - Lessons Learned in Building a Software Visualization Tool,
published in the CSMR 2003 proceedings (7th European Conference on Software Maintenance and Reengineering), pp. 409 - 418,
IEEE Press, 2003.
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5. the interactive facilities, i.e., the direct-manipulation possibilities that are offered to the user. Al-
though hard to validate, it is this aspect that requires the most work from a software visualization
tool provider and that ultimately dictates the tool’s usability and success.

Software and Information Visualization

Priceet. al [Sta 98] define software visualization asthe use of crafts of typography, graphics design, ani-
mation, and cinematography with modern human-computer interaction and computer graphics technology
to facilitate both the human understanding and effective use of computer software. Ware [WARE 00] states
thatvisualization provides an ability to comprehend huge amounts of data. However, software visualiza-
tions are often too simplistic and lack visual cues for the viewer to correctly interpret them. In other cases
the obtained visualizations are still too complex to be of any real value to the viewer. The goal of any
software visualization tool is ultimately to visually render software, be it in a dynamic or static fashion.
Software visualization is useful because visual displays allow the human brain to study multiple aspects of
complex problems in parallel. All software visualization tools face problems coming form the more general
fields ofinformation visualization[WARE 00] andsemiotics of graphics (the study of symbols and how they
convey meaning), wonderfully discussed by Tufte [TUFT 90, TUFT 01, TUFT 97] and Bertin [BERT 74].

Ware [WARE 00] describes four basic stages in the process of data visualization, and interestingly
enough these four stages have a direct mapping on the architecture of software visualization tools:

1. The collection and storage of data itself.

2. The preprocessing designed to transform the data into something we can understand.

3. The display hardware and the graphics algorithms that produce an image on the screen.

4. The human perceptual and cognitive system,i.e., the perceiver.

We deduce from these four stages four components thatde factomust be present in one way or another
in every software visualization tool:

1. The metamodel. The data to be visualized, in this case it is software source code, must be collected
and stored using a metamodel that provides facilities like parsing, storing, etc.

2. The internal architecture. Based on the data provided by the metamodel, a software visualization
tool must have some kind of internal representation of what it visualizes.

3. The visualization engine. An important part of every tool is devoted to the graphical output of
information.

4. Interactivity. The perceiver,e.g., the viewer, not only wants to look at software, most of the times
he also wants to interact with the visualizations, since static visualizations seldom offer exhaustive
explanations to the viewer.

Furthermore the union and interplay of these components can be regarded as theoverall architecture
of a software visualization tool.

Structure of the chapter. In Section A.2 we present our tool CodeCrawler according to the five criteria
identified above. We then generalize our findings into lessons learned (Section A.3) before concluding in
Section A.4.

A.2 CodeCrawler

CodeCrawler is a language-independent software visualization tool written in Smalltalk. CodeCrawler
supports reverse engineering through the combination of metrics and software visualization [LANZ 99,
DEME 99b, DUCA 01a, LANZ 01a]. In Figure A.1 we can see a screenshot of CodeCrawler. Its power and
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Figure A.1: A snapshot of CodeCrawler’s main window. The visualized system in this case is
CodeCrawler itself.

flexibility, based on simplicity and scalability, has been repeatedly proven in several large scale industrial
case studies. To model software, CodeCrawler uses Moose, a language independent reengineering environ-
ment. The first implementation of CodeCrawler started in 1998 as part of a master thesis [LANZ 99]. At
the beginning CodeCrawler was based directly on the Smalltalk language, since its reflective capabilities
provide for many functionalities that otherwise must be provided by an external metamodel. In 1998 in
the context of the FAMOOS ESPRIT project, Moose, the first implementation of the FAMIX metamodel,
neared completion and CodeCrawler started to use Moose as metamodel. While FAMIX provided for
possibilities as language independence (Java, C++, Smalltalk, Ada, COBOL, etc.) it also involved more
complexity. CodeCrawler has had 5 major releases since then, it was last released in October 2002. In
its newest re-implementation, described in this chapter, CodeCrawler is now also able to visualize any
construct,e.g., constructs and artifacts that do not necessarily come from the field of software reverse
engineering.

A.2.1 Overall Architecture

As in every software system, the general architecture of a software visualization tool dictates on one hand
how much and which kind of functionality it provides, on the other hand it also defines how it can be
extended in case of changing or new requirements.

CodeCrawler adopts what we call abridge architecture described above, as we see in Figure A.2:
the internal architecture,e.g., the core of CodeCrawler, acts as a bridge between the visualization engine
(on the left) and the metamodel (on the right). It uses as visualization engine the HotDraw framework
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Figure A.2: The general architecture of CodeCrawler, composed of three main subsystems: the
core, the metamodel and the visualization engine.

[BRAN 95, JOHN 92] and as metamodel the FAMIX metamodel [DEME 01], whose implementation is
called the Moose reengineering environment [DUCA 00] [DUCA 01b]. Both of them are described in more
detail later on. In order to keep a certain flexibility CodeCrawler uses facade classes which hide both the
visualization engine and the metamodel from the core. It thus can limit the effects of changes happening
on the visualization engine and the metamodel. This has the advantage that only the facade classes must
be changed when the visualization engine or the metamodel changes. An example of such a change is the
newly supported GXL format [HOLT 00], which directly affects only Moose and does not affect the imple-
mentation of CodeCrawler, except for adding a new menu item in CodeCrawler’s file menu. An example
of a major future change is to use a 3D visualization engine. Although at first sight a massive change, this
would affect again only the visualization engine’s facade classes. In a second moment CodeCrawler would
then start to exploit the added third dimension for its visualizations and only then this would have an effect
on the implementation of its core.

A.2.2 Internal Architecture

The internal architecture of software visualization tools is largely dictated by their domain model. This
depends on the type of visualizations the tool provides. CodeCrawler is focused on visualizing static
information about software,i.e., thus working mainly at a structural level. Other visualizations types, not
discussed here, includealgorithm visualization and animation, computation visualization. According to
the taxonomy presented by Priceet al.[PRIC 93] CodeCrawler is astatic code visualizationtool.

The internal architecture of CodeCrawler,i.e., all things not related to the visualization engine or the
metamodel, can be divided into four parts: (1) the core model, (2) the polymetric views subsystem, (3) the
layout engine and (4) the user interface and service classes.

1. The Core Model. We can see a simple class diagram of CodeCrawler’s core model in Figure A.3.
CodeCrawler uses nodes to represent entities (classes, methods, subsystems, etc.) and edges to rep-
resent relationships (inheritance, invocation, access, etc.) between the entities. The nodes and edges
are contained within a class that represents a graph in the mathematical sense. Both the node class
(CCNode) and the edge class (CCEdge) inherit from an abstract superclass which represents a gen-
eral item (CCItem). CCItem serves as bridge between the visualization part (it contains an attribute
named figure which points to a figure class). It is also a bridge to a parallel plugin hierarchy (it con-
tains an attribute named plugin which points to a plugin class). The classes in the plugin hierarchy
provide most of the functionality of the nodes and edges. We decided to separate this functionality
into an own hierarchy (instead of putting it inside the node and edge classes) in order to obtain more
flexibility and a higher degree of extensibility. The plugin hierarchy ultimately serves as another
bridge [GAMM 95] to the metamodel representing the software. In our case the abstract superclass
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Figure A.3: The core model of CodeCrawler.

CCItemPlugin defines an attribute namedentity which points to the needed class,e.g., in the case
of visualizing software it point to a class in Moose which represents a software artifact. To protect
against changes in the metamodel we use again facade classes,i.e., in CodeCrawler we implemented
a hierarchy of FAMIX plugins which have counterparts in Moose. To make an example, in order
to represent a FAMIX class in Moose (called at this time MSEClass), CodeCrawler implements a
CCFAMIXClassPlugin class which interfaces with MSEClass. The return in extensibility of this
implementation became obvious when some students extended CodeCrawler’s plugin hierarchy in
order to model and visualize other kinds of entities, for example for the fields of concept analysis,
web site reengineering and prolog rule repositories.

2. The Polymetric Views. All information regarding a certain visualization (what is to be visualized,
how, where, which metrics, etc.) is stored by means of a view specification class (CCViewSpec).
When it comes to display a view of a software system, a view builder (CCViewBuilder) interprets an
instance of a specification class and builds the needed visualization. The specifications of the views
are easily composed and modified in the view editor window depicted in Figure A.4.

3. The Layout Engine. The complex problems that go with graph drawing and graph layouts have been
a subject of research for many years [BATT 99]. The layout class hierarchy is part of CodeCrawler,
i.e., we do not use any external or commercial graph layout library. The reason for doing so is that in
Smalltalk there is no freely available standardized layout library, as is the case for other programming
languages like Java or C++. Although an interfacing with libraries written in C would not have been
a problem, we decided against that in order to keep as much control as possible. This trade-off
between having or delegating control must be carefully evaluated. In CodeCrawler all layouts (at
this time ca. 15) inherit from a common abstract superclass (CCAbstractLayout). A layout class
takes as input a collection of node figures and assigns a position to each of them.

4. The Service and UI Classes.Besides the classes mentioned above, CodeCrawler contains many
more classes which provide for various services, for example storing constants and color mappings.
Other classes are pure user interface classes (Dialogs, Panels, etc.). Since these classes do not have
any features that are particularly important for software visualization tools, we omit their discussion.
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Figure A.4: CodeCrawler’s View Editor. The views are composed piece by piece and can then be
directly invoked from the main window.

A.2.3 Visualization Engine

The primary task of a software visualization tool’s visualization engine is to provide for the graphical
output on the screen.

We can see a simple class diagram of the visualization engine in Figure A.5. CodeCrawler uses as
visualization engine the HotDraw framework, a lightweight 2D editor written in Smalltalk, consisting of
ca. 150 classes. It provides for basic graphical functionalities like zooming, scaling, elision and comes
with a collection of simple figures (rectangles, lines, ellipses, composite figures, etc.) that can be easily
reused and extended through subclassing, as CodeCrawler does indeed: the subclasses include CCDraw-
ing, which represents the drawing surface on which the visualization is displayed, and several figures
classes (CCRectangleFigure, CCLineFigure, etc.) which add functionality to the quite simple HotDraw
figure classes. However, these subclasses do not offer protection against changes in HotDraw, since the
subclasses would be affected too. Therefore in CodeCrawler three classes (CCItemFigureModel, CCN-
odeFigureModel and CCEdgeFigureModel), organized in a small hierarchy, serve as facade classes for the
figure classes that subclass HotDraw’s classes. This allows us to replace on-the-fly the graphical represen-
tation,e.g., the figure, of a node or an edge. Furthermore, the facade classes implement several operations
that we want to effect on figures (graphical operations, geometric transformations, etc.) and delegate them
to the appropriate concrete figures on the screen.

A.2.4 Metamodel

The primary task of a metamodel is to collect and store the data that later on is visualized.
CodeCrawler uses Moose, a language independent reengineering environment written in Smalltalk, to

model software systems [DUCA 00, DUCA 01b]. In Figure A.6 we see the internal organization of the
Moose reengineering environment. Moose is based on the FAMIX metamodel specification [DEME 01]
[T ICH 01], which provides for a language independent representation of object-oriented source code and
contains the required information for reengineering and reverse engineering tasks like navigation, query-
ing, metrics, refactorings, etc. It islanguage independent, because in the context of the FAMOOS ESPRIT
project we needed to work with legacy systems written in different implementation languages. It isex-
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Figure A.5: The visualization engine of CodeCrawler. CodeCrawler subclasses and extends
some basic HotDraw figure classes. The class hierarchy composed of the classes CCItemFig-
ureModel, CCNodeFigureModel and CCEdgeFigureModel serves as Facade for the HotDraw
figure classes.

tensible, since we cannot know in advance all information that is needed in future tools. Since for some
reengineering problems (e.g., refactorings [TICH 01]) the tools might need for language specific informa-
tion, we allow for language plug-ins that extend the model with language specific features. Next to that we
also allow the tool plug-ins to extend the model with tool specific information.

The FAMIX metamodel comprises the main object-oriented concepts – Class, Method, Attribute and
Inheritance – plus the necessary associations between them – Invocation and Access (see Figure A.7).
Note that the complete FAMIX metamodel includes many more aspects of the object-oriented paradigm,
and contains source code entities like formal parameters, local variables, functions, etc. We opted against
the use of UML because it is not sufficient for modeling source code for the purpose of reengineering, since
it is specifically targeted towards OOAD and not at representing source code as such [DEME 99c].

Moose, a full-fledged reengineering environment, provides CodeCrawler with several services from
parsing (Smalltalk and Java) to reading exchange files in different formats (XMI, CDIF, RSF). CodeCrawler
uses the functionalities provided by Moose either directly using delegation or by subclassing some of
Moose’ classes. Furthermore, the plugin hierarchy in CodeCrawler contains a subtree composed of FAMIX
plugins, which serves as facade for the actual FAMIX classes in Moose. This is described in detail in the
Section A.2.2.

A.2.5 Interactive Facilities

“Experiments on how people solve spatial problems have uncovered a well-stocked mental
toolbox of graphic operations, such as zooming, shrinking, panning, scanning, tracing, and
coloring.” [PINK 97]

Once the visualization is rendered on the screen, the user not only wants to look at it, he also wants to
interact with it. According to Storeyet al. [STOR 99] this helps to reduce the cognitive overhead of any
visualization.

In Figure A.8 we see CodeCrawler at work. In CodeCrawler the HotDraw framework provides for
direct manipulation at a purely graphical level,i.e., the user can click, drag, double-click, delete, zoom
out/in, spawn child windows, etc. CodeCrawler uses that functionality by providing context-based (pop-
up) menus for each node and edge. Note that depending on the type of the node (class, method, etc.)
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Figure A.6: The architecture of Moose, CodeCrawler’s metamodel.

Figure A.7: The core of the FAMIX metamodel.

different choices are offered to the user. For example it is possible to open a class browser on a node,
or look at a list of senders of a certain method, etc. In the context of a master in our group [SCHW 02],
a student has implemented on top of CodeCrawler several navigation facilities that enable the user to go
back/forth from one view to another (macro navigation) or that offer the user context-based navigation aids
(micro navigation).

The context menus and the micro navigation are located within the plugin hierarchy, since they are
context- or entity-based. The macro navigation and all other graphical interactions like geometric transfor-
mations and all multi-windowing techniques are located in CodeCrawler’s main window.

A.3 Lessons Learned

In this section we take the lessons learned from the implementation of CodeCrawler and generalize them
into more common design guidelines and recommendations. These apply not only for static software
visualization tools like CodeCrawler, but in a wider context for visualization tools and reverse engineering
tools in general.
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Figure A.8: CodeCrawler at work. The context menus are dynamically built depending on the
entity or relationship that is selected.

A.3.1 Overall architecture

In the case of a software visualization tool, as we have seen in Section A.1, the general architecture is
readily identified and is composed of (1) thevisualization engine, (2) themetamodel, and (3) thecoreor
the internal architecture.

1. The visualization engine. It provides for the graphical capabilities of the software visualization
tool. In some cases the software visualization tool provider uses or extends a commercial or external
graphical library,e.g., OpenGL, DirectX, while in other cases he implements it by himself. We do
not recommend to implement a graphical library from scratch, as this can become a long and painful
implementation marathon without any real improvement of the tool’s capabilities. Another design
decision that the software visualization tool provider must take is whether he wants to use a 2D or
3D visualization engine. We do not think that 3D involves a much higher complexity, it rather puts
more pressure on direct manipulation issues,i.e., how can the visualized software be interacted with
and how can it be navigated?

2. The metamodel.The metamodel provides for the software visualization tool’s data collection and
data storage capabilities. The metamodel itself can be language independent (thus providing for a
representation of several programming languages at the same time), language dependent or in some
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cases even be the language itself without any additional meta-information.

3. The core. Ultimately the core is the part of the software visualization tool where the domain model
and the tool’s functionalities are modeled and implemented.

Both the visualization engine and the metamodel can be considered asexternaltools whose evolution
cannot be directly controlled by the software visualization tool provider, unless they provide one or both of
them. However, this involves more work which distracts from the implementation of the software visual-
ization tool’s core capabilities. It is therefore useful to provide a mechanism of protection against changes
happening in either the visualization engine (e.g., the visualization engine is not supported anymore, not up-
to-date, does not work on a certain platform, etc.) or in the metamodel (e.g., the implementation changes).
By providing the right protection mechanisms it is even thinkable to replace either the visualization engine
or the metamodel without having a (big) impact on the software visualization tool core. In our case we do
so by means of Facade classes, in a more general case the main point is to define precise interfaces to the
both the metamodel and the visualization engine. The quality and stability of these interfaces ultimately
defines the overall stability of the tool.

A.3.2 The Internal Architecture

The core task of any visualization tool is to visualize (parts of) this internal graph representation. The
visualization can be done by different means, but most tools visualize nodes as rectangles and edges as
connecting lines between the rectangles. The internal architecture thus provides for functionalities to allow
a visualization. This mainly involves providing guidance to the user and assist him in the process of
visualization,i.e., what should be visualized and how?

Many static code visualization tools have adopted as internal representation the basic entity-relationship
metamodel, internally represented as a graph consisting ofnodes(the entities) andedges(the relationships).

• The nodes.The nodes represent concrete and inconcrete software artifacts. Concrete artifacts can
be localized in the source code and include classes, methods, functions, packages, etc., whereas
inconcrete artifacts cannot be localized within the source code, but represent often abstractions in
the head of the developers. Examples for inconcrete artifacts are groups of classes, subsystems,
functionalities, etc.

• The edges.The edges represent relationships between the software artifacts. Once again we can
identify concrete relationships like inheritance relationships and invocations between methods, and
inconcrete relationships between inconcrete artifacts. An example of such a relationship is a depen-
dency between two subsystems (”subsystem A depends on subsystem B”) which cannot be localized
within the source code.

This representation has the advantage of being domain independent, therefore making a mapping from
a domain always possible. However, if domain-related information must be added, the E-R-metamodel is
too general. This is where a parallel domain-dependent plugin hierarchy comes into play: we have seen
that by using a parallel plugin hierarchy we can separate two concerns: one is the representation of a graph
composed of nodes and edges in the mathematical sense, including all operations that go with it (traversing
the graph, getting children nodes, etc.), the other is the domain-relevant information,i.e., the node repre-
sents a certain software artifact and this information must be modeled as well. One alternative would be
to encode everything in the node and edge classes, thus having a deep hierarchy of items, composed of
classes like ClassNode, MethodNode, InheritanceEdge, etc. A previous implementation of CodeCrawler
adopted this model, but the limits in terms of flexibility soon became evident: the nodes and edges classes
became too large, since all item-specific functionality was encoded in them. A separation into two hierar-
chies practically froze the core model and made it become very stable, while the constant enhancements
and additions of functionality have mainly an impact only on the plugin hierarchy.
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A.3.3 The Visualization Engine

The visualization engine of a software visualization tool has an influence on its most prominent aspect, the
visualization. Indeed, the user perceives it as the tool itself, since he does not see any other internal details.
The design decisions to be taken in this case include the (1) type of engine (3D vs. 2D), (2) the degree
of possible interactivity, and (3) whether the engine comes from a third party as a possibly commercial
product or whether the software visualization tool provider chooses to implement himself the visualization
engine as part of the tool.

1. Engine type (3D vs. 2D).This decision heavily influences the visualizations provided by the soft-
ware visualization tool. The use of 3D involves more navigation (e.g., fly-through) and more com-
puting performance. Moreover, the added third dimension must be exploited intelligently, for it is
too easy to generate nice looking 3D boxes.

2. Interactivity. Direct-manipulation interfaces which allow for several kinds ofdirect interactions
are known to be more user-friendly than others. They effectively reduce the latency between the
perception of something of interest and the following investigation performed by the user. The user
naturally wants to click on the interface toreduce the distancebetween what he sees and what he
thinks he sees. This translates to all kinds of interactions, like selecting, moving, removing, copying,
inspecting, etc. visualized artifacts. We discuss this aspect in more detail later on.

3. Implementation. The decision whether to use or not a third party product (possibly a commercial
one) has an impact on the implementation weight that the software visualization tool provider has.
Naturally, third party and/or commercial products are more stable, faster and better documented,
because the people that provide such products are more experienced and more engaged in graphical
issues. It is all too easy for a software visualization tool provider to shift his attention towards the
visualization part by providing nicer, faster and more colorful displays at the expense of semantics:
Ultimately the goal of a software visualization tool is to provide meaningful information, and not
only nice displays, to the user. Therefore reusing graph visualization tools and libraries like Dotty,
Grappa and GraphViz can break down the implementation time, but it can also introduce new prob-
lems like lack of control, interactivity and customizability.

A visualization engine is merely a vehicle, and not the goal of a software visualization tool. In that
sense, although choosing the right engine is important, for the visualization tool the interface to the engine
matters. The better-defined it is, the less time the tool provider spends on the engine. In our case we chose
to use a lightweight engine which is easily extensible and which provides for all the necessary functionality.

One lesson learned is to choose the appropriate engine and to delegate the job of visualizing as much as
possible to the engine. Furthermore, the easier it is to visualize with an engine, the better. In case the tool
provider chooses to implement his own engine, we recommend to use a lightweight incremental approach
and to strive to obtain visualizations as quickly as possible. Another lesson learned is that keeping as much
control as possible over the visualization engine, in terms of implementation, helps to increase the usability
of a software visualization tool. The first experiments we did with external engines soon reached a limit,
because they were not customizable and flexible enough for our needs. Put in simple words, total (or as
much as possible) control is necessary in this case.

A.3.4 The Metamodel

The metamodel used by a software visualization tool has an influence on its internal architecture. In some
software visualization tools there is no distinction between the metamodel and the internal architecture.
This has the drawback that the tool has a monolithic architecture, and that the concern of the metamodel
is not clearly separated from the other parts of the tool. The software visualization tool provider has an
interest in making this separation, since the metamodel comes with a considerable level of complexity that
should not be added to a software visualization tool’s complexity. The reason for this complexity resides
in concerns like the collection of information (parsing source code, reading and writing of files in various
exchange file formats and the storage and querying of this information (using databases, web browsers,
etc.).
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The general lesson is to separate metamodel concerns as much as possible from the implementation of
a software visualization tool. The software visualization tool must interface to a metamodel and reuse its
functionalities, but it should not be tied to it to prevent a mixing of concerns.

A.3.5 The Interactive Facilities

Modern computers allow for faster and more powerful displays, makingdirect-manipulationinterfaces
possible, which allow the user to not only look at information on the screen, but to interact with it. Several
publications and books in the human-computer-interface (HCI) field point out that it is essential to give
the user the possibility to ”play” with the displayed information. Since user interface design is not a topic
of work we limit ourselves to point out its importance by citing some essential literature by Alan Cooper
[COOP95, COOP99], Jef Raskin [RASK 00], and Jeff Johnson [JOHN 00].

The interactive facilities a software visualization tool provides heavily influence the quality of the tool
in terms of reverse engineering. Storeyet al. provide a list of 14 cognitive design elements needed for a
reverse engineering process [STOR 99]. We deduce from that list that if a tool features direct manipulation
it can facilitate navigation by providing directional and arbitrary navigation, while at the same time it
reduces disorientation effects by reducing the effort for user-interface adjustment. Put in simple words we
can say that the user is more at ease with a tool that supports interactive visualizations.

At the implementation level the problem of interactivity is that it is a cross-cutting concern,i.e., interac-
tivity must be provided by all parts of the system: the visualization engine provides graphical interactivity,
while the internal architecture (and the metamodel) provide context-based interactivity. A simple exam-
ple are pop-up menus, which offer choices at a graphical level (delete figure, spawn window, ...) but also
context-based choices (dive into a class node, inspect the senders of a method node, ...). In our case we
have seen that the overall bridge architecture is able to cope with this problem: the context menu on a figure
is built in succession by the figure, its facade, its item and its plugin, and then presented to the user. Other
solutions to this problem is to separate interactive facilities into separate classes and offer them as plugins.

A.4 Conclusion

In this chapter we have presented the internal architecture of a software visualization tool and have identi-
fied common problems and issues that are inherent to such systems at various levels. The levels we have
discussed include the overall architecture, the internal architecture, the visualization engine, the metamodel
and the interactive facilities of software visualization tools.

• The overall architecture. An overall architecture which separates the three main parts (core, meta-
model, visualization engine) of a software visualization tool allows for higher flexibility and greater
extensibility. At the same time the software visualization tool becomes less vulnerable against soft-
ware evolution processes.

• The core / internal architecture. The design of the core of a software visualization tool is largely
guided by the goals the tool provider has in mind. Although the notion of a graph consisting of nodes
and edges seems trivial, the functionality that matters is the one added to this core and the way this
functionality can be used by the tool’s users. In the case of CodeCrawler we have seen that there is
a separation of the graph notion from a parallel, extensible, plugin hierarchy. This separation allows
for a great extensibility through subclassing and addition of functionality.

• The visualization engine.The visualization engine’s main task is bring the visualizations of soft-
ware to the screen. However, the degree of integration between a software visualization tool’s core
and its visualization engine influences the quality of the visualizations. Apart from providing protec-
tion mechanisms against changes in the visualization engine, the engine is also largely responsible for
the level of interactivity a software visualization tool offers. Seen in this light we do not recommend
commercial (black-box) products, but favor white-box products whose classes can easily be reused
by delegation or subclassing. In the case of CodeCrawler we protect it against changes by using a
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facade [GAMM 95] and use and extend a freeware, lightweight visualization framework called Hot-
Draw. Note that some visualization engines provide a graph layout library as well. We recommend
to use such libraries, because they can greatly reduce the complexity of a software visualization tool.

• The metamodel. The metamodel’s task is to collect and store the data that is visualized by the
software visualization tool. We recommend the separation of the metamodel from the software visu-
alization tool in order to keep the focus on the core functionalities of the software visualization tool.
The metamodel can be developed by someone else than the tool provider that has more experience
in that area. To make an example, the software visualization tool provider should not have to write a
parser by himself, but reuse the existing parsers.

• The interactive facilities. Providing interactive facilities to the viewer is essential to the quality
of a software visualization tool. While at a purely technical level this should be provided by the
visualization engine, the interactions that are enriched with context information are often provided
by the the domain model,i.e., the internal architecture of the software visualization tool.
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