
A π-Calculus Based Approach for Software
Composition

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Markus Lumpe

von Deutschland

Leiter der Arbeit: Prof. Dr. O. Nierstrasz,

Institut für Informatik und angewandte Mathematik





A π-Calculus Based Approach for Software
Composition

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Markus Lumpe

von Deutschland

Leiter der Arbeit: Prof. Dr. O. Nierstrasz,
Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Der Dekan:

Bern, den 21. Januar 1999 Prof. Dr. A. Pfiffner



Abstract

Present-day applications are increasingly required to be flexible, or “open” in a variety
of ways. By flexibility we mean that these applications have to be portable (to different
hardware and software platforms), interoperable (with other applications), extendible
(to new functionality), configurable (to individual users’ or clients’ needs), and main-
tainable. These kinds of flexibility are currently best supported by component-oriented
software technology: components, by means of abstraction, support portability, inter-
operability, and maintainability. Extendibility and configurability are supported by
different forms of binding technology, or “glue”: application parts, or even whole ap-
plications can be created by composing software components; applications stay flexible
by allowing components to be replaced or reconfigured, possibly at runtime.

This thesis develops a formal language for software composition that is based on the
π-calculus. More precisely, we present the πL-calculus, a variant of the π-calculus in
which agents communicate by passing extensible, labeled records, or so-called “forms”,
rather than tuples. This approach makes it much easier to model compositional ab-
stractions than it is possible in the plain π-calculus, since the contents of communi-
cation are now independent of position, agents are more naturally polymorphic since
communication forms can be easily extended, and environmental arguments can be
passed implicitly.

The πL-calculus is developed in three stages: (i) we analyse whether the π-calculus
is suitable to model composition abstractions, (ii) driven by the insights we got using
the π-calculus, we define a new calculus that has better support for software composi-
tion (e.g., provides support for inherently extensible software construction), and (iii),
we define a first-order type system with subtype polymorphism and sound record con-
catenation that allows us to check statically an agent system in order to prevent the
occurrences of run-time errors.

We conclude with defining a first Java-based composition system and Piccola,
a prototype composition language based on the πL-calculus. The composition sys-
tem provides support for integrating arbitrary compositional abstractions using both
Piccola and standard bridging technologies like RMI and CORBA. Furthermore, the
composition systems maintains a composition library that provides components in a
uniform way.



Contents

Abstract iv

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Road map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Survey of Component-Oriented Concepts 5
2.1 What is a component? . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Scale and Granularity of components . . . . . . . . . . . . . . . 9
2.2.2 Binary or source code components . . . . . . . . . . . . . . . . . 10
2.2.3 Homogeneous or heterogeneous? . . . . . . . . . . . . . . . . . . 12
2.2.4 “White-box” or “black-box” components? . . . . . . . . . . . . 13
2.2.5 Stateful or stateless components . . . . . . . . . . . . . . . . . . 14
2.2.6 Meta-components . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.7 Interface standards and standard interfaces . . . . . . . . . . . . 17
2.2.8 Version management . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.9 Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Glue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Modelling compositional abstractions 27
3.1 Towards an object model . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Function as processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 The polyadic mini π-calculus . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Encoding λ-terms with call-by-value reduction . . . . . . . . . . 33
3.2.3 Encoding λ-terms with call-by-name reduction . . . . . . . . . . 35
3.2.4 Using channel sorts for encoding λ-terms . . . . . . . . . . . . . 36

v



vi CONTENTS

3.3 The Pierce/Turner basic object model . . . . . . . . . . . . . . . . . . 36
3.3.1 Process groups as objects . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 Process-based vs. channel-based encoding . . . . . . . . . . . . 36
3.3.3 Objects as records . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.4 The object model . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Explicit metaobjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.1 Modelling class variables . . . . . . . . . . . . . . . . . . . . . . 42
3.4.2 Modelling inheritance by dynamic binding of Self . . . . . . . . 44

3.5 Results and shortcomings . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 The πL-calculus 49
4.1 Towards labelled communication . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Syntax of the πL-calculus . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Names and forms . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.2 The language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.3 A reference cell example . . . . . . . . . . . . . . . . . . . . . . 61
4.2.4 Binders and substitution . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Operational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.1 Reduction semantics . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.2 Labelled transition semantics . . . . . . . . . . . . . . . . . . . 68

4.4 Observable equivalence of πL-terms . . . . . . . . . . . . . . . . . . . . 70
4.4.1 Asynchronous interaction . . . . . . . . . . . . . . . . . . . . . . 72
4.4.2 Asynchronous Bisimulation for the πL-calculus . . . . . . . . . 73

4.4.3 Congruence of
L≈ . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.4 Alpha-conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5 From π-calculus to πL – and back . . . . . . . . . . . . . . . . . . . . . 80

4.5.1 Transition system and bisimulation for the π-calculus . . . . . . 80
4.5.2 The compilation from π to πL-calculus . . . . . . . . . . . . . . 82
4.5.3 The compilation from πL to π-calculus . . . . . . . . . . . . . . 90

5 Types for πL 99
5.1 Types and type contexts for πL . . . . . . . . . . . . . . . . . . . . . . 100

5.1.1 Type contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.1.2 Typing rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1.3 Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1.4 Syntax of the typed πL-calculus . . . . . . . . . . . . . . . . . . 102
5.1.5 Reduction semantics of the typed πL-calculus . . . . . . . . . . 102

5.2 Basic typing rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3 Subtyping rules for types . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4 Typechecking forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.1 Operations on forms . . . . . . . . . . . . . . . . . . . . . . . . 105



CONTENTS vii

5.4.2 Form types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.3 Form subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 Typechecking channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6 Typechecking agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.7 Type soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.7.1 Properties of well-formed πL-terms . . . . . . . . . . . . . . . . 113

5.7.2 Properties of structural congruence . . . . . . . . . . . . . . . . 114

5.7.3 Untypable faulty terms . . . . . . . . . . . . . . . . . . . . . . . 116

5.7.4 Subject reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.8 Type inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.8.1 Extended form types . . . . . . . . . . . . . . . . . . . . . . . . 119

5.8.2 Type substitution . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.8.3 Unification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.8.4 Inference algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 131

6 A composition system 141

6.1 The architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2 Towards a composition language . . . . . . . . . . . . . . . . . . . . . . 145

6.2.1 The core language . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2.2 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2.3 Value declaration . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2.4 Complex forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.2.5 Nested forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.2.6 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2.7 Active forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2.8 Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.2.9 External services . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.2.10 Composition scripts . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2.11 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.3 Interpretation of higher-level constructs . . . . . . . . . . . . . . . . . . 152

6.3.1 Procedures and procedure calls . . . . . . . . . . . . . . . . . . 152

6.3.2 Values declarations . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.3.3 Functions and function calls . . . . . . . . . . . . . . . . . . . . 153

6.3.4 Complex forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.3.5 Nested forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.3.6 Active forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.3.7 Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.4 Results and shortcomings . . . . . . . . . . . . . . . . . . . . . . . . . 154

7 Conclusions and future work 157



viii CONTENTS

A Pict 161
A.1 Simple processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.2 Channels and types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.3 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.4 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.5 Derived forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

B Typing rules for πL 169
B.1 Judgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
B.2 Basic rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
B.3 Subtyping rules for types . . . . . . . . . . . . . . . . . . . . . . . . . . 170
B.4 Rules for assigning types to forms . . . . . . . . . . . . . . . . . . . . . 170
B.5 Subtyping rules for form types . . . . . . . . . . . . . . . . . . . . . . . 171
B.6 Subtyping rules for channels . . . . . . . . . . . . . . . . . . . . . . . . 171
B.7 Rules for agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

C The algorithm Unify 173

D Algorithm Collect 177

E Piccola language definition 179

Bibliography 183



Chapter 1

Introduction

This thesis develops a formal language for software composition that is based on the
π-calculus [65]. More precisely, we present the πL-calculus which is an extension of
the π-calculus, where we replace tuple communication by communication of so-called
forms, a record-like data structure. The πL-calculus is developed in three stages: (i)
we analyse whether the π-calculus is suitable to model composition abstractions, (ii)
driven by the insights we got using the π-calculus, we define a new calculus that has
better support for software composition (e.g., provides support for inherently extensible
software construction), and (iii), we define a first-order type system with subtype
polymorphism that allows us to check statically an agent system in order to prevent
the occurrences of runtime errors.

1.1 Background

One of the key challenges for programming language designers today is to provide
the tools that will allow software engineers to develop robust, flexible, distributed
applications from plug-compatible software components [76]. Current object-oriented
programming languages typically provide an ad hoc collection of mechanisms for con-
structing and composing objects, and they are based on ad hoc semantic foundations
(if any at all) [73]. A language for composing open systems, however, should be based
on a rigorous semantic foundation in which concurrency, communication, abstraction,
and composition are primitives.

The ad hoc nature of object-oriented languages can be manifested in three ways:

1. The granularity and nature of software abstractions may be restricted: the de-
signer of a software component may be forced (unnaturally) to define it as an
object. Useful abstractions may be finer (e.g., mixins) or coarser (e.g., modules)
or even higher-order (e.g., a synchronization policy).

1



2 CHAPTER 1. INTRODUCTION

2. The abstraction mechanisms themselves may be ad hoc and inflexible: program-
mers typically have only limited facilities for defining which features are visible
to which clients, how binding of features (static or dynamic) should be resolved,
or what kinds of entities may be composed.

3. Language features are informally specified or even implementation dependent.
Combinations of features may exhibit unpredictable behaviour in different im-
plementations.

Given the ad hoc way in which software composition is supported in existing lan-
guages, we identify the need for a rigorous semantic foundation for modelling the
composition of concurrent object systems from software components. Moreover, if we
can understand all aspects of software components and their composition in terms of
a small set of primitives, then we have a better hope of being able to cleanly integrate
all required features in one unifying concept.

There are several plausible candidates as computational models for objects or com-
positional abstractions. The λ-calculus has the advantage of having a well-developed
theoretical foundation and being well-suited for modelling encapsulation, composition
and type issues [24], but has the disadvantage of saying nothing about concurrency or
communication. Process calculi such as CCS [62] have been developed to address just
these shortcomings. Early work in modelling concurrent objects [83, 84] has proven
CCS to be an expressive modelling tool, except that dynamic creation and communica-
tion of new communication channels cannot be directly expressed and that abstractions
over the process space cannot be expressed within CCS itself, but only at a higher level.

The π-calculus [65] addresses these shortcomings by allowing new names to be
introduced and communicated much in the same way that the λ-calculus introduces
new bound names. This is needed for modelling creation of new objects with their own
unique object identifiers. The basic (monadic) calculus allows only communication of
channel names. The polyadic π-calculus [64] supports communication of tuples, needed
to model passing of complex messages. The higher-order π-calculus [100] supports
the communication of process abstractions, which is needed for modelling software
composition within the calculus itself. Interestingly, the polyadic and higher-order
variants of the π-calculus can be faithfully translated (or ”compiled”) down to the
basic calculus, so one may confidently use the features of richer variants of the calculus
knowing that their meaning can always be understood in terms of the core calculus. The
π-calculus has previously been used by Walker [120], Jones [47] and Barrio [9] to model
various aspects of object-oriented languages. Moreover, Sangiorgi [103] presented an
interpretation of Abadi and Cardelli’s first-order functional Object Calculus [1] into a
typed π-calculus with variant types.

A further simplification has been studied by Honda [43], who proposed that asyn-
chronous communication provides a better foundation for distributed systems, without
any loss of expressive power. Sangiorgi [101] worked also in this area and proposed



1.2. CONTRIBUTION OF THE THESIS 3

a so-called polyadic mini π-calculus that essentially forms the core language for Pict

[89, 92, 112] that we have used as platform to model object-oriented and component-
oriented abstractions.

In this thesis we show that the π-calculus can be used to model composition mech-
anisms. However, it is inconvenient for modeling general composition abstractions due
to the dependence on positional parameters in communications. In the context of the
λ-calculus Dami [28, 30] identified a similar problem. He proposed λN, a calculus in
which parameters are identified by names rather than positions. Like Dami, we shall
introduce an explicit naming scheme to address parameters by names resulting in the
πL-calculus, an offspring of the asynchronous π-calculus.

1.2 Contribution of the thesis

The contributions of the thesis can be summarized as follows:

• We show that common object-oriented programming abstractions such as dy-
namic binding, inheritance, genericity, and class variables are most easily mod-
elled when metaobjects are explicitly reified as first class entities (i.e., processes).
Furthermore, we show that various roles which are typically merged (or confused)
in object-oriented languages such as classes, implementations, and metaobjects,
each show up as strongly-typed, first class processes.

• Based on the idea of Dami [28], we define the polymorphic πL-calculus, where
the communication of tuples is replaced with the communication of labeled pa-
rameters. In fact, in the πL-calculus parameters are identified by names rather
than positions which provides a higher degree of flexibility and extensibility for
software composition. We give a basic theory for the πL-calculus and define a
asynchronous bisimulation relation on πL-agents.

• We introduce so-called polymorphic form extension (or polymorphic record con-
catenation) which is a essential feature for modelling higher-level compositional
abstractions like classes and class inheritance. In fact, with polymorphic form
extension we get a powerful mechanism for software composition, since it allows
us to compose arbitrary services in order to achieve the required behaviour.

• We present a sound first-order type system for the πL-calculus that incorporates
asymmetric record concatenation. Moreover, we present a type inference algo-
rithm that does automatic type reconstruction starting form a totally untyped
program. To our knowledge, it is the first time that asymmetric record concate-
nation has been fully incorporated in both the type system and the type inference
algorithm for it.



4 CHAPTER 1. INTRODUCTION

• We show that, unlike in Turner’s approach [112], type unification in the presence
of polymorphic form extension requires to consider the complete agent which,
however, allow us to reuse Wand’s type inference algorithm [121] to reconstruct
the type annotations for πL-agents.

• We present a Java-based composition system and Piccola, a prototype compo-
sition language. The kernel of the composition system is an abstract πL-machine
that is implemented in Java. In fact, the abstract πL-machine implements ex-
actly the πL-calculus as defined in Chapter 4. Moreover, the composition system
provides support for integrating arbitrary compositional abstractions using stan-
dard bridging technologies like RMI and CORBA and maintains a composition
library that provides components in a uniform way.

1.3 Road map

The rest of the thesis is organized as follows. Chapter 2 gives a survey of component-
oriented concepts. In Chapter 3, we show that the asynchronous polyadic π-calculus
can be used to model compositional abstractions. In Chapter 4, we defined the πL-
calculus an extension of the π-calculus, where communication of tuples is replaced be
communication of so-called forms. In Chapter 5, we introduce a typing scheme for
the πL-calculus. Furthermore, we present a type inference algorithm for the typed
πL-calculus. In Chapter 6, we present a composition system and the composition
language Piccola. Finally, Chapter 7 presents conclusions and future directions of
the development of the πL-calculus and the composition language Piccola.



Chapter 2

Survey of Component-Oriented
Concepts

Software component technology is still new and there is an ongoing discussion what
component orientation is all about. The first question to be answered is – why do
we need component software? Nierstrasz and Dami [74] argue that the composition
of reusable and configurable software components will allow us to cope with evolv-
ing requirements by unplugging and reconfiguring only the affected parts. Following
Szyperski [110], components are the way software technology has to go because all
other engineering disciplines have introduced components as they became mature. Fur-
thermore, software components and appropriate composition mechanisms provide the
means for systematic software reuse [99, 106].

In order to describe “component orientation” we use the scheme defined by Nier-
strasz and Dami [74], who distinguish methodological and technical aspects. At the
methodological level, a component is a component because is has been designed to be
composed with other software components. A component is normally not designed in
isolation, but as an element of a component framework that provides (i) a library of
black-box components, (ii) a reusable software architecture in which the components
fit in, and (iii) some form of glue (connectors) that allows us to compose components.

At the technical level, the vision of component-oriented software development is in-
deed very old. Already in 1969 McIlroy [56] has proposed basic principles of component-
oriented software construction. The basic idea of his proposal was that we should not
think any more about which mechanism should we use but what mechanism should
we build. He viewed components as families of routines which are constructed based
on so-called rational principles so that these families fit together as building blocks.
McIlroy stated that these families constitute components which are black-box entities.

Unfortunately, his vision could not be established at this time. There are several
reasons for that like the idea that components should be build system independently
or that a component catalogue must be available in order to allow application pro-

5



6 CHAPTER 2. SURVEY OF COMPONENT-ORIENTED CONCEPTS

grammers to choose the right component for a specific problem. Interestingly, the
way McIlroy defined how the concrete instances of components can be created is very
similar to the recently proposed open implementation approach of Kiczales, et al. [49].

Composition enables prefabricated “things” to be reused by rearranging them in
new composites [110]. But all the concepts in resuability are useless if there is no
discipline in programming [94]. Systematic reuse requires a foundation of high-quality
components with proper documentation [99]. Software is often not initially designed
for being reused. Effective reuse depends not only on finding and reusing components,
but also on the ways components are combined. Even components with appropriate
functionality may fail to work together if composition breaks assumptions imposed by
implicit styles (architectures) and packaging distinctions [106]. Developing reusable
components also means that these components will usually deployed in other contexts
than initially developed for. Therefore, it is important to find appropriate develop-
ment mechanisms that allow one to evaluate, adapt, and integrate exiting or newly
created components in new contexts. With “component orientation” software engi-
neering moves to “component engineering”.

Roughly spoken, components are for composition. Therefore, it is also important
to distinguish computational and compositional aspects of software development. An
application can be viewed as computational entity that produces some results, and
as a composition of software artefacts (components) that fit together to achieve the
required behaviour of the application.

In the composition process components are not only distinguished objects. More-
over, we have software abstractions like mixins, functions, interfaces, agents, protocols,
procedures and modules as valid candidates for components, but only a few of them are
instantiated directly as objects. We can assign each software abstraction the attribute
compositional or computational. Compositional abstractions are mixins, interfaces
and protocols. These abstractions are more or less organizational patterns that help to
structure an application more conveniently. On the other side, functions, procedures
and agents are computational abstractions having always a run-time representation.
We use classes and inheritance to define such abstractions. Therefore, we can view
“component orientation” as a higher level form of “object orientation”.

It has to be noted that component approach needs a critical mass to take off [110].
This means, before we can efficiently use the component approach, we need a rich set of
software artefacts (component libraries). Once such component libraries are available,
we can apply reusability-metrics [94] to find the appropriate components. The develop-
ment of new software is then driven by what is available to be reused. The component
approach replaces revolution by evolution. But all this requires that software developer
respect a discipline in programming – a component-oriented programming discipline.



2.1. WHAT IS A COMPONENT? 7

2.1 What is a component?

A software component is an element of a component framework.

Although this definition appears to be circular, it captures an essential characteristic
of components. Components of a stereo system, or of a modular furniture system are
only components because they have been designed to be combined and composed with
other components. A single component that does neither belong to a component system
nor is composable in any way is a contradiction in terms. Furthermore, a component
cannot function outside a defined framework.

A software component is a “static abstraction with plugs” [74].

A component itself is a software abstraction, i.e., it is (to a greater or lesser degree)
a “black-box” that hides implementation details. Furthermore, a component must be
instantiated to be used (this is imposed by the charaterization as “static abstraction”).
In class based object-oriented programming languages we distinguish between classes
and objects being instances of a specific class. Unfortunately, we do not have such a
convenient way to distinguish between components and their instances. This is a fre-
quent source of confusion. Talking about components we often mean their instances.
The different roles of components and their instances are hidden by the way we de-
velop component-oriented software. Composition is usally done within a composition
environment. Inside such an environment the difference between components and their
instances vanishes. The application programmer, even at design time, always works
with instances.

A component has plugs, which are not only used to provide services, but also to
require them. A true “black-box” component advertices all of its features and depen-
dencies by means of public plugs. There are no hidden dependencies.

Plugs are the main prerequisite for composition. A plug is a pluggable interface,
but what kind of interface it is exactly, and how these interfaces are plugged together,
may depend from one component framework to another.

As an example, the declarative binding language Darwin [54] uses exactly this
scheme to describe components and their interaction. With Drawin one can define
hierarchies of compositions of interconnected components. The central abstractions
used in Darwin are (i) components and (ii) services (means by which components
interact). Components in Darwin are both context indenpendently implemented and
tested. Darwin distinguishes provided and required services. The service access points
are called plugs. Component interaction is established by connecting service outputs
(provided plugs) with service inputs (required plugs). A composite filter component
pipeline modelled in Darwin is shown in Fig. 2.1. The figure illustrates the composition
of n filters. The output (denoted by a filled circle) of each filter is bound to the input
of its successor. The input port of the first filter is bound to the input port of the



8 CHAPTER 2. SURVEY OF COMPONENT-ORIENTED CONCEPTS

outputinput F[0] F[1] F[n-1]

pipeline(n)

Figure 2.1: Composite component filter in Darwin.

pipeline and the output of the last filter is bound to the output of the pipeline. Darwin
provides a bind statement to connect provided and required ports.

A component framework is a collection of software components with a software
architecture that determines the interfaces that components may have and the rules
governing their composition. [107]

This definition closes the loop. The essential point is that components are not
used in isolation, but in context with a software architecture that determines how
components are plugged together. The framework, the software architecture, and the
rules of composition can vary quite dramatically. The critera may be, how fine-grained
or coarse-grained, how rigorous or flexible, how domain-specific or general purpose
these frameworks, architectures and rules are.

Szyperski [110] describes a component framework as a set of interfaces and rules
of interactions that govern how components plugged into the framework may interact.
He pointed out that an overgeneralization of that scheme has to be avoided in order to
keep actual reuse practicable.

What is not covered by this a definition is “glue”. The way we glue components de-
pends on the programming model. It is sometimes claimed that programming changes
into scripting if we have reached a certain level of abstractions. Recently, scripting
models (e.g. Visual Basic, Python, and even Haskell [86]) have become very popular
to build component based software.

If we look at real glue we discover it main property that it tends to be armorphous
and we argue that software glue is armorphous as well. Some kinds of glue can only be
used in particular situations to bind certain kinds of materials, whereas other kinds of
glue can be used to create structures of objects that were never really designed to be
composed. Software glue exposes a similar behaviour and can therefore serve a variety
of needs.

Unfortunately, it is not easy to classify componentware is a meaningful way. There



2.2. COMPONENTS 9

are many different techniques, mechanisms and approaches that any scheme to compare
component systems will emphasize some important attributes while ignoring others.
Instead of classifying componentware we will consider components, frameworks and
glue in turn, and try to identify common attributes, distinguishing attributes, trends
and problems. In the end, we optain a picture that reflects the state-of-the-art in
componentware.

2.2 Components

Existing component models can be characterized by a set of common attributes. Un-
fortunately, these attributes cover only partwise all variables a component may depend
on. The number of attributes of component models is as high as the number of differ-
ent kinds of component models. In fact, if we only consider the common attributes of
components we have to be aware that the differences between two component models
may still be huge.

We can ask: Are components fine grain or coarse grain? Are they source code or
pre-compiled? Are they platform-specific/homogeneous or platform-independent/he-
terogeneous? Are they white-box or black-box entities? Are they stateful or stateless?
Do components have standard interfaces?

2.2.1 Scale and Granularity of components

More specially, one can ask, are components bigger or smaller than objects, or are they
the same size? Can they as big as whole applications?

First, a component is most useful if it offers the ”right” set of interfaces and has no
restricting context dependencies. For components to be deployed successfully in new
contexts their granularity as well as their mutual dependencies have to be carefully
controlled from the outset. Partitioning a design into components of the right weight
is a subtle process that has large impact on the success of the resulting components.

Given our definition above, we argue that components can have arbitrary granu-
larity. A good example for fine grain components are mixins [15, 14], which can be
composed to define, to extend, or to specialize object classes to build a family of mod-
ified classes. For example, a mixin might be defined that add the capability to react
on keystrokes to a graphic control. This mixin could be applied to any kind of graphic
control to create a new graphic control that can receive input focus.

Another class of fine grain components are dialog elements like buttons or labels
used in component based user interface systems. These components have a very limited
functionality and they usually react only on a few events.

Components implemented obeying the Component Object Model (COM) [60] from
Microsoft should also be fine grained. This model advises explicitly the application



10 CHAPTER 2. SURVEY OF COMPONENT-ORIENTED CONCEPTS

programmer to design the interface of components as simple as possible [98]. The
simpler the interface of a component the better it is composable. This corresponds
closely to the fact that plug-ins like Apple’s QuickTime are indeed also fine-grained
components. The most popular plug-in architectures are those of modern WWW-
browsers like Netscape.

Typically, fine-grain components are implemented as procedures or classes, and are
used to build, or configure applications or parts of applications.

Coarse grain components, on the other side, can be as big as whole applications.
Good examples are the part editors of OpenDoc [33] or embedding an Excel spreadsheet
inside a Word document using OLE [16]. Unix programs like grep, awk or sed can also
be considered as components. Using the shell pipe operator we can combine these filter
programs to construct really amazing text manipulations under the condition that the
all filters agree on a common representation convention like ASCII.

Coarse grain components are good candidates to build distributed applications
where the components may run on different nodes. Client/Server applications are
a typical example.

With DCOM (Distributed Component Object Model) [17] from Microsoft we can
build applications using distributed components. DCOM is an extension of COM.
DCOM supports multithreading as well as really distributed components. All mecha-
nisms are transparent for the user. To build applications with COM or DCOM a lot
of tools are available (e.g. MIDL Microsoft’s own IDL compiler for COM). These tools
help to automate several errorprone tasks like data conversion and networking.

The best size of a component depends on many different aspects like the level of
abstraction, costs and benefits of deployment, component shipping and extension, com-
ponent instantiation, and component loading. At least, the scale and granularity of
components influence most their successful deployment. If we use the right architec-
ture, component dependencies will be made explicit and the effort to control these
dependencies will be reduced to a minimum. We always have to keep in mind that
maximizing reusability leads to an explosion of context dependencies and therefore, it
will minimize the use. Furthermore, granularity influences to an certain degree non-
functional properties like performance and security.

2.2.2 Binary or source code components

Components tend to be pre-compiled since this is more consistent with the notion
that components should be black-box entities. Usually, components are bundled up in
component libraries (as proposed by McIlroy [56]).

Szyperski claims that software components are binary units of independent pro-
duction, acquisition, and deployment that interact to form a functioning system. He
argues that insisting on a binary form of components is essential to allow an indepen-
dent development of components and their robust intragration in new contexts even if



2.2. COMPONENTS 11

QueryInterface

AddRef

Release

Fx

QueryInterface

AddRef

Release

Fx

vtbl pointer

ImplementationInterface IX

pIX

Component

Client

Figure 2.2: Binary representation of a COM interface.

this will rule out many useful software abstraction, such as type declarations, macros,
and templates.

The most popular specification for binary components is Microsoft’s COM. COM
in its core is very simple. The sole fundamental entity that COM does define is an
interface. On the binary level, an interface is represented as a pointer to a table
containing pointers to the interface methods (Fig. 2.2). COM neither specifies how a
particular programming language may be bound to it nor defines that one has to use
a specific implementation technique.

Usually, COM components are bundled up in a DLL (dynamic link library) or in a
standalone application (EXE). The DLL as well as the standalone application can host
more than one component. The mechanisms to load a component are in both cases
very similar, except that components loaded from a standalone application will run
in a different address space while components loaded from a DLL will share the same
address space with the loader of the component. The COM system is responsible for
loading components, but the component developer has to equip the components with
the necessary COM-interface methods like CreateInstance.

Further examples of systems that represent components in a more or less binary
form are Delphi [12] and JavaBeans [109, 69]. Unfortunately, Delphi’s component
library is in its nature a static link library since used components have to be linked to
the final application resulting in a monolithic and often huge executable. JavaBeans
components, on the other side, are shipped within archive files (.jar) which are loaded
at run-time and the system extracts the needed beans out of the archive. In both cases
components may be implemented with one or more classes.

A glaring exception, nevertheless useful, is that of C++ templates, and particularly
the Standard Template Library [70], which is a collection of container classes and
algorithms implementing common data structures and procedures (e.g., lists, queues,



12 CHAPTER 2. SURVEY OF COMPONENT-ORIENTED CONCEPTS

sorting etc.). The main reason STL is an exception is that C++ templates have
been design in such a way that source code must be generated and compiled when
templates are instantiated. Other languages (like Eiffel [58] an Ada [6, 8]) offer similar
or equivalent generic components as pre-compiled, black-box classes.

2.2.3 Homogeneous or heterogeneous?

Fine grain components tend to be homogeneous, since these components are typically
composed to form an application built within a single programming environment (such
as Smalltalk [37], Oberon [95], Eiffel [58], Delphi [12], Java [7]). Furthermore, fine
grain components tend to have procedural interfaces that are programming language
dependent. Usually fine grain components provide a very simple configuration interface
consisting only of one or two configurable event handlers. Note, for example, in COM
there is no configuration interface available, components must be configured at runtime.

Typical examples for fine grain components are dialog elements like buttons and
labels. They have a homogeneous structure since they have been built for a particular
component system and they provide only a very simple configuration interface. Ac-
tions these components have to perform if they receive the corresponding event have
to be specified by the application programmer. For example, in the case of Delphi or
JavaBeans the same programming language is used for both programming the compo-
nent and specifying the action code.

Coarse grain components more typically do not present procedural interfaces, but
interfaces based on streams, events, RPC (remote procedural call), or other higher-level
communication mechanisms. The ”output stream” of a Unix program can be ”piped”
into a the ”input stream” of another Unix program independently of the programming
language used to implement them, as long as the second program can understand the
byte stream produced by the first. It is important to note that it is often difficult
to check the correctness of the filter combination in advance in the sense of a static
type analysis. Two components may fail to work together due to different assumptions
about the interpretation of the data stream. Shaw [106] calls this an architectural style
mismatch.

Today, heterogeneous component approaches are less frequently used. Delphi, for
example, is a system that offers support to integrate foreign components. The Delphi
system generates for these components proxy-components that can be used like plain
Delphi components while the foreign component itself is located outside the Delphi
environment. The only difference in using foreign components is that they are usually
not linked to the final application. In the case of Visual Basic controls such compo-
nents have to be registered in a system database. This is often a source for problems
then shipping an application means that one can not only put the application in the
distribution, moreover, also all foreign components have to be redistributed (sometimes
this imposes serious license problems).



2.2. COMPONENTS 13

DCOM can also be seen as a model that is open for heterogeneous components.
Components may run on different nodes with an arbitrary architecture as long as
DCOM is supported for this architecture. All data conversion, marshalling, and net-
working is done by DCOM.

The OMG [79] has defined the Common Object Request Broker Architecture (short
CORBA) which enables to build software with a wide variety of languages, implemen-
tations, and platform. CORBA is not a binary standard, but everything is carefully
standardized to allow individual vendors to profit using CORBA. Interoperability in
CORBA is achieved by a three parts: a set of invocation interfaces, the object request
broker (ORB), and a set of object adapters. To integrate a new language one has to
define the appropriate bindings to OMG IDL. Such bindings exist for several languages,
including C, C++, Smalltalk, and Java.

Clearly, whether components are homogeneous or heterogeneous depends on the
problem domain. Although there is still a great interest in component technology
for building standalone applications, there is increasing demand for component ap-
proaches that will (i) allow applications to talk to each other, and (ii) to combine
services provides by diverse applications running on heterogeneous hardware and soft-
ware platforms. For this reasons, industry standards like CORBA and COM will take
on increasing importance. The reader should note as well that the specification of
JavaBeans [109] defines explicitly that the bean model may be mapped transparently
to any other existing component model.

2.2.4 “White-box” or “black-box” components?

We already stated that components are black-box entities, but clearly this is a relative
concept. Even a human being needs a suitable environment to exists or to keep alive.
Without the right equipment it is not possible to survive on the moon or at the ground
of an ocean. Components behave in the same manner. Smalltalk object cannot be sim-
ply exported out of the Smalltalk environment. In order to support component export
or component exchange from or between two component environments (frameworks),
we need appropriate mechanisms that provide these kinds of operations.

Even if we bridge environments, we must be careful to fulfill all assumptions.
Smalltalk and C++ components cannot work productively together if the Smalltalk
garbage collector does not know which C++ objects have references to Smalltalk ob-
jects.

Even hidden assumptions are very often present in homogeneous environments.
Objects and procedures may only work if environments have been properly initialized.
Procedural interfaces are too weak to express these kinds of dependencies, and few
component approaches go beyond this.

This problem gets more critical in the case of COM. In COM a proper initialization
is less important. The real problem is the reference counting for interface pointers.



14 CHAPTER 2. SURVEY OF COMPONENT-ORIENTED CONCEPTS

If an application does not correctly count the usages of an interface (call functions
AddRef and Release) then it may happen that a component will never be released
from memory, if a component is released too early from memory this may lead to
system crashes. There exists no safe method to solve these kinds of problems. Some
class libraries (MFC – Microsoft Foundation Library for C++) already provide some
support to control the reference counting mechanism, but it is very limited and these
problems can still occur (e.g., circular use of interfaces in two components). Peyton
Jones, et al. [86] avoid reference counting in their solution. Instead of handing out the
counting procedures to the programmer, Haskell’s garbage collector will call Release
when an interface has become inaccessible. This is a form of finalization.

The view that the user of a component is responsible that all necessary initializa-
tions are done and all conditions for using the component are satisfied is inadequate.
What is needed here is an appropriate support of the component framework providing
the right programming model. Using this model, the component programmer can focus
on the development the component while the framework keeps track that all assump-
tions are fulfilled. The component framework has to guarantee a set of invariants such
that a component user can focus on solving the problem rather than on satisfying all
side conditions.

In fact, a software component must be a unit of composition with contractually
specified interfaces and explicit context dependencies. Therefore, it is less important if
components are black-box entities or not. The contractual specification of component
interfaces guarantees that a component can be deployed independently in new contexts.
An instantiation of a component will use the contract as a template to satisfy all
assumptions and conditions made to use such a component in a given context. The
client and the provider of a component may renegotiate further deployment conditions.

2.2.5 Stateful or stateless components

In section 2.1 we claimed that components are “static abstractions”, hence stateless.
In fact, in many environments, the distinction between components and their instances
is blurred. Consider a user interface builder in which we are connecting buttons, text
fields and labels to a form. Each of these “components” clearly has a state (a value, a
position, a color, etc.).

The confusion arises because we are not really working with the abstract compo-
nents (the button class, etc.) but with their instances. Builders tend to work with con-
crete instances, whereas programming languages deal explicitly with classes. However,
even with builders there is typically a distinction between design time and run-time.
Many component methods can only be used at design time while others can only be
executed at run-time. Some component models define very precisely how a component
and its methods have to work in both cases (e.g., Delphi components have to check its
property ComponentState to determine whether an operation can be performed or not



2.2. COMPONENTS 15

constructor TAnyComponent.Create( Owner : TComponent );
begin
{ Test for design-mode before calling the inherited constructor. }
if csDesigning in Owner.ComponentState then

InitializeForDesignMode;

{ Calling the inherited constructor initializes Self.ComponentState. }
inherited Create( Owner );

{ Test for design time. }
if csDesigning in ComponentState then

DesignTime
else

RunTime;

...
end;

Figure 2.3: Testing ComponentState within the component constructor in Delphi.

[51], see Fig. 2.3). Checking the state of the component is the way to prevent contract
violations.

JavaBeans and Delphi components are the best candidates for stateful components.
Using so-called properties, a component can be configured both at design time and at
run-time. These systems use a special file to store the settings. This allows us to
configure a component without writing any code (except event handlers). At run-time
the configuration is restored loading the values out of the configuration file.

Modern programming environments provide a set of possibilities to configure com-
ponents as simply as possible. So-called property editors are an example. Property
editors are themselves components, but they differ from application components since
they will not be linked to the final application. Therefore, a component does not only
include code that defines its behaviour but also a set of surrounding code (procedures,
components) that will only be used at design time.

Following Szyperski, we argue that all mainstream component software approaches
have to introduce a notion of state. States are not only used to represent component
properties like color, size, or position, but they can also be used to apply more sophis-
ticated programming techniques like re-entrance. Recursive method calls or callbacks
may break a contractual specification. With states it is possible to check some pre- and
post-conditions under which a client may be granted access to a service of a component.



16 CHAPTER 2. SURVEY OF COMPONENT-ORIENTED CONCEPTS

components

property editors

component editors

meta-components

Inspector

Object

Delphi

Component Library

Figure 2.4: Meta-components in Delphi at design time.

2.2.6 Meta-components

The process of making information about a system available within that system is
called reification. If the system makes use of this information in its normal course of
execution it is said to be reflective. Using this information to manipulate the behaviour
of that system is called meta-programming.

Only few component models provide services to support meta-programming. Java
1.1 has introduced the Java Core Reflection Service which extends the available runtime
type information. This service, however, does not allow interception or manipulation
at the meta-level. A similar approach is available for COM where a component can be
equipped with a type library that support dynamic inspection of all interfaces revealed
in the library.

As mentioned above, the Delphi system uses property editors to manipulate the state
of components. In fact, these components are really meta-components (Fig. 2.4). Meta-
components like meta-objects are used to affect the behaviour of other components and
its environment [51, 98]. Usually, these meta-components serve no purpose at run-time
and exist only at design time.

Although we can use meta-components in Delphi this concept is not explicitly men-
tioned in the system description. Delphi is implemented using Delphi. This makes it
easy to modify the Delphi environment using user defined Delphi components. For
example, it is possible to integrate a meta-component that controls the naming of
components or one can build new inspector components (like the standard object in-
spector) [51]. This make Delphi besides other features an open system that allows one
to integrate arbitrary extensions. To integrate new meta-components one only has to
recompile the component library. Once this is done, all extensions are available imme-
diately and these meta-components can take full advantage of the designer objects and
run-time type information to reveal Delphi’s internals.



2.2. COMPONENTS 17

2.2.7 Interface standards and standard interfaces

Interface standards are still an open issue in object-oriented as well as component-
oriented software development and in connection with components this problem gets
even a greater importance. Component connection needs to follow standards to make
it at all likely that any two components have compatible connectors. A standard should
specify just as much about the interfacing of certain components in order to allow as
many clients and vendors to work together.

Now the question is, should the standards come before the product and markets,
or vice versa? This question cannot simply be answered. In fact, there are examples
for both cases. COM and JavaBeans have established a working market first while the
OMG has defined a standard (CORBA, OMA) to build a market. We argue that the
first way has some advantages especially because standards are usually derived form
working applications. Future refinements of these standards are driven by experiences
due to the deployment of applications obeying these standards. An example of this
strategy is OLE [16], now being available in a second version.

In COM it is possible to remove a component from an application and replace
it with another components at run-time. As long as the new component supports
the same interfaces as the old component, the application still works. But it is not
enough that the new component provides the same interfaces, moreover, the run-time
behaviour has to be the same for this interfaces. Any additional behaviour that the
new component provides must only be available using new interfaces not known by the
original application.

In general, standards are useful to create common models that enable interopera-
tion in principle. Furthermore, standards can be used to agree on concrete interface
specifications, enabling effective composition. Finally, standards can also be used to
impose overall architectures that assign components their place in composition and
interoperation.

Unfortunately, only few systems support the notion of standard interfaces. COM
components have standard interfaces. The COM specification requires that each pub-
lished interface is frozen and never changed again. This guarantees that an application
gets already the same functionality if it asks for a particular interface. COM uses
so-called globally unique identifiers (GUI), a scheme invented by the Open Software
Foundation to address a particular interface. Such an identifier is a one-to-one cor-
respondence with an implementation. For this reason, if an application asks for an
interface denoted by a specific GUI then the application will always get the same im-
plementation. If there is no such implementation (e.g., the GUI is unknown in the
system) then a null pointer is returned to the client.

That standard interfaces are indeed very important can be shown for QuickReport, a
component package available for Delphi. The different versions of QuickReport are not
compatible. Newer versions have a different sets of published properties and several



18 CHAPTER 2. SURVEY OF COMPONENT-ORIENTED CONCEPTS

method and event specifications have changed too. The newer components cannot
simply replace the older. What is missing is a scheme like in COM that forbids to
change published interfaces of components.

2.2.8 Version management

In a component world, the number of versions of components that exists in parallel
can be very high. Many vendors may provide so-called upward-compatible enhanced
versions of a successful component. Unfortunately, traditional version management is
driven by the assumption that a component evolves at a single source. But different
vendors have different interpretations how a component has to provide its service even
if it implements the same interface.

Only few component infrastructures address the component versioning problem
properly. Newer versions of components must not violate the original specifications.
Applications that use the old interfaces of a component will use also the old interfaces
of a new component. Only newer application that have knowledge about new interfaces
will use the newly provided interfaces and possibly the old. In fact, version management
is closely related to the standardization of interfaces for components.

When is it necessary to build a new version? This question can be simply answered.
If one of the following conditions is changed then one has to publish a new version:

• The number of functions in the interface has changed.

• The number of parameters in a function has changed.

• The types of parameters in a function have changed.

• The type of return value has changed.

• The meaning of functions and parameter has changed.

This list represents the more or less obvious reasons to release a new version. Some
programming models impose additional conditions that are based on the implementa-
tion layout or the order of functions and parameters. We argue that such conditions
break extensibility. We will use the view of Dami [28], who described extensibility as
the possibility to add new functionality to an existing piece of code without affecting
the previous behaviour. Therefore, in our opinion, a good component model will also
be open to extensibility where the order or the implementation layout of functions and
parameters is unimportant.



2.3. FRAMEWORKS 19

2.2.9 Typing

Ideally, all conditions of a contract should be stated explicitly and formally as part of
an interface specification. Furthermore, it would be highly desirable to have tools to
check automatically clients and providers against the contract specifications and in the
case of a contract violation to reject the interoperation of both. The most component
approaches, therefore, equip the interface specifications with type annotations. One
argument for this decision is that only fully and explicitly typed interfaces can benefit
from type checking. Furthermore, an independent development of both the client and
the provider side is more or less impossible without appropriate type information.

In contrast, Darwin [54] does not require that interfaces be fully and explicitly
typed. The Darwin tool infers the type of interface services (plugs) where an explicit
typing is missing. Compatibility tests are platform dependent, and therefore, these
tests are not part of the Darwin system.

If we use an explicit typing scheme, we open the component approach for substi-
tutability and polymorphism. If two different components support the same interface,
a client can use either of them without breaking the contractual specification. One
component can substitute another. Therefore, a client can treat these different compo-
nents polymorphically. Component models that support multiple interfaces encourage
polymorphism. The more interfaces a component supports, the smaller these interfaces
need to be. And the smaller an interface can be, the smaller its context dependencies
will be resulting in a higher degree of reuse.

One component approach that supports polymorphism is COM. For example, one
can write an application that implements a viewer that displays bitmaps. The bitmaps
are implemented as COM components supporting an interface named IDisplay. The
viewer interacts with the components only through their IDisplay interface. Now, sup-
pose some requirements change and a viewer is needed that is able to display JPEG’s.
Insteed of writing a new version of the viewer, all we have to do is to implement a JPEG
COM component that implements the IDisplay interface. The new component will sub-
stitute the old one, and the viewer is now able to display JPEG’s. The viewer uses
polymorphism to treat the different components in the same manner. It is important to
note that this does not happen by accident. Equal COM interfaces are always treated
uniformly even if this requires a careful planning in advance. Component development
requires us to foresee further applications of an interface. Component development
emphasizes extensibility.

2.3 Frameworks

A framework, in the most general sense, is a structure or a skeleton for a project. An
object-oriented framework is a collection of cooperating classes, some of which may be



20 CHAPTER 2. SURVEY OF COMPONENT-ORIENTED CONCEPTS

abstract, that defines the skeleton – and hence the architecture – of an application. A
component framework defines the architecture of an application that can be completed
by instantiating software components.

Frameworks need not necessarily be domain specific, but they are usually concept
specific. For example, a framework for OpenDoc parts does not say much about the
specific functions of parts, but embodies the concepts that make a piece of software an
OpenDoc part.

Frameworks give components their meaning. In other words, a component without a
framework is not a component at all. For example, consider user interface components.
Their value lies not in the functionality offered be any individual component, but in
the fact that they have been designed to work together in a consistent way to produce
rich user interfaces.

Not all frameworks are component-oriented. Object-oriented frameworks fully con-
centrate on classes and inheritance. The programming model imposed by such frame-
works is typically a form of white-box reuse; the application programmer instantiating
an application from a framework often must be intimately familiar with implementation
details of framework classes in order to define meaningful subclasses. Object composi-
tion, on the other hand, if based on forwarding is a concept based on black-box reuse.
Frameworks that support object composition are accordingly called black-box frame-
works. Examples are COM [60], Visual Basic [59], Delphi [12] and JavaBeans[109].

Modern development environments emphasize visual programming. These envi-
ronments use mainly so-called forms for application development (e.g., Visual Basic,
Delphi). A form itself is a component. The application programmer builds an appli-
cation using the Drag and Drop method to place components out of the component
palette (component library) within the form component. In the most general sense,
this is (visual) composition. Inheritance is still present in these system, but in con-
trast to classical object-oriented frameworks inheritance is merely used to maintain
the actual developed form. If one adds a new form to an application, the system will
derive its skeleton from a general component base class that provides the necessary
infrastructure for the newly created form component. In fact, the only situation where
the application programmer gets in contact with inheritance is the specification of
event handlers. Event handlers have to have access to the protected features of the
component class. Fortunately, using the visual programming style one can ignore the
fact that inheritance is used to construct a new form. One programs more or less in a
black-box manner.

The most general form of black-box composition is defined by COM. COM empha-
sizes the specification of interfaces. Reuse by inheritance does not exist by default. In
order to reuse existing code, composition has to be used, with the exception that one
can use inheritance to define interfaces (as for definition of Java interfaces [7]).

COM supports two kinds of composition: containment and aggregation. Contain-
ment means that an outer component maintains a pointer to an inner component and



2.4. GLUE 21

can therefore passes services provided by the inner component in a controlled way (the
outer component may guard or wrap the inner component’s services). In the case of
aggregation the outer component maintains also a pointer to the inner component,
but the interfaces of the inner component are passed directly to clients. The outer
component does not have any control to the inner component’s services.

We can identify several different forms of software composition. Which forms are
supported depends on the component framework. Nierstrasz and Dami [74] define
software composition as ”the process of constructing applications by interconnecting
software components through their plugs”. In other words, composition is achieved by
enabling a communication between components through their composition interfaces
[57] (this view is more or less similar to that used in Darwin [54]).

Sametinger [99] identifies two basic forms of composition – internal composition
and external composition. Internal composition denotes the process to compile and to
link source code to a system. This form is mainly used in Delphi. Textual composi-
tion (instantiation of macros and templates) counts also to this form of composition.
External composition is in our opinion the most natural form of software composition.
Components act independently, i.e., run on their own. Components may communi-
cate by means of interprocess communication (e.g., remote procedure calls). In fact,
components may run in the same process space as well as in a different one. External
composition is by such systems like Darwin, Visual Basic, and JavaBeans.

There exits many finer grained classifications of software composition (e.g., func-
tional composition, blackboard composition [74] and binding of communication channels
[77]), but we argue that these forms can be regarded as concrete applications either
of internal or external composition. It is also possible that both forms coexist in the
same system (e.g., Delphi’s wrapping of Visual Basic components).

2.4 Glue

Naturally it is not enough to have components and frameworks, but one needs a way
to bind components together. The binding technology, or glue, can take various forms,
depending on the nature and granularity of the components [27]. Composition, or
gluing, may occur at design time, link-time or run-time. Glue may be very rigid and
static (like the syntactic expansion that occurs when C++ templates are composed),
or very flexible and dynamic (like that supported by Tcl [123] and other scripting
approaches). In fact, in software composition or software assembly the developer’s role
is to provide a small amount of ”glue” that establishes the component interaction. The
need to implement much additional code becomes obsolete.

What is the right programming model for gluing? We argue that scripting ap-
proaches like Perl, Python or JavaScript are the right candidates. In fact, scripting
is not new. In the UNIX environment this is a de facto standard to develop small



22 CHAPTER 2. SURVEY OF COMPONENT-ORIENTED CONCEPTS

IDispatch Interface

vtbl pointer QueryInterface

AddRef

Release

GetTypeInfoCount

GetTypeInfo

GetIDsOfNames

Invoke

Figure 2.5: The IDispatch interface.

applications by combining command line tools gluing their standard input and output
streams. Small scripts act as adaptors to bridge the gap between the single tools.

Scripting is a higher-level form of programming. In traditional programming lan-
guages elements like lists and dictionaries are missing while modern scripting languages
provide them by default. Programming becomes easier and more effective. Program-
ming an efficient string analysis is much simpler in Perl than in C, because Perl is
trimmed for string operations. On the other side, however, not all scripting approaches
provide the same functionality or emphasize the same aspects of programming. Python
is a so-called general purpose scripting language that has also support for string ma-
nipulation, but this is not the main objective such that string manipulation in Python
is more or less clumsy.

The most popular scripting language for personal computers is Visual Basic. In
fact, one can consider Visual Basic as the first component-oriented programming sys-
tem for Windows. Visual Basic uses so-called Visual Basic controls. These controls use
Automation [98] a mechanism built on top of COM. Visual Basic controls are Automa-
tion servers that implement an IDispatch interface. A client can communicate with a
control through its IDispatch interface (see Fig. 2.5). What makes the IDispatch inter-
face interesting is the fact that it implements one single standard interface that can be
used to ask for a specific interface the control implements. The IDispatch interface can
be seen as a meta-interface that supports a kind of reflection by which Visual Basic
controls become scriptable.

Visual Basic uses a dynamic typing scheme. The system does not have to know
what arguments or result type a component method has before a program is allowed to
call this method. A so-called VARIANT structure is used to make this possible. This
structure encompasses all supported application types. Fortunately, the programmer
does not get in touch with this structure. Furthermore, a Visual Basic programmer uses
a programming paradigm that is more like that used in Smalltalk. Both the IDispatch



2.5. OPEN PROBLEMS 23

interface and the VARIANT structure make a control scriptable and Visual Basic a
scripting language.

Is there a standard glue? There is an ongoing discussion if DCOM or CORBA
should become the standard for gluing distributed objects. CORBA was supposed to
be a heterogeneous glue, but due to the fact that different ORBs were not able to
talk to each other CORBA could not be used as glue at all. Today this situation has
changed, but it is left open whether CORBA can play the role of glue or not. It is
more likely that we will have some additional layers of middleware that will enable to
use different glue technologies. In the case of DCOM it holds more or less the same
because it is only implemented for one platform.

The main problem concerning component-oriented software development is that
there is no general accepted definition of scripting of composition or a definition for
standard glue. This results mainly in the fact that most developer still use traditional
techniques to implement their systems.

2.5 Open problems

Despite predictions to the contrary, a true “component market” has not really emerged
since the late eighties [27]. Software components are not bought and sold like light bulbs
and compact disks. This is partly because standards for component interfaces are only
now taking hold, and partly because we have not yet found good economic models for
making money from developing components. For example, if we want to produce 100
telephones we have to buy all necessary parts, each 100 times, before we can assemble
the devices. On the other hand, if we develop software using the component approach
we have to buy the needed components usually once even if we want to sell our solution
100 times. This is possible because we can simply copy (duplicate) the components as
often as needed. Other engineering disciplines do not allow this. From the application
programmer’s point of view there is no drawback, but for the component developer
this is very unlikely especially because he gets only payed once even if his product is
used multiple times.

To further complicate matters, it is not always in the best interest of developers to
sell their components: a component framework may be a strategic asset for a company
that needs to be able to rapidly adapt products to changing customer needs [38].

Although a well-designed component framework, together with associated tools can
dramatically improve productivity in both development and maintenance, the task of
developing frameworks in the first place is somewhat a black art. One difficulty is
that most mature software engineering methods focus on how to develop applications
fulfilling specific requirements, not techniques for developing generic and reusable com-
ponents. The situation is slowly improving, mainly because we are getting better expe-
rience at building frameworks, and new component sets tend to build on and improve



24 CHAPTER 2. SURVEY OF COMPONENT-ORIENTED CONCEPTS

on existing approaches.

Most of the first “builder” tools focussed on user interface construction, mainly
because it is natural to use a direct manipulation interface to instantiate, layout and
connect such components. The builder paradigm, however, also applies to other do-
mains, and JavaBeans [109] goes in this direction. What is not clear is how far direct
manipulation can be pushed for general purpose programming tasks. Certainly the
paradigm of wiring components together works well for some programming-in-the-small
tasks, but quickly leads to incomprehensible “screen spaghetti” for complex tasks. It is
also true that visual programming is intuitive for certainly kinds of simple tasks, but is
more clumsy than text for describing non-trivial algorithms. A combination of a visual
building together with a programming language or a scripting language, as offered by
Visual Basic, Delphi or JavaBeans seems necessary for a general-purpose approach.

Another serious problem is that we have no good ways to talk about software
architectures (or very few good ways [107]). We have seen that an essential ingredient
of a component framework is an architecture that supports component composition.
But architectures are notoriously hard to describe in a precise way. When we look
at the source code of an application, it is easy to see the individual procedures and
classes, but where is the architecture? (It is hard to see the forest for the trees.) Until
we find simple ways to describe architectures, it will continue to be hard to learn how
to use components effectively.

What becomes more important than ever is a precise notion of contract specification
for components. Current specification techniques emphasize functional properties and
leave non-functional properties more or less undefined. In order to deploy an imdepen-
dently developed component successfully in a new context all provided and required
services must be known in advance. For example, we need to know re-entrance condi-
tions, both the sequential and the concurrent case must be covered, or which resources
are needed by a component. Current component approaches cover only selected aspects
of contractual specifications for interfaces. At least all actual component approaches ig-
nore non-functional properties. Unfortunately, it is not yet clear how one can represent
such properties efficiently.

The component approach does not necessarily need to be object-oriented. For exam-
ples, to develop a COM component we can simply use C. There is no need to apply any
object-oriented technique. But using an object-oriented technique can often simplify
the task. We argue that the object-oriented technique is the basis and the component
approach is its extension – objects and components have their designated role and a
component system must provide abstractions for them appropriately. Furthermore, if
we want to model mobility, objects can provide a suitable abstraction.



2.6. CONCLUSION 25

2.6 Conclusion

For the development of present-day applications, programming languages supporting
higher order abstractions are needed. We argue that these higher order abstractions
will be components. Unfortunately, most of the currently available programming lan-
guages and systems fail to provide sufficient support for specifying and implementing
components.

Object-oriented programming addresses some of the needs of present-day appli-
cations, but offers only limited support for viewing applications as configurations of
adaptable and reusable software components.

Components are self-contained configurable entities which can be composed to build
an application. Unfortunately, most object-oriented techniques fail to provide suitable
abstractions for general component specification and component composition (composi-
tion mechanisms) [76]. In order to get a system for composition, where components can
be specified and implemented, but also components written in other languages/systems
can be used, we need a new language – a composition language. This language will
combine concepts and paradigms of existing languages and systems and will provide
means for an abstract model for software composition [75, 76]. Furthermore, since
there is a great demand that modern application development also means that new
applications must be able to run in distributed environments, the model for software
composition must also support the definition and use of concurrent and distributed
components.

Components cannot be used in isolation, but according to a software architecture
that determines how components are plugged together. Now, when do we call a soft-
ware development environment a composition environment? We argue, a composition
environment must be built of three parts: i) a reusable component library, ii) a com-
ponent framework determining the software architecture, and iii) an open and flexible
composition language. Most of the effort in component technology was spent on the
first two parts. Now it is crucial to find an appropriate model to compose existing
components together. In our opinion the π-calculus or the πL-calculus which is pre-
sented in this thesis is a powerful system in order to fill the missing gap in an elegant
and natural way.

Nierstrasz et al. [75] have shown that objects provide an organizational paradigm
for decomposing large applications into coorperating objects as a reuse paradigm for
composing applications from pre-packaged software components. Furthermore, they
identified the crucial fact that object-oriented mechanisms for composition and reuse
must be cleanly integrated with other features, such as concurrency, persistence and
distribution.

In their argumentation, Nierstrasz et al. [75] focus solely on reuse. On the other
side, Dami [28] pointed out that extensibility is another important aspect for software
composition. In general, “plug-compatibility” usually imposes a certain discipline for



26 CHAPTER 2. SURVEY OF COMPONENT-ORIENTED CONCEPTS

the use of the component plugs (e.g., plug arguments are identified by their position
and have therefore always be specified in the same order).

Summarizing the properties of existing component approaches and the require-
ments discussed above, we can say that a general-purpose composition language must
be formal to support reasoning about component configurations. In particular, a com-
position language should support the following features (Nierstrasz and Meijler [76]
defined a similar set of requirements), each of which benefit from formal semantics:
active objects, components, glue, a formal object model, and reflection support.



Chapter 3

Using the π-calculus to model
compositional abstractions

In this section we present, how the π-calculus be used to model compositional abstrac-
tion. This work is based on experiment we made to model objects in Pict [52, 104].

Pict is an experimental programming language whose language features are all de-
fined by syntactic transformation to a core language that implements the asynchronous
simplified π-calculus. Pict is as much an attempt to turn the π-calculus into a full-
blown programming language as it is a platform for experimenting with modelling
of language features [91] and a platform for experimenting with type disciplines and
type inference schemes for the π-calculus [90]. In Appendix A we present the syntax
and semantics of the most important elements of Pict that we shall use to model
compositional abstractions.

3.1 Towards an object model

What is the right kind of object model for software composition? What are the neces-
sary features such a object model must provide? Where is the barrier between object
model and more sophisticated compositional abstractions?

To give an answer to these questions is not easy. Furthermore, current object-
oriented languages typically provide an ad hoc collection of mechanisms for constructing
and composing objects, and they are based on ad hoc semantic foundations (if any at
all) [73]. A language for composing open systems, however, should be based on a
rigorous semantic foundation in which concurrency, communication, abstraction, and
composition are primitive.

The ad hoc nature of object-oriented languages can be manifested in three ways:

1. The granularity and nature of software abstractions may be restricted: the de-
signer of a software component may be forced (unnaturally) to define it as an

27



28 CHAPTER 3. MODELLING COMPOSITIONAL ABSTRACTIONS

object. Useful abstractions may be finer (e.g., mixins) or coarser (e.g., modules)
or even higher-order (e.g., a synchronization policy).

2. The abstraction mechanisms themselves may be ad hoc and inflexible: program-
mers typically have only limited facilities for defining which features are visible
to which clients, how binding of features (static or dynamic) should be resolved,
or what kinds of entities may be composed.

3. Language features are informally specified or even implementation dependent.
Combinations of features may exhibit unpredictable behaviour in different im-
plementations.

Given the ad hoc way in which software composition is supported in existing lan-
guages, we identify the need for a rigorous semantic foundation for modelling the com-
position of concurrent object systems from software components. What we also need
to achieve is simplicity and unification of concepts: if we can understand all aspects
of our object model in terms of a small set of primitives, then we are able to cleanly
integrate these features and avoid semantic interference [73].

As a first step towards the definition of a compositional object model, we need to
identify some basic properties of the object model that we believe are essential also
for software composition. These basic features are strongly influenced by the object
models of C++ [108], Java [7], Eiffel [58], and Object Pascal [12]. The basic model has
to include the following features: instance variables, instance methods, class variables,
class methods, self-reference of objects, inheritance, genericity and polymorphism, and
static and dynamic binding.

At a higher level of abstraction we can identify additional features that we consider
as basic compositional abstractions like synchronization policies, mixins, and some sort
of reflection support or more precisely meta-objects and meta-object protocols.

We will not introduce visibility specifiers as used in the most object-oriented lan-
guages. Moreover, we will use some standard rules that will assign each feature a
default visibility. Instance variables are private by default and instance methods are
public. A subclass will inherit all public features of its superclass (protected inheri-
tance is treated as a special case of public inheritance). A subclass can redefine any
of its inherited features under the condition that this redefinition obeys the subtying
rules of the implementation language Pict. We will not model multiple inheritance,
although, it would be possible to add this mechanism. But due to the known problems
with multiple inheritance [108] and due to the fact that we want to avoid inheritance
in the software composition process we restrict ourselves to single inheritance.

We start our examination with an implementation of a procedural stack class in
Scheme (Figure 3.1) of Friedman et al. [35] that illustrates the principle structure of
a core programming model which supports objects and classes. This implementation



3.1. TOWARDS AN OBJECT MODEL 29

(define makeStack
(let ((Pushed 0))

(lambda ()
(let ((Stk ’()) (LocalPushed 0))

(lambda (Message)
(case Message

((empty?) (lambda () (null? Stk)))
((push!) (lambda (Value)

(set! Pushed (+ Pushed 1))
(set! LocalPushed (+ LocalPushed 1))
(set! Stk (cons Value Stk))))

((pop!) (lambda ()
(if (null? Stk)

(error ”Stack: Underflow”)
(begin

(set! Pushed (- Pushed 1))
(set! LocalPushed (- LocalPushed 1))

(set! Stk (cdr Stk))))))
((top) (lambda ()

(if (null? Stk)
(error ”Stack: Underflow”)
(car Stk))))

((localPushed) (lambda () LocalPushed))
((pushed) (lambda () Pushed))
(else (error ”Stack: Message not understood” Message))))))))

Figure 3.1: Procedural stack class in Scheme.

uses the fact that in languages with first class functions (or procedures), it is possible
to represent objects as functions or procedures.

The procedure makeStack implements a generator for the class stack. Each time
this procedure is invoked it returns a new instance of the class stack – a stack ob-
ject. This implementation provides two basic abstractions: class and object and uses
the simplest approach to implement a message passing protocol: a procedure (anony-
mous lambda abstraction) representing an object is passed a message that selects the
operation to be performed on the object.

Each instance and class may have its own state, which is maintained as the bindings
of one or more instance variables or class variables. In Figure 3.1, there are two in-
stance variables, Stk and LocalPushed, and one class variable, Pushed. Class variables
maintain usually information that is common to all instances of a class, whereas each
instance of a class has its own value for every instance variable. The reader should note



30 CHAPTER 3. MODELLING COMPOSITIONAL ABSTRACTIONS

class stack = {
private common

Pushed : Integer = 0;
private

LocalPushed : Integer = 0;
Stk : List of Integer = nil;

public
function empty() : Boolean { return null(Stk); }
procedure push( Value : Integer )
{ Pushed = Pushed + 1; LocalPushed = LocalPushed + 1; cons( Value, Stk ); }

procedure pop()
{ if empty() then raise( Underflow, ”pop on empty stack” );

else
Pushed = Pushed - 1; LocalPushed = LocalPushed - 1; cdr( Stk );

end; }
function top()
{ if empty() then raise( Underflow, ”top on empty stack” );

else
return car( Stk );

end; }
function localPushed() { return LocalPushed; }

public common
function pushed() { return Pushed; }

}

Figure 3.2: Class stack.

that class variables or class methods have proven their usefulness and often ease the
implementation of certain problems, e.g. the singleton design pattern [36, 19]. This is
at least one justification to incorporate these features in our component object model.

The following transcript illustrates the use of the procedure makeStack and objects
located at s1 and s2.

> (define s1 (makeStack))
> (define s2 (makeStack))
> ((s1 ’push!) 45)
> ((s2 ’push!) 2)
> ((s2 ’push!) 38)
> ((s1 ’localPushed!))
1



3.2. FUNCTION AS PROCESSES 31

> ((s2 ’localPushed!))
2
> ((s1 ’pushed!))
3
> ((s2 ’pushed!))
3
> ((s2 ’top!))
38

Unfortunately, the Scheme code in Figure 3.1 is not very readable. In Figure 3.2,
the definition of class stack is shown in the pseudo code notation. The pseudo code
notation that is based on the languages C++ and Java. The class stack has the same
functionality as the procedure makeStack except that the function pushed is now a
class method which respects more naturally its semantics.

Before we translate the functional model for class stack into Pict, we will study
the translation of the λ-calculus into the polyadic mini π-calculus. This translation
will provide us the necessary information in order to define our first object model in π
and Pict respectively.

3.2 Function as processes

In this section, we will informally introduce the polyadic mini π-calculus [101] that
is the basis for our object encoding and we present the encoding of two λ-calculus
reduction strategies into the mini π-calculus. These encodings are based of the work of
Milner [63], Pierce and Sangiorgi [87], Ostheimer and Davie [80], and Turner [112]. The
aim of this presentation is that it will provide the necessary information to translate a
λ-calculus based object model into π.

3.2.1 The polyadic mini π-calculus

The polyadic mini π-calculus is built from the operators of inaction, input prefix,
output, parallel composition, restriction, and replication. Small letters a, b, ..., x, y, ...
range over the infinite set of names, and P,Q,R, ... over the set of processes:

P ::= 0
∣∣∣ a(x̃).P

∣∣∣ a〈x̃〉 ∣∣∣ P1|P2

∣∣∣ (ν a)P
∣∣∣ !a(x̃).P

0 is the inactive process. An input-prefixed process a(x̃).P , where x̃ has pairwise
distinct components, waits for a tuple of names ỹ to be sent along a and then behaves
like P{ỹ/x̃}, where {ỹ/x̃} is the simultaneous substitution of names x̃ with names ỹ.
An output a〈x̃〉 emits names x̃ at a. Parallel composition runs two processes in parallel.
The restriction (ν a)P makes name a local to P . A replication !a(x̃).P stands for a
countably infinite number of copies of a(x̃).P in parallel. In our object encodings we



32 CHAPTER 3. MODELLING COMPOSITIONAL ABSTRACTIONS

will often use the special name as wildcard symbol. Values bound to this name are
unimportant for the following process and will be ignored.

The set of free names fn(P ) and the set of bound names bn(P ) of a process P are
defined in the usual way. The binding operators are the input prefix a(x̃) (which binds
x̃) and the restriction (ν x).

The semantics of the polyadic mini π-calculus is presented using a reduction rela-
tion. This style of semantics involves defining two relations on processes: a reduction
relation, specifying the actual communication behaviour of processes, and a structural
congruence relation. The structural congruence relation will allows us to rewrite a
process so that the participants of a potential communication can be syntactically
juxtaposed.

The reduction relations, given below, describe the reduction of polyadic mini π-
terms. The first two rules state that we can reduce under both parallel composition
and restriction. The symmetric versions of both rules are redundant, because of the
use of structural congruence. The communication rule takes two processes which are
willing to communicate along channel a and simultaneously substitutes the free names
x̃ with names ỹ. The restricted names z̃ may be communicated from process Q to
process P (scope extrusion). The communication rule is the only rule which reduces
directly a π-term.

The communication rule assumes that processes are in a particular format. The
structural congruence rule allows us to rewrite processes such that they have the correct
format for the communication rule.

PAR :
Q −→ R

P | Q −→ P | R
RES :

P −→ Q

(ν x)P −→ (ν x)Q

COM : a(x̃).P | a〈ỹ〉 −→ P{ỹ/x̃}

STRUCT :
P ≡ P ′ P ′ −→ Q′ Q′ ≡ Q

P −→ Q

The structural congruence relation is the smallest congruence relation over processes
that satisfies the axioms below:

!a(x̃).P ≡ a(x̃).P | !a(x̃).P

P | Q ≡ Q | P P | 0 ≡ P

(P | Q) | R ≡ P (Q | R)

(ν x)P | Q ≡ (ν x)(P | Q) x /∈ fn(Q)



3.2. FUNCTION AS PROCESSES 33

The replication operator enables processes to have an infinite behaviour. A repli-
cated process can be called arbitrarily often by providing an arbitrary number of copies
of it. Such a process acts as a server and its structure is of so general nature that it
is helpful to have a higher-level syntax for it. A similar derived form is also a basic
element in Pict.

def X[x̃] = P in Q
def
= (ν X)(!X(x̃).P | Q)

In [64] Milner has demonstrated how data structures could be encoded in the π-
calculus. For example, we can define one encoding of booleans as follows:

def True[r] = (ν b)(r(b) | !b(t, f).t)
def False[r] = (ν b)(r(b) | !b(t, f).f)

A boolean value is a channel along we send/receive two channels for the next true and
false interaction. Both True and False do not take any parameter, other than a result
channel r. They both create a new channel b that serves as the location of the boolean
value and return b along the result channel r. Furthermore, since True and False are
replicated processes they can answer queries about a boolean value b more than once.
If we had omitted the replication the resulting processes would yield linear booleans.

Now, we will study the encoding of the λ-calculus in the π-calculus. The main
reason for this is that the better we understand the encoding of objects and classes in
terms of the λ-calculus (see Fig. 3.1) the better we can model these abstractions in
the π-calculus.

3.2.2 Encoding λ-terms with call-by-value reduction

Milner [63] has presented an encoding of the λ-calculus into the π-calculus. In [63]
Milner showed the encodings for call-by-name and call-by-value reduction strategies.
The syntax for λ-terms is given below:

e ::= x Variable
λx.e Abstraction
e e Application

The core of the encoding of λ-terms into the π-calculus is the translation of function
application, whereby function application becomes a particular form a parallel compo-
sition and β-reduction is modeled by interaction. Since the syntax of the first-order
π-calculus only allows names to be transmitted along channels, the communication of
a term is simulated by the communication of a trigger to it.

Informally we can describe the encoding as follows. In the pure λ-calculus every
term denotes a function that when supplied with an argument yields another function
(which might in turn wait for an argument, etc.). Taking this into account, the trans-
lation of a λ-term e is a process that is located at a port p waiting for some arguments.



34 CHAPTER 3. MODELLING COMPOSITIONAL ABSTRACTIONS

It will wait until it receives along p a trigger x for its arguments and a new port q and
evolves to a new process that is waiting at port q. The names p and q are unique ports
along e interacts with its environment.

We will assume that the set of λ-calculus variables is a subset of the set of π-
calculus variables, which avoids having to rename λ-calculus variables when translating
λ-terms). The call-by-value translation [[]]V〈p〉 is defined as follows:

[[x]]V〈p〉
def
= p〈x〉

[[λx.e]]V〈p〉
def
= (ν f)(p〈f〉 | !f(x, q).[[e]]V〈q〉)

[[e e′]]V〈p〉
def
= (ν q)(ν r)([[e]]V〈q〉 | q(f).([[e′]]V〈r〉 | r(x).f〈x, p〉))

If e is just a variable, then we return immediately the value of this variable along
channel p. If e is a λ-abstraction, we first create a new channel f , which we can
think of as the location of λx.e. We immediately return f along channel p and start
the replicated process !f(x, q).[[e]]N〈q〉. This process acts as a server (see definition of
higher-level form def X[x̃] = P in Q).

We evaluate an application e e′ left-to-right. We start e and wait for the result
located at f , to be sent along channel q. Then we start e′ and wait for the result, x,
to be sent along r. Now, we have two values: the function f and its argument x. We
apply f to x by sending the pair 〈x, p〉 to f . The function will send its result along p
once it is finished.

The reduction of a simple example will show that the encoding yields indeed the
desired result:

[[(λx.x) y]]V〈p〉 ≡ (ν q)(ν r)([[λx.x]]V〈q〉 | q(f).([[y]]V〈r〉 | r(x).f〈x, p〉))
≡ (ν q)(ν r)((ν f)(q〈f〉 | !f(x, q).[[x]]V〈q〉) | q(f).([[y]]V〈r〉 | r(x).f〈x, p〉))
→ (ν q)(ν r)((ν f)(!f(x, q).[[x]]V〈q〉) | [[y]]V〈r〉 | r(x).f〈x, p〉)
≡ (ν q)(ν r)((ν f)(!f(x, q).[[x]]V〈q〉) | r〈y〉 | r(x).f〈x, p〉)
→ (ν q)(ν r)((ν f)(!f(x, q).[[x]]V〈q〉) | f〈y, p〉)
→ (ν q)(ν r)((ν f)(!f(x, q).[[x]]V〈q〉) | [[y]]V〈p〉)

≡ [[y]]V〈p〉 | (ν q)(ν r)(ν f)(!f(x, q).[[x]]V〈q〉)

∼ [[y]]V〈p〉

The last step needs some explanation. This step goes beyond ≡; it is a simple case
of strong bisimilarity [65]. In fact, this step represents the “garbage-collection” of the
process !f(x, q).[[x]]V〈q〉 which cannot be used further (f is a restricted name that was
consumed in a previous interaction).

The reader should note that the encoding shown above is sequential. There exists
also a parallel encoding. The parallel encoding of the λ-application e e′ is given below.



3.2. FUNCTION AS PROCESSES 35

[[e e′]]
V ‖
〈p〉

def
= (ν q)(ν r)([[e]]

V ‖
〈q〉 | [[e′]]

V ‖
〈r〉 | q(f).r(x).f〈x, p〉)

Now, we evaluate an application e e′ in parallel. We start e, e′, and the process
q(f).r(x).f〈x, p〉 which waits first for the result located at f , to be sent along channel
q and second, the result, x, to be sent along r. We apply the received values f to x by
sending the pair 〈x, p〉 to f . The function will send its result along p once it is finished.

We can use both encodings as long as there are no synchronization constraints. In
general, it is safe to use the parallel version, because synchronization will be achieved
by an ordered sequence of input prefixes. On the other side, however, the sequentiel
encoding is closer to the sequentiel nature of the λ-calculus.

3.2.3 Encoding λ-terms with call-by-name reduction

Now, we present the encoding of Ostheimer and Davie [80] for the call-by-name reduc-
tion strategy. We use the Ostheimer and Davie encoding rather than Milner’s, since it
shares much of the structure of the call-by-value encoding.

[[x]]N〈p〉
def
= x〈p〉

[[λx.e]]N〈p〉
def
= (ν f)(p〈f〉 | !f(x, q).[[e]]N〈q〉)

[[e e′]]N〈p〉
def
= (ν q)(ν x)([[e]]N〈q〉 | q(f).(f〈x, p〉 | !x(c).[[e′]]N〈c〉))

The encoding of λx.e is the same as for the call-by-value reduction. For the ap-
plication e e′ we start [[e]]N〈q〉 and wait for the result f , to be sent along channel q. In
contrast to the call-by-value encoding we do not start the evaluation of e′. Moreover,
we start a replicated process on the channel x and apply f to the argument x and the
result channel p. If f wishes to get the value associated with its argument x it must
communicate with the replicated process on x.

The following simple example will show that we are able to reduce the function
without evaluating its argument:

[[(λx.x) e]]N〈p〉 ≡ (ν q)(ν x)([[λx.x]]N〈q〉 | q(f).(f〈x, p〉 | !x(c).[[e]]N〈c〉))

≡ (ν q)(ν x)((ν f)(q〈f〉 | !f(x, q).[[x]]N〈q〉) | q(f).(f〈x, p〉 | !x(c).[[e]]N〈c〉))

→ (ν q)(ν x)(ν f)(!f(x, q).[[x]]N〈q〉 | f〈x, p〉 | !x(c).[[e]]N〈c〉)

→ (ν q)(ν x)(ν f)(!f(x, q).[[x]]N〈q〉 | [[x]]N〈p〉 | !x(c).[[e]]N〈c〉)

≡ (ν q)(ν x)(ν f)(!f(x, q).[[x]]N〈q〉 | x〈p〉 | !x(c).[[e]]N〈c〉)

→ (ν q)(ν x)(ν f)(!f(x, q).[[x]]N〈q〉 | [[e]]N〈p〉 | !x(c).[[e]]N〈c〉)

≡ [[e]]N〈p〉 | (ν q)(ν x)(ν f)(!f(x, q).[[x]]N〈q〉 | !x(c).[[e]]N〈c〉)

∼ [[e]]N〈p〉



36 CHAPTER 3. MODELLING COMPOSITIONAL ABSTRACTIONS

3.2.4 Using channel sorts for encoding λ-terms

Pierce and Sangiorgi [87] have presented the typed version of this encoding and ex-
tended it by distinguishing between the ability to read from a channel, the ability the
write to a channel, and the ability both to read and to write. This refinement led to a
finer control of the use of channels. Furthermore, this refinement gave rise to a natural
subtype relation similar to those in typed λ-calculi. The language Pict supports this
form of channel type annotation and we will use them also in our object modelling.

3.3 The Pierce/Turner basic object model

Pierce and Turner [91] have outlined a basic model for objects in Pict, in which
objects are modelled as a set of persistent processes representing instance variables
and methods. The interface of an object is a record containing the channels of all
exported features.

This basic model captures the essentials of concurrent objects: encapsulation, iden-
tity, persistence, instantiation, and synchronization. On the other side, however, this
model did not cover some other common features of object-oriented programming lan-
guages that can be found in most of the better known languages like self-references of
objects, dynamic binding, inheritance, overriding, genericity, and class variables.

3.3.1 Process groups as objects

In process calculi like the π-calculus it is possible to view a concurrent system as a
kind of process community. Such a community is usually an unstructured collection of
autonomous agents that use arbitrary patterns to communicate over channels. In prac-
tice, however, programs have significantly more structure and we can always identify
some invariants the correct behaviour of the whole system depends on. The mainte-
nance of these invariants tends to be local to a small groups of processes that cooperate
with the rest of the system by some abstraction encapsulating their internal state.

Once, we have identified such groups of processes, communications across group
boundaries can seen as messages from one group to another. The higher-level syntactic
form def is a way to explicitly define a group of processes. In fact, a process group
defined with def can be thought of as an object. The def construct helps to encapsulate
the internal state of the object (by using restricted names within the process group).

3.3.2 Process-based vs. channel-based encoding

If we have a group of processes that maintains some local state, then we can think
of that process group as an encoding of an updatable data structure. Turner [112]
showed two possibilities to encode an updatable data structure: a process-based and



3.3. THE PIERCE/TURNER BASIC OBJECT MODEL 37

a channel-based encoding. For example, the process Cell〈x, read, update〉 represents a
reference cell whose current contents is located at x. The channels read and update
can be used to read or to modify the contents of the reference cell.

def Cell[x, read, update] =
read〈x〉.Cell〈x, read, update〉 + update(n).Cell〈n, read, update〉

This encoding ensures that a read and update request cannot be executed concur-
rently. This is possible due to the use of the summation operator which, in this case, is
used to implement a mixed-guarded choice. The summation operator is part of the syn-
chronous π-calculus [64]. The language Pict, however, is based on the asynchronous
mini π-calculus that does not provide the summation operator.

Now, if we want to use the process-based encoding of updatable data structures
the question arises whether we can encode mixed-choice in the asynchronous mini π-
calculus or not? Palamidessi [81] showed that it is not possible to encode the full
π-calculus into the asynchronous π-calculus. In particular, Palamidessi showed that in
symmetric networks, it is not possible to solve the leader election problem by using only
the asynchronous π-calculus, i.e. to guarantee that all processes will reach a common
agreement (elect the leader) in a finite amount of time. On the other side, however,
this is possible in the full π-calculus. For example, if we have a parallel composition of
“symmetric” choices

P | Q def
= x〈a〉.P0 + y(b).P1 | x(b).Q0 + y〈c〉.Q1

where symmetric means that both process P and Q are identical under structural
congruence modulo α-conversion, then a reduction will always lead to asymmetric
systems either P0 | Q0{b\a} or P1{b\c} | Q1. In contrast, the above system cannot
be defined in the asynchronous π-calculus. Instead, due to the lack of synchronous
output, a corresponding system with concurrently enabled input- and output-actions
would behave confluently

P | Q def
= (x〈a〉 | y(b).P1) | (x(b).Q1 | y〈c〉)

and we have for process P that either

P
x〈a〉
−→ (0 | y(b).P1)

y(b).P1

−−−→ (0 | P1{c/x}) or P
y(b).P1

−−−→ (x〈a〉 | P1{c/x})
x〈a〉
−→ (0 | P1{c/x})

Similarly,

Q
x〈a〉
−→ (0 | y(b).Q1)

y(b).Q1

−−−→ (0 | Q1{c/x}) or Q
y(b).Q1

−−−→ (x〈a〉 | Q1{c/x})
x〈a〉
−→ (0 | Q1{c/x})



38 CHAPTER 3. MODELLING COMPOSITIONAL ABSTRACTIONS

Since both P and Q behave confluently, the symmetry P | Q is preserved. In other
words, no leader could be elected in a finite amount of time. But this violates the
Palamidessi’s uniformity requirement and therefore, it is not possible to encode mixed-
choice into the asynchronous mini π-calculus.

Recently, Nestmann [71] proposed a “good” encoding for guarded choice. In partic-
ular, he presented the encoding for input-guarded choice, separate input- and output-
guarded choice, and mixed-guarded choice. Nestmann based his investigation on the
encoding of the input-guarded choice [72] that can be modelled in the asynchronous
π-calculus. To encode mixed-guarded choice Nestmann proposed two solutions: (i) ran-
domization and (ii) a “bakery” algorithm [50]. Basically, both mechanisms are used to
break the symmetry (resolve cyclic dependencies among processes). Nevertheless, both
solutions imply that either “uniformity” or “divergence-freedom” have to be dropped,
if we do not want to leave the chosen framework which on the other side confirms
Palamidessi’s results [71].

An alternative encoding of a reference cell that does not use the summation oper-
ator, is shown below.

def ChannelCell[x, r] = (ν ref )(r〈ref 〉 | ref 〈x〉)

Each reference cell is represented using a single restricted channel ref . Given an
initial value located at x and a result channel r, the process ChannelCell builds a new
reference cell by creating a new channel ref and starting two local processes r〈ref 〉
and ref 〈x〉. The former returns the channel ref along channel r to the caller while the
latter initializes the reference cell with x.

Now, we need two processes that implement the read and the update operation,
respectively.

def Read[ref , r] = ref (val).(r〈val〉 | ref 〈val〉)
def Update[ref , val, r] = ref ( ).(ref 〈val〉 | r〈〉)

The process Read, given two parameter ref and r, reads a value val from ref (the
current contents of the reference cell) and immediately sends this value back along
result channel r. In parallel, the just received value val is sent back along channel
ref . Similarly, given the parameters ref , val, and r, the process Update reads the
current contents of the reference cell from ref and replaces it with val. Completion is
singled by sending a empty tuple along r. The reader should note that Update reads
the current contents of the reference cell into – the wildcard name. This means that
we are not interested in the contents, but this step is needed to replace the contents of
the reference cell.

The processes ChannelCell, Read, and Update preserve the invariant that there is
at most one active writer to the channel ref . Both Read and Update start with reading
the actual contents from channel ref . A successful read has the effect that all other



3.3. THE PIERCE/TURNER BASIC OBJECT MODEL 39

Read and Update operations are temporarily blocked until the current process releases
ref (sends a value along ref ). Using this scheme, there will never be any interference
between concurrent Read and Update operations.

What is left open, is an appropriate packing strategy that allows a group of
ChannelCell, Read, and Update to be built. We can think of such a group as an
implementation of an abstract data type having an interface that contains methods to
read and to update its value.

3.3.3 Objects as records

Basically, using a pure process calculus, groups of processes exist nowhere but in the
programmer’s mind. However, the polyadic mini π-calculus already includes basic
facilities for manipulating collections of channels. In the polyadic mini π-calculus we
can construct and transmit tuples of channels (in fact, the definition of the higher-level
form def uses already tuples). Having available a little more structure – the ability
to refer explicitly to a group of processes – may suffice to view them as rudimentary
objects. A tuple is an object, or more precisely, the interface to an object.

In the π-calculus, there is no way that one process can directly affect or refer
to another process. A process can only send messages along some channels where,
by convention, the other process listens. Similarly, referring to a group of processes
means that we can send messages to a collection of channels where these processes
are listening. An attractive notion to model such a facility is the standard notion of
records. Records allow one to selectively address one member of a group by using its
name. Viewing each individual channel as explicitly named “service access point”, we
can bundle them together in a record that provide a well-defined interface for accessing
the related services. Furthermore, this packaging gives rise for a higher-order style of
programming with objects, since a complete interface of one object may be manipulated
as a single value.

3.3.4 The object model

An object in Pict is modelled as record. Pierce and Turner have proposed a basic
encoding of objects with records [91]. For example, a reference cell with two methods
get and set can be implemented as follows:



40 CHAPTER 3. MODELLING COMPOSITIONAL ABSTRACTIONS

def ref [init] =

let

new Contents

run Contents!init

in

record

set = abs [v,c] > Contents? > (Contents!v | c![]) end,

get = abs [r] > Contents?v > (Contents!v | r!v) end

end

end

A reference cell maintains an internal channel Contents, which is used to store the
current state of the object, and provides two request channels set and get to set a
new state and to read the current state, respectively. The initial state of the reference
cell is given by the init parameter. In order to protect other processes against reading
and writing Contents, its declaration and initialization is wrapped in a local block.

Each request channel is the interface to another process. These processes are defined
as anonymous process abstractions, and are the only means by which it is possible to
query or to change the state of the object.

The process ref is an object generator that can be seen as a reference cell factory.
The following val declaration creates a reference cell with the initial value 50:

val cell = ref [50]

Requests to an object are performed by the usual dot notation:

run cell.set[20]; prInt [cell.get[]];

Now, we can implement the class stack in Pict. The complete code is given in
Figure 3.3. The reader should note that the class variable Pushed is implemented as
“global” process. The reason is that the basic object model only supports object based
features. However, the basic model captures the essentials of concurrent objects.



3.3. THE PIERCE/TURNER BASIC OBJECT MODEL 41

def stack [] =
let

new localPushed, Stk
run localPushed!0
run Stk!(nil[])

in
record

empty = abs[c] > Stk?aList > Stk!aList | c!(null[aList]) end,
push = abs[x,c] >

Pushed?m >
localPushed?n >

Stk?l > Stk!(cons[x,l]) | localPushed!(n+1) | Pushed!(m+1) | c![]
end,

pop = abs[c] >
Stk?l > if null[l]

then
raise![exitOnExn,”Stack: Underflow”,c]

else
Pushed?m >

localPushed?n > Stk!(cdr[l]) | localPushed!(n-1) | Pushed!(m-1) | c![]
end

end,
top = abs[r] >

Stk?l > if null[l]
then

raise![exitOnExn,”Stack: Underflow”,r]
else

Stk!l | r!(car[l])
end

end,
localPushed = abs[r] > localPushed?v > localPushed!v | r!v end,

end
end

new Pushed
run Pushed!0

Figure 3.3: A stack object in Pict.



42 CHAPTER 3. MODELLING COMPOSITIONAL ABSTRACTIONS

3.4 Explicit metaobjects

In this section we present some extensions to the basic object model resulting from
experiences modelling object-oriented abstractions in Pict [52, 104, 105].

3.4.1 Modelling class variables

As a first extension we add class variables and class methods to the basic model.
A straightforward mapping of these features is to define them in global scope as

processes (see Figure 3.3), but this violates data encapsulation and allows every client
to access these features. The most natural solution to this problem is to introduce
explicit metaobjects to encapsulate the logic for creating and initializing instances of
a class. Metaobjects [48] are a commonly used mechanism in various object-oriented
programming languages to encapsulate the inter- pret of language features behind the
interface of an object. In this case we use metaobjects to encapsulate and restrict
access to class variables and methods. Class variables and class methods are modelled
as instance variables and exported methods of the metaobject, respectively.

We use metaobjects not only to model shared class features, but more generally to
create, initialize, and control the behaviour of objects. In the basic model of Pierce and
Turner, object creation is modelled by a generator process in global scope. Moving this
generator process inside the metaobject is a first step towards modelling inheritance
and self-references. A metaobject for the class stack called StackClass is shown in
Figure 3.4.

StackClass is declared as a unique global channel representing the metaobject for
a stack class. Since the class variable Pushed is declared within the scope of the class
declaration, all methods can directly access the value of Pushed.

There are two class methods: pushed and create. The class method pushed returns
the total number of pushed items (for all instances of class stack), whereas the class
method create returns a new object of the stack class.

The reader should note that we can add a generic type parameter T to the definition
of the create method. This allows us to create stack objects for arbitrary data types.
The metaobject itself does not have to be generic. The the following we denote with

create = abs [:T:][r]

the ability to create generic objects using T as actual type parameter.



3.4. EXPLICIT METAOBJECTS 43

val StackClass = {- global metaobject channel -}
let

new Pushed
run Pushed!0 {- private class variable -}

in
record

pushed = abs [r] > {- public class method -}
Pushed?value > (Pushed!value | r!value)

end,
create = abs [r] > {- creation interface -}

let
new localPushed, Stk
run localPushed!0
run Stk!(nil[])

in
record

empty = abs[c] > Stk?aList > Stk!aList | c!(null[aList]) end,
push = abs[x,c] >

Pushed?m >
localPushed?n >

Stk?l > Stk!(cons[x,l]) | localPushed!(n+1) | Pushed!(m+1) | c![]
end,

pop = abs[c] >
Stk?l > if null[l]

then
raise![exitOnExn,”Stack: Underflow”,c]

else
Pushed?m >

localPushed?n > Stk!(cdr[l]) | localPushed!(n-1) | Pushed!(m-1) | c![]
end

end,
top = abs[r] >

Stk?l > if null[l]
then

raise![exitOnExn,”Stack: Underflow”,r]
else

Stk!l | r!(car[l])
end

end,
localPushed = abs[r] > localPushed?v > localPushed!v | r!v end,

end
end

end

Figure 3.4: A metaobject for class stack in Pict.



44 CHAPTER 3. MODELLING COMPOSITIONAL ABSTRACTIONS

3.4.2 Modelling inheritance by dynamic binding of Self

The pseudo-variable Self is needed to model dynamic binding. To model this feature,
we make use of a Pict library process that implements so-called reference cells. A
reference cell is an object that provides set and get methods to set and retrieve stored
values, respectively. Self is modelled as a reference cell that is set just once in the
create method of the metaobject. In order to initialize Self, we first have to assign
the new fresh object to a temporary channel (this is the generator process), and second
to define a fixed point operator which delivers the minimal fixed point - Self:

create = abs [:T:][r] >
r!( let

val Self = emptyRef[:AObjectType:][]

new temporary - make a new channel for Self -

run temporary!( ...

object creation

... )

in

Self.set[temporary]; {- bind Self -}
Self.get[] {- return current value of Self -}

end)

In a first approach we model inheritance by delegation (as in Self [113] and Sina
[3]): each object owns an instance of its direct superclass. This means that only the
exported methods of the superclass can be accessed by the subclass instance. Modelling
dynamic binding requires special care. In the absence of dynamic binding of Self, if
an inherited ancestor method calls a method redefined by the subclass, the original
and not the redefined method will be called since Self within the superclass instance
refers to the superclass object, but not to the subclass object. To achieve dynamic
binding, we need a superclass instance in which Self refers to the subclass instance
[26] (Figure 3.5).

We now introduce “intermediate object” in which all methods and instance variables
of a class are defined, but Self is unbound: all methods have an additional first
parameter Self. The metaobject of each class defines a process CreateIntermediate
(comparable with a generator in [26]) where the intermediate object of the class is
defined as follows:

def CreateIntermediate [] =

let

new localPushed, Stk

run localPushed!0

run Stk!(nil[])



3.4. EXPLICIT METAOBJECTS 45

Self

SubClass

SubClassSelf

Self

Super

Self

Super

SuperClass

SuperClass

Correct binding of Self

Incorrect binding of Self

Figure 3.5: Binding of Self with inheritance.

in

record

empty = abs[Self, c] > ... {- Self is an explicit parameter -}
push = abs[Self, x,c] > ...

pop = abs[Self, c] > ...

top = abs[Self, r] > ...

localPushed = abs[Self, r] > ...

end

end

In the Create method of the metaobject, an intermediate object is created, each
exported method is bound to a method defined in the intermediate object, and the
correct binding of Self is established. As in the previous model, an empty reference
cell is used to model self- reference. The method Create is defined as follows:

def Create [] =

let

val StackIntermediate = CreateIntermediate []

val Self = emptyRef []

val NewInstance =

record

empty = abs[c] = StackIntermediate.empty[Self.get[],c] end,

push = abs[x,c] = StackIntermediate.push[Self.get[],x,r] end,



46 CHAPTER 3. MODELLING COMPOSITIONAL ABSTRACTIONS

pop = abs[c] = StackIntermediate.pop[Self.get[],c] end,

top = abs[r] = StackIntermediate.top[Self.get[],r] end,

localPushed = abs[r] =

StackIntermediate.localPushed[Self.get[],r] end

end

in

Self.set[NewInstance];

Self.get[]

end

Now, in addition to exporting the Create method and all other public class meth-
ods, the metaobject exports the method CreateIntermediate, which returns a fresh
copy of an intermediate object of the class.

Inheritance is now straightforward to model. In order to reuse the methods defined
in an ancestor class, the metaobject of a class gets a fresh copy of the intermediate
object of its direct superclass. This intermediate object is then used to define the inter-
mediate object of the class itself. It is possible to (i) override methods, (ii) define new
methods, and (iii) call inherited methods. Figure 3.5 illustrates the final architecture
of the object model for the π-calculus using Pict as implementation language.

3.5 Results and shortcomings

The shown encodings illustrate that the π-calculus is expressive enough for modelling
standard object-oriented programming language features in a convenient way. Walker
[120] has shown that POOL [5] can be modelled in the π-calculus, but in his approach,
no subtyping or inheritance is supported. Subtyping and a notion of Self can be
modelled with the “Calculus of Objects” of Vasconcelos [117]. Barrio [9] has given a
nearly complete representation of active objects in the calculus, but dynamic binding
and a notion of Self are still missing. Our encodings show that inheritance, dynamic
binding, and self-reference can also be conveniently modelled with the π-calculus with
the aid of processes representing metaobjects.

Although metaobjects are usually associated with MOPs, we only defined a basic
MOP for our Pict object encodings. Two major questions arise: what kind of MOPs
do we need in a composition language, and what are the consequences for the underlying
type system? To our knowledge, most of the languages supporting run-time MOPs are
not statically typed. It is therefore a challenging task to see what kind of MOP can
be defined with the current type system of Pict, or how the type system should be
extended in order to support run-time reflection using metaobjects.

Modelling object-oriented features in the π-calculus is tedious work, akin to pro-
gramming in a “concurrent assembler”. The programming language Pict [89] sim-
plifies this work somewhat by providing syntax for a large number of common, basic



3.5. RESULTS AND SHORTCOMINGS 47

programming abstractions, like Booleans and integers, control structures, functions,
expressions, and statements. Still, to model objects as processes, one is often obliged
to forsake natural abstractions and explicitly describe behaviour in low-level, opera-
tional terms. For example, to specify the reference cell given in section 3.3 or a stack
presented in Figure 3.3, we had to explicitly create and manipulate the reply channel
used to deliver the results to clients.

It is possible to specify objects (and methods) in Pict without explicitly mentioning
reply channels, but the abstractions needed to do so are not immediately obvious [104].
Therefore we need a less primitive, intermediate calculus that is more convenient for
modelling concurrent objects. For example, one solution to this problem can be to use
a so-called “guarded object calculus” (GOC) [78] in which an objects is modelled as a
set of functions that read and write a local tuple space of messages representing the
object’s state. Whenever an operation is called on an object, an input guard grabs the
needed resources from the tuple space. After the calculation, an output trigger restores
resources.

The use of guards and triggers for modelling objects has the advantage that (i) it is
possible to specify any kind of operation in GOC style and (ii) objects behave correctly
in the presence of multiple clients. On the other hand it is still an open question how
to model other abstractions, such as local method calls, self-references and inheritance.

Our overall goal in this work is to develop a formal model of software composition
and an executable composition language [76] for specifying components, composition
abstractions, and applications as compositions of software components. A composi-
tion language for open systems should not only have its formal semantics specified
in terms of communicating processes, but should really support concurrent and dis-
tributed behaviour. The run-time system of current implementation of Pict only runs
on a single processor; it is not possible to specify real distribution of processes. As
a first step towards real distribution, is a small system which implements a subset of
the Pict programming language supporting communication between distributed nodes
[118]. What we need, however, is a distributed abstract machine as run-time system
for the composition language, comparable to that used for Java [39]. Furthermore,
a distributed abstract machine for software composition could be built on top of an
existing intercomponent communication system (e.g., COM [60, 17] or CORBA [79]).

The type system of Pict integrates a number of features found in recent work
on theoretical foundations for typed object-oriented languages [112] and allows the
definition of polymorphic data structures and processes, what we heavily use in our
encodings. However, our results show that the current type system is too restrictive for
an efficient implementation of metaobject protocols and lacks of a support for runtime
type information.

However, when implementing more sophisticated abstractions like McHale’s generic
synchronization policies [55], we can discover an interesting property of the type system
of Pict: it is not only possible to define generic classes, but also generic methods. To



48 CHAPTER 3. MODELLING COMPOSITIONAL ABSTRACTIONS

our knowledge, no strongly typed object-oriented programming language supports such
a feature.



Chapter 4

The πL-calculus

A general purpose composition language based on a formal semantic foundation will
facilitate precise specification of glue abstractions and compositions, and will support
reasoning about their behaviour. The semantic foundation, however, must address
our glue requirements, namely that we are able to model concurrency, communication,
reified communications (i.e., messages as first-class entities), abstraction of arbitrary
behaviour, and polymorphic interfaces. With such a glue language it should be easy to
model common glue patterns, i.e., those concerned with adaptation (of interfaces and
behaviour) and composition (of multiple components).

The informal requirements, given above, suggest an approach in which we use a
formal process calculus as a “core language” for a more usable and practical glue lan-
guage. The (asynchronous) π-calculus has many of the features we need, and has been
used successfully as a core language for Pict [92]. Although the π-calculus can be
used to model composition mechanisms [105], it is inconvenient for modeling general
glue abstractions due to the dependence on positional parameters in communications.
For example, generic readers/writers synchronization policies cannot be directly coded
without wrapping method arguments in order to treat an arbitrary number of argu-
ments as one value [116].

Dami has tackled a similar problem in the context of the λ-calculus, and has pro-
posed λN [28, 30], a calculus in which parameters are identified by names rather than
positions. The resulting flexibility and extensibility can also be seen, for example, in
HTML forms, whose fields are encoded as named (rather than positional) parameters
in URLs, in Python [115], where functions can be defined to take arguments by key-
words, and in Visual Basic [59], where named arguments can be used to break the order
of possibly optional parameters.

In this chapter we develop the πL-calculus, an offspring of an asynchronous frag-
ment of the π-calculus. The asynchronous sublanguage was proposed first by Boudol
[13] and Honda and Tokoro [44]. Sangiorgi [101] extended the proposal by allowing
polyadic communication.

49



50 CHAPTER 4. THE πL-CALCULUS

Based on the idea of Dami, in the πL-calculus the communication of tuples is
replaced with the communication of labeled parameters. In fact, in the πL-calculus
parameters are identified by names rather than positions.

In this chapter we develop the basic theory for πL while in chapter 5 a polymorphic
type system for πL is given.

4.1 Towards labelled communication

In [28, 30], Dami has studied an extended lambda calculus called λN (lambda calculus
with Names) in which names instead of positions are used for interaction between
components. In the standard lambda calculus variables are used for naming parameters,
but the names do not belong to the semantics of functions. Two lambda terms are
considered equivalent modulo α-substitution, which consists of changing the names
of bound variables. Lambda expressions that can be converted into one another by
α-substitution are called α-equivalent. In fact, by using only de Bruijn indices [31],
names disappear totally, because arguments to functions are uniquely identified by
their position. In the standard lambda calculus the functions λ(xy)x and λ(yx)y are
equivalent, but λ(xy)x and λ(yx)x are different. In λN , however, the first two functions
are different while the latter two are equivalent. This property of λN is called by Dami
extensibility, which is of great interest for modeling a large number of programming
abstractions, particular object-oriented and component-oriented abstractions.

Dami [28] describes extensibility as the possibility to add new functionality to an
existing piece of code without affecting the previous behaviour. In fact, we can always
replace an environment defining a given set of names by a bigger environment, defining
more names. All lookup operations involving the original set of names are still valid
in the new environment.

To illustrate the new expressive power of λN consider the Church encoding of
booleans and the not function in the standard λ-calculus and in the λN -calculus:

True = λtrue.λfalse.true

False = λtrue.λfalse.false

Not = λarg.λtrue.λfalse.arg false true

These encodings have the desired property that the application Not True yields
False. But now we want a three-value logic with an unknown value. Since the number
of arguments as well as their position is significant, everything has to be recoded:

TrueU = λtrue.λfalse.λunknown.true

FalseU = λtrue.λfalse.λunknown.false

UnknownU = λtrue.λfalse.λunknown.unknown

NotU = λarg.λtrue.λfalse.λunknown.arg false true unknown



4.1. TOWARDS LABELLED COMMUNICATION 51

Unfortunately, this encoding is not compatible with the previous one. The applica-
tion of NotU to True does not yield the desired result because NotU True does not
reduce to False and FalseU, respectively.

In contrast, in λN the encoding is extensible. There we have a bind expression,
written (l = b), which binds term b to label l. When such a binding is applied to a
λN abstraction then all named parameters with label l are substituted by the term b
in the abstraction. The order in which the bindings are applied to the abstraction is
unimportant. The result is always the same. This leads to the desired extensibility
property. A given λN term can easily be extended by providing an additional binding
which represents the new feature. Dami has demonstrated an extensible encoding of
booleans in the λN -calculus in [28, 30].

Now we present how booleans and the not function can be encoded using the asyn-
chronous polyadic π-calculus [101]. We use the same scheme as in section 3.2. The
following processes represent the encoding:

True(r) = (ν b)(r(b) | !b(t, f ).t)

False(r) = (ν b)(r(b) | !b(t, f ).f )

Not(b, r) = (ν t, f )(b(c).c(t, f ) | t.False(r) | f .True(r))

The boolean values True and False are the same as in section 3.2. The process
Not takes two arguments: (i) a channel b that serves as the location of the original
boolean value and (ii) a result channel r along Not returns the location of the negated
boolean value. Internally, Not creates two new channels t and f and send them along
b. In parallel, Not starts two processes that listen at t and f, respectively. If the
boolean value signals at t – the interaction for value true – then Not returns along
channel r the value false. If the boolean value signals at f – the interaction for value
false – then Not returns along channel r the value true.

These encodings have the desired property that an application of Not to True
behaves identically to False. We use the notion of asynchronous bisimulation [4] to
denote that processes in the asynchronous π-calculus behave equally. It is important
to note that the asynchronous bisimulation is a congruence because unlike in the syn-
chronous version of the π-calculus the bisimulation is preserved by all operators. We
have two versions of bisimulation: (i) the strong asynchronous bisimulation, written
∼a, which takes all transitions into account and (ii) the weak asynchronous bisimula-
tion, written ≈a, which abstracts from silent actions (τ -actions) that are considered as
unobservable. An additional property of asynchronous bisimulation is that all forms
of name instantiation (e.g. ground, early, late, and open) coincide [4, 40], basically
because this bisimulation is preserved by name instantiation. So we have:

(ν a)(Not(a, r) | True(a)) ≈a False(r)



52 CHAPTER 4. THE πL-CALCULUS

To illustrate that the left process is indeed equivalent with False(r), we show the
reduction of it yielding the desired result.

(ν a)(Not(a, r) | True(a))

≡ (ν a)((ν t, f )(a(c).c(t, f ) | t.False(r) | f .True(r)) | (ν b)(a(b) | !b(t, f ).t))

→ (ν b)((ν t, f )(b(t, f ) | t.False(r) | f .True(r)) | !b(t, f ).t)

≡ (ν b)((ν t, f )(b(t, f ) | t.False(r) | f .True(r)) | b(t, f ).t | !b(t, f ).t)

→ (ν b)((ν t, f )(t.False(r) | f .True(r)) | t | !b(t, f ).t)

→ (ν b)((ν t, f )(False(r) | f .True(r)) | !b(t, f ).t)

∼a False(r)

Again, when we want to model a three-value logic in the asynchronous polyadic
π-calculus we also have to recode everything, because a boolean value is now a channel
b listening for a triple of channels (t, f, u) where each element represents the next
corresponding interaction:

TrueU(r) = (ν b)(r(b) | !b(t, f , u).t)

FalseU(r) = (ν b)(r(b) | !b(t, f , u).f )

UnknownU(r) = (ν b)(r(b) | !b(t, f , u).u)

NotU(b, r) = (ν t, f , u)(b(c).c(t, f , u)

| t.FalseU(r) | f .TrueU(r) | u.UnknownU(r))

As in case of the λ-calculus, this encoding is not compatible with the previous one.
Moreover, we cannot apply NotU to True. The reason is that a communication can
occur only if the sender and the receiver agree on the arity [64] (channels must have
the same sort [64, 100]).

(ν a)(NotU(a, r) | True(a)) 6≈a False(r)

The left process cannot be reduced to a process that is equivalent to False(r):

(ν a)(NotU(a, r) | True(a))

≡ (ν a)((ν t, f , u)(a(c).c(t, f , u) | t.FalseU(r) | f .TrueU(r) | u.UnknownU(r))

| (ν b)(a(b) | !b(t, f ).t))

→ (ν b)((ν t, f , u)(b(t, f , u) | t.FalseU(r) | f .TrueU(r) | u.UnknownU(r))

| !b(t, f ).t)

≡ (ν b)((ν t, f , u)(b(t, f , u) | t.FalseU(r) | f .True(rU) | u.UnknownU(r))

| b(t, f ).t | !b(t, f ).t)

6≈a False(r)



4.1. TOWARDS LABELLED COMMUNICATION 53

The subprocesses b(t, f , u) and b(t, f ).t cannot communicate because they have a dif-
ferent arity. Therefore, the process (ν a)(NotU(a, r) | True(a)) cannot be reduced to
a process that is equivalent to False(r) (a reduction to FalseU(r) does also not exist).

To solve this problem we need to replace communication of tuples that impose a
discipline in order (position dependency) and arity. Like Dami, we introduce an explicit
naming scheme to address parameters by names. In πL we use so-called forms in place
of tuples. Therefore, in the πL-calculus the communication of tuples is replaced by
forms (mappings from labels to names).

Using forms, boolean values and the not function can be encoded as follows:

True(r) = (ν b)(r(〈val=b〉) | !b(X).Xtrue)

False(r) = (ν b)(r(〈val=b〉) | !b(X).Xfalse)

Not(c, r) = c(Y ).((ν b)(r(〈val=b〉) | !b(X).Yval(X〈true=Xfalse〉〈false =Xtrue〉)))

The agents True and False are quite similar to their counterparts in the π-calculus
except that we now exchange forms. Both True and False create a new channel b
and return along channel r the binding 〈val = b〉. In parallel, both processes start a
subprocess that is listing on the channel b for a form X. If the processes receive X,
then they signal at Xtrue and Xfalse, respectively. Xl is a projection from labels to
names and if a form X contains a binding for label l, then Xl yields the corresponding
name, otherwise E called empty binding.

Unlike the π-process Not, the πL-agent Not does not have to perform a test on
the boolean value. For example, the π-process can be rewritten as

Not(b, r) = if b then False(r) else True(r)

to stress the fact that we perform a test operation. In the case of πL-agent Not, there
is no such operation. Moreover, we simply update a received form X by rebinding
true and false and sending the new form along the continuation channel denoted by
Yval. In fact, this corresponds to a simple form of message interception. By simply
adding a new set of bindings we get the desired result. The reader should note that the
projection Xl always yields the name for rightmost binding containing label l if such a
binding for l exists.

In λN we must always use labeled variables. In πL we introduce form variables.
These variables do not have a label, and therefore they match a complete form received
in a communication. Form variables treat the received form as an opaque value. The
agent using these variables is not interested in the concrete bindings. This allows an
agent both to send and to receive arbitrary forms.

In the encoding of Not we have used X and Y as form variables. These variables
match a complete form sent along b and c, respectively. The role of X is to match the
bindings for the interactions for the values true and false. Y contains only one binding
– the location of a boolean value addressed by label val.



54 CHAPTER 4. THE πL-CALCULUS

In πL, unlike in π, we need to obey some naming discipline for labels. Whenever
two πL-agents are willing to communicate they must also agree on the set of labels they
want to use. In the case of the encoding of the boolean values and the not function,
the πL-agents use the label val to address a boolean. One can choose arbitrary label
names as long as both agents use the same. In contrast, in the π-calculus we have
formal and actual parameters which do not need to be the same in the sender as well
as in the receiver. The parameters are simply matched up by their position.

Now, when do two πL-agents behave equally? As for the asynchronous π-calculus
we develop a notion of bisimulation for the πL-calculus. The notion of bisimulation for
πL is based on the asynchronous bisimulation for the asynchronous π-calculus [4]. In
Section 4.4 we shall present its development on top of a labelled transition system. As
for the asynchronous π-calculus we have two forms of bisimulation for πL: (i) strong

labelled bisimulation, written
L∼, to denote that two πL-agents behave equally under

all actions and (ii) weak labelled bisimulation, written
L≈, which abstracts from silent

actions (τ -actions). In the case of the application of the πL-agent Not to True we
have:

(ν a)(Not(a, r) | True(a))
L≈ False(r)

By reducing the left agent it can be shown that it is indeed equivalent with False(r):

(ν a)(Not(a, r) | True(a))

≡ (ν a)(a(Y ).((ν b)(r(〈val=b〉) | !b(X).Yval(X〈true=Xfalse〉〈false =Xtrue〉)))
| (ν b)(a(〈val=b〉) | !b(X).Xtrue))

→ (ν b)((ν b′)(r(〈val=b′〉) | !b′(X).b(X〈true=Xfalse〉〈false =Xtrue〉))
| !b(X).Xtrue)

L≈ False(r)

The last step is surprising, but if we put both agent (ν a)(Not(a, r) | True(a)) and
agent False(r) in an arbitrary context, for example:

C[·] def
= (ν r)(ν t, f )(r(X).Xval(〈true= t〉〈false = f 〉) | [·])

then both agents will signal along channel f and therefore, they are equivalent. We
have

C[((ν a)(Not(a, r) | True(a)))]

= (ν r)(ν t, f )(r(X).Xval(〈true= t〉〈false = f 〉) | ((ν a)(Not(a, r) | True(a))))

≡ (ν r)(ν t, f )(r(X).Xval(〈true= t〉〈false = f 〉)
| ((ν a)(a(Y ).((ν b)(r(〈val=b〉)



4.1. TOWARDS LABELLED COMMUNICATION 55

| !b(X).Yval(X〈true=Xfalse〉〈false =Xtrue〉)))
| (ν b)(a(〈val=b〉) | !b(X).Xtrue))))

→ (ν r)(ν t, f )(r(X).Xval(〈true= t〉〈false = f 〉)
| ((ν b)((ν b′)(r(〈val=b′〉)

| !b′(X).b(X〈true=Xfalse〉〈false =Xtrue〉))
| !b(X).Xtrue)))

→ (ν t, f )(ν b′)(b′(〈true= t〉〈false = f 〉)
| ((ν b)(!b′(X).b(X〈true=Xfalse〉〈false =Xtrue〉)

| !b(X).Xtrue)))

≡ (ν t, f )(ν b′)(b′(〈true= t〉〈false = f 〉)
| ((ν b)(!b′(X).b(X〈true=Xfalse〉〈false =Xtrue〉)

| b′(X).b(X〈true=Xfalse〉〈false =Xtrue〉)
| !b(X).Xtrue)))

→ (ν t, f )(ν b′)(ν b)(!b′(X).b(X〈true=Xfalse〉〈false =Xtrue〉)
| b((〈true= t〉〈false = f 〉)〈true= f 〉〈false = t〉)
| !b(X).Xtrue)

≡ (ν t, f )(ν b′)(ν b)(!b′(X).(〈val=b〉)val(X〈true=Xfalse〉〈false =Xtrue〉)
| b((〈true= t〉〈false = f 〉)〈true=f〉〈false = t〉)
| b(X).Xtrue | !b(X).Xtrue)

→ (ν t, f )(ν b′)(ν b)(!b′(X).b(X〈true=Xfalse〉〈false =Xtrue〉)
| f | !b(X).Xtrue)

L∼ f

and

C[False(r)]

= (ν r)(ν t, f )(r(X).Xval(〈true= t〉〈false = f 〉) | False(r))

≡ (ν r)(ν t, f )(r(X).Xval(〈true= t〉〈false = f 〉) | (ν b)(r(〈val=b〉) | !b(X).Xfalse))

→ (ν b)(ν t, f )(b(〈true= t〉〈false = f 〉) | !b(X).Xfalse)

≡ (ν b)(ν t, f )(b(〈true= t〉〈false = f 〉) | b(X).Xfalse | !b(X).Xfalse)

→ (ν b)(ν t, f )(f | !b(X).Xfalse)

L∼ f 2

It is important to note that both agents would also behave equally if we had defined



56 CHAPTER 4. THE πL-CALCULUS

context C[·] as follow:

C[·] def
= (ν r)(ν f )(r(X).Xval(〈false = f 〉) | [·])

We say that the form 〈false =f〉 is complete with repect to (ν a)(Not(a, r) |True(a)),
because it contains at least a binding for label false. That is, (ν a)(Not(a, r) | True(a))
and all its derivatives will never yield any E in context C[·].

As in the case of the λN -calculus, the extension to a three-value logic is now
compatible with the encoding of the two-valued logic. Moreover, we also do not need
to recode the not function because it is already prepared to handle other bindings than
true and false. In fact, the chosen encoding of Not allows us to use Not without any
change in the three-valued logic. This is possible due to the polymorphic use of form
variables. Therefore, in the three-valued logic we only have to add an agent for the
unknown value.

Unknown(r) = (ν b)(r(〈val=b〉) | !b(X).Xunknown)

The application of Not to True or False yields the same results as in the two-
valued logic. Moreover, the application of Not to Unknown behaves also as desired
and we have:

(ν a)(Not(a, r) | Unknown(a))
L≈ Unknown(r)

To illustrate that both agents behave indeed identically, we put both agents in a
context

C[·] def
= (ν r)(ν u)(r(X).Xval(〈unknown=u〉) | [·])

where u is the location of the next interaction for the value unknown. We have

C[((ν a)(Not(a, r) | Unknown(a)))]

= (ν r)(ν u)(r(X).Xval(〈unknown=u〉) | ((ν a)(Not(a, r) | Unknown(a))))

≡ (ν r)(ν u)(r(X).Xval(〈unknown=u〉)
| ((ν a)(a(Y ).((ν b)(r(〈val=b〉)

| !b(X).Yval(X〈true=Xfalse〉〈false =Xtrue〉)))
| (ν b)(a(〈val=b〉) | !b(X).Xunknown))))

→ (ν r)(ν u)(r(X).Xval(〈unknown=u〉)
| ((ν b)((ν b′)(r(〈val=b′〉)

| !b′(X).b(X〈true=Xfalse〉〈false =Xtrue〉))
| !b(X).Xunknown)))

→ (ν u)(ν b′)(b′(〈unknown=u〉)



4.2. SYNTAX OF THE πL-CALCULUS 57

| ((ν b)(!b′(X).b(X〈true=Xfalse〉〈false =Xtrue〉)
| !b(X).Xunknown)))

≡ (ν u)(ν b′)(b′(〈unknown=u〉)
| ((ν b)(!b′(X).b(X〈true=Xfalse〉〈false =Xtrue〉)

| b′(X).b(X〈true=Xfalse〉〈false =Xtrue〉)
| !b(X).Xunknown)))

→ (ν u)(ν b′)(ν b)(!b′(X).b(X〈true=Xfalse〉〈false =Xtrue〉)
| b((〈unknown=u〉)〈true=E〉〈false =E〉)
| !b(X).Xunknown)

≡ (ν u)(ν b′)(ν b)(!b′(X).b(X〈true=Xfalse〉〈false =Xtrue〉)
| b((〈unknown=u〉)〈true=E〉〈false =E〉)
| b(X).Xunknown | !b(X).Xunknown)

→ (ν u)(ν b′)(ν b)(!b′(X).b(X〈true=Xfalse〉〈false =Xtrue〉)
| u | !b(X).Xunknown)

L∼ u

and

C[Unknown(r)]

= (ν r)(ν u)(r(X).Xval(〈unknown=u〉) | Unknown(r))

≡ (ν r)(ν u)(r(X).Xval(〈unknown=u〉) | (ν b)(r(〈val=b〉) | !b(X).Xunknown))

→ (ν b)(ν u)(b(〈unknown=u〉) | !b(X).Xunknown)

≡ (ν b)(ν u)(b(〈unknown=u〉) | b(X).Xunknown | !b(X).Xunknown)

→ (ν b)(ν u)(u | !b(X).Xunknown)

L∼ u 2

4.2 Syntax of the πL-calculus

In the πL-calculus we replace the communication of names or tuples of names by
communication of so-called forms. More precisely, the πL-calculus is an offspring of the
asynchronous π-calculus [101], where polyadic communication is replaced by monadic
communication of forms. Furthermore, we strictly distinguish between constants and
variables in the πL-calculus.

In the πL-calculus names are always constant, i.e. names are constant locations
and are not subject of substitution (α-conversion is still possible). On the other side,
variables in the πL-calculus are represented by so-called projections. In fact, projections



58 CHAPTER 4. THE πL-CALCULUS

are named formal parameters that are distributed over a πL-term. By explicitly naming
the formal parameters we break the position dependency of them and therefore we get
a greater flexibility in the πL-calculus – extensibility.

4.2.1 Names and forms

The most primitive entity, as in the π-calculus, is a name. We use a, b, c, ...x, y, z to
range over the set N of names. As in the π-calculus literature, we use the words
“name”, “port”, and “channel” interchangeably.

Unlike the π-calculus where names are both subject and object of a communication
(e.g., in the prefixes ‘yx’ and ‘y(x)’ we say that y is the subject, and x is the object),
in the πL-calculus names are only used as subject of a communication. The role of
the object of a communication is taken by forms. Forms are finite mappings from an
infinite set L of labels to an infinite set N+ = N ∪ {E}, the set of names extended
by E that denotes the empty binding. We use F,G,H to range over forms, X, Y, Z to
range over form variables, and l,m, n to range over L. The syntax for forms is defined
as follows:

F ::= X form variable
| E empty binding
| FX polymorphic extension
| F 〈l=V 〉 binding extension

where

V ::= x simple name
| Xl projection

Form variables and projections deserve a special attention. In the π-calculus we
only have names. A name that occurs as object in an input prefix, for example name
y in x(y).A, is said to be the location of the place where an actually received value z
will go in process A, i.e., in process A name y will be instantiated by name z.

In the πL-calculus, however, we use form variables as the object part of an input
prefix. These form variables are polymorphic placeholders for forms and in contrast to
the π-calculus, form variables are values and not references. Therefore, form variables
cannot be instantiated by the received form. There are simply substituted by the
received form.

On the other side, projections denote locations of names in the πL-calculus. In
fact, projections are named formal process parameters which can be distributed over
a πL-term. A projection Xl has to be read as selection of the parameter named by l.
Moreover, if Xl occurs in a process a(X).A, then Xl will be instantiated by name z if
Xl maps to z.



4.2. SYNTAX OF THE πL-CALCULUS 59

As consequence, unlike in the π-calculus where name instantiation (or the substitu-
tion of names to names) is done in one step in πL we need two: first we must substitute
all form variables X in A for some received form value F , then all projections Xl in A
can be instantiated (or substituted) to the name denoted by Xl. We treat, however,
form substitution and name projection (instantiation of names) as one atomic action.
In other words, if a form variable X in Xl has been substituted by a received form value
F , then we immediately perform the name projection on the resulting Fl yielding the
name that projection Fl maps. Therefore, in the πL-calculus, we say that a πL-term
is instantiated rather than that names of a term are instantiated.

To formulate, how projection works, we need the notion of variables of a form and
closed forms.

Definition 4.1 (Variables of a form) The set of variables of a form F , written
V(F ), is defined as:

V(E) = ∅
V(X) = {X}
V(FX) = {X} ∪ V(F )

V(F 〈l=x〉) = V(F )

V(F 〈l=Xk〉) = {X} ∪ V(F )

Definition 4.2 (Closed form) We say that a form F is closed if it does not contain
any form variable, so that V(F ) = ∅.

Throughout this thesis we shall use the following abbreviation to denote a closed form:

˜〈l=b〉 =

{
〈l1 =b1〉...〈ln=bn〉, for n ≥ 1, b1, ..., bn ∈ N+

E , for n = 0

Now we can define the notion of name projection as follows.

Definition 4.3 (Name projection) If a form F is closed, then the application of a
label l ∈ L to form F (mapping from L to N+), written Fl, is called name projection
and is defined as:

El = E
(F 〈l=x〉)l = x

(F 〈m=x〉)l = Fl if m 6= l



60 CHAPTER 4. THE πL-CALCULUS

If a binding is defined for label l then Fl yields a, otherwise it yields the empty
binding (E). A form may have multiple bindings for label l. In this case Fl extracts
the rightmost binding. This allows an agent to overwrite a binding with a new one,
preserving the old form.

In the following we define the set of names and labels of a form, and the equivalence
over forms.

Definition 4.4 (Names of a form) The set of names of a form F , written N (F ),
is defined as:

N (X) = N (E) = ∅
N (FX) = N (F )

N (F 〈l=x〉) = {a} ∪ N (F )

N (F 〈l=Xk〉) = N (F )

Definition 4.5 (Labels of a form) The set of labels of a form F , written L(F ), is
defined as:

L(X) = ∅
L(E) = ∅

L(FX) = L(F )

L(F 〈l=V 〉) = {l} ∪ L(F )

Definition 4.6 (Equivalence of forms) Let F and G are closed forms. Then two
forms F and G are equivalent, written F ≡ G, if for all l ∈ L(F ) ∪ L(G) it holds:

Fl = Gl

Lemma 4.1 Let F ≡ G. Then for all l ∈ L it holds Fl = Gl. 2

Using definition 4.6 and lemma 4.1 it is always possible to replace a form F , which
has multiple bindings for some label l ∈ L(F ) with a equivalent form G with pairwise
distinct labels.



4.2. SYNTAX OF THE πL-CALCULUS 61

4.2.2 The language

The class A of πL-calculus agents is built using the operators of inaction, input prefix,
output, parallel composition, restriction, and replication. We use A,B,C to range over
the class of agents. The syntax for agents is defined as follows:

A ::= 0 inactive agent
| A | A parallel composition
| (ν a)A restriction
| V (X).A input (receive form in X )
| V (F ) output (send form F )
| !V (X).A replication

0 is the inactive agent. An input-prefixed agent V (X).A waits for a form F to be
sent along channel denoted by value V and then behaves like A{F/X}, where {F/X}
is the substitution of all form variables X with form F . An output V (F ) emits a form
F along the channel denoted by value V . Unlike in the π-calculus, the value V in both
the input prefix and the output particle can be either a simple name or a projection.
Parallel composition runs two agents in parallel. The restriction (ν a)A makes name
a local to A, i.e., creates a fresh name a with scope A. A replication !V (X).A stands
for a countably infinite number of copies of V (X).A in parallel.

4.2.3 A reference cell example

The following example presents the encoding of a reference cell based on the basic
object model of Pierce and Turner [91] in πL. This encoding shows that πL provides a
compact formalism which can model records, and is therefore appropriate for handling
record-based objects.

!NewRefCell(X).(ν contents)(ν s)(ν g)
( Xreply(〈set=s〉〈get=g〉)
| contents(〈val=Xinit〉)
| !s(Y ).contents(Z).((Yreply | contents(〈val=Yval〉))
| !g(Y ).contents(Z).(Yreply(〈val=Zval〉) | contents(Z)) )

The agent listening on channel NewRefCell implements an object generator [26]
which yields a new object, if we send a form containing at least a binding forXreply along
channel NewRefCell . Access to the new object is returned along the channel denoted by
Xreply. The form 〈set=s〉〈get=g〉 implements the interface to the newly created object.
The methods of the object are implemented by the agents listening on channels s (set
method) and g (get method). The agents sending/listening along channel contents
implement the state of the object. The state and the method implementations are
local to the object.



62 CHAPTER 4. THE πL-CALCULUS

4.2.4 Binders and substitution

Both the input prefix and the restriction operator are binders for names in the π-
calculus. In the πL-calculus, however, only the operator (ν a)A acts as binder for
names occurring free in an agent. In πL the input prefix V (X) is the binding operator
for form variables. We use fn(A) and bn(A) to denote the set of free and bound names
of an agent and fv(A) and bv(A) to denote the set of free and bound form variables of
an agent, respectively.



4.2. SYNTAX OF THE πL-CALCULUS 63

Definition 4.7

(i) The set of free names of an agent A, written fn(A), is inductively given by:

fn(0) = ∅,
fn(A1 | A2) = fn(A1) ∪ fn(A2),

fn((ν a)A) = fn(A)− {a},
fn(!a(X).A) = fn(a(X).A) = {a} ∪ fn(A),

fn(!Yl(X).A) = fn(Yl(X).A) = fn(A),

fn(a(F )) = {a} ∪ N (F ),

fn(Yl(F )) = N (F ).

(ii) The set of bound names of an agent A, written bn(A), is inductively given by:

bn(0) = ∅,
bn(A1 | A2) = bn(A1) ∪ bn(A2),

bn((ν a)A) = {a} ∪ bn(A),

bn(!V (X).A) = bn(V (X).A) = bn(A),

bn(V (F )) = ∅.

(iii) The set of names of an agent A, written n(A), is given by n(A) = fn(A)∪bn(A).

(iv) The set of free variables of an agent A, written fv(A), is inductively given by:

fv(0) = ∅,
fv(A1 | A2) = fv(A1) ∪ fv(A2),

fv((ν a)A) = fv(A),

fv(!a(X).A) = fv(a(X).A) = fv(A)− {X},
fv(!Yl(X).A) = fv(Yl(X).A) = ({Y } ∪ fv(A))− {X},

fv(a(F )) = V(F ),

fv(Yl(F )) = {Y } ∪ V(F ).

(v) The set of bound variables of an agent A, written bv(A), is inductively given by:

bv(0) = ∅
bv(A1 | A2) = bv(A1) ∪ bv(A2),

bv((ν a)A) = bv(A),

bv(!V (X).A) = bn(V (X).A) = {X} ∪ bv(A),

bv(V (F )) = ∅.



64 CHAPTER 4. THE πL-CALCULUS

(vi) The set of variables of an agent A, written v(A), is given by v(A) = fv(A)∪bv(A).

The sets fv(A) and bv(A) give rise the the following definition.

Definition 4.8 (Closed agent) We say that an agent A is closed if it does not con-
tain any free form variable, so that fv(A) = ∅.

We write A{F/X} for the substitution of all free occurrences of form variable X
with form F in A. We use σ to range over form substitutions. Substitutions have
precedence over the operators of the language.

Definition 4.9 (Form substitution) Let σ = {F/X} and F be closed. Then the
effect of the substitution σ on the agent A, written Aσ, is defined inductively below. To
avoid that free names of F become accidentally bound in Aσ (underneath a restriction
operator) we assume that the conflicting names in A have been previously α-converted
to fresh names, s.t. bn(A) ∩N (F ) = ∅.

0σ = 0

(A1 | A2)σ = (A1σ) | (A2σ)

(!V (X).A)σ = !(V (X).A)σ

((ν a)A)σ = (ν a)(Aσ)

(V (X).A)σ = (V σ)(X).A

(V (Y ).A)σ = (V σ)(Y ).(Aσ), Y 6= X

(V (G))σ = (V σ)(Gσ)

with

V σ =

{
Fl, if V = Xl

V, otherwise
and Gσ =


F, if G = X
E , if G = E
(Hσ)〈l=V σ〉, if G = H〈l=V 〉

In A{F/X}, by definition F must be closed. Therefore, each time the substitution
yields a projection Fl, the projection is immediately replaced by the result of Fl – a
simple name or E . We say that a form substitution Aσ simultaneously substitutes all
free occurrences of form variable X by form value F in A and all projections Xl in A
by name a if Xl maps a. Using this approach we avoid to introduce a (lazy) “trigger”
operation that instantiates, when needed, each Xl in A to its corresponding name (for
example, if Xl occurs as the subject of an outermost input prefix or output particle).

Now, in the πL-calculus we strictly distinguish between constants and variables.
In πL, variables are represented by form variables and projections, respectively. The
following lemma states that we can identify the agents A and Aσ if A is closed. In
other words, fn(A) = fn(Aσ) and bn(A) = bn(Aσ) if fv(A) = ∅.



4.2. SYNTAX OF THE πL-CALCULUS 65

Lemma 4.2 For every agent A and σ = {F/X} with fv(A) = ∅, it holds that

Aσ = A

Proof: By induction on the structure of A. 2

Unlike in the π-calculus, there is no general name substitution in the πL-calculus.
Therefore, we have to define explicitly alpha-conversion of bound names and bound
variables, respectively. We write A{ỹ/x̃}Nα for the alpha-substitution of bound names
in agent A and A{Y/X}Vα for the alpha-substitution of bound variables in agent A.
We use αN or αV to range over alpha-substitution. Like form substitution, alpha-
substitutions have precedence over the operators of the language.

Definition 4.10 (α-substitution) Let αN = {ỹ/x̃}Nα and αV = {Y/X}Vα. Then the
effect of the substitution αN/V on the agent A, written AαN/V , is defined inductively
below.

0αN/V = 0

(A1 | A2)αN/V = (A1α
N/V) | (A2α

N/V)

(!V (X).A)αN/V = !(V (X).A)αN/V

((ν a)A)αN = (ν a′)(AαN ), a′ =

{
a, if a /∈ x̃
yi, if a = xi, and xiα

N = yi

((ν a)A)αV = (ν a)(AαV)

(V (X).A)αN = (V αN )(X).AαN

(V (Z).A)αV = (V αV)(Z ′).AαV , Z ′ =

{
Z, if Z 6= X
Y, if Z = X, and XαV = Y

(V (F ))αN/V = (V αN/V)(FαN/V)

with

V αN =

{
yi, if V = xi, and xiα

N = yi
V, otherwise

, V αV =

{
Yl, if V = Xl and Xα

V = Y
V, otherwise

and

FαN =

{
(GαN )〈l=V αN 〉, if F = G〈l=V 〉
F, otherwise

FαV =


GY, if F = GX and XαV = Y
(GαV)〈l=V αV〉, if F = G〈l=V 〉
F, otherwise



66 CHAPTER 4. THE πL-CALCULUS

Finally, we adopt the usual convention of writing x(X) when we mean x(X).0.
Additionally, an agent x(E) sending an empty form can just be written x, a form
〈E〈l = x〉〉 is just written 〈l = x〉, and we abbreviate (ν x)(ν y)A with (ν x, y)A and
(ν x1)...(ν xn)A with (ν x̃)A, respectively.

4.3 Operational semantics

The operational semantics of a process algebra is traditionally given in terms of a
labelled transition system describing the possible evolution of a process. This contrasts
with the semantic definition in term rewriting systems where an unlabelled reduction
system is used. The best known term rewriting system is probably the λ-calculus. In
the λ-calculus, the reduction of two interacting subterms is only possible if they are
in a contiguous position. In process calculi, however, interaction does not depend on
a physical contiguity. In other words, in the λ-calculus a redex denotes a subterm of a
λ-term while a “redex” in a process calculus is usually distributed over the term.

Recently, Milner [63, 64] has proposed a guideline for the definition of a reduc-
tion system for process algebras. This proposal was inspired by Berry and Boudol’s
Chemical Abstract Machine [11]. Honda and Yoshida [45] have also used this scheme
to formulate their semantic theories for processes. Using the reduction system tech-
nique, axioms for a structural congruence relation are introduced prior the definition of
the reduction relation. Basically, this allows us to separate the laws which govern the
neighbourhood relation among processes from the rules that specify their interaction.
Furthermore, this simplifies the presentation of the reduction relation by reducing the
number of cases that we have to consider.

The reduction semantics defines the basic mechanisms of computation in a process
calculus. The interpretation of the operators is precisely described using the reduc-
tion semantics. The reduction relation, however, covers only a part the behaviour of
processes; it describes the behaviour of processes relative to a context in which they
are contained. In other words, the reduction semantics describes how a process may
interact with another, but not how this process (or parts of it) may interact with the
environment. Therefore, the reduction relation defines the interaction of processes, i.e.,
their local evolution.

A labelled transition system describes the possible intraactions of processes with
the environment. With labelled transition semantics every possible communication of
a process can be determined in a direct way. This allows us to get a simple charac-
terizations of behavioural equivalences. Moreover, with labelled transition semantics
proofs benefit from reasoning in a purely structural way.

To make a transition means that a process P can evolve into a process Q, and
in doing so perform the action µ. An external experimenter or observer will be able
to observe the process evolution while taking the role of the environment. A special



4.3. OPERATIONAL SEMANTICS 67

(1) A | B ≡ B | A, (A | B) | C ≡ A | (B | C), A | 0 ≡ A;

(2) (ν x)0 ≡ 0, (ν x)(ν y)A ≡ (ν y)(ν x)A;

(3) (ν x)A | B ≡ (ν x)(A | B), if x not free in B;

(4) !V (X).A ≡ V (X).A | !V (X).A;

(5) E(X).A ≡ 0, E(F ) ≡ 0.

Table 4.1: Structural congruence rules for the πL-calculus.

action τ denotes interaction or silent action. Roughly spoken, transitions labelled with
τ correspond to the plain reduction relation.

In general, it is not easy to define a labelled transition system. The manipulation
of names and the side conditions in the rules are non-trivial. On the other side, if
the reduction system is available, the corresponding labelled transition system can be
found. Furthermore, by showing the correspondence of both the reduction system and
the labelled transition system it is possible to prove the correctness of the latter.

4.3.1 Reduction semantics

The structural congruence relation, ≡, is the smallest congruence relation over agents
that satisfies the axioms given in Table 4.1.

The axioms (1)–(4) are standard and are the same as for the π-calculus. The only
“new” axiom is (5), which defines the behaviour if an empty binding appears in subject
position of the leftmost prefix of an agent. In this case the agent is identical with the
inactive agent. This means a system containing such an agent may reach a deadlock.

In general, if the name E occurs as subject in the leftmost prefix of an agent, this
may be interpreted as a run-time error. However, this is too restrictive, in the sense
that this view excludes some programs that may be useful in some contexts.

In [28, 29] Dami has identified a similar problem with the λ-calculus. Dami proposed
a liberal approach to errors for the λ-calculus. An error, written ε, can be passed around
as any other value. Using a lazy evaluation strategy, an error occurring inside a term is
not necessarily propagated to the top level. A term is considered to be “erroneous” if
and only if it always generates ε after a finite number of interactions with its context.

Now, in the πL-calculus the assembly of agents may be partially incorrect, but
an error in the assembled agent can be tolerated as long as there are contexts which



68 CHAPTER 4. THE πL-CALCULUS

PAR:
A −→ A′

A | B −→ A′ | B
RES:

A −→ A′

(ν x)A −→ (ν x)A′

COM: x(X).A | x.(F ) −→ A{F/X}, if V(F ) = ∅

STRUCT:
A ≡ A′ A′ −→ B′ B′ ≡ B

A −→ B

Table 4.2: Reduction system for the πL-calculus.

can use it without reaching the error. Note that usual type systems will reject such
assemblies as soon as they detect a potential error.

Using a process calculi, an error corresponds to the fact that a process system cannot
further reduce and has reached a deadlock, respectively. The axiom (5) represents
exactly this interpretation of error in a process calculus. We simply say, if we have a
form that does not contain a specific binding, then the agent requesting this binding
cannot further evolve – the agent blocks and therefore becomes inactive.

A programming language based on the πL-calculus may use a different approach.
If this language provides an exception handling construct, then sending or receiving
along name E can raise an exception. In this case, an agent would not become inactive.
Moreover, the system can provide the programmer with a meaningful message.

Table 4.2 describes the reduction of πL-terms. In fact, the reduction rules define
the interaction of πL-agents.

The first two rules state that we can reduce under both parallel composition and
restriction. (The symmetric rule for parallel composition is redundant, because of the
use of structural congruence.)

The communication rule takes two agents which are willing to communicate on the
channel x, and substitutes all form variables X with form F in A. Communication is
only allowed for closed forms (side condition V(F ) = ∅). The communication rule is the
only rule which directly reduces a πL-term. Furthermore, a reduction is not allowed
underneath a input prefix. Prefixing is the construct that allows sequentialization.

The communication assumes that agents are in a particular format. The structural
congruence rule allows us to rewrite agents so that they have the correct format for
the communication rules.

4.3.2 Labelled transition semantics

The reduction relation defines how agents may interact with each other; it defines the
interaction. The intraaction, however, is not covered by the reduction relation. To



4.3. OPERATIONAL SEMANTICS 69

define, how agents may interact with the environment, we use a labelled transition
system that describes the possible interactions with other systems.

From the reduction relation we know that only communication reduces πL-terms.
To establish communication we need a pair consisting of an output particle and an
input prefix, where both use the same name as subject. Then, we naturally have two
kinds of potential interaction, input and output, and they are represented by agents of
the form

(ν x̃)(a(X).P | ...) (a 6∈ x̃) input
(ν x̃)(a(〈l1 =b1〉...〈ln=bn〉) | ...) (a, b1, ..., bn 6∈ x̃) output

But there is another kind of output, where we have an additional restriction, e.g.
(ν ỹ). This is represented by an agent of the form

(ν ỹ)(ν x̃)(a(〈l1 =b1〉...〈ln=bn〉) | ...) (a, b1, ..., bn 6∈ x̃) restricted output

In this kind of action it holds that ỹ ⊆ fn(a(〈l1 =b1〉...〈ln=bn〉)− a. In fact, ỹ
represents private names which are emitted from the agent, i.e., carried out from their
current scope (scope extrusion). We will strictly handle output and restricted output as
different actions.

As in CCS [62] and the π-calculus [65], a transition in the πL-calculus is of the
form

A
µ−→ A′

Intuitively, this transition means that A can evolve into A′, and in doing so perform
the action µ. We use µ to range over actions that have the following structure:

µ = τ silent action

| a( ˜〈l=b〉) input action

| a( ˜〈l=b〉) output action

| (ν x̃)a( ˜〈l=b〉) restricted output action

In the case of input and output, a is the subject part, whereas ˜〈l=b〉 is the object
part of the action.

Input and output describe interactions between an agent A and its environment,
while the silent action τ is used as placeholder for an internal action in which one
subagent of A communicates with another; an external observer can see that something
is happening (time is passing), but nothing more.

We only allow closed forms (V( ˜〈l=b〉) = ∅) to be object of an output action.
Furthermore, we only consider forms with pairwise distinct labels because an external
observer can always replace a form with multiple bindings for some label l with an
equivalent one, without changing the behaviour of an agent.



70 CHAPTER 4. THE πL-CALCULUS

In the input action, a(X).A
a(〈̃l=b〉)
−−−→ A intuitively means that a(X).A can receive any

form value ˜〈l=b〉 along port a, and then evolves into A{ ˜〈l=b〉/X}. Here, X is the

form variable that will be substituted by the received form ˜〈l=b〉. Furthermore, all Xl

in A are instantiated to b ∈ N ( ˜〈l=b〉) if label l maps b or E otherwise. In fact, we say

that agent A is instantiated by ˜〈l=b〉 if agent A evolves A{ ˜〈l=b〉/X}.
The prefix (ν x̃) in a restricted output action is used to record those names in˜〈l=b〉 that have been created fresh in A (i.e., x̃ ∩ n(A) = ∅) and are not yet known

to the environment. We always have that x̃ ⊆ N ( ˜〈l=b〉). Intuitively, A
(ν x̃)a(〈̃l=b〉)
−−−−−−→ A′

means that A emits private names (i.e., names bound in A) along port a. If some
names x̃ are communicated outside of the scope of the ν that binds it, the ν must be
moved outwards to include both the sender and the receiver – this is known as scope
extrusion. To avoid capture of bound names in the receiver, this operation may require
a α-conversion of bound names in the receiver.

The silent action, the input action, and the output actions will collectively be called
free actions, while the restricted output actions will be called bound actions. Bound
actions carry bound names, i.e. names which cannot be known to the target of the
message.

Given an action µ, the bound and free names of µ, written bn(µ) and fn(µ) are
defined as follows:

bn(a( ˜〈l=b〉)) = ∅ , fn(a( ˜〈l=b〉)) = {a} ∪ N ( ˜〈l=b〉)
bn(a( ˜〈l=b〉)) = ∅ , fn(a( ˜〈l=b〉)) = {a} ∪ N ( ˜〈l=b〉)

bn((ν x̃)a( ˜〈l=b〉)) = {x̃} , fn((ν x̃)a( ˜〈l=b〉)) = ({a} ∪ N ( ˜〈l=b〉))− {x̃}
bn(τ) = ∅ , fn(τ) = ∅

The names of µ, written n(µ), are bn(µ) ∪ fn(µ).
The πL-calculus (standard) early transition system is presented in Table 4.3. By

early we mean, when inferring an action from a(X).A then the variable X is instan-
tiated at the time of inferring the input transition (rule IN). This allows us to define
bisimulation without clauses for name-instantiation. By instantiation we mean the
mechanism that substitutes X first and then applies all projections Xl for some label
l. We have omitted the symmetric versions of rules PAR and COM. Indeed, parallel
composition should be understood as commutative operator.

4.4 Observable equivalence of πL-terms

An important question in the theory of process calculi is when to processes can be
said to exhibit the same behaviour. As in the λ-calculus, the most intuitive way of



4.4. OBSERVABLE EQUIVALENCE OF πL-TERMS 71

IN : a(X).A
a(〈̃l=b〉)
−−−→ A{ ˜〈l=b〉/X} OUT : a( ˜〈l=b〉)

a(〈̃l=b〉)
−−−→ 0

OPEN :
A

(ν x̃)a(〈̃l=b〉)
−−−−−−→ A′ y 6= a y ∈ N ( ˜〈l=b〉)− x̃

(ν y)A
(ν y,x̃)a(〈̃l=b〉)
−−−−−−−→ A′

COM : A
a(〈̃l=b〉)
−−−→ A′ B

a(〈̃l=b〉)
−−−→ B′

A | B τ−→ A′ | B′

CLOSE :
A

(ν x̃)a(〈̃l=b〉)
−−−−−−→ A′ B

a(〈̃l=b〉)
−−−→ B′ x̃ /∈ fn(B)

A | B τ−→ (ν x̃)(A′ | B′)

PAR :
A

µ−→ A′ bn(µ) ∩ fn(B) = ∅
A | B µ−→ A′ | B

RES :
A

µ−→ A′ x /∈ n(µ)

(ν x)A
µ−→ (ν x)A′

REPL :
a(X).A

a(〈̃l=b〉)
−−−→ A{ ˜〈l=b〉/X}

!a(X).A
a(〈̃l=b〉)
−−−→ A{ ˜〈l=b〉/X} | !a(X).A

Table 4.3: Labelled transition system for the πL-calculus.

defining an equivalence of processes is via some notion of contextual equivalence. A
process context C[·] is a process expression with a hole into which one can place another
process. We say that the processes A and B are equivalent when C[A] and C[B] have
the same “observable behaviour” for each process context C[·].

However, the definition of a contextual equivalence between two processes can be
difficult to establish. Fortunately, there is an alternative to contextual equivalence
which is based on the direct conditions on the processes themselves. Given a labelled
transition semantics there is a standard definition of bisimulation equivalence [85, 62]
which can be applied to this transition system. Moreover, bisimulation equivalence is
widely considered to be the finest equivalence one need to study for transition systems.

Basically, bisimulation defines equivalence as mutual simulation of transitions of
processes resulting in equivalent states. Formally, a binary relation R is a (ground)
bisimulation on processes such that A R B implies, for arbitrary action µ

(i) whenever A
µ−→ A′, then B′ exists such that B

µ−→ B′ and A′ R B′



72 CHAPTER 4. THE πL-CALCULUS

(ii) whenever B
µ−→ B′, then A′ exists such that A

µ−→ A′ and A′ R B′.

The central idea of bisimulation is that an external observer performs experiments
with both processes A and B observing the results in turn in order to match each
others process behaviour step-by-step. Furthermore, the definition of bisimulation is
given in a coinductive style that is, two processes are bisimular if we cannot show that
they are not.

Checking the equivalence of processes this way one can think of this as a game played
between two persons, the “unbeliever”, who thinks that A and B are not equivalent,
and the “believer”, who thinks that A and B are equivalent. The underlying strategy
of this game is that the unbeliever is trying to perform a process transition which
cannot be matched by the believer. The unbeliever loses if there are no transitions left
for either processes whereas the believer loses if he cannot match a move made by the
unbeliever.

In terms of experiments this means, in an output-experiment, an external observer
tries to receive a message from the process which is possible if the process has a match-

ing output transition A
a(〈̃l=b〉)
−−−→ A′ or A

(ν x̃)a(〈̃l=b〉)
−−−−−−→ A′. In an input-experiment the

observer tries to send a message to the process which only succeeds if the process has

a matching input transition A
a(〈̃l=b〉)
−−−→ A′. Finally, an external observer may notice that

time is passing while the process performs an silent transition A
τ−→ A′ which is usually

called a reduction-experiment.
So far, many variants of bisimulation have been proposed (e.g. early, late, open,

and barbed bisimulation [65, 66, 100, 102]). All variants, however, distinguish between
a strong and a weak definition of bisimulation. The difference of both is that in the
weak case, arbitrary many silent transactions are regarded as equivalent to a single
transitions. Therefore, the weak bisimulation is strictly coarser than the strong bisim-
ulation, in the sense that whenever two processes A and B are strongly bisimular, they
are also weakly bisimular. In practice, weak bisimulation is often more useful, since we
typically want to regard two processes to be equivalent if they have the same observable
behaviour even if one consumes more time (performs more silent transitions) than the
other.

Weak arrows =⇒ denote the reflexive and transitive closure of transitions. We have:

A
τ

=⇒ A′ iff A(
τ−→) ∗ A′

A
µ

=⇒ A′ iff A
τ

=⇒ · µ−→ · τ
=⇒ A′, µ 6= τ

4.4.1 Asynchronous interaction

In calculi with synchronous output, the existence of an input transition precisely models
the success of an observer’s input-experiment. In the synchronous case, input actions



4.4. OBSERVABLE EQUIVALENCE OF πL-TERMS 73

for a process A are only generated if there exists a matching receiver that is enabled
inside A. The existence of an input transition such that A evolves to A′ reflects precisely
the fact that a message offered by the observer has actually been consumed.

The πL-calculus is an asynchronous calculus. This implies that the sender of an
output message does not know when the message is actually consumed. In other
words, at the time of consumption of the message, its sender is not participating in
the event anymore. Therefore, an asynchronous observer, in contrast to a synchronous
one, cannot directly detect the input actions of the observed agent. Consequently, the
πL-calculus requires an appropriate semantic framework based on an asynchronous
experimenter and therefore we need a different notion of input-experiment.

As in the case of the asynchronous π-calculus [43, 13, 4], an asynchronous observer
may see indirectly that its messages have been consumed by noticing messages that
eventually come back from the process as result of a former input-experiment. There-
fore, instead of abandoning input-experiments completely, asynchronous observation
captures indirectly input-experiments by performing output-experiments in the con-
text of arbitrary messages.

For the asynchronous π-calculus two different notions of asynchronous observation
have been proposed. Honda and Tokoro [43, 44, 42] introduced a modified input rule
in order to model asynchronous input-experiments explicitly:

A
av−→ A′ | av

This rule allows that a system can accept an arbitrary message at any time without
offering a necessary receptor that can consume it. Therefore, one use the standard
technique of performing input-experiments by checking the existence of an input tran-
sitions. This approach, however, emphasizes observational behaviour of processes and
does not reflect the computational content of processes.

In contrast, Amadio et al. [4] proposed a solution which is based on the standard
labelled transition system. Here, the asynchronous style of input-experiments is in-
corporated into the definition of bisimulation such that inputs of processes have to be
simulated only indirectly by observing the output behaviour of a process in context of
arbitrary messages. For the πL-calculus we follow this approach.

4.4.2 Asynchronous Bisimulation for the πL-calculus

Now, in the πL-calculus we can define agents like

Xl(Y ).A or Xl(
˜〈l=b〉)

These agents, however, are not closed. Furthermore, these agents cannot interact with
the environment because communication requires that we have a plain name in subject
position. Therefore, an observation equivalence in πL will only be established over



74 CHAPTER 4. THE πL-CALCULUS

closed agents, i.e. we always have a plain name in subject position. This also means
that there is no such observation equivalence for open πL-agents.

Proposition 4.1 (Closed agents evolve to closed agents) Let A be a πL-agent,

fv(A) = ∅ and µ be a πL-action. Then A
µ

=⇒ A′ implies fv(A′) = ∅.

Proof: We proceed by induction on the structure of A. We consider the most signif-
icant case A = a(X).A1.

Then we have A
a(〈̃l=b〉)
===⇒ A1{ ˜〈l=b〉/X}. Furthermore, fv(A) = ∅ implies that the set

fv(A1) can be at least a singleton, i.e., fv(A1) = {X}, since the communication removes

the binder for X. By definition V( ˜〈l=b〉) = ∅. Therefore, A1{ ˜〈l=b〉/X} does not add

any free form variable such that fv(A1{ ˜〈l=b〉/X}) = ∅ as required. 2

Definition 4.11 (L-bisimulation) A binary relation R over closed agents A and B
is a strong L-bisimulation if it is symmetric and A R B implies

• whenever A
µ−→ A′, where µ is either τ or output with bn(µ)∩ fn(A|B) = ∅, then

B′ exists such that B
µ−→ B′ and A′ R B′

• (A | a( ˜〈l=b〉)) R (B | a( ˜〈l=b〉)) for all messages a( ˜〈l=b〉).

Two agents A and B are strongly bisimular, written A
L∼ B, if they are related by some

strong bisimulation. The notion of weak L-bisimulation is obtained by replacing strong

transitions with weak transitions. We write
L≈ for weak L-bisimulation. Two agents A

and B are weakly bisimular, written A
L≈ B, if there is a weak L-bisimulation R with

A R B.

We callR as above a L-bisimulation. Then both
L∼ and

L≈ are the union of all strong and

weak L-bisimulations, respectively. Furthermore, both
L∼ and

L≈ require preservation
under parallel composition with an output.

Now, we are mainly interested in comparing πL-systems by considering only their
“observable” behaviour. This means that we abstract from silent actions. Therefore,

we take
L≈ – the observation equivalence – as the main equivalence for the πL-calculus.

4.4.3 Congruence of
L≈

As in the asynchronous π-calculus, the lack of summation and matching allows us to

establish congruence of
L≈. Furthermore, unlike in the π-calculus, in the πL-calculus,

names are are always constant, i.e., we do not have name substitution. Therefore, if we
have an input-prefixed agent, like a(X).A, then only the form variable X is substituted



4.4. OBSERVABLE EQUIVALENCE OF πL-TERMS 75

by a received form ˜〈l=b〉. This substitution does not change any name in A. As a
consequence, if fv(A) = ∅, we can add an arbitrary number of input prefixes, like a(X)
without changing the behaviour of A (see Lemma 4.2).

Proposition 4.2
L≈ is an equivalence relation.

Proof: Symmetry is by definition, while reflexivity is immediate. The only nontrivial

property to show is transitivity. We show that the relation (
L≈ ◦ L≈) is a weak L-

bisimulation. Suppose that

A
L≈ ◦ L≈ C

Then for some B we have

A
L≈ B and B

L≈ C

Consider first the case of τ or output actions with bn(µ) ∩ fn(A|B|C) = ∅:

- Now let A
µ

=⇒ A′, µ is either τ or output. Then for some B′ we have, since

A
L≈ B, B

µ
=⇒ B′ and A′

L≈ B′.

- Also since B
L≈ C we have for some C ′, C

µ
=⇒ C ′ and B′

L≈ C ′.

Hence A′
L≈ ◦ L≈ C ′. Similarly, if C

µ
=⇒ C ′ we can find A′ such that A

µ
=⇒ A′ and

A′
L≈ ◦ L≈ C ′.

Consider now the case with composition with output:

- If A
L≈ B, then for all messages a( ˜〈l=b〉) we have by definition

A | a( ˜〈l=b〉) L≈ B | a( ˜〈l=b〉).
- Also since B

L≈ C, for all messages a( ˜〈l=b〉) we have by definition

B | a( ˜〈l=b〉) L≈ C | a( ˜〈l=b〉).

Hence A | a( ˜〈l=b〉) L≈ ◦ L≈ C | a( ˜〈l=b〉). Similarly, if we start with C. 2

Proposition 4.3 For any A,B and x,

A
L≈ B ⇒ (ν x)A

L≈ (ν x)B.

Proof: We show that the relation



76 CHAPTER 4. THE πL-CALCULUS

R = { ((ν x)A, (ν x)B) | A L≈ B } ∪ L≈

is a weak L-bisimulation.

Consider τ or output actions with bn(µ) ∩ fn(A|B) = ∅:

(ν x)A
µ

=⇒ (ν x)A′ is inferred from A
µ

=⇒ A′. Since A
L≈ B, this implies

B
µ

=⇒ B′ with A′
L≈ B′. Then (ν x)B

µ
=⇒ (ν x)B′ is the required move, since

((ν x)A′, (ν x)B′) ∈ R.

Consider input actions:

(ν x)A
a(〈̃l=b〉)
===⇒ (ν x)A′ is inferred from A

a(〈̃l=b〉)
===⇒ A′. Since A

L≈ B and by de-

finition (A|a( ˜〈l=b〉), B|a( ˜〈l=b〉)) ∈ R for all messages a( ˜〈l=b〉), this implies

B
a(〈̃l=b〉)
===⇒ B′ with A′

L≈ B′. Then (ν x)B
a(〈̃l=b〉)
===⇒ (ν x)B′ is the required move, since

((ν x)A′, (ν x)B′) ∈ R. 2

Proposition 4.4 For any A,B, and C,

A
L≈ B ⇒ A|C L≈ B|C.

Proof: We show that the relation

R = { (A|C,B|C) | A L≈ B } ∪ L≈

is a weak L-bisimulation. Input and output are easy. We only show the case for τ
transition. We have two possibilities:

• Using COM, A|C τ
=⇒ A′|C ′ is inferred from A

a(〈̃l=b〉)
===⇒ A′ and C

a(〈̃l=b〉)
===⇒ C ′. Since

A
L≈ B, this implies B

a(〈̃l=b〉)
===⇒ B′ with A′

L≈ B′. Then B|C τ
=⇒ B′|C ′ with

C
a(〈̃l=b〉)
===⇒ C ′ is the required move, since (A′|C ′, B′|C ′) ∈ R. We have a similar

reasoning if A
a(〈̃l=b〉)
===⇒ A′ and C

a(〈̃l=b〉)
===⇒ C ′.

• Using CLOSE, A|C τ
=⇒ (ν x̃)(A′|C ′) is inferred from A

(ν x̃)a(〈̃l=b〉)
======⇒ A′ and C

a(〈̃l=b〉)
===⇒

C ′. Since A
L≈ B, this implies B

(ν x̃)a(〈̃l=b〉)
======⇒ B′ with A′

L≈ B′. Then B|C τ
=⇒

(ν x̃)(B′|C ′) with C
a(〈̃l=b〉)
===⇒ C ′ is the required move, since (A′|C ′, B′|C ′) ∈ R. We

have a similar reasoning if A
a(〈̃l=b〉)
===⇒ A′ and C

(ν x̃)a(〈̃l=b〉)
======⇒ C ′. 2



4.4. OBSERVABLE EQUIVALENCE OF πL-TERMS 77

Proposition 4.5 For any A,B, a, and X,

A
L≈ B ⇒ a(X).A

L≈ a(X).B.

Proof: a(X).A can only move on input. Therefore, in the case of an input action

we have a(X).A
a(〈̃l=b〉)
===⇒ A{ ˜〈l=b〉/X}. Since A

L≈ B, this implies a(X).B has the same

move such that a(X).B
a(〈̃l=b〉)
===⇒ B{ ˜〈l=b〉/X} and (A{ ˜〈l=b〉/X}, B{ ˜〈l=b〉/X}) ∈ R.

Since A and B are closed, i.e. X /∈ fv(A|B), by Lemma 4.2 we have A{ ˜〈l=b〉/X} = A

and B{ ˜〈l=b〉/X} = B and it follows (A,B) ∈ R. 2

In fact, an input prefix in the πL-calculus, unlike the π-calculus, is not a binder for
names. Therefore, we have bn(A)− bn(a(X).A) = ∅.

Lemma 4.3 !a(X).A
L≈ !a(X).A|a(X).A

Proof: We show that the relation

R = { (!a(X).A|C, !a(X).A|a(X).A|C) | C arbitrary } ∪ L≈

is a weak L-bisimulation. The case for output is obvious. We only show the case

for input. Remaining cases are similar. Assume !a(X).A|C a(〈̃l=b〉)
===⇒ !a(X).A|C ′. But if

C
a(〈̃l=b〉)
===⇒ C ′ the result trivially holds. If not, we should have

REPL
a(X).A

a(〈̃l=b〉)
===⇒ A{ ˜〈l=b〉/X}

PAR
!a(X).A

a(〈̃l=b〉)
===⇒ A{ ˜〈l=b〉/X} | !a(X).A

!a(X).A | C a(〈̃l=b〉)
===⇒ (A{ ˜〈l=b〉/X} | !a(X).A) | C

but then

PAR
a(X).A

a(〈̃l=b〉)
===⇒ A{ ˜〈l=b〉/X}

PAR
a(X).A | !a(X).A

a(〈̃l=b〉)
===⇒ A{ ˜〈l=b〉/X} | !a(X).A

(a(X).A | !a(X).A) | C a(〈̃l=b〉)
===⇒ (A{ ˜〈l=b〉/X} | !a(X).A) | C

hence done. 2

Using Lemma 4.3, an πL-term !a(X).A can be replaced by an arbitrary (as many as
needed) number of parallel compositions of a(X).A.



78 CHAPTER 4. THE πL-CALCULUS

Proposition 4.6 For any A and B,

a(X).A
L≈ a(X).B ⇒ !a(X).A

L≈ !a(X).B.

Proof: We show that the relation

R = { (!a(X).A|C, !a(X).B|D) | a(X).A
L≈ a(X).B and C

L≈ D} ∪ L≈

is a weak L-bisimulation. Output transitions are easy. For τ -transition, only the one
between !a(X).A and C is not immediate. Hence assume

!a(X).A|C τ
=⇒ !a(X).A|A{ ˜〈l=b〉/X}|C ′.

Then

a(X).A|C τ
=⇒ A{ ˜〈l=b〉/X}|C ′

therefore, by a(X).A
L≈ a(X).B and Lemma 4.3 there is a D′ such that

a(X).B|D τ
=⇒ B{ ˜〈l=b〉/X}|D′

and C ′
L≈ D′, which means

!a(X).B|D τ
=⇒ !a(X).B|B{ ˜〈l=b〉/X}|D′

as required. For input, suppose !a(X).A|C a(〈̃l=b〉)
===⇒ !a(X).A|A{ ˜〈l=b〉/X}|C but then

a(X).B
a(〈̃l=b〉)
===⇒ B{ ˜〈l=b〉/X}

and A{ ˜〈l=b〉/X} L≈ B{ ˜〈l=b〉/X} hence

!a(X).B|D a(〈̃l=b〉)
===⇒ !a(X).B|B{ ˜〈l=b〉/X}|D

but by Proposition 4.4, (!a(X).A|A{ ˜〈l=b〉/X}|C, !a(X).B|B{ ˜〈l=b〉/X}|D) ∈ R as
desired. 2

Summarising Propositions 4.3, 4.4, 4.5, and 4.6, we have:

Proposition 4.7
L≈ is a congruence relation. 2

In fact, like for the asynchronous π− calculus [13, 44, 101], this is the expected result,
because we have only replaced the communication of tuples in the asynchronous π-
calculus by communication of forms. All operators are left unchanged.



4.4. OBSERVABLE EQUIVALENCE OF πL-TERMS 79

4.4.4 Alpha-conversion

In this subsection we show that alpha-convertible agents are weakly L-bisimilar. To
prove that ≡α is a weak L-bisimulation we use the following lemma.

Lemma 4.4 Suppose that A ≡α B.
If µ is not a bound output and A

µ
=⇒ A′ then equally for some B′ with A′ ≡α B′,

B
µ

=⇒ B′.

If A
(ν x̃)a(〈̃l=b〉)
======⇒ A′ and ỹ∩n(B) = ∅ then equally for some B′ with A′{ỹ/x̃}Nα ≡α B′,

B
(ν ỹ)a(〈̃l=b〉)
======⇒ B′.

Proof: The proof is by induction on the depth of inference. We consider in turn each
transition rule as the last rule applied in the inference of the antecedent A

µ
=⇒ A′.

IN: We have µ = a( ˜〈l=b〉), bn(µ) = ∅, A ≡ a(X).A1, and A′ ≡ A1{ ˜〈l=b〉/X}.
Since A ≡α B, B must also be an input-prefixed agent, differing at most in the
bound variable of the input prefix. By applying alpha-conversion we can make

the prefixes identical, s.t. B ≡ x(X).B1. Now, B has a transition a( ˜〈l=b〉), s.t.

B
a(〈̃l=b〉)
===⇒ B′ with B′ ≡ B1{ ˜〈l=b〉/X} and A′ ≡α B′.

OUT: We have µ = a( ˜〈l=b〉), bn(µ) = ∅, A ≡ a( ˜〈l=b〉), and A′ ≡ 0. Since bn(A) = ∅
and bv(A) = ∅ we can replace A ≡α B with A ≡ B. Hence, it also holds that

B
a(〈̃l=b〉)
===⇒ B′ with A′ ≡α B′.

OPEN: We have µ = (ν y, x̃)a( ˜〈l=b〉), bn(µ) = {y} ∪ x̃, A ≡ (ν y)A1, and A′ ≡ A1.

Then by assumption we can prove A1
(ν x̃)a(〈̃l=b〉)
======⇒ A′, and for some fresh name y

we have y 6= a and y ∈ N ( ˜〈l=b〉) − x̃. Furthermore, it holds fn(A) = fn(A1)
and since A ≡α B it holds fn(A) = fn(B) = fn(B1) with B1 ≡α A1{z/y}Nα .

Since A1
(ν x̃)a(〈̃l=b〉)
======⇒ A′ we can prove for some fresh name z with z 6= a and

z ∈ N ( ˜〈l=b〉{z/y}Nα ) − x̃ B1
(ν x̃)a(〈̃l=b〉)
======⇒ B′ with B′ ≡α A′{z/y}Nα . Therefore, it

also holds (ν z)B
(ν z,x̃)a(〈̃l=b〉)
=======⇒ B′.

COM: Then we have µ = τ , A ≡ A1|A2 with A1
a(〈̃l=b〉)
===⇒ A′1, A2

a(〈̃l=b〉)
===⇒ A′2, and A′ ≡ A′1|A′2.

Then by assumption we can prove A1
a(〈̃l=b〉)
===⇒ A′1 and A2

a(〈̃l=b〉)
===⇒ A′2. Since A ≡α B it

holds fn(A) = fn(B). Then with B1 ≡α A1, B2 ≡α A2, B′1 ≡α A′1, and B′2 ≡α A′2,

we can prove B1
a(〈̃l=b〉)
===⇒ B′1 and B2

a(〈̃l=b〉)
===⇒ B′2. Therefore, it also holds B

τ
=⇒ B′

with B ≡ B1|B2 and B′ ≡ B′1|B′2.



80 CHAPTER 4. THE πL-CALCULUS

The proofs for CLOSE, PAR, RES, and REPL are similar. 2

Theorem 4.1 ≡α is a weak L-bisimulation.

Proof: If A is a closed agent and B ≡α A then B is also closed. Therefore, A and B
differing at most in the choice of bound names and variables, repectively. By applying
alpha-conversion we can make them identical. Using the preceding lemma every move
of A can be matched up by B ≡α AαN/V for some alpha-substitution αN/V . 2

With Theorem 4.1 it is always possible to identify freely alpha-convertible agents
writing ≡ for ≡α.

4.5 From π-calculus to πL – and back

In this section we present the compilation from the asynchronous polyadic π-calculus
into the πL-calculus and back. The compilations illustrates that both calculi can faith-
fully encode each other. Moreover, we show that both compilations preserve the weak
asynchronous bisimulation relation, i.e., if two asynchronous π-processes are weakly
bisimular, then their compilations are also weakly bisimular in πL and vice versa.

4.5.1 Transition system and bisimulation for the π-calculus

In Section 3.2.1, we have given the syntax and reduction semantics of the mini π-
calculus. In order to show the faithfulness of the compilations, we use the 1-bisimulation
defined by Amadio et al. [4]. This bisimulation is defined over a labelled transition
system. Therefore, before presenting the compilations, we give a labelled transition
system for the mini π-calculus.

We use α to range over π-calculus actions that have the following structure:

α = τ silent action

| a(b̃) input action

| a(b̃) output action

| (ν x̃)a(b̃) restricted output action

Bound names and free names of an action α, written bn(α) and fn(α), respectively, are
defined as follows:

fn(τ) = ∅ , bn(τ) = ∅
fn(a(b̃)) = {a} , bn(a(b̃)) = {b̃}

fn(a(b̃)) = {a} ∪ {b̃} , bn(a(b̃)) = ∅
fn((ν x̃)a(b̃)) = ({a} ∪ {b̃})− {x̃} , bn((ν x̃)a(b̃)) = {x̃}



4.5. FROM π-CALCULUS TO πL – AND BACK 81

IN : a(x̃).P
a(b̃)−→ P{b̃/x̃} OUT : a〈b̃〉 a(b̃)−→ 0

OPEN :
P

(ν x̃)a(b̃)

−−−−→ P ′ y 6= a y ∈ b̃− x̃

(ν y)P
(ν y,x̃)a(b̃)

−−−−−→ P ′

COM :
P

a(b̃)−→ P ′ Q
a(b̃)−→ Q′

P | Q τ−→ P ′ | Q′

CLOSE :
P

(ν x̃)a(b̃)

−−−−→ P ′ Q
a(b̃)−→ Q′ x̃ /∈ fn(Q)

P | Q τ−→ (ν x̃)(P ′ | Q′)

PAR :
P

α−→ P ′ bn(α) ∩ fn(Q) = ∅
P | Q α−→ P ′ | Q

RES :
P

α−→ P ′ x /∈ n(α)

(ν x)P
α−→ (ν x)P ′

REPL :
a(x̃).P

a(b̃)−→ P{b̃/x̃}

!a(x̃).P
a(b̃)−→ P{b̃/x̃} | !a(x̃).P

Table 4.4: Labelled transition system for the mini π-calculus.

The names of α, written n(α), are bn(α) ∪ fn(α). The labelled transition system for
the mini π-calculus is given in Table 4.4. We have omitted the symmetric versions of
rules PAR and COM. We will identify alpha-convertible processes, i.e, they have the
same transitions.

Weak arrows =⇒ denote the reflexive and transitive closure of transitions. We have:

P
τ

=⇒ P ′ iff P (
τ−→) ∗ P ′

P
α

=⇒ P ′ iff P
τ

=⇒ · α−→ · τ
=⇒ P ′, α 6= τ

Definition 4.12 (Weak asynchronous 1-bisimulation [4])
A binary relationR over π-processes P and Q is a weak 1-bisimulation if it is symmetric
and P R Q implies

• whenever P
α−→ P ′, where α is either τ or output with bn(α) ∩ fn(P |Q) = ∅,

then Q′ exists such that Q
α

=⇒ Q′ and P ′ R Q′.



82 CHAPTER 4. THE πL-CALCULUS

• (P | a(b̃)) R (Q | a(b̃)) for all messages a(b̃).

Two processes P and Q are weakly 1-bisimular, written P ≈ Q, if there is a weak
1-bisimulation R with P R Q.

4.5.2 The compilation from π to πL-calculus

We now present the translation from the asynchronous polyadic π-calculus into the
πL-calculus. The basic idea of this translation is the use of de Bruijn indices [31].
More precisely, in an input-prefixed process a(x̃).P , we assign every parameter name
xi a unique non-negative integer i with respect to a fresh form variable X (in fact,
we use the parameter’s position index) and replace every application of xi in P by a
projection Xli where li maps xi.

Similarly, in an output-particle a〈b̃〉, we replace every bi with a binding 〈li = bi〉
where i is a unique non-negative integer (in fact, i is the actual output parameter
position). The reader should note that if bi is bound by an input prefix a(x̃), then the
translation replaces bi by Xlj where j is the position index of bi in the input prefix (i.e.,
bi = xj) and lj denotes bi with respect to the fresh form variable X. For example, the
π-process

a(x1, x2, x3).(b(x1, x2) | c(x1, x3))

is translated into a πL-agent

a(X).(b(〈l1 =Xl1〉〈l2 =Xl2〉) | c(〈l1 =Xl1〉〈l2 =Xl3〉))

For the translation we use the function C[[P ]]πLΛ,Γ that takes a π-process P and returns
the corresponding πL-agent. Within the translation Γ is used to record the names that
have been seen. In fact, Γ is a symbol table that maps restricted names to itself
and names that are bound by an input prefix to a corresponding projection. In the
translation C[[P ]]πLΛ,Γ, Λ is an input counter, i.e., Λ keeps track of all input-prefixes. In
fact, Λ denotes the actual fresh form variable that replaces the input parameters x̃ of
an input-prefixed process a(x̃).P . For example, in the translation of

a(x1).b(y1).c(x1, y1)

we start with Λ = 0 such that first the translated input prefix becomes a(X0), while
Λ is 1 for the second input prefix, so that the translation yields b(X1). Therefore, the
translated agent becomes

a(X0).b(X1).c(〈l1 =X0
l1
〉〈l1 =X1

l1
〉)

Now, we present the translation function C[[]]πLΛ,Γ that starts with Λ = 0 and Γ = ∅
(C[[α]]πL is the translations function for π-calculus actions). Furthermore, C[[]]πLΛ,Γ uses a
function map that maps names to names and projections, respectively:



4.5. FROM π-CALCULUS TO πL – AND BACK 83

C[[0]]πLΛ,Γ = 0

C[[P | Q]]πLΛ,Γ = C[[P ]]πLΛ,Γ | C[[Q]]πLΛ,Γ

C[[(ν x)P ]]πLΛ,Γ = (ν x)C[[P ]]πLΛ,Γ:(x 7→n(x))

C[[!a(x1, ..., xn).P ]]πLΛ,Γ = !C[[a(x1, ..., xn).P ]]πLΛ,Γ

C[[a(x1, ..., xn).P ]]πLΛ,Γ = map(Γ, a)(XΛ+1).C[[P ]]πLΛ+1,Γ:(x1 7→v(Λ+1,1)):...:(xn 7→v(Λ+1,n))

C[[a〈x1, ..., xn〉]]πLΛ,Γ = map(Γ, a)(〈l1 =map(Γ, x1)〉...〈ln=map(Γ, xn)〉)

map(Γ, x) =

{
XΛ
ln , if Γ = Γ1 : (x 7→ v(Λ, n)) : Γ2

x, otherwise

C[[α]]πL =


τ, τ

a( ˜〈l=b〉), if α = a(b̃)

a( ˜〈l=b〉), if α = a(b̃)

(ν x̃)a( ˜〈l=b〉), if α = (ν x̃)a(b̃)

The extension of Γ may hide existing mappings, i.e., for example, if Γ is extended
by (x 7→ v(Λ, n)) and Γ already contains a mapping for x, say (x 7→ n(x)) such
that Γ = Γ1 : (x 7→ n(x)) : Γ2, then the function map(Γ : (x 7→ v(Λ, n)), x) yields XΛ

ln ,
which corresponds to the latest mapping (x 7→ v(Λ, n)). Furthermore, if Γ defines no
mapping for a name x, then map(Γ, x) = x. The collection of names x1, ..., xn for
which a mapping is declared in Γ is indicated by dom(Γ).

We show now that C[[]]πLΛ,Γ is faithful, i.e., if two processes P and Q are weakly

1-bisimular, then this implies that C[[P ]]πLΛ,Γ

L≈ C[[Q]]πLΛ,Γ.

Lemma 4.5
Let P be a π-process and Γ = (x1 7→ v(Λ, 1)) : ... : (xn 7→ v(Λ, n)), i.e., C[[]]πL has
already processed an input prefix with P as subprocess that binds x1, ..., xn. Then it

holds that C[[P{b̃/x̃}]]πLΛ,Γ = C[[P ]]πLΛ,Γ{ ˜〈l=b〉/XΛ}.

Proof: By induction on the structure of P . Furthermore, we assume that if name
a /∈ dom(Γ), then it holds a{b̃/x̃} = a.

• P = 0.

Immediate, since C[[0]]πLΛ,Γ = 0 and 0{b̃/x̃} = 0 and 0{ ˜〈l=b〉/XΛ} = 0.

• P = a(x̃).P1 where x̃ = x1, ..., xn.

Case a /∈ dom(Γ). Then it must be the case that map(Γ, a) = a and C[[P ]]πLΛ,Γ =

a(XΛ+1).C[[P1]]πLΛ+1,(x1 7→v(Λ+1,1)):...:(xn 7→v(Λ+1,n)). Using induction, we can prove that

C[[P1{b̃/x̃}]]πLΛ+1,(x1 7→v(Λ+1,1)):...:(xn 7→v(Λ+1,n))

= C[[P1]]πLΛ+1,(x1 7→v(Λ+1,1)):...:(xn 7→v(Λ+1,n)){ ˜〈l=b〉/XΛ}



84 CHAPTER 4. THE πL-CALCULUS

and since a{b̃/x̃} = a and a{ ˜〈l=b〉/XΛ} = a we get

a(XΛ+1).C[[P1{b̃/x̃}]]πLΛ+1,(x1 7→v(Λ+1,1)):...:(xn 7→v(Λ+1,n))

= a(XΛ+1).(C[[P1]]πLΛ+1,(x1 7→v(Λ+1,1)):...:(xn 7→v(Λ+1,n)){ ˜〈l=b〉/XΛ})

Case a ∈ dom(Γ). Then it must be the case that map(Γ, a) = XΛ
lj

, a{b̃/x̃} = bj,

and C[[P ]]πLΛ,Γ = XΛ
lj

(XΛ+1).C[[P1]]πLΛ+1,(x1 7→v(Λ+1,1)):...:(xn 7→v(Λ+1,n)). Using induction,
we can prove that

C[[P1{b̃/x̃}]]πLΛ+1,(x1 7→v(Λ+1,1)):...:(xn 7→v(Λ+1,n))

= C[[P1]]πLΛ+1,(x1 7→v(Λ+1,1)):...:(xn 7→v(Λ+1,n)){ ˜〈l=b〉/XΛ}

and since a{b̃/x̃} = bj and XΛ
lj
{ ˜〈l=b〉/XΛ} = bj we get

bj(X
Λ+1).C[[P1{b̃/x̃}]]πLΛ+1,(x1 7→v(Λ+1,1)):...:(xn 7→v(Λ+1,n))

= bj(X
Λ+1).(C[[P1]]πLΛ+1,(x1 7→v(Λ+1,1)):...:(xn 7→v(Λ+1,n)){ ˜〈l=b〉/XΛ})

• P = a〈c̃〉 where c̃ = c1, ..., cn.

Case a, c1, ..., cn /∈ dom(Γ). Then we have map(Γ, a) = a, map(Γ, c1) = c1,...,
map(Γ, cn) = cn and C[[P ]]πLΛ,Γ = map(Γ, a)(〈l1 =map(Γ, c1)〉...〈ln=map(Γ, cn)〉).
Since a{b̃/x̃} = a, c1{b̃/x̃} = c1, ... , cn{b̃/x̃} = cn and a{ ˜〈l=b〉/XΛ} = a,

c1{ ˜〈l=b〉/XΛ} = c1, cn{ ˜〈l=b〉/XΛ} = cn we get

C[[a〈c̃〉{b̃/x̃}]]πLΛ,Γ = a(〈l1 =c1〉...〈ln=cn〉)
= C[[a〈c̃〉]]πLΛ,Γ{ ˜〈l=b〉/XΛ} = a(〈l1 =c1〉...〈ln=cn〉).

Case a, c1, ..., cn ∈ dom(Γ). Then we have map(Γ, a) = XΛ
lj

, map(Γ, c1) = XΛ
lk1

,...,

map(Γ, cn) = XΛ
lkn

and C[[P ]]πLΛ,Γ = map(Γ, a)(〈l1 =map(Γ, c1)〉...〈ln=map(Γ, cn)〉).
Since a{b̃/x̃} = bj, c1{b̃/x̃} = bk1 , ... , cn{b̃/x̃} = bkn and a{ ˜〈l=b〉/XΛ} = bj,

c1{ ˜〈l=b〉/XΛ} = bk1 , cn{ ˜〈l=b〉/XΛ} = bkn we get

C[[a〈c̃〉{b̃/x̃}]]πLΛ,Γ = bj(〈l1 =bk1〉...〈ln=bkn〉)
= C[[a〈c̃〉]]πLΛ,Γ{ ˜〈l=b〉/XΛ} = bj(〈l1 =bk1〉...〈ln=bkn〉).

• P = P1 | P2.

Then C[[P ]]πLΛ,Γ = C[[P1]]πLΛ,Γ | C[[P2]]πLΛ,Γ. We can therefore use induction to prove

C[[P1{b̃/x̃}]]πLΛ,Γ = C[[P1]]πLΛ,Γ{ ˜〈l=b〉/XΛ} and C[[P2{b̃/x̃}]]πLΛ,Γ = C[[P2]]πLΛ,Γ{ ˜〈l=b〉/XΛ}
such that

C[[(P1 | P2){b̃/x̃}]]πLΛ,Γ = C[[P1{b̃/x̃}]]πLΛ,Γ | C[[P2{b̃/x̃}]]πLΛ,Γ

= C[[P1 | P2]]πLΛ,Γ{ ˜〈l=b〉/XΛ} = C[[P1]]πLΛ,Γ{ ˜〈l=b〉/XΛ} | C[[P2]]πLΛ,Γ{ ˜〈l=b〉/XΛ}

• P = (ν x)P1.



4.5. FROM π-CALCULUS TO πL – AND BACK 85

Then C[[P ]]πLΛ,Γ = (ν x)C[[P1]]πLΛ,Γ. We can therefore use induction to prove

C[[P1{b̃/x̃}]]πLΛ,Γ = C[[P1]]πLΛ,Γ{ ˜〈l=b〉/XΛ} such that

C[[((ν x)P1){b̃/x̃}]]πLΛ,Γ = (ν x)C[[P1{b̃/x̃}]]πLΛ,Γ

= C[[(ν x)P1]]πLΛ,Γ{ ˜〈l=b〉/XΛ} = (ν x)C[[P1]]πLΛ,Γ{ ˜〈l=b〉/XΛ}

• P = !a(x̃).P1. Similar to the previous case. 2

Lemma 4.6

Let P be a π-process and α a π-action. Then P
α

=⇒ P ′ implies C[[P ]]πLΛ,Γ

C[[α]]πL

===⇒ C[[P ′]]πLΛ′,Γ′.

Proof: We proceed by induction on the structure of P with P 6≡ 0. Furthermore, we
use Λ = 0 and Γ = ∅ as start conditions.

• P = a(x̃).P1 where x̃ = x1, ..., xn.

Then we have map(∅, a) = a and C[[P ]]πL0,∅ = a(X1).C[[P1]]πL1,(x1 7→v(1,1)):...:(xn 7→v(1,n)).

It holds that a(x̃).P1
a(b̃)
=⇒ P1{b̃/x̃} and

C[[P ]]πL0,∅
a(〈̃l=b〉)
===⇒ C[[P1]]πL1,(x1 7→v(1,1)):...:(xn 7→v(1,n)){ ˜〈l=b〉/X1}.

We have C[[a(b̃)]]πL = a( ˜〈l=b〉) and by Lemma 4.5

C[[P1{b̃/x̃}]]πL1,(x1 7→v(1,1)):...:(xn 7→v(1,n))

= C[[P1]]πL1,(x1 7→v(1,1)):...:(xn 7→v(1,n)){ ˜〈l=b〉/X1}.

• P = a〈b̃〉 where b̃ = b1, ..., bn.

Then we have map(∅, a) = a, map(∅, b1) = b1,..., map(∅, bn) = bn, and C[[P ]]πL0,∅ =

a(〈l1 = b1〉...〈ln = bn〉). It holds that a〈b̃〉 a(b̃)
=⇒ 0 and C[[P ]]πL0,∅

a(〈̃l=b〉)
===⇒ C[[0]]πL0,∅ with

C[[a(b̃)]]πL = a( ˜〈l=b〉) as required.

• P = P1 | P2.

Then C[[P ]]πLΛ,Γ = C[[P1]]πLΛ,Γ | C[[P2]]πLΛ,Γ.

– Using COM, P1 | P2
τ

=⇒ P ′1 | P ′2 is inferred from P1
a(b̃)
=⇒ P ′1 and P2

a(b̃)
=⇒ P ′2.

Using induction twice, we have

C[[P1]]πLΛ,Γ

a(〈l̃=b〉)
===⇒ C[[P ′1]]πLΛ,Γ C[[P2]]πLΛ,Γ

a(〈̃l=b〉)
===⇒ C[[P ′2]]πLΛ,Γ

C[[P1]]πLΛ,Γ | C[[P2]]πLΛ,Γ
τ

=⇒ C[[P ′1]]πLΛ,Γ | C[[P
′
2]]πLΛ,Γ = C[[P ′1 | P ′2]]πLΛ,Γ



86 CHAPTER 4. THE πL-CALCULUS

– Using CLOSE, P1 | P2
τ

=⇒ (ν x̃)(P ′1 | P ′2) is inferred from P1
(ν x̃)a(b̃)
====⇒ P ′1 and

P2
a(b̃)
=⇒ P ′2. Using induction twice, we have

C[[P1]]πLΛ,Γ

(ν x̃)a(〈̃l=b〉)
======⇒ C[[P ′1]]πLΛ,Γ C[[P2]]πLΛ,Γ

a(〈̃l=b〉)
===⇒ C[[P ′2]]πLΛ,Γ

C[[P1]]πLΛ,Γ | C[[P2]]πLΛ,Γ
τ

=⇒ (ν x̃)(C[[P ′1]]πL | C[[P ′2]]πL) = C[[(ν x̃)(P ′1 | P ′2)]]πLΛ,Γ

• P = (ν x)P1.

Then C[[P ]]πLΛ,Γ = (ν x)C[[P1]]πLΛ,Γ:(x 7→n(x)). Using RES, (ν x)P1
α

=⇒ (ν x)P ′1 is in-

ferred from P1
α

=⇒ P ′1. The result follows using induction

C[[P1]]πLΛ,Γ
α

=⇒ C[[P ′1]]πLΛ,Γ

(ν x)C[[P1]]πLΛ,Γ
α

=⇒ (ν x)C[[P ′1]]πLΛ,Γ = C[[(ν x)P ′1]]πLΛ,Γ

• P = !a(x̃).P1.

Then C[[P ]]πLΛ,Γ = !C[[a(x̃).P1]]πLΛ,Γ. The result follows using induction on C[[a(x̃).P1]]πLΛ,Γ.

2

The following lemma states that the converse also holds.

Lemma 4.7
Let P be a π-process and α a π-action. Then C[[P ]]πLΛ,Γ

µ
=⇒ P ′′ implies there exists P ′,

α such that P
α

=⇒ P ′ and P ′′ = C[[P ′]]πLΛ′,Γ′, µ = C[[α]]πL.

Proof: We proceed by induction on the structure of P with P 6≡ 0. Furthermore, we
use Λ = 0 and Γ = ∅ as start conditions.

• P = a(x̃).P1 where x̃ = x1, ..., xn.

Then we have map(∅, a) = a and C[[P ]]πL0,∅ = a(X1).C[[P1]]πL1,(x1 7→v(1,1)):...:(xn 7→v(1,n)).

It holds that C[[P ]]πL0,∅
a(〈̃l=b〉)
===⇒ P ′′{ ˜〈l=b〉/X1} and a(x̃).P1

a(b̃)
=⇒ P1{b̃/x̃}.

We have a(b̃) = C[[a( ˜〈l=b〉)]]πL, P ′′ = C[[P1]]πL1,(x1 7→v(1,1)):...:(xn 7→v(1,n)), and by Lemma
4.5

C[[P1{b̃/x̃}]]πL1,(x1 7→v(1,1)):...:(xn 7→v(1,n))

= P ′′{ ˜〈l=b〉/X1}
= C[[P1]]πL1,(x1 7→v(1,1)):...:(xn 7→v(1,n)){ ˜〈l=b〉/X1}



4.5. FROM π-CALCULUS TO πL – AND BACK 87

• P = a〈b̃〉 where b̃ = b1, ..., bn.

Then we have map(∅, a) = a, map(∅, b1) = b1,..., map(∅, bn) = bn, and C[[P ]]πL0,∅ =

a(〈l1 = b1〉...〈ln = bn〉). It holds that C[[P ]]πL0,∅
a(〈̃l=b〉)
===⇒ P ′′ and a〈b̃〉 a(b̃)

=⇒ 0. We have

a(b̃) = C[[a( ˜〈l=b〉)]]πL and P ′′ = C[[0]]πL0,∅ as required.

• P = P1 | P2.

Then C[[P ]]πLΛ,Γ = C[[P1]]πLΛ,Γ | C[[P2]]πLΛ,Γ.

– Using COM, C[[P1 | P2]]πLΛ,Γ
τ

=⇒ C[[P ′1 | P ′2]]πLΛ,Γ is inferred from

C[[P1]]πLΛ,Γ

a(〈̃l=b〉)
===⇒ C[[P ′1]]πLΛ,Γ and C[[P2]]πLΛ,Γ

a(〈̃l=b〉)
===⇒ C[[P ′2]]πLΛ,Γ. Using induction twice

and a( ˜〈l=b〉) = C[[a(b̃)]]πL, a( ˜〈l=b〉) = C[[a(b̃)]]πL and τ = C[[τ ]]πL, we have

P1
a(b̃)
=⇒ P ′1 P2

a(b̃)
=⇒ P ′2

P1 | P2
τ

=⇒ P ′1 | P ′2

– Using CLOSE, C[[P1 | P2]]πLΛ,Γ
τ

=⇒ C[[(ν x̃)(P ′1 | P ′2)]]πLΛ,Γ is inferred from

C[[P1]]πLΛ,Γ

(ν x̃)a(〈̃l=b〉)
======⇒ C[[P ′1]]πLΛ,Γ and C[[P2]]πLΛ,Γ

a(〈̃l=b〉)
===⇒ C[[P ′2]]πLΛ,Γ. Using induction

twice and (ν x̃)a( ˜〈l=b〉) = C[[(ν x̃)a(b̃)]]πL, a( ˜〈l=b〉) = C[[a(b̃)]]πL and

τ = C[[τ ]]πL, we have

P1
(ν x̃)a(b̃)
====⇒ P ′1 P2

a(b̃)
=⇒ P ′2

P1 | P2
τ

=⇒ (ν x̃)(P ′1 | P ′2)

• P = (ν x)P1.

Then C[[P ]]πLΛ,Γ = (ν x)C[[P1]]πLΛ,Γ:(x 7→n(x)). Using RES, C[[(ν x)P1]]πLΛΓ

µ
=⇒ C[[(ν x)P ′1]]πLΛ,Γ

is inferred from C[[P1]]πLΛ,Γ

µ
=⇒ C[[P ′1]]πLΛ,Γ. The result follows using induction and

α = C[[µ]]πLΛ,Γ

P1
α

=⇒ P ′1

(ν x)P1
α

=⇒ (ν x)P ′1

• P = !a(x̃).P1.

Then C[[P ]]πLΛ,Γ = !C[[a(x̃).P1]]πLΛ,Γ. The result follows using induction on C[[a(x̃).P1]]πLΛ,Γ.

2



88 CHAPTER 4. THE πL-CALCULUS

Lemma 4.8
Let α be a π-action. Then bn(C[[α]]πL) ⊆ bn(α).

Proof: We proceed by induction on the structure of α. We consider the most signifi-
cant cases.

• Case α = a(b̃).

Then C[[α]]πL = a( ˜〈l=b〉), bn(a(b̃)) = b̃ and bn(a( ˜〈l=b〉) = ∅ such that ∅ ⊂ b̃ as
required.

• Case α = (ν x̃)a(x̃).

Then C[[α]]πL = (ν x̃)a( ˜〈l=b〉), bn((ν x̃)a(x̃)) = x̃ and bn((ν x̃)a( ˜〈l=b〉)) = x̃
such that x̃ ⊆ x̃ as required. 2

Lemma 4.9
Let P be a π-process. Then fn(P ) = fn(C[[P ]]πL).

Proof: We proceed by induction on the structure of P . We consider the most signif-
icant case P = a(x̃).P1 where x̃ = x1, ..., xn.
Then we have C[[P ]]πLΛ,Γ = a(XΛ+1).C[[P1]]πLΛ,Γ:(x1 7→v(Λ+1,1)):...:(xn 7→v(Λ+11,n)) and fn(a(x̃).P1) =
{a} ∪ (fn(P1) − x̃). Now, suppose that fn(P1) ∩ x̃ 6= ∅, then these names become un-
bound after C[[P ]]πL. However, it holds that xi ∈ dom(Γ : (x1 7→ v(Λ + 1, 1)) : ... :
(xn 7→ v(Λ + 1, n))) for i in 1, ..., n. Therefore, map(Γ : (x1 7→ v(Λ + 1, 1)) : ... : (xn 7→
v(Λ + 1, xi))) = XΛ+1

li
, hence the translation removes the name xi from the resulting

agent such that fn(C[[P1]]πLΛ,Γ:(x1 7→v(Λ+1,1)):...:(xn 7→v(Λ+11,n))) ∩ x̃ = ∅. We have therefore

fn(P ) = fn(C[[P ]]πL) as required. 2

Lemma 4.10
Let P and Q be π-processes and α be a π-action. Then bn(α) ∩ fn(P |Q) = ∅ implies
bn(C[[α]]πL) ∩ fn(C[[P |Q]]πL) = ∅.

Proof: Suppose bn(α)∩bn(P |Q) = ∅ then by Lemma 4.8 we know that bn(C[[α]]πL) ⊆
bn(α), i.e., the translation C[[α]]πL may remove binders from α. On the other side, we

known by Lemma 4.9 that fn(P ) = fn(C[[P ]]πL). Hence, bn(C[[α]]πL) ∩ fn(C[[P |Q]]πL) = ∅
since it only depends on the set bn(C[[α]]πL) which is smaller than bn(α). 2

Theorem 4.2 For each pair of π-processes P and Q, C[[]]πL is an injective mapping,
such that if P ≈ Q, then it holds

C[[P ]]πL
L≈ C[[Q]]πL.



4.5. FROM π-CALCULUS TO πL – AND BACK 89

Proof: We show that the relation

R = { (C[[P ]]πL, C[[Q]]πL) | P ≈ Q } ∪ L≈

is a weak L-bisimulation.
Consider first the case τ or output actions:

By Lemma 4.10, we have bn(C[[α]]πL) ∩ fn(C[[P ]]πL | C[[Q]]πL) = ∅.

Now let C[[P ]]πL
µ

=⇒ P ′′. By Lemma 4.7,

P
α

=⇒ P ′ with µ = C[[α]]πL and P ′′ = C[[P ′]]πL.

The definition of ≈ guarantees that there exists Q′ such that Q
α

=⇒ Q′ and
P ′ ≈ Q′. By Lemma 4.6, C[[Q]]πL

µ
=⇒ C[[Q′]]πL. Thus we have P ′′ R C[[Q′]]πL.

Consider now the case with composition with output:

Since P ≈ Q, we have C[[P ]]πL
L≈ C[[Q]]πL. Then for all messages a( ˜〈l=b〉) we

have by definition (C[[P ]]πL | a( ˜〈l=b〉), C[[Q]]πL | a( ˜〈l=b〉)) ∈ R. 2

The following theorem shows that weak L-bisimilarity in πL of translated π-processes
implies weak 1-bisimilarity in π for these processes.

Theorem 4.3 For each pair of π-processes P and Q, if C[[P ]]πL
L≈ C[[Q]]πL, then it

holds P ≈ Q.

Proof: We show that the relation

R = { (P,Q) | C[[P ]]πL
L≈ C[[Q]]πL } ∪ ≈

is a weak 1-bisimulation.
Consider first the case τ or output actions:

By Lemma 4.9, we have fn(P | Q) = fn(C[[P ]]πL | C[[Q]]πL) and by Lemma 4.8, we

have bn(C[[α]]πL) ⊆ bn(α). Now, it is possible that bn(α)∩fn(P |Q) = b̃ 6= ∅ which

means that α carries bound names (locations) b̃ that are not yet known to the
target of α. However, the choice of names is unimportant as long as they denote
the same location. We can take therefore fresh names b̃′ with b̃′ ∩ n(P | Q) = ∅
and α-convert the action α such that bn(α{b̃′/b̃}) ∩ fn(P |Q) = ∅.
Suppose bn(α) ∩ fn(P |Q) = ∅. Now let P

α
=⇒ P ′. By Lemma 4.6,

C[[P ]]πL
µ

=⇒ C[[P ′]]πL with µ = C[[α]]πL.



90 CHAPTER 4. THE πL-CALCULUS

The definition of
L≈ guarantees that there exists C[[Q′]]πL such that C[[Q]]πL

µ
=⇒ Q′′

and C[[P ′]]πL L≈ Q′′. By Lemma 4.7, Q
α

=⇒ Q′ and Q′′ = C[[Q′]]πL. Thus we have
P ′ R Q′.

Consider now the case with composition with output:

Since C[[P ]]πL
L≈ C[[Q]]πL, we have P ≈ Q. Then for all messages a(b̃) we have by

definition (P | a(b̃), Q | a(b̃)) ∈ R. 2

4.5.3 The compilation from πL to π-calculus

We now present the translation from the πL-calculus into the asynchronous polyadic
π-calculus. The basic idea of this translation is that we represent πL-forms as polyadic-
π-processes. More precisely, a πL-form is translated into a π-process listening at a
channel f (the form location) for a channel L that represents the actual projection
label, a result channel R along which the result of the projection is returned, and an
error-continuation channel E that is the location of the continuation if the actual label
is not defined for the form located at f . For example, the form

〈l=s〉〈n= t〉
is translated into the following replicated process:

P ≡ !f(L,R,E).
(ν n, c)( L(c, n)

| n().R(t)
| c().(ν f ′)( f ′(L,R,E)

| f ′(L,R,E).
(ν l, c′)( L(l, c′)

| l().R(s)
| c′().(ν f ′′)( f ′′(L,R,E) | f ′′(L,R,E).E()))))

where f denotes the location of the form 〈l=s〉〈n= t〉. The output-particles L(c, n) and
L(l, c′) initiate the test for a label, i.e., if L denotes label l then l().R(s) is triggered as
continuation. Similarly, if L denotes label n then n().R(t) is triggered as continuation.
This scheme corresponds roughly to Milner’s encoding of boolean values [64]. If L
denotes neither l nor n then E() is triggered to indicate that a runtime error has
occurred (undefined label).

Labels are also encoded as replicated processes that wait for a tuple of continuation
channels and signal along their designated label channel. Without lose of generality,
we map labels to names. In case there is a conflict with an existing name in the agent
to be translated we α-convert this agent using fresh names. For the form 〈l=s〉〈n= t〉
we need to define two label processes where we use x1 as continuation channel for label
l and x2 as continuation channel for label n, respectively:



4.5. FROM π-CALCULUS TO πL – AND BACK 91

!l(x1, x2).x1()
!n(x1, x2).x2()

The translation of agents is relatively straightforward. In the translation of an
input-prefixed πL-agent a(X).A, the input prefix a(X) is also used as input prefix for
the π-process. However, in the π-process X is now a name.

An output-particle a(F ) (for simplicity we use a simple name here) is translated
into a parallel π-process (ν f)(a(f) | P ) where a(f) emits along the original channel
a the location of the form process (located at channel f). The right-hand side process
P implements the form.

Finally, a projection Xl is translated into a parallel composition of an output-
particle X(l, r, Error) that triggers the label projection process for X to send along a
fresh channel r the value of the projection if label l is defined and an input-prefixed
process r(vl).P that instantiates a name vl in P with the value received along channel
r. For example, the πL-agent

a(〈l=s〉〈n= t〉) | a(X).Xl(〈m=Xn〉)
is translated into the following π-process:

(ν Error)(ν l)(ν n)(ν m)
( !Error().0 | !n1(x1, x2, x3).x1() | !n2(x1, x2, x3).x2() | !n3(x1, x2, x3).x3()
| (ν f)( a(f) | !f(L,R,E).

(ν n, c)( L(c, n, c)
| n().R(t)
| c().(ν f ′)( f ′(L,R,E)

| f ′(L,R,E).
(ν l, c′)( L(l, c′, c′)

| l().R(s)
| c′().(ν f ′′)( f ′′(L,R,E)

| f ′′(L,R,E).E())))))
| a(X).(ν r)(X(l, r, Error)

| r(vl).(ν f)(vl(f)
| !f(L,R,E).

(ν m, c)( L(c, c,m)
| m().(ν r′)(X(k, r′, Error) | r(vk).R(vk))
| c().(ν f)( f(L,R,E) | f(L,R,E).E())))))

In the translation of projection we use the global channel Error as error continu-
ation. In fact, Error is the location of the process that handles label applications for
labels not defined in the actual form. However, it is important to note that signaling
along the error continuation channel can only occur in the presence of polymorphic
form extension. For example, a polymorphic form

XY 〈l=s〉〈n= t〉

is translated into the following replicated process:



92 CHAPTER 4. THE πL-CALCULUS

!f(L,R,E).
(ν n, c)( L(c, n)

| n().R(t)
| c().

(ν f ′)( f ′(L,R,E)
| f ′(L,R,E).

(ν l, c′)( L(l, c′)
| l().R(s)
| c′().

(ν f ′′)( f ′′(L,R,E)
| f ′′(L,R,E).

(ν c′′)( Y (L,R, c′′)
| c′′().

(ν f ′′′)( f ′′′(L,R,E)
| f ′′′(L,R,E).

(ν c′′′)( X(L,R, c′′′)
| c′′().

(ν f IV )(f IV (L,R,E)
| f IV (L,R,E).E()))))))))

Now, if apply a label m to form XY 〈l=s〉〈n= t〉, then we check for label m from right
to left, i.e., we initiate the test for label n (L(c, n)) and then for label l (L(l, c′)). Since
label m is not defined in 〈l=s〉〈n= t〉, we check now form variable Y (Y (L,R, c′′)) and
if Y does not define a binding for label m, we forward the request to form variable X
(X(L,R, c′′′)). If neither Y nor X defines a binding for label m, then E() is triggered
to indicate a runtime error.

For the translation we use the function C[[]]πφ that takes a πL-agent and returns the
corresponding π-process. Within the translation, φ is a mapping from the set L of
labels to the set I of integers. Without lose of generality φ maps to 1, ..., n where n is
the number of labels used in the πL-agent to be translated.

The translation C[[]]πφ is only defined on closed agents. This constraint is due to the
definition of the weak L-bisimulation which is only defined on closed agents.

The translation C[[]]πφ has two steps:

1. Collect labels of the agent and assign each label a unique number (established by
function φ).

2. Translate agent using φ.



4.5. FROM π-CALCULUS TO πL – AND BACK 93

C[[A]]πφ = (ν Error)(∀ l∈LA(A) ν nφLA(A)(l))

(!Error().0 |
∀ l∈LA(A)∏

!nφLA(A)(l)(x1, ..., xcard(LA(A))).xφLA(A)(l)() | CA[[A]]πφ )

CA[[0]]πφ = 0

CA[[A | B]]πφ = CA[[A]]πφ | CA[[B]]πφ
CA[[(ν a)A]]πφ = (ν a)CA[[A]]πφ
CA[[!V (X).A]]πφ = !CA[[V (X).A]]πφ

CA[[V (X).A]]πφ =

{
x(X).CA[[A]]πφ, if V = x

(ν r)(Y (l, r, Error) | r(vl).vl(X).CA[[A]]πφ, if V = Yl

CA[[V (F )]]πφ =

 (ν f)(x(f) | !CLA(A)
f [[F ]]πφ), if V = x

(ν r)(X(l, r, Error) | r(vl).((ν f)(vl(f) | !CLA(A)
f [[F ]]πφ))), if V = Xl

CLA(A)
f [[E ]]πφ = f(L,R, E).E()

CLA(A)
f [[X]]πφ = f(L,R, E).X(L,R, E)

CLA(A)
f [[FX]]πφ = f(L,R, E).(ν c)( X(L,R, c)

| c().(ν f ′)(f ′(L,R, E) | CLA(A)
f ′ [[F ]]πφ) )

CLA(A)
f [[F 〈l=x〉]]πφ = f(L,R, E).(ν l, c)( CLA(A)

label [[l, c]]πφ
| l().R(x)

| c().(ν f ′)(f ′(L,R, E) | CLA(A)
f ′ [[F ]]πφ) )

CLA(A)
f [[F 〈l=Xk〉]]πφ = f(L,R, E).(ν l, c)( CLA(A)

label [[l, c]]πφ
| l().(ν r)(X(k, r, Error) | r(vk)R(vk))

| c().(ν f ′)(f ′(L,R, E) | CLA(A)
f ′ [[F ]]πφ) )

CLA(A)
label [[l, c]]πφ = L(x1, ..., xj−1, xj, xj+1, ..., xn),

with xj = l; x1, ..., xj−1, xj+1, ..., xn = c
and φLA(A)(l) = j

C[[µ]]π =


τ, τ

a(f), if µ = a( ˜〈l=b〉)
(ν f)a(f), if µ = a( ˜〈l=b〉) or µ = (ν x̃)a( ˜〈l=b〉)

Table 4.5: The translation C[[]]πφ.



94 CHAPTER 4. THE πL-CALCULUS

Definition 4.13 (Labels of an agent) The set of labels of an agent A, written LA(A),
is inductively given by:

LA(0) = ∅
LA(A1|A2) = LA(A1) ∪ LA(A2)

LA((ν x)A) = LA(A)

LA(a(X).A) = LA(A)

LA(Yl(X).A) = {l} ∪ LA(A)

LA(a(F )) = LF(F )

LA(Yl(F )) = {l} ∪ LF(F )

LF(E) = ∅
LF(FX ) = LF(F )

LF(F 〈l=a〉) = {l} ∪ LF(F )

LF(F 〈l=Xk〉) = {l, k} ∪ LF(F )

Now, the function φ is parameterized with LA(A) such that

∀ l ∈ LA(A) =⇒ φLA(A)(l) = i

with i ∈ 1, ..., card(LA(A)).
The translation C[[]]πφ is given in Table 4.5. The translation C[[]]πφ generates a π-

process that consists of three parts: (i) the restrictions for the mapped labels (here
(∀ l∈LA(A) ν nφLA(A)(l)) generates a restricted name for all label in LA(A) where φLA(A)(l)
maps a label l to a unique integer i ∈ I), (ii) the label processes, and (iii) the translated
agent. The function C[[]]πφ uses three subfunctions: (i) CA[[]]πφ that translates a πL-agent,

(ii) CLA(A)
f [[]]πφ that translates a πL-form into a π-process located at channel f , and (iii)

CLA(A)
label [[]]πφ that generates the test output-particle for the actual form.

Finally, C[[]]π translates πL-actions into π-actions. It is important to note that

C[[µ]]π does not preserve the structure of the action. For example, both a( ˜〈l=b〉) and

(ν x̃)a( ˜〈l=b〉) are translated into (ν f)a(f). The reason is that the translation C[[]]πφ
adds one level of indirection for the communication of forms. More precisely, a πL-form
is translated into a replicated π-process located at channel f . We can think of this
channel as a “pointer” to a record. In order to access a value of the record we have to
send a selector (the channel that maps the corresponding label) along channel f . This
operation is comparable with the pointer manipulation operator −> in C/C++.

We show now that C[[]]πφ is faithful, i.e., if two agents A andB are weakly L-bisimular,
then this implies that C[[A]]πφ ≈ C[[B]]πφ.



4.5. FROM π-CALCULUS TO πL – AND BACK 95

Lemma 4.11
Let A be a πL-agent, X ∈ fv(A), Xl a subterm of A, and b be subject of µ. Then if

C[[A{〈l=b〉/X}]]πφ
C[[µ]]π

==⇒ C[[A′{〈l=b〉/X}]]πφ it holds that

C[[A]]πφ{f/X}
τ

=⇒ ·
(ν r)f ′(l,r,Error)
−−−−−−−−−→ · r(b)−→ ·

C[[µ]]π

−−→ · τ
=⇒ C[[A′]]πφ{f/X}

with f be the location of CLA(A)
f [[X]]πφ.

Proof: We have, by assumption, that

C[[A{〈l=b〉/X}]]πφ
τ

=⇒ ·
C[[µ]]π

−−→ · τ
=⇒ C[[A′{〈l=b〉/X}]]πφ

Now, a projection Xl is translated into π-calculus fragment:

(ν r)(X(l, r, Error) | r(vl).P

where P is a π-process that uses vl. Applying {f/X} to this fragment, we get

(ν r)(f(l, r, Error) | r(vl).P )

In order the perform an action along b with is denoted by Xl, the translated agent
performs two communications with

(ν r)f ′(l,r,Error)
−−−−−−−−−→ · r(b)−→ ·

C[[µ]]π

−−→

as required. 2

In general, unlike in the translation from the π-calculus into the πL-calculus, for a

πL-agent A with X ∈ fv(A) it does not hold that C[[A{ ˜〈l=b〉/X}]]πφ = C[[A]]πφ{f/X}.
Moreover, since forms are encoded as replicated processes and a concrete access to
name that is bound by a form requires two additional communications (Lemma 4.11),

we have that C[[A{ ˜〈l=b〉/X}]]πφ 6≈ C[[A]]πφ{f/X}. However, if a πL-agent A has a weak
transition µ then it holds that C[[A]]πφ has a weak transition C[[µ]]π too with the same
subject.

Lemma 4.12
Let A be a closed πL-agent and µ be a πL-action. Then if A

µ
=⇒ A′ then there exists

a π-process P such that C[[A]]πφ
C[[µ]]π

==⇒ P .

Proof: We proceed by induction on the structure of A with A 6≡ 0. By assumption
agent A is closed. Therefore, the outermost subject part of A must be a simple name
and the outermost object part does not contain unbound form variables. We consider
the most significant cases.



96 CHAPTER 4. THE πL-CALCULUS

• A = a(X).A1.

Then we have C[[A]]πφ = a(X).C[[A1]]πφ. It holds that a(X).A1
a(〈̃l=b〉)
===⇒ A1{ ˜〈l=b〉/X}

and C[[A]]πφ
a(f)
=⇒ P with P = C[[A1]]πφ{f/X}.

• A = a( ˜〈l=b〉).

Then we have C[[A]]πφ = (ν f)(a(f) | !CLA(A)
f [[ ˜〈l=b〉]]πφ). It holds that a( ˜〈l=b〉) a(〈̃l=b〉)

===⇒ 0

and C[[A]]πφ
(ν f)a(f)
====⇒ P with P = 0 | !CLA(A)

f [[ ˜〈l=b〉]]πφ 2

Lemma 4.13 Let A be a closed πL-agent, µ be a πL-action and P be a π-process.

Then if C[[A]]πφ
C[[µ]]π

==⇒ P implies that there exists an agent A′ such that A
µ

=⇒ A′.

Proof: We proceed by induction on the structure of A with A 6≡ 0. By assumption
agent A is closed. Therefore, the outermost subject part of A must be a simple name
and the outermost object part does not contain unbound form variables. We consider
the most significant cases.

• A = a(X).A1.

Then we have C[[A]]πφ = a(X).C[[A1]]πφ. It holds that C[[A]]πφ
C[[a(〈̃l=b〉)]]π
======⇒ P with

P = C[[A1]]πφ{f/X}, a(X).A1
a(〈̃l=b〉)
===⇒ A′ with A′ = A1{ ˜〈l=b〉/X} and a(f) =

C[[a( ˜〈l=b〉)]]π.

• A = a( ˜〈l=b〉).

Then we have C[[A]]πφ = (ν f)(a(f) | !CLA(A)
f [[ ˜〈l=b〉]]πφ). It holds that C[[A]]πφ

C[[a(〈̃l=b〉)]]π
======⇒ P

with P = 0 | !CLA(A)
f [[ ˜〈l=b〉]]πφ, a( ˜〈l=b〉) a(〈̃l=b〉)

===⇒ A′ with A′ = 0 and (ν f)a(f) =

C[[a( ˜〈l=b〉)]]π. 2

Theorem 4.4 For each pair of closed πL-agents A and B, C[[]]πφ is an injective map-

ping, such that if A
L≈ B, then it holds

C[[A]]πφ ≈ C[[B]]πφ

Proof: We show that the relation

R = { (C[[A]]πφ, C[[B]]πφ) | A L≈ B } ∪ ≈



4.5. FROM π-CALCULUS TO πL – AND BACK 97

is a weak (1)-bisimulation.
Consider first the case τ or output actions:

The condition bn(C[[µ]]π) ∪ fn(C[[A]]πφ | C[[B]]πφ) = ∅ can easily be established by
α-convert the C[[µ]]π since the names of the bound names in the action are unim-
portant as long as they denote the same location.

Suppose bn(C[[µ]]π) ∪ fn(C[[A]]πφ | C[[B]]πφ) = ∅. Now let C[[A]]πφ
C[[µ]]π

==⇒ P . By Lemma

4.13 there exists an agent A′ such that A
µ

=⇒ A′.

The definition of
L≈ guarantees that there exists B′ such that B

µ
=⇒ B′ and

A′
L≈ B′. By Lemma 4.12, C[[B]]πφ

C[[µ]]π

==⇒ P ′. Thus we have P R P ′.

In the case of an output action, we know, by Lemma 4.11, that next weak transi-
tion C[[µ]]π cannot occur before all names which are part of µ have been commu-
nicated. For each name, we have two communications. Since P R P ′, it follows
that both must perform the same name requests.

Consider now the case with composition with output:

Since A
L≈ B, we have C[[A]]πφ ≈ C[[B]]πφ. Then for all messages a(b̃) we have by

definition (C[[A]]πφ | a(b̃), C[[B]]πφ | a(b̃)) ∈ R. 2

The following theorem shows that weak 1-bisimilarity in π of translated πL-agents
implies weak L-bisimilarity in πL for these agents.

Theorem 4.5 For each pair of closed πL-agents A and B, if C[[A]]πφ ≈ C[[B]]πφ, then it

holds A
L≈ B.

Proof: We show that the relation

R = { (A,B) | C[[A]]πφ ≈ C[[B]]πφ } ∪
L≈

is a weak L-bisimulation.
Consider first the case τ or output actions:

The condition bn(µ) ∪ fn(A | B) = ∅ can easily be established by α-convert the
µ since the names of the bound names in the action are unimportant as long as
they denote the same location.

Suppose bn(µ) ∪ fn(A | B) = ∅. Now let A
µ

=⇒ A′. By Lemma 4.12 there exists

a π-process P such that C[[A]]πφ
C[[µ]]π

==⇒ P .

The definition of ≈ guarantees that there exists Q such that C[[B]]πφ
C[[µ]]π

==⇒ Q and

P ≈ Q. By Lemma 4.13, B
µ

=⇒ B′. Thus we have A′ R B′.



98 CHAPTER 4. THE πL-CALCULUS

In the case of an output action, we know, by Lemma 4.11, that next weak transi-
tion C[[µ]]π cannot occur before all names which are part of µ have been commu-
nicated. For each name, we have two communications. Since P ≈ Q, it follows
that both must perform the same name requests. Furthermore, P and Q perform
more moves than A′ and B′, but if the next move for P and Q is C[[µ]]π, then A
and B can move for µ too.

Consider now the case with composition with output:

Since C[[A]]πφ ≈ C[[B]]πφ, we have A
L≈ B. Then for all messages a( ˜〈l=b〉) we have

by definition (A | a( ˜〈l=b〉), B | a( ˜〈l=b〉)) ∈ R. 2



Chapter 5

Types for πL

The fundamental purpose of a type system is to prevent the occurrence of run-time
errors while executing a program, i.e., types impose constraints which help to enforce
correctness of a program [24]. However, a type system must be defined in such a way
that a programmer can easily predict whether a program will typecheck or not [22].
In other words, a type system should be transparent. Furthermore, a type system
should be decidably verifiable, i.e., there should be an algorithm that can ensure that a
program is well-typed, and a type system should be enforceable, i.e., type declarations
should be checked statically as much as possible [22].

The most useful type systems for programming languages are those which can by
typechecked automatically (usually at compile time). We can consider then a type
as a specification and typechecking as the verification [21]. However, both need to be
defined is such a way that the programmer can always understand any type errors
reported by the type system.

However, the process of declaring and manipulating type annotations can become
tedious when programming in a typed language. Then we may use type inference
to insert the missing type information automatically. Furthermore, like in the type
systems of ML [61] or Pict [92], for some classes of (simple) programs the programmer
does not even have to write any type information. In addition, type inference provides
also useful debugging information. For example, if we expect a channel to have one
type, and the type inference yields another, this may suggest a failure in the use of this
channel.

The πL-calculus is inherently polymorphic. In order to preserve the untyped flexi-
bility in the typed πL-calculus as much as possible, we define a first-order polymorphic
type system as basic type system for the πL-calculus. By the attribute polymorphic
we mean that our type system supports atomic subtype polymorphism and that our
type system does not have the types Top or Bottom.

The design of our type system for the πL-calculus is driven by the fact that a
type system, while providing static checking, should not impose excessive constraints

99



100 CHAPTER 5. TYPES FOR πL

[21]. In fact, by subtype polymorphism we gain a system that enables us to define
reliable components. Furthermore, from the software methodology point of view we
get a system that is enabled for an ordered extension of existing software systems.

In this chapter we present an extended typed πL-calculus. In a real programming
language one needs some constant or basic values to build useful programs. Numbers,
Boolean, and other data structures can be represented in the pure πL-calculus using the
scheme presented by Milner [64] or Turner [112] for the π-calculus. Therefore, adding
constant values to the calculus does not change its semantics. However, if constant
values are available, then calculations involving such values are more efficient because
they can usually be done in one step.

5.1 Types and type contexts for πL
In the typed (extended) πL-calculus we indicate by Basic a collection of ground types
like Integer and String for constant values. We use K to range over any such ground
types. Furthermore, in the πL-calculus we have basically two kinds of data: channels
(names) and forms. Therefore, we have also a channel type constructor and a form
type constructor.

Throughout this chapter we will use the term value for both names and constants.
We assign every constant a corresponding ground type.

In order to enable us to do type inference, we also allow type variables.

5.1.1 Type contexts

The definition of the typed πL-calculus is given in a context-free grammar. However,
typing constraints are context sensitive. To take the types of variables into account,
we use type assertions or judgements

Γ ` =

where Γ is a static typing environment of the form

Γ = {v1 : T1, ..., vn : Tn}

assigning vi type Ti and no vi occurring twice. Intuitively, the assertion Γ ` = says that
all free variables of = are declared in Γ, i.e., = is well-formed. The empty environment
is denoted by ∅, and the collection of variables v1, ..., vn declared in Γ is indicated by
dom(Γ). We implicitly assume that all variables mentioned in Γ are distinct. For
example, if we mention Γ, v : T in a rule, then v is not already mentioned in Γ. The
judgements for the typed πL-calculus are given in Table 5.1.

In the πL-calculus we have the set fn(A) and fv(A) denoting the free names and
the free variables of an agent, respectively. As far typing is concerned, we will use the



5.1. TYPES AND TYPE CONTEXTS FOR πL 101

Γ ` � Γ is a well-formed environment
Γ ` K K is a well-formed constant type in Γ
Γ ` T T is a well-formed type in Γ
Γ ` A A is a well-formed agent in Γ
Γ ` F F is a well-formed form in Γ
Γ ` v : T value v has type T in Γ
Γ ` F : T form F has type T in Γ
Γ ` T <: S T is a subtype of S in Γ

Table 5.1: Judgments for the typed πL-calculus.

term variable to denote both sets. In fact, we can define two distinct namespaces to
record fn(A) and fv(A) separately in Γ. However, we leave this distinction implicit in
our typing rules. Moreover, we can always apply α-conversion to guarantee that all
variables in Γ are distinct.

5.1.2 Typing rules

Typing rules assert the validity of particular judgements on the basis of other judge-
ments that are already known to be valid. The checking process starts usually with
∅ ` �, stating that the empty environment is well-formed. Now, the type system for
the πL-calculus is defined by a collection of rules of the following form:

(Rule name)
Γ1 ` =1 ... Γn ` =n (Annotations)

Γ ` =

Each typing rule is written as a number of premises Γi ` =i above the horizontal
line with a single conclusion Γ ` = below the line. When all premises are satisfied,
the conclusion must hold. All typing rules are named. The name of the typing rule
is determined by the conclusion. For example, the rule name (Input) denotes the
typing rule for the input-prefixed agent. When needed, annotations are added that
state restricting conditions under which a rule can be applied.

5.1.3 Forms

In the (extended) typed πL-calculus we extend the set V of values by constants. The
syntax for forms is refined as follows:



102 CHAPTER 5. TYPES FOR πL

F ::= X form variable
| E empty binding
| FX polymorphic extension
| F 〈l=V 〉 binding extension

where

V ::= c constant
| x simple name
| Xl projection

Now, in the typed πL-calculus, we have a different notion of name projection. If a
label l is not defined in a form F and F substitutes X, then the projection Xl fails.
This failure is denoted by wrong. In the untyped calculus we consider agents in which
this failure occurs as partially incorrect. However, in the typed version these agents
will not typecheck to guarantee that an agent which has passed the typechecker will
not fail.

Definition 5.1 (Typed name projection) If a form F is closed, i.e., V(F ) = ∅,
and F substitutes form variable X, then the application of a label l ∈ L to X (mapping
from L to N+), written Xl, is called typed name projection and is defined as:

El = wrong

(F 〈l=a〉)l = a

(F 〈m=a〉)l = Fl if m 6= l

5.1.4 Syntax of the typed πL-calculus

The syntax of the first-order typed πL-calculus is given in Table 5.2. We use T , S, and
U to range over types and M , N to range over type variables.

The constant wrong stands for an agent in which a runtime type error has occurred,
e.g., one in which a projection yields a type error or an attempted communication
involves a violation of the direction restriction (input only/output only).

5.1.5 Reduction semantics of the typed πL-calculus

As for the untyped version we can define the operational semantics of the typed πL-
calculus using the relations structural equivalence and reduction relation. The new
semantics differs only in the rules involving type annotations.

The structural congruence relation, ≡, is the smallest congruence relation over
typed agents that satisfies the axioms given in Table 5.3.

The reduction rules for the typed πL-calculus are defined as follows:



5.1. TYPES AND TYPE CONTEXTS FOR πL 103

T ::= K Basic constant types
| CT Channel type
| FT Form type
| M Type variable
| Wrong Type error

CT ::= l FT Bidirectional channel
| ↓ FT Input only channel
| ↑ FT Output only channel

FT ::= 〈〉 Empty form type
| 〈l1 :T1〉...〈ln :Tn〉 Form type
| FT\l Form type restriction

A ::= 0 Inactive agent
| A | A Parallel composition
| !V (X)A Replication
| (ν a : T )A Restriction
| V (X).A Input (receive form in X )
| V (F ) Output (send form F )
| wrong Runtime error

Table 5.2: Syntax of the typed πL-calculus.

PAR:
A −→ A′

A | B −→ A′ | B
RES:

A −→ A′

(ν x : T )A −→ (ν x : T )A′

COM: x(X).A | x.(F ) −→ A{F/X}, if V(F ) = ∅

STRUCT:
A ≡ A′ A′ −→ B′ B′ ≡ B

A −→ B

The rules are almost identical with the untyped version except that type annotations
have been added to the restriction. However, unlike in the polyadic π-calculus, we do
not have a rule involving an arity mismatch [87].



104 CHAPTER 5. TYPES FOR πL

(1) A | B ≡ B | A, (A | B) | C ≡ A | (B | C), A | 0 ≡ A;

(2) (ν x : T )0 ≡ 0, (ν x : T )(ν y : S)A ≡ (ν y : S)(ν x : T )A;

(3) (ν x : T )A | B ≡ (ν x : T )(A | B), if x not free in B;

(4) !V (X).A ≡ V (X).A | !V (X).A;

Table 5.3: Structural congruence rules for the πL-calculus.

5.2 Basic typing rules

An empty environment is a valid environment. It does not require any assumptions.

(Empty environment)
∅ ` �

The following rule is used to extend an environment Γ to a longer environment
Γ, v : T , given that T is a valid type in Γ. Note that the premise Γ ` T implies,
inductively, that Γ is valid. Furthermore, we require that v is not already defined in Γ
(v /∈ dom(Γ)). Here, v can denote both channels and form variables.

(Environment v)
Γ ` T v /∈ dom(Γ)

Γ, v : T ` �
The rules (Constant type) and (Empty form type) construct types for constants

and the empty form type, respectively.

(Constant type)
Γ ` � K ∈ Basic

Γ ` K

(Empty form type)

Γ ` 〈〉

The following rules (Constant) and (Channel) assign types the constant values and
channels, respectively.

(Constant)
Γ ` K

Γ ` c : K



5.3. SUBTYPING RULES FOR TYPES 105

(Channel)
Γ, x : T ` �

Γ, x : T ` x : T

5.3 Subtyping rules for types

The following rules capture basic facts of the subtype relation <: of types. The subtype
relation consists of two structural rules

(Subtyping reflexivity)
Γ ` T

Γ ` T <: T

(Subtyping transitivity)
Γ ` T <: S Γ ` S <: U

Γ ` T <: U

stating that it is reflexive and transitive.

The subsumption rule states that if a term has type T , and T is a subtype of S,
then the term has also type S. That is, subtyping behaves very much like set inclusion,
when type membership is seen as set membership [22]. Here, v stands for both channels
and form variables.

(Subsumption)
Γ ` v : T Γ ` T <: S

Γ ` v : S

5.4 Typechecking forms

5.4.1 Operations on forms

In fact, forms are extensible records. Therefore, a record type model is best suited as
typing scheme for forms. We have the following form types:

〈〉 type of all forms.
〈〉\l type of all forms which lack field of label l.

〈l1 :T1〉〈l2 :T2〉 form type which has at least bindings for label l1 and l2, with
values of type T1 and T2.

〈l1 :T1〉\l2 form type which has at least a binding for label l1 of type T1

and no binding for label l2.



106 CHAPTER 5. TYPES FOR πL

Hence a form type is characterized by a finite collection of type bindings (i.e., labeled
types) and a finite collection of restricted labels (i.e., labels that must not occur in a
given form). All bindings are unordered, however, they must have distinct labels.

We have two operations on form types:

• Binding extension FT 〈l :T 〉: This type denotes the collection obtained from FT
by extending it with a binding l of type T . There are two cases. First, if FT
does not already contain a binding for l, i.e., the form to be extended has type
FT\l, then 〈l :T 〉 extends FT while removing the restriction \l. Second, if FT
has already a binding for l, then, by definition, 〈l : T 〉 overrides the binding in
FT , yielding a form type in which all labels are distinct. The reader should
note that binding extension is similar to the with operator for records in Pict

[92]. Furthermore, there is no constraint on type T . In general, we can use an
arbitrary type for T .

• Polymorphic extension FT1FT2: This is the most problematic operator. Tech-
nically, polymorphic extension is asymmetric record concatenation [23, 96, 122].
Polymorphic extension takes two forms and returns a new form composed of
all bindings in any of its arguments. However, if both forms define the same
binding, then the questions arises which type has to be assigned to the result
form? Neither in the type systems defined by Wand [122] nor in that defined by
Cardelli [23] will typecheck the resulting form. In the former concatenation has
no principle type while in the latter concatenation is in fundamental conflict with
the subsumption rule. Rémy [96] proposed an approach that replaces concatena-
tion with one-field record extension, i.e., concatenation is translated into binding
extensions. Harper and Pierce [41] proposed an alternative approach based on
symmetric concatenation using compatibility assumptions. But the programmer
has to specify all necessary constraints explicitly.

However, we want to keep polymorphic extension as basic operation. Moreover,
our main concern is software composition. For example, the process of adding
a generic synchronization policy [55, 105] to a component can be considered as
polymorphic extension. The resulting component must be compatible with the
unsynchronized component in order to work uniformly in the same environment.
Therefore, we require that the interface type of the policy be a subtype of the
component’s interface type. In other words, if FT1 and FT2 have a non-empty
intersection of labels, i.e, L(FT1) ∩ L(FT2) 6= ∅, then for all conflicting labeled
types it must hold that FT2li <: FT1li .

Unfortunately, we need a further restriction for the type FT2 to preserve the
subtype relation of polymorphic extension of FT1FT2. Suppose, we have defined
an agent x(X).A that waits along channel x for a form F that is a subtype of
〈l1 :S1〉〈12 :T2〉〈l3 :S3〉 and an output-particle x(XY ) that emits along x the form



5.4. TYPECHECKING FORMS 107

valueXY of type merge(TS) = 〈l1 :S1〉〈12 :T2〉〈l3 :S3〉 withX : T = 〈l1 :T1〉〈l2 :T2〉,
Y : S = 〈l1 :S1〉〈l3 :S3〉, and S1 <: T1. In this case both agents will typecheck,
since

merge(TS) <: 〈l1 :S1〉〈12 :T2〉〈l3 :S3〉.

However, if the actual types of values X and Y are R and U with R <: T and
U <: S, U = 〈l1 :S1〉〈l2 :U2〉〈l3 :S3〉 and U2 6<: T2, then the polymorphic extension
XY violates the subtype relation, since

merge(RU) = 〈l1 :S1〉〈l2 :U2〉〈l3 :S3〉 6<: 〈l1 :S1〉〈12 :T2〉〈l3 :S3〉.

The problem is that the subtype relations R <: T and U <: S are not sufficient.
We need an additional restriction on type S and all its subtypes – that is, poly-
morphic extension of two forms X and Y with type R and U is only allowed, if
it holds that R <: T , U <: S, and ∀ lk ∈ L(T )− L(S), S <: 〈〉\lk, which always
holds for type S, but adds an constraint to all subtypes of S. Therefore, in order
to typecheck the output-particle x(XY ), it must be the case that X : T with
T <: 〈l1 :T1〉〈l2 :T2〉 and Y : S with S <: 〈l1 :S1〉〈l3 :S3〉\l2, and S1 <: T1.

5.4.2 Form types

The simplest form is E – the empty binding. This form has no bindings and hence has
type 〈〉 and is consistent with any context Γ:

(Empty form)
Γ ` E : 〈〉

The typing rule for form variables

(Form variable)
Γ, X : T ` � Γ ` T <: 〈〉

Γ, X : T ` X : T

states that if the context Γ, X : T is a well-formed environment and T is a subtype of
〈〉, then X has type T . Note, the premise Γ ` T <: 〈〉 ensures that T is given a valid
form type.

In order to typecheck binding extension and polymorphic extension, we need to
introduce the following definitions.

Definition 5.2 (Labels of a form type) The set of labels of a form type FT , writ-
ten L(FT ), is defined as:

L(〈〉) = ∅
L(FT 〈l :T 〉) = {l} ∪ L(FT )



108 CHAPTER 5. TYPES FOR πL

Definition 5.3 (Form type projection) The application of a label l to a form type
FT , written FTl, is defined as:

〈〉l = Wrong

(FT 〈l :T 〉)l = T

(FT 〈m :T 〉)l = FTl if m 6= l

Definition 5.4 The operation merge on two form types T and S, written merge(TS),
removes all multiple bindings from the concatenation of T and S. In the resulting form
type, all common labeled types have been overridden from right-to-left.

merge(TS) =


〈〉, if L(T ) ∪ L(S) = ∅
〈l1 :U1〉...〈ln :Un〉, with l1, ..., ln ∈ L(T ) ∪ L(S),

and Ui =

{
Si, if Si 6= Wrong
Ti, otherwise

Now, we can define typing rules for binding extension and polymorphic extension.
The typing rule for binding extension F 〈l=V 〉 checks that F is assigned a form type
under Γ (premise Γ ` T <: 〈〉). If, in the same context Γ, V has type S, then F 〈l=V 〉
has type merge(T 〈l :S〉). Note, type T , as in Pict [92], may or may not contain label
l.

(Binding extension)
Γ ` F : T Γ ` T <: 〈〉 Γ ` V : S

Γ ` F 〈l=V 〉 : merge(T 〈l :S〉)

The typing rule for polymorphic extension FX checks that both F and X de-
note valid forms, i.e., they have been assigned the form types T and S, respec-
tively (premises Γ ` T <: 〈〉 and ∀ lk ∈ L(T )− L(S) Γ ` S <: 〈〉\lk). The premise
∀ lk ∈ L(T )− L(S) Γ ` S <: 〈〉\lk ensures that all subtypes of S lack also all labels
only defined in T (for type S this is always true). Finally, if T and S have a non-empty
intersection of labels, then for any such label it must hold that Sli is a subtype of
Tli which is checked by restriction ∀ li ∈ L(T ) ∩ L(S) Sli <: Tli . If all premises are
satisfied, FX is given type merge(TS).

(Polymorphic extension)

Γ ` F : T Γ ` X : S Γ ` T <: 〈〉 ∀ lk ∈ L(T )− L(S) Γ ` S <: 〈〉\lk
∀ li ∈ L(T ) ∩ L(S) Γ ` Sli <: Tli

Γ ` FX : merge(TS)

The typing rule for projection ensures that the type of form variable X contains at
least the used label l. If X has type 〈l :T 〉, then projection Xl has type T under Γ.



5.4. TYPECHECKING FORMS 109

(Form variable)
Γ, X : T ` � Γ ` T <: 〈〉

Γ, X : T ` X : T

(Empty form)
Γ ` E : 〈〉

(Polymorphic extension)

Γ ` F : T Γ ` X : S Γ ` T <: 〈〉 ∀ lk ∈ L(T )− L(S) Γ ` S <: 〈〉\lk
∀ li ∈ L(T ) ∩ L(S) Γ ` Sli <: Tli

Γ ` FX : merge(TS)

(Binding extension)
Γ ` F : T Γ ` T <: 〈〉 Γ ` V : S

Γ ` F 〈l=V 〉 : merge(T 〈l :S〉)

(Projection)
Γ ` X : 〈l :T 〉

Γ ` Xl : T

Table 5.4: Form typing rules for the πL-calculus.

(Projection)
Γ ` X : 〈l :T 〉

Γ ` Xl : T

The typing rules for forms are summarised in Table 5.4.

5.4.3 Form subtyping

In the following we define a collection of rules describing the subtyping behaviour of
the form type constructor. The following definitions, especially those involving label
restriction, are inspired by the proposal of Cardelli and Mitchell [23]. The first two
rules capture the subtype relation between well-formed forms and type 〈〉. In fact,
these rules correspond to the usual subtyping rules for records.

(Form subtyping empty form)
Γ ` T1 ... Γ ` Tn li distinct

Γ ` 〈l1 :T1〉...〈ln :Tn〉 <: 〈〉

(Form subtyping)
Γ ` T1 <: S1 ... Γ ` Tn <: Sn Γ ` Tn+1 ... Γ ` Tn+m li distinct

Γ ` 〈l1 :T1〉...〈ln+m :Tn+m〉 <: 〈l1 :S1〉...〈ln :Sn〉



110 CHAPTER 5. TYPES FOR πL

The rule (Subtyping restriction) states that every well-formed restricted form type
is a subtype of 〈〉, whereas rule (Subtyping restricted types) state that if form type S is
a subtype of form type T , then this relation is preserved under restriction.

(Subtyping restriction)
Γ ` T <: 〈〉

Γ ` T\l <: 〈〉

(Subtyping restricted types)
Γ ` T <: 〈〉 Γ ` S <: T

Γ ` S\l <: T\l

The last rule for form subtyping states that if form type S is a subtype of form
type T , then S\l is also a subtype of T iff l /∈ L(T ). In other words, a form type with
more label restrictions is a subtype of a form type with fewer restrictions.

(Subtyping add restriction)
Γ ` T <: 〈〉 Γ ` S <: T l /∈ L(T )

Γ ` S\l <: T

5.5 Typechecking channels

In the following we define a collection of rules describing the subtyping behaviour of
the channel type constructors l, ↑, and ↓. Basically, the rules are the same as in
Pict [92]. The refinement of the channel type constructor l was shown first by Pierce
and Sangiorgi [87] in order to manipulate separately input and output capabilities of
channels. The constructor l is invariant in the subtype relation. Therefore, a channel
type l S is a subtype of l T only if S and T are equivalent.

(Channel subtyping)
Γ ` S <: T Γ ` T <: S

Γ ` l S <: l T

The constructors ↑ and ↓ have a more interesting subtyping behaviour: ↑ is con-
travariant and ↓ is covariant. For example, given a channel x being used in a context
only to read forms of type T , then is it is safe to replace x by another channel y car-
rying forms of type S, as long as it holds that S is a subtype of T . Conversely, given
a channel x being used in a context only to write forms of type S, then is it is safe to
replace x by another channel y carrying forms of type T , as long as it holds that T is
a subtype of S.



5.6. TYPECHECKING AGENTS 111

(Output channel subtyping)
Γ ` T <: S

Γ ` ↑ S <: ↑ T

(Input channel subtyping)
Γ ` S <: T

Γ ` ↓ S <: ↓ T

Finally, l T is a subtype of both ↑ T and ↓ T . That is, a channel x may be used
for both output and input even though only one capability is actually being needed.

(Output channel channel subtyping)
Γ ` l T <: ↑ T

(Input channel channel subtyping)
Γ ` l T <: ↓ T

5.6 Typechecking agents

Like in the π-calculus, agents have no explicit results in the πL-calculus. Interaction
with agents is only possible by communicating with them. Therefore, typing judge-
ments for agents take simply the form Γ ` A. In fact, Γ ` A has to be read as asserting
that A uses its free variables consistently with the types given in Γ.

The simplest πL-calculus agent is the inactive agent, 0. It cannot communicate at
all and hence is consistent with any context Γ:

(Null)
Γ ` 0

The output agent V (F ) sends the form F along the channel denoted by V . The
Output typing rule

(Output)
Γ ` V : ↑ T Γ ` F : T Γ ` T <: 〈〉

Γ ` V (F )

states that if, in a context Γ, V denotes an output enabled channel carrying a form of
type T , then V (F ) is a well-formed agent. Note, the premise Γ ` T : 〈〉 guarantees
that the type of F is a subtype of the empty form, i.e., that F is always a valid form
value.

The input-prefixed agent V (X).A receives a form along the channel denoted by V ,
binding the received form to X in A. The Input typing rule



112 CHAPTER 5. TYPES FOR πL

(Input)
Γ ` V : ↓ T Γ ` T <: 〈〉 Γ, X : T ` A

Γ ` V (X).A

checks that V denotes an input enabled channel carrying a form of type T , and that A
is well-formed in the context Γ extended with the type of the bound form variable X.
Note, the premise Γ ` T : 〈〉 guarantees that T is a subtype of the empty form, i.e.,
that X is always a valid form value. Furthermore, we assume that X is distinct from
all form variables already bound in Γ (it is always possible to satisfy this condition by
α-converting the bound form variable).

The typing rule for A | B must ensure that A and B use their free variables in a
consistent manner. Therefore, we require that A and B are well-formed in the same
context Γ. This ensures that any names or form variables which are used in both A
and B must have the same type.

(Parallel composition)
Γ ` A Γ ` B

Γ ` A | B

The restriction operator (ν a : T )A introduces a new channel a in the scope of A.
The typing rule for restriction extends the context Γ by adding a type binding for a.
Additionally, we force the type assigned to a to be a channel type.

(Restriction)
Γ, a : l T ` A

Γ ` (ν a : l T )A

Finally, the replication operator, !V (X).A, serves to make a countably infinite num-
ber of copies of V (X).A in parallel. However, the consistency of !V (X).A depends only
on the fact that V (X).A uses its free variables consistently under context Γ:

(Replication)
Γ ` V (X).A

Γ ` !V (X).A

The typing rules for agents are summarised in Table 5.5.

5.7 Type soundness

The relation between the type system and the operational semantics can be expressed
in two forms: evaluation cannot fail, and reduction preserves typing [93]. The former
detects the immediate failure of an agent, while the latter provides a proof that well-
formed agents remain well-formed after a successful reduction step.



5.7. TYPE SOUNDNESS 113

(Null)
Γ ` 0

(Parallel composition)
Γ ` A Γ ` B

Γ ` A | B

(Replication)
Γ ` V (X).A

Γ ` !V (X).A

(Restriction)
Γ, a : l T ` A

Γ ` (ν a : l T )A

(Input)
Γ ` V : ↓ T Γ ` T <: 〈〉 Γ, X : T ` A

Γ ` V (X).A

(Output)
Γ ` V : ↑ T Γ ` F : T Γ ` T <: 〈〉

Γ ` V (F )

Table 5.5: Agent typing rules for the πL-calculus.

5.7.1 Properties of well-formed πL-terms

If v is not a free variable in A, i.e., v /∈ fn(A) and v /∈ fv(A), then we can add a new
type binding for v without invalidating the typing of A:

Lemma 5.1 (Weakening)
If Γ ` A and v /∈ fn(A) and v /∈ fv(A) then Γ, v : T ` A for some type T .

Proof: A simple induction on the structure of A. 2

Similarly, if v is not a free variable in A, i.e., v /∈ fn(A) and v /∈ fv(A), then we can
remove the type binding for x without invalidating the typing of A:

Lemma 5.2 (Strengthening)
If Γ, v : T ` A and v /∈ fn(A) and /∈ fv(A) then Γ ` A.

Proof: A simple induction on the structure of A. 2

If a form variable X has type T in context Γ and a form F has the same type T
under context Γ we can substitute F for X while preserving the type of A.

Lemma 5.3 (Substitution)
If Γ ` A, Γ ` X : T , and Γ ` F : T then Γ ` A{F/X}.

Proof: A simple induction on the structure of A. 2



114 CHAPTER 5. TYPES FOR πL

5.7.2 Properties of structural congruence

Following the scheme presented by Turner [112] for the polyadic π-calculus, we can
show that types are preserved under structural congruence. Like Turner, we add the
following four rules to ≡ given in Table 5.3 to enable us to use induction on the depth
of the derivation of A ≡ B in proofs.

A ≡ A
A ≡ B

B ≡ A

A ≡ B B ≡ C

A ≡ C

A ≡ B

C[A] ≡ C[B]

C denotes an agent containing a “hole”:

C ::= [·] | (ν a : T )C | (C | A) | (A | C) | !V (X).C | V (X).C

Lemma 5.4 (Types are preserved under structural congruence)

1. If Γ ` A and A ≡ B then Γ ` B.

2. If Γ ` B and A ≡ B then Γ ` A.

Proof: We proof both parts simultaneously, using induction on the depth of the
inference of A ≡ B.

• Case A | 0 ≡ A.

Part 1. If Γ ` A | 0 then it must be the case that Γ ` A as required. Part 2.
We have, by assumption, that Γ ` A. Therefore, using rules (Null) and (Parallel
composition), we have Γ ` A | 0 as required.

• Case A | B ≡ B | A.

Part 1. If Γ ` A | B then Γ ` A and Γ ` B and the result follows using rule
(Parallel composition). Part 2 is similar.

• Case (A | B) | C ≡ A | (B | C).

Part 1. If Γ ` (A | B) | C then Γ ` A, Γ ` B, and Γ ` C. The result follows
after two applications of the rule (Parallel composition). Part 2 is similar.

• Case (ν x : l T )0 ≡ 0.

Part 1. If Γ ` (ν x : l T )0 then it must be the case that Γ, x : l T ` 0 for some
(form) type T . We can therefore use strengthening (Lemma 5.2) to prove that
Γ ` 0 as required. Part 2. We have, by assumption, that Γ ` 0. Furthermore,
we have that x /∈ fn(0) and x /∈ fn(0). We can therefore use weakening (Lemma
5.1) to prove that Γ, x : l T ` 0 for some (form) type T as required.



5.7. TYPE SOUNDNESS 115

• Case (ν x : l T )(ν y : l S)A ≡ (ν y : l S)(ν x : l T )A.

Part 1. If Γ ` (ν x : l T )(ν y : l S)A then Γ, x : l T, y : l S ` A for some (form)
types T and S. However, the order in which variables are declared in Γ is
unimportant as long as we have Γ ` �. Therefore, the result follows using rule
(Restriction) twice. Part 2 is similar.

• Case (ν x : l T )A | B ≡ (ν x : l T )(A | B), if x not free in B.

Part 1. If Γ ` (ν x : l T )A | B then it must be the case that Γ, x : l T ` A and
Γ ` B for some (form) type T . We can therefore use weakening (Lemma 5.1)
to prove that Γ, x : l T ` B, since x /∈ fn(B) and x /∈ fv(B). The result follows
using rules (Parallel composition) and (Restriction).

Part 2. If Γ ` (ν x : l T )(A | B) then it must be the case that Γ, x : l T ` B
and Γ, x : l T ` A for some (form) type T . We can therefore use strengthening
(Lemma 5.2) to prove that Γ ` B, since x /∈ fn(B) and x /∈ fv(B). The result
follows using rules (Restriction) and (Parallel composition).

• Case !V (X).A ≡ V (X).A | !V (X).A.

Part 1. If Γ ` !V (X).A then it must be the case that Γ ` V (X).A. Therefore,
using the rule (Parallel composition), we have Γ ` V (X).A | !V (X).A as required.
Part 2. If Γ ` V (X).A | !V (X).A then it must be that Γ ` V (X).A. The result
follows using rule (Replication).

• Case A ≡ A.

Immediate.

• Case B ≡ A where A ≡ B.

Part 1. We have by induction (Part 1) that Γ ` B. Part 2 is similar.

• Case A ≡ C where A ≡ B and B ≡ C.

Part 1. We have, by induction that Γ ` B. Therefore, using induction again, we
have Γ ` C as required. Part 2 is similar.

• Case C[A] ≡ C[B] where A ≡ B.

A simple induction on the structure of C proves the result. 2



116 CHAPTER 5. TYPES FOR πL

5.7.3 Untypable faulty terms

Faulty terms denote (sub)-expression in which a runtime error has occurred.

Definition 5.5 (Faulty terms) The faulty terms are those typed πL-terms contain-
ing a sub-term of the form:

Xl with Xl = wrong;
V (X).A where V does not denote a channel;
V (F ) where V does not denote a channel; or

x(X).A | x(F ) where V(F ) 6= ∅.

Lemma 5.5 (Faulty projection is untypable)
If a projection Xl is faulty, i.e. Xl = wrong, then there are no Γ, T such that Γ ` Xl : T .

Proof: Suppose Γ ` Xl : T and projection Xl is faulty. We proceed by case analysis,
assuming for each case that the projection Xl can be typed, and deriving a contradic-
tion, but there is only one case.

If Γ ` Xl : T , then, by (Projection), it must be that Γ ` X : 〈l :T 〉. Therefore,
we have Xl 6= wrong (label l is valid and denotes a binding), which contradicts the
assumption that projection Xl is faulty. 2

Theorem 5.1 (Well-formed agents never fail)
If Γ ` A then A does not fail, i.e., it does not contain any faulty terms.

Proof: Suppose Γ ` A and A fails, i.e., it contains faulty terms. It suffices to show
that the subterms of A that cause A to be faulty are untypable. We proceed by case
analysis according to the forms of faulty subterms, assuming for each case that the
terms can be typed, and deriving a contradiction.

• Case Xl with Xl = wrong.

We have, by assumption, that Γ ` A. Therefore, if Xl is a subterm in A, then it
must be the case that Γ ` Xl : T . Using Lemma 5.5, we have a contradiction, as
required.

• Case V (X).A where V does not denote a channel.

We have, by assumption, that Γ ` V (X).A. Therefore, by (Input), it must be the
case that Γ ` V : ↓ T , which implies that V denotes a (input) channel, contrary
to the assumption.



5.7. TYPE SOUNDNESS 117

• Case V (F ) where V does not denote a channel.

We have, by assumption, that Γ ` V (F ). Therefore, by (Output), it must be the
case that Γ ` V : ↑ T , which implies that V denotes a (output) channel, contrary
to the assumption.

• Case x(X).A | x(F ) where V(F ) 6= ∅.
We have, by assumption, that Γ ` x(X).A, Γ ` x(F ) (by (Parallel composition)),
and there exists a form variable Y ∈ V(F ) with Y /∈ dom(Γ) (Y occurs unbound).
However, if we have Γ ` x(F ), then it must be the case that Γ ` F : T and
Y ∈ dom(Γ), which is contrary to the assumption. 2

The definition of faulty terms provides only the possibility to detect the immediate
failures of an agent. To complete the soundness proof, we need a subject-reduction
theorem that proves that well-formed agents remain well-formed after a successful
reduction step.

5.7.4 Subject reduction

Subject reduction expresses the relationship between the operational semantics of a
term and a typing of it. Now, a typing environment Γ can be though as agent A’s
“point of view” on the types of its free variables. Theorem 5.2 shows how this point of
view evolves under transitions.

Theorem 5.2 (Subject reduction)
If Γ ` A and A −→ B then Γ ` B.

Proof: We prove the result by induction on the depth of the inference. We consider
each reduction rule as the last rule applied in the inference of the antecedent A −→ B.

• Case A | B −→ A′ | B where A −→ A′.

Then Γ ` A and Γ ` B follow from Γ ` A | B by (Parallel composition). We can
therefore use induction to prove that Γ ` A′. The result follows using the rule
(Parallel composition).

• Case (ν x : l T )A −→ (ν x : l T )A′ where A −→ A′.

From Γ ` (ν x : l T )A we have Γ, x : l T ` A by (Restriction). We can therefore
use induction to prove that Γ, x : l T ` A′. The result follows using the rule
(Restriction).

• Case x(X).A | x(F ) −→ A{F/X}.
We have, by assumption, that Γ ` x(X).A and Γ ` x(F ). Therefore, it must be
that Γ, X : T ` A and Γ ` x : l T (since x is used for both input and output



118 CHAPTER 5. TYPES FOR πL

in the same context Γ. Using the rule (Subsumption) we get the corresponding
direction). However, we also have that Γ ` F : T . We can therefore use the
substitution lemma (Lemma 5.3) to prove that Γ, X : T ` A{F/X}. The result
follows by using the strengthening lemma (Lemma 5.2) since X /∈ fn(A{F/X})
and X /∈ fv(A{F/X}).

• Case A −→ B where A ≡ A′, A′ −→ B′, and B′ ≡ B.

We have, by assumption, that Γ ` A. Therefore, using Lemma 5.4, we have
Γ ` A′. Using induction we have Γ ` B′ and the result follows by using Lemma
5.4 again. 2

Corollary 5.1 (No runtime errors)
If Γ ` A and A =⇒ A′ then A′ does not fail.

Proof: The result follows using Theorem 5.1, Theorem 5.2, and Lemma 5.4. 2

Corollary 5.1 completes the soundness prove for our type system.

5.8 Type inference

Type inference is the process of the transforming an untyped or “partially-typed” term
into a well-formed term by inferring the missing type annotations, if any such type
exists. In the following we present an unification based inference algorithm that takes
an untyped πL-term A and returns a type substitution σ (if any exists) such that the
typed version of A is well-formed with respect to a typing environment Γσ.

In order to define a relation between typed and untyped πL-terms, we define an
erasure function Erase that removes all type annotations from a given typed πL-term.

Definition 5.6 (Erase)

Erase(0) = 0

Erase(A1 | A2) = Erase(A1) | Erase(A2)

Erase(!A) = !Erase(A)

Erase((ν a : T )A) = (ν x)Erase(A)

Erase(V (X).A) = V (X).Erase(A)

Erase(V (F )) = V (F )

The type inference problem can now be defined as follows: given an untyped πL-
term A, find a typed πL-term Γ ` A′ with Erase(A′) = A.



5.8. TYPE INFERENCE 119

T ::= K Basic types
| CT Channel type
| FT Form type
| M Type variable
| Wrong Type error

CT ::= l FT Bidirectional channel
| ↓ FT Input only channel
| ↑ FT Output only channel

FT ::= 〈〉 Empty form type
| 〈l1 :T1〉...〈ln :Tn〉 Form type
| FT\l Form type restriction
| FT 〈M〉 Form tag
| FT\〈M〉 Lack tag

Table 5.6: Refined syntax of the types for the πL-calculus.

5.8.1 Extended form types

In order to do type inference, we need to refine the syntax of form types. Suppose, we
have defined the following agent A:

A ≡ a(X).(b(X) | Xl(〈n=Xm〉)

Now, to infer the type for channel a in agent A, we know that a form received along
a and bound to X must contain bindings for label l and m due to the projections Xl

and Xm, respectively. However, this information is not sufficient, since X is also sent
along channel b, and the type of channel b is not yet available (it will be inferred from
another agent). Therefore, we add a form tag, written 〈M〉, to form types. Such a tag
can be thought of as a placeholder for a form type to be determined during the type
inference process. Once the type for channel b has been determined, the form tag is
substituted by the corresponding form type. For example, if we start the type inference
for agent A, we assign X the type 〈l :M1〉〈m :M2〉〈M3〉. Now, if we can deduce type
l 〈m :N1〉〈n :N2〉 for channel b, then we can substitute 〈m :N1〉〈n :N2〉 for M3 yielding
〈l :M1〉〈m :M2〉〈n :N2〉 as type for X. Note that multiple bindings are ignored (e.g.
〈m :N1〉). The type inference process will unify M2 and N1 in order to denote the same
type. If the unification fails, the type inference process fails.

A second problem is introduced by polymorphic form extension. From the typing
rule (Polymorphic extension) we know that if X has type T and Y has type S, then
type S must be a subtype of a restricted form type, i.e., labels that only occur in T



120 CHAPTER 5. TYPES FOR πL

must not occur in any subtypes of S. Using type inference, however, we deduce the
set of restricting labels only at the time the type merge(TS) has been inferred, i.e.,
the types T and S have already been determined. To add the restricting labels to type
S, we have to “patch” type S. Therefore, we introduce a lack tag, written \〈M〉. For
example, we have defined the following agent

B ≡ a(X).b(Y ).c(XY )

then we start the type inference for agent B assigning X type 〈M1〉\〈M2〉 and Y type
〈M3〉\〈M4〉. Now, while inferring the types for channel a and b, we can substitute T for
M1 and S for M3 such that the value XY has type merge(T\〈M2〉, S\〈M4〉) yielding
merge(TS) as type for XY and a label restriction 〈〉\l1...\ln as substitution for M4

such that the final type for Y is S\l1...\ln. The label restriction M2 becomes 〈〉.
The refined syntax for types used for type inference is given in Table 5.6.

In order to do type inference for form values, we need to define the set of restriction
labels of a form type.

Definition 5.7 (Label restrictions of a form type) The set of restriction labels of
a form type FT , written LR(FT ), is defined as:

LR(〈〉) = ∅
LR(FT\l) = {l} ∪ LR(FT )

Now, we can define type substitution.

5.8.2 Type substitution

A type substitution, or substitution for short, is a finite map from type variables to
types. We write T{S̃/M̃} for the substitution of all occurrences of type variables M̃
with types S̃ in T . We use σ and ρ to range over type substitutions, σ(M) to denote
the substitution for type variable M , and we let dom(σ) denote the domain of σ.
Substitutions naturally extend to both types and contexts.

Definition 5.8 (Type substitution)



5.8. TYPE INFERENCE 121

σ, ρ ::= {M1 7→ S1, ...,Mn 7→ Sn}

Kσ = K

CTσ =


l (FTσ)
↓ (FTσ)
↑ (FTσ)

FTσ =


〈〉
〈l1 :T1σ〉...〈ln :Tnσ〉
FTσ\l

FTσ〈Mσ〉 =


FTσ〈M〉, if Mσ = M
FTσ〈l1 :T1〉...〈ln :Tn〉,

if Mσ = 〈l1 :T1〉...〈ln :Tn〉〈ln+1 :Tn+1〉...〈ln+m :Tn+m〉
and l1, ..., ln /∈ L(FT )

FTσ\〈Mσ〉 =

{
FTσ\〈M〉, if Mσ = M
FTσ\l1...\ln, if Mσ = 〈〉\l1...\ln

Mσ =

{
S, if S ∈ dom(σ)
M, otherwise

Γσ = { x : removetags(Tσ) | x : T ∈ Γ }

In the application of substitution for Γ, we use the function removetags to remove
open form and lack tags from type Tσ. An open tag is a tag with a type variable that
is not in dom(σ). There are two situations in which open tags can occur:

• Case lack tag \〈M〉.
A lack tag \〈M〉 is added to every form type in the type inference process. But
the lack tag variable M can only be identified with a type (i.e., a form type
that consists solely of label restrictions), when the πL-term contains at least
one application of a polymorphic form extension, i.e., if no polymorphic form
extension is used, then no lack tag will be unified. But open lack tags denote
type 〈〉. We can therefore simply remove open lack tags from a form type without
changing the type Tσ.

• Case form tag 〈M〉.
A form tag 〈M〉 is added by the type inference process to the application type
of the form variable X of an input-prefixed agent V (X).A if A contains an ap-



122 CHAPTER 5. TYPES FOR πL

plication of X within a polymorphic form extension or if X is used as object of
an output-particle. For example, in the agent

a(X).(a(X) | Xl(〈m=Xn〉)

X is assigned the application type 〈M1〉〈l :M2〉〈n :M3〉. But if the inferred type
for X does not contain more bindings than l and n, then the type variable M1

will never be identified with a type. A open form tag has type 〈〉. Therefore, it
is safe to remove 〈M1〉 from Tσ.

Definition 5.9 (Composition of substitution)

σ ◦ ρ = {M 7→ (Mσ)ρ | M ∈ dom(σ) ∪ dom(ρ)}

If we apply a type substitution σ to a typed πL-term A, the Aσ differs from A only in
the types of the names introduced by the restriction operator. An important property
of type substitution is that if Γ ` A is derivable, so is any substitution Γσ ` Aσ. In
other words, types are preserved under substitution.

Lemma 5.6 (Substitution preserves form type)
if Γ ` T <: 〈〉 then Γσ ` Tσ <: 〈〉.

Proof: A simple induction on the structure of form type T . 2

Lemma 5.7 (Substitution preserves channel type)
if Γ ` T <: l S, Γ ` T <: ↓ S, or Γ ` T <: ↑ S then Γσ ` Tσ <: l Sσ,
Γσ ` Tσ <: ↓ Sσ, and Γσ ` Tσ <: ↑ Sσ, respectively.

Proof: A simple induction on the structure of channel type T . 2

Lemma 5.8 (Preservation of types under substitution)
If Γ ` = then Γσ ` =σ.

Proof: The proof is by induction on the derivation of Γ ` =.

• Basic rules:

– Case ∅ ` �.
Immediate.

– Case Γ, v : T ` �.
Then it must be the case that Γ ` T and v /∈ dom(Γ). We can therefore use
induction to prove Γσ ` Tσ. The result follows using rule (Environment v).



5.8. TYPE INFERENCE 123

– Case Γ ` K.

We assume that each constant has a variable-free type, and therefore Kσ =
K. From Γ ` K we have Γ ` �. We can therefore use induction to prove
Γσ ` �. The result follows using rule (Constant type).

– Case Γ ` 〈〉.
Immediate, using Lemma 5.6.

– Case Γ ` c : K.

Then it must be the case that Γ ` K. We can therefore use induction to
prove Γσ ` Kσ. The result follows using rule (Constant).

– Case Γ, x : T ` x : T .

Then it must be the case that Γ, x : T ` �. We can therefore use induction
to prove Γσ, x : Tσ ` �. The result follows using rule (Channel).

• Subtyping rules for types:

– Case Γ ` T <: T .

Then it must be the case that Γ ` T . We can therefore use induction to
prove Γσ ` Tσ. The result follows using rule (Subtyping reflexivity).

– Case Γ ` T <: U where Γ ` T <: S, and Γ ` S <: U .

We have by induction that Γσ ` Tσ <: Sσ. Therefore, using induction
again, we have Γσ ` Sσ <: Uσ. The result follows using rule (Subtyping
transitivity).

– Case Γ ` v : S where Γ ` v : T , and Γ ` T <: S.

We have by induction that Γσ ` v : Tσ and Γσ ` Tσ <: Sσ. The result
follows using rule (Subsumption).

• Rules for assigning types to forms:

– Case Γ ` E : 〈〉.
Immediate, using Lemma 5.6.

– Case Γ, X : T ` X : T (form variable).

Then it must be the case that Γ, X : T ` � and Γ ` T <: 〈〉. We can
therefore use induction to prove Γσ,X : Tσ ` �. The result follows using
Lemma 5.6 and rule (Form variable).

– Case Γ ` F 〈l=V 〉 : merge(T 〈l :S〉).
Then it must be the case that Γ ` F : T , Γ ` T <: 〈〉, and Γ ` V : S.
We can therefore use induction to prove Γσ ` F : Tσ and Γσ ` V : Sσ,
respectively. The result follows using Lemma 5.6 and (Binding extension).



124 CHAPTER 5. TYPES FOR πL

– Case Γ ` FX : merge(TS).

Then it must be the case that Γ ` F : T , Γ ` X : S, Γ ` T <: 〈〉,
∀ lk ∈ L(T )− L(S) Γ ` S <: 〈〉\lk, and ∀ li ∈ L(T ) ∩ L(S) Γ ` Sli <: Tli . We
can therefore use induction to prove ∀ lk ∈ L(Tσ)− L(Sσ) Γσ ` Sσ <: 〈〉\lk,
∀ li ∈ L(Tσ) ∩ L(Sσ) Γσ ` (Sσ)li <: (Tσ)li , Γσ ` F : Tσ, and Γσ ` X : Sσ,
respectively. The result follows using Lemma 5.6 and rule (Polymorphic ex-
tension).

– Case Γ ` Xl : T .

Then it must be the case that Γ ` X : 〈l :T 〉. We can therefore use induction
to prove Γσ ` X : 〈l :Tσ〉. The result follows using rule (Projection).

• Subtyping rules for form types:

– Case Γ ` 〈l1 :T1〉...〈ln :Tn〉 <: 〈〉.
Immediate, using Lemma 5.6.

– Case Γ ` 〈l1 :T1〉...〈ln +m :Tn +m〉 <: 〈l1 :S1〉...〈ln :Sn〉.
Then it must be the case that Γ ` Ti <: Si for all i ∈ 1, ..., n and Γ ` Tj for all
j ∈ n+ 1, ..., n+m. We can therefore use induction to prove Γσ ` Tiσ <: Siσ
for all i ∈ 1, ..., n and Γσ ` Tjσ for all j ∈ n+ 1, ..., n+m. The result fol-
lows using rule (Form subtyping).

– Case Γ ` T\l <: 〈〉.
Then it must be the case that Γ ` T <: 〈〉. The result follows using Lemma
5.6 and rule (Subtyping restriction).

– Case Γ ` S\l <: T\l.
Then it must be the case that Γ ` T <: 〈〉 and Γ ` S <: T . We can therefore
use induction to prove Γσ ` Sσ <: Tσ. The result follows using Lemma 5.6
and rule (Subtyping restricted types).

– Case Γ ` S\l <: T .

Then it must be the case that Γ ` T <: 〈〉, Γ ` S <: T , and l /∈ L(T ). We
can therefore use induction to prove l /∈ L(Tσ) and Γσ ` Sσ <: Tσ. The
result follows using Lemma 5.6 and rule (Subtyping add restriction).

• Subtyping rules for channels:

– Case Γ ` l S <: l T .

Then it must be the case that Γ ` S <: T and Γ ` T <: S. We can there-
fore use induction to prove Γσ ` Sσ <: Tσ and Γσ ` Tσ <: Sσ, respectively.
The result follows using rule (Channel subtyping).



5.8. TYPE INFERENCE 125

– Case Γ ` ↑ S <: ↑ T .

Then it must be the case that Γ ` T <: S. We can therefore use induction
to prove Γσ ` Tσ <: Sσ. The result follows using rule (Output channel
subtyping).

– Case Γ ` ↓ S <: ↓ T .

Similar to previous case using (Input channel subtyping).

– Case Γ ` l T <: ↑ T .

Immediate using Lemma 5.7.

– Case Γ ` l T <: ↓ T .

Immediate using Lemma 5.7.

• Rules for agents (after application of Erase):

– Case Γ ` 0.

Immediate, since 0 is consistent with any context. Therefore, it must be the
case that Γσ ` 0, as required.

– Case Γ ` A | B.

Then it must be the case that Γ ` A and Γ ` B. We can therefore use
induction to prove Γσ ` A and Γσ ` B, respectively. The result follows
using the rule (Parallel composition).

– Case Γ ` !V (X).A.

Then it must be the case that Γ ` V (X).A. We can therefore use induction
to prove Γσ ` V (X).A. The result follows using the rule (Replication).

– Case Γ ` (ν a)A.

Then it must be the case that Γ, a : l T ` A. We can therefore use induction
to prove Γσ, a : l Tσ ` A. The result follows using rule (Restriction).

– Case Γ ` V (X).A.

Then it must be the case that Γ ` V : ↓ T , Γ ` T <: 〈〉, and Γ, X : T ` A.
We can therefore use induction to prove Γσ,X : Tσ ` A and Γσ ` V : ↓ Tσ,
respectively. The result follows using Lemma 5.6, and rule (Input).

– Case Γ ` V (F ).

Then it must be the case that Γ ` V : ↑ T , Γ ` F : T , and Γ ` T <: 〈〉.
We can therefore use induction to prove Γσ ` F : Tσ and Γσ ` V : ↑ Tσ,
respectively. The result follows using Lemma 5.6 and rule (Output). 2



126 CHAPTER 5. TYPES FOR πL

5.8.3 Unification

An important part of the type inference algorithm is the unification process, i.e., the
process of finding the most general unifying type substitution. If E is a set of pairs
of expressions, then a type substitution σ unifies E if Tσ ≡ Sσ for every equation
T = S ∈ E.

The algorithm Unify recursively decomposes equations between compound types of
the same “shape”, substituting types for type variables when necessary. Basically, the
algorithm is implemented following the scheme presented by Mitchell [67], Jategaonkar
and Mitchell [46], and Thiemann [111] (the swap rule). However, it differs in the fact
that we also use equation predicates that assemble form types and check the subtype
relation, respectively. The following equation predicates are defined:

• T = PROJ(l, S):

PROJ performs the type projection yielding Sl when l is defined in S. If S
does not have a binding for l, PROJ fails. This predicate is generated for every
projection of the form Xl.

• U = MERGE(T, S):

MERGE removes all multiple bindings from TS. This predicate can only be
applied to valid form types, i.e., they must denote types generated form the
syntactic category FT . This predicate does not fail. The result is assigned to
U yielding the equation U = TS. This predicate is generated for every binding
extension.

• U = POLYMERGE(T\〈MT 〉, S\〈MS〉):
POLYMERGE removes all multiple bindings from TS. This predicate can only
be applied to valid form types that must not contain any form tag. This predicate
does not fail and yields two results: (i) TS, and (ii) the label restriction set for
type S. The former is assigned to U yielding the equation U = TS, while the
latter is used the generate a substitution {MS 7→ 〈〉\l1...\ln}. For example,

U = POLYMERGE(〈l1 :T1〉〈l2 :T2〉\〈MT 〉, 〈l2 :S2〉〈l3 :S3〉\〈MS〉)

yields

U = 〈l1 :T1〉〈l2 :S2〉〈l3 :S3〉

and

{MS 7→ 〈〉\l1}



5.8. TYPE INFERENCE 127

The condition S2 <: T2 is checked separately with an ELEMSUB predicate.
The predicate POLYMERGE is generated for every application of polymorphic
extension.

• SUB(T, S):

SUB check, using the rules involving a subtype relation, whether T is a subtype
of S. The predicate fails if this condition is not satisfied.

• SUBFORM(T, S):

When T denotes a form type and S denotes a channel type, then SUBFORM
checks whether values of type T can be sent along channels of type S. The
predicate fails if this condition is not satisfied. This predicate is generated for
every output-particle V (F ) and it guarantees that the minimal type assigned
to F respects the all type assignment of V . For example, if we have the two
agents a(〈l=c1〉〈m=c2〉) and a(〈l= c1〉), then the minimal type for both forms
〈l=c1〉〈m=c2〉 and 〈l=c1〉 is 〈l :K1〉 if c1 : K1. However, if there is also an input
agent a(X).A with a : ↓ 〈l :K1〉〈m :K2〉, then the minimal form type for values
sent along a is 〈l :K1〉〈m :K2〉 and agent a(〈l= c1〉) is therefore not well-formed.
The predicate SUBFORM guarantees that this constraint is satisfied.

• ELEMSUB(T, S):

ELEMSUB checks that for all li ∈ L(T ) ∩ L(S) it holds that Sli is a subtype of
Tli . The predicate fails if this condition is not satisfied.

The algorithm Unify is nondeterministic, in that a set of equations could match
more than one clause. However, we need to define the following constraints on the
order of the selection of the next equation:

1. E ∪ {T = S}:
If S is not a type variable or any equation predicate, select {T = S} as the next
rule.

2. E ∪ {T = M}:
If E does not contain a rule that matches pattern 1, select {T = M} as the next
rule.

3. E ∪ {S = PROJ(l, T )} or E ∪ {U = MERGE(T, S)}:
If E does not contain a rule that matches pattern 1 or 2 and T and S denote
types generated form the syntactic category FT , select {S = PROJ(l, T )} and
{U = MERGE(T, S)} as the next rule, respectively.



128 CHAPTER 5. TYPES FOR πL

4. E ∪ {U = POLYMERGE(T\〈MT 〉, S\〈MS〉)}:
If E does not contain a rule matching pattern 1-3 and T and S denote valid form
types that must not contain any form tag, then the next rule to be processed is
{U = POLYMERGE(T\〈MT 〉, S\〈MS〉)}.

5. SUBFORM, SUB, and ELEMSUB:

Rules involving these predicates are processed if no other equations left in the
equation set.

The algorithm Unify is shown in Appendix C. On equations involving channel
types, the algorithm generates different subsequent type equations depending on the oc-
curred channel type constructors. For an equations set of the form E ∪ {↑ T1 = ↑ T2},
E ∪ {l T1 = ↓ T2}, or E ∪ {l T1 = ↑ T2} Unify generates a “contravariant” equation
set of the form E ∪ {T2 = T1}. This approach respects the subtyping relation between
these channel type constructors. Otherwise, Unify identifies the wrong type variables
such that Unify would fail. For all other channel type combinations Unify generates a
“covariant” equation set. The reader should note that it is sufficient to generate a co-
variant subsequent equation set for an equation set E ∪ {l T1 = l T2}. The invariance
of T1 and T2 is preserved.

On equations involving form types, the algorithm does not need to perform an
identity check on the complete types on both sides. Instead, if we have an equa-
tion like FT1 = FT2, then it is sufficient to generate only subequations for all labels
li ∈ L(FT1) ∩ L(FT2). However, it always holds that either L(FT1)− L(FT2) = ∅ or
L(FT2)− L(FT1) = ∅ which means that either FT2 <: FT1 or FT1 <: FT2 holds.

Finally, if the equation set E does not contain any predicate POLYMERGE, then
it is safe to identify all lack tags \〈M〉 with 〈〉 in E.

Lemma 5.9 (Most general unifier[97])
If E is any set of equations between type expressions, then an algorithm Unify which
terminates successfully on input E has as output a type substitution σ that is called the
most general unifier for E. If E is not unifiable, then Unify(E) terminates yielding
fail.

Proof: In order to prove Lemma 5.9, it is sufficient to show the following three
properties of Unify [68]:

1. Unify halts for any set E.

2. If Unify(E) succeeds, then Unify(E) returns a substitution that unifies E.

3. If there is a substitution σ that unifies E, then Unify(E) succeeds and produces
a substitution σ′ such that σ′ unifies E. Furthermore, there exists a substitution
σ′′ such that σ = σ′ ◦ σ′′.



5.8. TYPE INFERENCE 129

In order to prove (1), we define the degree of a set E to be the pair 〈m,n〉, where m
is the number of distinct type variables in E, and n is the total number of occurrences
of channel type constructors, form type constructors, base types, unbound form tags
(i.e., they occur within a form type, and equations predicates. We say that 〈m,n〉 is
smaller than 〈m′, n′〉 if either m < m′, m = m′ and n < n′, or m < m′ and n < n′. If
E is empty, it has degree 〈0, 0〉.

The proof proceeds by induction on the degree of E and case analysis on the struc-
ture of the type equations of the form T = S, or {Predicate} – equation predicates
SUB, SUBFORM, and ELEMSUB, where E = E ′ ∪ {T = S} orE = E ′ ∪ {Predicate}.

• Case E ∪ {K1 = K2}.
When Unify succeeds, we can observe that second component of the degree of E
is at most n− 2.

• Case E ∪ {M = T}.
When Unify succeeds, we can observe that first component of the degree of
E{T/M} is at most m− 1.

• Case E ∪ {T = M}.
Here Unify succeeds if Unify succeeds on E ∪ {M = T} which corresponds to the
previous case.

• Case E ∪ {CT1 = CT2}.
Here, both CT1 and CT2 are channel types and if Unify succeeds, then the channel
type constructors are removed from both types. Therefore, the second component
degree of the resulting equation set is at most n− 2.

• Case E ∪ {FT1 = FT2}.

– FT1 = T\〈MT1〉〈MT2〉 and FT2 = S\〈MS1〉〈MS2〉:
When Unify succeeds, then we have four cases:

∗ E ∪ {MT1 = MS1} ∪ {MT2 = MS2}, where the second component of the
degree is at most n− 4.

∗ E ∪ {MT1 = MS1} ∪ {MS2 = Delta} ∪ {MT2 = 〈〉}, where the second
component of the degree is at most n− 3.

∗ E ∪ {MT1 = MS1} ∪ {MT2 = Delta} ∪ {MS2 = 〈〉}, where the second
component of the degree is at most n− 3.

∗ E ∪ {MT1 = MS1} ∪ {MT2 = Delta1} ∪ {MS2 = Delta2}, where the
second component of the degree is at most n− 2.



130 CHAPTER 5. TYPES FOR πL

– FT1 = T\〈MT1〉〈MT2〉 and FT2 = S\〈MS〉:
When Unify succeeds, then we can observe that the second component of
the degree of E ∪ {MT = MS1} ∪ {MS2 = Delta} is at most n− 2.

– FT1 = T\〈MT 〉 and FT2 = S\〈MS1〉〈MS2〉:
Similar to the previous case.

– FT1 = T\〈MT 〉 and FT2 = S\〈MS〉:
When Unify succeeds, then we can observe that the second component of
the degree of E ∪ {MT = MS} ∪ { (Tli = Sli) | li ∈ L(T ) ∩ L(S) } is at most
n− 2.

• Case E ∪ {S = PROJ(l, T )}.

When Unify succeeds, we can observe that second component of the degree of
E ∪ {S = Tl} is at most n− 1.

• Case E ∪ {U = MERGE(T, S)}.

When Unify succeeds, we can observe that second component of the degree of
E ∪ {U = TS} is at most n− 2.

• Case E ∪ {U = POLYMERGE(T\〈MT 〉, S\〈MS〉)}.

When Unify succeeds, then the degree of E{Lackform/MS} ∪ {U = TS} is in
the first component at most m− 1 and in the second component at most n− 2.

• Case E ∪ {SUB(S, T )}.

When Unify succeeds, we can observe that second component of the degree of E
is at most n− 1.

• Case E ∪ {SUBFORM(FT,CT )}.

Similar to the previous case.

• Case E ∪ {ELEMSUB(T, S)}.

Similar to the previous case. 2

In order to prove (2) and (3), we use induction on the number of recursive calls in
the computation of Unify(E). For (2), there are only two non-trivial steps.

• Case E ∪ {M = T}.

If σ unifies E{T/M}, then {M 7→ T} ◦ σ unifies E ∪ {M = T}.



5.8. TYPE INFERENCE 131

• Case E ∪ {U = POLYMERGE(T\〈MT 〉, S\〈MS〉)}.
If σ unifies E{Lackform/MS}∪{U = TS}, then {MS 7→ Lackform} ◦ σ unifies
E ∪ {U = POLYMERGE(T\〈MT 〉, S\〈MS〉)}. 2

For (3), the base case ∅ is straightforward. For the induction step, there are 21
cases, one for each clause in the definition of the algorithm Unify. However, there
are only two non-trivial clauses.

– Case E ∪ {M = T}.
Suppose σ unifies E ∪ {M = T}. Then σ(M) = Tσ and σ must unify
E{T/M}. It is easy to see that M must not occur in T . By the induction
hypothesis, Unify(E{T/M}) = σ′ with σ = σ′ ◦ σ′′. Then it must be the
case that Unify(E ∪ {M = T}) = σ′ ◦ {T/M} succeeds with a substitution
unifying E ∪ {M = T}. Now, we argue that σ = (σ′ ◦ {T/M}) ◦ σ′′. For
any variable M ′ different from M , we have M ′((σ′ ◦ {T/M}) ◦ σ′′) = M ′σ
since σ′ ◦ σ′′ = σ. For the variable M , we have M((σ′ ◦ {T/M}) ◦ σ′′) =
T (σ′ ◦ σ′′) = Tσ. But since we have already seen that Mσ = Tσ, we have
M((σ′ ◦ {T/M}) ◦ σ′′) = Mσ and therefore σ = (σ′ ◦ {T/M})) ◦ σ′′.

– Case E ∪ {U = POLYMERGE(T\〈MT 〉, S\〈MS〉)}.
Suppose σ unifies E ∪ {U = POLYMERGE(T\〈MT 〉, S\〈MS〉)}. Then, we
have σ(MS) = Lackformσ and σ must unify E{Lackform/MS} ∪ {U = TS}.
By the induction hypothesis, Unify(E{Lackform/MS} ∪ {U = TS}) = σ′

with σ = σ′ ◦ σ′′. Therefore, Unify(E ∪ {U = POLYMERGE(T\〈MT 〉, S\〈MS〉)})
= σ′ ◦ {Lackform/MS} succeeds with a substitution unifying the equa-
tion set E ∪ {U = POLYMERGE(T\〈MT 〉, S\〈MS〉)}. Now, we argue that
σ = (σ′ ◦ {Lackform/MS}) ◦ σ′′. For any variable M different from MS,
we have M((σ′ ◦ {Lackform/MS}) ◦ σ′′) = Mσ since σ′ ◦ σ′′ = σ. For vari-
able MS, we have MS((σ′ ◦ {Lackform/MS}) ◦ σ′′) = Lackform(σ′ ◦ σ′′) =
Lackformσ. But since we have already seen that MSσ = Lackformσ, we
have MS((σ′ ◦ {Lackform/MS}) ◦ σ′′) = MSσ and therefore it must hold
that σ = (σ′ ◦ {Lackform/MS}) ◦ σ′′. 2

5.8.4 Inference algorithm

In the following we present an inference algorithm which takes a type context Γ and an
untyped agent A as arguments, and either fails (if no valid typing exists), or returns
the minimal substitution σ such that Γσ ` A.

The algorithm is defined using similar approach as presented by Wand [121], i.e.,
the algorithm generates a type equation set E by processing a set of subgoal rules
starting with (Γ0;A0), where Γ0 maps all free variables of A0 and A0 is the top-level
agent after applying Erase. In fact, the algorithm mimics the construction of the type



132 CHAPTER 5. TYPES FOR πL

derivation for a given agent A. If all subgoals are processed, then the algorithm halts
and Unify is called to produce a most general unifier for E if such exists. The type
inference algorithm fails if and only if Unify fails. We now give the structure of the
algorithm:

Input:

A term A0, where A0 = Erase(A) and A is a typed πL-agent.

Initialization:

Set E = ∅ and G = {(Γ0;A0)}, where Γ0 maps all free variables of A0 to distinct
type variables.

Loop Step:

If G = ∅, then halt and return E. Otherwise, choose a subgoal from G, delete
if form G, and add to E and G new verification conditions and subgoals, as
specified in the action table.

One important difference of this algorithm compared with the one presented by
Turner [112] for the polyadic π-calculus is that unification is done at the end of the
type inference process. In Turner’s approach, Unify is called directly for every input
and output process. This approach fails, however, in the presence of polymorphic form
extension. For example, if we have defined the following πL-system

S1 ≡ (a(X).b(Y )c(XY ) | a(F1) | b(F2))

the unification of the equation set solely generated for a(X).b(Y )c(XY ) would yield
a substitution such that both X and Y are assigned type 〈〉. The reason is that the
available information is not sufficient to correctly determine the types for X and Y .
Therefore, unlike Turner’s approach, we need to consider the complete agent system
in order the infer the correct types. When we consider the whole system (i.e., we have
generated the complete equation set E) of

S2 ≡ (a(X).b(Y )c(XY ) | a(〈l=1〉〈m=”String”〉) | b(〈m=”OtherString”〉〈n=1〉))

then we can correctly infer X : 〈l :Int〉〈m :String〉 and Y : 〈m :String〉〈n :Int〉\l with
Int, String ∈ K.

We do not formalise how the algorithm picks “fresh” type variables while processing
the given subgoals. We will implicitly assume that whenever a type variable is declared
to be “fresh” it is distinct from any type variables mentioned either in the current
context or in rules which have already been processed. In practice this condition is
satisfied by using a global counter to number new type variables.

Before we can present the subgoal rules, we need to define the format of subgoals,
the notion of a solution of (E,G) and the application type of a form variable.



5.8. TYPE INFERENCE 133

Definition 5.10 (Subgoals)
A subgoal for agents is a tuple (Γ;A), where Γ is a type context with dom(Γ) = fn(A)∩
fv(A) and A is an agent, where all type annotations have been erased.

A subgoal for forms and variables is a triple (Γ;X;T ), where Γ is a type context
that records all variables of X, X is a subterm generated from the syntactic domain F
and V , respectively, and T is a type.

Definition 5.11 (Solution of (E,G))
Let σ be a substitution. We say σ solves an equation e, written σ |= e, if σ unifies
e. If E is a set of type equations, we write σ |= E iff σ |= e for each e ∈ E. If
(Γ;A) or (Γ;X;T ) are subgoals, we write σ |= (Γ;A) and σ |= (Γ;X;T ) iff Γσ ` A
and Γσ ` X : Tσ. If G is a set of subgoals, we write σ |= G iff σ |= g for each g ∈ G.
Finally, we say σ solves (E,G), written σ |= (E,G), iff σ |= E and σ |= G.

Definition 5.12 (Application type of a form variable)
The application type of a form variable X with respect to an agent A, written T (X,A),
collects all distinct applications of X in A by assigning X a form type T that contains
one entry for every distinct application using 〈l :Mi〉 with Mi fresh for occurrences of
projections Xl and 〈Mj〉 with Mj fresh for occurrences of X without projection.

T (X,A) is defined by the algorithm Collect which takes a form variable X, an agent
A and a type T , and returns a new type T ′ for all distinct applications of X in A. For
example, given an agent

!Update(X).cell(Y ).(cell(X) | Xresult(〈val=Xval〉))

then Collect(X; cell(Y ).(cell(X) | Xresult(〈val=Xval〉))) yields

〈〉〈M1〉〈result :M2〉〈val :M3〉

as the application type for form variable X. The algorithm is shown in Appendix D.
Like Wand [121], we can now state the invariant for our algorithm.

Proposition 5.1 (Soundness and Completeness)
A solution for (E, (Γ;A)) or (E; (Γ;X;T )) generates exactly the typings of (Γ;A) and
(Γ;X;T ), respectively.

Soundness:

(∀σ)(σ |= (E, (Γ;A)) =⇒ Γσ ` A)

(∀σ)(σ |= (E, (Γ;X;T )) =⇒ Γσ ` X : Tσ)



134 CHAPTER 5. TYPES FOR πL

Completeness:

Γσ ` A =⇒ (∃ρ)(ρ |= (E, (Γ;A)) ∧ Γσ = Γρ)

Γσ ` X : Tσ =⇒ (∃ρ)(ρ |= (E, (Γ;X;T )) ∧ Γσ = Γρ ∧ Tσ = Tρ)

The invariant is clearly established by the initialization step. At termination, when
G = ∅, we have

(1) (∀σ)(σ |= E =⇒ Γσ ` A)
(∀σ)(σ |= E =⇒ Γσ ` X : Tσ)

(2) Γσ ` A =⇒ (∃ρ)(ρ |= E ∧ Γσ = Γρ)
Γσ ` X : Tσ =⇒ (∃ρ)(ρ |= E ∧ Γσ = Γρ ∧ Tσ = Tρ)

so that the solutions of E (Unify(E)) give the substitutions σ such that Γσ ` A and
Γσ ` X : Tσ are provable, where σ is the most general unifier for E.

For the typed πL-calculus, with typing rules summarised in Appendix B, the fol-
lowing actions (subgoals) are defined. We present the actions with the corresponding
typing rules. The reader should note that we only need subgoals for rules involving
agents, forms, channels, and constant values. A possible subtyping relation is checked
using the predicates SUB, SUBFORM, and ELEMSUB.

• Case (Γ; 0) – (Null).

• Case (Γ;A | B) – (Parallel composition).

Generate the subgoals (Γ;A) and (Γ;B).

• Case (Γ; !A) – (Replication).

Generate the subgoal (Γ;A).

• Case (Γ; (ν a)A) – (Restriction).

Let M be a fresh type variable. Generate the subgoal (Γ, a : lM ;A).

• Case (Γ;V (X).A) – (Input).

Let T = T (X;A) and M1, M2 be fresh type variables. Set E = E ∪
{SUB(T\〈M1〉, 〈〉)}∪{M2 = ↓ T\〈M1〉}. Generate the subgoals (Γ, X : T\〈M1〉;A)
and (Γ;V ;M2).

• Case (Γ;V (F )) – (Output).

Let M1, M2, M3, M4 be fresh type variables. Set E = E ∪ {SUB(M1, 〈〉)} ∪
{M2 = ↑M1} ∪ {SUBFORM(M1,M2)} ∪ {M1 = MERGE(M4, \〈M3〉)}. Gener-
ate the subgoals (Γ;V ;M2) and (Γ;F ;M4).



5.8. TYPE INFERENCE 135

• Case (Γ; c;M) – (Constant).

Set E = E ∪ {M = K} if Γ(c) = K.

• Case (Γ;x;M) – (Channel).

Set E = E ∪ {M = T} if Γ(x) = T .

• Case (Γ; E ;M) – (Empty form).

Set E = E ∪ {M = 〈〉}.

• Case (Γ;X;M) – (Form variable).

Set E = E ∪ {M = T} ∪ {SUB(T, 〈〉)} if Γ, X : T ` X : T .

• Case (Γ;F 〈l=V 〉;M) – (Binding extension).

LetM1, M2, andM3 be fresh type variables. SetE = E ∪ {M = MERGE(M1,M2)}
∪{(M2 = 〈l :M3〉)}. Generate the subgoals (Γ;F ;M1) and (Γ;V ;M3).

• Case (Γ;FX; τ) – (Polymorphic extension).

Let M1, M2 be fresh type variables. Set E = E∪{M = POLYMERGE(M1,M2)}
∪{ELEMSUB(M2,M1)}. Generate the subgoals (Γ;F ;M1) and (Γ;X;M2).

• Case (Γ;Xl;M) – (Projection).

Let M1 be a fresh type variable. Set E = E ∪ {M = PROJ(l,M1)} and generate
the subgoal (Γ;X;M1).



136 CHAPTER 5. TYPES FOR πL

Proposition 5.2 Check(Γ;A) always terminates.

Proof: Each action generates subgoals involving terms smaller than the original. 2

Proposition 5.3 Each action preserves the invariant of the algorithm.

Proof: For (1), we proceed by induction on the structure of actions (subgoals).

• Case (Γ; 0).

Immediate, since 0 is consistent with any context. Therefore, we have Γσ ` 0 as
required.

• Case (Γ;A | B).

Then, it must be the case that σ |= (Γ;A) and σ |= (Γ;B). We can therefore use
induction to prove Γσ ` A and Γσ ` B. The result follows using rule (Parallel
composition).

• Case (Γ; !A).

Then, it must be the case that σ |= (Γ;A). We can therefore use induction to
prove Γσ ` A. The result follows using rule (Replication).

• Case (Γ; (ν a)A).

LetM be a fresh type variable. Then, it must be the case that σ |= (Γ, a : lM ;A).
We can therefore use induction to prove Γσ, a : l Tσ ` A. The result follows using
rule (Restriction).

• Case (Γ;V (X).A).

Let T ′ = T (X,A) and M1, M2 be fresh type variables. Then, it must be the case
that σ |= SUB(T ′\〈M1〉, 〈〉), σ |= M2 = ↓ T ′\〈M1〉, σ |= (Γ, X : T ′\〈M1〉;A), and
σ |= (Γ;V ;M2. We can therefore use induction to prove Γσ ` V : ↓ Tσ,
Γσ ` Tσ <: 〈〉, and Γσ,X : Tσ ` A. The result follows using rule (Input).

• Case (Γ;V (F )).

Let M1, M2, M3, M4 be fresh type variables. Then it must be the case that
σ |= SUBFORM(M1,M2), σ |= M1 = MERGE(M4, \〈M3〉), σ |= SUB(M1, 〈〉),
σ |= M2 = ↑M1, σ |= (Γ;V ;M2), and σ |= (Γ;F ;M4). We can therefore use in-
duction to prove Γσ ` V : ↑ Tσ, Γσ ` F : Tσ, and Γσ ` Tσ <: 〈〉. The result
follows using rule (Output).

• Case (Γ; c;M).

Then, it must be the case that σ |= M = K. We can therefore use induction to
prove Γσ ` Kσ. The result follows using rule (Constant).



5.8. TYPE INFERENCE 137

• Case (Γ;x;M).

Then, it must be the case that σ |= M = T with T = Γ(x). We can therefore use
induction to prove that Γσ, x : Tσ ` �. The result follows using rule (Channel).

• Case (Γ; E ;M).

Then, it must be the case that σ |= M = 〈〉. The result is immediate, since 〈〉 is
consistent with any context. Therefore, we have Γσ ` E as required.

• Case (Γ;X;M).

Then, it must be the case that σ |= M = T and σ |= SUB(T, 〈〉) with T = Γ(X).
We can therefore use induction to prove Γσ,X : Tσ ` � and Γσ ` Tσ <: 〈〉. The
result follows using rule (Form variable).

• Case (Γ;F 〈l=V 〉;M).

Let M1, M2, M3 be fresh type variables. Then, it must be the case that
σ |= M2 = 〈l :M3〉, σ |= M = MERGE(M1,M2), σ |= (Γ;F ;M2), and
σ |= (Γ;V ;M3). We can therefore use induction to prove that Γσ ` F : Tσ,
Γσ ` Tσ <: 〈〉, and Γσ ` V : Sσ. The result follows using rule (Binding exten-
sion).

• Case (Γ;FX;M).

Let M1, M2 be fresh type variables. Then, it must be the case that
σ |= M = POLYMERGE(M1,M2), σ |= ELEMSUB(M2,M1), σ |= (Γ;F ;M1),
and σ |= (Γ;X;M2). We can therefore use induction to prove that Γσ ` Tσ <: 〈〉,
∀lk ∈ T σ − L(Sσ) ΓσSσ <: 〈〉\lk, ∀li ∈ T σ ∩ L(Sσ) Γσ(Sσ)li <: (Tσ)li,
Γσ ` F : Tσ, and Γσ ` X : Sσ. The result follows using rule (Polymorphic ex-
tension).

• Case (Γ;Xl;M).

Let M1 be a fresh type variable. Then, it must be the case that
σ |= M = PROJ(l,M1) and σ |= (Γ;X;M1). We can therefore use induction to
prove that Γσ ` X : 〈l :Tσ〉. The result follows using rule (Projection). 2

For (2), we assume that the invariant holds before the action is taken, and we need
to show that it holds afterwards. Therefore, we assume that Γσ ` A and Γσ ` X : Tσ.
By the induction hypothesis, we know that

(∃ρ)(ρ |= (E, (Γ;A)) ∧ Γσ = Γρ)
(∃ρ)(ρ |= (E, (Γ;X;T )) ∧ Γσ = Γρ ∧ Tσ = Tρ)

and we need to show that



138 CHAPTER 5. TYPES FOR πL

(∃ρ′)(ρ′ |= (E ′, G′) ∧ Γσ = Γρ′)
(∃ρ′)(ρ′ |= (E,G′) ∧ Γσ = Γρ′ ∧ Tσ = Tρ′)

where (E ′, G′) is the state after the action step. In each case, let G′ denote G after the
selected goal has been deleted. Then we know that ρ |= E, ρ |= G′, and ρ |= g, where
g is the selected subgoal. We consider each action in turn.

• Case (Γ; 0).

Then Γρ ` 0. The result is immediate, since 0 is consistent with any context.

• Case (Γ;A | B).

Then Γρ ` A | B. By the typing rules, it must be true that Γρ ` A and Γρ ` B,
hence ρ |= (Γ;A) and ρ |= (Γ;B) as required.

• Case (Γ; !A).

Then Γρ ` !A. By the typing rules, it must be true that Γρ ` A, hence ρ |= (Γ;A)
as required.

• Case (Γ; (ν a)A).

Then Γρ ` (ν a)A. By the typing rules, there must be some type T such that
Γρ, a : l T ` A. So let M be a fresh type variable, and let ρ′ be defined by
ρ′ = ρ ◦ {M 7→ l T}. Then ρ′ |= (Γ, a : M ;A) as required.

• Case (Γ;V (X).A).

Then Γρ ` V (X).A. By the typing rules, there must be some type T such that
Γρ ` V : ↓ T , Γρ ` T <: 〈〉, and Γρ,X : T ` A. So let T ′ = T (X,A) and M1, M2

be fresh type variables, and let ρ′ = ρ ◦ {M2 7→ ↓ T}. Then ρ′ |= SUB(T ′\〈M1〉, 〈〉),
ρ′ |= M2 = ↓ T ′\〈M1〉, ρ′ |= (Γ;X : T ′\〈M1〉;A), and ρ′ |= (Γ;V ;M2) as required.

• Case (Γ;V (F )).

Then Γρ ` V (F ). By the typing rules, there must be some type T such that
Γρ ` V : ↑ T , Γρ ` T <: 〈〉, and Γρ ` F : T . So let M1, M2, M3, M4 be fresh
type variables, and let ρ′ = ρ ◦ {M1 7→ T} ◦ {M2 7→ ↑ T} ◦ {M4 7→ T}. Then
ρ′ |= SUB(M1, 〈〉), ρ′ |= SUBFORM(M1,M2), ρ′ |= MERGE(M4, \〈M3〉),
ρ′ |= M2 = ↑M1, ρ′ |= (Γ;V ;M2), and ρ′ |= (Γ;F ;M4) as required.

• Case (Γ; c;M).

Then Γρ ` c : Mρ. By the typing rules, it must be true that Γρ ` K, hence
ρ |= M = K. So ρ |= (E ′, G′) as required.



5.8. TYPE INFERENCE 139

• Case (Γ;x;M).

Then Γρ, x : Mρ ` x : Mρ. By the typing rules, there must be some type T such
that Γρ, x : T ` �, hence ρ |= M = T . So ρ |= (E ′, G′) as required.

• Case (Γ; E ;M).

Then Γρ ` E : 〈〉. The result is immediate, since 〈〉 is consistent with any context.
Therefore, ρ |= M = 〈〉 and ρ |= (E ′, G′) as required.

• Case (Γ;X;M).

Then Γρ,X : Mρ ` X : Mρ. By the typing rules, there must be some type
T such that Γρ,X : T ` � and Γρ ` T <: 〈〉. Then ρ |= M = T , ρ |= SUB(T, 〈〉),
and ρ |= (E ′, G′) as required.

• Case (Γ;F 〈l=V 〉;M).

Then Γρ ` F 〈l=V 〉 : Mρ. By the typing rules, there must be some types T and S
such that Γρ ` F : T , Γρ ` T <: 〈〉, and Γρ ` V : S. So let M1, M2, M3 be fresh
type variables, and let ρ′ = ρ ◦ {M1 7→ T} ◦ {M3 7→ S}. Then ρ′ |= M2 = 〈l :M3〉,
ρ′ |= M = MERGE(M1,M2), ρ′ |= (Γ;F ;M1), and ρ′ |= (Γ;V ;M3) as required.

• Case (Γ;FX;M).

Then Γρ |= FX : Mρ. By the typing rules, there must be some types T and S
such that Γρ ` F : T , Γρ ` X : S, Γρ ` T <: 〈〉, ∀lk ∈ L(T )− L(S) ΓρS <: 〈〉\lk,
and ∀li ∈ L(T ) ∩ L(S) ΓρSli <: Tli . So let M1, M2 be fresh type variables, and
let ρ′ = ρ ◦ {M1 7→ T} ◦ {M2 7→ S}. Then ρ′ |= M = POLYMERGE(M1,M2),
ρ′ |= ELEMSUB(M2,M1), ρ′ |= (Γ;F ;M1), and ρ′ |= (Γ;X;M2) as required.

• Case (Γ;Xl;M).

Then Γρ ` Xl : Mρ. By the typing rules, there must be some type T such that
Γρ ` X : 〈l :T 〉. So let M1 be a fresh type variable, and ρ′ = ρ ◦ {M 7→ T}. Then
ρ′ |= M = PROJ(l,M1) and ρ′ |= (Γ;X;M1) as required. 2



140 CHAPTER 5. TYPES FOR πL



Chapter 6

A composition system

As shown in Section 2.6, a general-purpose composition language should support the
following features:

• Active Objects: Objects are computational entities that provide services based
on an encapsulated state. Objects may be active (concurrent), distributed, mo-
bile, and may live in different environments. In any case, objects can be viewed
as a kind of server, or process. The process view of objects provides a way to for-
malize the notion of objects. A composition language must be able to instantiate
and communicate with active objects.

• Components: Components are abstractions over the object space [74]. Com-
ponents may be fine-grained, when used to build individual objects, or coarse-
grained, when used to build compositions of objects. They may be also runtime
entities, but, more generally, components must be constructed (composed) and
instantiated before they are part in an application.

• Glue: Glue mechanisms and operators (connectors) define how associated com-
ponents interact with each other [107]. A composition language must support
the specification of new kinds of connectors.

• Object Models: A composition language must be able to bridge the gap be-
tween different object models. Objects and components that cannot be separated
from their individual runtime environments must still be able to communicate.
Connectors must achieve the mappings between these object models. Using a
formal semantics allow us to reason about properties of the model more easily.

• Reflection: Glue is often realized by intercepting messages between objects, and
performing some (reflective) transformations on these messages [10, 32]. Reflec-
tion is also important for exercising run-time control on configurations. Metaob-
jects are active objects that control the creation, instantiation, and composition

141



142 CHAPTER 6. A COMPOSITION SYSTEM

of other objects [52], and can be used to realize various forms of reflective be-
haviour.

• High-level syntax: The specification of an application as a composition of
components must be highly readable and compact. It is therefore important to
be able to assign a high-level syntax when defining components (as is possible in
languages like Smalltalk).

Furthermore, we have identified the key properties of software components and
component frameworks:

• A software component is an element of a component framework.

• A software component is a “static abstraction with plugs”.

• A component framework is a collection of software components with a software
architecture that determines the interfaces that components may have and the
rules governing their composition.

In the previous chapters, we have developed the πL-calculus and a corresponding
first-order type system as a formal basis for software composition. In this chapter
we present a Java-based composition system and the composition language Piccola.
Both, the system and the language are based on the πL-calculus, i.e., components and
their composition have a process semantics defined by the πL-calculus.

6.1 The architecture

An overview of the composition system Piccola is given in Figure 6.1. On top of the
system, we have the composition language Piccola. With Piccola we can define
composition scripts which are again components. Complied scripts are stored in the
Piccola component library. We have two kinds of information in the component
library: binaries and component interface definitions. The component binaries are in
fact a kind of object files that need to be bound to an executable agent image by
a component linker. The interface definitions are used by the Piccola compiler to
perform static checks when a corresponding component is used within a script. Interface
specifications are very similar to type libraries used in COM [60].

The kernel of the composition system is built using Java [7]. More precisely, on
top of the Java virtual machine (JVM) runs a virtual πL-machine [2] that implements
the πL-calculus. In the πL-machine each entity of the calculus is implemented by a
corresponding Java-class, i.e., we have classes for agents, channels, and forms.

The base class for agents is Agent that provides the methods run to start an agent
and iter to perform one evaluation step. The method run internally creates a new



6.1. THE ARCHITECTURE 143

ex
te

rn
al

 c
om

po
ne

nt
s

piL-machine

Piccola

Piccola component library

JNIJVMJNI

ex
te

rn
al

 c
om

po
ne

nt
s

Operating system

Figure 6.1: The architecture of the Piccola system.

Java-thread and associates the agent with the thread. The method iter is responsible
for the thread control. An agent thread is executed until the next continuation re-
turned by iter is null – the inactive agent. On receiving null, the current thread is
terminated. The different forms of agents are implemented by corresponding subclasses
like ParAgent for the parallel composition of two agents.

Channels in the πL-machine are represented by the classes that implement the
interface Channel. The interface Channel defines two methods: get and put which
are used to receive or the send a form along a channel, respectively.

In general, the programmer does not get directly in contact with channel objects.
However, there is one exception. The πL-machines provides the class ExtChannel

that implements a gateway to the Java system. Forms sent along such channels are
forwarded to an Java object that implements a so-called external service (e.g., print).

Finally, forms are implemented using the interface Form which defines the methods:
project and extend. The method project is used to perform a projection for a given
label, while method extend is responsible for creating a new forms either by binding
extension or polymorphic extension.

If we want to use objects or components that have not been written in Piccola,
we have to define an external service using class ExtChannel. However, the external
service must not necessarily be implemented solely in Java. Using the Java Native
Interface (JNI), we can integrate almost any object or component model into the
composition system using the wrapping technology of JNI. For example, we can define
a JNI-wrapper that allows us to call system commands directly from a Piccola script.
The corresponding input and output of the command are encoded into a form that has



144 CHAPTER 6. A COMPOSITION SYSTEM

Declarations ::= Declaration [ Declarations ]

Declaration ::= ’ new’ NameList
’ run’ Agent

Agent ::= PrimaryAgent [ ′|′ Agent ]

PrimaryAgent ::= ’ null’
Location ’ !’ Form
Location ’ ?’ ’ (’ Variable ’ )’ ’ do’ Agent
Location ’ ?∗’ ’ (’ Variable ’ )’ ’ do’ Agent
’ let’ Declarations ’ in’ Agent ’ end’
’ if ’ BoolExpression ’ then’ Agent [ ’ else’ Agent ] ’ end’
’ (’ Agent ’ )’

NameList ::= Name [ , NameList ]

BoolExpression ::= Value Built-in-BoolOperator Value

Location ::= Name
Variable ′.′ Label

Form ::= ’<’ [ FormElementList ] ’>’
Variable

FormElementList ::= FormElement [ ’ ,’ FormElementList ]

FormElement ::= Variable
Label ’ =’ Value

Value ::= Location
String
Number

Table 6.1: The core of Piccola.

the label stdin, stdout, and stderr.

Using Java as implementation language, we have an additional advantage. Due to
the platform independency of the Java byte code, the composition system can run on an
arbitrary architecture (if an implementation for this architecture exists). Furthermore,
using Java’s RMI facility, it will be even possible to execute remote services. This is,
however, part of future development.



6.2. TOWARDS A COMPOSITION LANGUAGE 145

6.2 Towards a composition language

In this section we develop a first version of the composition language Piccola. In
order to define Piccola, we use the scheme that has been successfully used for the
definition of Pict [89], i.e., we define a language core and extend it step by step with
higher-level syntactic forms that are translated into the core language.

6.2.1 The core language

The core is presented in Table 6.1. For describing the syntax, we rely on a meta
notation similar to the Backus-Naur Form that is commonly employed for language
definitions. Keywords and symbolic constants appear inside quotes. Optional expres-
sions are enclosed in square brackets.

The reader should note that a parallel composition of agents extends to the right
as far as possible. Therefore, if an input-prefixed agent is built using parallel compo-
sition of subagents, these subagents have to be written in parentheses (e.g., the agent
(a?(X) do b! <Y>) | c! <Z> is different from the agent a?(X) do b! <Y> | c! <Z>).

In contrast to the πL-calculus, the syntax for forms has been simplified. A form
X extended with a sequence of bindings <label1 = value1><label2 = value2> is
now written as a list of form elements: <X, label1 = value1, label2 = value2>.

In the following, we iteratively extend the syntax by defining higher-level abstrac-
tions. These higher-level abstractions come with a set of small examples that will moti-
vate the newly introduced concepts or aspects of the higher-level language. Throughout
this section, we show only informally the enhancements. The complete syntax defini-
tion of Piccola is given in Appendix E.

6.2.2 Procedures

Assume we have implemented a simple person database service that is located at a
global channel lookup. In order to query information about a person, we have to send
a form containing the labels name and result. The label name binds a string denoting
the name of the person while the label result maps a channel along which the query
result is returned. In the following example, we query information about a person
“Smith” and display the received information on the screen using a built-in display
agent located at channel print.

new result // reply channel

run lookup! <name="Smith",result=result> // invoke query

| result?(Info) do // wait for information

print!Info // print information

This definition, however, can immediately be simplified, because form variables can
host arbitrary forms. In fact, instead of using a newly created reply channel result,



146 CHAPTER 6. A COMPOSITION SYSTEM

we can directly bind the channel print to label result, such that the query result is
directly passed to the display agent. The simplified definition is shown in the following:

run lookup! <name="Smith",reply=print>

Now, we would like to provide this behaviour as a single service that is parameter-
ized with the person string to be queried. Therefore, we define a replicated input agent
that listens at channel printPerson waiting for a form containing at least a label name
and displays the corresponding information on the screen.

new printPerson // service channel

run printPerson?*(ArgForm) do // wait for a form

lookup! <ArgForm,result=print>

In order to invoke this service, we send a form containing the label name to the
channel printPerson:

printPerson! <name="Smith">

In fact, the above service definition is a parameterized agent abstraction. The
structure of the definition is so common that we provide a new element for the syntactic
domain Declaration; we extend the language with a procedure declaration:

Declaration ::= ’ procedure’ Name ’ (’ [ Variable ] ’ )’ ’ do’ Agent

Having the procedure declaration available, we also want to have a convenient way
to invoke procedures. Therefore, we add an application1The reader should note that
we allow arbitrary locations to denote procedure names. For example, an agent can
get access to a procedure by receiving a form that contains a binding which maps to
the procedure’s name. as additional syntactic form to primary agents:

Application ::= Location ’ (’ Form ’ )’

Now, assuming that the service lookup was also defined as procedure, the above
printPerson service can be rewritten using the new syntax:

procedure printPerson(ArgForm) do
lookup(<ArgForm,result=print>)

6.2.3 Value declaration

So far, new form variables can only be introduced by input-prefixed agents or proce-
dures. However, it is often convenient to make some variables globally accessible, such
that they appear “free” somewhere in the program text and provide a value through-
out the rest of that program. To define such variables and to assign them values, we
introduce a value declaration which is defined as follows:

Declaration ::= ’ value’ Variable ’ =’ Form

1(



6.2. TOWARDS A COMPOSITION LANGUAGE 147

6.2.4 Complex forms

All form expressions that we have encountered so far have been built up in a simple way,
using just variables and bindings from labels to core values. If we, however, want to
define updatable data structures, we need a packing technique that allows us to define
data and operations over them in one syntactic construct. Therefore, we extend the
syntax of forms and allow local declarations and call these constructs complex forms:

Form ::= ’ let’ Declaration ’ in’ Form ’ end’

For example, this syntactic construct together with the value declaration allows us to
define a storage cell as follows:

value AStorageCell =
let

new cell
run cell!<>
procedure Read(Args) do cell?(Val) do (Args.result!Val | cell!Val)
procedure Update(Val) do cell?(OldVal) do cell!Val

in
<Read=Read,Update=Update>

end

The contents of AStorageCell can be read by Read and updated by Update. This
cell can store arbitrary form values. Later, we will define a storage cell generator that
implements Read and Update as functions which will allow us to apply the operations
synchronously.

The reader should note that if a complex form appears in an output, we only send
the corresponding form value and keep the declarations private. For example, if we
have the following agent

AChannel!let new x in <val=x> end

then this agent is translated into the core construct

let new x in AChannel!<val=x> end

6.2.5 Nested forms

Up to now, forms are flat values, i.e., there is no support to add an additional structure
to forms. However, it is often necessary to keep things separated. For example, if a
service expects both a channel and a value, we have to send both in one form which is
typically written like

<channel=cname,AFormValue>

Unfortunately, this definition merges the channel and the form value, such that the
original structure information is lost. Therefore, we introduce so-called nested forms,
i.e., we extend Value by forms



148 CHAPTER 6. A COMPOSITION SYSTEM

Value ::= Form

whereby a form containing such a value is translated into a complex form.
The above example can now be rewritten as

<channel=cname,val=AFormValue>

This definition preserves the original structure and has to be read as

let
new r
run r?*(X) do X.result!AFormValue

in
<channel=cname,val=r>

end

6.2.6 Functions

Each time we have applied a form in an output agent or a call expression, we have
used “static” forms. To get a greater flexibility and even a more compact specification,
we add abstractions for “dynamic” forms. The term “dynamic” means that forms are
either generated by an agents that act as functions or that have themselves dynamic
elements. For functions, we extend Declarations as follows:

Declaration ::= ’ function’ Name ’ (’ [ Variable ] ’ )’ ’ =’ Form

In order to call a function, we add also the syntactic domain Application to forms.

Form ::= Application

However, in contrast to the procedures, the translation of functions uses result as
default label to return the function result. Therefore, a function call

AFun( AForm )

is transformed into

AFun( <AForm,result=AResultChannel> )

The result of a function may be available before the complete function body has
been processed. To stress this fact, we extend the syntax domain Form with a return
expression:

Form ::= ’ return’ Form

This expression should only be used within a function declaration, because the return
expression is translated to an output process that sends the form expression along a
channel mapped by label result. For example, if the formal parameter of a function
is named Args a return expression



6.2. TOWARDS A COMPOSITION LANGUAGE 149

return AForm

is translated into

Args.result!AForm

The reader should note that if one specifies a return expression within a procedure
this expression will evaluate to the null agent, because the necessary label result is
not defined.

6.2.7 Active forms

Active forms are forms that contain active elements, i.e., they have functions or pro-
cedure specifications or function calls in place of bindings. This concept allows us to
define form expressions that can act as objects. Therefore, we add the following form
elements:

FormElement ::= ’ procedure’ Name ’ (’ [ Variable ] ’ )’ ’ do’ Agent
’ function’ Name ’ (’ [ Variable ] ’ )’ ’ =’ Form
Application

The functions and procedures are translated into private agents. The names of the
functions and procedures are also used as label names.

An application, however, is transformed into a value declaration, i.e., the active
form is translated into a complex form that contains a value declaration and the value
replaces the application within the form. For example,

<l=AFun()>

is transformed into

let value v=AFun() in <l=v> end

However, we allow not only form elements to be active, but also forms. Therefore,
we extend forms with conditionals.

Form ::= ’ if ’ BoolExpression ’ then’ Form [ ’ else’ Form ] ’ end’

Conditional forms are transformed into a function that implements the conditional
form and a function call that triggers the evaluation of the conditional. The function
call itself replaces the conditional form (see Section 6.3 for further details).



150 CHAPTER 6. A COMPOSITION SYSTEM

6.2.8 Sequencing

In fact, the form <> can be considered as a continuation signal, i.e., it carries no
information but tells the calling agent that its request has been satisfied. Using this
signal, we can synchronize parallel running agents. Therefore, we provide a convenient
syntax to specify “invoke operation, wait for a signal as a result, and continue”:

PrimaryAgent ::= Form ’ ;’ PrimaryAgent
Form ::= Form ’ ;’ Form

In both, the lefthand-side form is evaluated before the righthand-side agent or form
becomes active. This means, however, that the value of the lefthand-side form is lost;
we only interested in the fact that this form has been evaluated, so that it is now safe
to proceed. For example, a form sequence f1;f2 has to be read as:

let value = f1 in f2 end

In some cases, however, one needs the value that has been produced within a form
sequence. In order to specify this request, we can use the return expression. For
example, a form sequence in the function

function AFun(X) = f1;return f2;f3

is transformed into a complex form:

function AFun(X)
let

value = f1
value v = f2
run let value = f3 in null end

in
v

end

The reader should note that the function AFun may return the value v to the caller
before the evaluation of form f3 has been completed. In fact, f3 does not belong to the
result value, but it represents some cleanup or post operation that guarantees some
invariants to be hold for further calls of AFun.

6.2.9 External services

In order to incorporate components that have not been developed in Piccola, we
provide an external declaration:

Declaration ::= ’ extern’ String Name

In this declaration String denotes a Java class that provides the interface imple-
mentation to the external service while Name can be an arbitrarily chosen name that
maps the Java class to a channel name. For example, a print service located at print
is declared as follows:



6.2. TOWARDS A COMPOSITION LANGUAGE 151

extern "Piccola.builtin.print" print

The Piccola system provides several Java classes to map external components.
However, a detailed description of them is beyond the scope of this paper.

6.2.10 Composition scripts

Finally, we add the facility to define separate modules or composition scripts. A script
is itself a component. i.e, it can be composed with other composition scripts.

Composition scripts can be separately compiled. The result is stored in a compo-
sition library. Composition scripts can load other scripts that have been previously
compiled. In fact, circular dependencies of composition scripts are not allowed.

A composition script is defined as follows:

Script ::= ’ module’ ModuleName [ Imports ] Declarations [ Main ]

Imports ::= ’ load’ NameList ’ ;’

Main ::= ’ main’ Agent

Inspired by Python [53], the main declaration specifies the agent that has to be
started in the Piccola environment when the script is executed at the top level.
Main declarations of imported scripts are ignored.

The reader should note that compositon scripts defined using the above syntax
allow only static composition. It is not possible to change such a system at runtime.

6.2.11 An example

Agents can assume different roles. In general, agents either act as servers or as clients.
Therefore, a server, like in Linda [25, 82], can be thought of as a blackboard where client
agents can write, read, and remove data. If the data is not present on the blackboard,
reading and removing suspend the the agent until they are available.

We can implement a blackboard in Piccola as follows:

module Blackboard

function newBlackboard() =
let
new chn

in
<
procedure write( Args ) do (chn!<Args.val()> | Args.result!<>),
procedure remove( Args ) do chn?(X) do Args.result!X,
procedure read( Args ) do chn?(X) do (Args.result!X | chn!X)

>
end



152 CHAPTER 6. A COMPOSITION SYSTEM

Note, although the predicates are implemented as procedures, they act as functions.
The reason is that a nondestructive read as needed in read is not part of the calculus,
but this can be modelled by an input-prefixed agent that reads a form from a given
channel and sends it back immediately on the same channel.

Now, using the blackboard module the storage cell can be written as follows:

module StorageCell

load Blackboard;

value StorageCell =
let
value Blackboard = newBlackboard()

in
Blackboard.write( <val=<val= 1>> );
<
function Read() = Blackboard.read(),
function Update(Val) = Blackboard.remove(); Blackboard.write( Val )

>
end

main StorageCell.Update( <val=<val="string value">> ); print!StorageCell.Read()

6.3 Interpretation of higher-level constructs

In the following we present an interpretation of the higher-level syntax constructs in
the core language. We use the meta variables a1, ..., an to range over agents, f1, ..., fn
to range over forms, and v1, ...,vn to range over values.

6.3.1 Procedures and procedure calls

A procedure declaration is translated into the core language as follows:

procedure AProc( AVar ) do a =⇒ new AProc
run AProc?*(AVar) do a

A procedure call is translated simply into a output agent:

AProc( f ) =⇒ AProc!f

6.3.2 Values declarations

A value declaration can be used to assign an arbitrary form value to a name.

let value v = f in a end =⇒ let new r in r!f | r?v do a end



6.3. INTERPRETATION OF HIGHER-LEVEL CONSTRUCTS 153

6.3.3 Functions and function calls

A function declaration is translated into the core language as follows:

function AFun( AVar ) = f =⇒ new AFun
run AFun?*(AVar) do AVar.result!f

A function call is translated simply into a output agent. However, we need to provide
a result binding that is be used for the function result. The result channel is denoted
by ResultChannel.

AFun( f ) =⇒ AFun!<f,result=ResultChannel>

6.3.4 Complex forms

The private declarations of a complex form are added to the private declarations of the
agent in which the complex form appears. For example, an output agent that emits a
complex form is translated as follows:

AChannel!let new x in <l=x> end =⇒ let new x in AChannel!<l=x> end

6.3.5 Nested forms

A nested form is translated as follows:

<l1=<f1>,...,ln=<fn>> =⇒

let
new r1,...,rn

run r1?*(X) do X.result!f1
...
run rn?*(X) do X.result!fn

in
<l1=r1,...,ln=rn>

end

6.3.6 Active forms

Active forms are translated into complex forms:

<function AFun(X) = f> =⇒ let function AFun(X) = f in <AFun=AFun> end

<procedure AProc(X) do a> =⇒ let procedure AProc(X) do a in <AProc=AProc> end

<l=AFun(f)> =⇒ let value v = AFun(f) in <l=v> end

<AFun(f),l=x> =⇒ let value v = AFun(f) in <v,l=x> end



154 CHAPTER 6. A COMPOSITION SYSTEM

if v1 = v2 then f1 else f2 end =⇒

let
new chn
run chn?(Args) do

if Args.left = Args.right
then Args.result!f1
else Args.result!f2 end

in
<chn( <left=v1,right=v2> )>

end

6.3.7 Sequencing

Sequence expressions are transformed as follows:

f;a =⇒ let value = f in a end
f; =⇒ let value = f in null end

f1;f2 =⇒ let value = f1 in f2 end

6.4 Results and shortcomings

We have presented a first design of the (untyped) composition language Piccola,
based on the πL-calculus. This development is driven by a set of key requirements for
a composition language [76]. Furthermore, Piccola provides support such that (i)
an application may run on a variety of hardware and software platforms (the runtime
system in built in Java), and (ii) open applications may be inherently concurrent and
distributed (Piccola’s formal semantics is based on a process calculus).

Although the set of basic language primitives of Piccola is relatively small, com-
ponent scripts already facilitate the specification and modeling of generic abstractions
for adaptation (gluing) and composition of software components. For example, we can
define the abstraction future that is used in concurrent object-based programming al-
lowing a client to continue execution after invocation of a service. In fact, futures are
Proxies that mimic the “wait-by-necessity” construct found in concurrent languages.
With normal invocation the client blocks until the result is delivered along the reply
channel. With futures, the client only blocks if the result is needed before it is available.

In Piccola, we can implement a future as follows. A future wraps a service,
returning a new form with a function val that provides access to the wrapped service.
The function val maintains a private blackboard slot that is used to store the result
of original service. Now, if the wrapped service is invoked we return immediately
a function that returns the service value stored in slot. In parallel, we start an
agent (slot.write( <val = Service.val( X )> )) that invokes the original service
and writes the result to slot. If the user tries to access the service result the call
slot.read() will block until slot has been filled.



6.4. RESULTS AND SHORTCOMINGS 155

function future( Service ) =
<

function val( X ) =
let

value slot = newBlackBoard()
in

return <function val () = slot.read()>;
slot.write( <val = Service.val( X )> )

end
>

Assume a service is denoted by form S. We can now use the future abstraction as
follows:

value r = future( <val = S> ).val( X ) – r is a future containing the result of S( X )

Using r.val() we get the value of the future.
Similarly, it is easily possible to implement generic synchronization policies [55, 105],

mixins [15, 114]. Moreover, the object encodings presented in Chapter 3 can easily be
modelled in Piccola by replacing records with forms.

For the moment Piccola is untyped. However, most component approaches (e.g.,
COM [98], CORBA [79], or Darwin [54]) equip partly or fully the interface specifications
with type annotations. One argument for this decision is that only fully and explic-
itly typed interfaces can benefit from type checking. Furthermore, an independent
development of both the client and the provider side may be more or less impossible
without appropriate type information (e.g., the current version of Piccola already
records which names have been used to denote forms). Therefore, a next extension of
Piccola will support type annotations based on the type system presented in Chapter
5.



156 CHAPTER 6. A COMPOSITION SYSTEM



Chapter 7

Conclusions and future work

We have presented the πL-calculus, an offspring of the asynchronous π-calculus, and
a first design of the composition language Piccola, based on the πL-calculus. The
development of both is driven by a set of key requirements for a composition language
shown in Section 2.6. Moreover, the composition language Piccola provides support
such that (i) an application may run on a variety of hardware and software platforms
(the runtime system in built in Java), and (ii) open applications may be inherently
concurrent and distributed (Piccola’s formal semantics is based on a process calcu-
lus).

The πL-calculus, and hence Piccola, facilitates the specification and modeling of
both (concurrent) compositional abstractions and generic glue code for adaptation and
composition of software components. Although our examples are neither exhaustive
nor canonical, we think they represent to some degree the essence component-oriented
software development.

Ultimately we are targeting the development of open, hence distributed systems
[78]. Given the ad hoc way in which the development of open systems is supported
in existing languages, we have identified the need for composing software from prede-
fined, plug-compatible software components. The overall goal of our work, and hence
the development of Piccola, is the development of a formal model for software com-
position, integrating a black-box framework for modelling objects and components,
and an executable composition language for specifying components and applications
as compositions of software components.

We are planning a further development of the πL-calculus to address various other
practical problems. For example: Should labels be first-class values? Generic glue code
may need to learn about new labels representing extended interfaces of components.
Do first-class forms suffice to model a general reflective behaviour? Glue code is often
reflective in nature. Is it enough to reflect over messages or do we need more?

In the field of concurrent and distributed systems, various process calculi have
recently been proposed [20, 34, 119] that incorporate other aspects of distributed com-

157



158 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

putation, such as communication failure, distributed scopes, and security. For the
moment, we focus on composed systems within one administrative domain and do not
take into account other distribution aspects. But a proper solution that addresses these
aspects will play a crucial role when we want to model composition between distributed
components.

To our knowledge, it is the first time that asymmetric record concatenation (poly-
morphic form extension) has been fully incorporated in a programming language. More-
over, it is possible to do automatic type reconstruction starting form a totally untyped
program. Polymorphic form extension becomes a very useful feature when modelling
higher-level compositional abstractions like classes and class inheritance. In fact, with
polymorphic form extension we expect to get a well-defined behaviour of multiple inher-
itance. When combining two or more features then, by the definition of the calculus, it
is always clear which services are available after applying polymorphic form extension.
Furthermore, polymorphic extension supports the view that subclassing is subtyping
like in C++. However, we are not restricted to that view. We simply get this view for
free while still being free to chose another.

The current component model of Piccola supports only static composition, i.e.,
all elements of a composed system must be known (available) at compile- and link-
time. This model does therefore not support a replacement of components at runtime.
However, we already have a language feature that is prepared to support a dynamic
loading of components.

A composition script can load other scripts using the declaration load. In order the
support dynamic loading of components, we can change the semantics of load, so that
it behaves as a built-in service. As result of loading a service dynamically at runtime
the actual system is updated by the newly loaded component. By update, we mean
that the load command supports both the replacement of an existing component or
the extension of the system with a new component.

A dynamic loading of components is very similar to the QueryInterface method
of the IUnknown interface of COM [60, 98]. This, however, requires a dynamic com-
ponent model, i.e., components are itself agents that provide a query interface for
component services. The composition system will then register all loaded components
in a dictionary and provides the application programmer a handle that gives access
to the component. This handle can then be used to actually get access to a compo-
nent service. Due to the fact that the composition system maintains all components
and provides only handles for components to the application programmer, a dynamic
loading or replacement of components can be done transparently.

The actual type system for the πL-calculus does not support parametric polymor-
phism, i.e., we cannot define agents that operate uniformly on arbitrary values. For
example, if we have a generic implementation of a service Add that, when invoked with
two integer arguments, returns the sum of the integer, or, when invoked with string
arguments, returns the concatenation of the strings, then we need to define two πL-



159

agent. In this case, however, we know that the different types will not break the system.
Therefore, we may add a type paramenter to the agent Add that is instantiated with
the actual types of the input argument. For example, instead of defining two agents

Add : ↓ 〈l :Int〉〈r :Int〉〈result :↑ 〈val :Int〉〉

and

Concat : ↓ 〈l :String〉〈r :String〉〈result :↑ 〈val :String〉〉

we may specify simply

Add [: T :] : ↓ 〈l :T 〉〈r :T 〉〈result :↑ 〈val :T 〉〉

where T is a type parameter. However, there is in general no decision procedure for
subtyping for such a type system, which means that such a type systems are undecidable
[22, 88]. The simplest solution at the moment consists in requiring equal universal
quantifier bounds.



160 CHAPTER 7. CONCLUSIONS AND FUTURE WORK



Appendix A

Pict

We now present a rigorous definition of the syntax and semantics of core elements of
Pict. This should help the reader to understand the subsequent encodings of our
component object model. The full definition of Pict can be found in [89].

A.1 Simple processes

The simplest process that can be written in Pict is skip. This process has no ob-
servable bahaviour and is equivalent with the inactive process 0 of the π-calculus. To
make this process into a Pict program we prefix it with the keywork run:

run skip

Since the process skip does nothing, its execution immediately finishes. The keyword
run can be used to prefix abitrary processes and therefore force their execution.

RunDeclaration ::= run Process

A.2 Channels and types

Besides processes, the most primitive entities in the π-calculus are names that represent
communication channels. In fact, each channel is a port over which one process may
communicate with another. Every channel must be created before it can be used.

ChannelDeclaration ::= new Name [ : ChannelType ]

The declaration new x : ∧T creates a fresh channel, different from any other channel
in the system, and makes the name x refer to this channel within the scope of its
declaration. Values sent and received along x will have the type T.

161



162 APPENDIX A. PICT

Pict defines the following basic types: Bool, Char, Int, and String. Additionally,
we have the following composite types: channel types, tuple types, record types, and
recursive types.

CompositeTypes ::= ∧Type Input/output channel
!Type Output channel
?Type Input channel
[Type1,..., Typen] Tuple type
Record [l1 :Type1, ..., ln :Typen] end Record type
Rec(Name ) Type Recursive type

Channel types are enriched by distinguishing between input and output capabilities of
channels. This is driven by the observation that in practice, it is relatively rare that
a channel is used both for input and output in the same region of the program. This
fact is captured by two refinements of the channel type ∧T: a type !T giving only the
capability to write values of type T and, symmetrically, a type ?T giving only the
capability to read values of type T.

Recursive types allow one to build and manipulate recursive data structures like
lists and trees, or allow one to define binary methods [18]. For example, suppose we
want to write a program in which a channel x is used to send itself. A valid type for
x would be something like:

x : ∧(∧(∧(∧(∧(∧(...))))))

Since x is a channel, the type of x must be prefixed by ∧. But the type of the values
carried along x is the same as the type of x itself. Therefore, the initial ∧ has to be
applied to some type beginning with another ∧, which has to be applied to a type
beginning with a ∧, and so on. A finite abbreviation for this inifinitely long type
expression is

Rec(X) ∧X

which has to read as a type of the form ∧X, where X stands for the type itself. However,
a recursive type cannot be used in positions, where a channel type is required. In
order to use recursive types, Pict provides both explicit unfolding and folding that
transforms a value with a recursive type into one with a nonrecursive type and one
with a recursive type, respectively.

A.3 Values

The entities that can be communicated along channels are called values. They include
channels, tuples, and records.



A.4. PROCESSES 163

Value ::= Name variable
[V alue, ..., V alue] tuple
record end empty record
Value with Label = Value end record extension

As in the π-calculus, there are no channel constants, only variables ranging over chan-
nels. Record values are constructed by extending the empty record with a new single
field. To define a multi-field record we use the usual form record l1 = v1, ..., ln =
vn end as an abbreviation for record end with l1 = v1 end...with ln = vn end.

If rval is a record that contains already a field with the label l, then the record
extension rval with l = newval creates a copy of rval where the field labelled with
l is updated with the value newval. If label l is not part of rval, then the record
extension creates a copy of rval extended with a new field labelled with l.

A.4 Processes

The basic forms of processes are input prefixes, output atoms, parallel composition,
and process prefixed by local declarations1.

Process ::= Value ! Value Output atom
Value ? Pat > Process Input prefix
Value ?* Pat > Process Replicated input
Process | Process Parallel composition
let Declaration in Process Declaration

The general form of a sender process is x!v, where x is a channel and v is a value.
Symmetrically, a receiver process has the form x?p > e, where x is a channel, p is a
pattern. For example, given the following two processes

x!3 | (x?p > printi!p)

If we prefix them with run, then the sender process x!3 will send the integer value 3
along channel x. The receiver process will match received value against pattern p to
yield a set of bindings for the variables in p, i.e. matches value 3 with variable pattern
p. The receiver process will evolve into the process

printi!3

This sender process will in turn communicate with the Pict environment, where the
channel printi is defined. Actually, the complete Pict program is

new x
run x!3 | ( x?p > printi!p)

1At this stage Declaration is a list of new and run declarations.



164 APPENDIX A. PICT

Pattern in input prefixes are defined as follows:

Pat ::= Name Variable pattern
[ Pat1, ..., Patn ] Tuple pattern
record Label1 = Pat1, ..., Labeln = Patn end Record pattern

Wildcard pattern

The substitution of pattern is a finite map from variables to values. A substitution
mapping of the variable x to the value v is written {x 7→ v}. The empty substitution
is written {}. If σ1 and σ2 are substitutions with disjoint domains, then σ1 ∪ σ2 is a
substitution that combines the effects of σ1 and σ2.

When a value v is sucessfuly matched by a pattern p, the result is a substitution
match(p, v), defined as follows:

match(x, v) = {x 7→ v}
match([p1,...,pn],[v1,...vn]) = match(p1, v1) ∪ ... ∪ match(pn, vn)
match( , v) = {}
match(record end, record end) = {}
match(record j1=p1,...,jn=pn,l=p end, v0 with l=v end)

= match(p, v) ∪ match(record j1=p1,...,jn=pn end, v0)
match(record j1=p1,...,jn=pn end, v0 with l=v end)

= match(record j1=p1,...,jn=pn end, v0), if l /∈ {j1,...,jn}

The reduction relation e→ e’ defines what can happen as the evalution of a program
proceeds. In fact, the relation may be read as ”process e can evolve to the process e’”.

The most basic rule of reduction is the one specifying what happens when an input
prefix meets an output atom:

match(p,v) defined
x!v | (x?p > e)→ match(p,v)(e)

Similarly, when a replicated input prefix meets an output atom, the result is a running
instance of the body of the input prefix plus a fresh copy of the replicated input itself:

match(p,v) defined
x!v | (x?∗p > e)→ match(p,v)(e) | (x?∗p > e)

The next two rules allow reduction to proceed under parallel composition and dec-
laration:

e1 → e′1
e1 | e2 → e′1 | e2

e→ e′

let d in e end→ let d in e′ end



A.5. DERIVED FORMS 165

Finally, we have structural congruence rules. The first two state that parallel com-
position is commutative and associative, while the third, often called the rule of scope
extrusion, states that a new channel x can be communicated outside its original scope:

e1 | e2 ≡ e2 | e1

(e1 | e2) | e3 ≡ e1 (e2 | e3)

x /∈ fn(e2)
let new x in e1 end | e2 ≡ let new x in e1 | e2 end

A.5 Derived forms

The previous definitions form the very basic core of Pict. However, it is not very
convienient to program using only the core constructs. Pict defines a set of higher-
level abstractions promoting Pict to a real programming language. In the subsequent
presentation we will present some of these higher-level abstractions. In particular, we
present the process abstraction def and abs, the function abstraction of processes, the
value declaration val, and sequencing.

The abstraction def assigns a process expression a name. This name can be used
in the rest of the program as abbreviation for the process expression. Moreover, the
abstraction def allows one to define mutual recursive process expressions. The abstrac-
tion def has the form

ProcessDeclaration ::= def Name1 Pat1 > Process1

[ and ... and Namen Patn > Processn ]

and is translated to

new Name1,..., Namen
run Name1?∗Pat1 > Process1

...
run Namen?∗Patn > Processn

For example, we can define two processes tt and ff taking as parameter a boolean
an signal at the correspoding channel.

def tt[b:∧[∧[],∧[]]] > b?[t,f] > t![]
and ff[b:∧[∧[],∧[]]] > b?[t,f] > f![]

Then tt![b] and ff![b] can be used in the rest of the program as abbreviation for the
processes b?[t,f] > t![] and b?[t,f] > f![], respectively.

Anonymous process declarations like let def x[] > e in x end are often useful.
Therefore, Pict provides a special form allowing the useless x to be omitted:



166 APPENDIX A. PICT

AnonymousProcessDeclaration ::= abs Pat > Process

which is translated to

let def x Pat > Process in x end

In Pict a function is implemented by a process that expects input values plus a
reply channel along which the function result is sent. Assume we want to define a
function plusone that increments the value of an integer by one. We can define this
function as follows2:

def plusone[v,r] > r!(n+1)

new r
run plusone![3,r] | (r?x > printi!x)

Here, the channel r takes the role of the reply channel along the result can be read.
The program fragment just ”calls” the function plusone and, in parallel, waits for the
result to be sent along channel r. This kind of process definition is so common that
Pict provides a higher-level abstraction for it:

FunctionDeclaration ::= def Name[p1,...,pn] = Value

which is translated to

def Name[p1,...,pn,r] > r!Value

For example, the function plusone can now be rewritten

def plusone[v] = n+1

printi!(plusone[3])

Usually, while excecuting a program we need to store some temporary results. The
value declaration val in Pict serves exactly this purpose. The val declaration can be
used to assign a name to an abitrary value.

ValueDeclaration ::= let val Pat = Value in Process end

is translated to

let new r in r!Value| r?Pat > Process end

The expression on the left of the = can be an arbitrary pattern, a val declaration can
be used to bind several variables at once. For example,

2The operator + is a builtin channel in Pict.



A.5. DERIVED FORMS 167

val [x,y] = [[],[a]]

binds x to [] and y to [a]. The reader should note that the translation implies that
the body of the val declaration cannot proceeed until all bindings introduced be val
have been established.

Finally, a very common result is a continuation signal, which carries no information
but tells the calling process that its request has been satisfied and it is now safe to
continue. The continuation signal is encoded as empty tuple []. Pict provides a
”statement” operator ; to build sequences of values. A sequence

v;e

is translated to

let val [] = v in e end end

For example, given th builtin function prInt which sends a continuation signal upon
finishing, we can define a process that will always print the number 3 followed by the
number 4.

run prInt[3];prInt[4];skip

The final skip is needed in order to finish to calculation. Fortunately, there exists an
abbreviation in Pict that allows one to omit skip such that the process can simply
be rewritten as

run prInt[3];prInt[4];



168 APPENDIX A. PICT



Appendix B

Typing rules for πL

B.1 Judgements

Γ ` � Γ is a well-formed environment
Γ ` K K is a well-formed constant type in Γ
Γ ` T T is a well-formed type in Γ
Γ ` A A is a well-formed agent in Γ
Γ ` F F is a well-formed form in Γ
Γ ` v : T value v has type T in Γ
Γ ` F : T form F has type T in Γ
Γ ` T <: S T is a subtype of S in Γ

B.2 Basic rules

(Empty environment)
∅ ` �

(Environment v)
Γ ` T v /∈ dom(Γ)

Γ, v : T ` �

(Constant type)
Γ ` � K ∈ Basic

Γ ` K

(Empty form type)

Γ ` 〈〉

169



170 APPENDIX B. TYPING RULES FOR πL

(Constant)
Γ ` K

Γ ` c : K

(Channel)
Γ, x : T ` �

Γ, x : T ` x : T

B.3 Subtyping rules for types

(Subtyping reflexivity)
Γ ` T

Γ ` T <: T

(Subtyping transitivity)
Γ ` T <: S Γ ` S <: U

Γ ` T <: U

(Subsumption)
Γ ` v : T Γ ` T <: S

Γ ` v : S

B.4 Rules for assigning types to forms

(Empty form)
Γ ` E : 〈〉

(Form variable)
Γ, X : T ` � Γ ` T <: 〈〉

Γ, X : T ` X : T

(Binding extension)
Γ ` F : T Γ ` T <: 〈〉 Γ ` V : S

Γ ` F 〈l=V 〉 : merge(T 〈l :S〉)

(Polymorphic extension)

Γ ` F : T Γ ` X : S Γ ` T <: 〈〉 ∀ lk ∈ L(T )− L(S) Γ ` S <: 〈〉\lk
∀ li ∈ L(T ) ∩ L(S) Γ ` Sli <: Tli

Γ ` FX : merge(TS)



B.5. SUBTYPING RULES FOR FORM TYPES 171

(Projection)
Γ ` X : 〈l :T 〉

Γ ` Xl : T

B.5 Subtyping rules for form types

(Form subtyping empty form)
Γ ` T1 ... Γ ` Tn li distinct

Γ ` 〈l1 :T1〉...〈ln :Tn〉 <: 〈〉

(Form subtyping)
Γ ` T1 <: S1 ... Γ ` Tn <: Sn Γ ` Tn+1 ... Γ ` Tn+m li distinct

Γ ` 〈l1 :T1〉...〈ln+m :Tn+m〉 <: 〈l1 :S1〉...〈ln :Sn〉

(Subtyping restriction)
Γ ` T <: 〈〉

Γ ` T\l <: 〈〉

(Subtyping restricted types)
Γ ` T <: 〈〉 Γ ` S <: T

Γ ` S\l <: T\l

(Subtyping add restriction)
Γ ` T <: 〈〉 Γ ` S <: T l /∈ L(T )

Γ ` S\l <: T

B.6 Subtyping rules for channels

(Channel subtyping)
Γ ` S <: T Γ ` T <: S

Γ ` l S <: l T

(Output channel subtyping)
Γ ` T <: S

Γ ` ↑ S <: ↑ T

(Input channel subtyping)
Γ ` S <: T

Γ ` ↓ S <: ↓ T



172 APPENDIX B. TYPING RULES FOR πL

(Output channel channel subtyping)
Γ ` l T <: ↑ T

(Input channel channel subtyping)
Γ ` l T <: ↓ T

B.7 Rules for agents

(Null)
Γ ` 0

(Parallel composition)
Γ ` A Γ ` B

Γ ` A | B

(Replication)
Γ ` V (X).A

Γ ` !V (X).A

(Restriction)
Γ, a : l T ` A

Γ ` (ν a : l T )A

(Input)
Γ ` V : ↓ T Γ ` T <: 〈〉 Γ, X : T ` A

Γ ` V (X).A

(Output)
Γ ` V : ↑ T Γ ` F : T Γ ` T <: 〈〉

Γ ` V (F )



Appendix C

The algorithm Unify

Unify(∅) = {}

Unify(E ∪ {K1 = K2}) =
if K1 6≡ K2 then fail

else Unify(E)

Unify(E ∪ {M = T}) =
if M ≡ T then Unify(E)

else if M occurs in T then fail
else {M 7→ T} ◦ Unify(E{T/M})

Unify(E ∪ {T = M}) = Unify(E ∪ {M = T})

Unify(E ∪ {↑ T1 = ↑ T2}) = Unify(E ∪ {T2 = T1})

Unify(E ∪ {l T1 = ↓ T2}) = Unify(E ∪ {T2 = T1})

Unify(E ∪ {l T1 = ↑ T2}) = Unify(E ∪ {T2 = T1})

Unify(E ∪ {l T1 = l T2}) = Unify(E ∪ {T1 = T2})

Unify(E ∪ {↓ T1 = ↓ T2}) = Unify(E ∪ {T1 = T2})

Unify(E ∪ {↑ T1 = ↓ T2}) = Unify(E ∪ {T1 = T2})

Unify(E ∪ {↓ T1 = ↑ T2}) = Unify(E ∪ {T1 = T2})

173



174 APPENDIX C. THE ALGORITHM UNIFY

Unify(E ∪ {↑ T1 = l T2}) = Unify(E ∪ {T1 = T2})

Unify(E ∪ {↓ T1 = l T2}) = Unify(E ∪ {T1 = T2})

Unify(E ∪ {FT1 = FT2}) =
case FT1 = T\〈MT1〉〈MT2〉 and FT2 = S\〈MS1〉〈MS2〉:

if L(S)− L(T ) = ∅ and L(T )− L(S) = ∅
then Unify(E ∪ {MT1 = MS1} ∪ {MT2 = MS2})

if L(S)− L(T ) = ∅
then let Delta = 〈l1 :U1〉...〈ln :Un〉 with l1, ..., ln ∈ L(T )− L(S) in

Unify(E ∪ {MT1 = MS1} ∪ {MS2 = Delta} ∪ {MT2 = 〈〉})
if L(T )− L(S) = ∅

then let Delta = 〈l1 :U1〉...〈ln :Un〉 with l1, ..., ln ∈ L(S)− L(T ) in
Unify(E ∪ {MT1 = MS1} ∪ {MT2 = Delta} ∪ {MS2 = 〈〉})

else
let Delta1 = 〈l1 :U1〉...〈ln :Un〉 with l1, ..., ln ∈ L(S)− L(T ) and

Delta2 = 〈l1 :U1〉...〈ln :Un〉 with l1, ..., ln ∈ L(T )− L(S) in
Unify(E ∪ {MT1 = MS1} ∪ {MT2 = Delta1} ∪ {MS2 = Delta2})

case FT1 = T\〈MT1〉〈MT2〉 and FT2 = S\〈MS〉:
if L(S)− L(T ) = ∅ then Unify(E ∪ {MT1 = MS} ∪ {T = S})

else let Delta = 〈l1 :U1〉...〈ln :Un〉 with l1, ..., ln ∈ L(S)− L(T ) in
Unify(E ∪ {MT1 = MS} ∪ {MT2 = Delta})

case FT1 = T\〈MT 〉 and FT2 = S\〈MS1〉〈MS2〉:
if L(T )− L(S) = ∅ then Unify(E ∪ {MT = MS1} ∪ {T = S})

else let Delta = 〈l1 :U1〉...〈ln :Un〉 with l1, ..., ln ∈ L(T )− L(S) in
Unify(E ∪ {MT = MS1} ∪ {MS2 = Delta})

case FT1 = T\〈MT 〉 and FT2 = S\〈MS〉:
Unify(E ∪ {MT = MS)} ∪ { (Tli = Sli) | li ∈ L(T ) ∩ L(S) })

Unify(E ∪ {S = PROJ(l, T )}) =
if Tl = PROJ(l, T ) then Unify(E ∪ {S = Tl})

else fail

Unify(E ∪ {SUB(T, S)}) =
if SUB(T, S) then Unify(E)

else fail



175

Unify(E ∪ {SUBFORM(FT,CT )}) =
if SUBFORM(FT,CT ) then Unify(E)

else fail

Unify(E ∪ {U = MERGE(T, S)}) =
let TS = MERGE(T, S) in

Unify(E ∪ {U = TS})

Unify(E ∪ {U = POLYMERGE(T\〈MT 〉, S\〈MS〉)}) =
let (TS,MS, Lackform) = POLYMERGE(T\〈MT 〉, S\〈MS〉) in
{MS 7→ Lackform} ◦ Unify(E{Lackform/MS} ∪ {U = TS})

Unify(E ∪ {ELEMSUB(S, T )}) =
if ELEMSUB(S, T ) then Unify(E)

else fail



176 APPENDIX C. THE ALGORITHM UNIFY



Appendix D

Algorithm Collect

Collect(X;A) =
let ApplicationFound = false in

let ApplicationType = CollectAgentApplication(X;A; 〈〉) in
if ApplicationFound = true then return ApplicationType
else return M , M fresh

CollectAgentApplication(X; 0;T ) = T

CollectAgentApplication(X;A1 | A2;T ) =
return CollectAgentApplication(X;A2;CollectAgentApplication(X;A1;T ))

CollectAgentApplication(X; !A;T ) =
return CollectAgentApplication(X;A;T )

CollectAgentApplication(X; (ν a)A;T ) =
return CollectAgentApplication(X;A;T )

CollectAgentApplication(X;V (Y ).A;T ) =
if X 6= Y
then return CollectAgentApplication(X;A; CollectVApplication(X;V ;T ))
else return CollectVApplication(X;V ;T )

CollectAgentApplication(X;V (F );T ) =
return CollectFApplication(X;F ; CollectVApplication(X;V ;T ))

177



178 APPENDIX D. ALGORITHM COLLECT

CollectVApplication(X; c;T ) = T

CollectVApplication(X;x;T ) = T

CollectVApplication(X;Yl;T ) =
if X = Y then ApplicationFound := true

if l /∈ L(T ) then return T 〈l :M〉, M fresh
else return T

else return T

CollectFApplication(X; E ;T ) = T

CollectFApplication(X;Y ;T ) =
if X = Y then ApplicationFound := true

if T does not contain a form tag then return T 〈M〉, M fresh
else return T

else return T

CollectFApplication(X;FY ;T ) =
return CollectFApplication(X;F ; CollectFApplication(X;Y ;T ))

CollectFApplication(X;F 〈l=V 〉;T ) =
return CollectFApplication(X;F ; CollectVApplication(X;V ;T ))



Appendix E

Piccola language definition

Script ::= ’ module’ Name [ Imports ] Declarations [ Main ]

Imports ::= ’ load’ NameList ’ ;’

NameList ::= Name [ ’ ,’ NameList ]

Declarations ::= Declaration [ Declarations ]

Declaration ::= ’ extern’ String Name
’ new’ NameList
’ run’ Agent
’ procedure’ Name ’ (’ [ Name ] ’ )’ ’ do’ Agent
’ value’ Name ’ =’ Form
’ function’ Name ’ (’ [ Name ] ’ )’ ’ =’ Form

Main ::= ’ main’ Agent

Agent ::= PrimaryAgent [ ’ |’ Agent ]

179



180 APPENDIX E. PICCOLA LANGUAGE DEFINITION

PrimaryAgent ::= ’ null’
Location ’ !’ Form
Location ’ ?’ ’ (’ Name ’ )’ ’ do’ Agent
Location ’ ?∗’ ’ (’ Name ’ )’ ’ do’ Agent
’ let’ Declarations ’ in’ Agent ’ end’
’ if ’ BoolExpression ’ then’ Agent [ ’ else’ Agent ] ’ end’
Application
’ (’ Agent ’ )’
PrimaryForm ’ ;’ [ Agent ]

BoolExpression ::= Value Built-in-BoolOperator Value

Location ::= Name
Variable ’ .’ Label
PrimaryForm ’ .’ Label

Application ::= Location ’ (’ [ Form ] ’ )’

Form ::= SeqForm

SeqForm ::= PrimaryForm [ ’ ;’ SeqForm ]

PrimaryForm ::= ’<’ [ FormElementList ] ’>’
’ let’ Declarations ’ in’ Form ’ end’
Application
’ return’ PrimaryForm
’ if ’ BoolExpression ’ then’ Form [ ’ else’ Form ] ’ end’
’ (’ Form ’ )’
Variable

FormElementList ::= FormElement [ ’ ,’ FormElementList ]

FormElement ::= Variable
Application
Label ’ =’ Value
’ procedure’ Name ’ (’ [ Name ] ’ )’ ’ do’ Agent
’ function’ Name ’ (’ [ Name ] ’ )’ ’ =’ Form



181

Value ::= Location
Number
String
Form



182 APPENDIX E. PICCOLA LANGUAGE DEFINITION



Bibliography

[1] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.

[2] Franz Achermann. JPict – a framework for π-Agents. unpublished manuscript,
1998.

[3] Mehmet Aksit. On the Design of the Object-Oriented Language Sina. PhD thesis,
University of Twente, NL, 1989.

[4] Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On Bisimulations
for the Asynchronous π-calculus. Technical Report RR-2913, INRIA Sophia-
Antipolis, June 1996.

[5] Pierre America, Jaco de Bakker, Joost N. Kok, and Jan Rutten. Operational
Semantics of a Parallel Object-Oriented Language. In Proceedings of Principles
of Programming Languages (POPL’86), pages 194–208, January 1986.

[6] American National Standards Institute. The Programming Language Ada Refer-
ence Manual, LNCS 155, Springer, 1983.

[7] Ken Arnold and James Gosling. The Java Programming Language. Addison-
Wesley, May 1996.

[8] John Barnes. Programming in Ada’95. Addison-Wesley, 1995.

[9] Manuel Barrio Solorzano. Estudio de Aspectos Dinamicos en Sistemas Orientados
al Objecto. PhD thesis, Universidad de Valladolid, September 1995.

[10] Lodewijk Bergmans. Composing Concurrent Objects. PhD thesis, University of
Twente, NL, June 1994.

[11] Gérard Berry and Gérard Boudol. The Chemical Abstract Machine. In Proceed-
ings POPL ’90, pages 81–94, San Francisco, January 1990.

[12] Borland International. Delphi Benutzerhandbuch, 1995.

183



184 BIBLIOGRAPHY

[13] Gérard Boudol. Asynchony and the π-calculus. Notes, 1992.

[14] Niels Boyen, Carine Lucas, and Patrick Steyaert. Generalised mixin-based in-
heritance to support multiple inheritance. Technical Report vub-prog-tr-94-12,
Programming Technology Lab, Vrije Universiteit Brussel, 1994.

[15] Gilad Bracha and William Cook. Mixin-based Inheritance. In Norman Mey-
rowitz, editor, Proceedings OOPSLA/ECOOP ’90, volume 25 of ACM SIGPLAN
Notices, pages 303–311, October 1990.

[16] K. Brockschmidt. Inside OLE 2: the Fast Track to Building Powerful Object-
Oriented Applications. Microsoft Press, 1993.

[17] Nat Brown and Charlie Kindel. Distributed Component Object Model Protocol –
DCOM/1.0. Microsoft Corporation, January 1998.

[18] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Objects Group,
Gary T. Leavens, and Benjamin Pierce. On binary methods. To appear in Theory
and Practice of Object Systems, 1996.

[19] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture: A System of Patterns.
Wiley, May 1996.

[20] L. Cardelli and A. D. Gordon. Mobile ambients. Lecture Notes in Computer
Science, 1378, 1998.

[21] Luca Cardelli. Typeful Programming. In E.J. Neuhold and M. Paul, editors,
Formal Description of Programming Concepts. Springer, 1991. An earlier version
appeared as DEC Systems Research Center Research Report #45, February 1989.

[22] Luca Cardelli. Type Systems. In Handbook of Computer Science and Engineering,
chapter 103. CRC Press, 1997.

[23] Luca Cardelli and John C. Mitchell. Operations on Records. In Carl Gunter and
John C. Mitchell, editors, Theoretical Aspects of Object-Oriented Programming.
MIT Press, 1994. Also appeared as SRC Research Report 48, and in Mathematical
Structures in Computer Science, 1(1):3–48, March 1991.

[24] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction,
and Polymorphism. ACM Computing Surveys, 17(4):471–522, December 1985.

[25] Nicholas Carriero and David Gelernter. How to Write Parallel Programs: A
Guide to the Perplexed. ACM Computing Surveys, 21(3):323–357, September
1989.



BIBLIOGRAPHY 185

[26] William Cook and Jens Palsberg. A denotational semantics of inheritance and
its correctness. Information and Computation, 114(2):329–350, 1994.

[27] Brad Cox. Superdistribution – Objects as Property on the Electronic Frontier.
Addison-Wesley, 1996.

[28] Laurent Dami. Software Composition: Towards an Integration of Functional and
Object-Oriented Approaches. PhD thesis, Centre Universitaire d’Informatique,
University of Geneva, CH, 1994.

[29] Laurent Dami. Labelled Reductions, Runtime Erros, and Operational Subsump-
tion. In Proc. 24th International Colloquim on Automata, Languages, and Pro-
gramming, LNCS1256, pages 782–793. Springer, 1997.

[30] Laurent Dami. A Lambda-Calculus for Dynamic Binding. Theoretical Computer
Science, 192:201–231, February 1998.

[31] Nikolas G. de Bruijn. Lambda Calculus Notation with Nameless Dummies. Inda-
gationes Mathematicae, 34:381–392, 1972.

[32] Stéphane Ducasse, Mireille Blay-Fornarino, and Anne-Marie Pinna-Dery. A Re-
flective Model for First Class Dependencies. In Proceedings OOPSLA ’95, vol-
ume 30 of ACM SIGPLAN Notices, pages 265–280, October 1995.

[33] Jesse Feiler and Anthony Meadow. Essential OpenDoc. Addison-Wesley, 1996.

[34] Cédric Fournet and Georges Gonthier. The Reflexive Chemical Abstract Machine
and the Join-Calculus. In Proceedings of the 23rd ACM Symposium on Principles
of Programming Languages, pages 372–385. ACM, January 1996.

[35] Daniel P. Friedman, Mitchell Wand, and Christopher T. Hayens. Essentials of
Programming Languages. McGraw-Hill, 1992.

[36] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns. Addison-Wesley, 1995.

[37] Adele Goldberg and David Robson. Smalltalk-80: The Language. Addison-
Wesley, September 1989.

[38] Adele Goldberg and Kenneth S. Rubin. Succeeding With Objects: Decision
Frameworks for Project Management. Addison Wesley, 1995.

[39] J. Gosling and H. McGilton. The Java Language Environment. Sun Microsystems
Computer Company, May 1995.



186 BIBLIOGRAPHY

[40] Martin Hansen, Hans Hüttel, and Josva Kleist. Bisimulations for asynchronous
mobile processes. In Proceedings of the Tbilisi Symposium on Language, Logic,
and Computation, 1995.

[41] Robert W. Harper and Benjamin C. Pierce. A Record Calculus Based on Sym-
metric Concatenation. Technical Report CMU-CS-90-157R, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, July 1991.

[42] Kohei Honda. Two Bisimilarities in ν-Calculus. Technical Report CS report
92-002, Keio University, March 1993.

[43] Kohei Honda and Mario Tokoro. An object calculus for asynchronous commu-
nication. In Pierre America, editor, Proceedings ECOOP ’91, LNCS 512, pages
133–147. Springer, July 1991.

[44] Kohei Honda and Mario Tokoro. On asynchronous Communication Semantics.
In ECOOP’91, LNCS 612. Springer, June 1992.

[45] Kohei Honda and Nobuko Yoshida. On Reduction-Based Process Semantics. In
Proc. of 13th Conference on Foundations of Software Technology and Theoretical
Computer Science, LNCS 761, pages 371–387. Springer, 1993.

[46] Lalita A. Jategaonkar and John C. Mitchell. Type inference with extended pat-
tern matching and subtypes. Fund. Informaticae, 19:127–166, 1993. Preliminary
version appeared in Proc. ACM Symp. Lisp and Functional Programming Lan-
guages, 1988, 198-212.

[47] Cliff B. Jones. A Pi-Calculus Semantics for an Object-Based Design Notation. In
E. Best, editor, Proceedings CONCUR ’93, LNCS 715, pages 158–172. Springer,
1993.

[48] Grégor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the Metaob-
ject Protocol. MIT Press, 1991.

[49] Grégor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In
Mehmet Aksit and Satoshi Matsuoka, editors, Proceedings ECOOP ’97, LNCS
1241, pages 220–242. Springer, June 1997.

[50] L. Lamport. A New Solution of Dijkstra’s Concurrent Programming Problem.
Communications of the ACM, 17(8):453–455, 1974.

[51] Ray Lischner. Secrets of Delphi 2. Waite Group Press, 1996.



BIBLIOGRAPHY 187

[52] Markus Lumpe, Jean-Guy Schneider, and Oscar Nierstrasz. Using Metaobjects
to Model Concurrent Objects with PICT. In Proceedings of Langages et Modèles
à Objets ’96, pages 1–12, Leysin, October 1996.

[53] Mark Lutz. Programming Python: Object-Oriented Scripting. O’Reilly & Asso-
ciates, October 1996.

[54] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. Specifying Dis-
tributed Software Architectures. In Wilhelm Schäfer and Pere Botella, editors,
Proceedings ESEC ’95, LNCS 989, pages 137–153. Springer, September 1995.

[55] Ciaran McHale. Synchronization in Concurrent, Object-oriented Languages: Ex-
pressive Power, Genericity and Inheritance. PhD thesis, Department of Com-
puter Science, Trinity Collegue, Dublin, Ireland, October 1994.

[56] M.D. McIlroy. Mass Produced Software Components. In P. Naur and B. Randell,
editors, Software Engineering. NATO Science Committee, January 1969.

[57] Vicki de Mey. Visual Composition of Software Applications. In Oscar Nierstrasz
and Dennis Tsichritzis, editors, Object-Oriented Software Composition, pages
275–303. Prentice Hall, 1995.

[58] Bertrand Meyer. Eiffel: the Language. Prentice Hall, 1992.

[59] Microsoft Corporation. Visual Basic Programmierhandbuch, 1997.

[60] Microsoft Corporation and Digital Equipment Corporation. The Component Ob-
ject Model Specification, October 1995. Draft Version 0.9.

[61] Robin Milner. A Theory of Type Polymorphism in Programming. Journal of
Computer and System Sciences, 17:348–375, 1978.

[62] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[63] Robin Milner. Functions as Processes. In Proceedings ICALP ’90, LNCS 443,
pages 167–180. Springer, July 1990.

[64] Robin Milner. The Polyadic Pi-Calculus: a Tutorial. Technical Report ECS-
LFCS-91-180, Computer Science Department, University of Edinburgh, UK, Oc-
tober 1991.

[65] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Pro-
cesses, Part I/II. Information and Computation, 100:1–77, 1992.



188 BIBLIOGRAPHY

[66] Robin Milner and Davide Sangiorgi. Barbed Bisimulation. In Werner Kuich,
editor, Proceedings of ICALP ’92, LNCS 623, pages 685–695. Springer, July
1992.

[67] John C. Mitchell. Type inference with simple subtypes. Journal Functional
Programming, 1(3):245–286, 1991.

[68] John C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

[69] Michael Morrison. Presenting JavaBeans. Sams.net Publishing, March 1997.

[70] David R. Musser and Atul Saini. STL Tutorial and Reference Guide. Addison-
Wesley, 1996.

[71] Uwe Nestmann. What Is a ’Good’ Encoding of Guarded Choice? Technical
Report RS-97-45, BRICS Aalborg University, October 1997.

[72] Uwe Nestmann and Benjamin C. Pierce. Decoding choice encodings. Submitted
to CONCUR’96, January 1996.

[73] Oscar Nierstrasz. Composing active objects. In Gul Agha, Peter Wegner, and
Akinori Yonezawa, editors, Research Directions in Concurrent Object-Oriented
Programming, pages 151–171. MIT Press, 1993.

[74] Oscar Nierstrasz and Laurent Dami. Component-Oriented Software Technology.
In Oscar Nierstrasz and Dennis Tsichritzis, editors, Object-Oriented Software
Composition, pages 3–28. Prentice Hall, 1995.

[75] Oscar Nierstrasz, Simon Gibbs, and Dennis Tsichritzis. Component-Oriented
Software Development. Communications of the ACM, 35(9):160–165, September
1992.

[76] Oscar Nierstrasz and Theo Dirk Meijler. Requirements for a Composition Lan-
guage. In Paolo Ciancarini, Oscar Nierstrasz, and Akinori Yonezawa, editors,
Object-Based Models and Languages for Concurrent Systems, LNCS 924, pages
147–161. Springer, 1995.

[77] Oscar Nierstrasz and Theo Dirk Meijler. Research directions in software compo-
sition. ACM Computing Surveys, 27(2):262–264, June 1995.

[78] Oscar Nierstrasz, Jean-Guy Schneider, and Markus Lumpe. Formalizing Compos-
able Software Systems – A Research Agenda. In Proceedings 1st IFIP Workshop
on Formal Methods for Open Object-based Distributed Systems, pages 271–282.
Chapmann & Hall, 1996.



BIBLIOGRAPHY 189

[79] Object Management Group. The Common Object Request Broker: Architecture
and Specification, July 1996.

[80] Gerald K. Ostheimer and Antony J. T. Davie. π-Calculus Characterizations
of some Practical λ-Calculus Reduction Strategies. Technical Report CS/93/14,
Department of Mathematical and Computing Science, University of St. Andrews,
October 1993.

[81] Catuscia Palamidessi. Comparing the Expressive Power of the Synchronous and
the Asynchronous π-calculus. In Proceedings of POPL’97, ACM, pages 256–265,
January 1997.

[82] George A. Papadopoulos and Farhad Arbab. Coordination Models and Lan-
guages. In The Engineering of Large Systems, volume 46 of Advances in Com-
puters. Academic Press, August 1998.

[83] Michael Papathomas. A Unifying Framework for Process Calculus Semantics of
Concurrent Object-Oriented Languages. In Mario Tokoro, Oscar Nierstrasz, and
Peter Wegner, editors, Proceedings of the ECOOP ’91 Workshop on Object-Based
Concurrent Computing, LNCS 612, pages 53–79. Springer, 1992.

[84] Michael Papathomas. Behaviour Compatibility and Specification for Active Ob-
jects. In Dennis Tsichritzis, editor, Object Frameworks, pages 31–40. Centre
Universitaire d’Informatique, University of Geneva, July 1992.

[85] David Park. Concurrency and Automata on Infinite Sequences. In P. Deussen,
editor, 5th GI Conference on Theoretical Computer Science, volume LNCS 104,
pages 167–183. Springer, 1981.

[86] Simon Peyton Jones, Erik Meijer, and Daan Leijen. Scripting COM Components
in Haskell. In Proceedings of the Fifth International Conference on Software
Reuse, Victoria, British Columbia, June 1998.

[87] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile pro-
cesses. In Logic in Computer Science, 1993. Full version in Mathematical Struc-
tures in Computer Science, Vol. 6, No. 5, 1996.

[88] Benjamin C. Pierce. Bounded quantification is undecidable. Information and
Computation, 112(1):131–165, July 1994. Also in Carl A. Gunter and John C.
Mitchell, editors, Theoretical Aspects of Object-Oriented Programming: Types,
Semantics, and Language Design (MIT Press, 1994). A preliminary version ap-
peared in POPL ’92.



190 BIBLIOGRAPHY

[89] Benjamin C. Pierce. Programming in the Pi-Calculus: An experiment in con-
current language design. Technical report, Computer Laboratory, University of
Cambridge, UK, May 1995. Tutorial Notes for Pict Version 3.6k.

[90] Benjamin C. Pierce and David N. Turner. Simple Type-Theoretic Foundations for
Object-Oriented Programming. Journal of Functional Programming, 4(2):207–
247, April 1994.

[91] Benjamin C. Pierce and David N. Turner. Concurrent Objects in a Process
Calculus. In Takayasu Ito and Akinori Yonezawa, editors, Theory and Practice
of Parallel Programming (TPPP), LNCS 907, pages 187–215. Springer, April
1995.

[92] Benjamin C. Pierce and David N. Turner. Pict: A Programming Language based
on the Pi-Calculus. Technical Report CSCI 476, Computer Science Department,
Indiana University, March 1997.

[93] Benjamin C. Pierce and David N. Turner. Pict: A programming language based
on the pi-calculus. Technical Report CSCI 476, Computer Science Department,
Indiana University, 1997. To appear in Proof, Language and Interaction: Essays
in Honour of Robin Milner, Gordon Plotkin, Colin Stirling, and Mads Tofte,
editors, MIT Press, 1998.

[94] C. V. Ramamoorthy, Vijay Garg, and Atul Prakash. Support for Reusability in
Genesis. IEEE Transaction on Software Engineering, 14(8):1145–1154, August
1988.

[95] Martin Reiser and Niklaus Wirth. Programming in Oberon: Steps beyond Pascal
and Modula. Addison-Wesley, 1992.

[96] Didier Rémy. Typing Record Concatenation for Free. Technical Report RR-1739,
INRIA Rocquencourt, August 1992.

[97] J. A. Robinson. A Machine-Oriented Logic Logic Based on the Resolution Princi-
ple. Journal of the Association for Computing Machinery, 12(1):23–41, January
1965.

[98] Dale Rogerson. Inside COM: Microsoft’s Component Object Model. Microsoft
Press, 1997.

[99] Johannes Sametinger. Software Engineering with Reusable Components.
Springer, 1997.



BIBLIOGRAPHY 191

[100] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-Order and
Higher-Order Paradigms. PhD thesis, Computer Science Deptartment, Univer-
sity of Edinburgh, UK, May 1993.

[101] Davide Sangiorgi. Lazy functions and mobile processes. Technical Report RR-
2515, INRIA Sophia-Antipolis, April 1995.

[102] Davide Sangiorgi. A Theory of Bisimulation for the π-calculus. Acta Informatica,
33:69–97, 1996. An extract appeared in Proceedings of CONCUR ’93, LNCS 715,
Springer.

[103] Davide Sangiorgi. An interpretation of Typed Objects into Typed Pi-calculus.
Technical Report RR-3000, INRIA Sophia-Antipolis, September 1996.

[104] Jean-Guy Schneider and Markus Lumpe. Modelling Objects in PICT. Techni-
cal Report IAM-96-004, University of Bern, Institute of Computer Science and
Applied Mathematics, January 1996.

[105] Jean-Guy Schneider and Markus Lumpe. Synchronizing Concurrent Objects in
the Pi-Calculus. In Roland Ducournau and Serge Garlatti, editors, Proceedings of
Langages et Modèles à Objets ’97, pages 61–76, Roscoff, October 1997. Hermes.

[106] Mary Shaw. Architectural Issues in Software Reuse: It’s Not Just the Function-
ality, It’s the Packaging. In Mansur Samadzadeh and Mansour Zand, editors,
Proceedings of SIGSOFT Symposium on Software Reusability, pages 3–6, Seat-
tle, April 1995. ACM Press.

[107] Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerg-
ing Discipline. Prentice Hall, April 1996.

[108] Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1994.

[109] Sun Microsystems. JavaBeans, July 1997. Version 1.01.

[110] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, 1998.

[111] Peter Thiemann. Grundlagen der funktionalen Programmierung. B.G. Teubner,
1994.

[112] David N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation.
PhD thesis, Department of Computer Science, University of Edinburgh, UK,
1996.



192 BIBLIOGRAPHY

[113] David Ungar and Randall B. Smith. SELF: The Power of Simplicity. In Pro-
ceedings OOPSLA ’87, volume 22 of ACM SIGPLAN Notices, pages 227–242,
December 1987.

[114] Marc Van Limberghen and Tom Mens. Encapsulation and Composition as Or-
thogonal Operators on Mixins: A Solution to Multiple Inheritance Problems.
Object-Oriented Systems, 3(1):1–30, March 1996.

[115] Guido van Rossum. Python Reference Manual. Technical report, Corporation
for National Research Initiatives (CNRI), October 1996.

[116] Patrick Varone. Implementation of ”Generic Synchronization Policies” in PICT.
Technical Report IAM-96-005, University of Bern, Institute of Computer Science
and Applied Mathematics, April 1996.

[117] Vasco T. Vasconcelos. Typed Concurrent Objects. In Mario Tokoro and Remo
Pareschi, editors, Proceedings ECOOP ’94, LNCS 821, pages 100–117. Springer,
July 1994.

[118] Pierre Viret. Viewing C++ Objects as Communicating Processes. Master’s the-
sis, Laboratoire de Téléinformatique, Ecole Polytechnique Fédérale de Lausanne
(EPFL), CH, March 1996.

[119] Jan Vitek and Giuseppe Castagna. Towards a calculus of secure mobile com-
putations. Electronic commerce objects, Centre Universitaire d’Informatique,
University of Geneva, July 1998.

[120] David J. Walker. Objects in the Pi-Calculus. Information and Computation,
116(2):253–271, 1995.

[121] Mitchell Wand. A Simple Algorithm and Proof for Type Inference. Fundamenta
Informaticae, 10:115–122, 1987.

[122] Mitchell Wand. Type Inference for Record Concatenation and Multiple Inher-
itance. Information and Computation, 93:1–15, 1991. Preliminary version ap-
peared in Proc. 4th IEEE Symposium on Logic in Computer Science (1989),
92–97.

[123] Brent B. Welch. Practical Programming in Tcl and Tk. Prentice Hall, second
edition, June 1997.


	Introduction
	Background
	Contribution of the thesis
	Road map

	Survey of Component-Oriented Concepts
	What is a component?
	Components
	Scale and Granularity of components
	Binary or source code components
	Homogeneous or heterogeneous?
	``White-box'' or ``black-box'' components?
	Stateful or stateless components
	Meta-components
	Interface standards and standard interfaces
	Version management
	Typing

	Frameworks
	Glue
	Open problems
	Conclusion

	Modelling compositional abstractions
	Towards an object model
	Function as processes
	The polyadic mini -calculus
	Encoding -terms with call-by-value reduction
	Encoding -terms with call-by-name reduction
	Using channel sorts for encoding -terms

	The Pierce/Turner basic object model
	Process groups as objects
	Process-based vs. channel-based encoding
	Objects as records
	The object model

	Explicit metaobjects
	Modelling class variables
	Modelling inheritance by dynamic binding of PD1OT1cmrcmrmmnnSelf

	Results and shortcomings

	The piL-calculus
	Towards labelled communication
	Syntax of the piL-calculus
	Names and forms
	The language
	A reference cell example
	Binders and substitution

	Operational semantics
	Reduction semantics
	Labelled transition semantics

	Observable equivalence of piL-terms
	Asynchronous interaction
	Asynchronous Bisimulation for the piL-calculus
	Congruence of weak L-bisimulation
	Alpha-conversion

	From pi-calculus to piL -- and back
	Transition system and bisimulation for the pi-calculus
	The compilation from pi to piL-calculus
	The compilation from piL to pi-calculus


	Types for piL
	Types and type contexts for piL
	Type contexts
	Typing rules
	Forms
	Syntax of the typed piL-calculus
	Reduction semantics of the typed piL-calculus

	Basic typing rules
	Subtyping rules for types
	Typechecking forms
	Operations on forms
	Form types
	Form subtyping

	Typechecking channels
	Typechecking agents
	Type soundness
	Properties of well-formed piL-terms
	Properties of structural congruence
	Untypable faulty terms
	Subject reduction

	Type inference
	Extended form types
	Type substitution
	Unification
	Inference algorithm


	A composition system
	The architecture
	Towards a composition language
	The core language
	Procedures
	Value declaration
	Complex forms
	Nested forms
	Functions
	Active forms
	Sequencing
	External services
	Composition scripts
	An example

	Interpretation of higher-level constructs
	Procedures and procedure calls
	Values declarations
	Functions and function calls
	Complex forms
	Nested forms
	Active forms
	Sequencing

	Results and shortcomings

	Conclusions and future work
	Pict
	Simple processes
	Channels and types
	Values
	Processes
	Derived forms

	Typing rules for piL
	Judgements
	Basic rules
	Subtyping rules for types
	Rules for assigning types to forms
	Subtyping rules for form types
	Subtyping rules for channels
	Rules for agents

	The algorithm Unify
	Algorithm Collect
	Piccola language definition

