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Abstract

The last decade has shown that object-oriented technology alone is not enough to cope
with the rapidly changing requirements of present-day applications. Typically, object-
oriented methods do not lead to designs that make a clear separation between computa-
tional and compositional aspects. Component-based systems, on the other hand, achieve
flexibility by clearly separating the stable parts of systems (i.e. thecomponents) from the
specification of their composition. Components are black-box entities that encapsulate
services behind well-defined interfaces. The essential point is that components are not
used in isolation, but according to asoftware architecturewhich determines the interfaces
that components may have and the rules governing their composition. A component,
therefore, cannot be separated from acomponent framework.

Naturally, it is not enough to have components and frameworks, but one needs a way
to plug components together. However, one of the main problems with existing lan-
guages and systems is that there is no generally accepted definition of how components
can be composed. In this thesis, we argue that the flexibility and adaptability needed for
component-based applications to cope with changing requirements can be substantially
enhanced if we do not only think in terms ofcomponents, but also in terms ofarchitec-
tures, scripts, andglue. Therefore, we present aconceptual framework for component-
based software developmentincorporating the notions of components and frameworks,
software architectures, glue, as well as scripting and coordination, which allows for an
algebraic view of software composition.

Furthermore, we define the FORM calculus, an offspring of the asynchronousπ-
calculus, as a formal foundation for a composition language that makes the ideas of the
conceptual framework concrete. The FORM calculus replaces the tuple communication
of theπ-calculus by the communication offorms(or extensible records). This approach
overcomes the problem of position-dependent arguments, since the contents of communi-
cations are now independent of positions and, therefore, makes it easier to define flexible
and extensible abstractions.

We use the FORM calculus to define a (meta-level) framework for concurrent, object-
oriented programming and show that common object-oriented programming abstractions
such as instance variables and methods, different method dispatch strategies as well as
synchronization are most easily modelled whenclass metaobjectsare explicitly reified
as first-class entities and when acompositional viewof object-oriented abstractions is
adopted. Finally, we show that both, polymorphic form extension and restriction are the
basic composition mechanisms for forms and illustrate that they are the key concepts for
defining extensible and adaptable, hence reusable higher-level compositional abstractions.
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Chapter 1

Introduction, Background

This thesis summarizes the state-of-the-art in software architectures, scripting languages,
and glue technology, and discusses their influence on component-based software develop-
ment. The discussion motivates requirements for a general-purpose composition language
that integrates the concepts of component frameworks, software architectures, scripting,
glue, and coordination. These requirements lead to the definition of the FORM calculus
– a conservative variant of theπ-calculus where tuple-communication is replaced with
communication of extensible records (orforms) – as a formal semantic foundation for
a composition language. The suitability of the FORM calculus as a minimal semantic
foundation is validated by using it for modelling compositional abstractions as well as for
modelling a meta-level framework incorporating common features of concurrent, object-
oriented programming languages.

1.1 Background

Now, more than ever, it is not enough for applications to fulfill only their functional re-
quirements. Modern applications must beflexible, or “open” in a variety of ways in
order to cope with the advances in computer hardware technology and rapidly changing
requirements. The Concise Oxford Dictionary defines “flexible” as “that will bend with-
out breaking, pliable, pliant; easily led, manageable; adaptable, versatile; supple, com-
plaisant.” Software that “bends without breaking” isportable(to different hardware and
software platforms),interoperable(with other applications),extensible(to new function-
ality), configurable(to individual users’ or clients’ needs), andmaintainable.

Object-oriented programming languages and design techniques go a long way in of-
fering the required flexibility and extensibility, but current practice shows that the technol-
ogy is often applied in a way that hinders the development of open systems [Ude94]. The
kinds of flexibility required by open systems are presently best supported by component-
oriented software technology: components, by means of abstraction, support portability,
interoperability, and maintainability. Extensibility and configurability are supported by
different forms of binding technology: application parts, or even whole applications, can

3



4 CHAPTER 1. INTRODUCTION, BACKGROUND

be created by composing software components. This ensures that applications stay flex-
ible by allowing components to be replaced or reconfigured, possibly at run-time.

Today, there is considerable experience in component technology, and a lot of re-
sources are spent in defining components and component models (such as COM [Rog97],
CORBA [OMG96], or Enterprise JavaBeans [Sun99] to name just a few). However, much
less effort is spent in investigating appropriate composition orwiring technology.

Specialized scripting languages and 4GLs each provide different forms of wiring: it
can be either highly structured, reflecting a particular architectural style of application
composition, or it may be largely unstructured. Using a structured wiring technology
generally constrains flexibility by limiting the ways in which components may be config-
ured, but supports application maintainability and comprehension by making application
architectures explicit [MDK92]. On the other hand, an unstructured binding technology
is ultimately more flexible, but at the cost of maintainability: Tcl, for example, is a simple
scripting language that is good for combining arbitrary C functions for simple configura-
tion tasks, but it does not support programming in the large, and, if abused, can lead to
large, unmaintainable scripts [Ous94].

In an ideal component world, there are components available for any task applications
have to perform and these components can be simply plugged together. However, it is a
fact that a user is often constrained to work with (legacy) components that are not plug
compatible with the components he has to work with. In such a situation, glue code
is necessary in order to overcome compositional mismatches and to make components
which otherwise cannot be plugged together composable. Glue code may be ad hoc,
written to adapt a single component, or it may consist of generic abstractions which can
be reused in similar settings.

Although object-oriented languages are well-suited for implementing software com-
ponents, they fail to shine in the construction of component-based applications, largely
because object-oriented design tends to obscure a component-based architecture. Using a
composition languagethat allows us to express applications as compositions in terms of
components, scripts, and glue, would be a major step in overcoming these problems.

However at present, there does not exist a general-purpose composition language that
i) supports application configuration through a structured, but nevertheless flexible wiring
technology and ii) enforces a clear separation between computational elements (i.e. com-
ponents) and their relationships. In addition, most available systems mainly focus on
special application domains and offer only rudimentary or no support for the integration
of components not built within the system. The reason for this situation is not only the
lack of well-defined (or standardized) component interfaces, but also the ad-hoc way the
semantics of the underlying language models are defined.

In order to solve the problems of present-day component technology, we argue that it
is necessary to define a composition language based on an appropriate semantic found-
ation. In particular, if we can understand all aspects of software components and their
composition in terms of a small set of primitives, then we have a better hope of being
able to cleanly integrate all required features for software composition in one unifying
concept.
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1.2 Contributions

In this dissertation, I illustrate that

Making a clear separation between computational elements and their
relationships enhances the flexibility, maintainability, and robustness
of software systems. This concept can be most naturally expressed
in terms of a formal foundation that includes asymmetric record
concatenation and restriction.

More specifically, the contributions of the thesis can be summarized as follows:

– We summarize the state-of-the-art in component technology, analyze advantages
and drawbacks of existing approaches, and identify the need to make a clear sepa-
ration between computational elements and their relationships. Based on this obser-
vation, we propose a conceptual framework for software composition, incorporating
the concepts of component frameworks, software architectures, scripting, glue, and
coordination, and define a set of requirements for a general-purpose composition
language.

– We clarify the terms software architecture, architectural style as well as glue ab-
straction and analyze their importance in the context of component-based soft-
ware development. In particular, we illustrate the relationship between architectural
styles and component frameworks from an algebraic point of view and discuss the
influence of software architectures on reuse. Furthermore, we define a catalogue of
glue problems and summarize known glue technology.

– We analyze the concept of scripting as the key mechanism for wiring components
together. We give a general introduction to scripting, discuss the main properties
and abstractions of scripting languages, and identify a list of essential and charac-
terizing features. Furthermore, we compare selected scripting languages in order to
illustrate important concepts of scripting.

– Based on the ideas of Milner [MPW92], Dami [Dam94], and Lumpe [Lum99], we
define the FORM calculus, a variant of theπ-calculus where the communication
of tuples is replaced with the communication of labelled parameters, orforms. In
fact, in the FORM calculus, parameters are identified by names rather than posi-
tions which provides a higher degree of flexibility, extensibility, and robustness for
defining compositional abstractions. We give a basic theory for the FORM calcu-
lus, illustrate the main differences in comparison with theπ-calculus, and define an
asynchronous bisimulation relation on FORM calculus agents.

– We use the FORM calculus to define a (meta-level) framework for concurrent,
object-oriented programming and show that common abstractions such as instance
variables and methods, different method dispatch strategies as well synchroniza-
tion are most easily modelled whenclass metaobjectsare explicitly reified as first-
class entities. We illustrate that various concepts which are typically merged (or
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confused) in object-oriented programming languages can be expressed in a more
natural way by making a clear separation between functional elements (i.e. meth-
ods) and their compositions (i.e. inheritance). Furthermore, we show that the same
concepts can also be applied for modelling mixins, mixin application, and mixin
composition.

– Finally, we show that both polymorphic form extension and restriction are the basic
composition operations for forms and illustrate that they are the key concepts for
defining higher-level compositional abstractions. In fact, by using both concepts,
we obtain a powerful mechanism for software composition, since it allows a user
to express the composition of the services of a given set of components in a more
flexible, extensible, and robust way.

1.3 Outline

This thesis is organized in four parts as follows: in PartI, we give an introduction to our
work and discuss the corresponding background. We motivate our work in chapter2 by
summarizing the state-of-the-art in component technology, analyze problems with exist-
ing approaches, and define important terms used throughout the rest of this work.

In PartII , we define the notions of software architectures, scripting, and glue (chapters
3 to 5), introduce a conceptual framework for software composition based on these no-
tions, and illustrate how the concepts of components, scripts, and glue are used in practice
(chapter6).

In PartIII , we define the FORM calculus, a conservative extension of theπ-calculus
as a formal foundation of our study (chapter7). We use the FORM calculus to model
objects and concepts found in object-oriented programming languages such as classes,
inheritance, and mixins (chapter8) as well as compositional abstractions (chapter9). We
summarize the main observations of our modellings in chapter10.

Finally, in PartIV, we summarize the main contributions of our work and conclude
with a discussion about related and future work.

1.4 Disclaimer

This thesis is part of ongoing research of the Software Composition Group at the Insti-
tute of Computer Science and Applied Mathematics of the University of Berne, which
conducts research into tools, techniques, and methods for constructing flexible software
systems from components. Several parts of this thesis have been developed in collabora-
tion with other members of the group and, therefore, it is possible that some of the results
presented here overlap with results presented by others, in particular with the Ph.D. thesis
of Markus Lumpe [Lum99].



Chapter 2

Component-based software
development

Present-day applications are increasingly required to be open systems in terms of topol-
ogy (distributed systems), platform (heterogeneous hardware and software) and evolution
(rapidly changing requirements). The last decade has shown that object-oriented technol-
ogy alone is not enough to cope with the rapidly changing requirements of present-day
applications [Ude94]. One of the reasons is that, although object-oriented methods en-
courage one to develop rich models that reflect the objects of the problem domain, this
does not necessarily yield software architectures that can be easily adapted to changing
requirements. In particular, object-oriented methods do not typically lead to designs that
make a clear separation between computational and compositional aspects [SN99].

Already in 1969, McIlroy [McI69] has proposed another way to produce software
calledcomponent-oriented software construction. The basic idea of his proposal was that
we should not think any more about which mechanism we should use but what mechanism
we should build. He viewed components as families of routines which are constructed
based on well-defined principles so that these families fit together as building blocks.
McIlroy stated that these families constitute components which areblack-boxentities.

Unfortunately, his vision could not be established at this time. There are several rea-
sons for this such as the idea that components should be built system independently or
that a component catalogue must be available in order to allow application programmers
to choose the right component for a specific problem. In the last few years, even not
directly related to McIlroy’s work,component-based software developmenthas become
very popular. Component-based systems achieve flexibility by clearly separating the sta-
ble parts of the system (i.e. the components) from the specification of their composition.
Components are black-box entities that encapsulate services behind well-defined inter-
faces. These interfaces tend to be very restricted in nature, reflecting a particular model
of plug-compatibility supported by a component-framework, rather than being very rich
and reflecting real-world entities of the application domain. Components are not used
in isolation, but according to a software architecture that determines the interfaces that
components may have and the rules governing their composition.

7



8 CHAPTER 2. COMPONENT-BASED SOFTWARE DEVELOPMENT

In this chapter, we motivate our work by summarizing the state-of-the-art in com-
ponent technology and analyzing problems with existing approaches. We define sev-
eral important terms which we will use throughout this work and introduce a conceptual
framework for software composition as an approach to overcome the problems of current
component technology. We conclude this chapter with a discussion of requirements for a
general-purpose composition language based on the conceptual framework.

2.1 Motivation

In order to cope with the advances in computer hardware technology and rapidly changing
requirements, there has been a continuing trend in the development of software applica-
tions towards so-calledopen systems[Tsi89]. Open systems differ from closed, propri-
etary systems in the sense that they are not only open in terms of topology (distributed
systems) and platform (heterogeneous hardware and software), but particularly in terms
of changing requirements: they assume that requirements evolve rapidly and are neither
closed nor stable. In fact, to address evolution, each individual application should be
viewed as an instance of ageneric classof applications, and an essential point is that
open systems define ageneric(hence reusable)architecturefor a family of related appli-
cations. Furthermore, an individual application may either be considered as an instance
of a family of applications or a snapshot in time of an evolving application [ND95]. By
viewing open systems as compositions of reusable and configurable software components,
we expect to better cope with the requirements of present day applications in general and
rapidly evolving requirements in particular.

Object-oriented programming languages and analysis and design methods provide a
well-suited tool-box for component-based application development, but current practice
shows that the technology is often applied in a way that hinders the development of open
systems.

Object-oriented analysis and design methods are domain-driven, which usually leads
to designs based on domain objects. Most of these methods make the assumption that an
application is being built from scratch, and they incorporate reuse of existing architectures
and components too late in the development process (if at all) [Ree96].

In order to successfully plug components together, it is necessary that i) the inter-
face of each component matches the expectations of the other components and that ii) the
“contracts” between the components are well-defined. Therefore, component-based ap-
plication development depends on adherence to restricted, plug-compatible interfaces and
standard interaction protocols. However, the result of an object-oriented analysis and de-
sign method generally is a design with rich object interfaces and non-standard interaction
protocols.

Object-oriented programming languages have been very successful for implementing
and packaging components, but they only offer limited abstractions for flexibly connect-
ing components and explicitly representing architectures in applications. Given the source
code of an object-oriented application, one can more easily identify the components, but it
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can be notoriously difficult to tell how the system is composed. The reason is that object-
oriented source code exposesclass hierarchies, not object interactions. In addition, the
way objects are interconnected is typically distributed amongst the objects themselves,
which hinders a clean separation between computational and compositional aspects.

Although object-oriented applications can often be adapted to additional requirements
with a minimal amount of new code, it can require a great deal of detailed study in order
to find out where exactly the extension is needed. Unfortunately, object-oriented frame-
works do not make their generic architecture explicit, which results in a steep learning
curve before a framework can be successfully used. Since object-oriented frameworks
focus on subclassing of framework classes (also known aswhite-box reuse), a detailed
understanding of the generic architecture is needed in order to prevent contracts between
two classes from being violated. In addition, changing framework classes often implies
extensive modifications of application-specific code.

Recently,visual programminghas attracted widespread attention by promising to
make programming much easier [Mey94, AEW96]. Visual application builders go a step
further than object-oriented frameworks, since they already incorporate important ideas
and concepts needed for component-based application development (e.g. higher-level ab-
stractions for composing components). Furthermore, visual builders generally focus on
a specific application domain (e.g. Delphi focuses on database applications for the Win-
dows platform [Bor95]) and consist of an integrated development environment (IDE) with
various tools that can be used to quickly create graphical user interfaces and for apply-
ing event-driven programming techniques. Visual application building, however, rests on
a programming model of plug-and-play of prefabricated components. The number (and
type) of components that are combined is usually quite small, and the mutual dependen-
cies between these components take simple (standard) forms.

Despite their usefulness and contribution to increased software productivity and reuse,
components of visual programming systems share one common handicap: they need their
specific support environment and cannot be easily combined across different systems.
Due to their restriction to specific application domains, visual application builders are not
flexible enough for general-purpose component-based development and generally lack a
well-understood formal foundation.

2.2 Components and frameworks

We have previously used the terms component and framework without giving a precise
definition. However, for the rest of this work it is essential that we have a clear under-
standing what a component is and how frameworks look like. From our point of view, both
terms cannot be defined in isolation and are closely related, which motives the following
definition:

A software componentis a composable element of a component framework
[LSNA97].
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Although this definition seems to be circular, it captures the essential properties of compo-
nents: components are designed to be plugged together with other components. A single
component that does not belong to a component framework is a contradiction in terms.
Furthermore, a component can in general not function outside a well-defined framework.

As an example, consider a stereo system which consists of an amplifier, CD-player,
tuner, tape deck, and other components. Each of these stereo components is built up
from smaller components (e.g. circuits), which again use even smaller components (e.g.
transistors). Although in principle each of these components would function by itself,
their real value lies in the way they are designed to be plugged together.

A software component is astatic abstraction with plugs[ND95].

A component is a black-box abstraction that hides implementation details and must be
instantiated in order to be used (this is imposed by the characterization as “static abstrac-
tion”). In object-oriented programming languages, we distinguish betweenclassesand
instances of classes (i.e.objects). Unfortunately, we do not have such a convenient way
to distinguish between components and their instances, which is a frequent source of con-
fusion. Talking about components, we often mean their instances. The different roles
of components and their instances are hidden by the way component-based software is
developed: composition is usually done within a composition environment where the dif-
ference between components and their instances vanishes. An application programmer,
even at design time, always works with instances.

A component hasplugs, which are not only used toprovideservices, but also tore-
quire them.1 A true black-box component advertises all of its features and dependencies
by means of public plugs; there are no hidden dependencies. Plugs are the main prereq-
uisite for composition: connections between components are established by connecting
required services with appropriate provided services. A plug is a pluggable interface,
but the kind of interface it exactly is and how these interfaces are plugged together, may
depend from one component framework to another.

A software componentis a unit of independent deployment, a unit of third-
party composition, and has no persistent state [Szy98].

This definition has several implications. First, for a component to be independently de-
ployable, it needs to be well separated from its environment and from other components.
Therefore, a componentencapsulatesits constituent features and can never be deployed
only partially. Second, for a component to be composable with other components, it needs
to be sufficientlyself-containedand must explicitly specify the services it provides, but
also the services it requires. Hence, a component needs to encapsulate its implementation
and interact with its environment through well-defined interfaces. Finally, for a compo-
nent not to have any persistent state, it is required that it cannot be distinguished from
copies of its own.

1Some authors denote provided services assocketsand required services asplugs. However, in order to
treat both concepts uniformly, we will not use separate terms throughout the rest of this work.
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As an example of a system which conforms to the definitions given above, consider
the Bourne Shell [Bou78]. It offers a simple component model based oncommandswhere
each command has the ability to read from the standard input stream and produce output
onto the standard output and/or error streams. In our terminology, the standard input
stream is a required service of a command whereas both the standard output and error
streams are provided services. Commands can be composed using the pipe operator ‘|’
which connects the plugs of a pair of provided and required services (i.e. standard out-
put stream of one component with the standard input stream of another component). A
composition of commands is again a command which can be used in other so-called Shell
scripts. For a detailed discussion about the Bourne Shell, refer to section4.3.

As we will further discuss in section3.1, the components and the composition mech-
anisms of the Bourne Shell restrict the kinds of applications which can be implemented.
For example, it is not possible to definefeedback loopsbetween commands. In addi-
tion, all Shell scripts conform to the same architectural structure (i.e. apipe and filter
architectural style). These observations motivate the following definition:

A component frameworkis a collection of software components with a soft-
ware architecture that determines the interfaces that components may have
and the rules governing their composition [SG96].

This definition closes the loop. The essential point is that components are not used in
isolation, but in context with a software architecture that determines how components are
plugged together. In contrast to an object-oriented framework, where an application is
generally built by subclassing framework classes that respond to specific application re-
quirements (also known ashot spots[Pre95]), a component framework primarily focuses
on object and class composition (i.e.black-boxreuse). The reader should note that the
architecture of a component framework (i.e. the kinds of components and the rules of
their composition) may vary quite dramatically from one framework to another.

Another definition of the term component framework is given by Szyperski [Szy98].
He describes a component framework as a set of interfaces and rules of interactions that
govern how components plugged into the framework may interact. He also points out
that an overgeneralization of that scheme has to be avoided in order to keep actual use of
frameworks practicable.

Naturally, it is not enough to have components and frameworks, but for building real
applications, one needs a way to wire components together (i.e. to expresscompositions).
The idea behind component-based development is that an application developer only has
to write a small amount ofwiring codein order to establish connections between compo-
nents. The wiring technology, orscripting, can take take various forms, depending on the
nature and granularity of the components, the nature and problem domain of the frame-
work, and the composition model. Composition may occur at compile-time, link-time, or
run-time, and may be very rigid and static (like the syntactic expansion that occurs when
C++ templates are composed [MS96]), or very flexible and dynamic (like that supported
by Tcl or other scripting languages [Ous98]).
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In an ideal world, there are components available for any task an application has to
perform and these components can be simply plugged together. However, it is some-
times necessary to reuse a component in a different environment than the one it has been
designed for and that this environment does not match the assumptions the component
makes about the structure of the system to be part of. In such a situation,glue code is
needed to overcome the mismatched assumptions and to adapt components in order to be
composable.

Even though two components may fit together perfectly by means of their interfaces,
they may require different run-time or operating systems. Unless they can communicate
across different processes, this is a hindrance for composing such components. In order
to make these (often implicit) assumptions of components explicit, Sametinger defines
the notion of acomponent platform, which indicates any soft- or hardware a component
is built upon [Sam97]. Typical examples of component platforms are operating systems,
run-time systems, window systems, compilers, libraries, and network connections. In
general, platforms are collections of homogeneous components.

If components are classified by their platforms, it is possible to determine the reusabil-
ity of a component in a certain context. Based on the role a platform plays for a compo-
nent, Sametinger distinguishes betweenexecution platformsandcomposition platforms.
Execution platforms are necessary in order to correctly execute a component and de-
termine the environment in which a component (or a complete running system) can be
executed. Typically, a component requires a certain operating system for execution, but
it may also require a specific hardware and/or programming system (e.g. an interpreter).
Composition platforms are necessary for components that do not run on their own, but
rather have to be integrated with other components to form an executable application.
Compilers and linkers are the most prominent form of this category.

2.3 State-of-the-art in component technology

There is a large variety of programming languages and systems emerging from both in-
dustry or academia integrating the notion of components. Each of these systems defines
its own component model and incorporates different composition mechanisms. In the
following, we briefly discuss important properties of selected languages and systems. A
detailed comparison of component models and systems is beyond the scope of this work;
refer to [Sam97, Szy98, Lum99] for further details.

The composition mechanism of Visual Basic is based on a scripting approach [Mic97].
Visual Basic components (in the following also called Visual Basic controls) are plugged
together with the dynamically typed language Visual Basic, which is an object-oriented
extension of BASIC. For components, there exists a special type calledVARIANTwhich
is implicitly used by the system. This type defines the general interface of all compo-
nents in the system. Unfortunately, this type does not allow programmers to use arbitrary
(user defined) types in component interfaces; only the types which are supported by the
VARIANTtype implementation can be used. For an application programmer this is gener-
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ally not a problem because type information is never exposed to the programmer himself;
only the provider of a Visual Basic control has to keep in mind that this restriction exists,
especially when languages like C or C++ are used to develop Visual Basic controls.

Delphi [Bor95] and JavaBeans [Sun97b] use a general-purpose programming lan-
guage for composition. These languages (i.e. Object Pascal for Delphi and Java for
JavaBeans) are strongly typed, which limits the flexibility of composition. It is also not
easy to integrate new component models because they have to fulfill certain constraints
according to the type system of the programming language. In both systems, plugging
components together implies that a new class2 has to be defined where the composed
components are specified as member variables. Furthermore, both systems use event
handlers for composition: when an event is raised, a user-defined handler is called which
implements the wiring between the components.

For D-Active-COM-X-++ the situation is different. TheComponent Object Model
(COM) defines a language independent component model [Rog97]. For this reason, no
composition language is defined for COM, and COM components (also known asActiveX
controls) are usually developed in either C or C++.3 COM defines a so-calledbinary
standardfor ActiveX controls which must be fulfilled by every component. The memory
layout for the interface of such a component is the same as the memory layout that is
generated for abstract base classes by the Microsoft C++ compiler. This makes it very
easy to use C++ to develop ActiveX components. However, it is not required to use an
object-oriented programming language to develop COM components, because the COM
specification is language neutral.

The Object Management Group has proposed theCommon Object Request Broker
Architecture(CORBA) as an answer to the need for interoperability among a number of
available hardware and software products [OMG96]. CORBA allows an application to
communicate with another application without knowing where it is located or who has
designed it. CORBA defines an Interface Definition Language (IDL) and an Application
Programming Interface (API) that enables a programmer to develop client/server object
interactions within a specific implementation of an Object Request Broker (ORB). The
ORB provides the necessary services to find an object’s implementation, to pass param-
eters, to invoke methods, and to return results. Everything is done transparently for an
application programmer. CORBA enables a priori the development of distributed appli-
cations which is seen as one of the main contributions of CORBA in comparison with
other systems.

CORBA allows the integration of existing components by usinginterface wrappers.
In this approach, an application programmer has to define a corresponding interface using
the interface description language IDL. An application programmer has to write the code
which translates between the CORBA interface (in IDL) and the component interface.
The way new components can be integrated in an application is similar as defining a new
CORBA component from scratch.

2The abstractionclassis used to describe objects as well as components.
3Since version 5.0, ActiveX controls can be defined within Visual Basic.
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It is important to note that the IDL is not sufficient for composing components. The
IDL can only be used todescribean interface, but in order to plug components together, a
real programming language is needed. In many cases this is either C, C++, Smalltalk, or
Java. Therefore, CORBA on its own cannot be seen as a composition system or language.
It has to be considered asmiddlewarewhich provides the necessary services to develop
(distributed) applications using CORBA components [OHE95].

A slightly different approach is used for RAPIDE, an event-based, concurrent, object-
oriented language specifically designed for prototyping system architectures [LV95].
RAPIDE is intended for modelling the architectures of concurrent and distributed systems,
both hardware and software. In order to represent the behaviour of distributed systems
in as much detail as possible, RAPIDE is designed to make the greatest possible use of
event-based modelling by producing causal event simulations. When a RAPIDE model is
executed, it produces a simulation that shows not only the events that make up the model’s
behaviour and their time-stamps, but also which events caused other events, and which
events happened independently.

The main purpose of RAPIDE is to specify and verify properties of specific architec-
tures. However, it is not intended as a language for general-purpose composition since
it only focuses on applications with event-based architectures. In addition, components
have to be both specified and implemented in the RAPIDE environment, and there does
not exist an interface to integrate components written in other programming languages.

The last system which we briefly discuss is Python, an interpreted, object-oriented
scripting language with an extensible and embeddable architecture [vR96]. Python has
a number of powerful constructs which make it almost ideal both as a scripting system
and as a rapid application development tool. From our point of view, a major strength
of Python is its extensibility, which is heavily due to the unifying concept of everything
being an object, objects being first-class values, and the possibility to use keyword-based
parameters. Many extensions have been released for Python like a Tk interface or an OLE
interface, and especially the OLE extension has exposed very impressively the power of
the extensible architecture. A major drawback of Python is the lack of platform indepen-
dent concurrency: available extensions depend on the underlying operating system and
are in general not portable. For a detailed discussion about the main features of Python,
refer to section4.3.

2.4 A conceptual framework for software composition

As previously discussed in this chapter, complex software systems are increasingly re-
quired to be open, flexible conglomerations of heterogeneous and distributed software
components rather than monolithic heaps of code. This places a strain on old-fashioned
software technology and methods that are based on the maxim

Applications = Algorithms + Data.

This equation has some relevance for well-defined and delimited problems and is often
applied in imperative programming languages that focus on top-down decomposition.
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Object-oriented programming languages go a step further, are well-suited for encapsulat-
ing state and behaviour, and are based on the maxim

Applications = Objects + Messages.

However, as we have discussed in section2.1, current practice shows that object-oriented
technology is often applied in a way that hinders the development of flexible and adapt-
able, hence open systems. For component-based software engineering, we need an ap-
proach that makes a clear separation between computational and compositional entities.
Therefore, a component-oriented style must be based on the maxim

Applications = Components + Scripts.

From our point of view, this maxim is essential for any methodology for component-
oriented software development in order to achieve the flexibility and adaptability needed
for applications to cope with changing requirements.

If the maxim given above was the only requirement for component-based systems,
there should be several languages and systems available, well-suited for a wide range of
problem domains and applications. However, as discussed in the previous section, this is
not the current status. One of the main problems with existing languages and systems is
that there is no generally accepted definition of how components can be composed (i.e.
it lacks well-defined concepts for both scripting and glue). This results in the fact that in
many applications, traditional (or even ad hoc) techniques are used for implementation.
In addition, many of these approaches are applicable only in certain contexts (i.e. specific
applications domains or hardware platforms) and do not provide general solutions for a
wider range of software engineering problems.

From a different perspective, an application (i.e. a composition of components) can
be viewed as a term of amany-sorted algebra: components are the operands and the
composition mechanisms are the operators. Like in any algebra, operators cannot be ap-
plied to any operands, and terms always have a well-defined structure. These observations
correspond with the definition of a component framework given in section2.2.

In addition, an application of an operator to a set of operands (i.e. a composition of
components using a connector) is, by definition, again an operand of the algebra. Such
an algebraic view of composition is adopted by some component-based systems. As an
example, reconsider the Bourne Shell: a composition of two commands using the pipe
operator ‘|’ is again a command and, therefore, an operand of the corresponding algebra.

There are component-based systems which apply a more procedural view of compo-
sition. As an example, consider Darwin, a programming language for structuring parallel
and distributed programs [MDK92]. Like any component-based system, Darwin uses the
notion of plugs in order to describe components and their interaction. The main abstrac-
tions are i) components and ii) services (i.e. means by which components interoperate).
Services are further subdivided into provided and required services and offer a number
of service access points (or ports). Component interaction is established by connecting
service outputs (provided ports) with service inputs (required ports). In order to establish
connections between provided and required ports, Darwin provides a built-in statement
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Figure 2.1: Conceptual framework for software composition.

bind . In contrast to the Bourne Shell, the statementbind simply connects required and
provided ports, but it does not yield a new component.

Summarizing the problems with state-of-the-art technology, we argue that the flexibil-
ity and adaptability needed for applications to cope with changing requirements can only
be achieved if we thinknot onlyin terms ofcomponents, but also in terms ofarchitectures,
scripts, andglue. Therefore, we claim that a conceptual framework for component-based
software development must incorporate the notions of components and frameworks, soft-
ware architectures, glue, as well as scripting and coordination, and allow for an algebraic
view of software composition. For an illustration of this conceptual framework, refer to
Figure2.1.

2.5 Requirements for a composition language

In the previous sections, we have discussed the state-of-the-art in component technology,
analyzed problems with existing approaches, and defined a conceptual framework for
component-based software development as an approach to overcome these problems. We
also identified the need that a programming language for developing component-based
systems must allow programmers to make a clear separation betweencomponentsand
their connections. However, implementing software components and plugging them to-
gether are very different activities that may well benefit from different kinds of tools. We
expect that traditional programming languages will be best suited for implementing com-
ponents, whereas something we call acomposition languagemay be better for specifying
applications as compositions of software components.
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In the following, we will discuss a list of requirements for such a composition lan-
guage, based on previous work in this area (refer to [NM95a, NM95b, NSL96] for details).
However, the following list extends previous requirements for a composition language by
combining concepts and paradigms of existing languages and systems, and particularly
focuses on incorporating the notions of the conceptual framework defined in the previous
section.

• Active Objects: objects are computational entities that provide services based on
an encapsulated state, and a composition language must be able to instantiate and
communicate with objects. Objects may be active (concurrent), distributed, mobile,
and may live in different environments. In any case, objects can be viewed as a kind
of server, orprocess. The process view provides a way to formalize the notion of
objects.

• Components:components are abstractions over the object space [ND95]. Compo-
nents may be fine-grained, when used to build individual objects, or coarse-grained,
when used to build compositions of objects. They may also be run-time entities, but
more generally, components must be constructed (composed) and instantiated be-
fore they are part of an application.

• Connectors: composition mechanisms and operators (connectors) define how as-
sociated components interact with each other. The language model should allow
for an algebraic view of composition and encourage adeclarativestyle of program-
ming. Furthermore, a composition language must support the specification of new
kinds of connectors.

• Architectures: a composition language must allow programmers to make the ar-
chitecture of an application explicit in the corresponding source code. It must offer
support for common architectural styles, for combining multiple, heterogeneous
architectural descriptions, and be open enough to support new (user-defined) archi-
tectures.

• Glue: glue abstractions are needed in order to overcome incompatible composition
interfaces of components coming from different component frameworks. These
glue abstractions have to betransparentin the sense that none of the involved com-
ponents is aware of the glue andconfigurablein order to enhance their reusability.

• Object Models: a composition language must be able to mediate between different
object and component models. Objects and components that cannot be separated
from their individual run-time environments must still be able to communicate.
Glue abstractions must achieve the mappings between these models.

• Reflection: glue abstractions are often realized by intercepting service invocations
between components and by performing some (reflective) transformations on these
invocations. Reflection is also important for exercising run-time control on config-
urations. Metaobjects are active objects that control the creation, instantiation, and
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composition of other objects, and can be used to realize various forms of reflective
behaviour.

• Foreign Code Concept: in order to incorporate components not written in the
composition language itself, it is necessary that the language offer abstractions to
interoperate with components running on different component platforms.

• Formal Semantics:a composition language must be based on a formal semantics
in order to reason about components and configurations. In particular, a formal
foundation helps one to specify different notions of objects and components, to
integrate different compositional features such as synchronization or inheritance,
and to explore notions of contracts and type compatibility for concurrent systems.

• High-level Syntax: the specification of an application as a composition of compo-
nents must be highly readable and compact. It is therefore important that a user is
able to assign a high-level syntax when defining components (as it is possible in
languages like Smalltalk).

This list of requirement focuses on technical aspects of a composition language, but
does not give any details for specific aspects. In the following chapters, we will elaborate
the notions of architectures, scripting, and glue, and also discuss technical requirements
for these concepts in further detail; refer to sections3.5, 4.2, and5.4, respectively. A
detailed discussion about the technical aspects of the other items of the list is beyond the
scope of this work. We will comment on some of these aspects in the section about future
work (refer to section11.2).
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Chapter 3

Software architectures

Software architecture is an emerging discipline in the field of software engineering. It did
not appear as a new concern for software systems, but it has rather emerged over time
as people have searched for new ways to better understand their software and to build
large, more complex systems. In this chapter, we will first informally introduce terms and
related problems and give a short overview of the roots of software architectures. Second,
we define important terms for the field and list a set of requirements how to describe
software architectures. Finally, we discuss the influence of software architectures on reuse
and conclude with some remarks on related and future work.

3.1 What is an architecture?

Intuitively, people apply the general term architecture to the usage aspects of houses and
other buildings they deal with, in terms of the nature of the physical structures and the
physical arrangement of the structures in relation to each other [GAACB95]. This first
sentence already classifies the most important aspects of architecture:physical structures
and theirrelation to each other. However, there are other important aspects, and architec-
tures can be found in more areas than just buildings. In this section, we will informally
introduce the terms architecture and architectural style using a set of examples from dif-
ferent domains.

A classical introduction into the problems of architecture and architectural styles is
offered by modular furniture systems. A piece of such a system is usually delivered as a
set of components which have to be assembled before the piece can be used. The com-
ponents can be divided intofunctionalelements (like boards) andconnectingelements
(e.g. screws). The functional elements have appropriateholesthat can be used by the
connecting elements to hold the furniture together. Finally, ascript shows how (and in
which order) the components have to be assembled.

Having a closer look at these modular furniture systems, one may note that

• a modular furniture system usually consists of a family of “related” pieces (they
differ in size, colour, material, or shape),
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• a component of one piece can be reused in a related piece,

• all pieces of the same family (or even of several independent families) only contain
a small set of standard connecting elements,

• the components of a piece have to be assembled in a predefined way (there might be
the possibility to have a restricted number of variations; e.g., the shelves of a book
shelf can be placed in different heights), and

• it is usually possible to assemble all elements of a piece quite easily, without know-
ing i) what the components are built of and ii) how the components were built.

Another domain where the term architecture can be applied to are stereo (Hi-Fi) sys-
tems. A stereo system, for example, consists of an amplifier, CD-player, tuner, tape deck,
and other components. Each of these stereo components is built up from smaller com-
ponents (e.g. circuits), which again use even smaller components (e.g. transistors). All
stereo components have a well-defined basic behaviour and support standard interfaces.
Before they can be used, they have to be connected to a power supply. Although in prin-
ciple each of these components would function by itself, their real value lies in the way
they are designed to be plugged together.

A customer composing a stereo system is usually not interested in how the compo-
nents are built, but is interested in the services they deliver (a tape deck should support a
specific noise reduction system) and their composability (it should be possible to connect
components from different vendors). The producers, on the other hand, have a differ-
ent view of their hardware components: they know the internal architecture (design and
implementation) of their components, and often reuse existing layouts and pieces of hard-
ware to develop new components.

In fact, vendors have been building with standardized components for years, as they
generally do not design a single stereo component, but rather design afamily of them.
Variations are made by combining a basic set of components into different configurations,
and only a few components are made specifically for a single product.

As a last introductory example, consider the following Bourne Shell script [Bou78]:
grep -h ’ˆ#Keys’ * | tr -c ’[A-Z][a-z]’ ’[ \012*]’ | \
grep -v ’Keys’ | sort -u | comm -13 keywords -

The purpose of this script is to extract keywords of a set of files and check whether
they are contained in a predefined set of keywords (stored in a special file of keywords
keywords ).1 In order to simplify the following discussion, we restrict the Bourne Shell
and only allow the operators ‘|’, ‘>’, and ‘>&’.

Analyzing this Shell script, it is possible to find several interesting properties:

• the script consists of 5 components (grep , tr , grep , sort , andcomm), each
fulfilling a well-defined task,

• the components have to be instantiated,
1The usage and arguments of the UNIX programs used can be found in an appropriate UNIX manual.



3.1. WHAT IS AN ARCHITECTURE? 23

• the functionality of the components can be specialized at instantiation by passing
different (command line) arguments (e.g.grep is used with the arguments-h
’ˆ#Keys’ * and-v ’Keys’ , respectively),

• successive components are connected by a pipe (indicated by the ‘|’ symbol) and
interact using text streams,

• none of the components knows it predecessor and successor,

• the components and the pipes of the script form a pipeline, where each component
depends on the output of its predecessor and the parameters used to instantiate it.

Analyzing the three examples mentioned previously in this section, we can deduce the
following properties:2

• the architecture of a system or subsystem can be described in terms ofcomponents
andconnecting elements(connectors),

• a component fulfills a well-defined task and has a compositional interface,

• a connector connects a set of components by using their compositional interface,

• components and connectors cannot be connected in an arbitrary way; a set of rules
restricts their compositions,

• a component can itself be a composition of (smaller) components and connectors,

• a component can be reused in a different context than the one it has been designed
for,

• the type of components and connectors and the set of rules define the set of possible
systems which can be built, thus defining anarchitectural style.

All the properties listed above hold for any kind of architecture, software architectures
in particular. However, there are other properties and aspects which need to be addressed
while discussing software architectures. A detailed discussion of these aspects is the topic
of section3.3. As a first summary, we consider an architecture as a description of a system
in terms of components and connectors.

Although we have only informally introduced the term architecture, we already fo-
cussed on a specific view what we consider an architecture. The reader should note that
the term is also used in a much broader sense in different areas. Examples of other senses
are module architecture, configuration architecture, file architecture, process architecture
etc.; refer to [SG96, chapter 1] or [DW99, chapter 12] for details.

We mentioned above that an architectural style restricts the set of possible systems.
In order to illustrate this fact, reconsider our Bourne Shell script mentioned earlier in this

2The list only contains those properties which are relevant for architectures in general; other properties
are omitted.
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section, where we compared the keywords found in a set of files with a special file of
keywords. The comparison only works since the file of keywords is already in a format
suitable for the filtercomm3 (i.e. a text file with each keyword on a separate line). If
the list of predefined keywords is not available in this format (e.g. keywords separated
by semicolumns), it is necessary to create the appropriate format (by using a suitable
helper application), which is usually not a major problem on its own. The problem lies
in the nature of the filtercomm: it is possible to use it with either two input files (comm
file1 file2 ) or one file and one input stream (comm file - ),4 but not with two input
streams. Therefore, it is necessary to store the list of predefined keywords in a temporary
file, before we can use the script above. In order to avoid this temporary file, we would
need i) a comm-like filter which is able read from two input streams and ii) a mechanism
to connect the output streams of two filters to a single component.

The two requirements mentioned in the last paragraph cannot be fulfilled by our re-
stricted Bourne Shell. This shell can be seen as a kind of compositional environment
supporting a restricted set of components and connectors only. The main restrictions are
that

• components (filters) have one input port (the standard input stream) and two output
ports (the standard output and standard error streams),

• the behaviour of filters can be specialized at instantiation by passing different (com-
mand line) arguments, but no run-time reconfiguration is possible,

• connectors connect either i) the standard output or the standard error stream of a
filter to a file, or ii) the standard output stream of a filter to the standard input
stream of another filter, and

• it is not possible to introduce feedback loops between filters.

Since all shell scripts have to fulfill the restrictions mentioned above, they all share a
similar overall structure. Or in other words: they conform to apipe and filterarchitectural
style [AAG93].

3.2 Roots of software architecture

The study of software architecture is in large part a study of software structure that began
in the late sixties when Dijkstra pointed out that it pays to be concerned with how software
is partitioned and structured, as opposed to simply programming so as to produce a correct
result [Dij68]. He was the first author to describe a structure in which programs were
grouped into layers, and programs in one layer could only communicate with programs
in adjoining layers, resulting in major gains for development and maintenance.

3In UNIX terminology, an command likecommis usually called afilter.
4- indicates to use the standard input stream for comparison.
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In programming, the term architecture was first used to mean a description of a
computer system that equally applied to more than one actual implementation. Brooks
and Iverson called architecture the “conceptual structure of a computer...as seen by the
programmer” [BI69], making the distinction between architecture and implementation:
“Where architecture tells what happens, implementation tells how it is made to happen.”
This distinction has survived until today, particularly in the area of object-oriented pro-
gramming.

Parnas continued these investigations, resulting in the definition of so-calledprogram
families[Par76]: a program family is a set of programs for which it is profitable or useful
to consider them as a group, and can be described by specifying a decision tree that was or
would be traversed in order to arrive at each member of the family. The significance of the
program family concept to software architecture is that a software architecture embodies
those decisions at or near the top of Parnas’ program family decision tree.

Alexander was the first author who tried to record design knowledge in a canonical
form [AIS77]. He applied so-calledpatterns5 in the context of the architecture of build-
ings and showed how patterns can be applied to house construction and the planning of
neighbourhoods and whole cities. In the late eighties, software engineers recognized the
importance of patterns in the area of software engineering and tried to adapt Alexanders
approach, resulting in several publications [Gam91, Joh92, GHJV95, Pre95, BMR+96]
and a booming field of software engineering generally known asdesign patterns.

Although there are many ways of describing design patterns, the essential point is that
they describe the solution of a recurring design problem in relationship to its context. The
solution usually is a kind of genericmicro-architecture, which can be applied in a context
where the corresponding problem occurs. However, Buschmann et al. noted that patterns
can also be applied to larger-scale problems and introduced the termarchitectural pattern:

An architectural patternexpresses a fundamental structural organization
schema for software systems. It provides a set of predefined subsystems,
specifies their responsibilities, and includes rules and guidelines for organiz-
ing the relationships between them [BMR+96].

Patterns have several important contributions for the area of software architecture:

• patterns provide a common vocabulary and understanding for design principles,
facilitating the discussion of design problems and their solutions [GHJV95],

• patterns identify and specify abstractions that are above the level of classes, in-
stances, and components and, therefore, are a kind of template for concrete systems,

• patterns are a means of documenting software architectures [Joh92], and

• patterns help to build complex and heterogeneous software architectures.

5For Alexander’s definition of pattern, refer to [Ale79].
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Today, the study software architecture has emerged into an important field for both
software engineers and researches. There is considerable activity in this area, which can
be roughly placed into four categories, each addressing different aspects and problems
[SG96]:

• codification of architectural expertise: cataloguing and rationalizing of architectural
principles and patterns (refer to section3.4),

• architectural characterization by (new) architectural description languages (refer to
section3.5),

• development of architectural frameworks for specific application domains, and

• development of formalisms for reasoning about architectural designs.

3.3 Definitions of software architecture

In the previous sections, we have used the term software architecture without giving a
precise definition. Unfortunately, there is no generally-accepted definition of the term. In
the following, we will summarize definitions and comments of other researchers, and will
elaborate our own definition of software architecture, which will be used throughout the
rest of this work.

One of the earliest definitions of the term software architecture was elaborated by
Perry and Wolf [PW92]. Their goal was to build a foundation for studying software
architectures. By analogy to building architecture, they propose a model of software
architecture as a combination ofelements, form, andrationale:

A software architectureis a set of architectural (design) elements that have
a particular form. Properties constrain the choice of architectural elements
whereas rationale captures the motivation for the choice of elements and form
[PW92].

Architectural elements are divided intoprocessing elements, data elements, andconnect-
ing elements. The processing elements are those components that supply the transforma-
tion on the data elements. The data elements are the elements that contain the information
that is used and transformed whereas the connecting elements are the glue that holds the
different pieces of the architecture together. The architectural form consists of properties
and relationships: properties are used to constrain the choice of architectural elements,
and relationships constrain how the different elements may interact and how they are or-
ganized with respect to each other. Finally, the rationale explicates the satisfaction of
the system constraints, which are determined by considerations ranging from functional
aspects to various non-functional aspects such as performance and reliability.

A similar approach is used by Lea for the definition of flow patterns [Lea96], where
he distinguishes betweenrepresentational components, transformational components
(stages), andcoordination components.



3.3. DEFINITIONS OF SOFTWARE ARCHITECTURE 27

Another definition of the term software architecture is given by Luckham and Vera
in the context of RAPIDE, a concurrent event-based simulation language for defining and
simulating the behaviour of systems at an architectural level:

A software architectureis an executable specification of a class of systems,
consisting ofinterfaces, connections, andconstraints. The interfaces specify
the behaviour of components of the system, the connections define the com-
munication between components, and the constraints restrict the behaviour of
the interfaces and connections [LV95].

Since the interaction between system components is defined by connections between their
interfaces, Luckham and Vera call such an architecture aninterface connection architec-
ture.

A step further than Luckham and Vera goes the definition of Bass, Clements, and
Kazman, introducing the concept ofvisible properties:

Thesoftware architectureof a program or computing system is the structure
or structures of the system, which comprise software components, the ex-
ternally visible properties of those components, and the relationships among
them [BCK98].

Externally visible properties refer to those assumptions other components can make of a
component, such as its provided services, performance characteristics, error handling, and
shared resource usage. The intent of this definition is that a software architecture must
abstract away some information from the system, but still providing enough information
in order to be a basis for analysis, reasoning, and implementation.

In their definition, Shaw and Garlan introduce the notion ofrecursive composition:

Software architectureinvolves the description of elements from which soft-
ware systems are built, interactions among these elements, patterns that guide
their composition, and constraints on these patterns. In general, a particular
software system is defined in terms of a collection of components and inter-
actions among these components. Such a system may be used as an element
in larger systems [SG96].

Similar to the definition of Perry and Wolf, an architecture describes a software system
in terms of computational elements and interactions among these elements, defining a
kind of architectural model. Individual elements of an architectural model are defined
independently, so that they can eventually be reused in different contexts. This view of
an architecture is also applied by Magee et al. in the context of Darwin, a programming
language for structuring parallel and distributed programs [MDK92].

Gacek et al. claim that most definitions of software architecture focus on what can be
seen “from the street”, but do not completely address the full range of evaluation issues
associated with a software architecture:
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A software system architecturecomprises i) a collection of software and
system components, connections, and constraints, ii) a collection of system
stakeholders’ need statements, and iii) a rationale which demonstrates that
the components, connections, and constraints satisfy the collection of system
stakeholders’ need statements [GAACB95].

Their main concern is the role of software architectures in the software life-cycle. The fact
that different stakeholders6 (customers, users, system engineers, developers, maintainers
etc.) take different viewpoints when expressing their concerns about a software system
implies that software architectures are involved in all phases of the life-cycle and require
to consider more than just one view of a system. Each view (e.g. conceptual view, module
view, process view, physical view) reflects a specific set of concerns that are of interest to
a group of stakeholders.

The definition of Buschmann et al. considers the impact of functional and non-func-
tional properties on the development of a system, and the importance ofviewsin order to
show the properties of a system:

A software architectureis a description of the subsystems and components
of a software system and the relationships between them. Subsystems and
components are typically specified in different views to show the relevant
functional and non-functional properties of a software system [BMR+96].

According to their definition, a component is an encapsulated part of a software system
which has an interface and serves as a building block for the structure of a system. A
relationship denotes a (static or dynamic) connection between components whereas a view
represents a partial aspect of an architecture that shows specific properties of a software
system.

Finally, based on structures found to be prevalent and influential in the development
environment of industrial projects, Soni et al. identify four distinct categories of architec-
tures, each describing a system from a different perspective [SNH95]:

• the conceptual architecturedescribes the system in terms of its major design ele-
ments and the relationships among them,

• the module interconnection architectureencompasses two orthogonal structures:
functional decomposition and layers,

• theexecution architecturedescribes the dynamic structure of a system,

• the code architecturedescribes how the source code, binaries, and libraries are
organized in the development environment.

Although the definitions mentioned in this section focus on different aspects, they all
have one important aspect in common: making a clear separation between computational

6A stakeholder is a person who has a financial interest in the system.
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elements and their relationships. Summarizing the definitions, we get a similar set of
properties as the ones described in section3.1. However, the following properties have to
be added to the list:

• a software architecture describes a system at a level beyond simple algorithms and
data structures, including global organization and control structure,

• the architecture of a system consists of computational elements (components), data
elements, and connecting elements (connectors). The data elements are often im-
plicitly described in the connecting elements,

• components can be described at different levels of abstraction (e.g. a component
may be as small as a single procedure or as large as an entire application), and

• different views and levels of architectural abstraction are needed in order to describe
specific aspects and properties of a system.

Some of these properties are essential for the description of a software system (e.g. com-
ponents and connectors), other properties give additional information about the context
and rationale of an architecture. It is obvious that the latter properties are important for
documentation and define guidelines how a system can evolve and be modified, but only
the former properties are essential when a system has to be implemented the way it is
described.

In order to define the term software architecture for our purpose, reconsider the def-
inition of a component given in section2.2: a component is a black box entity with a
well-defined set of required and provided services. It is obvious that connections have
to be established between required and provided services of the components of a sys-
tem. Otherwise, the components would not be able to cooperate with each other. This
observation leads to the following definition of the term software architecture:

A software architecture describes a software (sub-)system as a con-
figuration of components and connectors. A connector connects re-
quired ports of a set of components to provided ports of other compo-
nents. A configuration of components and connectors can be used as
a component of another (sub-)system.

This definition has several consequences. First of all, it does not restrict the level of
abstraction of components and connectors: they can be described at different levels of
abstraction, where each level shows different aspects of the architecture of a system. Sec-
ond, a component may itself be a composition of (smaller) components and connectors.
Third, the behaviour of a (sub-)system is specified by the properties of its components and
the corresponding connections; the notion of the architecture itself does not add any new
behaviour. Fourth, if the properties of all components and connectors of a configuration
are known, it is possible to analyze an architecture at an appropriate level of abstraction.
This is important if it is necessary to check whether the connections between component
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ports are well-formed, which might lead to the development of a kind of architectural type
system. Finally, a software architecture can be seen as a template for implementation:
every implementation which fulfills all the properties of the architecture is an instance of
the corresponding architecture. However, although the architecture does not make any
explicit assumptions about the programming language to be used for implementation, it
restricts the set of possible programming languages due to the fact that certain component
types used in the architecture (e.g. classes) may not be present in any language.

Note that the term architecture is still used today in some communities to refer to the
user view of a system [Kru95], but this is not what is meant by our definition of the term.

3.4 Architectural styles and patterns

Often a software architect is not concerned with a single system in isolation, but with a
system in the context of an entire family of systems. In such a situation, a software archi-
tect usually does not design a system from scratch, but searches for an already existing
software system that has solved a similar problem or a problem in the same application
domain. Thus, the architect tries to reuse and adapt an architecture from a particular
architectural style. By doing so, it is guaranteed that the resulting architecture has some
desirable properties, and allows him to use a vocabulary that is natural to the problem
domain and supports reasoning and analysis about specific aspects of the system.

But what precisely is an architectural style? Again, no generally-accepted definition
of the term exists. Therefore, we will summarize definitions of other researchers and
elaborate a definition for our own purpose.

3.4.1 What are architectural styles?

Perry and Wolf consider an architectural style as an arrangement which abstracts elements
and formal aspects from various specific architectures:

An architectural styledefines a family of software systems in terms of their
structural organization. An architectural style expresses components and the
relationships between them, with the constraints of their application, and the
associated composition and design rules for their construction [PW92].

Given this definition, they claim that there is no hard dividing line between an architec-
ture and an architectural style. The important thing about an architectural style is that it
encapsulates important decisions about architectural elements and emphasizes constraints
on elements and their relationships.

Shaw and Garlan define an architectural style as a vocabulary of components, connec-
tors, and constraints:

An architectural styledefines a family of systems in terms of a pattern of
structural organization. More specifically, an architectural style defines avo-
cabularyof components and connector types, and a set ofconstraintson how
they can be combined [SG96].
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According to Bass, Clements, and Kazman, an architectural style consists of a few key
features and rules for combining those features so thatarchitectural integrityis preserved:

An architectural styleis a description of component types and a pattern of
their run-time control and/or data transfer. It is determined by i) a set of
component types, ii) a topological layout of these components (indicating
their run-time interrelationships), iii) a set of semantic constraints, and iv) a
set of connectors that mediate communication, coordination, or cooperation
among components [BCK98].

Depending from the point of view, an architectural style either defines a class of architec-
tures or is an abstraction for a set of architectures that meet it.

Summarizing and combining the principle ideas of the definitions above, we define
the term architectural style as follows:

An architectural style is an abstraction over a set of related software ar-
chitectures. It defines a vocabulary of component and connector types
and a set of rules how components and connectors can be combined.

In contrast to the fact that each software system has an architecture, it is often not
possible to assign a single architectural style to a system: a system may be a combination
of several architectural styles. Such systems are calledheterogeneous[SG96, BCK98].
Bass, Clements, and Kazman distinguish between three kinds of heterogeneity:

• locally heterogeneous: the architectural structure of a system reveals different styles
in different areas (e.g. branches of a main-program-and-subroutines system7 have
a shared data repository),

• hierarchically heterogeneous: a component of one style, when decomposed, is
structured according to the rules of a different style (e.g. an element of a pipe
and filter pipeline is structured in a layered style), and

• simultaneously heterogeneous: a system may be described using several architec-
tural styles.

The last form of heterogeneity implies that it is not possible to partition architectural
styles into nonoverlapping categories.

3.4.2 Classifying architectural styles

The use of architectural styles has several advantages as they incorporate the knowledge
of experienced software architects. However, before we can benefit from this knowledge,
it is necessary to establish a vocabulary of architectural styles and define a corresponding

7For a description of themain-program-and-subroutinesstyle and other styles mentioned in this section,
refer to [BCK98, chapter 5].
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classification, similar to the design pattern catalogue by Gamma et al. for the solution
of finer-grained design problems [GHJV95]. Such a classification would facilitate the
communication between different people involved in the design of a system, help a soft-
ware architect to find the appropriate style for a given problem, and promote design reuse
since solutions with well-understood properties can be reapplied to new problems (refer
to section3.6for a discussion about the influence of software architectures on reuse).

A first attempt to identify and define architectural styles has been proposed by Abowd
et al. [AAG95] and Shaw and Garlan [SG96]. However, both approaches were restricted
to only a small set of architectural styles and did not cover a wide range of styles from
different problem domains. An attempt to classify a broader range of architectural styles
has been elaborated by Shaw and Clements [SC97] and Bass, Clements, and Kazman
[BCK98]. Common to all approaches is that they do not capture all specializations and
modifications of given styles found in the software world. The styles are described in a
very general way and leave many design decisions open. Refinements to those styles are
necessary before they can be effectively used to build real software architectures.

A detailed discussion about existing approaches to classify architectural styles is be-
yond the scope of this work; please refer to the corresponding references. For an overview
of the catalogue proposed by Bass, Clements, and Kazman, particularly the refinement of
thedata flowstyle, refer to [BCK98, chapter 5].

3.4.3 Architectural patterns

In section3.2, we have discussed architectural patterns and their contributions to the area
of software architectures. If we compare this discussion with the definitions of architec-
tural style, we see that there are many aspects in common. Often both terms are used
simultaneously, although we think that there is a distinction between an architectural
pattern and an architectural style:an architectural pattern is a way to describe an ar-
chitectural style, including more information than just a vocabulary of component and
connector types and a set of rules. Generally speaking, an architectural pattern expresses
a fundamental structure for a software system with an associated method that specifies
how to construct it. An architectural pattern comprises information about when to use it,
its invariants and specializations, as well as the consequences of its application.

An architectural pattern describes the solution of a particular recur-
ring design problem that arises in specific design contexts. The so-
lution scheme describes the overall structural organization (compo-
nents, their responsibilities, and the relationships between them), the
constraints of its application, and the associated composition and de-
sign rules.

This definition of the termarchitectural patternis very similar to the definition of an ar-
chitectural style by Perry and Wolf [PW92]. We believe, however, that it is important
to make a clear distinction between separate concepts and introduce well-defined terms
for each concept. Therefore, we make the distinction between an architectural style and
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an architectural pattern: the former focuses on the technical aspects (vocabulary of com-
ponents and connectors, composition rules) of the solution scheme whereas the latter
describes the associated design rules, the consequence of its usage, and related solutions.

3.5 Architectural description languages

Often, software architectures are represented by box-and-line diagrams in which the prop-
erties of components, the semantics of connections, and the behaviour of the system as
a whole are poorly defined. Even though such diagrams give a first, intuitive picture of
a system, they are highly ambiguous and are a source of misinterpretation: it is virtually
impossible to answer many questions that are important for the clear understanding of a
system. What we need is a notation to precisely describe software architectures and ar-
chitectural styles. In the following, we call such an notation anarchitectural description
language(ADL):

An architectural description language is a notation that allows for a
precise description and analysis of the externally visible properties of
a software architecture, supporting different architectural styles at dif-
ferent levels of abstraction.

The questions arises what kind of requirements a notation needs to fulfill in order to
be useful as an architectural description language. According to Allen [All97], an ADL
must offer a vocabulary that can be easily understood by architects and is suitable for
communicating architectures to all interested parties of a system. Second, it must directly
provide the abstractions of components and connectors. Third, an ADL must provide
a precise semantics for components and connectors that resolves ambiguity and aids in
the detection of inconsistencies. Finally, it must offer a set of techniques that facilitate
analysis of architectural styles and support reasoning about specific system properties.

Focusing primarily on linguistic issues, Shaw and Garlan have elaborated the follow-
ing concepts that an architectural description language must provide [SG96]:

• abstraction: describing components and their interactions of a software system with
clear and explicit abstract roles,

• composition: describing a system as a composition of independent components and
connectors,

• reusability: reuse components, connectors, and architectural patterns in different
architectural descriptions,

• configuration: localization of system descriptions (independent of elements being
structured); dynamic reconfiguration of systems,

• heterogeneity: combining multiple, heterogeneous architectural descriptions,

• analysis: performing analysis of and reasoning about architectural descriptions.
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Bass, Clements, and Kazman add additional requirements for architectural description
languages [BCK98]. For our purpose, an ADL must

• support the common architectural styles,

• enable the creation, refinement, and validation of architectures,

• provide a basis for further implementation.

This covers most of the requirements for architectural description languages, and more
or less conforms to the requirements described by Luckham and Vera for the design of
RAPIDE [LV95]. However, some of the requirements mentioned above need to be refined.
For example, an ADL must be open enough to support new architectural styles (additional
component and connector types, new composition rules etc.).

There is a large variety of architectural description languages emerging from either in-
dustrial or academic research groups. A detailed comparison of these languages is beyond
the scope of this work. For further discussion of this topic, refer to [SG96] or [MT97].

3.6 Influence of software architectures on software engi-
neering

The use of software architectures has an influence on all the phases of the software
life-cycle and, therefore, is an important issue in the entire software life-cycle process
[GAACB95]. In this section, however, we will not discuss the influence of software archi-
tectures on the entire software life-cycle, but focus on those aspects which are important
for reuse. For a discussion of all the other aspects, refer to the corresponding references
(e.g. [GAACB95, SG96, BCK98]).

The use of software architectures and architectural styles has several benefits in the
area of reuse. Before we discuss selected aspects in further detail, consider three state-
ments which directly address the problems of reuse related to architectures and compo-
nents.

The important lesson in reusing components is that the possibilities for reuse
are the greatest where specifications for the components are constrained the
least – at the architectural level. Component reuse at the implementation level
is usually too late [PW92].

According to Perry and Wolf, the primary focus of software architectures is the identifi-
cation of important properties and relationships – constraints on the kinds of components
that are necessary for the architecture, design, and implementation of a system. Com-
ponent reuse at the implementation level is often too late because the implementation
elements embody too many constraints.
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Having a reusable architecture is a precondition to successfully developing
reusable components [BCK98].

Reusable architectures provide the structure and coordination model for a family of sys-
tems whereas reusable components implement basic concepts used in these systems.

A component frameworkis a dedicated and focused architecture, usually
around a few key mechanisms, and a fixed set of policies for mechanisms
at the component level [Szy98].

If we rephrase this statement in the terms we have introduced previously in this chapter,
we see that a component framework implies a specific (often restricted) set of architectural
styles, offering generic implementations for basic components and connectors.

We can deduce from the statements above that the use of software architectures is one
of the key concepts for developing reusable components. Some of the main implications
of software architectures for reuse are:

• components can be reused easier at a level of abstraction where they are less con-
straint than at a level with more constraints,

• before a component framework can be developed, its is necessary to have a clear
understanding of the architectural styles it supports and the basic components and
connectors it implements,

• the use of a component framework restricts the architecture of a system to be im-
plemented (i.e. a framework cannot be used if a system architecture violates these
restrictions), and

• a new component can only be integrated into a framework when the framework
supports architectural styles with the corresponding component types.

After investigating the influence of software architectures on reuse, we argue that software
architectures and architectural styles not only have an influence on reuse atdesign level
(design reuse), but also atimplementation level(code reuse).

Design reuse. The use of architectures and architectural styles is a different approach to
develop software. As mentioned in section3.4, it is often not desirable to design a system
from scratch, but to look for already existing software systems that have solved a similar
problem or a problem in the same application domain. Reusing the architecture of such
systems has the advantage that the new system benefits from well-understood properties
and important design decisions of existing systems.

If the corresponding problem domain matures, people tend to develop reusable ref-
erence models and architectures: reference models describe specific configurations of
components and interactions for specific application areas [SG96]. As an example, a
compiler is usually divided into a lexer, a parser, a semantic analyzer, an optimizer, and a
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code generator. A consequence of reference models is the development of so-calledarchi-
tectural frameworks. An architectural framework determines the structure of a family of
applications, providing shared infrastructure and prescribing requirements for instantiat-
ing the framework to produce a particular application [AGI97]. In contrast to a component
framework, an architectural framework is specified at a higher level of abstraction, using
an architectural description language. An architectural framework precisely describes
common reference architectures for a family of systems, and helps in the development of
architectural standards.

Reusing the architecture of existing systems often allows a developer to use a vocab-
ulary that is natural to the corresponding problem domain, and may lead to the identifica-
tion of reusable named architectural abstractions (e.g. architectural patterns). As already
mentioned in section3.2, patterns identify and specify abstractions that are above the level
of classes, instances, and components, defining reusable micro-architectures (with desir-
able properties) which can be used for solving specific design problems. In contrast to
reference models, patterns are usually not restricted to specific application domains and,
therefore, it is possible to use them for a broader range of design problems.

Code reuse. An often underrated aspect is the influence of architectures on code reuse.
It is often easier to implement a particular system using a component framework which
already supports the architectural styles the system is designed in than implementing the
system from scratch, even when not all the required components are part of the frame-
work. As an example, when a system is designed using a pipe and filter architectural style,
the corresponding implementation can certainly profit from components and connectors
offered by the Bourne Shell. Such an approach also enables a software engineer to reuse
existing components offered by the framework, maybe with some additional adaptation
to precisely fit the requirements of the system.

If a software engineer is concerned with the design and implementation of specific
subsystems for a family of related systems, he is encouraged to develop and implement
components in a way that they can be reused for all systems of the family. Such a reuse-
oriented development can lead to the development of a small component framework, im-
plementing standard components and basic connectors, tailored to fulfill the requirements
of the corresponding subsystems. Such small component frameworks are sometimes re-
ferred to asframelets[PS99].

There are aspects which cannot be assigned to one of the two categories discussed
above, but have an influence on both design and code reuse. As an example, consider the
area of reengineering and reverse engineering of legacy systems. Such systems are often
badly documented (if at all) and implemented in out-of-date technologies. In order to
extend and adapt these systems, it is essential that the underlying architecture is known or
can be extracted using specialized analysis techniques. Once the architecture is known, it
can be adapted to new requirements. Depending on the implementation technology of the
legacy system, the new system can reuse parts of the legacy implementation. Therefore,
legacy system have an influence on design and code reuse. However, efficient reengi-
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neering of legacy systems is still an art, especially in the area of object-oriented legacy
systems and, therefore, a field of active research [DDN+97].

Finally, we would like to point out to a particular reuse problem we will discuss
in chapter5: architectural mismatch. Architectural mismatch stems from mismatched
assumptions a component makes about the structure of the system it is to be part of
[GAO95]. In other words: it is not possible to reuse a component in a software system
which does not conform to the architectural styles supported by the underlying component
framework or composition system.

3.7 Related aspects

When designing a large, complex software system, it is often necessary to consider more
than just one structural perspective of the system. If system properties such as physi-
cal distribution or synchronization must be characterized at an architectural level, then
these properties are best addressed by using differentarchitectural views. A view repre-
sents a partial aspect of a software architecture that shows specific properties of a system
[BMR+96]. Therefore, a view can be seen as an abstraction over a software architecture
which focuses on specific aspect of interest. Views are not fully independent of each
other, as elements in one view can relate to elements in another view and, therefore, it is
necessary to reason about the interrelations of these views.

There is not yet an agreement on a standard set of views or terms to refer to views.
Soni et al. [SNH95] proposed four distinct categories of views to describe a software
system (refer to section3.3). A similar approach is taken by Clements and Northrup,
where the following views are distinguished [CN96]:

• conceptual (logical) view:this view depicts functional requirements of a system at
an abstract level,

• module (development) view:this view focuses on the organization of actual soft-
ware modules,

• process (coordination) view:this view focuses on the run-time behaviour of a sys-
tem, and

• physical view:this view considers mappings of the software onto hardware.

An important step towards a more scientific approach is the introduction of appropriate
formal foundations for software architecture, and it is generally agreed that formal models
and techniques are important for a mature engineering discipline. In the field of software
architectures, formalisms can be useful in order to provide precise, abstract models, for
describing specific designs, and for simulating behaviour. Shaw and Garlan identify four
different uses of formalisms [SG96]:

• the architecture of a specific system:formalisms of this kind precisely specify all
the properties of a specific system.
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• an architectural style:formalisms of this kind can be used to describe architectural
abstractions for families of systems.

• a theory of software architecture:formalisms of this kind clarify the meaning of
generic architectural concepts, such as architectural connection, hierarchical archi-
tectural representation, and architectural styles.

• formal semantics for ADLs:this kind of formalisms apply techniques to formally
specify the semantics of architectural description languages.

For a detailed discussion of existing formalisms for software architectures, refer to the
Ph.D. thesis of Allen [All97].

Besides software architectures, there exist other approaches to describe the structure of
software systems. A number of so-calledModule Interconnection Languages(MILs) have
been developed to support the description of large-scale program structure independent of
programming languages. MILs define program structure through definition/use bindings
that associate definitions of program constructs (e.g. data structures, functions) with uses
of those constructs. In addition, they also provide an explicit and separable description
of a system’s structure by explicitly binding definitions to uses. However, MILs do not
provide a means of specifying patterns of interaction or the development of families of
systems.

To overcome some of the restrictions of MILs,Module Interconnection Formalisms
(MIFs) have been developed. They support the composition of software modules based
on mechanisms other than definition/use bindings, and define interconnection semantics.
MIFs provide a set of interaction abstractions as the basis for system composition. As an
example, POLYLITH provides run-time support for message passing between components
based on asoftware bus[Pur94]. All communication is mediated by this bus, isolating
data transformations and physical distribution from component implementations. MIFs
support flexible implementation of systems that explicitly use the interaction mechanisms
provided by a particular implementation. However, MIFs cannot be used to build systems
that use other interaction mechanisms or communication patterns.

A common problem for the integration of systems is the potential for inconsistency in
data representations. In order to address this issue,Interface Definition Languages(IDLs)
have been developed. IDLs define abstract data interfaces and mappings from these data
interfaces to programming language constructs for languages with a corresponding IDL
binding. Examples of interface definition languages are the IDLs of CORBA [OMG96]
and COM [Rog97]. Using IDLs, incompatibilities between modules arising from data
structure representations and differences in implementation platform can be resolved.
Like MIFs, IDLs support a single, restricted form of interaction. They define the data
that is passed between components, but the dynamic constraints are either implicit in the
language mechanisms underlying the IDL or remain unspecified.



3.8. SUMMARY 39

3.8 Summary

In this chapter, we have given a general introduction to software architectures, analyzed
definitions of other researchers, clarified the corresponding terms, and discussed selected
aspects related to software architectures. In this section, we will summarize the main
observations of this chapter. It is obvious, however, that there are other aspects of software
architectures which are also relevant (e.g. quality attributes, architectural erosion), but are
beyond the scope of this work.

A software architecturedescribes a software (sub-)system as a configuration of com-
ponents and connectors. A connector connects required ports of a set of components to
provided ports of other components. A configuration of components and connectors can
be used as a component of another (sub-)system. The main purpose of software archi-
tectures is to make a clear separation between computational elements (components) and
their relationships (connectors). Anarchitectural styleis an abstraction over a family of
software architectures. It defines a vocabulary of component and connector types and a
set of rules defining how components and connectors can be combined.

An architectural description language(ADL) is a notation that allows for a precise
description and analysis of the externally visible properties of a software architecture, sup-
porting different architectural styles at different levels of abstraction. Externally visible
properties refer to those assumptions other components can make of a component, such
as its provided services, performance characteristics, error handling, and shared resource
usage.

The use of software architectures and architectural styles has an influence on all phases
of the software life-cycle, but most importantly they are one of the key concepts for
developing reusable components and frameworks.



Chapter 4

Scripting

In the previous chapter, we have discussed the influence of software architectures on
component frameworks. Naturally, it is not enough to have components and frameworks,
but for building real applications one needs a way to wire components together (i.e. to
expresscompositions).

In recent years, so-calledscripting languageshave become increasingly popular as
they make it very easy to quickly build small, flexible applications from a set of exist-
ing components. These languages typically support a single, specific architectural style
of composing components (e.g. the pipe and filter architectural style supported by the
Bourne Shell), and they are designed with a specific application domain in mind (system
administration, graphical user interfaces etc.). It turns out that scripting languages do
not only allow for flexible composition, adaptation, and configuration of existing com-
ponents, but also to represent higher-level design elements in applications, which makes
them ideal tools for expressing applications as compositions of software components.

In this chapter, we give a general introduction into scripting and analyze the con-
cept of scripting as the key mechanism for composing components. We discuss the main
properties and abstractions of scripting languages, and identify a list of essential and char-
acterizing features. We compare selected scripting languages, illustrate some important
concepts of each of these languages, and analyze abstractions for executing dynamically
created code (also known as “eval” feature). We conclude this chapter with a brief sum-
mary of the main observations.

4.1 What is scripting?

Similar to software architectures, there are no generally-accepted terms for scripting and
scripting language. Existing definitions are rather vague at the best and characterize
scripting languages somewhere between

A scripting language is a language that is primarily interpreted, and on
a UNIX system, it can be invoked directly from a text file using#! .

Anonymous Usenet User
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and

A scripting language introduces and binds a set of software components that
collaborate to solve a particular problem [NTMS91].

Therefore, we will again summarize definitions and comments of other researchers and
elaborate our own definitions, which will be used throughout the rest of this work. Many
of the cited definitions are the result of personal communications with the corresponding
researchers and, therefore, cannot be assigned to specific references.

Scripting. Scripting is often associated with CGI-programming (e.g. Perl [WCS96]) or
animating web pages (e.g. JavaScript [Fla97]). Both application domains are typical for
scripting languages, and they reflect the main purpose of scripting technology:

The essence of a “script” is a (usually) short program that “drives” some other
programmable system (e.g. the UNIX operating system).Guido van Rossum

Although the main purpose of CGI-scripts is to dynamically generate web pages, they
generally do not perform all the necessary computations themselves: they use other com-
ponents on the server system to do the job for them. Most of the code of CGI-scripts
initiates and coordinates (i.e. “drives”) computations of these components. The same
applies to animated web pages using JavaScript: the main purpose of scripts is to control
and extend the behaviour of a web browser (control document appearance and content,
interact with applets etc.), and not to fulfill major computations.

In the same direction, but a step further, goes the definition of Larid: a script acts as
gluebetween components:

Scripting labels a “high-level” language that gets something outside itself
(a browser, system facilities etc.) to do the work of an application. Other
metaphors that emphasize this role are “glue” and “bricks and mortar”.
Scripting typically involves “rapid development” with a notion of interpreted
source execution, weak typing, and introspective facilities.Cameron Larid

Scripts can be seen as a kind of mortar “gluing” bricks (i.e. components) together. The
essence is that the bricks areoutsidethe scripting language and that the glue is at ahigh
levelof abstraction. This definition points out to further dimensions of scripting languages
(interpretation, typing, introspection) which will be further discussed in section4.2. The
reader should note that Larid uses the termglue in a much broader sense than other refer-
ences (e.g. [DW99]), and the definition we will give in section5.1 is much more restric-
tive.

According to [Szy98], scripting is quite similar to application building. Approaches
based on scripting admit that the actualwiring may need more than just connections:
scripting allows small programs (i.e.scripts) to be attached to connections (i.e. connec-
tors). This can either be a the source end (e.g. for events) or at the target end (i.e. hooks)
of connections. Unlike mainstream component programming, scripts usually do not in-
troduce new components, but simple plug existing ones together: scripts can be seen as
introducing behaviour but no new state. Or in other words:
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Scriptingaims at late and high-level gluing [Szy98].

Summarizing the properties of scripting mentioned above, we see that the main pur-
pose of scripting is to build applications by connecting a set of existing components.
Generalizing this notion, we define the term scripting as follows:

Scripting is a high-level binding technology for component-based
systems.

This definition describes the overall purpose of scripting, but it also implies that there are
other binding technologies for component-based systems and applications. Furthermore,
the definition does not characterize scripting in further details. This is the purpose of the
next paragraph where languages for scripting are discussed and analyzed.

Scripting language. There are two major directions researchers use to characterize
scripting languages: by theirusageand by theirfeatures.

As mentioned above, the purpose of a script is to drive a programmable system and to
establish connections between components. Therefore, one may argue that any program-
ming language which supports these activities can be seen as a scripting language:

I suppose one might draw the line by saying that ascripting language
is one where the main effect of a program is to drive another system,
while in a programming language the program itself is the main action.

Anonymous Usenet User

It is important to note that the author of this definition makes the difference between
scripting languages and “other” programming languages. As we will see further below,
the category of these other languages can be further subdivided.

Into the same direction goes the following comment:

We recognizescripting languagesby their uses, not by counting a checklist
of features. Cameron Larid

Although it is certainly important to characterize a language by the way it is generally
used, we believe that the kind of features a language supports has a major impact on its
usage. It is, therefore, not enough to just observe the main usage of a language, but to
describe its features and characteristics, and to analyzewhy it is used in a specific way.

A first attempt to define the term scripting language is the following:

A scripting languagerelies on a class/interface/type-based underlying object-
oriented/component-based language and run-time system. It allows program-
matic control of only instantiation of existing component types and messages
to those instances. Doug Lea
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This definition describes a scripting language as a language which is only able to instan-
tiate and connect components. In particular, it excludes the definition of new abstractions
(e.g. new component types) and, therefore, a scripting language can be seen as an impov-
erished prototype style object-oriented language (such as SELF [US87]).

The definition given above is very restrictive and important aspects of scripting lan-
guages are not covered. The following definition elaborates some of these aspects:

A scripting language should i) have text processing primitives, ii) offer some
form of automatic memory management, iii) not require a mandatory separate
compilation phase, iv) favour high-level expressiveness over execution speed
or ability to manipulate data at the bit level, and v) interface well with the rest
of the system. Guido van Rossum

Although not emphasized, item v) denotes one of the most important properties of a
scripting language: interfaces to the “outside world” (i.e. the possibility to interoperate
with components not written in the scripting language itself). Another important property
van Rossum mentions is item iv): performance and resource consumption are expected to
be dominated by the components (and not the scripts) and, therefore, the performance of
the scripting engine usually is not a major issue.1 However, it is important that a scripting
language offers high-level abstractions for connecting components. The items ii) and iii)
describe implementation specific aspects, and are not inherently due to scripting problems
in general. The same also applies to item i), which is a feature common to several scripting
languages.

Van Rossum also points out that in practice, most typical scripting languages are crip-
pled for the development of large programs, because certain features that are useful for
scripting or throw-away programming tend to be harmful in large programs (e.g. auto-
matic data coercions).

Other important aspects of scripting languages are covered by the following definition:

A scripting languageshould i) be interpreted, not compiled, ii) be dynami-
cally typed (so that a variable can have different types during its lifetime), iii)
offer abstractions for introspection, iv) be embeddable and extensible, and v)
have a simple syntax. Brent Welch

Embeddability and extensibility are two important properties of scripting languages,
which tells them apart from other programming languages. Extensibility is needed in
order to incorporate new abstractions (components or connectors) into the language, en-
couraging the integration of legacy code. Embedding a script into an existing component
offers a flexible way for adapting and extending this component, and has a major impact
on reuse.

1One should note that the run-time systems of scripting languages are not necessarily slower than the
one of so-called system programming languages. For example, Perl is highly optimized for text processing,
and for some applications it requires a lot of skill to write a corresponding program in C or C++ which runs
faster than a corresponding Perl application.
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In the context of making a clear separation between computational elements and their
relationships, Griffel defines the term scripting asapplication level programmingand
claims that the main purpose of a scripting language is the adaptation, customization, and
configuration of components [Gri98]. From his point of view, a scripting language is
interpreted, at most dynamically typed, and has a small language model. In particular, a
scripting language should not have any procedural elements, but be a purely declarative,
rule-based language for a specific application domain.

An important reference about scripting and scripting languages is an article by
Ousterhout [Ous98]. He makes the distinction betweenassembly languages, system pro-
gramming languages, andscripting languages.

In an assembly language, virtually every aspect of a processor is reflected in a pro-
gram. Each statement represents a single machine instruction, and programmers must
deal with low-level details such as register allocation and procedure calling sequences.

System programming languages differ from assembly languages in two ways: they are
higher-leveland they arestrongly typed. The term higher-level means that many lower-
level details (e.g. register allocation) are handled automatically by the programming en-
vironment and are not reflected in the program code. It usually takes several instructions
of an assembly language in order to get the same functionality as a single instruction in a
system programming language. In the context of a system programming language, typing
refers to the degree to which the meaning of information is specified in advance of its use.
In a strongly typed language, a programmer declares how each piece of information will
be used, and the programming environment prevents the information from being used in
a different way. To be more precise: a programming language is strongly typed if it is
possible to ensure that every expression is type consistent based on the program text alone
[CW85]. The main purpose of system programming languages is to create applications
(and components) starting from scratch.

Ousterhout defines the term scripting language as follows:

Scripting languagesare designed for gluing applications. They provide a
higher level of programming than assembly or system programming lan-
guages, much weaker typing than system programming languages, and an
interpreted development environment. Scripting languages sacrifice execu-
tion efficiency to improve speed of development [Ous98].

Ousterhout claims that scripting languages represent a different style of programming
than system programming languages. They are neither intended for writing applications
from scratch nor for implementing complex algorithms or data structures: they assume
a collection of existing components and are intended for plugging these components to-
gether. Therefore, they are sometimes referred to as glue languages orsystem integration
languages.

Scripting languages are higher-level than system programming languages in the sense
that a typical statement of a scripting language executes several hundred machine instruc-
tions, much more than a typical statement of a system programming language. Much of
this difference is because the abstractions of scripting languages have a greater function-
ality than abstractions in system or assembly programming languages.
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Figure 4.1: Comparison of programming languages based on their level of abstraction
and their degree of typing (based on a similar comparison in [Ous98]).

In order to simplify the task of connecting components, scripting languages tend to
beweakly typed.2 A weakly typed language makes it easier to hook together components
than a strongly typed language and allows us to reuse components in a way not foreseen
by the designer.

For a graphical comparison of these three programming language categories (includ-
ing sample languages), refer to Figure4.1.

Analyzing the definitions given above, there remains one aspect which has not been
explicitly pointed out to so far: scripting languages offer explicit support for architectural
styles and representing high-level design elements in applications.

Due to the higher level of abstraction of a scripting language, it is possible to directly
represent high-level design elements (i.e. high-level connectors) in applications, which
implies an explicit support for software architectures. However, most existing scripting
languages only offer a small set of such high-level abstractions and, therefore, support for
a restricted set of architectural styles only. As an example, reconsider the discussion about
Bourne Shell scripts in section3.1. The Bourne Shell [Bou78] offers an operator ‘|’ which
is typically used to connect the standard output stream of one process to the standard input
stream of another process, making thepipe and filterarchitectural style of a shell script
explicit. One may note that in general it is not possible to use another architectural style
in the Bourne Shell. It is obvious that we could also use a system programming language
like C to instantiate and connect a set of UNIX processes. However, the C programming

2Some scripting languages or not typed at all, others are dynamically typed and/or offer run-time type
conversions. For further discussion about typing issues, refer to section4.3.
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language does not offer high-level abstractions for connecting the standard output stream
of a command to the standard input stream of another command and. Hence, it is not
easily possible to make the architecture of the application explicit, especially as C does
not offer such a convenient syntax for expressing connections of UNIX commands as the
Bourne Shell.

Summarizing the properties discussed so far, a scripting language can preliminarily
be characterized as follows:

• The purpose of a scripting language is the development of applications by plugging
existing components together (i.e. the primary focus is oncomposition).

• Scripting languages areextensible: they are designed for extending the language
model with new abstractions (e.g. new components and connectors) and for incor-
porating components written in other languages.

• Scripting languages areembeddable: it is possible to embed them into existing
components, offering a flexible way foradaptationand extension.

• Scripting languages favourhigh-level programmingover execution speed.

• Scripting languages areinterpretedand offerautomatic memory management.

• Scripting languages aredynamicallyandweakly typedand offer support for run-
time introspection.

• Scripting languages offerexplicit support for architectural styles(i.e. making the
architecture of an application explicit), and can therefore be considered as exe-
cutable architectural description languages (ADLs).

As we will discuss in the next section, not all of the features listed above areessential
for scripting, but rather characterize a particular scripting language in the language space.
Considering the essential properties, we define the term scripting language as follows:

A scripting language is a high-level language used to create, cus-
tomize, and assemble components into a predefined software archi-
tecture.

4.2 Dimensions of scripting languages

In the previous section, we pointed out that there does not exist a generally-accepted
definition for scripting language and that existing definitions are rather vague at the best.
Based on a summary of these definitions, we elaborated our own definition of scripting
language, which defines the term at high level, but does not include any particular features
a scripting language must support (i.e. any high-level language suitable for assembling
components into a predefined architecture can be named a scripting language). In this
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section, we further discuss the summary of features elaborated in the previous section and
divide the list of features intoessentialandcharacterizingfeatures.

According to Ghezzi and Jazayeri, a programming language can be seen as a formal
notation for describing algorithms for execution by a computer [GJ98]. In general, a pro-
gramming language has two major components:syntaxandsemantics. The syntax is a set
of rules that specify the composition of applications from letters, digits, and other char-
acters. The semantic rules of a language specify the meaning of a syntactically correct
program by mapping each language construct into a domain whose semantics is known
(e.g. a mathematical domain like theλ-calculus). Programming languages are generally
not categorized according to their syntax or their semantic domain, but according to the
language constructs (orfeatures) they offer (or do not offer). Depending on the provided
features, a programming language is assigned to a programmingparadigmsuch as im-
perative, functional, object-oriented etc. Moreover, a programming language can belong
to multiple programming paradigms: C++, for example, supports both an imperative and
object-oriented style of programming. Such programming languages are calledhybrid
whereas languages belonging to only one paradigm are calledpure.

A programming paradigm defines a set of features which must be supported by any
language belonging to the paradigm. For the rest of this work, we denote this set of fea-
tures asessential. On the other hand, there are features which some (or many) languages
of a particular paradigm support, but are not essential. As an example, many object-
oriented programming languages have a root-class which is an (often implicit) ancestor
to all other classes (e.g.Any in Eiffel, Object in Java). However, there are program-
ming languages that do not have such a feature (e.g. C++), but are still considered to
be object-oriented. We denote such features ascharacterizing(since they characterize a
programming language in the language space). The list of characterizing features should
be orthogonal in the sense that none of the features can be expressed as a combination of
other features.

4.2.1 Essential features

After an analysis of the main features of scripting languages and the requirements for
composing applications using components and scripts, we have identified two concepts
which are essential for a scripting language: i)encapsulation and wiringand ii)a foreign
code concept. These two concepts are the topic of the following section.

Encapsulation and wiring. In order to build an application as a composition of com-
ponents, a scripting language must support some notion of components and connectors.
More precisely, a language must offer mechanisms for encapsulation and wiring.

In section2.2, we have defined the term component as a black-box entity with a well-
defined set of required and provided services. Therefore, a language must define a set
of primitives that correspond to such a definition.3 This implies that it is possible to

3In the following, we will denote these primitives as built-incomponent types.
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encapsulate all services of a component and define the interface in a way that only those
services which have to be made public are visible.

Besides the notion of components, a scripting language must offer a set of mechanisms
which allow one to connect provided and required services of corresponding components.
Such mechanisms can be as “low-level” as a function call or as higher-level as the pipe-
operator in the Bourne Shell language. One can view such mechanisms as abstractions
over components:4 the connection of two (or more services) results in a “new” component
where the corresponding services are connected.

An important aspect about encapsulation and wiring is whether a language iscompo-
sitionally complete(i.e. it is possible to encapsulate a composition of components as a
composite component). For example, a Bourne Shell script can be used as a component
of another shell script whereas to our knowledge it was not possible to define ActiveX
components in Visual Basic prior to version 5.0 [Mic97].

Foreign code concept. In order to use components not written in a scripting language
itself, it is necessary that such a language has features to interoperate with components
written in foreign languages. We denote such features as foreign code concept, which is
also known asexternal extensibility.

Such a feature is important if a component is implemented as a composition of other
components, but does not completely fulfill all of its requirements (e.g. it does not have
the required run-time performance). In such a case, it is possible to reimplement this com-
ponent in an other programming language with more favourable run-time behaviour and
integrate this new component into the scripting language using interoperability features.

There are several possibilities how a foreign code concept can be defined for a lan-
guage: based on i) a programming language, ii) a language-neutral interface description
language, iii) binary standard, and iv) operating system resources.

A widely used foreign code concept is based on a programming language: a scripting
language specifies interfaces for defining abstractions in an other language. It is very
popular (in particular for those languages developed in a UNIX environment) to offer an
interface for C or C++. It is often the case that the run-time system of a language offering
a C/C++ interface is implemented using C or C++.

A second approach is based on a language-neutral interface description language (of-
ten referred to as an IDL), which allows developers to define interfaces in a language-
independent format. Such an approach has the advantage that components can be imple-
mented in any language that defines a binding for the interface description language. A
well-known example of such an IDL is the IDL of CORBA [OMG96]. From our point
of view, the foreign code concept of the Bourne Shell also belongs to this category: the
“IDL” defines that commands must be able to read from the standard input stream and
produce output onto the standard output and/or error streams, but does not specify any
further restrictions on how commands have to be implemented.

Another approach is to define a foreign code concept based on a binary standard. As an

4In this setting, the termabstractionshould be used in functional way.
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example, Visual Basic allows developers to directly use ActiveX components, which are
based on theCommon Object Model(COM) [Rog97]. COM specifies a client/component
interface at a binary level, independent of any particular programming language or com-
piler. The interoperability with COM components is probably one of the main reasons
why Visual Basic is a very popular scripting language on Windows platforms.

Finally, some scripting languages offer features to interoperate with foreign com-
ponents using operating system resources (e.g. any program which understands Apple
events can be used in AppleScript [Com93]).

One should note that the four possibilities mentioned above do not exclude each other:
PythonWin, an implementation of Python [vR96] for the Windows platform, offers exten-
sion interfaces for both C/C++ and COM.

An interesting characteristics of a foreign code concept is whether the communication
between the “host” language and the foreign components are uni- or bidirectional (i.e. a
foreign component can call back into the host language).

Although one might argue that the essential features we have discussed above do
not restrict the language space enough, we can justify this list of features as i) they can
be immediately deduced from the main purpose of scripting, ii) to our knowledge, all
so-called scripting language support these two features, and iii) it is not possible to add
other features to the list without excluding some important languages from being scripting
languages.

4.2.2 Characterizing features

Besides the essential features we have discussed in the previous section, there are features
which are present in many scripting languages. However, from our point of view, they are
not essential for scripting itself, but classify scripting languages in the design space. The
following list also contains features which are not only important for scripting languages
in particular, but for any kind of programming language in general.

• Embeddability: some scripting languages are either directly embedded into an ap-
plication or component (e.g. JavaScript [Fla97] is only available in a web browser),
others offer an interface to embed them into other programming languages (e.g.
Python offers an interface for C/C++).

• Extensibility: scripting languages often offer the possibility to extend themselves
with additional abstractions (new components and connectors). As an example,
the core of Tcl [Ous94] does not offer the concept of classes and objects, but the
stooops extension (which is fully written in Tcl) introduces abstractions for object-
oriented programming [Fon98].

• Objects: a comparison of popular scripting languages reveals that they either di-
rectly support the notion of objects or there are extensions which introduce objects.

• Exceptions: for programming in the large and for testing applications, it is useful
if a language has features to explicitly cope with errors and exceptions.
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• Execution model:a criterion to distinguish scripting languages is whether they are
event driven or data driven. In the case of an event driven language, it is important
to know what kind ofcall-backmechanisms it supports and howclosures5 can be
specified.

• Concurrency: Some scripting languages are inherently concurrent (e.g. the com-
mands of the Bourne Shell), other have extensions which introduce concurrency
features (e.g. threads, monitors). In both cases, the kind of higher-levelcoordina-
tion abstractionsare of interest.

• Introspection: scripting languages generally offer features for run-time introspec-
tion or even reflection, although these features often only have a restricted function-
ality. From our point of view, both dynamic creation and execution of code (often
referred to as aneval-feature6) and the concept ofcall-by-nameare part of this
dimension. Whereas languages like Tcl only offer low-level introspection mecha-
nisms, languages like Python go a step further and offer meta-level protocols.

• Typing: According to Ousterhout [Ous98], scripting languages tend to be weakly
typed. However, an analysis of popular languages reveals differences in the type
system: some languages are untyped (e.g. Bourne Shell) or dynamically typed
(e.g. Perl) whereas others have a mixture of static and dynamic typing (e.g. Visual
Basic). This analysis also revealed different strategies for resolving type mis-
matches (e.g. implicit type conversions vs. exceptions).

• Scoping rules: The scope of a name (variable, function etc.) is the range of pro-
gram instructions over which the name is known. The scoping rules of a language
defines the strategy how name-value bindings are established. Most scripting lan-
guages tend to bydynamically scoped, although there are languages which also
offer static scoping(refer to section4.4.1for more details).

• Built-in data abstractions: Besides low-level data abstractions such as integers
and strings, many scripting languages offer built-in high-level data abstractions.
Examples of such abstractions are key-based data abstractions (e.g. dictionaries),
ordered data abstractions (e.g. lists), or data abstractions without a particular order
or access strategy (e.g. sets). Besides the data abstractions themselves, many lan-
guages offer specialized operations on these data abstractions (such as iterations),
and Perl even has a special syntax for these operations.

• Persistence:Only few scripting languages offer general-purpose support for mak-
ing complex configurations or properties of applications and components persistent.

5Closures are a concept found in functional programming languages and denote the environment in
which an abstraction is executed. They formalize the notion of freezing free variables in lambda expressions
[Set89].

6For a discussion about theeval-feature, refer to section4.4.
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4.2.3 Related aspects

The features we have discussed in the two previous sections are certainly not the only
ones which can be used to classify scripting languages. Although the aspects mentioned
below are important from other points of view, they are not used as a criteria for our
classification. Nevertheless, for reasons of completeness, we list features which appear in
other approaches for comparing scripting languages.

• A scripting language is either general purpose (e.g. Python, Tcl) or restricted to the
architecture of a particular component framework (e.g. Bourne Shell, AppleScript).
In the latter case, the scripting language should offer some syntactic sugar in order
to reflect the components and connectors of the component framework in the source
code.

• Portability is an important aspect in the discussion about reuse. It is certainly true
that there exist many scripting languages which allow a user to port their source to
different platforms or environments (e.g. Perl runs on most popular platforms), but
there are scripting languages which only work in a well-defined environment (e.g.
JavaScript generally only runs in the Netscape browser) or operating system (e.g.
AppleScript is only available for MacOS).

• For most scripting languages, performance and resource consumption are expected
to be dominated by the components (and not the scripts) and, therefore, the perfor-
mance of the scripting engine usually is not a major issue. However, it is not neces-
sarily the case that applications written with scripting languages are slow. Perl, for
example, is highly optimized for text processing, and it is not an easy task to write a
C program with the same functionality which runs faster than a corresponding Perl
application.

• According to the definition of van Rossum (see section4.1), a scripting language
should have text processing primitives. The presence of such features heavily de-
pends on the application domain of a language. Whereas Perl or sed [McM78] have
been designed for text processing as the main application domain, AppleScript was
designed for automating MacOS applications, and does not have any built-in text
processing primitives. From our point of view, text processing should not be part of
the language itself, but supported by library components.

• The same as for the text processing primitives also applies for regular expressions
and support for binary data, which should again be supported by library compo-
nents.

• The definitions of Welch and van Rossum (see section4.1) claim that a scripting
language should i) be interpreted, and not compiled and ii) offer some form of auto-
matic memory management. One of the reasons why interpretation is claimed to be
essential for scripting is the presence of an eval-feature in some languages, and it is
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obvious that a programming language that offers an eval-feature must be either in-
terpreted or dynamically compiled. However, we argue that both properties cannot
be directly deduced from the purpose of scripting (i.e. connecting components) and
should, therefore, be considered as general programming language design issue.

4.3 Systems and languages

In this section, we will illustrate the required and characterizing features of scripting
languages introduced in the previous section and present a selection of languages (in-
cluding a sample application for each language) that fulfill the given definition. These
languages also illustrate the main dimensions of scripting languages and support specific
features which are important in the context of a general-purpose composition language.

4.3.1 Bourne Shell

The Bourne Shell is an interpreted scripting language for the UNIX operating system
[Bou78]. In fact, it can be considered as being both a shell and a scripting language and
is available on most UNIX platforms.

It offers a simple component model based oncommandsand character streams7 which
can be connected using the pipe operator ‘|’ and file/stream redirectors (‘<’, ‘>’ etc.). The
Bourne Shell does not make any syntactical difference between built-in commands (e.g.
read , write , trap , andexec ) and external commands (such asgrep or comm).
Commands can be implemented in any programming language, provided they support the
ability to read from the standard input stream and produce output onto the standard output
and/or error streams. In addition, it is useful if a language offers abstractions for reading
command line arguments. Any command which fulfills the properties mentioned above
can be used in Bourne Shell scripts. In particular, if a composition of commands is stored
as a shell script, this script can be used as a command in other scripts. Therefore, the
Bourne Shell is compositionally complete.

Commands which are connected by a pipe operator may execute concurrently (this
depends on the actual implementation of the pipe operator). Therefore, the pipe opera-
tor does not only connect two commands with a character stream, but also works as a
synchronizer (or coordinator) between commands. Furthermore, Bourne Shell scripts are
often associated with apipe and filterarchitectural style, as many scripts have such an ar-
chitecture. However, scripts are not restricted to this style, and it is possible to define more
complex unidirectional data-flow architectures by connecting the standard error stream of
a command to the standard input stream of another command using the operator ‘|&’.

Strings are the only data-type (i.e. variables can only hold string values) and there is a
clear separation between the name of a variable (e.g.var ) and the value it holds, which
can be accessed using$var (this is often referred to asvariable substitution). However,
there are no sophisticated concepts for data encapsulation: all variables and commands

7A text file can be considered as a persistent character stream.



4.3. SYSTEMS AND LANGUAGES 53

awk ’! /ˆ#/ {print $1 }’ keywords | \ # get first word of non ’#’ lines
sort > /tmp/$$ # sort into temporary file

wrong="‘ grep -h ’ˆ#Keys’ $* | \ # get lines with ’#Keys’ tag
tr -c ’[A-Z][a-z]’ ’[ \012*]’ | \ # split words into separate lines
grep -v ’Keys’ | \ # remove lines with ’#Keys’ tag
sort -u | \ # sort, remove duplicates
comm -13 /tmp/$$ - ‘" # compare with temporary file

if [ -n "$wrong" ] ; then # empty string in ’$wrong’?
echo "There are unknown keywords:"
for i in $wrong ; do # iterate over unknown keywords

grep -n "ˆ#Keys:.*$i" * # display files and line numbers
done # of unknown keywords

else
echo "All keywords are known"

fi

rm /tmp/$$ # remove temporary file

Figure 4.2: Extracting keywords in the Bourne Shell.

are in a global scope. A string denoting a numerical expression can be evaluated using the
commandexpr whereas strings consisting of a sequence of commands can be evaluated
using the commandeval . It is important to note that the usage ofeval also causes a
second round of variable substitutions.

The Bourne Shell offers a restricted set of built-in control structures (such as con-
ditionals and loops) and it is possible to define functions and procedures. Furthermore,
each Bourne Shell script has a set of predefined variables which can be used to access
the command line arguments passed to the script :$0 is the name of the command itself
whereas$1 up to$9 are the values of the first nine command line arguments. In addi-
tion, all command line arguments (except$0) can be accessed using$* . The same set
of variables can also be used to access arguments passed to user-defined functions. Due
to the fact that the name of a script is available in the script itself, it is possible to define
recursive call structures at a script level.

As an example of how the Bourne Shell can be used as a scripting language, consider
the keyword extraction script in Figure4.2. In the context of software architectures in
section3.1, we have discussed a simplified version of this script where the list of keywords
is in a format suitable for thecommcommand. However, the script illustrated in Figure4.2
assumes that the keywords are stored in a text file which contains additional information
about each keyword. More precisely, a keyword is the first word of a line not starting with
a hash character. Therefore, the actual keywords have to be extracted from this text file
before they can be used for comparison.
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4.3.2 Tcl

Tcl (as an acronym forTool Command Language) is a dynamically compiled, string-based
command and scripting language which is available on most popular platforms [Ous94].

The basic abstraction in Tcl is thecommand, comparable with the concept of a pro-
cedure in imperative programming languages. A command has a name (i.e. a string
representation), accepts a list of arguments, and executes a sequence of other (possibly
built-in) commands. Tcl, like the Bourne Shell, does not make the distinction between
built-in commands and user-defined (or library) commands. However, Tcl goes a step
further: every programming constructs is achieved with a command, not syntax; even the
basic control structures like conditionals and iterations are implemented as commands.
Of course, some of these commands are in bed with the interpreter,8 but in principle it is
possible to remove, replace, or add new commands that provide ”traditional” program-
ming features. The only commands which must be supported by a Tcl interpreter and
cannot be defined in terms of other commands areproc (which enables the definition of
new commands) andset (for updating and accessing variables).

The syntax of Tcl is only about grouping arguments and substituting values. The
first string found on a new line is considered to be the name of a command whereas
the rest of the line are the arguments for this command. The only special syntax is for
comments (lines starting with a hash symbol), for variable substitution (preceding a vari-
able name with a $ sign), and for grouping expressions. Expressions can be grouped
using curly braces (which prevents substitutions and considers the expression as a single
string), double-quotes (which allows variable substitutions), and brackets (which results
in both variable and command substitutions). The semantics of a Tcl script comes from
the run-time behaviour of each command and can in generally not be deduced from the
program text alone.

Similar to the Bourne Shell, strings are the only basic data-type. Although there are
higher-level data-types (like lists and arrays), they can all be encoded as strings.9 Tcl is
dynamically scoped (i.e. the value of a variable is defined in terms of program execution),
and each command defines its own (private) scope. In order to access variables from
an outer scope, they must either be declared as global variables or accessed using the
commandupvar . Since global variables were the only means of making information
persistent from one call of a command to the next, the latest version of Tcl introduced the
notion of namespaceswhich enables the declaration of variables (and commands) local
to a namespace.

In contrast to the Bourne Shell, Tcl offers some restricted introspection and reflection
facilities. Using the commandinfo with appropriate arguments, it is possible to explore
the internal state of the run-time system. The commandeval can be used to execute
dynamically created code. A similar construct is the commanduplevel which enables
the execution of a sequence of commands in an outer scope.

8Although the run-time system of the lastest versions of Tcl use dynamic compilation instead of pure
interpretation, it is still referred to as an interpreter.

9For efficiency reasons, higher-level data abstractions and the corresponding commands for update etc.
are built-in in the latest versions of the run-time system.
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set KeyWordFile "keywords"
set fileId [open $KeyWordFile r]
foreach line [split [read $fileId] \n] {

if [regexp {ˆ([A-Za-z \+]+).* } $line match first] {
lappend KeyWords $first

}
}
close $fileId

foreach file $argv {
set fileId [open $file r]
foreach line [split [read $fileId] \n] {

if [regexp {ˆ(#Keys:) (.*) } $line match tag words] {
foreach word $words {

if {[lsearch -exact $KeyWords $word] == -1 } {
puts stdout [join [list $file $line] ": "]

}
}

}
}
close $fileId

}

Figure 4.3: Extracting keywords in Tcl.

One major reason why Tcl became very popular is the Tk extension for building
graphical user-interfaces. Tk extends Tcl with a set of commands that create and ma-
nipulate so-calledwidgets. Widgets are windows in graphical user interfaces and have a
particular behaviour and appearance. Tk offers a set of commands which allow a user to
define simple, but powerful interconnections between widgets. Tk was the first high-level
tool for implementing portable graphical user interfaces and has been incorporated as a
library into many other scripting languages (e.g. Perl and Python).

As an example to show the way Tcl can be used for scripting, we have implemented
the keyword extraction script mentioned in the previous section in Tcl as well (refer to
Figure4.3). In contrast to the Bourne Shell script which is declarative, Tcl adopts an
imperative style of programming.

Tcl is a good example of an extensible scripting language: it allows the definition of
user-defined abstractions (i.e. new commands) sharing the same syntactical framework as
is used for built-in commands. This is possible because of the sheer simplicity of Tcl’s
underlying design: the Tcl language consists of an interpreter with a small set of rules
for parsing arguments and performing variable and command substitutions, respectively.
Because Tcl commands are viewed merely as lists of arguments, the first of which is the
command name, users are permitted to define their own constructions in the same manner
that Tcl itself defines built-in commands. As an example, TclBlend [Joh98] is a library of
Tcl commands which allows the Tcl run-time system to interoperate with a Java Virtual
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Machine. For each Java object instantiated in the virtual machine, the Tcl run-time system
creates a new command as a proxy. An invocation of such a command interprets the first
argument as the method selector and forwards the method call to the corresponding Java
object (using the Java Native Interface JNI [Sun97a]). Therefore, Tcl is an important step
into the direction of a composition language where all abstractions can be implemented
as library extensions.

4.3.3 Perl

Perl (as an acronym forPractical Extraction and Report Language) is a dynamically com-
piled (object-oriented) scripting language and can be considered as a uniform selected
merge of several other (scripting and shell) languages such as sed, awk, csh, and C
[WCS96].

As mentioned in the acronym, one main application area of Perl is extracting and re-
formatting information of (text-)files. Therefore, there are many built-in (and often highly
optimized) abstractions for text and stream processing, pattern matching, text substitution
etc. This is one of the reasons why Perl is often associated with CGI programming since
these built-in abstractions turn out to be particularly suitable for extracting information
out of HTML-forms and generating new HTML pages.

In contrast to the Bourne Shell and Tcl, Perl does not only offer built-in support for
scalars (integers, strings, booleans), but also for higher-level data abstractions such as
lists, arrays, and hashes (associative arrays). The first character of a variable defines the
type of its contents (e.g. a variable starting with a $ sign holds scalar values whereas
variables starting with a @ sign holds array values). A variable of one type cannot hold a
value of another type, and assignment to a variable of another type causes data coercion.
In addition, each variable type has its own namespace (i.e. a scalar variable$foo does
not override an array@foo). Several operators apply built-in coercions for evaluation
expressions. As an example, the’+’ operator is used to add integers. If one of the
operands is a string containing an integer value, the string is converted into an integer and
the summation is performed with integers.

Perl introduces the notion ofcontextsfor evaluating expressions. There are two main
contexts:scalarandlist. The scalar context can be further classified intostring context,
numericcontext, anddon’t carecontext. The evaluation of expressions heavily depends
on the requirements of the context where it is evaluated in. For example, assignment to a
scalar variable evaluates the right-hand side in a scalar context whereas an assignment to
an array or hash evaluates the right-hand side in a list context. Certain built-in operators
behave differently depending on the context of their result. More precisely, these opera-
tors are overloaded on the type of their return value. One should note that this is the only
way Perl offers (limited) support for operator overloading.

Perl allows the definition of new functions and procedures, which are referred to as
subroutines. It is possible to define both named and anonymous subroutines. However,
only the latter are first-class values: named subroutines cannot be assigned to a vari-
able, passed as an argument to another subroutine, or returned as a result. Subroutine
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definitions can be nested, may return multiple values, and are defined without explicit
formal parameters. The actual parameters can be accessed using the variable@. It is
good practice to assign@ to a list of locally declared variables in order to emulate formal
parameters. This concept of parameter passing implies that it is not possible to define de-
fault values for arguments. It makes a difference whether the local variables emulating the
formal parameters are declared usinglocal or my: the former causesdynamical name
lookupwhereas the latter causeslexical name lookup. This is of importance if a “formal”
parameter is used as a free variable in a nested subroutine definition.10 Parameters to sub-
routines are passed by value (an not by reference), unless they are explicitly passed as a
reference type (see below).

In contrast to Tcl, Perl makes an explicit difference between built-in commands and
user-defined commands (i.e. subroutines): for invocation, the latter have to be pre-
ceded with an&. Many built-in commands have implicit default parameters (e.g. $in
split(/ /) , which causes a (line-)string to be split into separate words), which allows
users to write very compact source code, but introduces certain problems for readability
and maintainability.

The latest version of Perl (version 5) adds abstractions for classes, objects, references,
and hashes (i.e. associative arrays). These new abstractions do not integrate smoothly
with existing abstractions and code written for Perl 4 might break.

Perl offers an extension interface for both C and C++. However, in contrast to other
scripting languages, Perl is generally not embedded, although an embedding interface for
C and C++ is available.

As an example of a Perl script, consider the implementation of the keyword extraction
script mentioned previously in this section (see Figure4.4). Although the Perl imple-
mentation is less verbose than the corresponding Tcl script, the structure is very similar.
However, instead of using a list as the data-structure for storing the keywords, we have
used the built-in hash abstraction in order to emulate a set.

4.3.4 Python

Python is an object-oriented scripting language that supports both scripting and program-
ming in the large [vR96]. It supports objects, classes, single and multiple inheritance,
modules as well as a run-time (meta-)object protocol11.

Similar to Tcl, Python has an unifying concept: everything is an object, including
functions and classes.12 Objects are first-class values and, therefore, any abstraction can
be used as a first-class value.

Besides the user-defined methods, each object (including class objects) has a number
of methods which Python assigns a special interpretation. The names of these methods
begin and end with two underscores in order to distinguish them from library or user-

10The different behaviour ofmyandlocal is in general not explained correctly in most Perl books.
11In the Python community, this protocol is often referred to as thePython Object Protocol.
12This quote is not fully true asbuilt-in functions such asprint have a slightly different behaviour, but

it applies to all library or user-defined abstractions.
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$KeyWordFile = "keywords"; # assignment to scalar variable

open (IN, "<" . $KeyWordFile) || die "Can’t open $KeyWordFile";
while (<IN>) { # loop over all lines of IN

if (/ˆ( \w+)/) { # search for word at line start
$KeyWords {$1} = 1; # assign first word to hash table

}
}
close (IN); # close keyword file

while (<>) { # loop over stdin or cmd line args
chop; # remove last character of line
if (/ˆ#Keys:/) {

($key, @line) = split (/ /); # split line, assign rest to array
foreach $word (@line) { # loop over all words of in array

$KeyWords {$word } || print $ARGV . ": ". $ ;
} # print word if not in keywords

}
}

Figure 4.4: Extracting keywords in Perl.

defined methods. Some methods implement basic type operations (getting the value of
an index of a collectionx[i] results in callingx. getitem (i) ), some overload
expression operators (e.g.a + b is interpreted asa. add (b) ), and others intercept
class behaviour (see below).

The name lookup of methods is based on a metaobject feature: each object has
a method getattr which is called whenever the default mechanism of attribute
lookup (e.g. a method call) fails. As an example, the method callx.foo (3) is trans-
lated intoapply (getattr(x,"foo"),(x,3)) . In particular, the built-in function
getattr is called whichdynamicallylooks up the methodfoo in the method dictio-
nary of the class object ofx . If foo is not defined there, then the superclass objects are
searched for this method in a depth-first, left-to-right order. If the method is not found in
any of the classes, the methodgetattr is invoked. Since this method can be over-
ridden in any class, Python defines a powerful hook for meta-programming [Lut96] (refer
to section8.8for further details about the (meta-)object protocol).

Similar to C++, a function is an object which implements the methodcall .
Python allows three different ways of defining functions: i) as instances of a class which
implements a method call , ii) using the keyworddef which defines named func-
tions, and iii) using thelambda construct which defines anonymous (i.e. unnamed) func-
tions. The last form of function definition is particularly useful since it is often needed
to pass a function as a parameter to another function. Functions allow default values for
parameters and argument passing either by position or name.

Python has a so-called 3-scope namespace lookup rule to resolve name references:
it defines i) a local namespace which can be thought of as a dictionary that contains all
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locally defined names, ii) a global namespace which contains all globally defined names,
and iii) a built-in namespace containing all built-in names. Due to the 3-scope namespace
lookup rule, namespaces are not nested, and an abstraction has no access to the local
names of its enclosing scope (unless this happens to be the global scope). Furthermore,
Python is dynamically scoped and, therefore, all names are dynamically resolved using
the 3-scope namespace lookup rule, including free names in lambda expressions.

Besides integers and strings, Python has a number of built-in higher-level data abstrac-
tions such as big numbers, lists, arrays, and dictionaries. In addition, by using features of
the (meta-)object protocol, it is easily possible to add new collection abstractions such as
sets and streams. In contrast to Perl, Python does not perform any implicit data coercions
(e.g."2" + 3 leads to a type error) and variables can hold values of any type during their
lifetime.

Another important feature of Python is the support formodules. The source of a
script file consists ofimports (which specifies which modules are imported by a script
file) and a sequence ofdeclarations(classes, functions, constants etc.). By testing the
special attribute name , it is possible to check whether the contents of a script file is
executed as the main or top-level script or if it is imported into another script file. In
the former case, all declarations get executed whereas in the latter case, only some of
the declarations get imported into the enclosing script file.13 Furthermore, it is possible
to add initialization code if this is required for a correct import of a module. The run-
time system keeps track of all imported modules and ensures that each module only gets
imported once. Equivalent to theCLASSPATHenvironment variable of the Java run-time
environment, the Python run-time system uses thePYTHONPATHvariable to search for
the source files of imported modules.

Python is available on most popular platforms, and there exists both an implementa-
tion in C/C++ and Java. The former has an extension and embedding interface for C and
C++ whereas the latter supports Java extensions and embeddings. The Windows imple-
mentation has an additional interface to COM/ActiveX, and on most UNIX platforms, a
CORBA binding is defined.

As an example of an application in Python, consider the keyword extraction script in
Figure4.5. This script uses two non-standard Python librariesset which implements a
simple set abstraction andminiStream which defines a framework for streams, filters,
and transformers. For further information about the abstractions used in this example,
refer to section5.1or appendixA.

4.3.5 AppleScript

AppleScript is a dynamically typed, event- and object-oriented scripting language which
only runs on the MacOS platform. In fact, AppleScript is not a scripting language on

13Python supports two different import statements: i)import aModule imports all declarations of the
file aModule.py into the local scope of the import statement, and ii)from aModule import nameList
only imports the declarations specified innameList.
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import re, string, sys # import external modules
from set import *
from miniStream import *

KeyWordFile = "keywords"
re1 = re.compile ("ˆ[A-Za-z \+]+.*$") # search pattern keywords
def getFirstWord (line): # get first word of a line

return string.split (line)[0]

KeyWords = Set (FileStream (open (KeyWordFile, ’r’))
| Filter (lambda line: (re1.match (line) > 0))
| Transform (getFirstWord)
)

keyline = re.compile ("ˆ#Keys:.*$") # search pattern for keyword lines
def checkLine (line): # check for unknown keywords

for word in string.split (line)[1:]: # split line into words
if not word in KeyWords: return 1

return 0

def transform (line, fileName): # function for transformation
return string.joinfields ([fileName, string.strip (line)], ": ")

for arg in sys.argv[1:]: # loop over arguments
for line in (FileStream (open (arg, ’r’))

| Filter (lambda line: (keyline.match (line) > 0))
| Filter (checkLine)
| Transform (lambda line: transform (line, arg))
):

print line

Figure 4.5: Extracting keywords in Python.

its own: it is a front-end to theOpen Scripting Architecturedefined for OpenDoc in the
context of theSystem Object Model(SOM) [FM96].

The Open Scripting Architecture (OSA) of OpenDoc is an enabling technology that
views applications as collections ofcomponent parts. These parts can be tied together via
scripts written in a variety of scripting languages. OSA defines how containers and parts
communicate with each other using an event registry, which contains list of commands
that evoke responses from parts.

Semantic eventsare used to manipulate the content model of a part: it is not only
possible to act on parts, but also on content objects within parts (e.g. the second word
of the first paragraph of a document). Semantic events are the means by which scripting
systems manipulate the contents of a scriptable part. For a part to be scriptable, its part
editor must surface the list of operations on its content objects that can be invoked via
semantic events.
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Every scripting language that supports open scripting must be able to translate ele-
ments of the language into semantic events. In addition, it must provide an interface that
lets OpenDoc parts manipulate scripts, record them, and attach them to events.

The Open Scripting Architecture defines four levels of scriptability:

• scriptability: a part editor exports all supported operations and can accept semantic
events,

• customizability: scripts (i.e. new behaviour) can be attached to visible interface
elements (e.g. buttons),

• tinkerabiliy: attach new scripts to events received or generated by a part. Tinker-
ability is the union of scriptability and customizability.

• recordability: record all events received or generated by a part.

As mentioned above, AppleScript is a scripting language which implements a front-
end to the Open Scripting Architecture.14 The main purpose of AppleScript is to automate,
integrate, and customizescriptableapplications. The language supports classes, objects,
and inheritance as well as commands and makes the difference betweenscript objects
(i.e. objects defined in AppleScript using object-oriented abstractions),part objects(i.e.
component parts in terms of OpenDoc), andapplication objects(objects belonging to part
objects).

AppleScript works by sending messages (i.e. Apple events) to applications. Running
a script is done by sending statements to the AppleScript extension, which interprets the
statements and sends Apple events to the appropriate part objects. A command is a series
of words used in AppleScript statements to request an action. Every command is directed
to a target, which is the object that responds to the command. The target is usually an
application object, but it can also be a script object, a user-defined subroutine, or a user-
defined value in the current script. Application objects belong to an application such as
words or paragraphs in a text document, and every object belongs to a class.

AppleScript defines the notion ofscript propertieswhich denote labeled containers
for values which persist until a script is recompiled (see below). Therefore, unlike many
other scripting languages, AppleScript has a limited built-in support for persistent data.

Scriptable applications (i.e. component parts) can in general be implemented in any
programming language. The only requirement is that they support an appropriate interface
for OSA. In particular, AppleScript scripts can be implemented in a way that they sup-
port such an interface: they must define handlers for some predefined Apple events (e.g.
Open, Run, andQuit ). Therefore, AppleScript can be considered as compositionally
complete.

In contrast to the other scripting languages we have discussed in this section,
AppleScript does not have an equivalent to an “eval” or “exec” feature.

14To our knowledge, there exists a Tcl extension for the MacOS implementation which also defines a
front-end to OSA.
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set appName to "FrameMaker 5.5 PowerPC"
set FolderName to (choose folder with prompt

"Select a folder to open: ") as string

set FolderListing to list folder (file FolderName)
tell application appName

repeat with i from 1 to the number of items of FolderListing
set FolderItem to item i of FolderListing
if folder of (info for file (FolderName & FolderItem)) is false then

if file type of (info for file (FolderName & FolderItem))
is "FASL" then
open file (FolderName & FolderItem)
save document 1 in file (FolderName & FolderItem & ".mif")

as "MIF "
close document 1

end if
end if

end repeat
quit application appName

end tell

Figure 4.6: Converting FrameMaker files into MIF with AppleScript.

AppleScript comes with an application calledScript Editor which can be used to
create and modify scripts. The Script Editor also includes an interpreter which enables
a direct execution of AppleScript scripts within the environment. In addition, the Script
Editor has an integrated compiler and compiled scripts can be executed outside the envi-
ronment.

As an example of an AppleScript script, consider the script in Figure4.6. The purpose
of this script is to convert all FrameMaker files found in a folder into a MIF (Maker Inter-
change Format) format, and is a good example how AppleScript can be used to automate
tasks. This script is part of the FrameMaker distribution for MacOS.

4.3.6 Manifold

A new class of formalisms has recently evolved for describing concurrent and distributed
computations based on the concept ofcoordination. The purpose of a coordination model
is similar to the one of software architectures: making a clear separation between com-
putational elements and their relationships. Coordination languages generally provide
abstractions for controlling synchronization, communication, creation, and termination
of concurrent and distributed computational activities [Arb96]. One can also consider
coordination asscripting of concurrent and distributed components.

Manifold is a coordination language for managing complex, dynamically changing
interconnections among sets of independent, concurrent, and cooperating processes
[Arb98]. Like most so-calledprocess-orientedcoordination languages, Manifold clearly
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distinguishes betweencomputational processes(written in any conventional program-
ming language) which can be augmented with somecommunication primitives.

The basic concepts of Manifold areprocesses, events, ports, andstreams. A pro-
cess is an independent, autonomous, active entity and has its own private processor and
memory. Manifold processes communicate by means of input/output ports, connected
between themselves by means of streams. A stream represents a flow of a sequence of
units (of information) between two ports. The evolution of a program (or acoordination
topologyin terms of Manifold) is event-driven based on state transitions. More precisely,
a Manifold process is at any moment in time in a certain state where it has set up a net-
work of coordinated processes. When a process observes the raising of some event, it
may break off the stream connections and evolve to some other (predefined) state with a
different network of coordinated processes. Unlike other process-oriented coordination
languages, the events of Manifold are not parameterized and cannot be used to carry data:
they are only used for triggering state changes and, therefore, for evolving the network of
coordinated processes.

Like in architectural description languages, the conceptual model behind Manifold is
based on the separation of computation and communication concerns into different pro-
gram modules. However, this separation of concerns goes a step further and it is possible
to abstract specific computation and communication concerns into reusable modules.

Although Manifold does not directly provide any primitives for computation, it is a
computationally complete language since computation can be built on top of the built-in
communication primitives. As such it advocates the point of view that all computations
can be expressed as interactions, similar to the concept of communicating names in the
π-calculus.

Due to the fact that computation and coordinator processes are indistinguishable from
the point of view of other processes, coordinator processes can, recursively, manage the
communication of other coordinator processes, just as if they were computation processes
themselves. This implies that any coordinator can be used as a higher-level or meta-
coordinator in order to build reusable, higher-level coordination protocols.

As an example of a Manifold program, consider the bucket sorter described in
Figure4.7. The processSorter initially activates a computation processAtomic-
Sorter which performs the actual sorting. This process is able to sort a bucket with
at mostk units (i.e. elements to be sorted) and will raise an eventfilled once it has
received the maximum number of units to sort. When the processSorter detects this
event, it activates i) a new sorter process and ii) a merger process which is responsible for
merging the output of both sorters into a single stream. Depending on the bucket sizek
and the number of units to be sorted, an arbitrary number of sorter and merger processes
may be created and linked together at run-time. One should note that any process involved
in this example has (by default) aninput andoutput port.
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export manifold Sorter () {
event filled, flushed, finished.
process atomsort is AtomicSorter(filled).
stream reconnect KB input input -> *.
priority filled < finished.

begin:
( activate(atomsort), input -> atomsort,

guard(input,a everdisconnected!empty,finished)
).

finished:
{ igonore filled.

begin: atomsort -> output
}.

filled:
{ process merge<a,b | output> is AtomicIntMerger.

stream KK * -> (merge.a, merge.b).
stream KK merge -> output.

begin:
( activate(merge),

input -> Sorter -> merge.a,
atomsort -> merge.b
merge -> output

).

end | finished: .
}.

end:
{ begin:

( guard(output,a disconnected,flushed),
terminated(void)

).

flushed: halt.
}.

}

Figure 4.7: Bucket sorter in Manifold.
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4.3.7 Summary of concepts

In the following, we briefly summarize the important concepts and features we identified
in the scripting languages discussed in this section.

• The Bourne Shell is an interpreted scripting language for the UNIX operating
system and offers a simple component model based on commands and character
streams. Commands can be connected by using higher-level connectors (e.g. the
pipe operator ‘|’), which make the architecture of a Bourne Shell script explicit in
the source code. It is compositionally complete (a composition of commands is
again a command) and supports a declarative style of programming.

• Tcl is a dynamically compiled, string-based scripting language and is available
on all popular platforms. The basic abstraction in Tcl is a command, and since
every programming construct is achieved with commands (and not special syntax),
commands are the unifying concept of the language. The concept of commands
allows a user to extend the language using the same syntactical framework as is
used for all built-in commands.

• Perl can be considered as a uniform selected merge of sed, awk, csh, and C. It
offers higher-level data abstractions such as lists, arrays, and hashes and syntactic
sugar for processing instances of these higher-level data abstractions. Perl intro-
duces the notion of contexts for evaluating expressions, offers support for operator
overloading based on contexts, and has both lexical and dynamic scoping rules.

• Python is an object-oriented scripting languages that supports both scripting and
programming in the large. Objects are the unifying concept (i.e. “everything is an
object”) and, therefore, all abstractions are first-class values. Python offers a meta-
level protocol which can be used for extending and adapting existing abstractions
as well as for operator overloading. Finally, the language model supports keyword-
based parameter passing.

• AppleScript is a dynamically typed, event- and object-oriented scripting language
which only runs on the MacOS platform. It is a front-end to the Open Scripting
Architecture and offers a component model based on scriptable applications (also
known as component parts). The main purpose is to automate, integrate, and cus-
tomize scriptable applications. It is compositionally complete, but in contrast to
many other scripting languages, it does not offer an equivalent to an “eval” feature.

• Manifold is a coordination language for managing complex, dynamically chang-
ing interconnections among sets of independent, concurrent, and cooperating pro-
cesses, and should be considered as a scripting language for concurrent and dis-
tributed components. It is particularly suitable for specifying and implementing
reusable, higher-level coordination abstractions and protocols as well as for dy-
namically evolving architectures.
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The reader should note that other scripting languages (e.g. DCL [Ana89], Icon
[GG96], JavaScript [Fla97], Lua [IdFCF96], Obliq [Car95], Rexx [Cow90], or Visual
Basic [Mic97]) also support some of the features we have illustrate in this section, but a
detailed discussion of all of these languages is beyond the scope of this work.

4.4 Dynamic aspects of scripting languages

Several popular scripting languages offer abstractions for executing dynamically created
code (also known as an “eval” feature), and it is often pointed out that such a feature is
essential for scripting.15 We have claimed in section4.2.2that an “eval” feature is not es-
sential for scripting, but should be considered as a characterizing feature. In this section,
we justify this claim by showing that an “eval” feature is useful for implementing adapt-
able and extensible components, but sketch how these components could be implemented
without an “eval” feature. We also illustrate that eval-like features differ from language
to language.

The behaviour of eval-like features heavily depends on the scoping rules and name-
space concepts of the corresponding languages, and an analysis of the properties cannot
be separated from the discussion of these aspects. Therefore, we briefly introduce and
discuss the concepts of static and dynamic scoping, namespaces, and closures.

4.4.1 Scoping rules, namespaces

As pointed out in section4.2.2, thescoping rulesof a programming language define i) the
range of program instructions over which aname(a variable, function, type constructor
etc.) is known and ii) how name-value bindings are established (i.e. which values for
names have to be taken for evaluating expressions or declarations).

Names can be bound to a scope either statically or dynamically.Static scope binding
(also referred to aslexical scoping) defines the scope of a name in terms of the lexical
structure of a program: each reference to a name can be statically bound to a particular
(implicit or explicit) declaration by examining the program text alone. Static scoping
rules are adopted by most compiled programming languages such a C/C++, Java, Eiffel
and Visual Basic.

Dynamic scope bindingdefines the scope of a name in terms of program execution.
Typically, each name declaration extends its effect over all the instruction executed there-
after, until a new declaration for the same name is encountered during execution. Exam-
ples of programming languages adopting dynamic scoping rules are APL or LISP.

The scoping rules of a programming language also define whether names defined in
an enclosing (or outer) scope can be accessed in a enclosed (or inner) scope. This is often
referred to asnested scoping. Depending on the concrete scoping rules, the ”outer” scope

15Some authors consider a language a scripting language when it is easily possible to build a run-time
environment for the language by only using the language itself. This is rather a trivial task when a language
offers an “eval” feature.
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has a different meaning: for lexical scoping, the outer scope refers to the enclosing scope
where an abstraction is lexically defined. For dynamic scoping, however, the ”outer”
scope generally refers to the callers scope (see the discussion of Tcl below). Pascal is an
example of a language with static scoping rules where nested scoping is supported.

Programming languages generally support different (often implicit)namespacesfor
different abstractions. For example, C makes the distinction between names for types
and names for variables and functions, respectively (i.e. it is possible to define a variable
foo of type foo ). Tcl uses the term namespace in different context: a namespace is an
abstraction to group names in order to define hierarchies of named scopes.

The main purpose of a namespace concept is to offer support for structuring larger ap-
plications, and to avoid the usage of (often error-prone) naming conventions. In addition,
it can be seen as an important glue mechanism which enhances the reusability of compo-
nents written in a language without explicit namespace support, as it is a known practice
in these languages to use global variables for exchanging data. Common to most pro-
gramming languages is that they only offer very restricted possibilities to control, modify,
or extend the scoping rules.

4.4.2 Eval

Experiments have shown that eval-like features of scripting languages have a lot in com-
mon (e.g. they require a string denoting the code which has to executed as an argument),
but their behaviour may differ considerably. In particular, the behaviour depends on the
underlying scoping rules and namespace structure, on the actual arguments given, on the
way the language implements substitution, and how exceptions within the code to be ex-
ecuted is handled.

In the following, we discuss the properties of eval-like features found in Perl, Python,
and Tcl. A detailed comparison of eval-like features found in other scripting languages
such as JavaScript or Rebol is beyond the scope of this work.

Perl. Perl supports a simple “eval” featureeval which takes either a single expres-
sion or a complete block as an argument. The string value representing the expression
or block is parsed and executed in the context of the scope whereeval is invoked. Any
variable settings or subroutine definitions are still accessible after the execution has termi-
nated (similar to the execution of a subroutine), although locally scoped variables declared
within the eval-block (either usinglocal or my) last only untileval is done. If no argu-
ment is given toeval , the current contents of the pseudo-variable$ is used as argument
string. The value returned from aneval is the value of the last expression evaluated. If
a syntax or run-time error occurs during the evaluation,eval returns an undefined value
and assigns an error message to the pseudo-variable$@. An important fact to know is that
the string passed as an argument is parsed and evaluated every timeeval is invoked and,
therefore, references to variables are replaced by the values they hold during execution,
and not during definition. This is of particular interested when aneval is used in the
body of a subroutine.
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Since theeval of Perl traps most errors,16 including fatal errors which can not be
handled otherwise,eval is the most secure way to do all exception handling in Perl. Prior
to version 5, Perl did not have any built-in support for references or nested data structures,
and usingeval was the only possibility to emulate these kind of data structures.

Python. In contrast to Perl, Python has two different eval-like features:eval runs a
string containing a Pythonexpressionand returns its result whereasexec runs a string
containing astatementand does not return a result. Without additional arguments, both
features run the code-string in the scope of the caller (i.e. in the same local, global,
and built-in namespaces which are used for name lookups). In particular, the code-string
can modify the contents of the local and global namespaces of its caller. Since this is
sometimes not desirable, in particular in the context of executing “untrusted” code, Python
enables to explicitly pass a global and local namespace to the commandseval andexec ,
respectively. This implies that for any name lookup, the namespaces passed as arguments
are used and not the ones “accessible” by the caller. Therefore, a complete separation of
the two scopes is achieved and the code-string passed toeval or exec can be executed
in a protected environment. In addition, the namespaces passed as arguments can be
“primed” with default values in order to achieve a particular behaviour (see the calculator
example later in this section). If the dynamic evaluation of code causes an error or raises
an exception, the corresponding error or exception is passed to the caller and can be
handled appropriately.

Due to the fact that the interpreter included in the Python run-time system can be
invoked either usingeval or exec , Python can be used as an embedding language for
components written in Python itself.

Tcl. Tcl offers several possibilities to execute dynamically created code: i) using the
commandeval (possibly annotated with an explicit namespace), ii) using the command
uplevel , and iii) usingeval in a nested interpreter.

Similar to Perl or Python, Tcl has a commandeval which takes a command string
as an argument and dynamically executes this string. The execution of a command string
may cause the modification of the current scope. In addition, by using the command
namespace (e.g. namespace eval namespace $cmd ), it is possible to execute
a command string$cmd in the scope of the explicitly given namespacenamespace .

The commanduplevel is similar toeval as it takes a code-string as an argument
which is dynamically executed. However, the code-string inuplevel is executed in an
outer scope, which is essential for defining new control structures entirely in Tcl.

The problem with the approaches mentioned above is that anexit in the command
string causes the termination of the whole program. In order to avoid this problem, the
latest version of Tcl offers the concept ofnested interpreters. Any Tcl program can instan-
tiate (a possibly nested hierarchy of) child interpreters which can be used for evaluating
Tcl commands. A nested interpreter defines its own namespaces which are separated from

16The reader should note that anexit cannot be caught usingeval and causes the program to stop
whereas a statementdie is caught.
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the namespaces of the corresponding parent interpreter. In addition, a parent interpreter
has the possibility to disallow or redefine certain commands in nested interpreters. In par-
ticular, the commandexit can be redefined in a way that only the nested interpreter ter-
minates upon execution ofexit , but the corresponding parent interpreter is not affected.
The concept of nested interpreters is very similar to theeval of Python augmented with
explicitly given namespaces.

The reader should note that all the standard grouping and substitution is done on the
command string before any of the eval-like features mentioned above are executed. If
the string is enclosed with double-quotes, any occurrence of a variable is substituted by
the current value whereas enclosing with curly braces prevents variable substitution. In
the latter case, variable substitution occurs in the scope where the eval-like feature is
executed.

One of the main reasons for using the commandeval is the call-back mechanism of
Tk. Most Tk widgets execute so-calledcall-back commandswhenever a specific event
occurs (e.g. a button is pressed). These call-back commands can generally be specified
using the-command option upon instantiation of a widget. The problem is that a call-
back command is neither executed in the scope where it was defined nor in the scope
it occurs, but in theglobal scope. In order to avoid variable substitution in the global
scope (which is probably not what is intended), call-back commands are often defined
usingeval with already substituted variables (i.e. enclosing the command toeval with
double-quotes).

Example: a simple calculator. In the following, we illustrate the usefulness of an
“eval” feature as a string-based interface to an adaptable interpreter component by im-
plementing the simple calculator shown in Figure4.8. The calculator consists of anentry
field at the top (to display and change expressions) and six rows ofbuttonsfor entering
numbers, names of variables, and operations. Furthermore, it supports the four basic oper-
ations (addition, subtraction, multiplication, and division), grouping of expressions using
parenthesis, and assignment to variables. The buttoneval is used to evaluate the current
expression and to display the result in the entry field.

In fact, the calculator is built of two components: i) a component for representing the
graphical user interface and ii) a component for evaluating calculations (which we will
denote asevaluatorin the following). The graphical user interface is a composition of
finer-grained elements such as buttons and text fields. For the following discussion, the
evaluator is of more interest.

The operations of the calculator can be expressed by a context-free grammar. There-
fore, the evaluator can be seen as a small interpreter. As a first approach, it is possible to
implement the evaluator using standard interpreter technology [ASU86]. Due to the fact
that the grammar is rather simple, implementing a small interpreter is not a difficult, but
certainly not a trivial task, and has the advantage that we have complete control of how
expressions are parsed and evaluated, including appropriate error handling facilities. For
a sample implementation of such an interpreter (consisting of app. 300 lines of Python
code), refer to [Lut96, chapter 16].
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Figure 4.8: A simple calculator GUI.

As noted before, Python’s development environment (in particular the interpreter) can
always be used in a running Python application. Therefore, as a second approach, we
directly use the Python run-time system as the evaluator component: the parsing and
evaluation of the expressions is delegated to the built-in abstractionseval andexec : the
former is used to evaluate expressions whereas the latter abstraction is used to evaluate
assignments to variables. This approach has the advantage that the implementation of the
evaluator consists of considerably less lines of code (see the methodeval in Figure4.9)
and leads to a more robust system. The reader should note that the evaluator uses i) a
private namespaceself. names for evaluation and ii) nested exception handlers for a
correct exception and error handling (the corresponding code is omitted in Figure4.9). On
the other hand, this approach has the disadvantage that the “language” of the calculator
has to be a subset of Python.

A major difference between the two approaches is their flexibility for extensions, and
we illustrate the corresponding differences by extending the calculator with complex num-
bers: all occurrences of the characteri should treated as the imaginary numberi. Both the
GUI and the evaluator components have to be modified in order to reflect this extension.
The extension of the GUI component is a trivial task as the buttond of the upper row can
be modified so that it appends ani to the entry field.

Python already has a built-in data type for complex numbers which supports the four
basic operations we offer in the calculator. However, the string representation of the
built-in complex numbers uses the characterj for the imaginary numberi (e.g. print
complex (2,1) leads to(2+1j) ). In order to overcome the problem of having two
representations for the same concept, we have written a wrapper classComplex which
wraps the built-in data type and modifies the string representation according to our needs
(i.e. it uses the characteri instead ofj ).
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class Evaluator (): # evaluator component
def init (self): # constructor (self as first argument)

self. names = {} # private namespace for expressions

def eval (self, expr): # evaluate expression ’expr’
try:

# evaluate as expression in private namespace
v = eval (expr, self. names, self. names)
return (str (v)) # return result

except SyntaxError: # catch syntax errors
try:

# execute as statement in private namespace
exec (expr, self. names, self. names)

except:
... # process errors

except:
... # process other errors

Figure 4.9: Evaluator of a simple calculator in Python.

Using the classComplex , the extension for complex numbers using the approach
with eval andexec only requires two additional lines of Python code: we simply prime
the private namespaceself. names of the calculator with the classComplex and the
imaginary numberi :

exec ("import complex", self. names, self. names)
exec ("i = complex.Complex (0,1)", self. names, self. names)

Extending the first approach (i.e. the interpreter) is in general more complicated and
heavily depends on the data representation used by the parser and how the resulting parse
tree is evaluated. However, the evaluator approach using an “eval” feature also has its
limitations. For obvious reasons it is not possible to extend the calculator with abstractions
that cannot be expressed with Python syntax. Such limitations are generally not a problem
if an interpreter approach is used.

One of the main reasons why eval-like features are used in most languages is to
emulate abstractions which are not supported by the language itself or to overcome spe-
cific drawbacks (e.g. Perl does not allow the usage of variables in pattern matching com-
mands such astr , but embedding such a command ineval overcomes this drawback
and variables can be used). Abstracting from these typical usages of eval features, we
come to the conclusion that any eval-like feature should be considered as astring-based
interfaceto a reusable and adaptableinterpreter component. It can be assumed that the
built-in interpreter called by an eval feature is robust, has been extensively tested and,
therefore, any application using an eval feature requires less testing than a comparable
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application which uses a user-defined parser and/or interpreter. However, any of the ap-
plications we encountered could be rewritten without using an eval-like feature, but would
generally be less flexible for adaptation and extension.

4.5 Summary

In this chapter, we have given a general introduction into scripting and scripting lan-
guages. We have summarized definitions of other researchers and clarified the terms
scripting and scripting language in the context of component-based software devel-
opment. From our point of view, scripting is a higher-level binding technology for
component-based systems whereas a scripting language is a high-level language used
to create, customize, and assemble components into a predefined software architecture.

We have analyzed several scripting languages and identified essential and characteriz-
ing features. In particular, we have identified two concepts which are essential for script-
ing: encapsulation and wiringand aforeign code concept. These two features can be
deduced from the main purpose of scripting (i.e. connecting components) and are found
in any scripting language. Furthermore, we have discussed a set of characterizing features
which position a scripting language in the language design space.

Finally, we have analyzed the essence of “eval” features, a popular mechanism of
several scripting languages for executing dynamically created code, and came to the con-
clusion that any eval-like feature should be considered as astring-based interfaceto a
reusable and adaptableinterpreter component.
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Glue

Closely related to software architectures and scripting is the notion ofglue: glue is con-
cerned with “putting things together”, but the emphasis is onbridging gaps between in-
compatible component frameworks. In an ideal world, there are components available for
any task applications have to perform, and these components can be simply plugged to-
gether. Since this is not always possible in practice, glue code overcomescompositional
mismatchesand makes components which otherwise cannot be plugged together compos-
able. An example of glue code is a wrapper around a legacy application in order to use
this application as a CORBA component. Glue code is often written in languages like
Smalltalk (which is good for wrapping legacy code) or C (which is good for gaining ac-
cess to low-level interfaces). Although scripting languages are marginally concerned with
glue in the sense that they can be used to glue together components that have not been
designed to work together, typically the hard problems are solved in the stage in which
the interface (and interoperability) between the components and the scripting language is
defined.

In this chapter, we give a brief overview about glue and glue problems and introduce
terms which are important throughout the rest of this work. Second, we analyze glue
problems in further detail and define a catalogue of known glue problems. We summarize
existing glue technology, and conclude with a discussion of miscellaneous topics related
to glue, including requirements for a general-purpose glue language.

5.1 What is glue?

Before introducing important terms related to glue and glue abstractions, reconsider the
Python implementation of the keyword extraction script illustrated in section4.3. Of par-
ticular interest in the context of glue are the following lines of code where a set containing
all the keywords of the “master” file is defined:

KeyWords = Set (FileStream (open (KeyWordFile, ’r’))
| Filter (lambda line: (re1.match (line) > 0))
| Transform (getFirstWord)
)

73
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Analyzing this code, it is immediately possible to identify components and connectors
as well as the underlying architecture. The code consists of a data source (i.e. the mas-
ter file of keywords), four components (i.e. three components of the stream framework
FileStream , Filter , andTransform and an instance of theSet abstraction), three
connectors (two pipes and a method call), and conforms to apipe and filterarchitectural
style [AAG93].

A further analysis of the code reveals other interesting properties:

• The FileStream component acts as anadaptor for the data source in order to
offer the same interface as a stream (of text lines).

• TheFilter component extracts all the lines of its input-stream which contain a
keyword.

• The filterTransform acts as atransformersince theFilter component offers a
stream oftext lines, but the set should only contain the keywords. Therefore, a filter
Transform is used to extract the first word of each text line (i.e. it transforms the
stream of lines into a stream of words).

Therefore, bothFileStream andTransform can be seen asglue abstractionssince
they modify a given component (i.e. its interface and/or its interaction protocol) such that
it fits the required behaviour.

Another glue abstraction used in the example is a meta-level feature of Python and
is not explicit in the code. The constructor of theSet abstraction requires a (possibly
empty) sequence(e.g. array, list) as a parameter, and it seems that a stream does not
fulfill this requirement. However, by appropriately overriding thegetitem method,
the classStream is implemented in a way that it can be used in any context where
a sequence is required1 and, therefore, it is possible to directly instantiate a set from a
stream. As we will further discuss in section5.3.5, meta-level abstractions are a powerful
mechanism to compose components which are not plug-compatible in the first place.

Summarizing the observations, we can see thatglue techniques are required to adapt
components that do not fit the compositional requirements of a framework or system.Con-
sidering this observation, the question arises in what kind of situations a component does
not match the compositional requirements of a system. In order to answer this question,
reconsider the definition of the term component given in section2.2 (i.e. a component
is a black box entity with a set ofrequiredandprovidedservices). In order to build an
application, it is obvious that required and provided services of components have to be
plugged together:

1As a technical detail: whenever a slice of a sequence is accessed, thegetitem method of the
corresponding sequence object is called with successively higher offsets. AnIndexError is raised if an
index is accessed which is outside the range of valid indices. This meta-level feature of Python is used in
theStream abstraction: regardless of the actual parameter,getitem always returns the next item of
the stream and raises anIndexError when the stream is empty.
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Software compositionis the process of constructing applications by intercon-
necting software components through their plugs [ND95].

However, it is not always possible to interconnect components in a desired way: the plugs
of two (or more) components may not beplug-compatible. Consider the known problem
of travellers which are unable to plug the razor they use at home into the plugs of various
other countries. In such a situation,adaptorsare needed to bridge the different interfaces.
These kind of problems are often referred to asarchitectural mismatch[GAO95].

Successful composition of components does not necessarily imply successful interop-
eration:

Interoperability is the ability of software components to communicate and
cooperate with each other [Kon95].

Reconsider the problem with the razor: in some countries, different voltages are used and
prohibit compatibility even with an adaptor: composition is possible, but interoperability
is not. These situations require atransformerto transform the incompatible voltage. We
will denote these kind of problems as interaction orinteroperability mismatch.

Both architectural and interoperability mismatch are part of a problem domain which
can be denoted ascompositional mismatch[Sam97]. A compositional mismatch occurs
whenever it is impossible to successfully interconnect components with existing connec-
tors.2

Based on the discussion and the observations of the example, we define the term glue
as follows (a similar definition has been elaborated by D’Souza and Wills in the context
of Catalysis [DW99]):

Glue is the part of an application which overcomes compositional mis-
matches.

The definition of the term glue given above does not necessarily correspond to defini-
tions used in other references. In particular, the notion of glue often refers to any kind of
abstraction that can be used to plug components together [All97, Mey98, Lum99]. From
our point of view, it is important to make a clear distinction between the notions ofscript-
ing and glue: the former denotes abstractions forconnectingcomponents whereas the
latter makes mismatched components composable.

Closely related to glue are the termsglue abstractionandglue component[DW99].
As mentioned previously, the emphasis of glue is to bridge gaps between incompatible
components. Therefore, anyabstractionwhich is used to overcome compositional mis-
matches should be considered as a glue abstraction, even if it is a component of an existing
framework.3 For the rest of this work, we will use the terms glue, glue abstraction, or glue
component interchangeably.

2As we will discuss in the next section, architectural and interoperability mismatch are not the only
situations where a compositional mismatch may occur.

3FileStream does not only act as a glue abstraction in the example discussed in this section, but can
be seen as aglue componentsince it is part of the stream framework for Python.
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5.2 Catalogue of glue problems

In this section, we discuss glue problems at different levels of abstraction and give ex-
amples for selected problems. However, we will not discuss other reuse related problems
nor give solutions to the glue problems mentioned. A discussion of these topics is part of
section5.3.

Although there is a certain body of knowledge and “best practice” concerning glue and
glue abstractions, to our knowledge there exists neither a survey nor a taxonomy which
incorporates a wide range of glue techniques. Most surveys concentrate oncomponent
adaptation techniquessuch as white-box and black-box approaches [Bos97] or focus on
solutionsof specific problems, but not on the problems themselves [Sha95]. As a first
approach for a classification, we therefore discuss glueproblemsat the following levels
of abstraction:platform level, interaction level, cross-platform level, andarchitectural
level.

Platform level. In section2.2, we introduced the termcomponent platformwhich indi-
cates any soft- or hardware a component depends on. Several compositional mismatches
are due to mismatches in the provided platform a component should be used in: the en-
vironment does not offer the right platform a component depends upon. In the following,
we list common situations where such a platform mismatch occurs.

• A component is used on the wrong hardware platform (e.g. it is generally not
directly possible to execute a DOS executable on a MacOS platform).

• A component is used on the wrong operating system (e.g. components written for
DEC VMS cannot be used on OSF/1) or has been developed for a different version
of the “same” operating system (e.g. components which heavily depend on kernel
routines of UNIX system V cannot be used on a BSD UNIX).

• A component depends on a particular configuration of the underlying storage
medium (e.g. a specific directory structure on a hard-disk) and the environment
does not reflect the required configuration.

• As discussed in the previous chapter, some scripting languages are dynamically
compiled and store the resulting byte-code in separate files (e.g. for any Python
module Module .py the corresponding byte-code is stored inModule .pyc ).
The byte-code depends on the version of the run-time environment and may not
be usable in a different version. As a consequence, a platform mismatch may occur
if a component is used in the wrong version of the required run-time environment.

• A component is used on a different windowing system than the one it has been
designed for.

• Components distributed in source-code may depend on a specific compiler and can-
not be compiled with another compiler.
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• Particularly on operating systems that support dynamic linking of libraries, com-
ponents may depend on a particular version of a library and cannot be used with
another version. This kind of platform mismatch can be quite a challenge to solve
if the components of an application depend on different versions of the same library.

• In the context of middleware, a component may depend on a particular version of a
CORBA ORB and cannot be used on a different ORB. Although the CORBA stan-
dard defines interoperability between ORBs (a CORBA component running on one
ORB should be able to interoperate with a component running on a different ORB),
there are several examples where the inter-ORB interoperability fails [Hel99].

Although this list is certainly not complete, it gives a good insight into compositional
mismatches which are due to wrong environments a component should be used in. We
argue that a greater part of these problems can be solved by providing the right platform
and are not of major interest in the context of a general-purpose composition language.

Interaction level. A second category of compositional mismatches are due to incom-
patibleinteraction protocolsbetween components. To some extent, these mismatches are
due to incompatibilities in the provided and required interfaces of components, and are
also referred to astype matchingproblems [Kon93]. However, as discussed below, there
are interaction level mismatches which go beyond mismatched interfaces.

• At the lowest level, interface mismatches are due to differentrepresentationof data:
a component interprets data in a different format than the one expected by the cor-
responding producing component. This can either be at a binary level (e.g. different
encodings of integers: little endian vs. big endian), at a representation level (e.g.
different layouts for record-like structures), or at an access level (e.g. different range
of indices in arrays). Refer to [WWRT91] for a further analysis of representation
mismatches.

• Other mismatches at interaction level are due tosyntacticaldifferences between
provided and required services: a provided service is available with a different
name than required, the types of the offered parameters are different, the order of
parameters differs, or the provided interface requires a different set of parameters.

• There are two types ofsemanticdifferences: i) due to different programming lan-
guages (which we will discuss further below) and ii) due to different programming
semantics used in operation call by the caller and callee. As an example of the
second type, consider a server component which creates a new object in order to
return the result of a request whereas the client expects the result to be returned in
specified, existing object (passed as a parameter to the server).

• At a higher level are differences in the wayfunctionality is offered and requested.
As an example, consider a server that requires multiple calls to invoke a certain
service whereas a client makes a single call. This kind of interaction mismatch is
also referred to asprotocol mismatch.
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• A last category of interaction level mismatches occur inconcurrentand/or dis-
tributed systems and are generally not due to mismatched interfaces: they are due
to i) different synchronization schemes (e.g. synchronous vs. asynchronous service
invocation), ii) different assumptions about scheduling of threads, iii) different ac-
cess patterns to shared resources, iv) different event models, and many more. As
an example, consider two components which share a same (external) resource. A
service of the “server” component requires exclusive access to shared resource, but
this resource is already locked by a client component, which results in a run-time
deadlock. Another example of a mismatch of this category areownershipprob-
lems: a component requires exclusive access to a certain resource (i.e. it “owns”
this resource), but another component also accesses this resource at the same time.
For further information about interaction level mismatches due to concurrent com-
ponents, refer to [Lea96].

As mentioned in [Kon93], is is not possible to assign mismatched interaction between
components to a single category alone: generally they fall into more than one category.

Cross-platform level. Another category of compositional mismatches is due to com-
ponents running on different component platforms (e.g. components written in different
programming languages, running on different nodes of a distributed system). In the latter
case, the mismatches are generally due to different data representations and/or different
synchronization schemes. Of more interest are compositional mismatches due to compo-
nents written in different programming languages.

If two (or more) components written in different languages have to be composed, it is
generally not possible to directly access a “foreign” component, but only through a glue
layer which acts as a mediator between the languages. Such a glue layer will be denoted
asinterlanguage gluethroughout the rest of this work.

The main purpose of interlanguage glue is to act both as an adaptor and transformer
for service invocations since the languages involved generally support different data types
(names and/or binary representation), different parameter passing conventions (e.g. call-
by-value vs. call-by-reference), different behaviour for returning results, and have dif-
ferent exception mechanisms. In addition, there are numerous situations where one of
the languages does not offer an equivalent to a (possibly higher-level) abstraction found
in another language (e.g. method overloading based on the static types of parameters),
and additional glue code is needed in order to map such an abstraction to abstractions
found in the other language (if this is possible at all). As a summary, interlanguage glue
has to map any kind of abstraction found in one language into abstractions of other lan-
guages and, therefore, has to overcomeparadigm clasheswhich occur between the dif-
ferent languages. Examples of interlanguage glue are the Java Native Interface [Sun97a]
(which maps between Java and C) and LifeConnect [Fla97] (which maps between Java
and JavaScript).

However, defining mappings from one language to another is generally not enough
in order to safely interoperate between different languages. As an example, consider the
run-time system of the ISE Eiffel environment [Mey92] which offers a C API calledcecil
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for accessing and manipulating Eiffel objects from “outside” the run-time system. The
run-time system assumes that there is only a single thread running at a time and does not
offer any abstractions for synchronizing concurrent accesses. An experiment integrating
Eiffel objects into a concurrent Java program (using both JNI andcecil) has revealed that
this assumption is essential, and that concurrent accesses to the run-time system result in
an unpredictable behaviour, which may even lead to a crash of the system.

The run-time system of the ISE Eiffel environment has an integrated garbage collector
which reclaims the memory of all objects that cannot be directly or indirectly accessed by
the so-calledroot object of an Eiffel program.4 This is of particular interest if an object is
created from “outside” (usingcecil) and not by a “regular” Eiffel object. In order to avoid
that these kinds of objects are mistakenly garbage collected, it is possible topin such
objects (i.e. pinned objects are not garbage collected). This implies that the interlanguage
glue has to ensure correct pinning (and unpinning) of these kind of objects.

Therefore, interlanguage glue should not only define mappings for data-types and
abstractions, but has to take care of different behaviour and requirements of the corre-
sponding run-time systems (e.g. synchronization, memory management).

Architectural level. Garlan, Allen, and Ockerbloom analyzed the problems concern-
ing compositional mismatches from an architectural point of view and defined the term
architectural mismatch[GAO95]. Architectural mismatch stems from mismatched as-
sumptions a component makes about the structure of the system it is to be part of. These
assumptions conflict with the assumptions of other components, and are often implicit.
Garlan, Allen, and Ockerbloom identify four main categories of assumptions that con-
tribute to architectural mismatch:

• Nature of components: this category includes assumptions about the substrate on
which a component is built of (i.e. its infrastructure), about which components con-
trol the order of computations (control model), and about the way the environment
manipulates the data managed by a component (data model).

• Nature of connectors: this category contains assumptions about the interaction pat-
terns characterized by a connector (protocols) and about the data being communi-
cated (data model).

• Theglobal architectural structureincludes assumptions about the communication
topology of a system, in particular about the presence or absence of particular com-
ponents and/or connectors.

• Finally, theconstruction processincludes assumptions about the building process
of a system.

From our point of view, the definition of the term architectural mismatch is to general
and overstresses the notion of an architecture. If two components cannot be directly con-
nected due to a different interface of either the provided or required services (e.g. different

4The root object is the first instance of theroot-classwhich has to be specified for any Eiffel program.
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order of parameters), it is not immediately obvious to call this problem an architectural
mismatch; using the term interface mismatch is probably more accurate. The term archi-
tectural mismatch should only be used for mismatches caused by conflicting assumptions
components make about theoverall architectural structureof a system. As an example
of an architectural mismatch, consider a component of a blackboard architecture which
should be used in an unidirectional data-flow architecture.

The first two categories of the list mentioned above roughly correspond to the com-
ponent platform and interaction-level mismatches, respectively, and have been discussed
in previous paragraphs. The last category describes problems due to mutually recursive
dependencies of components and can be partially explained by the fact that the case study
Garlan, Allen, and Ockerbloom refer to is implemented in C++.5 We claim that any
well-developed system for software composition should enable the specification of such
dependencies and solve the corresponding problems automatically.

Versioning. A discussion about glue problems would not be complete if compositional
mismatches due to different versions of components were not addressed. These kinds of
compositional mismatches are a common source of glue problems, in particular in the
context of evolving languages, systems, and frameworks, and can be assigned to any of
the categories discussed in this section.

It is a common misunderstanding that version mismatches are mainly due to a dif-
ferent interface of a new version of a component and can be solved by modifying the
clients of this component (i.e. adapting service invocations according to the new inter-
face). There are situations where the interface of a new version remains as before, but due
to a modification in the underlying language or a different implementation of a service,
thesemanticsof a component changes (e.g. blocking rather than returning an error value
when reading from an empty buffer). Overcoming these situations may require a deeper
understanding how the semantics has changed.

5.3 Glue technology

As discussed in the previous section, glue problems (or compositional mismatches) may
occur at different levels of abstraction. In this section, we summarize known glue
technology and give solutions to selected glue problems. The reader should note that
in general there is more than one way of solving a particular glue problem, but a discus-
sion of all alternatives (including their advantages and disadvantages) is beyond the scope
of this work.

Over time, research in software engineering and programming languages has devel-
oped a number of techniques for overcoming compositional mismatches, in particular for
adaptingcomponents. These adaptation techniques can be categorized either asblack-
boxor white-box: white-box techniques focus on adapting a mismatched component by

5C++ requires user-definedforward declarations in order to resolve mutually recursive dependencies
between classes whereas compilers for Eiffel resolve recursive dependencies automatically.
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either changing or overriding its internal specification (e.g. inheritance in object-oriented
languages) whereas black-box techniques only adapt interfaces [Bos97]. Both techniques
have their advantages and disadvantages, and it is a widely accepted fact that white-box
techniques require more understanding of a component than just its interface specifica-
tion. Although there are situations where a white-box approach is feasible, we will not
further concentrate on these techniques to overcome compositional mismatches. For the
rest of this work, we consider a component as an entity which cannot be directly modified6

and only consider glue abstractions based on black-box techniques.

5.3.1 Ad-hoc techniques

Software engineers have a wide range ofad-hoctechniques for dealing with composi-
tional mismatches in the sense that these techniques solve a very specific glue problem
and are neither reusable nor can they be easily generalized. They focus on overcoming
compositional mismatches based on a rather local view of the problem and do not take
higher-level considerations such as architectural consistencies or intermediate forms into
account. In particular, they focus on modifying one of the mismatched components only
in order to match the required behaviour, although adapting different components would
result in much cleaner solution. In addition, such adaptations are often defined in a context
local to the mismatched components and cannot be reused outside this context.

As an example of these techniques, consider a service which is used in two different
contexts: one context assumes the namefoo whereas the other context requires the ser-
vice under the namebar . An ad-hoc solution of the problem is to modify all invocations
which requirebar in order that they refer to the “original” service name.7 This can be
seen as a kind of adapter for “outgoing” services. A cleaner solution of this problem
would be to define a (possibly configurable)adaptorfor foo which provides the service
also under the namebar (i.e. the same service can be invoked using either of the two
names). Such a solution is much more reusable and does not require any changes on the
client side.

5.3.2 Wrapping techniques

A common technique to overcome compositional mismatches is based onwrappersthat
pack the original component into a new one with a suitable interface. These wrappers
usually have the form of anadaptor, but there are other glue abstractions which belong to
the same category:bridges, proxies, andmediators.

Wrappers. A wrapper implies a form of encapsulation whereby some component is en-
cased with an alternative abstraction and that clients of the wrapped component access the
services provided by the wrapper. Wrapping a component can be thought of as yielding

6As we discuss in section5.3.5, there are meta-level approaches for adapting components, which we
will denote asindirectmodification.

7Such an adaptation is often done in the source code by modifying the name of a service invocation.
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an alternative interface to the component. Wrappers can be further classified intoadap-
tors andtransformers: an adapter bridges incompatible interfaces whereas a transformer
is used to modify mismatched interaction protocols. Both wrapper categories have been
briefly discussed in section5.1.

Bridges. A bridge translates between some required assumptions of an arbitrary compo-
nent to some provided assumptions of another component. The major difference between
a wrapper and a bridge is that the repair or glue code of the latter is independent of any
particular component. In addition, a bridge must be explicitly invoked by some external
“agent”, which must not necessarily be one of the components the bridge spans. The last
point is intended to convey the idea that bridges are usually transient processes. Bridges
typically focus on a narrower range of interface or interaction protocol translations than
wrappers do.

Proxies: A proxy provides a surrogate (or placeholder) for another component in order
to control access to it and is applicable whenever a there is a need for a more sophisti-
cated reference to a component than a simple wrapper. This is of special interest if the
“wrapped” component is located in a different address space: the proxy is responsible for
encoding a service request and the corresponding arguments, and hides intercomponent
communication protocols. Proxies can be seen as a wrapper which acts both as an adapter
and a bridge.

Gamma et al. make the difference betweenremote proxies(which provide a local
representative for a component in a different address space),virtual proxies(which act as
a cache for requests and provide a call-by-need access to a component), andprotection
proxies(which control access to the original component) [GHJV95].

Mediators. Mediators exhibit properties of both wrappers and bridges. The major dis-
tinction between a bridge and a mediator is that a mediator incorporates aplanningfunc-
tion that results in a run-time determination of the corresponding (interface or interaction
protocol) translation. Mediators are similar to wrappers as a mediator becomes a more
explicit component in the overall software architecture than a bridge, since a bridge can be
thought of as incidental repair mechanism whose role in a design often remains implicit
[BCK98].

Mediators are a less well-explored technique than either bridges or wrappers. In order
to illustrate the concept, consider the scenario of assembling a sequence of bridges in
order to integrate components whose specific integration requirements arise at run-time.
One of the components produces data in a formatD0, another requires data in formatD2,
and there is no direct bridge fromD0 to D2. However, there are separate bridges which
translate fromD0 to D1 and fromD1 to D2, respectively. The mediator in this scenario
assembles the alternative bridges in order to complete the translation fromD0 toD2. The
reader should note that UNIX filters are often used in this type of scenario.

In contrast to the ad-hoc mechanisms discussed previously, wrappers, bridges, prox-
ies, and mediators are higher-level abstractions for overcoming compositional mismatches
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and can in general be reused and generalized more easily. They still focus on a rather local
view of problems and neglect higher-level considerations. One should note that wrapping
techniques cannot always be applied to overcome compositional mismatches [YS97].

5.3.3 Intermediate forms

In contrast to the glue techniques discussed previously,intermediate formsfocus on a
different approach: adaptingall components of a system in a way that they conform to
some standard form. Such a standard (or intermediate) form is generally based on one
of the foreign code concepts discussed in section4.2. Whereas wrappers and other glue
techniques mainly focus onovercomingcompositional mismatches, standard forms try
avoid them (at least to a certain degree) by restricting the kind of components which can
be used in a system. Standard forms generally specify i) how interfaces for components
have to be defined, ii) what kind of data entities can be exchanged between components,
iii) what kind of interaction mechanisms and iv) what kind of architectural style(s) can
be used. Note that applications based on intermediate forms tend to focus on specific
application domains or architectures.

A popular example of an intermediate form are software buses. Asoftwarebus (com-
parable to a hardware bus used in most modern computer systems) defines a standardized
communication protocol for exchanging data (i.e. a set of data types that can be used to
exchange data and a number of service invocation mechanisms), takes care of a correct
message handling, and performs necessary data conversions. From a different perspec-
tive, a software bus can be seen as a kind of intelligent blackboard. Examples of such
software buses are Bart [Bea92] and POLYLITH [Pur94].

The concept of anObject Request Broker(which is often referred to asmiddleware)
goes a step further than software buses. Middleware does not only define interface re-
strictions for components and interaction protocols, but offers additional services such
as event models, transactions, and service traders. Examples of middleware are both
CORBA [OMG96] and COM [Rog97].

Other examples of intermediate forms are special file formats such as RTF, MIF, or
Postscript, network services such as HTTP or FTP, or the Java Virtual Machine [LY96].

5.3.4 Patterns

As discussed in section3.2, patterns describe the solution of a recurring (object-oriented)
design problem in relationship to its context. Due to the fact that most of these patterns
focus onobject composition, and not on inheritance, they are not restricted to object-
oriented programming languages and can be adapted for component-oriented software
development in general.

Although patterns focus on solvingdesign problems, we argue that some of them
can be applied in a context where a compositional mismatch occurs. As an example,
consider the Adaptor pattern which can be applied in situations where a provided interface
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of a class does not match the required interface of its clients: “Adapter lets classes work
together that could not otherwise because of incompatible interfaces” [GHJV95].

There are several other examples of patterns which focus on briding incompatible
class hierarchies, adapting incompatible interfaces, or extending behavioural properties.
Due to the fact that they describe general glue technology in a context/solution form and
provide a common vocabulary for understanding glue problems, we denote such patterns
asglue patternsfor the rest of this work.

Examples of such glue patterns are the Adaptor, Bridge, Mediator, and Proxy patterns
which describe variations of the concepts discussed in section5.3.2[GHJV95]. Other pat-
terns focusing on similar concepts are the Facade, Strategy, and Decorator patterns or the
Object Wrapper pattern [MM97]. Patterns describing architectures based on intermediate
forms are the Microkernel, Broker, and Blackboard patterns discussed in [BMR+96].

5.3.5 Reflective approaches

As mentioned before, many glue techniques are based onwrappersthat pack the original
component into a new one with a suitable interface. If wrappers are used frequently, this
technique gives rise to serious performance problems [Höl93]. In this section, we discuss
different approaches based onmeta-level abstractions[McA95] which try to overcome
some of the problems of wrapper technology.

One of these approaches is based on the idea ofintercepting service invocationsand
to manipulate them according to the requirements of the receiver of the corresponding
invocation. In particular, if service invocation is based onmessage sending(as it is the
case in object-oriented programming languages), messages can be transformed, delayed,
or even delegated. Comparable approaches have been used in existing languages (e.g.
Sina [Aks89], CLOS [ABB+89], and Smalltalk [GR89]), but none of these approaches
primarily focuses on overcoming compositional mismatches.

As an example of connecting components using intercepted service invocations, con-
sider the concept ofexecutable connectors[Duc97]. Connectors are run-time entities
which define a set of rules how connected objects react and interact during external mes-
sage sending.8 They change the observable behaviour, without modifying the objects
themselves. Therefore, connectors act as a higher-level glue abstraction for composing
and synchronizing objects.

Another meta-level approach is based on the concept of explicit contexts orname-
spaces, which has been introduced in section4.4. A namespace provides its own mech-
anism forname lookupand defines a (partial) mapping from names to values. Some
programming languages offer meta-level abstractions for controlling, modifying, or ex-
tending the name lookup mechanism of namespaces (e.g. the methodgetattr in
Python used to perform attribute lookups can be overridden). Namespaces can be used to
transparently access remote components, asgatewaysto other languages, and as a syn-
chronization mechanism. Furthermore, namespaces can be composed (or nested) in order

8The termconnectoris used differently here than in the discussion about software architectures in chap-
ter3.
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to allow for a flexible access to hierarchical name structures. The usage of namespaces
with explicit control offers other benefits in the context of composition as well, but a
detailed discussion is beyond the scope of this work.

5.4 Discussion

In the following, we will briefly discuss selected issues related to glue and glue abstrac-
tions. In particular, we focus on limitations of wrapping techniques and requirements
for reusable and adaptable glue abstractions. It is obvious, however, that there are other
aspects related to glue and glue abstractions which are also relevant (e.g. run-time per-
formance, network protocols), but a detailed discussion of all these aspects is beyond the
scope of this work. For further information, refer to [MMM95] or [YS97].

Limitations of wrapping techniques: In [Höl93], Hölzle discusses problems related
to wrapping techniques in the context of integrating components in object-oriented pro-
gramming languages. From his point of view, wrapping techniques give rise to serious
performance problems when they are heavily used in applications, since all interactions
with wrapped components have to go through the wrapper. Additional redundancy is
introduced into systems since wrappers generally duplicate part of the interfaces of com-
ponents, which leads to additional changes when the interface of a wrapped component
is modified, unless clever compile- or run-time support is provided. Applications using
wrappers are often harder to understand and, therefore, harder to extend and maintain. As
a consequence, wrapping techniques should be used with care and can often be replaced
by meta-level abstractions.

Yellin and Strom formalize the notion of an adapter as a bridge between functionally
compatible components with type- and protocol-incompatible interfaces [YS97]. From
their point of view, an adaptor is afinite-state machinethat has interfaces to the compo-
nents that need to collaborate. The behaviour of the adapter is defined by its transition
rules and contains afinite set of memory cells to buffer data for multiple service invo-
cations.9 Based on these assumptions, there are protocol mismatches which cannot be
handled since they would require an infinite set of memory cells. For further information
about these protocol mismatches, refer to the original reference.

Requirements for glue abstractions: In an ideal world, there are components avail-
able for any task an application has to perform and these components can simply be
plugged together. However, this ideal scenario has not yet become true, and there are
many situations where a component with almost the required functionality is available,
but it cannot be integrated into a system due to mismatched assumptions. Therefore, a
general-purpose composition language must offer support for overcoming these compo-
sitional mismatches: it must offerreusable glue abstractions.

9As an example, consider the situation where a client invokes a service with a single invocation whereas
the server requires multiple calls.
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In the previous sections, we identified compositional mismatches at several levels of
abstraction and discussed techniques to overcome these mismatches. In the following, we
discuss a set of requirements for reusable glue abstractions a general-purpose composition
language should fulfill. These requirements also provide a framework for comparing and
selecting glue abstractions.

In [Bos97], Bosch defines a set of requirements in the context ofcomponent
adaptation techniques, which do not only help to classify, but also give insight how new
adaptation techniques should be designed. Although the requirements primarily focus on
adaptation, they can be applied to any kind of glue abstraction. Therefore, we discuss
these requirements from a slightly different point of view than in the original reference.

• Glue abstractions should be astransparentas possible in the sense that none of the
involved components is aware of the inserted glue code. In addition, all services
that match the required behaviour and/or protocol should not be affected by glue.

• In order to ensure a transparent exchange of components, a glue abstraction should
only know as much of the internal structure of the involved components as is needed
for overcoming the corresponding compositional mismatch. Ideally, glue abstrac-
tions should only depend on interfaces of components, which implies that glue
abstractions should be based onblack-boxtechniques.

• Any glue abstraction should be defined in a way that it can be applied to compo-
nents without redefining them (i.e. easy composition of glue and components). In
addition, glue abstractions should becomposablethemselves (i.e. it is possible to
compose glue abstractions) and a composition of glue abstractions should again be
a glue abstraction.

• Glue abstractions generally consist of agenericand aspecificpart. The specific
part is fixed and cannot be changed, but the generic part should be sufficiently
configurablein order to enhance the reusability of a glue abstraction. A general
problem with many glue abstractions is the fact that the generic part cannot be
separated from the specific part, which results in a smaller degree offlexibility and
reusability. Hence, a glue abstraction should improve reusability by making a clear
separation of the two concerns.

This list covers the important requirements for reusable glue abstractions. However, as
we pointed out in section2.4, glue abstractions tend to be ad-hoc and lack a well-defined
formal semantics in order to reason about compositions of components. Therefore, it is
necessary to add an additional requirement for glue abstraction: their semantics should be
defined in terms of well-definedformal basis.



Chapter 6

Unification of concepts

As discussed in chapter2, object-oriented programming alone is not enough to guarantee
the development of flexible systems, but it provides a good set of tools and techniques
that can be used for component-based application development. Components, however,
are not enough either, since a component without an architecture is like a Lego – all by
itself. CORBA, Delphi, JavaBeans, and D-Active-COM-X-++ are also not enough – each
solves important technical problems, but does not go beyond a specific domain.

In the previous chapters, we have discussed several important concepts and techniques
related to software composition and proposed a conceptual framework for software com-
position in which five of these techniques are combined, namely:

• component frameworksprovide software components that encapsulate useful func-
tionality,

• architectural description languagesexplicitly specify architectural styles in terms
of interfaces, contracts, and composition rules that components must adhere to in
order to be composable,

• scripting languagesare used to specify compactly and declaratively how software
components are plugged together to achieve some desired result,

• glue abstractionsadapt components that need to bridge compositional mismatches,

• coordination modelsprovide the coordination media and abstractions that allow
distributed components to cooperate.

In this chapter, we illustrate how the concepts of components, scripts, and glue are
used in practice, followed by a discussion about the conceptual framework based on dif-
ferent points of view.

6.1 Concepts in practice

In order to illustrate the concepts of components, architectures, scripts, and glue, consider
the following example (originally presented in [SN98]): the University of Berne provides
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Newton MessagePad
Delimited Text

Address Dictionaries

HTML Pages

Phone Book Server

Figure 6.1: Schema of UniBe phone book application.

an online phone book with information about people working at the university. The on-
line phone book has a web-interface (i.e. it can be used by any kind of web-browser)
which is not ideal for interchanging information with other applications, for example the
Newton MessagePadNames application. In order to interchange information with other
applications, we illustrate the design and implementation a new application which

1. offers an interface for user input (i.e. search strings),

2. connects to the phone book server and downloads the query results of the corre-
sponding queries, and

3. parses the resulting HTML page and generates a table of delimited text (or any other
desired format) which can be imported by theNames application.

In order to enhance reusability and extensibility of this application, the parsing step should
be further subdivided into i) a parser which parses the HTML pages and generates a
dictionary for each address found and ii) a formatter which formats the dictionaries into
the desired format.

Analyzing the requirements, it becomes clear that adata-flow architectureis a natural
approach for implementing this application. The query results can be seen as data sources,
which are parsed, filtered (the HTML pages contain other information not directly related
to addresses of people), transformed into address dictionaries and, finally, formatted into
the desired format (such as delimited text). Therefore, the application may consist of
stream, filter, and transformer components. For a schema of the application, refer to
Figure6.1.

Due to the fact that we have previously implemented a framework for stream pro-
cessing in Python (see section4.3 for further details), it is a natural choice to implement
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the application using this framework. In addition, there exists several Python packages
providing various World-Wide-Web services, in particular for opening and reading URL’s
[WvRA96]. Therefore, the major part of the application can be implemented by appropri-
ately configuring the components of the corresponding frameworks. The only application-
specific abstractions which have to be implemented are i) address dictionariesAddress
(which know how to format themselves in different formats) and ii) an HTML parser
ParseAddr which transforms a stream of lines (i.e. the output of the queries) into a
stream ofAddress objects. In order to use the HTML parser as a component of the
stream framework (i.e. it has to read from and write to a stream), it must offer the same
interface as the other filter or transformer components.1 The parser itself uses components
of the regular expression package in order to parse and format its input, and the address
dictionaries are implemented as an extension of the classUserDict (which is a wrapper
class around the built-in Python dictionaries).

The problem with this approach is that components from different frameworks have
to be connected which are not plug-compatible: the result of the address queries (a list of
HTML pages) does not correspond to a single character stream which the parser uses as its
input. In order to solve this problem, it is necessary to write glue code which transforms
the HTML pages into a single character stream. The stream framework already offers
some abstractions for this transformation: i)FileStream transforms a file-like object
(i.e. an object which offers the same interface as afile object) into a stream and ii)
CatStream concatenates a list of streams into a single stream. The only application-
specific glue code which has to be written is an abstraction (i.e. the functionubtb ) which
transforms the result of a single query into a file-like object.

For the source ofubtb and the top-level functionmain , refer to Figure6.2. All the
other abstractions used in the application (including the stream framework) are given in
appendixA.

An analysis of the design and implementation process for this application reveals that
it conforms to the conceptual framework we proposed in this part and that it is possible
to identify components, architectures, a script, and glue abstractions. In particular, the
analysis reveals the following:

• The application conforms to a pipe and filter architectural style, and the architecture
is made explicit in the source code (i.e. in the top-level script).

• The pipe operator ‘|’ is used as a high-level connector (it connects streams with
filters and/or transformers) and adopts an algebraic view of composition.

• The application reuses existing components and connectors: (text-)streams, string
dictionaries, url/http components (i.e. components of theurllib framework), and
regular expression components to parse text.

1Due to the fact that the stream framework is object-oriented,ParseAddr inherits from an abstract
classInputStream which defines the interface and default behaviour for pipe-and-filter composition of
streams.



90 CHAPTER 6. UNIFICATION OF CONCEPTS

def ubtb(name):
# Return a file-like object containing the HTML of the query
# result for "name":
from urllib import urlopen # import www services
try:

name = string.join (string.split (name, ’ ’), ’+’)
url = urlopen("%s?name=%s" % (ubtbURL, name))

except:
sys.stderr.write ("Can’t open " + ubtbURL)
sys.exit(1)

return url

def main():
# default format -- use the Address.display() method:
format = Transform (lambda a: a.display())
# Open a ubtb url "file" for each arg, convert it to a FileStream,
# concatenate streams, parse them into addresses, and format them:
source = CatStream (map (FileStream, map (ubtb, args)))
parser = ParseAddr()

print source | parser | format # explicit architecure

Figure 6.2: Python source code of UniBe phone book application.

• The application consists of components of several frameworks and, therefore, glue
abstractions are needed in order to overcome compositional mismatches:ubtb
wraps a HTML query and returns a file-like object,FileStream transforms file-
like objects into text streams,CatStream concatenates a list of streams into a
single stream etc.

• User-defined (application-specific) components are compositions of (lower-level)
components (e.g. streams ofAddress objects).

• The application uses abstractions of both object-oriented (e.g. classes and objects)
and functional programming (e.g. lambda expressions).

The reader should note that the HTML parser is the most “fragile” component of
the application since any change in the output format of the query results may require a
corresponding adaptation in the parser. However, none of the other components nor the
overall architecture of the application are affected by a change of the output format and,
therefore, do not have to be adapted. If a user requires the query results in a different
format than the one provided by the application, it is easily possible to exchange the
format component by a new one, and none of the other components are affected by this
modification, either.

This fact also holds for testing: in order to test the parser component, it was possible
to replace the streamsource of the functionmain with a stream-like object which does
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not connect to the web-server, but directly returns the contents of a test-file (containing
the results of test query). Again, none of the other components were affected.

Summarizing the observations made during the development of this application, we
can say that application development using the conceptual framework proposed in this
part leads to an adaptable and extensible application with a well-defined, robust architec-
ture.

6.2 Discussion

The concepts we have discussed in the previous chapters define a framework forcom-
posingapplications from component frameworks and reflect the main requirements with
have discussed in section2.5: making a clear separation between computational and
compositional elements.

As mentioned in the previous section, using the conceptual framework leads to adapt-
able and extensible applications with a well-defined architecture. In particular, applica-
tions can evolve by i) adapting existing components (reconfiguration of required services),
ii) extending existing components, iii) adding new components which are compatible with
the “old” ones, iv) integrating external components (using glue abstractions), and v) re-
configuring the connections between components.

One might argue that these concepts only apply to run-time composition, as scripting
languages are typically dynamically compiled or interpreted. The same ideas, however,
apply equally well to compile-time composition. Consider, for example, the Standard
Template Library (STL) [MS96]. STL provides a set of C++ container classes (such as
vectors, lists, sets etc.) and template algorithms for common kinds of data manipulations
on the container classes (e.g. searching, sorting, merging). STL has all the properties we
have previously established for component frameworks: it focuses on component com-
position rather than white-box reuse, it incorporates a collection of reusable components,
fixes the interfaces components may have, and defines a set of rules how components can
be composed. All applications using STL, therefore, share a common architectural style,
even though the concrete architecture may not always be explicit.

The keyword extraction script illustrated in section4.3 may be implemented in C++
using similar concepts to those we have already used in the Bourne Shell scripts: compo-
nents (STL containers), connectors (generic functions), and glue (e.g. input/output stream
adapters to makecin andcout look like containers). The major difference between the
C++ program and the Bourne Shell script is that i) a C++ program does not make the
underlying architecture of the program explicit, and ii) any C++ program using STL only
works in a sequential environment and, therefore, does not require any coordination ab-
stractions.

Another important aspect related to the conceptual framework we have presented is
the fact that it cannot only be used for building applications, but also fordocumenting
existing applications. This is of particular interest in the context of reengineering legacy
systems. In parallel to our research on a composition language and system, the Software
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Composition Group participates in FAMOOS,2 a European industrial research project
on reengineering object-oriented legacy systems towards component-based frameworks.
Early adopters of object-oriented technology now find themselves with large, object-
oriented applications that are critical to their business interests, but are difficult to adapt
to changing business needs. Results show that apattern-based approachis most promis-
ing, since similar reengineering problems seem to recur across applications. In particular,
these patterns aim at identifying components, architectures, and compositions in legacy
applications.

The conceptual framework we have proposed in this work mainly focuses on technical
issues. However, if it should be applied in a broader context of component-based software
development, there are severalmethodological issueswhich must be addressed as well.
In the following, we briefly outline some of theses issues.

• Given a particular design problem, how do we select a suitable architectural style
that leads to a flexible and extensible design?

• How do we drive application development from a given architectural style and/or
component framework?

• Given a problem domain and a body of experience from several applications, how
do we re-engineer existing software into a component framework?

• During the development of a component framework, how do we select a suitable
architectural style to support black-box composition?

Although we do not yet pretend to have answers to all these questions, we think that sepa-
rating applications into components and scripts is an essential step towards a methodology
for component-based software development.

2FAMOOS is an industrial ESPRIT Project (No 21975) in the IT Programme of the Fourth ESPRIT
Framework Programme.



Part III

Towards a composition language
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As discussed in PartI, software composition is supported in a rather ad-hoc way in exist-
ing languages and systems. In order to overcome these problems, we identify the need for
a rigorous semantic foundation (i.e. acomposition calculus) for specifying applications
as compositions of software components [NSL96]. In particular, if we can understand all
aspects of software components and their composition in terms of asmall set of primi-
tives, then we have a better hope of being able to cleanly integrate all required features
in one unifying concept. However, we are not seeking for a composition calculus which
incorporates all required abstractions as primitives, but we rather define a minimal calcu-
lus where all compositional abstractions can be expressed in terms of the primitives of the
calculus.

The requirements for a composition language given in section2.5suggest an approach
in which we use a formal process calculus as the core of our formal foundation and to de-
fine higher-level abstractions in terms of the core calculus. Such an approach has already
been used for the PICT programming language where all language features are defined
by syntactic transformation to the miniπ-calculus [PT97]. Although the miniπ-calculus
can be used to model concurrent objects and composition mechanisms [LSN96, SL97],
it is inconvenient for modelling general composition abstractions due to the dependence
on positional parameters in communications. For example, a generic Readers-Writers
synchronization policy cannot be directly coded without wrapping method arguments in
order to treat an arbitrary number of arguments as a single value [Var96].

Dami has tackled a similar problem in the context of theλ-calculus and has pro-
posedλN, a calculus in which parameters are identified bynamesrather than positions
[Dam94, Dam98]. The resulting flexibility and extensibility can also be seen in HTML
forms, whose fields are encoded as named (rather than positional) parameters in URLs,
in Python, where functions can take arguments bykeywords[vR96], and in Visual Basic,
wherenamed argumentscan be used to break the order of possibly optional parameters
[Mic97]. Based on these ideas, Lumpe has defined theπL-calculus, where the commu-
nication of names or tuples of names of theπ-calculus is replaced by communication
of forms[Lum99]. Furthermore, theπL-calculus introduces the concept ofpolymorphic
form extensionas a mechanism to compose arbitrary forms.

Although theπL-calculus seems to be a suitable formal foundation for a composi-
tion language, experiments have shown that there are problems and contexts where the
expressive power of theπL-calculus is not enough, and we identified the need to extend
the calculus according to the corresponding shortcomings. Therefore, we extend theπL-
calculus with the concepts ofpolymorphic restrictionandmatching, which leads to the
definition of the FORM calculus. We analyze the expressive power of the FORM calculus
by modelling higher-level abstractions in order to validate the suitability of the FORM

calculus as a minimal semantic foundation for a general-purpose composition language.

PartIII is organized as follows: in chapter7, we define the FORM calculus, an exten-
sion of theπ-calculus, which forms the basis for the rest of this work. We use the FORM

calculus to define a meta-level framework for concurrent, object-oriented programming
(chapter8) as well as for modelling compositional abstractions (chapter9). We conclude
with a summary of the main observations in chapter10.



Chapter 7

Towards a composition calculus

There are several plausible candidates as computational models for objects, components,
and software composition in general. Theλ-calculus has the advantage of having a well-
developed theoretical foundation and being well-suited for modelling encapsulation, com-
position and type issues, but has the disadvantage of saying nothing about concurrency
or communication [CW85]. Process calculi such as CCS have been developed to address
just these shortcomings [Mil89]. Early work in modelling concurrent objects has proven
CCS to be an expressive modelling tool, except that dynamic creation and communica-
tion of new communication channels cannot be directly expressed and that abstractions
over the process space cannot be expressed within CCS itself, but only at a higher level
[Pap92].

Theπ-calculus, a calculus in which the topology of communication can evolve dy-
namically during evaluation, addresses these shortcomings by allowing new names to be
introduced and communicated much in the same way that theλ-calculus introduces new
bound names [MPW92]. This is needed for modelling creation of new objects with their
own unique object identifiers. The basic (monadic) calculus allows only communication
of channel names. The polyadicπ-calculus supports communication of tuples, needed
to model passing of complex messages [Mil91]. The higher-orderπ-calculus supports
the communication of process abstractions, which is needed for modelling software com-
position within the calculus itself [San93]. Interestingly, the polyadic and higher-order
variants of theπ-calculus can be faithfully translated (or ”compiled”) down to the basic
calculus, so one may confidently use the features of richer variants of the calculus know-
ing that their meaning can always be understood in terms of the core calculus. Theπ-
calculus has previously been used by Jones [Jon93], Vasconcelos [Vas94], Barrio [BS95],
and Walker [Wal95] to model various aspects of object-oriented programming languages.

A simplification of theπ-calculus has been studied by Honda and Tokoro [HT91]
and Boudol [Bou92], who proposed that asynchronous communication provides a bet-
ter foundation for distributed systems, without any loss of expressive power. Sangiorgi
extended the proposal by allowing polyadic communication [San95]. This variant (also
known as themini π-calculus) essentially forms the core language for PICT [PT97] and
is the starting point of the work presented in PartIII .
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Several other computational models suggest themselves as candidates, but each lacks
the simplicity of theπ-calculus. The actor model [Hew77, Ahg86] is one of the earliest
formalisms used for modelling concurrent objects, but its semantic foundations are still
under development [AMST93]. Most aspects of actors can easily be modelled in theπ-
calculus (except for fairness). Rewriting logics [Mes90] are an attractive basis, but can
also be seen as a meta-language for defining calculi like theπ-calculus. Linear logic has
also been used to model concurrent objects [AP90], but the path to an operational view of
objects as communicating processes is not very direct.

In this chapter, we give an informal introduction into the polyadic miniπ-calculus,
the starting points of our study, followed by a brief discussion about theπL-calculus, a
variant of theπ-calculus, which replaces the tuple-communication with communication
of forms. The major part of this chapter is dedicated to the FORM calculus, an extension
of the πL-calculus based on our results of modelling compositional abstractions. We
conclude this chapter with a comparison of theπL-calculus and the FORM calculus.

7.1 The polyadic miniπ-calculus

In this section, we informally introduce thepolyadic miniπ-calculuswhich is the basis
for our basic object encodings introduced in section8.1and the starting point of our study.
Readers familiar with the miniπ-calculus may skip this section. For further information
about the miniπ-calculus, refer to [San95].

The polyadic miniπ-calculus is built from the operators of inaction, input prefix, out-
put, parallel composition, restriction, and replication. Small lettersa, b, ..., x, y, ... range
over the infinite set of channels ornames,1 andP,Q,R, ... over the set of processes:

P ::= 0
∣∣∣ a(x̃).P

∣∣∣ a〈x̃〉 ∣∣∣ P1|P2

∣∣∣ (ν a)P
∣∣∣ !a(x̃).P

0 is the inactive process. An input-prefixed processa(x̃).P , wherex̃ = x1, . . . , xn has
pairwise distinct names, waits for a tuple of namesỹ = y1, . . . , yn to be sent alonga and
then behaves likeP{ỹ/x̃}, where{ỹ/x̃} is the simultaneous substitution of namesx̃ with
names̃y. An outputa〈x̃〉 emits names̃x ata. Parallel composition runs two processes in
parallel. The restriction(ν a)P makes namea local toP . A replication!a(x̃).P stands
for a countably infinite number of copies ofa(x̃).P in parallel. Finally, input prefix,
restriction, and replication have precedence over parallel composition. In order to avoid
ambiguous process definitions and enhance readability, parentheses may be used to group
processes.

In an input prefixa(x̃) and an output prefixa〈x̃〉, we calla thesubjectandx̃ theobject
of a communication. Additionally, we will often use the special name ’’ as a wild-card
symbol. Values bound to this name are unimportant for the following process and will be
ignored. Furthermore, a process sending an empty tuple along a channelx is abbreviated
asx.

1Throughout this work, we will use the wordsnameandchannelinterchangeably.
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PAR :
Q −→ R

P | Q −→ P | R
RES :

P −→ Q

(ν x)P −→ (ν x)Q

STRUCT :
P ≡ P ′ P ′ −→ Q′ Q′ ≡ Q

P −→ Q

COM : a(x̃).P | a〈ỹ〉 −→ P{ỹ/x̃}

Table 7.1: Reduction rules for the polyadic miniπ-calculus.

The set offree namesfn(P ) and the set ofbound namesbn(P ) of a processP are
defined in the usual way. The binding operators for names are the input prefixa(x̃)
(which bindsx̃) and the restriction(ν x).

The semantics of the polyadic miniπ-calculus is presented using areduction seman-
tics. This style of semantics involves defining two relations on processes: areduction
relation, specifying the actual communication behaviour of processes, and astructural
congruence relation.

The reduction relations given in Table7.1 describe the reduction of polyadic mini
π-terms. The first two rules state that we can reduce under both parallel composition
and restriction, respectively. The symmetric versions of both rules can be omitted due to
structural congruence (see below). The communication rule takes two processes which
are willing to communicate along a channela and simultaneously substitutes the free
namesx̃ with namesỹ. This rule enables that restricted names may be communicated
form a processP ot another processQ (scope extrusionof restricted names). Note that
the communication rule is the only rule which directly reduces aπ-term and requires that
processes are in a particular format. The structural congruence rules allow us to rewrite
processes such that they have the correct format required by the communication rule.

The structural congruence relation is the smallest congruence relation over processes
that satisfy the axioms below:

!a(x̃).P ≡ a(x̃).P | !a(x̃).P

P | Q ≡ Q | P P | 0 ≡ P

(P | Q) | R ≡ P | (Q | R)

(ν x)P | Q ≡ (ν x)(P | Q) x /∈ fn(Q)

The replication operator enables processes to have an “infinite behaviour”. A repli-
cated process is not “consumed” after matching an output, but persists in parallel with the
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instantiation of its body. Such a process can be seen as a server, and its structure is of such
a general nature that it is helpful to have a higher-level syntax for it. A similar derived
form is also a basic element in the language PICT [PT97].

def X[x̃] = P in Q
def
= (ν X)(!X(x̃).P | Q)

Milner has demonstrated how data structures could be encoded in theπ-calculus
[Mil91]. An encoding of booleans can be defined as follows:

def True[r] = (ν b)(r(b) | !b(t, f).t)

def False[r] = (ν b)(r(b) | !b(t, f).f)

A boolean value is a channel along we send/receive two channels for the nexttrue and
false interaction. The processesTrue andFalse do not take any parameter other than
a result channelr. They both create a new channelb that serves as the location of the
boolean value and returnb along the result channelr. Furthermore, sinceTrue andFalse
are replicated processes, they can answer queries about a boolean valuebmore than once.
If we had omitted the replication, the resulting processes would yieldlinear booleans.

Negation, disjunction, and conjunction of the boolean encoding presented above can
be defined as follows:

def Not [b, r] = (ν t, f)(b(c).c〈t, f〉 | t( ).False(r) | f( ).True(r))

def And [b1, b2, r] = (ν t1, t2, f)(b1(c1).c1〈t1, f〉 | t1( ).b2(c2).c2〈t2, f〉
| t2( ).True(r) | f( ).False(r))

def Or [b1, b2, r] = (ν t, f1, f2)(b1(c1).c1〈t, f1〉 | f1( ).b2(c2).c2〈t, f2〉
| t( ).True(r) | f2( ).False(r))

The processNot takes two arguments: i) a channelb that serves as the location of the
original boolean value and ii) a result channelr along Not returns the location of the
negated boolean value. Internally,Not creates two new channelst andf and sends them
alongb. In parallel,Not starts two processes that listen att andf , respectively. If the
boolean value signals att (i.e. the interaction for valuetrue), thenNot returns along
channelr the valueFalse. If the boolean value signals atf (i.e. the interaction for value
false), thenNot returns along channelr the valueTrue. The encodings forAnd andOr
are similar.

7.2 TheπL-calculus

In this section, we briefly introduce theπL-calculus, a conservative variant of theπ-
calculus [Lum99]. The main idea behind theπL-calculus is to replace the communication
of names or tuples of names by communication of so-calledforms, a special notion of ex-
tensible records. More precisely, in theπL-calculus the polyadic tuple communication of
the miniπ-calculus is replaced by monadic communication of forms. The communication
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of forms is motivated by the fact that interaction based on names leads to more adaptable
and extensible components than interaction based on positions. As a consequence of form
communication, unlike in the miniπ-calculus, constants and variables in theπL-calculus
are strictly distinguished. In fact, even though it is possible to communicate names by
means of binding from labels to names, names are always immutable.

However, theπL-calculus is more than just replacing polyadic tuple communication
by monadic communication of forms. It also introduces so-calledpolymorphic form ex-
tension, a concept that corresponds to asymmetric record concatenation [CM94], which
is one of the key features for modelling higher-level compositional abstractions. In fact,
polymorphic form extension is a powerful mechanism for software composition, since it
enables the composition of arbitrary services in order to achieve the required behaviour
(see also section8.3for further details).

The following example illustrates several key concepts of theπL-calculus, and shows
how it facilitates the definition of extensible higher-level abstractions.2

def dispatch(X, Y, r) = (ν b, r1, r2)(r(〈close =b〉)
| !b(Z).(Xclose(〈result=r1〉)

| Yclose(〈result=r2〉)
| r1( ).r2(R).Zresult(R)))

def fixcomp(L,R, r) = (ν d)(dispatch(L,R, d)

| d(C).r(〈p=Lp〉〈s=Rs〉〈d=Rd〉〈close=Cclose〉))

This example defines an abstractionfixcomp which composes two forms, say aGUIList
and aMultiselector. TheGUIList component has two servicesp (for paint) andclose
whereas theMultiselector offers the servicess, d (for select anddeselect), andclose.
A composition of these two components offers the union of both sets of services, and, in
order to close the composite component correctly, an invocation ofclose must be dele-
gated to both components (using thedispatch abstraction). Note thatfixcomp explicitly
refers to the four services of the composite component in order to define the composition.

Although fixcomp defines a correct composition of aGUIList and aMultiselector
component, it cannot be used in a context where the composition should also provide ex-
tensions of the two components. For example, theGUIList component may be extended
with aresize service or theMultiselector component may define a new serviceselectAll .
If we compose such components withfixcomp, the result would not reflect these exten-
sions (i.e. the servicesresize and selectAll would not be available). A more generic
composition abstraction would use polymorphic form extension:

def compose(L,R, r) = (ν d)(dispatch(L,R, d) | d(C).r(LR〈close=Cclose〉))

Given the originalGUIList andMultiselector components, thecompose abstraction re-
turns exactly the same composite as the old version. However, due to the usage of

2We use similar derived forms as for the miniπ-calculus.
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polymorphic form extension, the resulting composite also reflects extensions of the ar-
gument components likeresize or selectAll . The compose abstraction is more generic
thanfixcomp as it only assumes that both arguments offer aclose service. Note that if
both arguments offer other services with the same name, only that of the right-hand side
argument will be available in the composite component.

In the following, we will not discuss the full definition of theπL-calculus, as it is
similar to the FORM calculus introduced in the next section. For a detailed discussion
about theπL-calculus, refer to [Lum99].

7.3 TheFORM calculus

As we will discuss in Chapters8 and9, theπL-calculus is a suitable formal foundation
for modelling objects and compositional abstractions, and has several advantages over
the plainπ-calculus. In particular, our experiments have revealed that polymorphic form
extension is a powerful mechanism for software composition. However, there are situ-
ations where the expressive power of theπL-calculus is not enough. As an example,
consider the encoding of the encapsulation operator proposed by Van Limberghen and
Mens [VLM96], where it is necessary toremovea set of labels from a form, which cannot
be directly expressed in theπL-calculus. In this section, we present the FORM calculus,
an extension of theπL-calculus with additional operators on forms and agent expressions.

More precisely, the FORM calculus extends the syntax for forms of theπL-calculus
with the notion ofpolymorphic form restrictionwhich removes the set of labels defined
in a form variable from a given form. Note that polymorphic form restriction can be
considered as the “inverse” operation to polymorphic form extension.

Furthermore, the FORM calculus defines the concept oflabel matching, a mechanism
to check for the name bound by a labell in a given formF (written [F← l]), which
is similar toname matchingin the π-calculus [MPW92]. We define label matching in
a way that a match is successful if i) a form defines a binding for the given label and
ii) the name bound by the label is not equal to the empty bindingE . This decision is
motivated by our goal of defining a composition calculus: label matching should allow
us to check whether a component whose interface is given by a form offers (or does not
offer) a specific service. The current definition of label matching ensures that if a match
is successful, then the name bound by the given label denotes a valid entry point to the
corresponding service. As we will illustrate in section7.3.7, an empty binding cannot be
used for further communications.

Parrow and Sangiorgi have shown that if both matching and mismatching on primi-
tives of the calculus (such as forms and labels in the FORM calculus) are necessary, it is
not possible to express such a behaviour with only one alternative [PS95]. However, as
we will show in chapter9, there are contexts where a negative match is needed. There-
fore, we have extended the syntax of label matching and allowtwo continuation agents
(instead of only one):[F← l] A1 A2 yieldsA1 for a successful match (i.e. the formF
defines a nonempty binding for the labell), A2 if the match fails.
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An alternative to label matching is to define matching on names (like in theπ-
calculus):[F← l] can be expressed as[Fl 6= E ]. This implies that any expression using
label matching can be translated into an equivalent expression only using name matching,
but not vice versa. Exchanging label matching with name matching in the FORM calculus
would lead to a calculus with more expressive power. However, our experience with mod-
elling objects and compositional abstractions in various flavours of theπ-calculus never
revealed the necessity to test for name equality. In addition, the encoding of the FORM

calculus in the miniπ-calculus presented in section7.3.11cannot be defined as a simple
adaptation of the corresponding translation of theπL-calculus into the miniπ-calculus.

In this section, we formally introduce the FORM calculus, define an observable equiv-
alence based on a weak bisimulation, and show that the FORM calculus can be faithfully
encoded in theπ-calculus and, therefore, also in theπL-calculus.

7.3.1 Names and forms

The most primitive entity, as in the miniπ-calculus, is aname. However, unlike in theπ-
calculus, names are only used as thesubjectof a communication. The role of theobjectof
a communication is taken by so-calledforms. Forms are finite mappings from an infinite
setL of labels to an infinite setN+ = N ∪ {E}, the set of namesN extended byE ,
denoting the empty binding. In the following,a, b, c, d range over the setN of names,
x, y, z range overN+, F,G,H, I range over forms,X, Y, Z range over form variables,
andl,m, n range over the set of labelsL. The syntax for forms is defined as follows:

F ::= 〈〉 empty form
| F 〈l=V 〉 binding extension
| X form variable
| F·X polymorphic extension
| F\X polymorphic restriction

where

V ::= E empty binding
| a simple name
| Xl projection

In form expressions, binding extension has precedence over polymorphic form extension,
which in turn has precedence over polymorphic restriction. Parenthesis may be used to
group form expressions in order to overcome the default precedence rules.

Form variablesandprojectionsdeserve a special attention. In theπ-calculus we only
have names. A name that occurs as object in an input prefix, for example the namey in
x(y).P , is said to be the location of the place where an actually received valuez will go
in processP (i.e. in processP namey will be instantiatedby namez).

In the FORM calculus, however, form variables are used as the object part of an input
prefix. These form variables can be seen aspolymorphic placeholdersfor forms and, in
contrast to theπ-calculus, form variables are values and not references. Therefore, form
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variables cannot be instantiated by the received form; they are simply substituted by the
received form.

On the other hand,name projectionsdenote locations of names in the FORM calculus.
In fact, projections arenamed formal process parameterswhich can be distributed over
terms. A projectionXl has to be read as selection of the parameter named byl. Moreover,
if Xl occurs in an agenta(X).A, thenXl will be instantiated byz if Xl maps toz.

As a consequence, unlike in theπ-calculus, wherename instantiation(or the substitu-
tion of names to names) is done in one step, the FORM calculus requires two steps: a first
step in order to substitute all form variablesX in agentA for some received form value
F , and a second step to instantiate (or substitute) all projectionsXl in A to the name de-
noted byXl. Both substitutions are treated as one atomic action. Therefore, in the FORM

calculus, we say that a term is instantiated rather than the names of a term are instantiated.
Before we can define name projection, we need to define the notion of thevariables

of a formandclosed forms, as name projection is only defined for closed forms. We also
define a congruence over closed forms, introducebinding restrictionas a special case of
binding extension, and prove structural properties of both polymorphic form extension
and restriction. Furthermore, we define the notion of anormalized formfor closed forms
and show that any closed formF can be replaced by an equivalent normalized formF ′.
Finally, we introduce the notions ofnamesandlabelsof forms, respectively.

Definition 7.1 (Variables of a form) The set of variables of a formF , writtenV(F ), is
defined as:

V(〈〉) = ∅
V(F 〈l=x〉) = V(F )

V(X) = {X}
V(F 〈l=Xl〉) = {X} ∪ V(F )

V(F·X) = {X} ∪ V(F )

V(F\X) = {X} ∪ V(F )

Definition 7.2 (Closed forms) A formF is closed if it does not contain any form vari-
able: V(F ) = ∅.

Definition 7.3 (Name projection) Given two closed formsF andG and a formH sub-
stituting form variableX, then the application of a labell ∈ L to formH (mapping from
L toN+), writtenHl, is called name projection and is recursively defined as follows:

〈〉l = E
(F 〈l=x〉)l = x

(F 〈m=y〉)l = Fl if m 6= l

(F ·G)l =

{
Fl, if Gl = E
Gl, otherwise

(F\G)l =

{
Fl, if Gl = E
E otherwise
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Note that a form may have multiple bindings for labell. In this case, Definition7.3
ensures that a name projection always extracts therightmost binding. This allows an
agent to override a binding with a new one, preserving all other bindings.

Definition 7.4 (Equivalence of forms) Two closed formsF andG are equivalent, writ-
tenF ≡ G, if and only if for all l ∈ L it holds that:

Fl = Gl

The reader should note that, by definition, ifF ≡ G, then for all l ∈ L it holds that
Fl = Gl (i.e. F ≡ G ⇔ Fl = Gl ∀ l ∈ L).

Proposition 7.1 ≡ is a congruence relation for closed forms.

PROOF: In order to prove that≡ is a congruence relation, we have to prove that it is an
equivalence relation and that congruence is preserved under all operators for forms. In
the following, we assume thatF ,G, andH are closed forms andF ≡ G.

• ≡ being an equivalence relation immediately follows from Definition7.3.

• F 〈l=V 〉 ≡ G〈l=V 〉:
By definition, it holds thatFl = V andGl = V (for any valueV ). Furthermore, for
any labelm ∈ L−{l} it holds by assumption thatFm = Gm. Hence,(F 〈l=V 〉)n =
(G〈l=V 〉)n for all n ∈ L, and it immediately follows thatF 〈l=V 〉 ≡ G〈l=V 〉.

• F ·H ≡ G ·H:
ConsiderLH = {n|n ∈ L ∧ Hn 6= E}. By definition, it holds that for alll ∈ LH
(F·H)l = Hl and(G·H)l = Hl. Furthermore, for allm ∈ L − LH it holds that
(F·H)m = Fm and(G·H)m = Gm. Hence, it immediately follows thatF·H ≡ G·H.

• F \ H ≡ G \ H:
ConsiderLH = {n|n ∈ L ∧ Hn 6= E}. By definition, it holds that for alll ∈ LH
(F\H)l = E and(G\H)l = E . Furthermore, for allm ∈ L − LH it holds that
(F\H)m = Fm and(G\H)m = Gm. Hence, it immediately follows thatF\H ≡
G\H.

The proofs forH·F ≡ H·G andH\F ≡ H\G are similar to the proofs forF·H ≡ G·H
andF\H ≡ G\H, respectively. 2

Proposition 7.2 Given a closed formF , it holds that:

〈〉 ≡ 〈〉
F 〈l=x〉〈m=y〉 ≡ F 〈m=y〉〈l=x〉 if m 6= l

F 〈l=x〉〈l=y〉 ≡ F 〈l=y〉
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PROOF: In the following, we assume thatF is a closed form andx, y ∈ N+.

• 〈〉 ≡ 〈〉 is vaconsly true.

• F 〈l=x〉〈m=y〉 ≡ F 〈m=y〉〈l=x〉:
ConsiderF ′ = F 〈l = x〉〈m = y〉 andF ′′ = F 〈m = y〉〈l = x〉. By definition, it
holds thatF ′l = x, F ′′l = x, F ′m = y, andF ′′m = y. Furthermore, for any label
n ∈ L − {l,m} it holds thatF ′n = Fn andF ′′n = Fn, which implies thatF ′ ≡ F ′′

as required.

• F 〈l=x〉〈l=y〉 ≡ F 〈l=y〉:
ConsiderF ′ = F 〈l = x〉〈l = y〉 andF ′′ = F 〈l = y〉. By definition, it holds that
F ′l = y andF ′′l = y. Furthermore, for any labeln ∈ L − {l} it holds thatF ′n = Fn
andF ′′n = Fn, which implies thatF ′ ≡ F ′′ as required. 2

The extension of a formF with an empty binding for a labell (i.e. F ′ = F 〈l= E〉)
deserves special attention. From a different perspective,F ′ can be considered as a form
where all bindings for labell have been removed. Since this behaviour is of fundamental
importance for the FORM calculus (and allows us to interpret polymorphic form restriction
in a more natural way), we definebinding restrictiona special notation for extension with
an empty binding.

Definition 7.5 (Binding restriction) Given a formF , then the application of a binding
restriction with the labell, writtenF\l, is defined as follows:

F\l = F 〈l=E〉

Proposition 7.3 Given a closed formF , it holds that:

〈〉\l ≡ 〈〉
(F 〈l=x〉)\l ≡ F\l

(F 〈m=y〉)\l ≡ (F\l)〈m=y〉 if m 6= l

PROOF: The result immediately follows from Definition7.3and Proposition7.1. 2

The idea behind binding restriction is torecursivelyremove all bindings of a label for
a given form. Proposition7.3 illustrates how a form containing extensions with an empty
binding can be replaced by an equivalent form which does not contain an empty binding.
Furthermore, the definition of binding restriction ensures thatF\l is always well-formed,
even ifF does not define a binding forl. Finally, (F 〈l=x〉)\l is in general not equal to
F (the formF may contain other bindings for the labell).

Proposition 7.4 Given two closed formsF andG, it holds that:

F · 〈〉 ≡ F

〈〉 ·F ≡ F

F ·G〈l=a〉 ≡ (F ·G)〈l=a〉
F ·G〈l=E〉 ≡ (F ·G)〈l=Fl〉
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PROOF: In the following, we assume thatF andG are closed forms anda ∈ N .

• The correctness ofF·〈〉 ≡ F and〈〉·F ≡ F immediately follows from Definition7.3.

• F ·G〈l=a〉 ≡ (F ·G)〈l=a〉:
ConsiderF ′ = F ·G〈l = a〉 andF ′′ = (F ·G)〈l = a〉. By definition, it holds that
F ′l = a andF ′′l = a. Furthermore, for any labeln ∈ L − {l} it holds thatF ′n = Fn
if Gn = E , F ′n = Gn otherwise. Similar forF ′′n . Hence,F ′ ≡ F ′′ as required.

• F ·G〈l=E〉 ≡ (F ·G)〈l=Fl〉:
ConsiderF ′ = F ·G〈l = E〉 andF ′′ = (F ·G)〈l = Fl〉. By definition, it holds
thatF ′l = Fl (since(G〈l = E〉)l = E) andF ′′l = Fl. Furthermore, for any label
n ∈ L − {l} it holds thatF ′n = Fn if Gn = E , F ′n = Gn otherwise. Similar forF ′′n .
Hence,F ′ ≡ F ′′ as required. 2

Proposition7.4 illustrates that name projection is defined in a way that in the context
of polymorphically extending formF with formG, all nonemptylabel bindings ofG are
added to the bindings ofF and that in case of multiple bindings of the same label, the
rightmost binding is extracted in a name projection. Furthermore, it can be easily shown
that for a given formF , F 〈l=E〉 is not equal toF·〈〉〈l=E〉: in the former case, projecting
labell yieldsE whereas in the latter case, the projection results inFl.

Proposition 7.5 Given two closed formsF andG, it holds that:

F \ 〈〉 ≡ F

〈〉 \ F ≡ 〈〉
F \ G〈l=a〉 ≡ F 〈l=E〉 \ G
F \ G〈l=E〉 ≡ (F \ G)〈l=Fl〉

PROOF: The proof is similar to the one for Proposition7.4and immediately follows from
Definition7.3and Proposition7.1. 2

Proposition7.5 illustrates that only those labels bound inG are removed fromF
which bind a (valid) name (and notE). This is also a consequence of how we previously
illustrated label matching (refer also to section7.3.7). Furthermore, the definition of
name projection ensures that ifGl is equal toE , then(F\G)l yieldsFl. On the other
hand, if we changed Definition7.3in a way thatF\G〈l=x〉 yields(F\l)\G for arbitrary
x ∈ N+, then(F\G〈l=x〉)l always yields the empty binding which, however, is rather
contra-intuitive. Note that, similar to binding restriction,(F·G)\G is generally not equal
to F .

Definition 7.6 (Normalized forms) A closed formF is normalized if it is defined as:

F =

{
〈〉〈l1 =b1〉 . . . 〈ln=bn〉, for n ≥ 1, b1, . . . , bn ∈ N
〈〉, for n = 0

with pairwise distinct labelsli.
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Throughout the rest of this work, we use the notatioñ〈l=b〉 to denote a closed and nor-
malized form.

Theorem 7.1 For any closed formF , there exists an equivalent formF ′ (i.e. F ′ ≡ F )
which is normalized.

PROOF: We proceed by induction over the structure of F. SinceF = 〈〉 is already normal-
ized, we will only consider forms which contain at least a binding extension, polymorphic
extension, or polymorphic restriction.

1. Using Propositions7.4and7.5, it is possible to remove any application of polymor-
phic extension or restriction from a formF and find an equivalent formF ′ which
only contains binding extensions.

2. Using Proposition7.3and the fact that≡ is a congruence relation, it is possible to
remove all bindings of the form〈l=E〉 (and the corresponding overridden bindings)
from F ′ and define a formF ′′ ≡ F ′ which only contains “positive” bindings (i.e.
bindings of the form〈li=bi〉).

3. Finally, using Proposition7.2, it is possible to remove all multiple bindings and
make all labels pairwise distinct. 2

Note that steps 1 and 2 may reduce a form to the empty form.

Definition 7.7 (Names of a form) The set of names of a formF , writtenN (F ), is de-
fined as:

N (〈〉) = ∅
N (F 〈l=a〉) = {a} ∪ N (F )

N (F 〈l=Xk〉) = N (F )

N (F·X) = N (F )

N (F\X) = N (F )

The reader should note the set of names of a form includes all bound names, even the
names that cannot be accessed using name projection (i.e. the set of names of the form
F = 〈〉〈l=a〉〈l=b〉〈l=c〉 is equal to{a, b, c}).

Definition 7.8 (Labels of a form) The set of labels of a formF , writtenL(F ), is defined
as:

L(〈〉) = ∅
L(F 〈l=x〉) = {l} ∪ L(F )

L(F 〈l=Xk〉) = {l} ∪ L(F )

L(F·X) = L(F )

L(F\X) = L(F )
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7.3.2 The language

The classA of FORM calculus agents is built using the operators of inaction, parallel
composition, restriction, input prefix, replication, output, and matching.A,B,C to range
over the class of agents. The syntax for agents is defined as follows:

A ::= 0 inactive agent
| A | A parallel composition
| (ν a)A restriction
| V (X).A input (receive form in X )
| !V (X).A replication
| V (F ) output (send form F )
| [F← l] A A matching

0 denotes the inactive agent. Parallel composition runs two agents in parallel. The restric-
tion (ν a)A makes the namea local to the agentA (i.e. it creates afreshnamea with
scopeA).3 An input-prefixed agentV (X).A waits for a formF to be sent along the chan-
nel denoted by valueV and then behaves likeA{F/X}, where{F/X} is the substitution
of all form variablesX with form F . An outputV (F ) emits a formF along the channel
denoted by valueV . A replication !V (X).A stands for a countably infinite number of
copies ofV (X).A in parallel. Like in the miniπ-calculus, replication is only defined for
input-prefixed agents. A matching[F← l] A1 A2 yieldsA1 if the match succeeds (i.e. the
formF defines a nonempty binding for labell),A2 otherwise. The reader should note that
matching is only defined on closed forms. Finally, input prefix, restriction, and replication
have precedence over matching, which in turns has precedence over parallel composition.

Definition 7.9 (Labels of an agent)The set of labels of an agentA, written L(A), is
defined as:

L(0) = ∅
L(A1 | A2) = L(A1) ∪ L(A2)

L((ν a)A) = L(A)

L(a(X).A) = L(A)

L(Yl(X).A) = {l} ∪ L(A)

L(a(F )) = L(F )

L(Yl(F )) = {l} ∪ L(F )

L([F← l] A1 A2) = {l} ∪ L(F ) ∪ L(A1) ∪ L(A2)

7.3.3 Encoding of booleans and choice

The following two examples present the encoding of booleans and input-guarded choice
in the FORM calculus, respectively. The examples show that the FORM calculus is a
compact formalism for encoding these kind of abstractions.

3A local channel name can be communicated to other agents. This mechanism is calledscope extrusion.
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Unlike theπ-calculus and theπL-calculus, where the boolean valuestrue andfalse
have to be encoded asprocesses, the encoding in the FORM calculus allows a different
approach:

True = 〈true= 〉
False = 〈false = 〉

Both boolean valuesTrue and False are encoded as forms defining a binding for the
labelstrue andfalse, respectively. The abbreviations〈true= 〉 and〈false = 〉 are used
to denote a binding to an arbitrary name (not equal toE). Note that the name bound to the
labelstrue andfalse is not of importance (and is not accessed in any boolean operation).

Negation, disjunction, and conjunction of the boolean encoding presented above can
be defined as follows:

def Not(B, r) = r(〈true= 〉〈false = 〉\B)

def And(B1, B2, r) = [B1← false] r(B1) r(B2)

def Or(B1, B2, r) = [B1← true] r(B1) r(B2)

Unlike the miniπ-processNot discussed in section7.1, the corresponding FORM calculus
agent does not have to perform a test on the boolean value; polymorphic form restriction
is used to reverse the binding of the labelstrue and false, respectively. The agents for
And andOr only perform a test on the first argument and return one of the two arguments
as the result.

Using this encoding of booleans, an “if then else” construct can be most naturally
encoded as

[[if b then P else Q]] = [b← true] P Q

The “original” version of theπ-calculus defines the notion ofsummationover pro-
cesses, which is often referred to aschoice(i.e. a processP ≡ P1 + P2 behaves either
asP1 or P2) [MPW92]. In the context of an asynchronous calculus, the special case of
input-guarded choiceis often used to determine the course of computation based on the
value of a preceding input:

A ≡ ∑
j∈J

aj(X).Aj

Nestmann and Pierce have defined an encoding of an asynchronousπ-calculus with input-
guarded choice into an asynchronousπ-calculus without choice [NP96]. Using the en-
codings of booleans defined above, this encoding can be easily adapted to the FORM

calculus:

[[A]] ≡ (ν c)(c(True) | ∏
j∈J

Branch(aj(x).Aj))

with
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Branch(aj(x).Aj) = aj(X).c(B).[B← true] [[Aj]] (aj(X) | c(False))

For each choice in the agentA given above, the translation runs a mutual exclusion pro-
tocol, by installing a local channelc (acting as a lock) in the scope of the parallel com-
position of its branches. The branches concurrently try to acquire the lock after reading
messages from the environment. Only the first branch managing to interrogate the lock
will proceed with its continuation (i.e. it will be the only branch reading the valueTrue
from the lock) and, therefore, commit the choice. Every other branch will then be forced
to resend its message to the environment and abort its continuation. The resending of
messages by non-chosen branches essentially reflects the asynchronous character of the
encoding.

7.3.4 Name binding

Both the input prefix and the restriction operator are binders for names in theπ-calculus.
In the FORM calculus, however, only the operator(ν a)A acts as a binder for names
occurring free in an agent whereas the input prefixV (X) is the binding operator for form
variables.fn(A) andbn(A) denote the set offreeandbound namesof an agent andfv(A)
andbv(A) to denote the set offreeandbound form variablesof an agent, respectively.

Definition 7.10

a) The set of free names of an agentA, written fn(A), is inductively given by:

fn(0) = ∅,
fn(A1 | A2) = fn(A1) ∪ fn(A2),

fn((ν a)A) = fn(A)− {a},
fn(a(X).A) = fn(!a(X).A) = {a} ∪ fn(A),

fn(Yl(X).A) = fn(!Yl(X).A) = fn(A)

fn(a(F )) = {a} ∪ N (F ),

fn(Yl(F )) = N (F ),

fn([F← l] A1 A2) = N (F ) ∪ fn(A1) ∪ fn(A2).

b) The set of bound names of an agentA, writtenbn(A), is inductively given by:

bn(0) = ∅,
bn(A1 | A2) = bn(A1) ∪ bn(A2),

bn((ν a)A) = {a} ∪ bn(A),

bn(V (X).A) = bn(!V (X).A) = bn(A),

bn(V (F )) = ∅,
bn([F← l] A1 A2) = bn(A1) ∪ bn(A2).

c) The set of names of an agentA, writtenn(A), is given byn(A) = fn(A) ∪ bn(A).
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d) The set of free variables of an agentA, written fv(A), is inductively given by:

fv(0) = ∅,
fv(A1 | A2) = fv(A1) ∪ fv(A2),

fv((ν a)A) = fv(A),

fv(!a(X).A) = fv(a(X).A) = fv(A)− {X},
fv(!Yl(X).A) = fv(Yl(X).A) = ({Y } ∪ fv(A))− {X},

fv(a(F )) = V(F ),

fv(Yl(F )) = {Y } ∪ V(F ),

fv([F← l] A1 A2) = V(F ) ∪ fv(A1) ∪ fv(A2).

e) The set of bound variables of an agentA, writtenbv(A), is inductively given by:

bv(A1 | A2) = bv(A1) ∪ bv(A2),

bv((ν a)A) = bv(A),

bv(V (X).A) = bv(!V (X).A) = {X} ∪ bv(A),

bv(0) = bv(V (F )) = ∅,
bv([F← l] A1 A2) = bv(A1) ∪ bv(A2).

f) The set of variables of an agentA, writtenv(A), is given byv(A) = fv(A)∪bv(A).

Definition 7.11 (Closed agents)An agentA is closed if it does not contain any free form
variables (i.e.fv(A) = ∅).

7.3.5 Form substitution

Like in theπL-calculus,A{F/X} denotes the substitution of all free occurrences of form
variableX with form F in agentA. In the following,σ ranges over form substitutions,
and substitutions have precedence over the operators of the language.

Definition 7.12 (Form substitution) Let σ = {F/X} andF be closed. Then the effect
of the substitutionσ on the agentA, writtenAσ, is defined inductively below. In order to
avoid that free names ofF become accidentally bound inAσ (underneath a restriction
operator), we assume that the conflicting names inA have been previouslyα-converted
to fresh names (i.e.bn(A) ∩N (F ) = ∅).

0σ = 0

(A1 | A2)σ = (A1σ) | (A2σ)

((ν a)A)σ = (ν a)(Aσ)

(V (X).A)σ = (V σ)(X).A

(V (Y ).A)σ = (V σ)(Y ).(Aσ), if Y 6= X
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(!V (X).A)σ = !(V (X).A)σ

(V (G))σ = (V σ)(Gσ)

([G← l] A1 A2)σ = ([(Gσ)← l]) (A1σ) (A2σ)

with

V σ =

{
Fl, if V = Xl

V, otherwise

Gσ =



〈〉, if G = 〈〉
(Hσ)〈l=V σ〉, if G = H〈l=V 〉
F, if G = X
(Hσ)·(Iσ), if G = H·I
(Hσ)\(Iσ), if G = H\I

By definition,F must be closed inA{F/X}. Therefore, each time the substitution
yields a projectionFl, the projection is immediately replaced by the result ofFl (i.e. a
simple name orE). A form substitutionAσ simultaneously substitutes all free occurrences
of form variableX by form valueF in A, and all projectionsXl in A by x if Xl maps
x. Using this approach, it is possible to avoid a “trigger” operation that instantiates, when
needed, eachXl in A to its corresponding name (for example, ifXl occurs as the subject
of an outermost input prefix or output particle). The same applies for substituting all free
occurrences of a form variableX in a matching agent.

7.3.6 α-substitution

Unlike in theπ-calculus, there is no generalname substitutionin the FORM calculus.
Therefore, it is necessary to define explicitlyalpha-conversionof bound names and bound
variables, respectively. The alpha-substitution of bound names in agentA is written as
A{c̃/ã}Nα whereasA{Y/X}Vα denotes the alpha-substitution of bound variables inA.4 In
the following,αN or αV range over alpha-substitutions. Like form substitution, alpha-
substitutions have precedence over the operators of the language. IfαN = {c̃/ã}Nα (ã=
a1, ..., an; c̃= c1, ..., cn) andαV ={Y/X}Vα, thenAαN/V is the agent obtained fromA by
replacing theai’s with theci’s and all occurrences ofX with Y , respectively.

Definition 7.13 (α-substitution) LetαN ={c̃/ã}Nα andαV=!{Y/X}Vα. The effect of the
substitutionαN/V on the agentA, writtenAαN/V , is defined inductively as follows:

(A1 | A2)αN/V = (A1α
N/V) | (A2α

N/V)

((ν b)A)αN = (ν b′)(AαN ), b′ =

{
b, if b /∈ ã
ci, if b = ai and aiα

N = ci

((ν b)A)αV = (ν b)(AαV)

(V (X).A)αN = (V αN )(X).AαN

4Like in theπ-calculus,̃c is equal toc1, . . . , cn for a givenn.
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(V (Z).A)αV = (V αV)(Z ′).AαV , Z ′ =

{
Z, if Z 6= X
Y, if Z = X, and XαV = Y

(!V (X).A)αN/V = !(V (X).A)αN/V

(V (F ))αN/V = (V αN/V)(FαN/V)

([F← l] A1 A2)αN/V = ([FαN/V← l]) (A1α
N/V) (A2α

N/V)

with

V αN =

{
ci, if V = ai and aiα

N = ci
V, otherwise

V αV =

{
Yl, if V = Xl and Xα

V = Y
V, otherwise

FαN =


(GαN )〈l=V αN 〉, if F = G〈l=V 〉
(GαN )·(HαN ), if F = G·H
(GαN )\(HαN ), if F = G\H
F, otherwise

FαV =



Y, if XαV = Y
(GαV)〈l=V αV〉, if F = G〈l=V 〉
(GαV)·(HαV), if F = G·H
(GαV)\(HαV) if F = G\H
F, otherwise

For the rest of this work, the usual convention of writinga(X) is adopted whena(X).0
is meant. An agenta(〈〉) sending an empty form can be written asa, a form 〈〉〈l = x〉
is written as〈l = x〉, (ν a, b)A is an abbreviation for(ν a)(ν b)A, and(ν a1)...(ν an)A
denotes(ν ã)A. Finally, we will use an underscore ’’ as the argument of an input prefix
if the argument is not used in the following agent.

7.3.7 Operational semantics

The operational semantics of a process algebra like the FORM calculus is traditionally
given in terms of alabelled transition systemdescribing the possible evolution of a pro-
cess. This contrasts with the semantic definition interm rewriting systemswhere anun-
labelled reduction systemis used. The best known term rewriting system is probably the
λ-calculus. In theλ-calculus, the reduction of two interacting subterms is only possible if
they are in a contiguous position. In process calculi, however, interaction does not depend
on a physical contiguity. In other words, in theλ-calculus aredexdenotes a subterm of a
λ-term while a “redex” in a process calculus is usually distributed over the term.

Milner has proposed a guideline for the definition of areduction systemfor process
algebras [Mil90, Mil91]. Using the reduction system technique, axioms for a structural
congruence relation are introduced prior the definition of the reduction relation. Basi-
cally, this allows us to separate the laws which govern the neighbourhood relation among
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1) A | B ≡ B | A, (A | B) | C ≡ A | (B | C), A | 0 ≡ A;

2) (ν a)0 ≡ 0, (ν a)(ν b)A ≡ (ν b)(ν a)A;

3) (ν a)A | B ≡ (ν a)(A | B), if a not free inB;

4) !V (X).A ≡ V (X).A | !V (X).A;

5) E(X).A ≡ 0, E(F ) ≡ 0;

Table 7.2: Structural congruence rules for the FORM calculus.

processes for the rules that specify their interaction. Furthermore, this simplifies the pre-
sentation of the reduction relation by reducing the number of cases that have to be con-
sidered.

The reduction semantics defines the basic mechanisms of computation in a process
calculus. The interpretation of the operators is precisely described using the reduction
semantics. The reduction relation, however, covers only a part of the behaviour of pro-
cesses; it describes the behaviour of processes relative to a context in which they are
contained. In other words, the reduction semantics describes how two process may inter-
act with each other, but not how these processes (or parts of them) may interact with the
environment. Therefore, the reduction relation defines theinteractionof processes (i.e.
their local evolution).

A labelled transition system, on the other hand, describes the possibleintraactions
of processes with the environment. With labelled transition semantics, every possible
communication of a process can be determined in a direct way. This allows us to get a
simple characterizations of behavioural equivalences. Moreover, with labelled transition
semantics, proofs benefit from reasoning in a purely structural way.

Due to the fact that the FORM calculus is based in theπL-calculus, the operational
semantics and the corresponding rules are very similar. In the following, we will therefore
only discuss the aspects which either differ in contrast to theπL-calculus or have to be
extented in order to cover the extensions made by the FORM calculus. For a detailed
discussion of the missing aspects, refer to [Lum99].

Structural congruence. The structural congruence relation ’≡’ is the smallest congru-
ence relation over agents that satisfies the axioms given in Table7.2and is very similar to
the structural congruence rules for theπL-calculus.

The axioms 1) to 4) are standard and are the same as for theπ-calculus. The axiom 5)
defines the behaviour if an empty binding appears in subject position of the leftmost prefix
of an agent, implying that such an agent is identical with the inactive agent. This means
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that a system containing such an agent may reach a deadlock. In general, if the nameE
occurs as a subject in the leftmost prefix of an agent, this may be interpreted as a run-time
error. However, this is too restrictive in the sense that this view excludes programs which
may be useful in some particular contexts.

In order to define a reduction system for the FORM calculus, we have to formally
define an evaluation of label matching into a boolean domain. In the following, assume
that the formF is normalized. We use[[[F← l]]] to denote the evaluation of[F← l] into
the ordinary two-valued boolean domain{True, False}, inductively defined as follows:

[[[〈〉← l]]] = False

[[[F 〈l=a〉← l]]] = True

[[[F 〈m=b〉← l]]] = [[[F← l]]] if m 6= l

The reader should note that due to the fact that the formF is normalized, it does not
contain any extensions with an empty binding.

The reduction rules for the FORM calculus, which define the interaction of FORM cal-
culus terms, are presented in Table7.3. The first two rules state that we can reduce under
both parallel composition and restriction. The symmetric rule for parallel composition is
redundant, because of the use of structural congruence. The communication ruleCOM
takes two agents which are willing to communicate on the channela and substitutes all
form variablesX with form F in A. Communication is only allowed forclosedforms
(see the side conditionV(F )=∅). The communication rule is the only rule which directly
reduces a FORM calculus term. Furthermore, a reduction is not allowed underneath an
input prefix since this is the construct that allows sequentialization. The last two rules
indicate how to reduce terms in the presence of label matching.

Any communication assumes that all agents involved are in a particular format. The
structural congruence rules given in Table7.2allow us to rewrite agents so that they have
the correct format for applying the corresponding communication rules.

Transition semantics: In the previous paragraph, the semantics of the FORM calculus
has been defined using a reduction relation, specifying the actual communication be-
haviour of agents, and a structural congruence relation. A reduction relation defines how
agents my interact with each other; it defines the interaction. Theintraaction, however, is
not covered by the reduction relation. In order to define how agents may interact with the
environment, alabelled transition systemis used that describes the possible interactions
with other systems.

As in CCS [Mil89] and theπ-calculus [MPW92], a transition in the FORM calculus is
of the form

A
µ−→ A′

Intuitively, this transition means thatA can evolve intoA′ by performing theactionµ. In
the following,µ range over actions that have the following structure:
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PAR :
A −→ A′

A | B −→ A′ | B
RES :

A −→ A′

(ν a)A −→ (ν a)A′

STRUCT :
A ≡ A′ A′ −→ B′ B′ ≡ B

A −→ B

COM : a(X).A | a.(F ) −→ A{F/X}, if V(F ) = ∅

TRUE :
[[[F← l]]] = True [F← l] A B

A
FALSE :

[[[F← l]]] = False [F← l] A B

B

Table 7.3: Reduction system for the FORM calculus.

µ = τ silent action
| a( ˜〈l=b〉) input action
| a( ˜〈l=b〉) output action
| (ν c̃)a( ˜〈l=b〉) restricted output action

In the case of input and output,a is thesubjectpart, whereas˜〈l=b〉 is theobjectpart of
the action. Input and output describe interactions between an agentA and its environ-
ment, while the silent actionτ is used as placeholder for an internal action in which one
subagent ofA communicates with another; an external observer can see that something is
happening (time is passing), but nothing more.

As mentioned before, onlyclosedforms are allowed to be the object of an output
action. Furthermore, we only considernormalized formsbecause an external observer
can always replace a form with an equivalent, normalized form without changing the
behaviour of an agent (refer to Definition7.4).

The prefix(ν c̃) in a restricted output action is used to record those names iñ〈l=b〉
that have been created fresh inA (i.e. c̃ ∩ n(A) = ∅) and are not yet known to the

environment. We always assume thatc̃ ⊆ N ( ˜〈l=b〉) andA
(ν c̃)a(〈̃l=b〉)
−−−−−−→ A′ means thatA

emits private names (i.e. names bound inA) along channela. If some of the names iñc
are communicated outside of the scope of theν that binds them, the correspondingν must
be moved outwards in order to include both the sender and the receiver (this is also known
as scope extrusion). In order to avoid that bound names are captured in the receiver, this
operation may require anα-conversion of bound names in the receiver.

In the following, the silent action, the input action, and the output action will be called
free actions, while the restricted output actions will be calledboundactions (or simply
bounded output). Given an actionµ, the bound and free names ofµ, written bn(µ) and
fn(µ) are defined below. The names ofµ, writtenn(µ), arebn(µ) ∪ fn(µ).
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IN : a(X).A
a(〈̃l=b〉)
−−−→ A{ ˜〈l=b〉/X} OUT : a( ˜〈l=b〉)

a(〈̃l=b〉)
−−−→ 0

OPEN :
A

(ν c̃)a(〈̃l=b〉)
−−−−−−→ A′ d 6= a d ∈ N ( ˜〈l=b〉)− c̃

(ν d)A
(ν d,c̃)a(〈̃l=b〉)
−−−−−−−→ A′

CLOSE :
A

(ν c̃)a(〈̃l=b〉)
−−−−−−→ A′ B

a(〈̃l=b〉)
−−−→ B′ c̃ /∈ fn(B)

A | B τ−→ (ν c̃)(A′ | B′)

COM : A
a(〈̃l=b〉)
−−−→ A′ B

a(〈̃l=b〉)
−−−→ B′

A | B τ−→ A′ | B′

REPL :
a(X).A

a(〈̃l=b〉)
−−−→ A{ ˜〈l=b〉/X}

!a(X).A
a(〈̃l=b〉)
−−−→ A{ ˜〈l=b〉/X} | !a(X).A

PAR :
A

µ−→ A′ bn(µ) ∩ fn(B) = ∅
A | B µ−→ A′ | B

RES :
A

µ−→ A′ a /∈ n(µ)

(ν a)A
µ−→ (ν a)A′

TRUE :
[[[F← l]]] = True A

µ−→ A′

[F← l] A B
µ−→ A′

FALSE :
[[[F← l]]] = False B

µ−→ B′

[F← l] A B
µ−→ B′

Table 7.4: Labelled transition system for the FORM calculus.

bn(a( ˜〈l=b〉)) = ∅ fn(a( ˜〈l=b〉)) = {a} ∪ N ( ˜〈l=b〉)
bn(a( ˜〈l=b〉)) = ∅ fn(a( ˜〈l=b〉)) = {a} ∪ N ( ˜〈l=b〉)
bn((ν c̃)a( ˜〈l=b〉)) = {c̃} fn((ν c̃)a( ˜〈l=b〉)) = ({a} ∪ N ( ˜〈l=b〉))− {c̃}
bn(τ) = ∅ fn(τ) = ∅

The FORM calculus early transition system is presented in Table7.4. When an action
from agenta(X).A is inferred, the variableX is instantiated at the time of inferring the
input transition (ruleIN). This allows us to define a bisimulation for the FORM calculus
without clauses for name-instantiation (similar to the bisimulation for theπL-calculus
[Lum99]). Instantiation should be considered as the mechanism that first substitutesX
and then applies all projectionsXl for some labell. The symmetric versions of rules
PAR andCOM have been omitted. In fact, parallel composition should be understood as
a commutative operator.
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7.3.8 Observable equivalence

An important question in the theory of process calculi is when two processes can be said
to exhibit the same behaviour. As in theλ-calculus, the most intuitive way of defining an
equivalence of processes is via some notion ofcontextual equivalence. A process context
C[·] is a process expression with a hole into which one can place another process. We say
that the processesA andB are equivalent whenC[A] andC[B] have the sameobservable
behaviourfor each process contextC[·].

However, the definition of a contextual equivalence between two processes can be
difficult to establish, but there is an alternative to contextual equivalence which is based
on direct conditions on the processes themselves. Given alabelled transition semantics,
there is a standard definition of bisimulation equivalence which can be applied to such a
transition system [Mil89]. Moreover, bisimulation equivalence is widely considered to be
the finest equivalence needed to study transition systems.

Basically, bisimulation defines equivalence as mutual simulation of transitions of pro-
cesses resulting in equivalent states. Formally, a binary relationR is a (ground) bisimu-
lation on processes such that for arbitrary actionµ, AR B implies

• wheneverA
µ−→ A′, thenB′ exists such thatB

µ−→ B′ andA′ R B′,

• wheneverB
µ−→ B′, thenA′ exists such thatA

µ−→ A′ andA′ R B′.

The main idea of a bisimulation is that an external observer performs experiments with
two processesA andB, observing the results in turn in order to match the two processes’
behaviours step-by-step. Furthermore, the definition of bisimulation is given in a coin-
ductive style (i.e. two processes are considered to be bisimular if it is not possible to show
that they are not).

Many variants of bisimulation have been proposed (e.g. early, late, open, and barbed
bisimulation [MPW92, MS92, San93, San96a]). All variants, however, distinguish be-
tween astrongand aweakdefinition of bisimulation. The difference is that in the weak
case, an arbitrary number of silent transitions are regarded as equivalent to a single tran-
sition. Therefore, the weak bisimulation is strictly coarser than the strong bisimulation
in the sense that whenever two processesA andB are strongly bisimular, they are also
weakly bisimular. In practice, weak bisimulation is often more useful, since we typically
want to regard two processes to be equivalent if they have the sameobservablebehaviour
even if one performs more silent transitions than the other.

In a calculus with synchronous output, the existence of an input transition precisely
models the success of an observer’s input-experiment. In the synchronous case, input ac-
tions for a processA are only generated if there exists a matching receiver that is enabled
insideA. The existence of an input transition such thatA evolves toA′ reflects precisely
the fact that a message offered by the observer has actually been consumed.

In a calculus with asynchronous output, however, the situation is slightly different.
The sender of an output message does not know when the message is actually consumed
due to the fact that at the time of the consumption of the message, its sender is not par-
ticipating in the event anymore. Therefore, an asynchronous observer, in contrast to a
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synchronous one, cannot directly detect the input actions of the observed process. Con-
sequently, a calculus with asynchronous output requires an appropriate semantic frame-
work based on an asynchronous experimenter and, therefore, a different notion of input-
experiment is needed.

Amadio et al. [ACS96] proposed a solution for asynchronous observation based on
the standard labelled transition system. In their approach, the asynchronous style of input-
experiments is directly incorporated into the definition of bisimulation, and inputs of pro-
cesses have to be simulated indirectly by observing the output behaviour of a process in
the context of arbitrary messages. This is the approach we follow for the FORM calculus.

In order to define bisimulation on the approach discussed above, it is necessary to
precisely define the notions of strong and week transitions, respectively. For the rest of
this work, weak arrows=⇒ denote the reflexive and transitive closure of transitions:

A
τ

=⇒ A′ iff A(
τ−→) ∗ A′

A
µ

=⇒ A′ iff A
τ

=⇒ · µ−→ · τ
=⇒ A′, µ 6= τ

Definition 7.14 (F-bisimulation) A binary relationR over closed agentsA andB is a
strongF-bisimulation if it is symmetric andAR B implies:

• wheneverA
µ−→ A′, whereµ is eitherτ or output withbn(µ) ∩ fn(A|B) = ∅, then

B′ exists such thatB
µ−→ B′ andA′ R B′,

• (A | a( ˜〈l=b〉))R (B | a( ˜〈l=b〉)) for all messagesa( ˜〈l=b〉).

Two agentsA andB are strongly bisimular, writtenA F∼ B, if they are related by a strong

bisimulation. The notion of weakF-bisimulation, written
F≈, is obtained by replacing

strong transitions with weak transitions. Two agentsA andB are weakly bisimular, writ-

tenA
F≈ B, if there exists a weakF-bisimulationR withAR B.

We callR as above aF-bisimulation. Then bothF∼ and
F≈ are the union of all strong

and weakF-bisimulations, respectively. Furthermore, bothF∼ and
F≈ require preserva-

tion under parallel composition with an output. For the rest of this work, we are mainly
interested in comparing systems by considering only theirobservablebehaviour. There-

fore, we abstract from silent actions and use the observation equivalence
F≈ as the main

equivalence for the FORM calculus.

As in theπL-calculus, the lack of summation allows us to establish congruence for
F≈. Furthermore, unlike in theπ-calculus, names are are always constant (i.e. we do not
have name substitution). Therefore, in an input-prefixed agenta(X).A, only the form
variableX is substituted by a received form̃〈l=b〉, and this substitution does not change
any name inA. As a consequence, ifA is a closed agent (i.e.fv(A) = ∅), it is possible to
add an arbitrary number of input prefixes without changing the behaviour ofA.

In order to show that
F≈ is a congruence relation, we have to show that it is an equiv-

alence relation and that bisimulation is preserved under all the operators of the calculus.
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Due to the similarity of the FORM calculus and theπL-calculus, most of the necessary
proofs are similar and have been omitted here (they are included in appendixB). The only
new proof which needs to be added is the preservation of bisimulation under matching,
which is the topic of the following proposition.

Proposition 7.6 For any closed agentsA,B, andC:

A
F≈ C ∧ [[[F← l]]] = True ⇒ [F← l] A B

F≈ [F← l] C B, and

B
F≈ C ∧ [[[F← l]]] = False ⇒ [F← l] A B

F≈ [F← l] A C.

PROOF: We show that the two relations

R1 = { ([F← l] A B , [F← l] A C) | [[[F← l]]] = True ∧ A
F≈ C } ∪ F≈

R2 = { ([F← l] A B , [F← l] A C) | [[[F← l]]] = False ∧ B
F≈ C } ∪ F≈

are both weakF-bisimulations.

ForR1, considerτ or output actions withbn(µ) ∩ fn(A|B) = ∅:

[F← l] A B
µ

=⇒ A′ is inferred fromA
µ

=⇒ A′ and [[[F← l]]] = True. Since

A
F≈ C, this impliesC

µ
=⇒ C ′ with A′

F≈ C ′. Then[F← l] C B
µ

=⇒ C ′ is the
required move, since(A′ , C ′) ∈ R1.

ForR1, consider input actions:

[F ← l] A B
a(〈̃l=b〉)
===⇒ A′ is inferred fromA

a(〈̃l=b〉)
===⇒ A′ and [[[F ← l]]] = True.

SinceA
F≈ C and by definition(A|a( ˜〈l=b〉), B|a( ˜〈l=b〉)) ∈ R1 for all messages

a( ˜〈l=b〉), this impliesC
a(〈̃l=b〉)
===⇒ C ′ with A′

F≈ C ′. Then[F← l] C B
a(〈̃l=b〉)
===⇒ C ′ is

the required move, since(A′ , C ′) ∈ R1.

The proof forR2 is similar. 2

7.3.9 α-conversion

In this section we show that alpha-convertible agents are weaklyF-bisimular. In order to
prove that≡α is a weakF-bisimulation, we use the Lemma given below.

Lemma 7.1 Suppose thatA ≡α B.

• If µ is not a restricted output action andA
µ

=⇒ A′, then there exists aB′ with
A′ ≡α B′ andB

µ
=⇒ B′.

• If A
(ν c̃)a(〈̃l=b〉)
======⇒ A′ and d̃ ∩ n(B) = ∅, then there exists aB′ withA′{d̃/c̃}Nα ≡α B′

andB
(ν d̃)a(〈̃l=b〉)
======⇒ B′.
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PROOF: The proof is by induction on the depth of inference. We consider each transition
rule as the last rule applied in the inference ofA

µ
=⇒ A′.

• IN: We haveµ = a( ˜〈l=b〉), bn(µ) = ∅, A ≡ a(X).A1, andA′ ≡ A1{ ˜〈l=b〉/X}.
SinceA ≡α B, B must also be an input-prefixed agent, differing at most in the
bound variable of the input prefix. By applying alpha-conversion, it is possible to
make the prefixes identical (i.e.B ≡ a(X).B1). It immediately follows thatB has

a transitiona( ˜〈l=b〉) with B
a(〈̃l=b〉)
===⇒ B′,B′ ≡ B1{ ˜〈l=b〉/X} andA′ ≡α B′.

• OUT: We haveµ = a( ˜〈l=b〉), bn(µ) = ∅, A ≡ a( ˜〈l=b〉), andA′ ≡ 0. Since
bn(A) = ∅ andbv(A) = ∅, it is possible to replaceA ≡α B with A ≡ B. It also

holds thatB
a(〈̃l=b〉)
===⇒ B′ with A′ ≡α B′.

• OPEN: We haveµ = (ν b, c̃)a( ˜〈l=b〉), bn(µ) = {b}∪c̃,A ≡ (ν b)A1, andA′ ≡ A′1.

By assumption we can prove thatA1
(ν c̃)a(〈̃l=b〉)
======⇒ A′, and for some fresh nameb we

haveb 6= a andb ∈ N ( ˜〈l=b〉) − c̃. Furthermore, it holds thatfn(A) = fn(A1)
and sinceA ≡α B, it also holdsfn(A) = fn(B) = fn(B1) with B1 ≡α A1{d/b}Nα .

SinceA1
(ν c̃)a(〈̃l=b〉)
======⇒ A′, we can prove for some new named with d 6= a andd ∈

N ( ˜〈l=b〉{d/b}Nα ) − c̃ thatB1
(ν c̃)a(〈̃l=b〉)
======⇒ B′ with B′ ≡ (ν d)B1 ≡α A′{d/b}Nα .

Therefore, it also holds that(ν d)B1
(ν d,c̃)a(〈̃l=b〉)
=======⇒ B′.

• COM: We haveµ = τ , A ≡ A1|A2 with A1
a(〈̃l=b〉)
===⇒ A′1, A2

a(〈̃l=b〉)
===⇒ A′2, andA′ ≡

A′1|A′2. By assumption we can prove thatA1
a(〈̃l=b〉)
===⇒ A′1 andA2

a(〈̃l=b〉)
===⇒ A′2. Since

A ≡α B, it holds thatfn(A) = fn(B). With B1 ≡α A1, B2 ≡α A2, B′1 ≡α A′1, and

B′2 ≡α A′2, it is possible to prove thatB1
a(〈̃l=b〉)
===⇒ B′1 andB2

a(〈̃l=b〉)
===⇒ B′2. Therefore, it

also holds thatB τ
=⇒ B′ with B ≡ B1|B2 andB′ ≡ B′1|B′2.

• TRUE: We haveA ≡ [F← l] A1 A2 and[[[F← l]]] = True. By assumption we can
prove thatA1

µ
=⇒ A′1. SinceA ≡α B, we haveB ≡ [F← l] B1 B2 with A1 ≡α B1.

Now we can prove thatB1
µ

=⇒ B′2, implying thatB ≡ [F← l] B1 B2
µ

=⇒ B′1 also
holds. Note thatA2 ≡α B2 is not needed.

The remaining proofs for FALSE, CLOSE, PAR, RES, and REPL are similar (refer to
[MPW92] for proof sketchs). 2

If A is a closed agent andB ≡α A, thenB is also closed. Therefore,A andB differ
at most in the choice of bound names and variables, respectively. By applying alpha-
conversion, it is possible to make them identical. Using Lemma7.1, every move ofA can
be matched up byB ≡α AαN/V for some alpha-substitutionαN/V . Therefore, we have
shown that≡α is a weakF-bisimulation.

The reader should note that from the fact that≡α is a weakF-bisimulation, it imme-
diately follows that alpha-conversion is only defined on closed agents.
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7.3.10 Encoding the miniπ-calculus in theFORM calculus

In the following two sections, we present an encoding of the miniπ-calculus introduced
in section7.1 in the FORM calculus and vice versa. The encodings illustrate that both
calculi can faithfully encode each other. Moreover, we show that both encodings preserve
the weak asynchronous bisimulation relation (i.e. if two asynchronousπ-processes are
weakly bisimular, then their encodings are also weakly bisimular in the FORM calculus
and vice versa).

The encoding of the miniπ-calculus in the FORM calculus follows a similar scheme
than the corresponding translation into theπL-calculus [Lum99]. The basic idea of our
encoding is to use de Bruijn indices [dB72]. More precisely, in an input-prefixed process
a(x̃).P , we assign every parameter namexi a unique non-negative integeri with respect
to a fresh form variableX (in fact, the parameter’s position index is used) and replace
every application ofxi in P by a projectionXli whereli maps toxi.

Similarly, in an output-particlea〈b̃〉, we replace everybi with a binding〈li=bi〉 where
i is a unique non-negative integer (i denotes the actual output parameter position). The
reader should note that ifbi is bound by an input prefixa(x̃), then the encoding replacesbi
byXlj . InXlj , j is the position index ofbi in the input prefix (i.e.bi = xj) andlj denotes
bi with respect to the fresh form variableX. For example, the process

a(x1, x2, x3).(b〈x1, x2〉 | c〈x1, x3〉)

is encoded as the agent

a(X).(b(〈l1 =Xl1〉〈l2 =Xl2〉) | c(〈l1 =Xl1〉〈l2 =Xl3〉))

The encoding uses the functionC[[ ]]πFΛ,Γ which maps a miniπ-processP to a corre-
sponding agent in the FORM calculus. Within the encoding,Γ is used to record all names
used in miniπ-processes.Γ can be considered as a symbol table that maps restricted
names to themselves and names that are bound by an input prefix to a corresponding
projection. In the functionC[[ ]]πFΛ,Γ, Λ is an input counter (i.e.Λ keeps track of all input-
prefixes) and denotes the actual fresh form variable that replaces the input parametersx̃
of an input-prefixed processa(x̃).P . As an example, consider the encoding of the process

a(x1).b(y1).c〈x1, y1〉.

As a starting point,Λ = 0 is used such that first the input prefix becomesa(X0). Since
Λ is equal to1 for the second input prefix, the encoding yieldsb(X1). Therefore, the
encoded agent becomes

a(X0).b(X1).c(〈l1 =X0
l1
〉〈l1 =X1

l1
〉)

The encoding functionC[[ ]]πFΛ,Γ is presented in Table7.5. It starts starts withΛ = 0

andΓ = ∅. The encoding function for miniπ-calculus actions is denoted withC[[α]]πF .
Furthermore,C[[ ]]πFΛ,Γ uses a functionmap that maps names to names and projections,
respectively.
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C[[0]]πFΛ,Γ = 0

C[[P1 | P1]]πFΛ,Γ = C[[P1]]πFΛ,Γ | C[[P2]]πFΛ,Γ

C[[(ν x)P ]]πFΛ,Γ = (ν x)C[[P ]]πFΛ,Γ:(x 7→n(x))

C[[!a(x1, . . . , xn).P ]]πFΛ,Γ = !C[[a(x1, . . . , xn).P ]]πFΛ,Γ

C[[a(x1, . . . , xn).P ]]πFΛ,Γ = map(Γ, a)(XΛ+1).C[[P ]]πFΛ+1,Γ:(x1 7→v(Λ+1,1)):...:(xn 7→v(Λ+1,n))

C[[a〈x1, . . . , xn〉]]πFΛ,Γ = map(Γ, a)(〈l1 =map(Γ, x1)〉 . . . 〈ln=map(Γ, xn)〉)

map(Γ, x) =

{
XΛ
ln , if Γ = Γ1 : (x 7→ v(Λ, n)) : Γ2

x, otherwise

C[[τ ]]πF = τ

C[[a(x̃)]]πF = a( ˜〈l=b〉)
C[[a〈x̃〉]]πF = a( ˜〈l=b〉)

C[[(ν c̃)a〈b̃〉]]πF = (ν c̃)a( ˜〈l=b〉)

Table 7.5: Encoding of the miniπ-calculus in the FORM calculus.

Note that the extension ofΓ may hide existing mappings. As an example, consider
the situation whereΓ is extended by(x 7→ v(Λ, n)) andΓ already contains a mapping
for x ((x 7→ n(x)) such thatΓ = Γ1 : (x 7→ n(x)) : Γ2). In such a situation, the function
map(Γ : (x 7→ v(Λ, n)), x) yieldsXΛ

ln, which corresponds to the latest mapping(x 7→
v(Λ, n)). Furthermore, ifΓ defines no mapping for a namex, thenmap(Γ, x) = x.
The collection of namesx1, . . . , xn for which a mapping is declared inΓ is indicated by
dom(Γ).

All properties which hold for the translation of theπL-calculus into theπ-calculus
also hold for the encoding defined in this section. In particular, if twoπ-processesP1 and
P2 are weakly 1-bisimular (writtenP1 ≈ P2) [ACS96], then the encodingsC[[P1]]πFΛ,Γ and

C[[P2]]πFΛ,Γ are weaklyF-bisimular (i.e.C[[P1]]πFΛ,Γ

F≈ C[[P2]]πFΛ,Γ). The corresponding proofs
are very similar to the ones presented in [Lum99] and have therefore been omitted here.

7.3.11 Encoding theFORM calculus in the mini π-calculus

In this section, we present an encoding of the FORM calculus in the miniπ-calculus. We
use the approach to adapt the translation of theπL-calculus into the miniπ-calculus and
extend this translation with encodings for polymorphic restriction as well as matching.
We also show that the resulting encoding is faithful.
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The basic idea of our encoding is to represent forms and agents of the FORM calculus
as processes in the miniπ-calculus, similar to the translation of theπL-calculus into
the mini π-calculus [Lum99]. More precisely, a form is encoded as a miniπ-process
listening at a channelf (thelocationof the form) for a channelL that represents the actual
projection label, a result channelR along which the result of the projection is returned,
and anerror-continuationchannelE being the location of the continuation if the actual
label is not defined for the form located atf . As an example, the form

〈l=a〉〈m=b〉

is encoded as the following replicated process:

P ≡ !f(L,R,E).(ν m, c)( L〈c,m〉
|m( ).R〈b〉
| c( ).(ν f ′)( f ′〈L,R,E〉

| f ′(L,R,E).
(ν l, c′)( L〈l, c′〉

| l( ).R〈a〉
| c′( ).(ν f ′′)( f ′′〈L,R,E〉 | f ′′(L,R,E).E〈〉)))).

f denotes the location of the form〈l = a〉〈m = b〉. The output-particlesL〈c,m〉 and
L〈l, c′〉 initiate the test for a label: ifL denotes labell, then l( ).R〈a〉 is triggered as
continuation. Similarly, ifL denotes labelm, thenm( ).R〈b〉 is triggered as continuation.
This scheme roughly corresponds to Milner’s encoding of boolean values [Mil91]. If L
denotes neitherl norm, thenE〈〉 is triggered in order to indicate that a run-time error has
occurred (i.e. anundefined labelhas been accessed).

The encoding of an extension with an empty binding is similar to the encoding of the
form described above. As an example, consider the encoding of the form〈l=a〉〈m=E〉
given below:

P ≡ !f(L,R,E).(ν m, c)( L〈c,m〉
|m( ).E〈〉
| c( ).(ν f ′)( f ′〈L,R,E〉

| f ′(L,R,E).
(ν l, c′)( L〈l, c′〉

| l( ).R〈a〉
| c′( ).(ν f ′′)( f ′′〈L,R,E〉 | f ′′(L,R,E).E〈〉)))).

f denotes the location of the form〈l=a〉〈m=E〉, where the output-particlesL〈c,m〉 and
L〈l, c′〉 again initiate the test for a label. IfL denotes labell, thenl( ).R〈a〉 is triggered as
continuation (like in the example above). However, ifL denotes labelm (which has been
“removed” from the form), then the continuation is triggered on the error channelE, indi-
cating that the form does not define a binding for labelm. The encoding of polymorphic
restriction is similar (refer to Table7.7).

Labels are encoded as replicated processes that wait for a tuple of continuation chan-
nels and signal along their designated label channel. Without loss of generality, labels
are encoded as names. If there is a conflict with an existing name in an agentA to be
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encoded,A is α-converted using fresh names. For the form〈l = a〉〈m = b〉, two label
processes have to be defined, wherex1 is used as continuation channel for labell and
x2 as continuation channel for labelm, respectively. Hence, the encoding of the form
〈l=a〉〈m=b〉 is defined as follows:

!l(x1, x2).x1〈〉
!m(x1, x2).x2〈〉

The encoding of agents is relatively straightforward. For an input-prefixed agent
a(X).A, the input prefixa(X) is also used as an input prefix for the correspondingπ-
process. The reader should note that the form variableX is encoded as a name.

An output-particlea(F ) (for simplicity, a simple name is used here) is encoded as the
π-process(ν f)(a〈f〉 | P ), wherea〈f〉 emits along the original channela the location of
the form process (located at channelf ). The right-hand side processP implements the
form F .

A projection Yl is encoded as a parallel composition of an output-particle
Y 〈l, r,Error〉 and an input-prefixed processr(ul).P . The former process triggers the
name projection process forY and sends along a fresh channelr the value of the projec-
tion if label l is defined. If no binding for the labell is defined, a corresponding message
is sent along the error-continuation channelError . The input-prefixed processr(ul).P
instantiates a nameul in P which binds the value received along channelr (i.e. the value
of the projectionYl). The reader should note thatError is the location of the process that
handles name projections for labels that are not defined in a form.

The encoding of[F← l] A1 A2 builds upon the projection described above and is
encoded as a parallel composition of four processes: the first two processes encode a name
projection on the formF of the matching whereas the last two processes correspond to the
encoding of the continuation processes for a successful and failed match, respectively. In
addition, the encoding creates two fresh channelsr andr′ which are used to parameterize
the name projection. The continuation of the projection is triggered on channelr if the
form F defines a binding for a labell, on channelr′ otherwise. The encoding ofA1

defines an input prefix on channelr, indicating thatA1 is triggered whenF defines a
binding for labell. Similarly, the encoding ofA2 has an input prefix on channelr′.

The encoding of the FORM calculus in the miniπ-calculus is defined using the func-
tion C[[ ]]Fπφ which maps an agent of the FORM calculus to a corresponding miniπ-process
(refer to Table7.6). In the encoding, we use a functionφ in order to map the setL of labels
to the setIN of natural numbers. Without losing generality,φ mapsL to {1, 2, . . . , n},
wheren is the number of labels used in the agent to be translated. The functionφ is
parameterized with the set of labels of an agentA (i.e.L(A)) such that:

∀ l ∈ L(A) =⇒ φL(A)(l) = i i ∈ {1, . . . , card(L(A))}

The translationC[[ ]]Fπφ generates a miniπ-process that consists of three parts: i) the re-
strictions for the mapped labels(∀ l∈L(A) ν nφL(A)(l)) generates a restricted name for all
labels inL(A) (note thatφL(A)(l) assigns a labell to a unique integeri ∈ IN ), ii) the label
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C[[A]]Fπφ = (ν Error)(∀ l∈L(A) ν nφL(A)(l))

(!Error( ).0 |
∏

l∈L(A)

!nφL(A)(l)(x1, . . . , xcard(L(A))).xφL(A)(l)〈〉 | CA[[A]]Fπφ )

CA[[0]]Fπφ = 0

CA[[A1 | A2]]Fπφ = CA[[A1]]Fπφ | CA[[A2]]Fπφ

CA[[(ν a)A]]Fπφ = (ν a)CA[[A]]Fπφ

CA[[a(X).A]]Fπφ = a(X).CA[[A]]Fπφ

CA[[Yl(X).A]]Fπφ = (ν r)(Y 〈l, r, Error〉 | r(ul).ul(X).CA[[A]]Fπφ

CA[[!V (X).A]]Fπφ = !CA[[V (X).A]]Fπφ

CA[[a(F )]]Fπφ = (ν f)(a〈f〉 | !CL(A)
f [[F ]]Fπφ )

CA[[Yl(F )]]Fπφ = (ν r)(Y 〈l, r, Error〉 | r(ul).(ν f)(ul〈f〉 | !CL(A)
f [[F ]]Fπφ ))

CA[[[F← l] A1 A2]]Fπφ = (ν r, r′)(CL(A)
f [[F ]]Fπφ | f〈l, r, r

′〉
| r( ).CA[[A1]]Fπφ | r

′( ).CA[[A2]]Fπφ )

Table 7.6: Encoding of the FORM calculus in the miniπ-calculus (part I).

processes, and iii) the encoded agent. The functionC[[ ]]Fπφ uses three subfunctions: i)

CA[[ ]]Fπφ encodes an agent, ii)CL(A)
f [[ ]]Fπφ encodes a form into a miniπ-process located at

channelf , and iii) CL(A)
label [[ ]]Fπφ generates the test output-particle for the actual form (refer

to Tables7.6and7.7).

The functionC[[ ]]Fπ is used to map transitions of the FORM calculus to miniπ-actions.
It is important to note that this mapping does not preserve the structure of an action. For
example, botha( ˜〈l=b〉) and(ν c̃)a( ˜〈l=b〉) are mapped to(ν f)a(f). The reason is that
the encodingC[[ ]]Fπφ adds one level of indirection for the communication of forms. More
precisely, a form is translated into a replicated process located at a channelf . We can
think of this channel as a “pointer” to a record. In order to access a value of the record, it
is necessary to send a selector (the channel that maps the corresponding label) along the
channelf .

The reader should note that the translationC[[ ]]Fπφ is only defined on closed agents.
This constraint is due to the definition of the weakF-bisimulation which is only defined
on closed agents.



7.3. THE FORM CALCULUS 127

CL(A)
f [[〈〉]]Fπφ = f(L,R, E).E〈〉

CL(A)
f [[X]]Fπφ = f(L,R, E).X〈L,R, E〉

CL(A)
f [[F 〈l=a〉]]Fπφ = f(L,R, E).(ν l, c)( CL(A)

label [[l, c]]
Fπ
φ

| l( ).R〈a〉
| c( ).(ν f ′)(f ′〈L,R, E〉 | CL(A)

f ′ [[F ]]Fπφ ))

CL(A)
f [[F 〈l=E〉]]Fπφ = f(L,R, E).(ν l, c)( CL(A)

label [[l, c]]
Fπ
φ

| l( ).E〈〉
| c( ).(ν f ′)(f ′〈L,R, E〉 | CL(A)

f ′ [[F ]]Fπφ ))

CL(A)
f [[F 〈l=Yk〉]]Fπφ = f(L,R, E).(ν l, c)( CL(A)

label [[l, c]]
Fπ
φ

| l( ).(ν r)(Y 〈k, r, E〉 | r(uk).R〈uk〉)
| c( ).(ν f ′)(f ′〈L,R, E〉 | CL(A)

f ′ [[F ]]Fπφ ) )

CL(A)
f [[F·X]]Fπφ = f(L,R, E).(ν c)( X〈L,R, c〉

| c( ).(ν f ′)(f ′〈L,R, E〉 | CL(A)
f ′ [[F ]]Fπφ ))

CL(A)
f [[F\X]]Fπφ = f(L,R, E).(ν c)(X〈L,E, c〉

| c( ).(ν f ′)(f ′〈L,R, E〉 | CL(A)
f ′ [[F ]]Fπφ ))

CL(A)
label [[l, c]]

Fπ
φ = L〈x1, . . . , xj−1, xj, xj+1, . . . , xn〉,

with xj = l; x1, . . . , xj−1, xj+1, . . . , xn = c

and φL(A)(l) = j

C[[τ ]]Fπ = τ

C[[a( ˜〈l=b〉)]]Fπ = a(f)

C[[a( ˜〈l=b〉)]]Fπ = (ν f)a〈f〉

C[[(ν c̃)a( ˜〈l=b〉)]]Fπ = (ν f)a〈f〉

Table 7.7: Encoding of the FORM calculus in the miniπ-calculus (part II).
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In the following, we show that the encoding of the FORM calculus in the miniπ-

calculus is faithful: if two agentsA1 andA2 are weaklyF-bisimular (i.e.A1
F≈ A2), then

it also holds thatC[[A1]]Fπφ ≈ C[[A2]]Fπφ .

Lemma 7.2 LetA be a closed agent andµ be an action in theFORM calculus. Then if

A
µ

=⇒ A′, then there exists a miniπ-processP such thatC[[A]]Fπφ
C[[µ]]Fπ

===⇒ P .

PROOF: We proceed by induction on the structure ofA with A 6≡ 0. By assumption
the agentA is closed. Therefore, the outermost subject part ofA must be a simple name
and the outermost object part does not contain unbound form variables. Only the most
significant cases are considered.

• A = a(X).A1.

We haveC[[A]]Fπφ = a(X).C[[A1]]Fπφ . It holds thata(X).A1
a(〈̃l=b〉)
===⇒ A1{ ˜〈l=b〉/X}

andC[[A]]Fπφ
a(f)
=⇒ P with P = C[[A1]]Fπφ {f/X}.

• A = a( ˜〈l=b〉).

We haveC[[A]]Fπφ = (ν f)(a〈f〉 | !CL(A)
f [[ ˜〈l=b〉]]Fπφ ). It holds thata( ˜〈l=b〉) a(〈̃l=b〉)

===⇒ 0

andC[[A]]Fπφ
(ν f)a〈f〉
====⇒ P with P = 0 | !CL(A)

f [[ ˜〈l=b〉]]Fπφ . 2

Lemma 7.3 Let A be a closed agent,µ an action, andP a mini π-process. Then

C[[A]]Fπφ
C[[µ]]Fπ

===⇒ P implies that there exists an agentA′ such thatA
µ

=⇒ A′.

PROOF: We proceed by induction on the structure ofA with A 6≡ 0. By assumption
the agentA is closed. Therefore, the outermost subject part ofA must be a simple name
and the outermost object part does not contain unbound form variables. Only the most
significant cases are considered.

• A = a(X).A1.

We haveC[[A]]Fπφ = a(X).C[[A1]]Fπφ . It holds thatC[[A]]Fπφ
C[[a(〈̃l=b〉)]]Fπ
======⇒ P with

P = C[[A1]]Fπφ {f/X}, a(X).A1
a(〈̃l=b〉)
===⇒ A′ with A′ = A1{ ˜〈l=b〉/X}, anda(f) =

C[[a( ˜〈l=b〉)]]Fπ.

• A = a( ˜〈l=b〉).

We haveC[[A]]Fπφ = (ν f)(a〈f〉 | !CL(A)
f [[ ˜〈l=b〉]]Fπφ ). It holds thatC[[A]]Fπφ

C[[a(〈̃l=b〉)]]Fπ
======⇒

P with P = 0 | !CL(A)
f [[ ˜〈l=b〉]]Fπφ , a( ˜〈l=b〉) a(〈̃l=b〉)

===⇒ A′ with A′ = 0, and

C[[a( ˜〈l=b〉)]]Fπ = (ν f)a〈f〉. 2
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Lemma 7.4 LetA be an agent,X ∈ fv(A), Xl a subterm ofA, and b a subject of an

actionµ. Then ifC[[A{〈l=b〉/X}]]Fπφ
C[[µ]]Fπ

===⇒ C[[A′{〈l=b〉/X}]]Fπφ it holds that

C[[A]]Fπφ {f/X}
τ

=⇒ ·
(ν r)f ′〈l,r,Error〉
−−−−−−−−−→ · r(b)−→ ·

C[[µ]]Fπ

−−−→ · τ
=⇒ C[[A′]]Fπφ {f/X}

with f being the location ofCL(A)
f [[X]]Fπφ .

PROOF: By assumption it holds that

C[[A{〈l=b〉/X}]]Fπφ
τ

=⇒ ·
C[[µ]]Fπ

−−−→ · τ
=⇒ C[[A′{〈l=b〉/X}]]Fπφ .

A projectionXl is encoded as the miniπ-calculus fragment

(ν r)(X〈l, r, Error〉 | r(ul).P

whereP is a miniπ-process that usesul. Applying {f/X} to this fragment leads to

(ν r)(f〈l, r, Error〉 | r(ul).P ).

In order the perform an action along the channelb (with is denoted byXl), the encoding
of the agentA{〈l=b〉/X} performs two communications with

(ν r)f ′〈l,r,Error〉
−−−−−−−−−→ · r(b)−→ ·

C[[µ]]Fπ

−−−→

as required. 2

Theorem 7.2 For each pair of closed agentsA1 andA2, C[[ ]]Fπφ is an injective mapping,

such that ifA1
F≈ A2, then it holds that

C[[A1]]Fπφ ≈ C[[A2]]Fπφ .

PROOF: We show that the relation

R = { (C[[A1]]Fπφ , C[[A2]]Fπφ ) | A1
F≈ A2 } ∪ ≈

is a weak1-bisimulation [ACS96].

Consider the caseτ or output actions:

Supposebn(C[[µ]]Fπ) ∪ fn(C[[A1]]Fπφ | C[[A2]]Fπφ ) = ∅. This condition can easily be

established byα-converting the encoding of the actionµ (i.e. C[[µ]]Fπ), since the
names of the bound names in the action are not important as long as they denote the

same location. LetC[[A1]]Fπφ
C[[µ]]Fπ

===⇒ P . By Lemma7.3 it follows that there exists an

agentA′1 such thatA1
µ

=⇒ A′1.
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The definition of weakF-bisimulation guarantees that there exists an agentA′2 such

thatA2
µ

=⇒ A′2 andA′1
F≈ A′2. By Lemma7.2 it follows thatC[[A2]]Fπφ

C[[µ]]Fπ

===⇒ P ′.
Therefore, we haveP R P ′ (as desired).

In the case of an output action, we know by Lemma7.4that the next weak transition
C[[µ]]Fπ cannot occur before all names which are part ofµ have been communicated.
For each name, there are two communications. SinceP R P ′, it follows that both
communications must perform the same name requests.

Consider the case of composition with output:

SinceA1
F≈ A2, we haveC[[A1]]Fπφ ≈ C[[A2]]Fπφ . Then for all messagesa〈b̃〉 we have

by definition(C[[A1]]Fπφ | a〈b̃〉, C[[A2]]Fπφ | a〈b̃〉) ∈ R. 2

Theorem 7.3 For each pair of closed agentsA1 andA2, if C[[A1]]Fπφ ≈ C[[A2]]Fπφ , then it

holds thatA1
F≈ A2.

PROOF: We show that the relation

R = { (A1, A2) | C[[A1]]Fπφ ≈ C[[A2]]Fπφ } ∪
F≈

is a weakF-bisimulation.
Consider the caseτ or output actions:

Supposebn(µ) ∪ fn(A1 | A2) = ∅. This condition can be easily established by
α-converting the encoding of the actionµ (i.e. C[[µ]]Fπ), since the names of the
bound names in the action are not important as long as they denote the same loca-
tion. LetA1

µ
=⇒ A′1. By Lemma7.2 there exists a miniπ-processP1 such that

C[[A1]]Fπφ
C[[µ]]Fπ

===⇒ P1.

The definition of weak 1-bisimulation guarantees that there exists a processP2 such

thatC[[A2]]Fπφ
C[[µ]]Fπ

===⇒ P2 andP1 ≈ P2. By Lemma7.3 it immediately follows that

A2
µ

=⇒ A′2, which implies thatA′1 R A′2.

In the case of an output action, Lemma7.4 shows that the next weak transition
C[[µ]]Fπ cannot occur before all names which are part ofµ have been communicated.
For each name, there are two communications. SinceP1 ≈ P2, it follows that both
processes must perform the same name requests. Furthermore,P1 andP2 perform
more moves thanA′1 andA′2, but if the next move forP1 andP2 is C[[µ]]Fπ, thenA1

andA2 can move forµ, too.

Consider now the case of composition with output:

SinceC[[A1]]Fπφ ≈ C[[A2]]Fπφ , it follows that A1
F≈ A2. Then for all messages

a( ˜〈l=b〉) we have by definition((A1 | a( ˜〈l=b〉)), (A2 | a( ˜〈l=b〉)) ∈ R. 2
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The faithfulness of the encodingC[[ ]]Fπφ follows from the Theorems7.2and7.3.

The reader should note that the encoding of the FORM calculus in the miniπ-calculus
and vice versa allows us to define corresponding (faithful) encodings between the FORM

calculus and theπL-calculus:

C[[ ]]FL = C[[ ]]πL ◦ C[[ ]]Fπ

C[[ ]]LF = C[[ ]]πF ◦ C[[ ]]Lπ

It is easy to show that both encodingsC[[ ]]FL andC[[ ]]LF are faithful: if two agentsA1

andA2 are weaklyF-bisimular, then it holds thatP1 = C[[A1]]Fπφ andP2 = C[[A2]]Fπφ are

weakly 1-bisimular (i.e.P1 ≈ P2). Furthermore, due to the fact that the encodingC[[ ]]πL

is faithful, it also holds thatA′1 = C[[P1]]πL andA′2 = C[[P2]]πL are weaklyL-bisimular.
Hence, it immediately follows thatC[[A1]]FL andC[[A1]]FL are weaklyL-bisimular, which
proofs the faithfulness ofC[[ ]]FL. The corresponding proof forC[[ ]]LF is similar.

The question arises whether it is not easier to define the encodings between the FORM

calculus and theπL-calculus directly (instead of using the corresponding encodings in
the miniπ-calculus).

A direct encoding of the FORM calculus in theπL-calculus is not straightforward. In
particular, the encoding of matching requires some reflection. Due to the fact that in the
πL-calculus it is not possible to check whether a given formF defines a binding for a
label l (if a form does not define a binding for a labell, a projection results in the empty
bindingE , which does not allow for any further analysis), forms of the FORM calculus
cannot be simply encoded as forms in theπL-calculus. Again, a strategy has to be used
to encode forms as agents (similar to the corresponding encoding in the miniπ-calculus).

As we will illustrate in section7.4, the FORM calculus is a not a superset of theπL-
calculus, since both calculi differ in the way polymorphic form extension is defined. A
direct encoding of theπL-calculus in the FORM calculus has to consider the different
semantics of polymorphic extension and, therefore, is not straightforward, either.

7.4 Comparison of the FORM calculus with the πL-
calculus

Although the FORM calculus is derived from theπL-calculus, there are, nevertheless,
several differences between the two calculi. In this section, we discuss the main differ-
ences, particularly focusing on polymorphic form extension.

As the main difference between the two calculi, consider i) the extension of the syntax
for forms with the concept of polymorphic form restriction and ii) the introduction of
label matching in agent expressions: the former allows a user to remove a set of labels of
a given form whereas the latter is a mechanism to check for the name bound by a label in
a form. Both concepts have been extensively discussed in section7.3. Furthermore, we
have separated the notations for empty form〈〉 and empty bindingE (which are merged



132 CHAPTER 7. TOWARDS A COMPOSITION CALCULUS

in theπL-calculus), and assigned the extension of a form with an empty binding a special
meaning in order to define polymorphic form restriction in a more natural way.

Both calculi define the concept of polymorphic form extension, but as we will il-
lustrate below, the semantics differs in the context of extensions with an empty bind-
ing. In order to illustrate this fact, consider the two formsF = 〈〉〈l = a〉〈m = b〉 and
G= 〈〉〈l= c〉〈m=E〉. In theπL-calculus, a polymorphic extension ofF with G leads to
the formF G= 〈〉〈l=a〉〈m= b〉〈l= c〉〈m=E〉. Hence,(F G)l = c, (F G)m =E , and by
definition of the equivalence of forms,F G ≡ 〈〉〈l= c〉. In the FORM calculus, however,
(F ·G)l = c and(F ·G)m = b, which implies thatF ·G ≡ 〈〉〈m = b〉〈l = c〉. Therefore,
F G 6≡ F·G.

From a different perspective, polymorphic form extension in theπL-calculus can be
seen as a simple record concatenation (i.e. the label bindings of the right-hand side form
are simply added to the left-hand side form) whereas in the FORM calculus, polymor-
phic form extensionremovesextensions with an empty binding (and the corresponding
overridden bindings)beforethe set of labels are merged. This also explains why we have
adapted a different notation for polymorphic form extension in the FORM calculus as is
used in theπL-calculus.

As a summary of this section, we can say that the definition of the FORM calculus
cannot be considered as a simple extension of theπL-calculus (or as a a “layer of syntactic
sugar” on top ofπL), as i) the semantics of polymorphic form extension is different and ii)
the FORM calculus defines abstractions which cannot be encoded in theπL-calculus in a
straightforward way (refer to the discussion about matching at the end of section7.3.11).



Chapter 8

Modelling objects in the FORM calculus

Concurrent programming demands special languages that provide primitives for com-
munication and synchronization. Using objects, it turns out that a general program-
ming model can easily be made concurrent and parallel, and several authors have shown
that theπ-calculus (or some variant) has enough expressive power to model standard
features of concurrent, object-oriented programming languages in a convenient way
[Jon93, Vas94, BS95, Wal95, San96b].

Many of the formal models mentioned above only support a subset of common fea-
tures found in object-oriented languages, and the resulting abstractions suffer from fixed,
positional tuple-based interfaces. Furthermore, none of the models allows us to explore
the common behaviour and protocols of classes and objects, and each object has to be de-
fined from scratch. As an approach to overcome these problems, we define a meta-level
framework for concurrent, object-oriented programming and show that many concepts
of concurrent, object-oriented languages such as encapsulation, self-references, synchro-
nization, dynamic binding, classes, mixins, inheritance etc. can be conveniently modelled
with the aid of agents representing meta-level abstractions.

Forms, polymorphic extension, and polymorphic restriction, we argue, are the key
mechanisms for extensibility, flexibility, and robustness of the meta-level framework. In
particular, polymorphic extension and restriction in combination with keyword-based pa-
rameters facilitate the definition of object-oriented abstractions as they enable the def-
inition of an extensible and adaptable meta-level framework for modelling concurrent,
object-oriented features. Furthermore, by using a process calculus, concurrency does not
need to be modelled explicitly, and we can focus on the definition of extensible, higher-
level abstractions.

The specification of the meta-level framework does not only allow us to define the
semantics of various object-oriented abstractions in terms of a small set of primitives, but
also to illustrate the expressive power of the underlying calculus, in particular the resulting
extensibility, flexibility, and robustness.

In order to explain our modelling steps at a higher level of abstraction than the
(rather low-level) FORM calculus, we will use PICCOLA(F), an experimental composi-
tion language currently under development at our institute, as an executable specification

133
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language. Like for the PICT programming language [PT97], the language features of
PICCOLA(F) are all defined by transformation to a core language that implements the
FORM calculus. Therefore, it is as much an attempt to turn the FORM calculus into a full-
blown programming language as it is a platform for experimenting with compositional
abstractions and for modelling language features.

In fact, we are currently exploring several approaches in the development of a compo-
sition language called PICCOLA: an approach emphasizing a more functional and declar-
ative style of programming [ALSN99] and another approach based on an imperative style
of programming [Lum99]. Using such an approach, we hope to discover the right ab-
stractions for software composition and to define an unified paradigm which fulfills the
requirements given in section2.5. Common to both approaches mentioned above is the
fact that all language features are defined by transformation to a core language that im-
plements theπL-calculus. In order to distinguish between the different working versions
of PICCOLA, we will use PICCOLA(F) in the following to denote the variant based on the
FORM calculus which emphasizes an imperative style of programming.

A detailed description of PICCOLA(F) is beyond the scope of this work; we will only
explain particular abstractions as we need them (see appendixC for the PICCOLA(F)
language definition). For additional information about the versions based on theπL-
calculus, refer to [ALSN99] and [Lum99].

This chapter is organized as follows: we first introduce the basic object model of
Pierce and Turner which forms the basis our models. We extend this model with common
features of object-oriented programming languages and abstractions for higher-level syn-
chronization. We continue with a discussion of class abstractions for different flavours
of inheritance and method dispatch and introduce models for mixins and mixin-based in-
heritance. We identify the key concepts for extension and generalization of the resulting
model and define a meta-level framework for modelling concurrent object-oriented pro-
gramming abstractions. We briefly point out the limits of the FORM calculus by illustrat-
ing object-oriented abstractions that cannot be encoded in the calculus itself. Finally, we
conclude with a discussion of related work, a comparison of other meta-level approaches,
and a summary of the main observations of modelling objects in the FORM calculus.

8.1 Basic object model in theFORM calculus

In this section, we outline a basic object model in the FORM calculus as an extension
of a record-based object model developed by Pierce and Turner [PT95]. Starting with an
encoding of the Pierce and Turner basic object model in the FORM calculus, we extend the
model with common features of object-oriented programming languages such as classes,
dynamic binding, and inheritance.

8.1.1 The Pierce/Turner basic object model

Using the pureπ-calculus, objects can be viewed as groups of processes [BS95, Wal95,
San96b]. There is, however, no way that one process can directly affect or refer to another
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process, and it can only send messages along some channels where, by convention, the
other process listens. Similarly, referring to a group of processes means that we can send
messages to a collection of channels where these processes are listening. An attractive
notion to model such a facility is the standard notion ofrecordsthat enable us to selec-
tively address one member of a group by using itsname. Viewing each individual channel
as an explicitly named “service access point”, we can bundle them together in a record
that provides a well-defined interface for accessing the related services. Furthermore,
this packaging gives rise to ahigher-orderstyle of programming with objects, since a
complete interface of one object may be manipulated as a single value.

Pierce and Turner outlined a basic model for objects in PICT, where i) an object is a
set of persistent processes representing instance variables and methods and where ii) the
interface of an object is a represented as a record containing the channels of the visible
features [PT95]. The following example presents a FORM calculus encoding of arefer-
ence cell1 in the basic object model of Pierce and Turner. This encoding shows that the
FORM calculus provides a compact formalism for encoding record-based object models.

def RefCell(X) = (ν contents, s, g)
( contents(〈val=Xinit〉)
| !g(Y ).contents(Z).(Yresult(Z) | contents(Z))
| !s(Y ).contents( ).(Yresult(〈〉) | contents(Z))
| Xresult(〈set=s〉〈get=g〉) )

The agent listening on channelRefCell implements anobject generator[Coo89] which
yields a new object if a form containing at least a binding forinit and result is sent
along channelRefCell . Access to the new object is returned along the channel denoted
by Xresult. The form〈set = s〉〈get = g〉 implements the interface to the newly created
object. The methods of the object are implemented by the agents listening on the channels
s andg (representing theset andget methods, respectively). The agents sending/listening
along the channelcontents implement the state of the object. The state and the method
implementations are local to each object.

In the core language of PICCOLA(F), a factory for reference cell objects could thus
be modelled as:

new ref
run ref?*(Args) do

let
new contents, getCH, setCH

in
contents!(<val = Args.init>) {- Initialization - }
|( getCH?*(X) do contents?(V) do contents!V | X.result!V )
|( setCH?*(X) do contents?( ) do contents!X | X.result!<> )
| Args.result!(<get = getCH, set = setCH>)

end

This agent accepts an initial value and a reply address, and creates a new reference cell
suitably initialized for each such request. Then, it returns a form containing the channels

1A reference cell is an updatable data-structure.
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getCH andsetCH bound to the labelsget andset of the form. The methodsset and
get are called using the notationobj.set(< form>) andobj.get() , respectively. The
library agentPrVal prints the value of a form with a binding for the labelval .

let
new res, ack, cont, sig

in
ref!(<init=2,result=res>)
| res?(cell) do cell.set(<val=3,result=ack>)
| ack?( ) do cell.get(<result=cont>)
| cont?(X) do PrVal(<X,result=sig>)
| sig?( ) do null

end

The example above illustrates that programming in the core language of PICCOLA(F)
is like programming in a concurrent assembler. However, the language defines some
syntactic sugar which makes it easier to define factory objects:

function ref (Args) =
let

new contents
run contents!(<val = Args.init>)

procedure get(X) do contents?(V) do contents!V | X.result!V
procedure set(X) do contents?( ) do contents!X | X.result!<>

in
< set = set, get = get >

end

Note thatget andset requests cannot interfere since the bodies of the two servers each
grab the resources of the reference cell (i.e. thecontents message) and release them
when they are done. Pierce and Turner generalize this model to concurrent objects whose
methods synchronize with respect to a shared lock [PT95].

Due to the fact that i) defining a procedure or function in the local scope of a factory
agent and ii) assigning it to a label of a result form is heavily used, PICCOLA(F) defines
another layer of syntactic sugar of so-calledactive formswhich allows us to rewrite the
reference cell example as follows:

function ref (Args) =
let

new contents
run contents!(<val = Args.init>)

in
<

procedure get(X) do contents?(V) do contents!V | X.result!V,
procedure set(X) do contents?( ) do contents!X | X.result!<>

>
end

Throughout the rest of this work, we will use the notations introduced above interchange-
ably.
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The essentials of concurrent objects are captured by the basic object model of Pierce
and Turner: encapsulation, identity, persistence, instantiation, and synchronization. It is
less clear whether the model can be easily extended to capture other common and more
esoteric features of object-oriented programming languages. Basic features found in most
of the better known languages include dynamic binding, inheritance, overriding, and class
variables.

In the following, we explore the extension of the Pierce/Turner object model to some
of these features, including synchronization abstractions based on generic synchroniza-
tion policies [McH94]. Since a detailed description of all modelling steps is beyond the
scope of this section, we will only outline the main results (refer to [SL96] or [Var96] for
further details).

8.1.2 Modelling requirements

We express our modelling requirements by means of a hierarchy of classes (based on an
example presented in [VLM96]) illustrated in Figure8.1, which we will use throughout
the rest of this chapter. The classPoint is the root of the hierarchy. It contains two private
instance variablesx andy, two accessor methodsX andY, a methodmove which moves a
point by a given offset(dx,dy), and a methoddouble that doubles the values of thex and
y coordinates. The classPoint also contains a class variableCounter which counts the
number of its instances and a class methodNoOfPoints to access theCounter variable.
A specialization ofPoint is the classHistoryPoint which extends the methodmove and
prints the instance variablesx andy each timemove is invoked. The reader should note
that the methodmove is invoked by the methoddouble (using aself call), which is not
overridden in the classHistoryPoint. Another direct specialization ofPoint is the class
BoundedPoint. It ensures that they coordinate of an instance never exceeds a given
upper boundb. This bound is a constant in the classBoundedPoint, although this is not
necessary. In order to illustrate an non-constant bound, the classLinearBoundedPoint
specializes the classBoundedPoint by overriding the methodbound in an appropriate
way (i.e.bound checks if they coordinate is smaller than thex coordinate).

The remaining classes are less trivial as they are specializations of more than one
parent-class. The classHistoryBoundedPoint includes the functionality of the classes
BoundedPoint andHistoryPoint. The instance variablesx andy and the methodmove
that occurred in the classPoint should be shared in the classHistoryBoundedPoint
whereas the two different specializations of the methodmove should be combined.
Using C++ terminology, we consider the classPoint as asharedancestor of the class
HistoryBoundedPoint.

The classDoubleBoundedPoint ensures that the upper bound of an instance never
exceeds two upper bounds: a horizontal bound and a linear bound. Therefore, the class
DoubleBoundedPoint needs two versions of the methodbound, once as a constant, and
once as a linear function. Consequently, the methodsbound must be duplicated. The
methodmove needs to be invoked twice: once with eachbound version. Hence, the
classDoubleBoundedPoint needs duplication of the attributes (instance variables and
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HistoryPoint

Point

+ Y () : Integer

+ double ()
+ NoOfPoints () : Integer

- Counter : Integer

- x : Integer
- y : Integer

+ move (dx, dy: Integer)

BoundedPoint
- b : Integer

+ move (dx, dy: Integer)
+ bound () : Integer

+ X () : Integer

+ move (dx, dy: Integer)

x=x+dy; y=y+dy

self.move (x, y)

print x; print y;
super.move (dx, dy)

if (Y() + dy) < bound() then
super.move (dx, dy)

return b

return x

DoubleBoundedPoint

HistoryBoundedPointLinearBoundedPoint

+ bound () : Integer

Figure 8.1: UML diagram of point class hierachy.

methods) introduced by the common ancestorBoundedPoint, while the attributes of the
common ancestorPoint need to be shared.

The following examples illustrate i) various degrees of encapsulation (i.e. object,
class, and global scope), ii) static and dynamic binding (i.e. instance variables vs. over-
ridden features), and iii) single inheritance.

8.1.3 Class and object features

Our first implementation of the classPoint is a straightforward mapping into the
Pierce/Turner basic object model (see Figure8.2).

This first approach does not encapsulate common class features: class variables and
methods are defined and implemented in the global scope. It is not possible to model self-
references of objects, and there is no possibility to express the classesHistoryPoint or
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new Counter {- class variable - }
run Counter!<val = 0>

procedure NoOfPoints(P) do {- class method - }
Counter?(X) do (Counter!X | P.result!X)

function PointClass(Init) =
let

new x {- instance variables - }
new y
run (x!<val = Init.x> | y!<val = Init.y>)

run Counter?(X) do Counter!<add(<lval = X.val, rval = 1>)>
in

<
procedure X(Args) do x?(V) do (x!V | Args.result!V),
procedure Y(Args) do y?(V) do (y!V | Args.result!V),
procedure move(Args) do x?(VX) do y?(VY) do

( x!<add (<lval = VX.val, rval = Args.dx>)>
| y!<add(<lval = VY.val, rval = Args.dy>)>
| Args.result!<> ),

procedure double(Args) do x?(VX) do y?(VY) do
( x!<add (<lval = VX.val, rval = VX.val>)>
| y!<add(<lval = VY.val, rval = VY.val>)>
| Args.result!<> )

>
end

Figure 8.2: Source code of first model in PICCOLA.

BoundedPoint as inheriting fromPoint. Furthermore, due to the lack of self-references,
the encoding does not allow local method calls within an object: the methoddouble
cannot use the functionality of the methodmove and, therefore, has to reimplement the
modification of the two coordinates in its body. On the other hand, the implementation
of Point behaves correctly in the presence of concurrent clients: each method obtains
and releases the necessary local resources in a consistent sequence, thus avoiding both
interference and deadlock.

The reader should note that we have used a library abstractionadd in order to add two
integers.2 Due to the fact the PICCOLA(F) version used for our models does not support
infix operators (such as+ or * ), arithmetic operations have to be expressed as functions.
In the case of summation, the functionadd requires bindings for the labelslval and
rval , and returns its result (i.e. the sum of the values bound tolval andrval ) in a
form with a binding forval . Other arithmetic operators are implemented similarly. The
function cmp is used for comparing integers. It returns−1, 0, or 1 if the value bound

2Like booleans, integers (and strings) can be encoded in the FORM calculus, but PICCOLA(F) provides
some syntactic sugar in order to treat them as built-in data-types.
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at the labellval is smaller than, equal to, or greater than the value bound at the label
rval , respectively.

8.1.4 Dynamic binding and encapsulation

In order to encapsulate class variables, we use an approach to explicitly representclasses
as first-class objects. Class metaobjects3 turn out to be useful for i) the declaration,
initialization, and access control of class variables, ii) the implementation of class meth-
ods, and iii) the creation and initialization of instances. Note that we have not introduced
a metaobject protocol [KdRB91] to dynamically change the behaviour of classes at run-
time, though the fact that we have explicit class metaobjects allows us to explore this
possibility as well.

In Figure8.3, we can see that the classPoint is represented by a single instance of a
class metaobjectPointClass . The declaration

let value var = form in body end

is just an abbreviation for a communication that binds a form to some value:

let new c in c! form | c?( var) do body end

The class variableCounter is now represented as an instance variable of the class
metaobject. Since there is no class metaobject factory (only a single instance), we ensure
that all instances of the classPoint will share the same, hidden variableCounter . Fur-
thermore, the class methodCreate defines theconstructorof the classPoint. Note that
throughout the rest of this work, a methodCreate will be used to denote the constructor
of a given class.

Instead of representing instance variables as messages, they are now modelled as ref-
erence cells. This has the advantage of making them easier to use, but it means that we can
no longer synchronize concurrent accesses. Various approaches are possible for avoiding
interference and deadlock, and we will discuss an approach based on generic synchroniza-
tion policies in section8.2. For the rest of this section, we assume that clients’ requests
are sequential.

In the declaration part ofCreate , an emptyreference cell (i.e.Self ) and a new
object (i.e. NewInstance ) are created. In contrast to the reference cell introduced in
section8.1.1, an empty reference cell does not get an initial value at creation time. The
valueNewInstance is then assigned as the first (and only) contents of theSelf cell
and is returned as the result ofCreate . Self is used as an alias forNewInstance
to realize self-reference. SinceSelf is declared beforeNewInstance , it can be used
within the methods ofNewInstance . The reader should note that the valuesSelf
andNewInstance form an abstraction comparable to an object generator withSelf

3For the rest of this work, we use the same terminology for entities of the meta-level as is used by
Kiczales et al. [KdRB91].
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value PointClass =
let

value Counter = ref(<val = 0>)
in

<
function NoOfPoints() = Counter.get(),
function Create(Init) =

let
value Self = emptyRef()
value NewInstance =

let
value x = ref(<val = Init.x>) {- instance variables - }
value y = ref(<val = Init.y>)
function move(Args) =

x.set(<add(<lval=x.get().val,rval=Args.dx>)>);
y.set(<add(<lval=y.get().val,rval=Args.dy>)>)

in
Counter.set(<add (<lval=Counter.get().val, rval=1>)>);
<

move = move,
function X() = x.get(),
function Y() = y.get(),
function double() =

Self.get().move(<dx=x.get().val,dy=y.get().val>)
>

end
in

Self.set(<NewInstance>); {- self binding - }
NewInstance

end
>

end

Figure 8.3: Source code ofPointClass class metaobject.

as formal parameter [Coo89] whereasSelf.set( ...) andSelf.get() build afixed-
point operator[Red88]. The same encoding could also be used to obtain a self-reference
for the class metaobject (not used in Figure8.3). We will further discuss the notion of
generators and fixed-point operators in section8.3.

The class methodNoOfPoints and the object constructorCreate define the public
interface of the class metaobjectPointClass . Due to the fact thatSelf is visible in the
context of all methods (Self is defined within the declaration part of the class method
Create ), there is no need to passSelf as parameter to every method. This explains
why the methodsX, Y, anddouble do not have a formal parameter.

In order to guarantee the correct behaviour in presence of concurrent clients, we did
not support local methods nor local method calls in the previous model. However, in order
to model different binding mechanisms for methods, we must introduce the notion of local
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methods and local method calls. The model presented in Figure8.3 supports both static
and dynamic binding of methods. If a method needs to be bound dynamically, the method
has to be called by sending a message toSelf (e.g. Self.get().move(< ...>) ).
Static binding can be achieved by declaring a method within the scope of the object fac-
tory and calling it directly (e.g.move(< ...>) . The reader should note that without ad-
ditional concurrency control, the use of local method calls does not guarantee the correct
synchronization of concurrent accesses.

A common form of a result in PICCOLA(F) is a continuation signal which indicates
termination of an agent. Since continuation signals are frequently used to specify a se-
quence of operations, PICCOLA(F) provides a convenient syntax for their usage: ifv is
a value expression whose result is an empty form, thenv;A is an agent that evaluatesv ,
waits for its termination, and continues asA. Formally,

v ; A

is translated into

let new c in c!v | c?( ) do A end

Similarly, v; is an abbreviation forv;null (i.e. the0 agent). Using sequencing of
operations, it is possible to implement the methods ofPointClass as functions(and
not as procedures), which allows us to omit explicitresult channels.

8.1.5 Single inheritance

As a first approach for modelling inheritance, we usedelegation semantics(as in Self
[US87] and Sina [Aks89]): each object has an instance of its parent-class. Therefore,
only the exported features of a parent-class can be accessed. This has the consequence
that dynamic binding of methods requires a more sophisticated mechanism and is not
possible by default. If the subclass redefines a method which is called by another method
defined in an ancestor class (and not redefined in the subclass), the original and not the
redefined method will be called. As an example, consider the classBoundedPoint which
redefines the methodmove, which in turn gets called by the methoddouble.

The reason why dynamic binding is not supported by this approach is thatself within
the instance of the parent-class refers to the parent-class object, but not to the subclass
object:

parent

self selfPointBoundedPoint

To achieve the effect of dynamic binding,self of the parent-class object has to refer
to the subclass object:

parent

self Point

self

BoundedPoint
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What we need is an instance of the parent-class whereself refers to the subclass
object. To do so, we introduce so-calledintermediate objectswhere all methods and in-
stance variables of a class are defined, but whereself is unbound: all methods require
an additional binding forself .4 The class metaobject of each class defines an agent
CreateIntermediate (comparable with a generator in [Coo89]) which acts as a fac-
tory for intermediate objects of the class (refer to Figure8.4).

In the methodCreate of the class metaobject, a new intermediate object is created,
each exported method is bound to a method defined in the intermediate object, and the
correct binding ofself is established. Like in the previous model, an empty reference
cell is used to model self-references.

Note that besides the implementation of all public class methods and the method
Create , the class metaobject also exports the methodCreateIntermediate .

The modelling of inheritance is now straightforward. In order to reuse the methods
defined in an ancestor class, the class metaobject of a class gets a fresh copy of the inter-
mediate object of its direct parent-class. This intermediate object is then used to define the
intermediate object of the class itself. It is possible to i) override methods, ii) define new
methods, and iii) call inherited methods. However, the parent-class has to be explicitly
referred to in the methodCreateIntermediate of a subclass (refer to Figure8.5).
The reader should note that we only usebinding extensionto define the intermediate ob-
ject of a (sub)class.

Private instance attributes (variables and methods) do not define a binding in the inter-
mediate object of a class; they are only visible within the scope of the corresponding agent
CreateIntermediate . The same applies for private class attributes (such as the class
variableCounter), which are not declared in the interface of a class and, therefore, only
visible within the scope of the corresponding class metaobject. As a consequence, unlike
in other object-oriented programming languages (e.g. Eiffel [Mey92]), private attributes
cannot be accessed by subclasses. This implies that a subclass can define a new (private
or public) attribute with the same name without interfering with a private attribute of one
of its parent-classes.

In order to define the arguments for all methods ofPointClass , we have used so-
callednested forms[Lum99]. Due to the fact that the labels of a form can only bind names
(and not forms), is is not possible to communicate more than one form without losing the
original structure (e.g. if two formsF anfGdefine a binding for a labelfoo , then<F,G>
“loses” the binding forfoo in F). In order to solve this problem, PICCOLA(F) allows a
user to communicate nested forms and translates an expression of the form

<label=cname, form=AFormValue>

into

<label=cname, function form() = AFormValue>

This construct also explains why accessing nested forms requires an additional function
call.

4Using the terminology of Abadi and Cardelli, we call methods with an additionalself parameter
pre-methods[AC96].



144 CHAPTER 8. MODELLING OBJECTS IN THE FORM CALCULUS

value PointClass =
let

value Counter = ref(<val = 0>) {- class variable - }

function CreateIntermediate(Init) =
let

value x = ref(<val = Init.x>) {- instance variables - }
value y = ref(<val = Init.y>)

in
Counter.set(<add (<lval=Counter.get().val, rval=1>)>);
<

function X(Args) = x.get(),
function Y(Args) = y.get(),
function move(Args) =

x.set(<add(<lval=x.get().val,rval=Args.dx>)>);
y.set(<add(<lval=y.get().val,rval=Args.dy>)>),

function double(Args) =
Args.self().move(<dx=x.get().val,dy=y.get().val>)

>
end

function Create(Init) =
let

value PointIntermed = CreateIntermediate(Init)
value Self = emptyRef()

value NewInstance =
<

function X()=PointIntermed.X(<self=Self.get()>),
function Y()=PointIntermed.Y(<self=Self.get()>),
function move(Args)=PointIntermed.move(<Args,self=Self.get()>),
function double()=PointIntermed.double(<self=Self.get()>)

>
in

Self.set(<NewInstance>); {- self binding - }
NewInstance

end
in

<
Create = Create,
CreateIntermediate = CreateIntermediate,
function NoOfPoints() = Counter.get()

>
end

Figure 8.4: Source code ofPointClass class metaobject with intermediate objects.
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value BoundedPointClass =
let

function CreateIntermediate(Init) =
let

value ParentIntermed = PointClass.CreateIntermediate(<Init>)
value b = ref(<val = Init.bound>) {- constant bound - }

in
<

ParentIntermed, {- binding extension - }
function bound(Args) = b.get(),
function move(Args) = {- method overriding - }

let
value res = add(<lval=Args.self().Y().val,

rval=Args.dy>)
value b = Args.self().bound()

in
if cmp(<lval=res.val,rval=b.val>).val=-1 then

ParentIntermed.move(<Args>)
else <> end

end
>

end

function Create(Init) =
let

value BPInter = CreateIntermediate(Init)
value Self = emptyRef()
value NewInstance =

<
function X() = BPInter.X (<self=Self.get()>),
function Y() = BPInter.Y (<self=Self.get()>),
function move(Args) = BPInter.move (<Args, self=Self.get()>),
function double() = BPInter.double (<self=Self.get()>),
function bound() = BPInter.bound (<self=Self.get()>)

>
in

Self.set(<NewInstance>); {- self binding - }
NewInstance

end
in

<
PointClass, {- extend parent-class class object - }
Create = Create,
CreateIntermediate = CreateIntermediate

>
end

Figure 8.5: Source code ofBoundedPointClass .
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8.1.6 Observations

Summarizing the basic object model in the FORM calculus, we see that a (base-level)
object consists of three parts: anintermediate object, an interface adaptor, and a set of
request and reply channels. All request and reply channels represent the service inter-
face of an object. In order to call a particular method, a message representing the actual
input parameters has to be sent along the corresponding request channel. The result of
this method invocation can be obtained by reading the appropriate reply channel (which
is often implicit). In Figure8.6, request channels are represented by a small square in-
side and reply channels by a square outside an object, respectively. The solid lines with
arrowheads denote channels used for one-way communication within an object and be-
tween an object and its class metaobject, and are not accessible by external clients. The
intermediate object consists of a set of local channels representing instance variables and
a number of agents representing all method implementations. The interface adaptor (cor-
responding to the methodCreate ) maps each request and reply channel to the agent
abstraction representing the corresponding method implementation. One may note that
there is no limit on the number of concurrently executing methods in an object and that
methods are not explicitly synchronized.

In order to reuse (inherit) method implementations, but having a sound interpretation
of self-references, intermediate objects still have an unbound self-reference. The actual
binding ofself is achieved in the interface adaptor by passing the value ofself as a
parameter to each method invocation.

A commonly used mechanism in various object-oriented programming languages is
to represent classes as objects at a meta-level [KdRB91]. We have used this technique not
only to model class features as features of a metaobject, but also to obtain a disciplined
way to create objects and to model inheritance. In order to create an object, the class
metaobject instantiates an intermediate object, defines a new set of request and reply
channels, and binds them all using an appropriate interface adaptor. Inheritance can be
achieved by combining and extending intermediate object templates of already existing
classes.

The reader should note that the basic object model of Pierce and Turner as well as our
extensions belongs to the category of so-calledimperative object models. In models of
this category, object updates are imperative, which implies thatself can be bound when an
object is instantiated. This is often referred to asearly self binding. The main advantage
of this approach is that the fixed-point operator has to be applied only once, at the time of
object instantiation.Self always refers to the same set of local agents and channels, and
the state of an object is always modified imperatively by the object’s methods.

In an object model that supports functional updates, however, early binding ofself
does not work, as each change in the state of an object implies the creation of a new
object [AC96]. In such a situation,self has to be bound each time a method is invoked,
which is often referred to aslate self binding.
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Figure 8.6: Basic object model in the FORM calculus.

8.2 Synchronization

In the previous section, we have discussed a first extension of the Pierce/Turner basic ob-
ject model, but we mainly concentrated on modelling features of object-oriented program-
ming languages that do not necessarily address concurrency. It is obvious, however, that
the presence of concurrent activities within an object requires some degree of synchro-
nization. As a first extension to our basic object model, we will investigate abstractions
for synchronizing concurrent objects.

Several synchronization schemes have been proposed to address various levels of con-
currency control [Bri96]. Centralized schemes, such aspath expressions, specify in an
abstract way the possible interleavings of method invocations [Ame87, VdBL89]. Decen-
tralized schemes, such asguards, are based on boolean activation conditions that may be
associated to each method [DLDR+91]. Higher level formalisms are based on the notion
of abstract behaviours[TV89]. Recent work has tried to integrate these synchroniza-
tion schemes into a framework for classifying, comparing, customizing, and combining
synchronization abstractions for object-oriented concurrent programming [Bri96].

An evaluation of several synchronization schemes and mechanisms revealed that ob-
jects are most easily synchronized at a meta-level. This implies that synchronization poli-
cies have to be reified as first-class entities. Our experiments showed that McHale’s con-
cept of “Generic Synchronization Policies” (GSPs) [McH94] could be easily integrated
into the meta-level of our basic object model and that it formed a promising basis for the
definition of higher-level, reusable synchronization abstractions. GSPs do not only allow
for a complete separation of computational and synchronization abstractions, but enhance
the reuse of existing (sequential) components in a concurrent environment. The extension
of our object model also allows us to formalize the concept of GSPs.
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1 - call

2 - return

1 - arrival

2 - start

3 - term
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Figure 8.7: The events in the lifespan of a typical method invocation.

8.2.1 Generic Synchronization Policies

The concept of Generic Synchronization Policies provides a mechanism to synchro-
nize objects at the granularity of method invocations and is based on a paradigm called
“Service-object Synchronization” (SoS) [McH94]. The paradigm consists of the follow-
ing four concepts: i) events (and code executed at them), ii) delaying and starting method
invocations, iii) accessing information about method invocations, and iv) a strict separa-
tion between synchronization code/data and code/data of the object itself.

In order to show how this paradigm works, we first need to describe the sequence of
events that takes place when an object invokes an operation upon another object.

From the service object’s perspective (which is the only one we will consider), there
are three events of interest:arrival, start and term (short for termination) of a method
invocation. When an invocation arrives, it may be delayed due to some synchronization
constraints. Some time later, it will start execution and, finally, it will terminate execution.
We assume that events do not overlap. For example, if two invocations arrive at the same
time, we assume that their arrival events will be ordered. The sequence of events is
summarized in Figure8.7.

GSPs permit an action (user code) to be associated with each possible event. The exe-
cution of an action will always complete before another event can occur. Synchronization
constraints between methods are expressed using the concept of a guards (i.e. a boolean
expression). Each invocation will be delayed until the corresponding guard evaluates to
true.

In GSPs, the genericity lies in the fact that actions and guards are not associated di-
rectly with a particular method of a given object. Conceptually, methods are grouped into
categoriesfor which actions and guards are specified. At instantiation time, all methods
will “inherit” all actions and guards according to their associated category.

The second concept of the SoS paradigm is needed in order to delay a method invo-
cation due to some synchronization constraints and start its execution when all synchro-
nization constraints are fulfilled. The SoS paradigm does not specify how the mechanism
for delaying and starting invocation has to be implemented.
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In order to express complex synchronization schemes, it is necessary to access infor-
mation about the method invocations upon an object. In code for actions and guards, the
following information needs to be made available:

• the arrival time of the current invocation (for which the action or guard is executed),

• the number of waiting invocations from a given category,

• the number of executing invocations from a given category,

• a list of all waiting invocations from a given category, and

• the method’s parameters.

Other information could be added, like, for example, the number of terminated invoca-
tions or the list of all executing invocations from a given category. In our modelling,
however, we restricted ourselves to the information mentioned above.

Finally, the SoS paradigm requires a strict separation between synchronization
code/data and code/data of the object itself. As an example, synchronization code (guards
and actions) cannot access instance variables of the object and vice versa, ensuring that
concurrent execution of synchronization and sequential code cannot interfere (e.g. syn-
chronization code cannot access information currently being updated by sequential code).
This requirement also ensures that it is not only possible to completely separate the speci-
fication and implementation of synchronization code from sequential code, but also allows
us to reuse synchronization policies in different settings.

As an example, we present the (well-known) Readers-Writers policy. The policy has
two categories of methods: one category representing methods that only read instance
variables, and another category representing methods that change the value of some in-
stance variables of an object. Using GSPs, the Readers-Writers policy could be specified
as follows (we use the same syntax as in [McH94]):

policy ReadersWriters [ReadOps, WriteOps] {
function ReaderAllowed (t: Invocation): Bool
begin

return exec(WriteOps) = 0;
end

function WriterAllowed (t: Invocation): Bool
begin

return exec(ReadOps)+exec(WriteOps) = 0;
end

map guard(ReadOps)→ ReaderAllowed
guard(WriteOps)→WriterAllowed

}

This policy specifies that a Read operation can only take place when there is no executing
Write operation (i.e.exec(WriteOps) = 0) and a Write operation can only take place
when no other operation is executing (exec(ReadOps)+exec(WriteOps) = 0). The
construct
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map guard(ReadOps)→ ReaderAllowed
guard(WriteOps)→WriterAllowed

binds the guards for the different method categories.

The Readers-Writers synchronization policy defined above can be used in a class-
based way to synchronize objects where all methods are either reader or writer methods,
like in the example below:

class Point {
. . . /* defines X, Y, move, and double */
synchronization

ReadersWriters [ {X Y}, {move double} ]
}

8.2.2 Modelling GSPs in theFORM calculus

In the following, we illustrate the integration of GSPs into the FORM calculus based object
model. First, this shows that the basic object model is open enough to be extended with
additional features like GSPs, and second it demonstrates that the GSP paradigm can be
easily adapted to any object model.

In order to model GSPs, we use a similar architecture as for modelling normal objects:
synchronization policies are represented as objects in the meta-level (and therefore they
behave as metaobjects) while so-calledmethod wrapper objectsproviding an interface
for synchronization are part of the base-level. The main difference of modelling GSPs
compared with our modelling of plain objects is that the policy metaobjects are not linked
to method wrapper objects a priori: this binding is only established when an object is
instantiated. Furthermore, method wrapper objects are fully generic: they can wrap any
method and can be bound to any policy. Finally, the binding to a policy can be changed
at run-time. The overall structure of the GSP integration is shown in Figure8.8.

Synchronization wrappers. Like McHale, we have also opted for the technique of
placing a synchronization wrapper around the code to be synchronized. This technique
is commonly employed in the implementation of synchronization mechanisms. The main
idea of the synchronization wrappers is to take a pure unsynchronized object and to wrap
its methods in a pre- and post-synchronization code. For example a method like

method foo()
begin

body;
end

will be transformed (wrapped) into
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Figure 8.8: Integration of GSPs in the object model.

method foo()
begin

pre-synchronization code;
body;
post-synchronization code;

end

In the following, we assume that a method is represented as the agent

def M(X) = A

and thatX is a free variable in the agentA, which returns the result of a method invocation
(a value or just a signal of termination) using the channelXresult. Wrapping a methodM
leads to the following agent:

def WM (Y ) = (ν aw, rw, rp, ro)( PreWrapper | rp(Z).aw(Z〈result = rw〉)
| aw(X).A
| rw(Z).(PostWrapper | ro(R).Yresult(R) ) )

The wrapping process itself is modelled through an object which has at least two
methods. One method is used to execute the synchronized method (compare with the
given wrapped agentWM ) and the other method is used to set the policy specific method
wrappers. The following agent illustrates the wrapping:

(ν PreWrapper , PostWrapper)
(SetWrapper(X).( PreWrapper( ).PreWrapper(X)

| PostWrapper( ).PostWrapper(X)
|WM )
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The reader should note that the formal parameterX of the SetWrapper agent requires
a binding for the labelspre andpost, which denote the access points for the pre- and
post-wrappers, respectively.

The wrapper objects behave as two-way generic communication interceptors. The
reason why we had to introduce such objects is that PICCOLA(F) does not support mes-
sage interception. Such a facility could be added to the language through an extension
of the semantics of channel creation. The creation of a new channel would be mapped
internally to an agent which can be parameterized with an input and output related agent
which is activated when an input or output takes place. After the interceptor agent has
finished, the initiated communication proceeds as usual.

Binding a GSP to an object. The Readers-Writers policy described in section8.2.1can
be represented by the following agent:

def ReadersWritersPolicy(X) = ( ReaderAllowed(Invocation)
|WriterAllowed(Invocation)
| Map(〈cat = Xreaders, guard = ReaderAllowed〉)
| Map〈cat = Xwriters, guard = WriterAllowed〉)

This agent takes as arguments the methods belonging to the appropriate categories.
Then the agentReadersWritersPolicy starts four agents in parallel:ReaderAllowed and
WriterAllowed which are the policy specific synchronization guards and two agentsMap
which immediately end after binding the methods of a category to its synchronization
guards.

An initial binding of a GSP is done at object creation time. In order to add GSPs
to the basic object model, the methodCreate of the class metaobject has to be modi-
fied: first,Create takes an additional parameterPolicy which defines a binding for the
actual synchronization policy, and second, two additional agents (CreateWrapped and
BindPolicy) have to be added to the body ofCreate. The following agent illustrates the
modified method:

def Create(X) = (ν Intermediate,WrappedIntermediate,NewInstance,Self )
( CreateIntermediate(Intermediate)
| CreateWrapped(〈int = Intermediate, wrap = WrappedIntermediate〉)
| CreateInstance(〈wrap = WrappedIntermediate, inst = NewInstance〉)
| BindPolicy(〈inst = NewInstance, pol = Xpolicy, self = Self 〉)
| Self (Y ).Xresult(Y ) )

In order to create a new object, the methodCreate receives a synchronization policy
in Xpolicy and a reply channel inXresult (which is used to return the new created object
to the caller). The methodCreate starts four agents in parallel which are synchronized
through its communicated channels: i)CreateIntermediate sends an intermediate ob-
ject along the channelIntermediate, ii) CreateWrapped takes this object and sends an
intermediate object with empty synchronization wrappers alongWrappedIntermediate,
iii) CreateInstance creates the interface adapter and sends the resulting object along
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NewInstance, and iv)BindPolicy takes this instance, binds it to the given policy, and
establishes the correct binding ofself .

With this implementation, we have anobject-basedapproach of the GSP mecha-
nism because the object creation is parameterized with the actual synchronization policy.
McHale proposed that the synchronization code be class based and the synchronization
policy is part of the class definition. We use an object based approach in order to allow
that different synchronization policies can be assigned to objects of the same class, and
that policies can be changed at run-time.

As mentioned above, a policy is represented as an object (see Figure8.8). The policy
object is a metaobject for the method wrapper objects as well as for the synchronized
object. The method wrapper objects themselves do not have any instance variables. All
method wrapper objects use exclusively the synchronization variables provided by the
policy metaobject. Therefore, the synchronization variables can been seen as class vari-
ables and the policy methods as class methods, respectively.

8.2.3 Observations

Our experiments have shown that the concept of generic synchronization policies is a
promising basis for the definition of higher-level, reusable synchronization abstractions.
The integration of GSPs illustrates that the basic object model is open enough to be easily
extended with additional abstractions, and that the use of meta-level abstractions allows
for an easy and flexible integration of additional abstractions without the need to change
the underlying model. It is important to note that the binding of a GSP only affects the
creation of an object: the external interface of an object remains the same. The orig-
inal specification described in [McH94], however, has a few drawbacks, which will be
discussed in the following.

First of all, GSPs are used to synchronize concurrentobjects, but their instantiation
is restricted toclasses: each instance of a class has the same synchronization code. Due
to the fact that the concept of GSPs is independent of classes, we have extended it in our
modelling in order to decide at object creation time which synchronization policy is bound
to an object. Therefore, it is possible that not all instances of a class are synchronized
using the same synchronization policy.

McHale claims that both external andself calls of methods should be synchronized by
the same synchronization mechanism [McH94], but we argue that there are good reasons
why a single layer/scheme of synchronization is not enough. Both methodsmove and
double of the classPoint modify the state of aPoint instance and, therefore, have to be
considered as writer methods. Hence, in a Readers-Writers policy, only one of these two
methods can be active at a time. However, the body of the methoddouble calls move
in order to update the coordinates of aPoint instance, which implies that two writers
methods have to be active (i.e. the methoddouble invoked by a client and the method
move called bydouble). This is not possible in a Readers-Writers policy, and a call of
double will cause a deadlock situation. In such a situation, McHale proposes to rewrite
the corresponding class in a way that a writer method never calls another writer method
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by introducing unsynchronized private methods (e.g. the classPoint defines a method
doMove which updates the coordinates and is called by bothmove anddouble). How-
ever, from our point of view, changing the implementation of a class is not an acceptable
solution, especially in the context of black-box composition. We argue thatself calls of
methods should be synchronized differently, and in order to guarantee consistency of an
objects internal state, there is a need for a second layer of synchronization. This extension
is a topic for future research.

Similar to the problem ofself calls is the fact that the concept of GSPs does not
take care of method invocations that recursively call other methods of the same object
by external clients (e.g. methodfoo of objectA calls a method of objectB, which calls
methodbar of A). There is no possibility to assign an information to the invocation of
bar that this invocation is a direct cause of the execution offoo, and that it should be
synchronized differently.

Finally, McHale claims that a hybrid concept5 can be implemented using two vari-
ables (a synchronization and a instance variable), and that there are onlyhypothetical
cases where this is not possible. We think that such cases are far form being hypothetical:
consider a bounded container object (e.g. a bounded list) which does not store any dupli-
cates. In such a situation, it is not trivial to consistently update both variables containing
the information about the number of items stored. McHale proposes a work-around for
such situations [McH94], which we think either needs to be revised or the underlying
concept has to be modified.

8.3 Class abstractions

In the previous two sections, we have defined a basic object model in the FORM calculus
(section8.1) and showed how this model can be extended with synchronization abstrac-
tions (section8.2). As a next step towards a common metamodel for object-oriented
abstractions, we introduceclass abstractionswhich allow us to define class metaobjects
in a more natural way (i.e. by using appropriate parameterizations of class abstractions).
We also show thatpolymorphic form extensionis an essential feature for modelling class
abstractions in general and for different flavours of inheritance and method dispatch in
particular.

8.3.1 From pre-methods to generators

Analyzing the class metaobjectsPointClass andBoundedPointClass shown in
Figure 8.4 and 8.5, it becomes clear that the class methodCreateIntermediate
defines thebehaviourof its instances whereasCreate is used to i) instantiate an inter-
mediate object and ii) to establish a correct binding ofself . What prevents us from
defining a generic class methodCreate is the fact that each exported method has to be

5A hybrid concept denotes information that is both needed for synchronization and computation (e.g.
the number of items in a bounded buffer).
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bound to a method defined in the intermediate object by passing an additional parameter
for self (i.e. self-binding for pre-methods).

Cook and Palsberg [CP94] have proposed an approach for modelling classes, mixins,
inheritance etc. using the notion ofgeneratorsandwrappers. A generator, denoted by
G, defines the behaviour of objects (encoded as records) with an unboundself-reference
whereas a wrapper, denoted byW , establishes the correct binding ofself. In fact, a
generator is alambda abstractionoverself (i.e. a function that requires a parameter for
self) and a wrapper is thefixed-point operatorfor the corresponding generator. A similar
approach has also been proposed by Reddy, but the explicit separation between generators
and wrappers is omitted [Red88].

The notion of generators and wrappers can be easily adapted to our basic object model
and allows us to simplify the encoding. We omit the additional parameterself for all
methods and pass theself-reference as a parameter to the methodCreateIntermedi-
ate of the corresponding class metaobject (i.e. pre-methods are replaced bygenerator
methods[CP94]). In order to model the fixed-point operator, we use a different approach:
due to the fact that the correct value ofself is not known when the methodCreateIn-
termediate is invoked, we pass afunctionself which returns the correct binding for
self when it is called (i.e. it returns the contents of the reference cellSelf defined in
the body ofCreate ). This allows us to establish the binding ofself like in the previous
model. As a consequence of this adaptation, the explicit binding of exported methods to
methods defined in the intermediate object can be omitted; we simply return the result
of the correspondingCreateIntermediate call. Therefore, the code for the class
methodCreate is completely generic and can be used for any class metaobject.

As an additional extension to the previous models, we introduce aself-reference for
class metaobjects as well. The reader should note that aself-reference for class metaob-
jects is not needed in this stage of modelling classes. However, we will need this feature
further on in this section in order to enhance flexibility and in particular extensibility.

Refer to Figure8.9for the code of the modified class metaobjectPointClass . The
code forBoundedPointClass is very similar (only the class methodCreateIn-
termediate has to be adapted accordingly) and has therefore been omitted here.

8.3.2 Smalltalk-like behaviour

In the previous section, we have adapted the basic object model in a way that the class
methodCreate is fully generic and can be used for any class metaobject. In this section,
we go a step further and define a generic class methodCreateIntermediate as well.
As a result, we illustrate the specification of a class abstraction which defines the desired
behaviour of the class metaobjects previously used (i.e. dynamic binding ofself-calls,
single inheritance etc.).

Inheritance in many object-oriented programming languages is a mechanism ofin-
cremental derivationof classes. In the previous examples, we have directly modified the
behaviour of a parent-class in order to achieve the required behaviour of a class. From a
different point of view, a subclass can be viewed as an abstraction which specifies how it
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value PointClass =
let

value MetaSelf = emptyRef() {- self reference of class object - }
function Mself() = MetaSelf.get()
value Counter = ref(<val = 0>) {- class variable - }

function CreateIntermediate(Init) =
let

function self() = Init.self() {- helper function - }
value x = ref(<val = Init.x>) {- instance variables - }
value y = ref(<val = Init.y>)

in
Counter.set(<add (<lval=Counter.get().val, rval=1>)>);
<

function X() = x.get(),
function Y() = y.get(),
function move(Args) =

x.set(<add(<lval=x.get().val,rval=Args.dx>)>);
y.set(<add(<lval=y.get().val,rval=Args.dy>)>),

function double() =
self().move(<dx=x.get().val,dy=y.get().val>)

>
end

function Create(Init) =
let

value Self = emptyRef() {- self reference of instances - }
function self() = Self.get()
value NewInstance = Mself().CreateIntermediate(<Init,self=self>)

in
Self.set(<NewInstance>); {- self binding - }
NewInstance

end

value ClassInstance =
<

Create = Create,
CreateIntermediate = CreateIntermediate,
function NoOfPoints() = Counter.get()

>
in

MetaSelf.set (<ClassInstance>);
ClassInstance

end

Figure 8.9: Replacing pre-methods with generator-methods inPointClass .
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differs from its parent-class. This difference may be indicated as a set of changes or as
a delta. In the case of the classBoundedPoint, the set of changes contains the private
instance variableb, the additional methodbound, and the modified methodmove.

In order to formalize the process of inheritance, we use the notion of generators and
wrappers introduced in the previous section. Using the approach of Bracha and Cook
[BC90], we define the generator for a class as the composition of its parent-class gen-
erator (or a collection of parent-class generators in case of multiple derivation) and an
incremental modification, written∆.

Throughout the rest of this chapter, we will use the following notations that facilitate
the presentation of our formalism. These notations can be though of as syntactic sugar
on top of the FORM calculus: there exists a sound interpretation of them in terms of the
primitives of the calculus. The expression{m1(X1) → b1, . . . ,mn(Xn) → bn} denotes
a form with fieldsm1, ...,mn representing methods with the method bodiesb1, ..., bn and
the (keyword-based) formal argumentsX1, ..., Xn, respectively. In fact, this expression
stands for an interface of an active object (i.e. it is represented by a FORM calculus
agent). The projection of a labell of a form valueF is denoted byF.l. The update of a
field l with valuev is denoted by{l = v}. We use the operators⊕ and\ to denote the
polymorphic extension and polymorphic restriction of two forms, respectively. Finally,
we use “let V =e1 in e2” to assign expressione1 to V in e2 andfixX [f(X)] to denote the
least fixed-point of a functionf .

Using ∆Point to stand for the incremental modification defined by classPoint, the
generatorGPoint, the wrapperWPoint, andI denoting the constructor arguments, the class
Point is defined as follows:6

∆Point(I ) = let x=I.x, y=I.y
in

{X()→ x, Y ()→ y,
move(Args)→ x=x+Args.dx; y=y+Args.dy,
double()→ I.self .move({dx=x, dy=y}) }

GPoint(I ) = ∆Point(I )

WPoint(I ) = fix s [GPoint (I⊕{self =s}) ]

Point = {W (I)→WPoint(I), G(I)→ GPoint(I)}

The expressionfix s [GPoint(I⊕{self =s})] yields an object with an appropriately bound
self-reference, which is expressed by the bindingself =s.

The classBoundedPoint, the corresponding incremental modification∆BPoint, gen-
eratorGBPoint, and wrapperWBPoint are defined as follows:

∆BPoint(I) = let b=I.b
in
{ bound()→ b,
move(A)→ if (I.self .Y ()+A.dy) < I.self .bound()

then I.orig.move(A) }

6In order to enhance readability, we have omitted the class variableCounter and methodNoOfPoints.
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GBPoint(I) = let ObjI =Point .G(I)
in

ObjI ⊕ ∆BPoint (I⊕{orig=ObjI})
WBPoint(I ) = fix s [GBPoint (I⊕{self =s}) ]

BoundedPoint = {W (I)→WBPoint(I), G(I)→ GBPoint(I)}

In order to correctly dispatchself-calls and to have a sound interpretation of the inherited
parent behaviour inBoundedPoint, the abstraction∆BPoint requires two parameters:self
(the argumentI contains a binding forself ) andorig that gives access to the inherited
behaviour. Note that i) the generatorGBPoint defines a composition of the intermediate
objectObjI (instantiated by the generatorGPoint) and the intermediate object generated
by ∆BPoint and ii) the application of the fixed-point operator inWBPoint onGBPoint (i.e.
the composition of both intermediate objects) ensures a correct binding ofself within the
resulting object [LSN96].

Analyzing the examples, we can see that the two wrappersWPoint andWBPoint are
almost identical: they only differ in the used generator. Furthermore, the composition of
the two intermediate objects inGBPoint is very similar to the way inheritance is defined
in Smalltalk [GR89], and it can be assumed that the underlying inheritance mechanism
does not differ in the same semantic model. Hence, by appropriately parameterizing the
corresponding generators and wrappers, the sameG andW abstractions can be used for
different classes.

This observation motivates the definition of the class abstractionClass which specifies
a Smalltalk-like class model as follows (we useλX → b to denote an anonymous function
with parameterX and function bodyb):

Class(A) = fix Mself [ λMself →
{ G(I) → let ObjI =A.P.G(I) in ObjI ⊕ A.∆(I⊕{orig =ObjI}),
W (I) → fix s [ Mself .G({init =I, self =s}) ] } ⊕ A ]

Class is afunctionwhich expects a keyword-based argumentA with appropriate bindings
for ∆ andP denoting the incremental modification and the parent-class for a class to
be defined, respectively. Evaluating this function yields a class metaobject withself-
referenceMself .

The implementation of the class abstractionClass shown in Figure8.10corresponds
to the abstractionClass defined above:CreateIntermediate implements the gen-
erator behaviourG whereasCreate corresponds to the wrapperW . Although the class
methodCreateIntermediate is exported under its required name, it is internally
defined asSmallIntermediate . This is a naming convention for the fact that the ab-
stractionClass defines a Smalltalk-like class model (i.e. dynamic binding ofself-calls,
direct invocation of inherited methods, single inheritance etc.) and that it is possible to
distinguish it from other generators with different behaviour.

Note that aclosureis used to define the appropriate behaviour ofSmallInterme-
diate : the body refers to both the functionDelta and the class metaobjectparent
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passed as an argument toClass . Furthermore, the order of the label bindings for the
valueClassInstance does not matter if we only consider the abstractionClass on
its own, but it is important for further extensions and adaptations.

In order to break the recursion in the generators (i.e. the generator of a classC always
refers to the generator of its parent-class), it is necessary to introduce a common ancestor
for all classes which acts as the root of the class hierarchy and defines appropriate default
behaviour.7 For our modelling purposes, we have chosen a similar approach as is used in
Smalltalk: althoughObject is the root of the hierarchy, it is still defined using the ab-
stractionClass . It internally defines an incomplete class metaobjectTop which breaks
the the recursion ofCreateIntermediate calls (refer to Figure8.11for details). The
methodDeltaInner of Object is used for Beta-style inheritance (see section8.3.4).

Given a functionDelta and parent-classparent , Class creates a class metaobject
with the desired behaviour for both instance creation and incremental derivation. There-
fore, the class metaobjectPointClass can be created as follows:

value PointClass = Class (
let

value Counter = ref(<val = 0>)
in

<
parent = Object,
function Delta(Init) = ...

{- same code as CreateIntermediate in Figure 8.9 - }
function NoOfPoints() = Counter.get()

>
end

)

The code forBoundedPointClass is very similar, and theDelta defines i) the pri-
vate instance variableb and ii) the code for the two methodsmove andbound. However,
in contrast to the code given in Figure8.5, Delta does not make any explicit reference to
its parent-classPointClass ; the parent-class is specified using the parameterparent
passed to the abstractionClass .

It is important to note that the behaviour of the instances of a class is not fully specified
by the abstraction∆ and the parent-class. As we will show in the next sections,∆ only
defines thedifferencewith respect to the parent-class, but does not specify howself-calls
are dispatched.

8.3.3 Static and dynamic binding

In the previous section, we have illustrated that a combination of (parameterized) deltas,
generators, and fixed-point operators can be used to define a Smalltalk-like class model.

7Not all object-oriented programming languages have such a root class as a common ancestor to all
classes (e.g. C++). However, it is considered to be good practice to introduce a user-defined root class for
developing frameworks and applications in these languages.



160 CHAPTER 8. MODELLING OBJECTS IN THE FORM CALCULUS

function Class(Args) =
let

value MetaSelf = emptyRef() {- self reference of class object - }
function Mself() = MetaSelf.get() {- helper abstraction - }

function SmallIntermediate(Pars) = {- definition of inheritance - }
let

value ParentIntermed = Args.parent().CreateIntermediate(<Pars>)
in

< {- polymorphic form extension - }
ParentIntermed,
Args.Delta(<Pars, orig = ParentIntermed>)

>
end

function Create(Init) = {- default constructor - }
let

value Self = emptyRef() {- self reference of instances - }
function self() = Self.get() {- helper abstraction - }

value NewInstance =
Mself().CreateIntermediate(<init=Init,self=self>)

in
Self.set(<NewInstance>); {- binding of self - }
NewInstance

end

value ClassInstance =
< {- meta abstraction for inheritance - }

CreateIntermediate = SmallIntermediate,

{- default constructor - }
Create = Create

{- userdefined parameters and methods - }
Args

>
in

MetaSelf.set(<ClassInstance>);
ClassInstance

end

Figure 8.10: Class abstraction for a Smalltalk-like class model.
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value Object = Class (
let

value Top = < function CreateIntermediate(Pars) = <>>
in

<
parent = Top,
function Delta(Init) = <>,
function DeltaInner() = <>

>
end

)

Figure 8.11: ClassObject as a common ancestor of all classes.

Interestingly enough, the same concepts and operators can also be applied to define i)
pure static and ii) a mixture of both static and dynamic method dispatch (as it is available
in C++ [Str91]). In this section, we discuss how the concepts and operators can be used to
achieve this behaviour and present the encoding of the corresponding class abstractions.

In the models presented in section8.1, static method dispatch could only be achieved
by declaring the corresponding method in the scope of the object factory and calling it
directly (refer to section8.1.4for details). However, calling such a method using aself-
call still results in dynamic dispatch. In order to prevent a dynamic dispatch in the context
of a subclass, we have to find a different solution.

As a possible solution to achieve the desired behaviour, we simply move the fixed-
point operator into the generator:

StaticClass(A) = fix Mself [ λMself →
{ G(I) → fix s [ let ObjI =A.P.G(I⊕{self =s}) in

ObjI ⊕ A.∆(I⊕{orig =ObjI , self =s}) ],

W (I) → Mself .G({init =I}) ] } ⊕ A ]

In contrast to the generator used for the abstractionClass, the generator ofStaticClass is
not an abstraction overself , as an object with an already boundself-reference is returned
(i.e. self within the object created by the generator always refers to itself, and not to the
overall object it is part of). This solution has several advantages:

• self-calls within the object created by the generator always refer to itself, regardless
in which (parent-)class the receiver is defined,

• it integrates smoothly into the existing model, and

• the corresponding class abstraction can be defined in PICCOLA(F) as a simple ex-
tension of the previously defined abstractionClass (refer to Figure8.13).
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ParentIntermediate

Intermediate
parent parent

Delta DeltaS selfself

Figure 8.12: Intermediate object created by the generator ofC ++Class.

Note that this encoding only ensures static method dispatch forself-calls for the object
created by the generator;self-calls made “outside” this object (e.g. an overridden method
in a subclass calls another overridden method) are not affected by a static method dispatch.

A class abstractionC ++Class which allows for a mixture of both static and dynamic
method dispatch can be encoded similarly. However, such a class abstraction requires
two deltas: one delta for methods to be dynamically dispatched and a second delta for
methods with static dispatch. In the following, we denote the former as∆ and the latter
as∆s, respectively. Again, we apply a fixed-point operator in the generator to achieve
static method dispatch:

C ++Class(A) = fix Mself [ λMself →
{ G(I) → fix s [ let self ′=I.self ⊕s,ObjI =A.P.G(I⊕{self =self ′}) in

ObjI ⊕ A.∆s(I⊕{orig =ObjI , self =self ′}) ⊕
A.∆(I⊕{orig =ObjI , self =self ′}) ],

W (I) → fix s [ Mself .G({init =I, self =s}) ] } ⊕ A ]

The generatorG illustrated above composes the locally definedself-reference (denoted
by s) with the self-reference passed as parameterI.self in order to define the correct
notion of self (denoted byself ′) passed to both∆ and∆s. The expressionI.self ⊕ s
gives precedence to the methods which are statically bound, andfix s ensures that in the
resulting intermediate object, statically bound methods are dispatched in the desired way.
Note that the generator is an abstraction overself and, therefore, behaves correctly in the
context of incremental derivation. Figure8.12illustrates the behaviour of this generator
(Delta andDeltaSdenote the (intermediate) objects created by∆ and∆s, respectively;
the empty circle on the left-hand side without an attached arrow indicates thatself for
theDelta “subobject” is still unbound).

The encoding of the class abstractionC ++Class is shown in Figure8.13(the encoding
of StaticClass is similar and has therefore been omitted here). The locally defined refer-
ence cellnewSelf corresponds to the encoding ofs whereas the functionself encodes
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function CppClass(Args) =
let

function CppIntermediate(Pars) = {- definition of inheritance - }
let

value newSelf = emptyRef() {- local self reference - }
function self() = <Pars.self(), newSelf.get()>

value PI =
Args.parent().CreateIntermediate(<init=Pars.init,self=self>)

value Stat = Args.DeltaS(<init=Pars.init,self=self,orig=PI>)

value NewInstance =
< {- polymorphic form extension - }

PI,
Stat,
Args.Delta(<init=Pars.init, self=self, orig=PI>)

>
in

newSelf.set(<Stat>); {- bind static self calls - }
NewInstance

end
in

Class(<Args, CreateIntermediate = CppIntermediate>)
end

Figure 8.13: Class abstraction for both static and dynamic method dispatch.

the composition ofI.self ands. Due to the fact that (like in the Smalltalk class model)
the wrapper abstraction is not changed, it is possible to define the abstractionCppClass
as a simple extension ofClass ; only the generator has to be adapted. The expression

Class (<Args, CreateIntermediate = CppIntermediate>)

creates a class metaobject with a Smalltalk-like behaviour, but since the binding for
CreateIntermediate is overridden, the required behaviour is achieved (i.e. due
to the way the class abstractionClass is defined, the overriddenCreateInterme-
diate is both exported and called in the body ofCreate ).

8.3.4 Beta-style inheritance

Inheritance in the programming language Beta is designed to provide security from re-
placement of a method by a completely different method [MMPN93]. Beta supports
inheritance byprefixing of definitions and employs a single definitional construct, the
pattern, to express types, classes, and methods. We will use the example given below in
order to explain the notion of Beta-style inheritance:8

8A reader familiar with Beta may notice that a slightly simplified syntax is used.



164 CHAPTER 8. MODELLING OBJECTS IN THE FORM CALCULUS

Person: class
(# name: string;

display: virtual proc
(# do name.display; inner #);

#);

Graduate: classPerson
(# degree: string;

display: extendedproc
(# do degree.display; inner #);

#);

The definition of the patternGraduate is said to beprefixedby the patternPerson. In
terms of Beta,Person is thesuperpatternof Graduate whereasGraduate is asubpattern
of Person. The methoddisplay is declared to bevirtual which means that it can be
extendedby a subpattern. However, this does not mean that it can be arbitrarily redefined,
as we discuss below.

The behaviour of the methoddisplay of the patternPerson is to display the attribute
name and then to perform theinner statement. ForPerson, which has no inner be-
haviour, theinner statement is simply a null operation. When a subpattern ofPerson is
defined, theinner statement will execute the corresponding methoddisplay in the sub-
pattern.

The subpatternGraduate extends the behaviour of the methoddisplay of the pattern
Person by supplying inner behaviour. For an instance of the patternGraduate, the initial
effect of an invocation ofdisplay is the same as for an instance ofPerson: the original
method ofPerson is executed. After the attributename is displayed, the inner procedure
supplied byGraduate is executed in order to display the attributedegree defined in
Graduate. The use ofinner within Graduate is again interpreted as a null operation; it
only has an effect if the methoddisplay is extended in a subpattern ofGraduate.

In order to formalize the interpretation of a class abstractionBetaClass for a Beta-
style class model, we will again use an approach of generators and wrappers:

BetaClass(A) = fix Mself [ λMself →
{ G(I) → let ObjI =A.∆(A.P.∆Inner()⊕ A.∆Inner()⊕ I) in

ObjI ⊕ A.P.G (I⊕ObjI)} ),

W (I) → fix s [ Mself .G({init =I, self =s}) ] } ⊕ A ]

The generator of the abstractionBetaClass asymmetrically composes the modifica-
tions specified by∆ with the behaviour specified by the superpattern (denoted by
A.P.G(I ⊕ObjI) above). This ensures that the prefix methods have precedence over
the suffix methods. Furthermore, the generator requires an additional abstraction∆Inner

(specifying a set ofnull methodsfor all methods defined in∆ [BC90]), which is passed to
the abstractionBetaClass together with∆ andP . Note that this Beta-specific extension
substantially benefits from the keyword-based argument passing of the underlying FORM
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function BetaClass(Args) =
let

value MetaSelf = emptyRef()
function Mself() = MetaSelf.get()

function BetaIntermediate(Pars) = {- definition of inheritance - }
let

value Inner = <Args.parent().DeltaInner(), Args.DeltaInner()>
value SelfDelta = Args.Delta (<Inner, Pars>)

in
< {- polymorphic form extension - }

SelfDelta,
Args.parent().CreateIntermediate(<Pars, SelfDelta>)

>
end

in
Class (<Args, CreateIntermediate = BetaIntermediate>)

end

Figure 8.14: Class abstraction for a Beta-style class model.

calculus. Using the composition of two objects with null methods in the generator (i.e.
the subexpressionA.P.∆Inner()⊕A.∆Inner()) guarantees the correct execution of aninner
statement if no subpattern is specified.

The specification ofBetaClass does not directly encode the restriction thatinner
within a method can only refer to the suffix method with the same name. In this sense, the
inner construct of Beta is less general than the “corresponding”superconstruct found in
Smalltalk, but the restriction is justified by the desire for security.

The encoding of a class abstraction supporting a Beta-style class model is given in
Figure8.14and is a straightforward mapping ofBetaClass into PICCOLA(F). Note that
we again use the extensibility of the abstractionClass in order to define the abstraction
BetaClass as a simple extension. The encoding of the patternsPerson andGraduate
immediately follows from the pattern definitions given above and have therefore been
omitted here.

8.3.5 Multiple inheritance

As the last abstractions in this section, we briefly discuss the influence of generators
and wrappers for defining class abstractions for multiple inheritance. In object-oriented
programming languages that support multiple inheritance, multiple parents of a class can
have instance variables or method with the same name (also known as the phenomenon
of name collisions). To deal with these name collisions, various mechanisms have been
proposed, but these solutions generally restrain software reusability (refer to [VLM96]
for a survey). In this work, we do not intend to discuss all the mechanisms and the related
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consequences; we only illustrate how the basic ideas of some of these mechanisms can be
adapted to the concepts of generators and wrappers.

As a first approach, consider the class abstractionMultipleClass which requires two
parent-classes (denoted byP1 andP2, respectively):

MultipleClass(A) = fix Mself [ λMself →
{ G(I) → let ObjI1 =A.P1.G(I),ObjI2 =A.P2.G(I) in

ObjI1 ⊕ObjI2 ⊕ A.∆(I⊕{orig1 =ObjI1 , orig2 =ObjI2}),
W (I) → fix s [ Mself .G({init =I, self =s}) ] } ⊕ A ]

The∆ requires two parameterorig1 andorig2 in order to separately access the intermedi-
ate objects created by both parent-classes. Furthermore, the formalism “hard-wires” that
in case of a name collision, the methods of the second parent-class have precedence over
methods of the first parent. This scheme is applied by several object-oriented program-
ming languages (e.g. Python [vR96]). However, the formalism does not specify how to
proceed in the case of repeated inheritance (i.e. an ancestor class is inherited multiple
times).

In the context of subobject-based inheritance, Rossie et. al define the notion ofshared
andreplicatedmultiple inheritance [RFW96]. Adapting these notions to our view of in-
heritance, shared multiple inheritance means that only a single generator-object of a mul-
tiply inherited parent-class is created (which issharedby the corresponding subclasses),
whereas in the replicated case, generator-objects are created multiple times.

A class abstraction for replicated multiple inheritance corresponds to the scheme of
the formalism illustrated above and will not be further discussed. In the following, we
will explain why a class abstraction for shared multiple inheritance cannot be expressed
as a combination of the generators as they have been defined so far and that a splitting of
the functionality intopre-andpost-generators is necessary.

Reconsider the classHistoryBoundedPoint as a multiple heir of the classPoint,
which includes the functionality of both the classesBoundedPoint andHistoryPoint.
In order to get the desired behaviour, i) the instance variablesx andy and the method
move that occurred in the classPoint should be shared whereas ii) the two different spe-
cializations of the methodmove should be combined.

The first requirement (sharing of common attributes) could be achieved by calling the
generator of the classPoint only once and pass this (unique) generator-object to both
the generators ofBoundedPoint andHistoryPoint. However, this is not possible as a
generator is not an abstraction overP . Therefore, we have to split the functionality into
a pre- and post-generator: the former is an abstraction overself and a parent generator
PG whereas the latter specifies the binding for the class generator to be used. Hence, the
class abstractionMultipleClass ′ can be defined as follows:
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MultipleClass ′(A) = fix Mself [ λMself →
{ Gpre(I) → let ObjI =I.PG(I) in ObjI ⊕ A.∆(I⊕{orig =ObjI}),
Gpost(I) → let PM

G (Y )=A.P1.G(Y )⊕ A.P2.G(Y ) in
PM
G (I)⊕Mself .Gpre(I⊕{PG(X)→ PM

G (X)}),
W (I) → fix s [ Mself .G({init =I, self =s}) ] } ⊕ A ]

Although the abstractionMultipleClass ′ specifies the same behaviour asMultipleClass
(this is ensured by the local abstractionPM

G defined in the post-generatorGpost), it is much
easier for adaptation to different inheritance models as simply the abstractionPM

G needs
to be redefined in order to reflect an adaptation.

In case of shared multiple inheritance, for example, the abstractionPM
G of the corre-

sponding class i) parses his ancestor hierarchy in order to find multiple occurrences of the
same ancestor class(es), ii) defines an order in which the pre-generators of his ancestor
classes have to be called (similar to the computation of the class precedence list in CLOS),
and iii) calls the pre-generators with appropriate parameters.

As we already pointed out in section8.3.2, the required behaviour cannot be achieved
by simply calling the∆ abstractions of the parent-classes with appropriate parameters, as
∆ only defines thedifferenceto the parent-class(es), but does not specify howself-calls
have to be dispatched.

The second requirement (combination of the methodsmove) is not solved by splitting
the generator functionality. Its easy to show that the required behaviour of the method
move cannot be achieved as simple combination of two parent calls and that at least a
part of the functionality of one of the inheritedmove methods has to be reimplemented
in the classHistoryBoundedPoint.

As a summary, we conclude that i) generators and wrappers as they were previously
defined do not have enough expressive power to cope with (shared) multiple inheritance
and ii) a splitting of the functionality of a generator into a pre- and post-generator only
solves some of the problems of multiple inheritance models (e.g. the problem of name
collisions is not fully solved). Luckily, as we will discuss in the next section, there is a
solution to most of the remaining problems based on the notion ofmixins.

8.4 Mixins

In order to overcome some of the problems with multiple inheritance, several authors have
proposed the notion ofmixins[BC90, Coo89, VLM96]. The concept of mixins was first
introduced in LISP-based languages like Flavors and CLOS as a special use of the already
present multiple inheritance mechanism. In this approach, a mixin is regarded as anab-
stract subclass, a class definition that may be applied to different parent-classes to create
a related family of modified classes. More specifically, a mixin is a class without specified
parent-class and is usually intended to support some aspect of behaviour orthogonal to the
behaviour supported by other classes.
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From a different point of view, mixins cannot be considered as a special case, but
rather as the supporting mechanism for inheritance. Therefore, Bracha and Cook defined
the termmixin-based inheritance[BC90]. The essence of mixin-based inheritance is to
view mixins as stand-alone entities that can be used (ormixed-in) for the construction of
different classes. In this approach, a class is obtained as acompositionof mixins and can
be considered as an entity which does not refer to its (still unbound) parent-class.

An important difference between mixin-based inheritance and mixins in CLOS is the
way parent-classes are merged during inheritance.

• In CLOS, the ordering of this merging is determined by a linearization algorithm,
which can be altered by using the CLOS metaobject protocol [KdRB91]. Each an-
cestor of a given class occursonly oncein the resulting linearized inheritance graph.
This may result in an unexpected and sometimes even non-intuitive behaviour.

• In mixin-based inheritance, a programmer has explicit control over the lineariza-
tion: the inheritance chain is madeexplicit. This avoids unforeseen insertions of
mixins between a class and its parent(s), and the resulting behaviour is hardly un-
expected or non-intuitive.

Explicit control also allows the same mixin to occur more than once in an inher-
itance chain: the construction of the classDoubleBoundedPoint, for example,
requires the mixinBound to be mixed-in twice (refer to section8.5).

In this section, we will define the notion of mixins, mixin application, and mixin
composition as the main mechanisms of mixin-based inheritance, using the concepts of
wrappers and generators. We also discuss different examples of mixin abstractions and
show how the classes of our sample hierarchy can be defined using mixin application and
composition.

As an extension of the mixin concept, one could think of upgrading linear mixin-
based inheritance tomultiplemixin-based inheritance by providing a mixin with multiple
parametrical parent variables. However, such an approach would undo the linear property
of mixins and, consequently, reintroduce the same problems multiple inheritance suffers
from. Therefore, for the rest of this work, we will only consider mixin abstractions with
a single parent parameter.

8.4.1 Basic mixin abstraction

In our model, a mixin is anabstract subclass(i.e. a class definition with an unbound
parentP ). Hence, like classes, mixins are represented as first-class values (i.e.mixin
metaobjects). The binding of the unbound parentP of a mixinM is established byap-
plyingmixin M to a classD, written asM ∗D. In fact, applying a mixinM to a classD
results in a new class which combines the behaviour of bothM andD with precedence
of the behaviour ofM .

There are several possibilities how mixins can be defined in terms of generators and
wrappers, but we have opted for a solution where the generator for a mixin is defined as an
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abstraction overself and a parentP . Furthermore, in a first approach, a mixin application
M ∗D is encoded asM.A(D). Hence, a mixin abstractionMixin (supporting Smalltalk
semantics) is defined as follows (in order to simplify the formalism, we do not distinguish
between a pre- and a post-generator):

Mixin(X) = fix Mself [ λMself →
{ G(I) → let ObjI =I.P.G(I) in ObjI ⊕X.∆(I⊕{orig =ObjI}),
A(D) → Class(A⊕ {P =D}),
W (I) → fix s [ Mself .G({init =I, self =s ,P =I.P}) ] } ⊕X ]

In general, defining a wrapper for a mixinM is useless since a mixin only specifies
partial behaviour of objects. However, defining a mixin wrapper as an abstraction over a
parent-classP allows us to define instances ofanonymous classesM ∗ P . Anonymous
classes are useful if only a single instance is needed. This approach can be compared
to anonymous lambda abstractions found in functional programming languages and has
been adopted in the wrapperW defined above.

The abstractionMixin illustrated in Figure8.15corresponds to a PICCOLA(F) en-
coding of the abstractionMixin defined above. Note that the mixin methodApply used
to encode mixin application (i.e. the methodA used above) explicitly calls the abstraction
Class in order to implement mixin application. Hence, applying mixin metaobject to a
class metaobject yields a new class metaobject with a Smalltalk-like behaviour. For mixin
abstractions with different method dispatch strategies, the same techniques can be applied
as discussed in section8.3.3(e.g. moving the fixed-point operator into the generator).

8.4.2 Mixin composition

In the previous section, we have discussed mixin application as the first mechanism of
mixin-based inheritance: applying a mixin to a class results in a new class which combines
the behaviour of the two abstractions. However, as we have already pointed out in the
introduction to mixins, it is possible to take mixins as the primary definitional construct
and define inheritance asmixin composition. A class is simply viewed as a degenerate
mixin that does not refer to its parent parameter and defines all attributes that it refers to
in itself. The termcompletemixin is often used as an acronym for class.

The operator∗we have introduced above is in fact nothing else than a general-purpose
mixin compositionoperator. Mixin composition takes two mixinsM1 andM2 and yields
a composite mixinM1 ∗ M2 which combines the behaviour ofM1 andM2, but gives
precedence to the behaviour ofM1. The reader should note that, by definition, mixin
application and composition are associative: applying a composed mixinM1,2 = M1∗M2

to a classD, then the resulting classD′ = (M1 ∗M2) ∗D is equivalent to applyingM1 to
the application ofM2 toD (i.e. (M1 ∗M2) ∗D = M1 ∗ (M2 ∗D)).

There are several options how mixin composition can be integrated into the abstraction
Mixin. We have opted for the solution to use a single concept for both mixin composi-
tion and application and defined the concept of acomposer abstractionC. A composer
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function Mixin(Args) =
let

value MetaSelf = emptyRef()
function Mself() = MetaSelf.get()

function MixinIntermediate(Pars) =
let

value ParentIntermed = Pars.parent().CreateIntermediate(<Pars>)
in

< {- polymorphic form extension - }
ParentIntermed,
Args.Delta(<Pars, orig = ParentIntermed>)

>
end

function Create(Init) =
let

value Self = emptyRef()
function self() = Self.get()
value NewInstance = Mself().CreateIntermediate (

<init=Init, self=self, parent=Init.parent()>)
in

Self.set(<NewInstance>);
NewInstance

end

function Apply(Parent) = {- mixin application - }
Class(<Args, parent = Parent>) {- explicit Class call - }

value MixinInstance =
< {- mixin meta abstractions - }

Apply = Apply,
CreateIntermediate = MixinIntermediate,

{- other meta abstractions - }
Create = Create,

{- user-defined parameters and methods - }
Args

>
in

MetaSelf.set(<MixinInstance>);
MixinInstance

end

Figure 8.15: Mixin abstraction with dynamic method dispatch.



8.4. MIXINS 171

abstraction is a meta-level operation for both class and mixin metaobjects and takes as ar-
gument the left-hand side operand of a mixin application or composition. Hence,M ∗D
is modelled asD.C(M) whereasM1 ∗M2 is encoded asM2.C(M1). This approach al-
lows us to omit a polymorphic class methodA and the corresponding explicit call of the
abstractionClass.

Both mixin application and composition require a distinguished composerC. In case
of the abstractionClass, the composerC is defined as follows:

C(M) = let Gcomp(X)=M.G(X⊕{P =Mself }) in
Class ({G(I)→ Gcomp(I)})

Note that the composer abstractionC creates a new class metaobject by solely passing
a generatorG to the abstractionClass. This is possible as the corresponding protocol
i) is based on keyword-based parameter passing and ii) enables overriding of the default
generator behaviour.

The code of the methodCompose for Class corresponds to the formalism defined
above: it i) creates an new generatorComposedIntermediate based on its own gen-
erator and the generator of the mixin it is applied to and ii) instantiates an new class
metaobject using the new generator (there remaining code forClass is unchanged and
corresponds to the code shown in Figure8.10):

function Compose(Other) =
let

function ComposedIntermediate(Pars) =
Other.CreateIntermediate (<Pars, parent = Mself()>)

in
Class (< CreateIntermediate = ComposedIntermediate >)

end

In case of mixin compositionM1 ∗ M2, the situation is different. In the composite
mixin, the parent ofM1 has to refer toM2 whereas the parent ofM2 will be bound to a
class, sayD, by a final mixin application (e.g.(M1 ∗M2)∗D). Therefore, the abstraction
Mixin is adapted as follows:

Mixin(A) = fix Mself [ λMself →
{ G(I) → let ObjI =I.P.G(I) in ObjI ⊕ A.∆(I⊕{orig =ObjI}),
C(M) → let Gcomp(X)=M.G(X ⊕ {P =X.P.C(Mself )}) in

Mixin ({G(I)→ Gcomp(I)}),
W (I) → fix s [ Mself .G({init =I, self =s ,P =I.P}) ] } ⊕ A]

The PICCOLA(F) code forMixin is a straightforward encoding of the abstractionMixin
defined above and has therefore been omitted here.

The reader should note that mixin composition (and application) based on composition
of generators behaves correctly for any method dispatch strategy (e.g. if a mixinM1 uses
static method dispatch, also its composition with a mixinM2 and its application to a class
D uses static method dispatch). This is not the case if mixin composition (and application)
is based on∆ abstractions alone.
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HistoryPoint = History ∗ Point

BoundedPoint = Bound ∗ Point

HistoryBoundedPoint = (History ∗ Bound) ∗ Point

LinearBoundedPoint = (Linear ∗ Bound) ∗ Point

Table 8.1: Point class hierarchy using mixin application and composition.

8.4.3 Examples revisited

The abstractionMixin allows us to define all subclasses of the classPoint (except the
classDoubleBoundedPoint) using mixin application and composition. In order to do so,
we implement the mixinsHistory, Bound, andLinear. The mixinHistory is defined as
follows (the other two mixins are similar):

value History = Mixin (
<

function Delta(Pars) =
let

function self() = Pars.self()
value orig = Pars.orig()

in
<

function move(Args) =
PrVal(<self().X()>); PrVal (<self().Y()>);
orig.move(<Args>)

>
end

>
)

Note that the methodmove does not need to access the formal argumentArgs and simply
passes it on to the methodmove of the parent-class.

Given the classPoint as defined in section8.3.2, the classHistoryPoint is a simple
application of the mixinHistory to Point. For the classHistoryBoundedPoint, it is
necessary to decide which of the to mixinsHistory andBound should have precedence:
due to the fact that mixin composition is not commutative, the order of the mixins matters
and the resulting classes do not have the same behaviour. For the rest of this work, we
assume that the mixinHistory has precedence over the mixinBound. A summary of the
resulting mixin applications for the point class hierarchy is shown in Table8.1.

Note that the classDoubleBoundedPoint cannot be defined using the mixin abstrac-
tions we have illustrated so far: it requires anencapsulation operatorwhich will be dis-
cussed in section8.5.
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8.4.4 Singleton mixin

Sometimes it is desirable (or even necessary) to have only one instance of a particular
class. As an example, consider a single window manager for a windowing environment.
In such a situation, this class has to fulfill the specification of asingletonbehaviour,
which has been described as a pattern in [GHJV95]. TheSingletonpattern makes a class
responsible for keeping track of its sole instance, providing the only access point to that
instance, and preventing the creation of multiple instances.

Several variations of the Singleton pattern have been described (refer to [GHJV95] or
[ABW98] for details), but all these descriptions assume that the singleton class has to be
designed from scratch. If this is not the case (i.e. a class defining the desired functionality
already exists, but it does not specify a singleton behaviour), it is necessary to define a
glue abstraction which adapts the class accordingly.

Another problem of existing solutions is that a singleton class requires special usage,
as the access point for the singleton instance is in general not a simple constructor call
(e.g. the solution described in [GHJV95] uses a static class method).

In Figure 8.16, a mixin Singleton is shown which i) defines singleton be-
haviour and ii) overcomes the two problems discussed above. More precisely, the mixin
Singleton defines agenericglue abstraction which cannot only be applied to classes,
but also to mixins. In both cases, the resulting abstraction (either a class metaobject or
a mixin metaobject) has the required behaviour. In order to treat singleton classes like
any other class, instances can be created by calling the methodCreate . However, the
implementation of the corresponding generator ensures that a call toCreate always re-
turns a reference to the same object. Therefore, the access point to the singleton instance
is simply the constructor of the corresponding class.

The generatorG of the mixinSingleton can be formalized as follows:

G(I) = 3 [ I.P.G(I) ]

Applying the operator3 to a functionf implies thatf behaves like a function that always
returns the result of the first function call (similar to aoncefunction in Eiffel [Mey92]).
The reader should note that the concept of aoncefunction, that is not state-independent,
does not exist in a pure functional formalism. There exist a variety of approaches to in-
troduce state in a pure functional formalism, but the concept ofmonadsis probably the
best-known [Mog89, Wad92]. In the FORM calculus, however, an abstraction to gener-
ate aonce function can be easily defined usingreference cells(refer to Figure8.16 for
details).

The composer abstractionC of the mixinSingleton is formalized as follows:

C(M) = let Gcomp(X)=3 [M.G(X ⊕ {P =X.P.C(Mself )}) ] in

Mixin ({G(I)→ Gcomp(I), C(M)→ C(M)})

Note that the mixinSingleton defined in Figure8.16is not a mixin abstraction, but
a single value (i.e. there is only one mixin “instance” available): it is the only instance of a
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locally defined mixin abstractionTSingleton . TSingleton can be considered as an
adaptation of the abstractionMixin : it overrides the methodCompose. Internally, the
mixin Singleton defines a abstractionSingletonIntermediate which defines a
singleton-generator factory and encodes the3 operator. In order to simplify the encoding,
the methodCreate of TSingleton has been omitted in Figure8.16.

Another problem with existing solutions appear in the context of inheritance. Our
approach ensures that if a classC ′ is a subclass of a singleton classC, all instances ofC ′

share a single generator-object ofC. The behaviour defined in∆ of C ′ is not shared due
to the inheritance model we use.

However, using a theSingleton mixin as the right-hand side argument of a mixin
composition, the resulting mixin preserves the singleton behaviour. This is due to the
definition of the composerC which i) applies a3 operator to the composite generator
Gcomp and ii) overrides the default composer behaviour of the abstractionMixin.

As a brief summary, we conclude that singleton behaviour can be expressed as an
application of a3 operator to a composition of generators. In contrast to other meta-
level approaches for singleton behaviour, where a singleton class has to be an instance
of specific singletonmetaobject class, the approach using mixins does not have such a
requirement and, therefore, enhances the reuse of existing classes. This approach also
conforms to the intention of mixins to support some aspect of behaviour orthogonal to the
behaviour supported by other classes or mixins.

8.5 Applying form restriction

The encodings of the class and mixin abstractions defined in the previous sections could
have also been modelled in theπL-calculus, since we did not use form restriction nor
matching. In this section, however, our modellings go beyond theπL-calculus: we
present the encoding of an encapsulation operator which heavily depends on polymor-
phic form restriction.

In the literature, the termencapsulationhas been employed with different meanings.
For the rest of this work, encapsulation is used forattribute hiding. Encapsulating at-
tributes is generally accepted as an important mechanism of object-oriented software en-
gineering. Due to a conflict of interests, the interaction between encapsulation and incre-
mental modification (inheritance, mixin composition and application) is very delicate. On
one hand, a subclass should have the possibility to override the implementation attributes
of its parent-class whereas on the other hand, a subclass should not have access to the
implementation details of its parent.

In software engineering it is desirable to have the opportunity to write the code of
a class and its parent-class(es) independently (after having specified the necessary inter-
faces and interaction protocols). However, the use of protected and private attributes (as it
is available in the programming language C++) exhibits a conflict between data encapsu-
lation and reusability interests [VLM96]. Therefore, a more general mechanism is needed
that allows the possibility to restrict the visibility of attributes towards the interiors of a
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value Singleton =
let

value MetaSelf = emptyRef()
function Mself() = MetaSelf.get()

function SingletonIntermediate() = {- helper abstraction - }
let

value first = ref(<true>)
value single = emptyRef()

in
< function CreateIntermediate(Pars) =

if first.get() then
single.set(<Pars.parent().CreateIntermediate(<Pars>)>);
first.set(<false>); single.get()

else
single.get()

end >
end

function Apply(Other) = Other.Compose(<Mself()>)

function SingletonCompose(Pars) = {- singleton composition - }
let

value TmpIntermediate = SingletonIntermediate()
function ComposedIntermediate(Other) =

let
value MPI=Pars.parent().Compose(<Mself(),TmpIntermediate>)

in
Other.CreateIntermediate(<Pars, parent = MPI>)

end
in

Mixin (<CreateIntermediate = ComposedIntermediate,
Compose = SingletonCompose>)

end

value SingletonInstance =
<

SingletonIntermediate(), Compose = SingletonCompose,
Apply = Apply

>
in

MetaSelf.set(SingletonInstance);
SingletonInstance

end

Figure 8.16: Source code of singleton mixin.
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class. In the following, we will discuss the notion of anencapsulation operator(originally
defined in [VLM96]) and show how it can be integrated into our FORM calculus-based
object model.

The encapsulation abstraction defined in our model can be seen as a variant of the
hide operator presented by Bracha and Lindstrom [BL92]. It ensures that encapsulated
methods become invisible to any client of a class or mixin encapsulation is applied to.
Intuitively, encapsulating a methodfoo of a classD consists of i) replacing dynamically
dispatchedself-calls to foo by statically dispatched calls and ii) removingfoo from the
intermediate object created by the corresponding generator.

The abstractionEncapsulate defined below is similar to the abstractionMixin pre-
sented previously: it is only an abstraction over∆. In fact, a metaobject created by
Encapsulate (i.e. anencapsulation metaobject) has to be considered as a mixin metaob-
ject and, therefore, can be applied to classes or composed with other mixins. However,
in contrast to the class and mixin abstractions, the purpose of∆ is different as it does not
specify an incremental behaviour, but the set of methods to be encapsulated.

Encapsulate(A) = fix Mself [ λMself →
{ G(I) → fix s [let self ′=I.self ⊕s,ObjI =A.P.G(I⊕{self =self ′}) in

ObjI \ A.∆(I⊕{orig =ObjI , self =self ′})]
C(M) → let Gcomp(X)=M.G(X ⊕ {P =X.P.C(Mself )}) in

Mixin ({G(I)→ Gcomp(I)}),
W (I) → fix s [ Mself .G({init =I, self =s ,P =I.P}) ] } ⊕ A]

In order to avoid interference with the mixin composition operator∗, only attributes
not referring toorig are allowed to be encapsulated (e.g. methods not performing aorig-
call). This ensures that encapsulated attributes cannot interfere with attributes of a parent-
class. Similarly, since allself-calls are statically dispatched, encapsulated attributes can-
not interfere with “child” attributes. Therefore, encapsulation and inheritance/mixin com-
position can be considered asorthogonalmechanisms.

Originally, the encapsulation operator is defined as an additional primitive to a formal-
ism for mixin-based inheritance [VLM96]. However, as the code shown in Figure8.17
illustrates, it can be easily encoded in the FORM calculus using both, polymorphic form
extension and restriction.

Using the encapsulation operator illustrated above, it is possible to define the class
DoubleBoundedPoint as combination of encapsulation and mixin application. The ex-
pressionEncaps (Linear ∗ Bound, {bound}) encapsulates the attributebound from the
composition of the mixinsLinear andBound.

DoubleBoundedPoint = Bound ∗ Encaps (Linear ∗ Bound, {bound}) ∗ Point

This illustrates that the mixinBound is applied twice, once specialized with theLinear
behaviour.
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function Encapsulate(Args) =
let

function EncapsIntermediate(Pars) =
let

value newSelf = emptyRef() {- local self reference - }
function self() = <Pars.self(), newSelf.get()>

value ParentIntermed =
Args.parent().CreateIntermediate(<Pars,self=self>)

value EncapsPI = ParentIntermed \ Args.Delta()
value EncapsSelf = ParentIntermed \ EncapsPI

in
newSelf.set(<EncapsSelf>);
PrForm(<EncapsPI>);
EncapsPI

end
in

Mixin(<CreateIntermediate = EncapsIntermediate>)
end

Figure 8.17: Source code of encapsulation abstraction.

8.6 A meta-level framework

In the previous sections, we have defined meta-level abstractions for modelling various
concepts found in object-oriented programming. In this section, we define generalization
of all meta-level abstractions and specify a meta-level framework for concurrent, object-
oriented programming.

Analyzing the class abstractions defined in the previous sections, we argue that gener-
ators and wrappers define thesemantic model(i.e. the underlying inheritance model, the
method-dispatch strategy etc.) for a related family of classes whereas∆ and the collec-
tion of parent-class generators specify the behaviour of a concrete class. Furthermore, we
can see that generators and wrappers also specify ameta-level protocol: the generator of
a class metaobject, for example, creates intermediate object(s) of its parent-class(es) and
the intermediate object of∆, and composes these objects according to the given semantic
model. The way these intermediate objects are composed is different for each seman-
tic model (e.g. in a Smalltalk-like model, methods of a class have precedence over the
methods defined in a parent-class whereas in a Beta-style model, the parent-class methods
have precedence), but the “ingredients” of the composition are the same for all semantic
models. Hence, it is possible to split the functionality of generators into a static protocol-
part and a variable model-part, denoted asconcreteandmodelgenerators, respectively.
Therefore, it is sufficient to define only one concrete generator and parameterize it with
appropriate model generators. A similar separation can also be achieved for wrappers.

Driven by our motivation to generalize the definition of concurrent, object-oriented
abstractions and the observations described above, we have defined the meta-level frame-
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Figure 8.18: Conceptual view of the meta-level framework.

work illustrated in Figure8.18, which defines a hierarchy of meta-level abstractions. Ar-
rows between entities at different levels denote inter-level dependencies whereas the an-
notation on the arrows represent the formal arguments of the corresponding dependencies.

On top of the hierarchy is theMetaModel abstraction which defines the generic
framework for class abstractions and metaobjects. It provides the common behaviour
of all class and mixin abstractions, the corresponding meta-protocol, and in particular the
concrete generators, wrappers, and composers. In fact, theMetaModel abstraction is a
meta-classabstraction (i.e. it is an abstraction to create class abstractions).

The abstractionsClass, Mixin, andEncapsulate illustrated in the previous sections
define the meta-behaviour for a specific semantic model and are instantiated by passing
appropriate model generators, model wrappers, and model composers to theMetaModel
abstraction. Class, mixin, and encapsulated metaobjets are created by passing a∆ ab-
straction and a (possibly empty) collection of parent-class metaobjects, writtenP , to a
meta-class abstraction.

The reader should note thatMetaModel and the class and mixin abstractions are rep-
resented asfunctionswhereas the class- and object-level entities are objects (i.e. record-
like structures). Hence, unlike other meta-level approaches (e.g. Smalltalk or CLOS),
class metaobjects are not instances of class metaobject classes.

8.6.1 TheMetaModel abstraction

The MetaModel abstraction which specifies the common meta-protocol for meta-class
level abstractions is defined as follows:

MetaModel(X) = λA→ fix Mself [ λMself → Static-Protocol -Part ⊕ A ]
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MetaModel is a function that expects a keyword-based argumentX with bindings for
Gm,Wm, andCm, denoting the model generator, model wrapper, and model composer to
instantiate a meta-class level abstraction (e.g.Class) for a concrete semantic model. The
result ofMetaModel is itself a function, which expects a keyword-based argumentAwith
appropriate bindings for the concrete semantic model (e.g.∆ andP for Class). Evalu-
ating this function yields a class-level object withself-referenceMself . This class-level
object is defined as a polymorphic extension of the formStatic-Protocol -Part , which de-
fines the static protocol part of the meta-level framework, with the keyword-based argu-
mentA passed to the meta-class abstraction. This application of polymorphic form exten-
sion enables overriding of the default generator, wrapper, and composer behaviour and is
needed for modelling mixin application and composition. The formStatic-Protocol -Part
has the following structure:

Static-Protocol -Part =

{ G(I) → X.Gm(I ⊕ A)

W (I) → fix s [ X.Wm({init =I, self =s , G(Y )→ Mself .G(Y )}) ]

C(M) → MetaModel(X)({G(I)→ X.Cm({mixin =M, init =I,
Mself =Mself } ) }) }

The default wrapperW passes i) the init-parameterI, ii) self, and iii) the generator de-
noted byMself .G to the model wrapperWm, and establishes the correct binding ofself
for the intermediate object created byWm. In order to avoid interference of the three
parameters and to keep things separate, we add structure to the parameter passed toWm

by using nested forms. Note that we use dynamic method binding inW for G in order to
reflect the fact that the default generator may have been overridden by a composerC (see
below).

The default generatorG polymorphically extends the argument passed to itself with
the bindings for the concrete semantic model and calls the model generatorGm with the
resulting form. Finally, the composerC creates a new metaobject based on the model ab-
stractions passed toMetaModel and a composite generator defined by a model composer
Cm. Again, nested forms are used to add additional structure to the argument passed to
Cm.

The PICCOLA(F) encoding ofMetaModel is illustrated in Figure8.19. Due to the
fact that i) PICCOLA(F) does not support anonymous abstractions and ii) functions are
not first-class values (i.e. it is not possible to directly return a function as the the result of
another function), the abstractionMetaModel defines a local abstractionMetaClass
and returns this function wrapped up in a form (i.e. it can be accessed using the label
fun ).

8.6.2 Model abstractions for classes

In this section, we will discuss model wrappers, generators, and composers for defining
class abstractions for class metaobjects. However, we will only consider selected model
abstractions which define single inheritance class models.



180 CHAPTER 8. MODELLING OBJECTS IN THE FORM CALCULUS

function MetaModel(MetaPars) =
let

function MetaClass(Args) =
let

value MetaSelf = emptyRef()
function Mself() = MetaSelf.get()

function DefIntermediate(Pars) =
MetaPars.CreateIntermediate(<Pars, Args>)

function DefCreate(Init) =
let

value Self = emptyRef()
value Newinstance = MetaPars.Create(<init = Init,

CreateIntermediate = Mself().CreateIntermediate,
self = Self.get>)

in
Self.set (<NewInstance>);
NewInstance

end

function DefCompose(Other) =
let

function ComposedIntermediate(Pars) =
MetaPars.Compose(<other=Other,pars=Pars,Mself=Mself>)

in
MetaModel(MetaPars).fun(<

CreateIntermediate=ComposedIntermediate>)
end

value MetaObjInstance =
< {- meta abstraction: generator - }

CreateIntermediate = DefIntermediate,

{- meta abstractions: wrapper and composer - }
Create = DefCreate,
Compose = DefCompose,

{- userdefined parameters and methods - }
Args

>
in

MetaSelf.set(MetaObjInstance);
MetaObjInstance

end
in

< fun = MetaClass >
end

Figure 8.19: Source code of theMetaModel abstraction.
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Common to all (single-inheritance) class abstractions is that they require a∆ abstrac-
tion and a parent-class metaobjectP as a parameter and that they share the same class
model wrapperWC

m and class model composerCC
m . The two class model abstractions are

defined as follows:

WC
m (I) = I.G ({init =I.init , self =I.self })

CC
m(M) = M.mixin.G (M.init⊕{P =M.Mself })

The main difference between the class abstractions for various class models lies in the
way the model generators are defined:

GSmall
m (I) = let ObjI =I.P.G(I) in ObjI ⊕ I.∆(I⊕{orig =ObjI})
GBeta
m (I) = let ObjI =I.∆(I.P.∆Inner()⊕I.∆Inner()⊕I) in

ObjI ⊕ I.P.G(I⊕ObjI)
GStat
m (I) = fix self [ let ObjI =I.P.G(I⊕{self =self }) in

ObjI ⊕ I.∆(I⊕{self =self , orig =ObjI}) ]

The model generatorGSmall
m defines a Smalltalk-like class model (i.e. dynamic binding

of self-calls, direct invocation of inherited methods etc.),GBeta
m defines a Beta-style class

model (i.e. a prefix-style of inheritance), andGStat
m defines a model generator for static

method dispatch. Model generators for other schemes like the abstractionC ++Class can
be defined similarly.

UsingGSmall
m , GBeta

m , GStat
m , WC

m , andCC
m, the class abstractionsClass, BetaClass,

andStaticClass can now be defined as follows:

Class(A) = MetaModel ( {Gm(I)→ GSmall
m (I),Wm(I)→ WC

m(I),

Cm(M)→ CC
m(M)} )(A)

BetaClass(A) = MetaModel ( {Gm(I)→ GBeta
m (I),Wm(I)→ WC

m(I),

Cm(M)→ CC
m(M)} )(A)

StaticClass(A) = MetaModel ( {Gm(I)→ GStat
m (I),Wm(I)→ WC

m(I),

Cm(M)→ CC
m(M)} )(A)

The PICCOLA(F) encoding of the modified class abstractions illustrated above and
the corresponding model generators, model wrappers, and model composers is straight-
forward and has therefore been omitted here.

8.6.3 Model abstractions for mixins and encapsulation

In this section, we will discuss the model abstractions for both mixins and the encapsula-
tion abstraction. The model wrapper for both kinds of abstractions is defined as follows:



182 CHAPTER 8. MODELLING OBJECTS IN THE FORM CALCULUS

WM
m (I) = I.G ( I ⊕ {P =I.init .P} )

Both mixin application and composition require a distinguished model composerCm.
In case of mixin applicationM ∗ D, the model composerCC

m is defined as shown in
section8.6.2. CC

m returns an intermediate object by passingD as parent (denoted byP )
to the generator ofM .

As mentioned in section8.4.2, the situation is different in case of mixin composition
and the model composerCM

m for mixin composition has to defined as follows in order to
reflect the correct interpretation of the parentP in all mixins involved:

CM
m (M) = let MetaObj =M.init .P.C(M.Mself ) in

M.mixin.G (M.init ⊕ {P =MetaObj})

Within CM
m , the subexpressionM.init .P.C(M.Mself ) creates a new class metaobject

MetaObj which defines the application of the right-most mixin to the class metaobject
the composite mixin will be applied onto (e.g. applying(M1 ∗M2) to a class metaobject
D, thenMetaObj denotesM2 ∗ D). This class metaobject is used to bind the unbound
parent in the left-most mixin.

Using the model generatorGSmall
m defined in section8.6.2, the mixin model composer

CM
m , and the mixin model wrapperWM

m , the abstractionMixin (supporting Smalltalk
semantics) is defined as:

Mixin(A) = MetaModel ( {Gm(I)→ GSmall
m (I),Wm(I)→ WM

m (I),

Cm(M)→ CM
m (M)} )(A).

The model generatorGEncaps
m of the encapsulation abstractionEncapsulate is defined

as follows:

GEncaps
m (I) = fix self ′ [ let ObjI =I.P.G(I⊕{self =I.self ⊕self ′}) in

ObjI \ I.∆(I⊕{orig =ObjI , self =I.self ⊕self ′}) ]

Using the encapsulation model generatorGEncaps
m , the mixin model composerCM

m ,
and the mixin model wrapperWM

m , the abstractionEncapsulate can now be defined as
follows:

Encapsulate(A) = MetaModel ( {Gm(I)→ GEncaps
m (I),Wm(I)→ WM

m (I),

Cm(M)→ CM
m (M)} )(A)

Note that the abstractionEncapsulate uses the same model composer and model wrapper
as have been used for the abstractionMixin.

The PICCOLA(F) encoding of the abstractionsMixin, Encapsulate, and the corre-
sponding model generators, model wrappers, and model composers is straightforward
and has therefore been omitted here.



8.7. FORM INTROSPECTION 183

8.7 Form introspection

For the encodings of the abstractions we have previously defined in this chapter, we have
used some higher-level abstractions (e.g. functions, nested forms) which can be defined
in terms of the primitives offered by the FORM calculus. However, there are situations
where the expressive power of the FORM calculus is not enough and expressions beyond
the calculus are needed. In this section, we will briefly discuss situations in the context
of form introspection. In particular, we illustrate a mixin abstraction which cannot be
expressed using the simple form of introspection offered by matching: information about
all labels of a given form is required.

Defining a new calculus based on the FORM calculus where form introspection can
be encoded in terms of the primitives of the calculus is beyond the scope of this work.
However, we will outline some ideas going into this direction in chapter chapter11.

In the following, we will use the abstractionslabels , project , and extend
which cannot be defined in the FORM calculus itself, but are implemented as extensions of
the PICCOLA(F) run-time system.9 Note that bothproject andextend are generally
used in contexts where the labels of a form are given as the result of alabels call.

• The functionlabels returns a list with a string representation of all the labels
bound by a given form.

• The functionproject can be used to project a label of a form which is given as a
string (i.e.project(<form=F,label="l">) is equal to<val=F.l> ).

• The functionextend can be used to extend a form with an additional binding (i.e.
extend(<form=F,label="l",val=x>) is equal to<F,l=x> ). Again, the
label l is given as a string.

The reader should note that lists can be easily encoded as nested forms, but the concrete
encoding is not needed for the following discussion.

As an example where information about all labels of a given form is required, consider
the abstractionTracing illustrated in Figure8.20. The purpose of this abstraction is to
trace the sequence of method invocations of an object. The tracing can be turned on or
off by using the methodson andoff , respectively. In order to simplify the example, a
traced object only prints the methods being invoked.

Similar to the singleton behaviour discussed in section8.4.4, the corresponding func-
tionality is implemented as a generic mixin. For each exported method defined in the
parent-class, the mixin creates a method wrapper with the appropriate functionality (sim-
ilar to the method wrappers discussed in section8.2). In order to do so, the method
CreateIntermediate instantiates an intermediate objectIntermed , gets a list of
all labels bound byIntermed , and recursively applies the functionextract to the list
of labels. Applying the mixinTracing to a class metaobject does not affect the interface
of its instances; only the behaviour is affected.

9 Implementing these abstractions requires knowledge about the internal representation of forms.



184 CHAPTER 8. MODELLING OBJECTS IN THE FORM CALCULUS

The functionfold used inCreateIntermediate applies a function given by
the labelfun in a sequential order to all elements of a list. However, in contrast to the
functionmap (which applies a function to all elements of a list and returns the resulting
list), the result is accumulated over all elements. Therefore, the result offold is generally
not a list, but a single value.

Note that the code defined in the methodCreateIntermediate is generic as
it does not specify any specific behaviour needed for tracing; the tracing behaviour is
defined in the abstractionCreateWrapper which is used by the functionextract .
The corresponding behaviour for tracing is defined as follows:

function CreateWrapper(Args) =
let

function wrapper(Pars) =
if Args.form().tracing() then

PrVal (<concat (<lval = "Calling traced function:",
rval = Args.label>)>)

end;
project(<form = Args.form, label = Args.label>).val (Pars)

in
extend(<form = <>, label = Args.label, val = wrapper>)

end

CreateWrapper requires an intermediate object of the corresponding class (given by
the labelform ) and the name of the method to be called (given bylabel ). It creates a
new functionwrapper which i) prints the name of the method that is invoked (if tracing
is turned on) and ii) calls the original method. As the result, it returns a form which binds
a label with the same name aslabel passed to the functionwrapper . Note that the
functionwrapper uses a library abstractionconcat to concatenate two strings.

Analyzing the structure of the mixinTracing , we can identify agenericpart (i.e.
the methodCreateIntermediate which adds a method wrapper to each exported
method) and aspecificpart (i.e. the abstractionsCreateWrapper andDelta which
define the concrete behaviour of the method wrappers). Therefore, it is possible to abstract
from the abstractionTracing and define a generic abstraction forgeneratingmixins
which add method wrappers to objects. We will use the termwrapin for these kind of
mixins in the following.

Due to the encoding of the abstractionClass , it is not possible any more to add
synchronization abstractions (such as GSPs) in the same way it is described in section8.2.
However, by using appropriately parameterized method wrappers, we can use a wrapin
abstraction to achieve the same behaviour.

Furthermore, the example of the abstractionTracing shows that obtaining informa-
tion about the labels of a given form is an important feature for modelling particular kinds
of compositional abstractions, but it is generally not enough. It is also necessary to use this
information to either access specific labels of the corresponding form or to define/extend
a form with bindings for some of the retrieved labels. Therefore, all three extensions are
essential, and the abstractionlabels can generally not be used in isolation.
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value Tracing =
let

function TraceDelta(Pars) =
let

value trace = ref(<true>)
in

<
function on(Args) = trace.set (<true>),
function off(Args) = trace.set (<false>),
function tracing(Args) = trace.get()

>
end

function TraceIntermediate(Pars) =
let

value ParentIntermed = Pars.parent().CreateIntermediate(Pars)
value Intermed = < ParentIntermed, TraceDelta(<>) >
value IntermedLabels = labels(<Intermed>)

function extract(Args) =
<

Args.res(),
CreateWrapper(<label = Args.item().val, form = Intermed>)

>
in

fold(<list = IntermedLabels, fun = extract, res = <>>)
end

in
Mixin(<Delta=TraceDelta, CreateIntermediate=TraceIntermediate>)

end

Figure 8.20: Source code of theTracing abstraction.

8.8 Comparison with other meta-level approaches

In the previous sections we have shown that object-oriented features such as inheritance,
dynamic binding, self-reference etc. can be conveniently modelled in the FORM calcu-
lus with the aid of agents representing meta-level abstractions. There are other object-
oriented programming languages taking a similar approach, and where classes are first-
class entities at run-time.10 In this section, we will compare our FORM calculus-based
meta-level framework for objects and classes with the corresponding models of CLOS
[KdRB91], Smalltalk [GR89], and Python [vR96]. However, it is not our goal to give a
detailed overview of these languages (see the corresponding references for details), but
to compare the properties of the FORM calculus-based object model with similar features
found in these languages.

10In statically compiled languages such as C++ or Eiffel, classes are only available at compile-time.
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8.8.1 Structure of classes

Common to the FORM calculus-based object model and the three languages we consider
is the fact that i) aclass definitionis used to specify the structure (i.e. the data ele-
ments) and/or the behaviour (operations on data elements) of objects and ii) classes are
represented as first-class entities (i.e.classes as objects) of a running application. Fur-
thermore, all class models define a root of the class hierarchy which is a common ancestor
to all (base-level) classes. This root class is often needed to define some default behaviour
for all instances and to break the recursion of method lookup.

In Smalltalk, a class definition specifies both the data elements and the corresponding
operations (variablesandmethodsin Smalltalk terminology). A class can be defined by
sending the messagesubclass to an already existing class, which automatically makes
this class thesuperclassof the new class to be defined.

Each classC is the only instance of a correspondingmetaclass(namedC class )
which defines the behaviour of the class. The metaclass of a class is automatically gen-
erated when the class is defined. If a classC is a subclass of a classD, then the same
relationship also holds for the metaclasses (i.e.C class is a subclass ofD class ). The
classObject defines the root of the class hierarchy (i.e. it is the only class without a
superclass) and provides default behaviour common to all objects.

Due to fact that a metaclass is again a class, the metaclassObject class is an
instance of the metaclassMetaclass . Furthermore,Metaclass is an instance of
Metaclass class . In order to break the infinite recursion of metaclasses being in-
stances of other metaclasses, the metaclassMetaclass class is an instance ofMeta-
class . Finally, in order to define a common behaviour of all classes, the metaclass
Class is a superclass of all metaclasses, except the metaclassesClass class , Meta-
class , andMetaclass class [GR89] (refer to Figure8.21for the inheritance and in-
stantiation hierarchy). The classBehaviour defines the minimal behaviour for classes,
especially their physical representation.

Similar to Smalltalk, each (user-defined) class of CLOS is an instance of the metaob-
ject classstandard-class or one of its subclasses, and is often referred to as aclass
metaobject. The class of a class metaobject (which is referred to as aclass metaob-
ject class) is a subclass of the classstandard-object which in turn is a subclass
of the classt . The classstandard-object is the root class of all base-level classes
whereas the metaobject classstandard-class defines the common behaviour of all
class metaobjects.

In CLOS, a class is specified using the macrodefclass which requires i) a class
name, ii) a possibly empty list of direct superclasses, and iii) a list ofslot specifications
as arguments. The slot specifications contain information about the names of all slots as
well as the corresponding accessors and initialization values.

In general, CLOS implementations divide the execution of so-calleddefining forms
(i.e. the macrosdefclass , defgeneric , anddefmethod ) and the processing of
metaobjects into a three layer structure:

• themacro-expansionlayer that provides a thin layer of syntactic sugar in order to
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Figure 8.21: Smalltalk class/metaclass kernel.

define classes and methods (i.e. the job of the macrodefclass is to parse the
class definition and to convert it into calls to the glue layer),

• theglue-layerthat maps names to metaobjects, and

• the lowest layer that defines the behaviour of all standard class metaobject classes.

In Python, classes can be defined using aclass expression which contains the class
name, a possibly empty list of direct superclasses, class variables and methods, but no
explicit data elements (i.e.attributes) for its instances. At run-time, classes are repre-
sented as objects with a specific behaviour. In particular, a class object (like all objects)
defines a special attributedict where all methods and class attributes are stored and
an attribute bases which contains a (possibly empty) tuple of parent-classes. For all
classes which are not defined as subclasses of another class, an empty tuple() is specified
as the “superclass”.

By default, there are no explicit metaclasses. However, as we will point out in sec-
tion 8.8.6, a restricted form of metaclasses can be introduced in Python using the protocols
for class definitions and method lookup.

In the FORM calculus-based object model, classes and mixins are represented as ob-
jects, but they are not instances of a metaclass; they are defined by using one of the
meta-class level abstractions (which represent encodings of functions), which in turn are
created by passing appropriate model generators, model wrappers, and model composers
to the abstractionMetaModel. A class abstraction requires the specification of the di-
rect parent-class of a new class as well as an abstractionDelta which defines the set
of methods which differ in respect to the parent-class. For creating a mixin metaobject,
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the parent-class is omitted. Unlike Smalltalk or CLOS, instance variables are not explic-
itly declared, but they are (implicitly) defined in the declaration part of the abstraction
Delta .

The model generators, model wrappers, and model composers passed to the abstrac-
tion MetaModel specify the semantic model of the corresponding meta-class level ab-
straction. Hence, meta-class level abstractions can be seen as abstractions which are
defined by plugging together appropriate functionality forCreate (i.e. the constructor),
CreateIntermediate (used for the generation of intermediate objects), andCom-
pose (for mixin composition and application): meta-class level abstractions are compo-
sitions of appropriate model abstractions.

8.8.2 Structure of instances

In Smalltalk, instance variables specified in a classCor any superclass thereof are accessi-
ble by name in methods defined on the classC. Outside of such methods, only user-defined
methods (and low-level implementation loop-holes) can access instance variables. In both
CLOS and Python, instance variables are public and are accessible by any client. In the
FORM calculus-based object model, instance variables are private and, therefore, can only
be accessed by the methods of the class they are defined in. None of the models makes a
distinction between public and protected data elements.

Neither Smalltalk11 nor the FORM calculus-based object model allow an object to
change its class at run-time. In CLOS, there is a generic functionchange-class (see
section8.8.3for details) which can be used to change the class of an instance. Changing
the class of an instance creates an new set of initialized slots, but carries over the values of
the slots common to both classes. In Python, the class metaobject of an object is stored in
an updatable attributeclass . By changing this attribute to another class, the starting
point of the method lookup is changed to the new class (see section8.8.5for details of
method lookup in Python). In contrast to CLOS, however, the instance variables only
present in the new class are not initialized.

8.8.3 Operations

In Smalltalk and Python, a method (i.e. an operation on the accessible data elements of
an instance) is always associated with the class it is defined in: methods are defined in the
context of the class definition. In Python, methods are represented asfunction objectsat
run-time whereas in Smalltalk, methods are instances of the classCompiledMethod (or
one of its subclasses). In CLOS, methods are associated as much with so-calledgeneric
functionsas with classes. A generic function definition (using the macrodefgeneric )
specifies theinterface(i.e. method name, argument list) common to a collection of meth-
ods whereas separately defined methods implement the generic function’s behaviour for
different classes. Both generic functions and methods are represented as metaobjects at

11In some Smalltalk implementations, there is a methodchangeClassToThatOf which changes the
class of an object. However, both classes must define the same physical structure for their instances [Riv96].
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run-time and are instances of thestandard-generic-function andstandard-
method metaobject classes (ore one of its subclasses), respectively. The metaobject of a
generic function has links to all method metaobjects defined on the generic function. A
method is associated with a class if a parameter is specialized to that class. When this
method is called, the corresponding argument must be an instance of this class (or any
of its subclasses). Furthermore, generic functions may be qualified asbefore, after, or
aroundmethods, which we will further discuss in section8.8.5. In the FORM calculus-
based object model, methods are associated with the abstractionDelta they are defined
in. Although an abstractionDelta is always evaluated in the context of a class or mixin
metaobject, it can be specified independently of any class and, therefore, can be used
more than once as a parameter for defining a class or mixin.

Note that in Python, an additionalself parameter has to be explicitly specified for each
method whereasself is passed as an argument to the abstractionDelta in the FORM

calculus-based object model. In Smalltalk, no explicitself is needed. Due to the concepts
of generic functions and multiple method dispatch (section8.8.5), there is no explicit
notion ofself in CLOS.

8.8.4 Inheritance

Like most object-oriented languages, CLOS, Smalltalk, and Python as well as the FORM

calculus-based object model support the specification of new classes as an incremental
modification of previously defined classes: they support the notion of inheritance.

The class model of Smalltalk is the only model which does not offer a form of multiple
inheritance: only single inheritance is supported. This corresponds to the fact that it is
the direct superclass’ responsibility to create a new subclass (i.e. sending the message
subclass to the direct superclass). Furthermore, it is illegal to specify the same name
as an instance variable in a subclass when it is already defined in one of its superclasses.
Given this restriction, an instance of a subclass contains the union of instance variables
named in the class definition and in its superclasses. Any of the inherited methods can be
redefined, and an inherited method can be called in the body of its redefinition by invoking
the corresponding method on the pseudo-variablesuper .

Python offers support for both single and multiple inheritance. If a method is inherited
from more than one superclass, the left-most class in the tuple of superclasses which
defines this method has precedence over all other classes. Any inherited method can be
redefined, and the number of arguments can be changed, too. In contrast to Smalltalk,
Python does not have an equivalent to asuper call: in the body of its redefinition,
an inherited method must be invoked by the appropriately qualified name (e.g. method
foo of superclassC must be called asC.foo( ...)). This schema ensures that in case
of redefining a multiply inherited method, any of the inherited methods can be explicitly
called. Due to the fact that data elements are not explicitly specified, an instance of a class
also contains the union of instance variables of its superclasses. Data elements with the
same name used in more than one (super-)class are shared (i.e. Python supports shared
multiple inheritance).
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CLOS supports a notion of multiple inheritance similar to mixin-based inheritance
discussed in section8.4. A class inherits both structure and behaviour from all its direct
and indirect superclasses in a specified order, from most specific to least specific. The so-
calledclass precedence listof a class defines this order by including all of its superclasses
in order of decreasing specificity. The class precedence list of a class is computed by
calling the generic functioncompute-class-precedence-list and requires that
each direct or indirect superclass only appears once. The default algorithm (defined for
the classstandard-class ) involves topological sorting the list of direct and indirect
superclasses of a class, using local precedence ordering as a constraint [KdRB91]. The
full set of slots of a class is the union of the slots of all classes that appear in the class’s
precedence list. If more than one class in the class precedence list has a slot with a given
name, only the the slot definition of the most specific class is retained. Similarly, the
set of available methods is specified by the generic functions associated to the classes of
the class precedence list. As an equivalent tosuper calls of Smalltalk, CLOS defines
the notion of calling the next method (i.e. usingcall-next-method ), which will be
discussed in the next section.

Both the inheritance model of Smalltalk and Python are defined by the language and
cannot be altered. In CLOS, the inheritance behaviour is specified by the class prece-
dence list, and can be changed for different class metaobjects (see section8.8.6). In the
FORM calculus-based object model, the inheritance behaviour is specified by the methods
CreateIntermediate andCompose associated with a class or mixin metaobject.
This behaviour depends on the model generator and composer used to create the corre-
sponding meta-class level abstraction. As we have discussed in section8.6, this allows
us to define a much broader range of inheritance mechanisms (e.g. single, shared and
repeated multiple, Beta-style) and method dispatch strategies as it is possible with CLOS,
Python, or Smalltalk.

In the FORM calculus-based object model, instance variables are private and cannot be
accessed by a subclass. However, if two accessor methods (one for read, one for update)
are defined on an instance variable, it is possible to overcome this problem. Inherited
methods can be redefined by any subclass, and an inherited method can be called in the
body of its redefinition by invoking the corresponding method on the intermediate object
orig passed toDelta .

8.8.5 Method dispatch

In contrast to the other class models, CLOS supports so-calledmultiple dispatch: the
method to be executed does not only depend on the class of the first argument (i.e. the
receiver of the message in Smalltalk terminology), but depends on the classes of all ar-
guments. CLOS divides generic function invocation into three steps: determining which
methods are applicable, sorting the applicable methods into decreasing precedence order,
and sequencing the execution of the sorted list of applicable methods. Method applica-
bility is decided by looking at the methods specializers: a method is applicable if every
required argument satisfies the corresponding parameter specializer. The list of applicable
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methods is sorted in decreasing precedence order based on the class precedence list of the
associated classes (see [KdRB91] for details).

Under the rule of standard method combination, applicable before-methods are ex-
ecuted first, form most specific to least specific. The most specific applicableprimary
method is executed next (a primary method is a method without a method qualifier), fol-
lowed by the applicable after-methods, from least specific to most specific. If a primary
method callscall-next-method , the next most specific primary method is invoked.

The reader should note that in the context of inheritance, the “next most specific pri-
mary method” for a method is not always thesamemethod: depending on the class prece-
dence list, this may vary from class to class. This is of particular importance if a new class
is mixed into an existing class hierarchy.

In Python, invoking a method on a object (usingobj.foo(args) ) is nothing
else than syntactic sugar forapply(getattr(obj,"foo"),(obj,)+args) . The
built-in function getattr dynamicallylooks up the method with the name of the se-
lector and applies the resulting function object to the list of arguments prepended by the
object itself (this explains why methods in Python always require an additional parameter
self ). Note that the functiongetattr is hard-coded in the run-time system and cannot
be altered. If the method to be invoked is not defined in the class of an object, the super-
classes are searched for this method in a depth-first, left-to-right order. If it is not found in
any of the classes,getattr invokes the method getattr with the selector as the
argument. By appropriately implementinggetattr , a user can define the required
behaviour in case of method lookup failure. This method can also be used as a hook for
meta-programming. Furthermore, in the current versions of the run-time system, method
lookup is not cached. Therefore, by changing the value of the attributeclass , a
method lookup may return a different method than before.

Method invocation in Smalltalk is similar to Python: if a method to be invoked is not
defined in the class of an object, then it is recursively looked up in the superclass chain.
If none of the classes defines this method, the exceptionmessageNotUnderstood
is raised, which causes the invocation of the methoddoesNotUnderstand on the re-
ceiver of the original message (i.e. the object the method is invoked on). This method can
be appropriately overridden in order to define the desired behaviour for method lookup
failure. Like in Python, the method lookup functionality is built-in and cannot be altered.
Although not specified in the language definition, method lookup is precomputed for ef-
ficiency reasons in many Smalltalk implementations (i.e. a method table with “pointers”
to all applicable methods for a class is stored in the corresponding class metaobject).

Due to the fact that an object is represented as a form with bindings for all the public
methods, method lookup in the FORM calculus-based object model simply consist of a
name projection on this form; no rule-based method lookup in a parent-class hierarchy is
needed at run-time. Invoking a method consist of sending a form (representing the actual
arguments of the method) to the channel bound by the label corresponding to the method
name.

From a different point of view, the “method lookup rules” are specified by the gen-
erator used for instantiating the class metaobject of an object: a hierarchy of appropri-
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ately parameterized intermediate objects is instantiated and composed. This composition
“precomputes” the methods to be called on aself- or orig-call. This is one reason why
changing the class of an object at run-time would not have an effect on its behaviour.

In contrast to the other models where a lookup failure can be caught an handled, the
FORM calculus-based object model does not offer such a feature: projecting an unbound
label results in a run-time error.

8.8.6 Adaptability and extensibility

It is generally accepted that the real power of meta-level approaches lies in the fact that the
associated metaobject protocols provide mechanisms for adaptation and extension. Each
metaobject protocol defines an appropriate default behaviour, and opens the language
space into well-defined directions. This implies, however, that a user generally cannot
extend or adapt the metaobject protocol arbitrarily, but has to follow a predefined set of
restrictions. As the last section of our comparison, we will therefore briefly compare the
mechanisms offered for adaptation and extension.

The metaobject protocol of CLOS is the best documented protocol of the three lan-
guages we considered, and offers several hooks for adaptation and extension. As we
pointed out in this section, the behaviour of all objects, generic functions, and methods
of a CLOS application is determined by the behaviour of the class metaobjects used.
Therefore, the main mechanism is to subclass one of the existing class metaobject classes
and to define new methods specialized to theses classes. As an example, the computa-
tion of the class precedence list can be altered by subclassingstandard-class and
specializing thecompute-class-precedence-list for this new class metaobject
class. However, the resulting class precedence list must still fulfill the restriction that each
(super-)class only appears once and thatstandard-object andt are the last two el-
ements of the list. All the standard defining forms we have mentioned in section8.8.1
accept an additional parameter specifying the class metaobject class to be used for creat-
ing its instances. The mechanism of subclassing class metaobject classes allows one to
tailor the change of behaviour of a set of objects only; all other objects are not affected
by this change. Discussing the full CLOS MOP is beyond the scope of this work; refer to
[KdRB91] for all the details.

Similar to CLOS, the behaviour of Smalltalk can be changed by modifying appro-
priate methods in classes or metaclasses (changing a method of an existing class will be
automatically reflected by all its instances). This mechanism can be used to rearrange
the class/metaclass kernel (see Figure8.21). One of the salient features of Smalltalk is,
however, the fully reified compilation process. Since any compiler implicitly gives the
semantics of the language it compiles, and because all the Smalltalk implementations
have in themselves, as regular objects, their own compiler (including a parser, byte-code
generator, scheduler etc.), the semantics of Smalltalk is fully controllable. Therefore,
a user may extend the semantics of the language by modifying/extending the available
compiler classes. For example, it is possible to redefine the classMessageNode which
implements the behaviour of message sending.
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During the compilation of a new method, the corresponding class is asked which
compiler etc. should be used in order to perform the compilation. By overriding the
corresponding methods (originally defined in the classBehaviour ), each metaclass has
the possibility to specify the behaviour of its instances. Extending the compiler classes
is used in [Riv96] in order to add Eiffel-like pre- and postconditions to the language.
Except the subclasses of this class and the class itself, this modification does not change
the behaviour of any of the other classes.

The main mechanisms in Python to change the behaviour of classes is i) the hook
offered by the method getattr and ii) by modifying the values of special attributes
(e.g. dict and class ). Furthermore, there exists a (badly documented) way to
define class objects as instances of other classes which is based on the notion ofcallable
objects. An “ordinary” object is callable (i.e. it can be considered as a function and
invoked using the syntax for function calls) if it defines a methodcall , whereas a
class object must support a methodinit . A class object is called whenever a new
instance is created. However, if an instance of a “metaclass” is subclassed, the metaclass
is called in order to instantiate the new class object appropriately. Unfortunately, the
sequence of function calls and the corresponding parameters is hard-coded into the Python
run-time system, and is not documented in the language reference.

The simple protocol of the FORM calculus-based meta-level framework is mainly
based on the behaviour of the different model generators, model wrappers, and model
composers passed to the abstractionMetaModel. Method dispatch and incremental
derivation, for example, depend on how intermediate objects are composed and where
fixed-point operators are applied. Hence, by plugging together appropriate model ab-
stractions, the behaviour of the resulting meta-class level abstractions can be tailored
to specific requirements. However, since the meta-level framework is built “on-top” of
the core of PICCOLA(F), it is not restricted to these mechanisms; any abstraction which
returns an object-like structure (i.e. a form representing the interface to a set of intercon-
nected agents) can be considered as a class abstraction.

Unlike in Smalltalk, the run-time system of PICCOLA(F) is not reified and therefore,
it is not possible to have such a fine-grained control over the behaviour of applications.

8.9 Related work

Over the last decade, several researchers have proposed foundational models for object-
oriented programming. Although most of these models are strongly based on typedλ-
calculi with subtyping, stylistic differences make a rigorous comparison difficult. Some
models, for example, are presented as translations from high-level object syntax into the
syntax of a typedλ-calculus whereas others map high-level syntax directly into a de-
notational model or focus on the object syntax as a primitive calculus in its own right.
Common to all models is, however, that due to the usage of theλ-calculus as a formal
framework, they neither address concurrency nor distribution.
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Examples of such foundational models are the recursive-record encodings of Cardelli
[Car88], Reddy [Red88], and Cook [Coo89], existential encodings proposed by Pierce
and Turner [PT94], Bruce’s model based on existential and recursive types [Bru94], and
the type-theoretic encoding of a calculus of primitive objects defined by Abadi et al.
[ACV96]. Further work in this area includes a calculus for delegation-based languages
by Fisher and Mitchell [FM95] and a calculus of classes and mixins proposed by Bono et
al. [BPS99]. A detailed comparison of all theseλ-calculus based approaches is beyond
the scope of this work (refer to [AC96] or [BCP97] for a further discussions).

While formal object models based on theλ-calculus emphasize aspects like encapsu-
lation, classes, inheritance, and incremental modification (e.g. method update), models
that address concurrency focus on aspects such as concurrency, active objects, distribu-
tion, and synchronization. Most of the concurrent models are based on some process
calculus (CSP, CCS,π-calculus, join-calculus [FG96]) or on (asynchronous) actor mod-
els [Ahg86]. For a detailed survey of formal models for object-orientation that address
concurrency, refer to [Men94].

Papathomas, for example, has defined a framework for describing the semantics of
concurrent object-based programming languages in CCS [Pap92]. This framework cap-
tures some essential concepts of these languages (e.g. concurrent objects, classes, inher-
itance), but neither takes into account classes as first-class objects and nor offers support
for delegation- and prototype-based languages. Nierstrasz has proposed OC, a process-
based calculus designed to provide a formal semantics for concurrent object-based pro-
gramming languages [Nie92]. This calculus integrates the concepts of both agents and
functions and tries to capture the three fundamental aspects of concurrent object-based
programming: encapsulation, active objects, and composition.

Variants of theπ-calculus have been previously used by other researchers to model
various aspects of object-oriented programming languages. Walker has shown that POOL
[Ame87] can be modelled in theπ-calculus, but in his approach, no subtyping or inheri-
tance is supported [Wal95]. The same applies to the encoding of the object-oriented de-
sign notationπoβλ (pronounced “pobble”) in the polyadicπ-calculus proposed by Jones
[Jon93], and the translation of the object model by Abadi et al. [ACV96] into the π-
calculus presented by Sangiorgi [San96b]. Subtyping and a notion ofself can be mod-
elled with the “Calculus of Objects” of Vasconcelos [Vas94]. Barrio has given a nearly
complete representation of active objects in theπ-calculus, but both dynamic binding and
a notion ofself are still missing [BS95].

The concept of mixins has been proposed by several researchers in order to overcome
some of the problems with multiple inheritance [Coo89, BC90]. Van Limberghen and
Mens give a denotational semantics of their mixin model, where mixins, mixin compo-
sition, and encapsulation are primitives, but they do not incorporate an explicit notion of
classes [VLM96]. All these concepts are integrated as primitives in the calculus of classes
and mixins proposed by Bono et al. [BPS99]. Ancona and Zucca have studied a rigorous
semantic foundation for mixins independently from the notions of classes and objects,
starting from an algebraic setting for module composition [AZ96].
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A slightly different approach is used by Flatt et al. where a subset of Java is extended
with mixins [FKF98]. Their system supports higher-order mixin composition, a hier-
archy of named interface types, and resolution of accidental name collisions. In contrast
to explicit encapsulation, the collision resolution system allows the “original” and the
overriding method definitions to coexist. The two methods are distinguished using so-
calledviewson objects, which is carried with the object at run-time and altered at each
subsumption step. As a consequence, method lookup is sensitive to an object’s history of
subsumption [FKF98].

In order to model the mechanism for inheritance of several object-oriented languages,
in particular multiple inheritance of C++, Rossie et. al define the notion of inheritance
in terms of so-calledsubobjects[RFW96]. From their point of view, a classC represents
a collection of members (i.e. the methods and instance variables that are shared by all
instances ofC). When a classD inherits fromC, the underlying inheritance mechanism
may either attempt to merge the members ofCwith those ofDor collapse members with
the same name into a single definition. Alternatively, all members ofCare inherited as an
indivisible collection. This collection, when instantiated, is known as a subobject. Each
instance of the classDhas a distinct subobjectD/C as well as a subobjectD/D; the latter
is also referred to as theprimary subobjectof D. Subobjects are meant to support subclass
polymorphism: each subobject represents a different view of an object, allowing it to be
viewed as an instance of any of its parent-classes.

In this model, an instance cannot be seen as a simple record-like structure with the
member names as field names: only the subobjects are represented as records whereas an
instance has to be considered as acollection of subobjects. Member references are made
by i) selecting the appropriate subobject that defines this member and ii) by referencing
the corresponding field of that subobject. The inheritance model of a particular language
specifies which subobject has to be selected in the context ofself- and/orsuper-calls,
respectively.

8.10 Summary

Throughout this chapter, we have defined a basic object model in the FORM calculus
(section8.1) and several extensions to this model (sections8.2 to 8.5). This resulted in
the specification of a meta-level framework for concurrent, object-oriented programming
abstractions (section8.6) which generalizes approaches presented by Bracha and Cook
[BC90], Cook and Palsberg [CP94], Van Limberghen and Mens [VLM96], and Rossie
et. al [RFW96]. We also pointed out situations where the expressive power of the FORM

calculus is not enough and expressions beyond the calculus are needed (section8.7), and
compared our object model with other meta-level models (section8.8). In this section, we
briefly summarize the main observations of our modellings and the meta-level framework.

The essentials of concurrent objects in the FORM calculus are captured by our meta-
level framework: an object is viewed as an agent containing a set of local agents and
channels representing methods and instance variables, respectively, whereas the interface
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of an object is a form containing bindings for the channels of all exported features. Fur-
thermore, the framework defines an imperative object model with an early bing ofself
[BPS99], data encapsulation, and low-level synchronization.

Representing classes as first-class run-time entities (i.e.class metaobjects) allows us
to integrate features of object-oriented programming such as class variables and methods,
various inheritance mechanisms, different method dispatch strategies, and higher-level
synchronization abstractions. The need to use class metaobjects arises naturally when
we want to model a correct initialization of and a controlled access to class variables
and methods. Various inheritance mechanisms are achieved by introducingintermedi-
ate objects(i.e. objects with an unboundself-reference) specifying partial behaviour of
objects,generator agentsdefining compositions of intermediate objects, andwrappers,
which apply a fixed-point operator over composed intermediate objects to establish a
sound interpretation ofself. Different method dispatch strategies are modelled by apply-
ing a fixed-point operator at various stages of intermediate object composition. From a
different point of view, intermediate objects can be considered assubobjects[Red88] with
an unboundself-reference whereas a generator specifies the method lookup and dispatch
rules of the corresponding inheritance model. Note that the mechanism of polymorphic
form extension defined in the FORM calculus is an essential feature in order to define the
composition of intermediate objects in a generic way.

Unlike many object-oriented programming languages which introduce several levels
of visibility for attributes, the FORM calculus-based object model only makes the dis-
tinction betweenprivateandpublic attributes. It ensures that private attributes (instance
variables and methods) are only visible within the scope of the abstractionDelta of a
given metaobject. As a consequence, private attributes can only be accessed in the class
they are defined in, but not in any of its subclasses. This implies that a subclass can
define a new (private or public) attribute with the same name without interfering with
a private attribute of one of its parent-classes. Furthermore, our model ensures that in-
stance variables are correctly initialized: this is achieved by appropriately parameterized
abstractionsDelta and by sequencing the composition of intermediate objects. Note that
correct initialization of instance variables heavily depends on keyword-based parameter
passing.

A generalization of the concepts of generators, wrappers, and composition of inter-
mediate objects cannot only be used to define classes and class abstractions, but also to
model mixins, mixin application, mixin composition as well as method encapsulation.
By i) splitting the functionality of generators and wrappers into a static protocol-part and
a variable model-part and ii) introducing the concept of acomposer abstraction, it is
possible to derive all object-oriented abstractions mentioned above from a single meta-
model abstractionMetaModel. Whereas this meta-model abstraction defines the generic
behaviour of all meta-class abstractions and the corresponding meta-protocol, so-called
modelgenerators, wrappers, and composers specify the common behaviour for specific
semantic models. This approach also allows us to separate the semantic model of concrete
classes and mixins from their specific behaviour.
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The concept of a composer abstraction enables to mixin meta-level behaviour and can,
for example, be used to define singleton behaviour as a mixin, which can be applied to
any existing class. This approach is in contrast to other meta-level approaches where a
class with singleton behaviour needs to be an instance of a singleton metaclass.

Analyzing the mechanisms used to define the meta-level framework, we can see that
forms, keyword-based parameters, polymorphic extension, and polymorphic restriction
are the key concepts for the resulting extensibility, flexibility, and robustness. In partic-
ular, these concepts allows us to make a clear separation between functional elements
(i.e. methods) and their compositions (i.e. inheritance), enhance the definition of various
semantic models supporting different kinds of inheritance and method dispatch strate-
gies, and clarify concepts which are typically merged in existing programming languages.
Hence, these concepts enable the definition of a canonical set of features for concurrent,
object-oriented programming based on a small set of primitives, and any meta-class level
abstraction can be seen as a composition of such features. This approach allows us to
define multiple class models using a single semantic framework and, therefore, substan-
tially enhances the possibilities to bridge compositional mismatches in heterogeneous ap-
plications. Furthermore, our approach overcomes problems of related approaches which
integrate concepts in a non-orthogonal way, and define higher-level features as primitives.

The reader should note that presented meta-level framework can also be defined in
a (non-concurrent) environment that provides the same expressive power for record-like
structures as the FORM calculus. In particular, keyword-based parameters as well as
asymmetric record concatenation and restriction must be available.



Chapter 9

Compositional abstractions

In the previous two chapters, we have defined the FORM calculus as a formal foundation
(chapter7) and used this foundation for defining a meta-level framework for concurrent,
object-oriented programming (chapter8). However, it is not our goal to focus only on
the definition of object-oriented programming abstractions, but to use the FORM calcu-
lus as a formal foundation for any kind of compositional abstraction. Therefore, we will
specify a FORM calculus-based component framework for stream and filter composition
to exemplify our view of composition, and analyze various approaches to define the cor-
responding connectors in an flexible and extensible way.

In section7.2, we illustrated the expressive power of polymorphic form extension in
the context of extensible, higher-level composition abstractions, and showed that poly-
morphic extension enables the composition of arbitrary services in a generic way. In
this section, we go a step further and illustrate that keyword-based parameters, polymor-
phic form extension and restriction in combination with matching are the key concepts
for defining compositional abstractions in a flexible and extensible way: none of the dis-
cussed abstractions can be easily expressed in a generic and robust way without using the
concepts mentioned above. Furthermore, we argue that a component framework that in-
corporates an operator-based approach for implementing its connectors may substantially
benefit from the expressive power of the key concepts in order to enhance the separation
between computational elements and their relationships.

This chapter is organized as follows: in section section9.1, we define a component
framework for stream and filter composition (similar to the Bourne Shell). We continue
with a comparison of both dispatched-based and operator-based approaches for defining
the connectors of the filter framework. We conclude this chapter with a summary of the
main observations. Note that we will again use PICCOLA(F) as an executable specifica-
tion language in order to illustrate our encodings at a higher level of abstraction.

9.1 A framework for stream and filter composition

In section2.2, we defined a software component as a static abstraction with plugs and as
a composable element of a component framework. Furthermore, we defined a compo-
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nent framework as a collection of software components with a software architecture that
determines the interfaces that components may have and the rules governing their com-
position. Hence, by definition, any framework which adopts this view can be considered
as a component framework.

We also pointed out that a component framework can be viewed as a many-sorted al-
gebra where the components are the operands and the corresponding composition mech-
anisms are the operators (refer to section2.4). In this section, we define a component
framework for stream and filter composition (similar to the Bourne Shell) which exempli-
fies our algebraic view components, frameworks, and composition. However, it is not the
goal of this chapter to focus on the components of the framework; we mainly concentrate
on i) how theconnectorsof the framework can be defined and implemented and ii) what
kind of conceptsandmechanismsare needed to do so. In order to simplify the following
discussion, we assume that the interface of a component is represented as a form.

Similar to the Bourne Shell [Bou78], the component framework for stream and fil-
ter composition consist of i)data sources(denoted by the character ‘Q’), ii)data sinks
(denoted by ‘S’), and iii)filters which read from an input-stream and write to an output-
and/or error-stream. Note that a filter does some processing of the data read from its
input-stream and produces output onto its output- and/or error-stream, but for the fol-
lowing discussion, the actual data processing is not important, and has therefore been
omitted.

For the rest of this chapter, we denote a filter as an element of the set{IOE, IO, IE,
OE, I, O, E,∅}. In fact, the set{IOE, IO, IE, OE, I, O, E,∅} denotes thesortsof the
corresponding algebra. The presence of a character ‘I’, ‘E’, or ‘O’ indicates that the
corresponding I/O-stream is unbound in a filter (e.g. ‘IOE’ denotes a filter which has all
of its I/O-streams still unbound whereas ‘O’ denotes a filter where only the output-stream
is unbound). Since all I/O-streams are bound, the filter ‘∅’ cannot be used for further
composition. This is in contrast to Bourne Shell scripts where ‘cat infile | sort >&
outfile ’ cannot interact with any other Unix filter (all I/O-streams are connected), but
can be used as a component in another pipe and filter chain.

The connectors of the framework are defined by the set{<, |, >, |&, >&}. Each of
the connectors creates a new stream in order to connect a pair of unbound I/O-streams
of either two filters, a data source and a filter, or a filter and a sink. The connectors are
defined in a way that applying a connector to two components leads to a new component
which may be used for further composition.

Like in the Bourne Shell, a pipe operator ‘|’ can be used to connect an unbound output-
stream of a filter component with the unbound input-stream of another filter component
(e.g. composing two filter components ‘I1O1’ and ‘I2O2E2’ leads to a composite filter
component1 where ‘O1’ is connected with ‘I2’, but all other I/O-streams are left unbound:
it yields ‘I1O2E2’). If both filters composed with the ‘|’ operator have an unbound error-
stream, the two error-streams are merged (i.e. the resulting component must ensure that
if its error-stream is connected, the error-streams of the two filters are also bound to this

1A composite filter component should not be confused with thecomposite patterndiscussed in
[GHJV95].



200 CHAPTER 9. COMPOSITIONAL ABSTRACTIONS

stream). The other connectors are specified similarly and ensure that i) no feedback loops
can be introduced between components and that ii) a connector can only be applied to
two plug-compatible components (e.g. a pipe operator ‘|’ can only be used in a context
where the left-hand side component has an unbound output-stream and the right-hand
side component an unbound input-stream). For the complete specification of the sorts of
the corresponding algebra and how the operators map components of the various sorts to
other components, refer to appendixD.

For the rest of this chapter, we will discuss several possibilities how the connectors
‘<’, ‘ |’, and ‘|&’ can be defined and what kind of abstractions are needed to implement
them. The remaining operators are similar, and a discussion has therefore been omitted.

9.2 Dispatch-based approaches

As a first approach for implementing the connectors of the filter framework, we assume
that a component is represented as an object-like structure: it is able to execute method
invocations. This allows us to define the composition of two components as a method
call on the left-hand side component (i.e. ‘F< Q’ is translated intoF.indirect(Q) ,
‘F1 |F2’ into F1.pipe( F2) , and ‘F1 |&F2’ into F1.pipeAmp( F2) ). This approach has
the consequence that the connectors are associated to the components and, therefore, the
correct implementation of the connectors is the responsibility of the components them-
selves.

9.2.1 Single dispatch

As we can deduce from the specification of the operator ‘<’, the sort of the resulting com-
ponent (i.e. the set of the unbound I/O-streams) only depends on the sort of the left-hand
side filter, but not on the sort of the right-hand side data source. Therefore, it is straightfor-
ward to implement the operator ‘<’ using a single-dispatch strategy: any filter component
defines a serviceindirect (taking a data source as an argument) which binds its input-
stream to the data source and returns a component representing the composition of itself
and the data source.

In order to reflect the fact that the input-stream is bound, the resulting component
should not offer services which connect its input-stream with another stream. Therefore,
the resulting component can be defined as a wrapper around the filter and the data source
which restrictsaccess to some of the services (e.g. all services which connect the com-
ponents input-stream), but forwards all other service invocations to the filter and the data
source, respectively.

In a pure object-oriented programming language (such as Eiffel or Java), an object is
always an instance of a class. Therefore, it is necessary to add a set of new classes to the
framework which define the behaviour of composite components. If the underlying lan-
guage offers hooks for method lookup (such as Python or Smalltalk), it is often enough to
define a single composite class which acts as a wrapper around two objects and forwards
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method calls to the appropriate object (e.g. the classCompositeStream illustrated
in appendixA.1 uses this mechanism). This also allows us to define a generic method
indirect which simply passesself and the right-hand side argument to the constructor
of the composite class.

In Eiffel or C++, where such meta-level hooks are not available, it is necessary to de-
fine a set of new classes representing composite components (e.g. four composite classes
for filter and data source composition). Furthermore, each filter component must know
which of the composite classes must be instantiated: this can either be implemented by
overriding the methodindirect for each filter class or by definingindirect as a
template method[DW99].

Using the FORM calculus-based object model, where an object-like structure is not
necessarily an instance of a class metaobject, it is possible to omit an abstraction for a
composite class: the resulting component can simply be expressed using binding restric-
tion:

function indirect (Args) = {- defined for each filter class - }
self().In (<Args.source()>);
< self() \ In \ indirect >

In order to simplify the example, we assume that a data source (given by
Args.source() ) offers the same interface as a stream component and can be directly
connected to the input-stream of a filter by calling the methodIn . The methodindi-
rect substantially benefits from keyword-based parameters as it only requires that the
component itself offers a methodIn ; no further information is required. Finally, restrict-
ing the resulting composite component withIn andindirect ensures that it cannot be
used in contexts where an unbound input-stream is required.

Note that it would also be possible to defineindirect without binding restriction,
but this would imply that i)all services of the corresponding component have to be known
and that ii)indirect is not generic enough for future extensions (refer to the discussion
about the abstractionsfixcomp andcompose in section7.2).

Without using some kind of introspection mechanism, it is not possible to define the
two pipe operators ‘|’ and ‘|&’ using a single dispatch approach: the resulting component
depends on the sorts of both filter components to be composed. Possible implementations
are very similar to the ones presented in section9.3, and have therefore been omitted here.

9.2.2 Double dispatch

As mentioned above, the result of an application of the pipe operator ‘|’ depends on the
sorts of both filter components to be composed. This situation is very similar to the one
we encountered for modelling mixin composition (refer to section8.4.2), and it is possible
to use an approach based on adouble dispatch strategy: the methodpipe of the left-hand
side filter component sends information about itself to the right-hand side filter by calling
an appropriate method.
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As we can see in the specification of the pipe operator ‘|’ in appendixD, there are
two situations we have to distinguish: the first situation where both filters to be composed
have an unbound error stream (which need to be merged), and the second situation where
at most one of the filters has an unbound error stream. Therefore, a filter component must
define two methodsconnectErr andconnect which reflect these two situations and
define the correct composition of two filter components. However, as we illustrate below,
we need two more methodsconnectIn andconnectInErr in order to pass on the
information about the status (bound or unbound) of the input-stream as well.

Modelling the pipe operator ‘|’ in the FORM calculus is not as straightforward as im-
plementing the operator ‘<’. For each possible combination of unbound input-, output-,
and error-streams, a corresponding composite class has to be defined (i.e. eight composite
classes for the filter framework). This is necessary to ensure the correct behaviour of a
composite component in the context of further composition.

In order to explain the problem, reconsider the situation of composing the filters
F1 = I1O1 and F2 = I2O2E2 : as mentioned above, ‘F1 | F2’ is translated into
F1.pipe( F2) . Due to the fact that the filterF1 has an already bound error-stream, it
callsF2.connectIn with self as argument. Invoking the methodconnectIn tells
the filterF2 that the argument has an unbound input-stream, but an already bound error-
stream and, therefore, no merging of error-streams is required.

As a first approach, the methodconnectIn of a filter could be defined as follows
(analogous to the methodindirect discussed in the previous section):

function connectIn (other) = {- defined for each filter class - }
let

value str = Stream.Create()
in

other.Out (<str>); {- binding of ‘Out’ and ‘In’ - }
self().In (<str>);
<

other \ Out \ pipe \ indirect,
self() \ In \ connect \ . . . \ connectInErr

>
end

The methodconnectIn creates a new stream, binds this stream to the unbound input-
and output-stream of the two filters, and returns a composition of the two filters where the
appropriate services have been removed (e.g.Out , pipe , andindirect are removed
from the left-hand side filter since the output-stream is bound and, therefore, it cannot be
used as the right-hand side argument of a filter composition or data source redirection).

At a first glance, this seems to be the correct way to do filter composition. However,
a problem arises when the filterF3 = I3O3E3 is composed withF12 = F1 | F2 (i.e.
F3,12 = F3 | F12): the filter F3 has unbound input- and error-streams and, therefore, it
invokes the methodconnectInErr on the composite filterF12. Due to the wayF1 and
F2 are composed, theconnectInErr of F1 is called, which defines the behaviour for a
filter with an already bound error-stream. This, however, is not the case for the composite
filter F12, and the resulting composite filterF3,12 has a dangling error-streamE3.
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In order to solve the problem, all four connecting methods (connect , connectIn ,
connectErr , andconnectInErr ) must internally instantiate an instance of a corre-
sponding composite filter class (instead of simply using binding restriction and polymor-
phic form extension). Unfortunately, none of the composite filter classes can benefit from
polymorphic form extension in order to enhance their extensibility.

The main problem with a double-dispatch approach is that the methodpipe must
send information about itself to the appropriate connect method of the right-hand side
filter component. However, using binding restriction and polymorphic form extension as
illustrated inconnectIn above, the information that two filter componentsF1 andF2

are composed and form a composite component is neither propagated toF1 nor to F2.
This has the consequence that the value ofself used inconnectIn of the composite
component still reflects the original value ofF1, and not of the composite componentF12.
The same applies to any of the other connect methods as well as for the methodpipe .

The operator ‘|&’ merges the output- and error-stream of the left-hand side filter (if
both are still unbound) and connects the merged streams to the input-stream of the right-
hand side filter. If one of the two output-streams is already bound, only the remaining
unbound stream is connected. Like for the pipe operator ‘|’, it is again possible to use an
approach based on double dispatch: the methodpipeAmp sends information about itself
to the right-hand side filter by calling an appropriate connect method. If this is done in
a straightforward way, eight methods have to be defined for each filter class in order to
correctly communicate the required information about the status of all I/O-streams of the
receiver of the methodpipeAmp .

Due to the fact that merging of streams only depends on the status of the output- and
error-stream of the left-hand side filter component, the number of connecting methods can
be reduced to two. In fact, it is even possible to use two of the connect methods defined for
the pipe operator ‘|’. This can be achieved by merging, if necessary, the output- and error-
stream in the methodpipeAmp and passing on only the merged stream to be connected.
As an example, consider the methodpipeAmp for a filter where all I/O-streams are still
unbound (i.e. a filter of the sort ‘IOE’):

function pipeAmp (other) =
let

value merged = <
Out = streamMerge(<s1=self().Out, s2=self().Err>).merge >

in
other.connectIn (< self() \ Err, merged >)

end

The methodpipeAmp merges the two unbound output- and error-streams (refer to Fig-
ure9.1 for details of the abstractionstreamMerge ) and dynamically extends the filter
component with the resulting stream, accessible by the serviceOut (i.e. the filter compo-
nent pretends that only an unbound output-stream has to be connected). More precisely,
the left-hand side filter component does not send itself, but a composition of itself and
the merged output- and error-streams to the right-hand side filter component. Hence, in
this context, the abstractionstreamMerge is used as a genericglue abstraction. If a
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left-hand side filter has no unbound input-stream, the methodconnect instead of the
methodconnectIn is called. It can be easily verified that this approach results in the
correct behaviour of the resulting composite component. The reader should note that
the approach used above can in general only be used in an object-oriented programming
language if an additional composite class (representing a filter component with merged
output- and error-streams) is introduced.

9.2.3 Multiple dispatch, method overloading

In object-oriented programming languages that support multiple method dispatch (such as
CLOS), it is possible to omit the connecting methods, define a generic methodpipe , and
implement a specialization for each possible filter class as the second argument.2 How-
ever, due to the fact that the resulting component of each specialization depends i) on the
status of the input- and error-stream of the receiver (i.e. the left-hand side argument of
the pipe operator) and ii) on the status of the output- and error-stream of the second argu-
ment, sixteen different specializations of the methodpipe have to be defined. Like in the
double-dispatch approach discussed in the previous section, all methodspipe explicitly
specify the result as being an instance of one of the eight composite filter classes.

Another approach for defining the connectors of the filter framework is based on
method overloading[CW85]. In contrast to multiple method dispatch of CLOS, where
the method selection is based on dynamic orrun-time information, method overloading
(such as in C++ or Java) is based on static orcompile-timeinformation (i.e. the static type
of objects). However, the problems discussed for multiple method dispatch also occur
for method overloading and, therefore, neither the number of specializations for the over-
loaded methodpipe nor the number of composite classes can be reduced. Furthermore,
method overloading requires more care for defining compositions as the usage of poly-
morphic variables may lead to an incorrect behaviour (i.e. the wrong overloaded method
is selected based on the static type of a polymorphic variable).

9.3 Operator-based approaches

In contrast to the dispatch-based approaches discussed in the previous section, where the
connectors are associated to the components, we illustrate an approach in this section
where the connectors are definedindependentlyof the components. More precisely, ‘F<
Q’ is translated intoindirect(P,Q) whereas ‘F1 | F2’ and ‘F1 |& F2’ are translated
into pipe( F1, F2) andpipeAmp( F1, F2) , respectively. Furthermore, we assume that
components only offer servicesIn , Out , andErr to connect the corresponding I/O-
streams.

As discussed in section9.2.1, the sort of the composite component of a data source
and a filter composition only depends on the sort of the filter and can be expressed by

2We consider the first argument of a multi-method as the receiver.
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using binding restriction. The abstraction defined below is a simple adaptation of the cor-
responding functionindirect (the abstraction for the operator ‘>’ follows an almost
identical scheme). Note that the methodindirect again benefits from keyword-based
parameters:

function indirect(Args) = {- defined outside filter classes - }
Args.filter().In(<Args.source()>);
< Args.filter() \ In >

The correct composition of two filter components using either the operator ‘|’ or ‘ |&’
depends on the sort of both components. The corresponding implementation of the two
operators have to find out whether two unbound streams have to be merged: two error
streams in case of the operator ‘|’, an output- and an error-stream in case of the operator
‘ |&’. Unless a dispatched-based approach is used, some form of run-time introspection is
required to retrieve this information.

The reader may have noticed that the presence of an serviceIn indicates that the
input-stream of a component is still unbound, and that the absence ofIn reflects an
already bound input-stream. The same schema also applies for the output- and error-
streams. In order to check the status of an I/O-stream of a component (e.g. the presence
or absence of a serviceIn ), it is possible to use the matching operator defined in the
FORM calculus: the syntax[F <- l] is used in PICCOLA(F) for matching and corre-
sponds to[F← l].

In order to implement the abstractionpipe , we use an approach based on matching,
polymorphic extension, and restriction (refer to Figure9.1for the full source code). Sim-
ilar to the dispatch-based approach, the abstractionpipe creates a new stream, connects
the output-stream of the left-hand side component with the input-stream of the right-hand
side component, and restricts access to the corresponding servicesIn andOut . Then it
checks whether both arguments have an unbound error-stream. If this is the case, the two
error-streams are merged (using the abstractionstreamMerge ), and the resulting com-
posite component is expressed as a polymorphic extension of the forms representing the
interfaces of both components and the merged error-streams. Note that it is not necessary
to restrict access toErr of both arguments topipe as the binding forErr is overridden
by the merging of the error-streams.

If at most one of the components has an unbound error stream, no streams have to be
merged, and the resulting composite component can simply be expressed as a polymor-
phic extension of the forms representing both components, restricted by the corresponding
servicesIn andOut , respectively.3

The abstractionpipeAmp (which implements the operator ‘|&’) uses a similar ap-
proach: it checks whether the left-hand side component has both an unbound output- and
error-stream, merges these two streams (if necessary), and returns the resulting component
as a polymorphic extension of the forms representing both filter components, restricted

3The code ofpipe in Figure9.1could be written in a more compact way using the concept of anearly
return. However, this concept is not yet fully understood in the context of encoding functions in the FORM

calculus, and has therefore not been implemented in PICCOLA(F).
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function streamMerge(Args) =
<

function merge(Stream) = Args.s1 (Stream); Args.s2 (Stream)
>

function pipe(Args) = {- operator ‘ |’ - }
let

value str = Stream.Create()
value rf1 = Args.f1() \ Out
value rf2 = Args.f2() \ In

in
Args.f1().Out(<str>); {- binding of ‘Out’ and ‘In’ - }
Args.f2().In(<str>);
if [rf1 <- Err] then

if [rf2 <- Err] then
<

rf1,
rf2,
Err = streamMerge(<s1 = rf1.Err, s2 = rf2.Err>).merge

>
else

< rf1, rf2 >
end

else
< rf1, rf2 >

end
end

function pipeAmp(Args) = {- operator ‘ |&’ - }
let

value str = Stream.Create()
in

Args.f2().In(<str>);
if [Args.f1() <- Err] then

if [Args.f1() <- Out] then
streamMerge(<s1=Args.f1().Out, s2=Args.f1().Err>).merge(<str>)

else
Args.f1().Err(<str>)

end
else

Args.f1().Out(<str>)
end;
< Args.f1() \ Out \ Err, Args.f2() \ In >

end

Figure 9.1: Source code of filter framework composition operators.
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by the corresponding servicesIn , Out , andErr . Note that, in contrast to the abstrac-
tion pipe , it is possible to define the resulting composite component by using a single
expression.

The illustration of the composition operators defined above shows that the approach of
independently defined connector abstractions has the advantage that no composite classes
have to be defined. The composite components can be expressed using polymorphic form
extension and restriction whereas the required run-time information can be retrieved by
using the matching abstraction of the underlying FORM calculus. The resulting compo-
sition operators are much more generic and robust in comparison to the dispatch-based
approaches as they benefit from the extensibility of polymorphic form extension. As an
example, consider the case where we extend the framework with i) a new sort of filter
component which can handle an additional input stream (denoted by ‘A’) and ii) a cor-
responding set of new connectors. Existing connectors defined using an operator-based
approach are not affected by this extension (they do not depend on the presence or absence
of an unbound ‘A’ stream) and can be reused as is. However, connectors defined using
a dispatch-based approach are affected by the extension and have to be reimplemented
accordingly.

Furthermore, theself problem of the dispatch-based approach (i.e.self of a part
component does not reflect the composite component it is part of) does not occur in an
operator-based approach.

Note that the operator-based approach illustrated above can only be applied in an
object-oriented programming language if it i) offers some kind of introspection mecha-
nisms, ii) allows a user to define abstractions independent of classes, and iii) objects can
be expressed as ”compositions” of other objects. Object-oriented programming languages
such as C++, Java, Eiffel, or Smalltalk lack at least one of these features.

Similar to method overloading discussed in section9.2.3, operator overloadingcan
be used to define the composition operators of the filter framework. Without using any
form of run-time introspection, this would lead to four different overloaded methods for
both pipe operators ‘|’ and ‘|&’ (provided a programming language supports object com-
position). In languages such as C++ or Java, which do not support object composition,
it is again necessary to define a set of composite classes, and the number of overloaded
operators increases accordingly.

9.4 Discussion

In the following, we will briefly discuss the main observations of using the FORM calcu-
lus for modelling compositional abstractions. Although the stream and filter component
framework we used in this chapter is a simplified example, it nevertheless shows impor-
tant properties of concepts found in the FORM calculus, and reveals the expressive power
of keyword-based parameters and polymorphic form extension in combination with poly-
morphic restriction and matching.
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Since the interfaces of components are represented as forms, polymorphic form ex-
tension and restriction are the basic mechanism for defining connectors and, by definition,
support an algebraic view of composition. In particular, if a componentC1 has a required
service or portP1 and a componentC2 a provided serviceP2, then the composition ofC1

andC2 can be most naturally defined by connecting the two ports and by expressing the
resulting component as<C1 \ P1, C2 \ P2>. The composition ofC1 andC2 could also
be defined by simply using projection and binding extension, but this requires knowledge
about thefull interfaceof both C1 andC2 and, therefore, restricts the reusability of the
corresponding connector. The main advantage of polymorphic form extension in combi-
nation with restriction is that less restrictions on the interfaces of the components to be
composed have to be made, and that connectors can be expressed in a more generic and
extensible, hence reusable way.

Note that the composition ofC1 andC2 cannot be expressed using polymorphic form
extension alone as the resulting composite component would still offer a serviceP1,
which is probably not the intention behind the composition ofC1 and C2. The usage
of restriction allows a user to explicitly select the required service(s) in case of name col-
lisions whereas polymorphic form extension always gives precedence to the right-most
service(s). Furthermore, a combination of polymorphic extension and restriction can be
used to dynamically adapt the interface of a component (refer to the operatorpipeAmp
defined in the previous section). This was one of the main reasons why polymorphic form
restriction was introduced in the FORM calculus.

Although the combination of polymorphic form extension and restriction offers a
powerful tool for defining compositional abstractions, there are situations where a compo-
sition framework must offer some sort of introspection mechanism in order to inspect the
interface and capabilities of components. As we have shown in section9.3, the decision
of how to compose a component with other components may depend on the presence or
absence of a given set of services. This is one of the reasons why the matching mechanism
defined by the FORM calculus (which can be used as a simple abstraction to inspect the
interface of a component) offers a continuation for both a positive and a negative match,
respectively.

The connectors of a component framework can either be defined using a dispatch-
based or an operator-based approach. The advantage of a dispatch-based approach is
that run-time introspection can in general be avoided (e.g. by using a double dispatch
strategy). However, as we have shown in section9.2, such an approach may lead to a
set of additional composite component abstractions which ensure the correct behaviour
of a composite component in the context of further composition. This often implies that
the corresponding connector implementations must explicitly define the resulting com-
position as an instance of composite component abstraction, which may lead to reim-
plementations in the context of a framework extension. Furthermore, adding component
abstractions to the framework results in a steeper learning curve before the framework can
be successfully used.

Operator-based approaches do in general not suffer from the problems of dispatch-
based approaches and do not require additional composite component abstractions. Fur-
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thermore, as we have shown in section9.3, they can be defined in a much more extensible
and robust, hence reusable way. Based on these observations, we argue that a component
framework that incorporates an operator-based approach for implementing its connectors
can be adapted to new requirements much easier than a framework using a dispatch-based
approach, in particular as an operator-based approach enhances the separation between
computational elements and their relationships.

Although the example framework used in this chapter is neither exhaustive nor
canonical, it exemplifies an algebraic view of component frameworks, and we argue that
the results represent to a certain degree important concepts for component-based software
development in general and for defining compositional abstractions in particular. In fact,
the results show that the concepts of keyword-based parameters, polymorphic form ex-
tension and restriction in combination with matching form a powerful tool for software
composition, as these concepts offer the required expressive power to define higher-level
compositional abstractions in a flexible, extensible, and robust way. Nevertheless, addi-
tional experiments with different kinds of component frameworks are needed in order to
further justify this claim.



Chapter 10

Summary of observations

In Part III of this thesis, we have defined the FORM calculus, a conservative extension
of theπ-calculus, and used this calculus to model objects and concepts found in object-
oriented programming languages such as classes, inheritance, and mixins (chapter8) as
well as compositional abstractions (chapter9). In this chapter, we conclude PartIII with
a summary of the main observations and lessons learned.

Composition calculus. In order to overcome the problems of existing systems and lan-
guages, where the semantics of components and composition is defined in an ad-hoc way,
we identified the need for a rigorous semantic foundation (i.e. acomposition calculus)
for specifying applications as compositions of software components. The simplest found-
ation that seems appropriate for our needs is that of communicating, concurrent agents.
The π-calculus, a name-passing calculus in which the topology of communication can
evolve dynamically during evaluation [MPW92], addresses shortcomings of other pro-
cess calculi such as CSP [Hoa85] or CCS [Mil89], and fulfills our basic requirements. In
addition, several variants of the basic (monadic)π-calculus can be faithfully encoded in
the basic calculus [Mil91, San93], so that it is possible to use the features of richer variants
knowing that their meaning can always be understood in terms of the basicπ-calculus.

FORM calculus. One of the key features of the FORM calculus is the replacement of
tuple communication by the communication of extensible record orforms. Communicat-
ing forms overcomes the restricted extensibility of the tuple-based communication of the
polyadicπ-calculus [Mil91] as it enables the identification of parameters bynamesrather
than positions. This approach makes it much easier to define flexible and extensible,
hence reusable abstractions than is possible in the polyadicπ-calculus. Since the contents
of communications are now independent of positions, agents are more naturally polymor-
phic as communication forms can be easily extended, and environmental arguments (such
as communication policies or default I/O-services) can be passed implicitly.

By introducing the concept of a binary matching operator, which can be used to check
for the presence of a binding in a given form, the FORM calculus goes beyond the prim-
itives found in theπ-calculus. Label matching in the FORM calculus is similar to name
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matching in theπ-calculus, but in contrast to name matching, two continuation agents
(for positive and negative match) can be specified. In contrast to other variants of theπ-
calculus, where boolean constants have to be encoded as processes, the usage of matching
enables the encoding of booleans as values, simplifies the encoding of boolean operations,
and allows for a more natural encoding of an “if then else” construct and input-guarded
choice.

Although the FORM calculus makes a few fundamental modifications to theπ-
calculus, it is important to note that it is possible to translate FORM calculus agents to
π-calculus processes and back, while preserving behavioural equivalence both ways. This
means that any theoretical results that hold in theπ-calculus will also hold for the FORM

calculus.

Basic composition operations. Our experiments have shown that polymorphic form
extension is the basic composition operation for forms. This is of particular interest as
forms represent the interfaces (i.e. the set of provided services) of arbitrary components.
Polymorphic form extension allows a user to express composition of the services of a
given set of components in a flexible, extensible, and robust way.

However, there are situations where polymorphic extension alone is not enough to
express the desired behaviour. These situations occur when more than one component
offers a service under the same name or if a client should not obtain access to all available
services of a component. In these situations, a combination of polymorphic extension and
restriction can be used. In particular, the usage of polymorphic form restriction increases
the possibilities to control service composition (i.e. extending the default overriding rules
of polymorphic extension), without losing the extensibility properties of polymorphic
form extension.

Glue abstractions. In situations where compositional mismatches due to incompati-
ble interfaces have to be resolved, glue abstractions can substantially benefit from the
keyword-based argument passing of forms. Whereas glue abstractions based on posi-
tional parameters hard-wire the corresponding adaptation protocol and, therefore, are less
open for extension and adaptation, approaches based on keyword-based parameters are
more generic since they make less restrictions on the required interfaces of the compo-
nents involved. This is of particular interest in the context of adapting and/or extending
component interfaces using wrappers. Furthermore, the explicit binding of services to
names reduces performance problems of common wrapping techniques as it is possible
to avoid a level of indirection and to give direct access to services which are not affected
by a wrapper. Finally, wrapper abstractions based on polymorphic form extension help
to reduce interface duplication problems of common wrapping techniques discussed in
section5.4.

Object models. The essentials of concurrent objects in the FORM calculus are captured
by the basic object model of Pierce and Turner: encapsulation, identity, persistence, in-
stantiation, and synchronization. Extending this model with further abstractions does not
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change the primary structure: an object is still viewed as an agent containing a set of local
agents and channels representing methods and instance variables, respectively, whereas
the interface of an object is a form containing bindings for the channels of all exported
features. As a result, we obtain an imperative object model with an early binding ofself,
data encapsulation, and low-level synchronization.

Representing classes as first-class entities (i.e.class metaobjects) allows us to extend
the basic object model with features such as class variables and methods, inheritance,
reusable synchronization policies, and different method dispatch strategies in a natural
way. This is achieved by introducing intermediate objects (i.e. objects with an unbound
self-reference) specifying the behaviour of new instances, generator agents defining com-
positions of intermediate objects, and wrappers, which apply a fixed-point operator over
composed intermediate objects. Different method dispatch strategies are obtained by ap-
plying fixed-point operators at different stages of intermediate object composition.

The concepts of generators, wrappers, and composition of intermediate objects cannot
only be used to define classes and class abstractions, but also to model mixins, mixin
application, and mixin composition. In contrast to object models found in many object-
oriented programming languages, the meta-level abstractions of the FORM calculus-based
object model make a clearer separation between functional elements (i.e. methods) and
their compositions (i.e. inheritance), which, by plugging together appropriate meta-level
functionality, allows us to define multiple object models supporting different kinds of
inheritance and method dispatch strategies. It is important to note that keyword-based
parameters, polymorphic form extension and restriction are the key concepts to achieve
the resulting flexibility and extensibility.

The correct behaviour of the generators defined in the meta-level abstractions for
classes and mixins heavily depend onclosures: the body of a generator method explicitly
refers to the parameters passed to the meta-level abstraction used to create the correspond-
ing metaobject.

Composition language. The simple unifying model of agents and forms provided by
the FORM calculus enables us to understand how different component models and com-
position mechanisms can interact, and it provides a tool for experimenting with glue and
coordination abstractions that bridge compositional mismatches. Our experiments have
shown that a process calculus like the FORM calculus is well-suited for modelling various
kinds of components and compositional abstractions. The results of these experiments
have influenced PICCOLA(F), an experimental programming language currently under
development. The main idea behind the development of PICCOLA(F) is to define all lan-
guage features by transformation to a core language that implements the FORM calculus,
which allows us to understand the properties of higher-level abstractions in terms of the
primitives of the underlying calculus.
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Chapter 11

Conclusions and future work

This chapter brings this thesis to a close. We summarize the main contributions of this
work and conclude with a discussion on future directions in the development of a compo-
sition calculus and a general-purpose composition language.

11.1 Conclusions

In this thesis, we have illustrated that

Making a clear separation between computational elements and their
relationships enhances the flexibility, maintainability, and robustness
of software systems. This concept can be most naturally expressed
in terms of a formal foundation that includes asymmetric record
concatenation and restriction.

We have surveyed some of the problems with object-oriented technology – as it is used
today – and argued that the flexibility and adaptability needed for applications to cope
with changing requirements can be substantially enhanced if we do not only think in
terms ofcomponents, but also in terms ofarchitectures, scripts, andglue. In particular,
we claim that open systems development is best supported by consciously applying the
paradigm

Applications = Components + Scripts.

Components are black-box entities that encapsulate services behind well-defined inter-
faces. These interfaces tend to be very restricted in nature, reflecting a particular model
of plug-compatibility supported by a component-framework, rather than being very rich
and reflecting real-world entities of the application domain. Components are not used in
isolation, but according to a software architecture which determines the interfaces that
components may have, and the rules governing their composition.

Scripts encapsulate how the components are composed and help to make a clear sepa-
ration between computational elements and their relationships. By collecting this inform-
ation in a single location (rather than distributing it amongst the components), we make
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the architecture of an application easier to understand and maintain. By focusing on build-
ing applications as compositions of components, we encourage the use of simple, plug-
compatible interfaces. Finally, by emphasizing composition (rather than inheritance), we
encourage the reuse of component frameworks and the corresponding architectural styles.

The approach of using components and scripts for open systems development is prob-
ably best underlined by the following quote:

What I think is quite important, but often underrated, is the dichotomy that
scripting forces on application design. It encourages the development of
reusable components (i.e. “bricks”) in system programming languages and
the assembly of these components with scripts (i.e. “mortar”).Brent Welch

Although software architectures and coordination languages also focus on separating
concerns, the separation of computational elements and their relationships can probably
be seen best when we consider scripting languages. Whereas conventional programming
languages are perfectly suitable forimplementingsoftware components, scripting lan-
guages are designed forconfiguring and connectingcomponents. Furthermore, scripting
languages areextensibleas new abstractions can be added to the language, encouraging
the integration of legacy code into frameworks and applications. Scripting languages typ-
ically support a single, specific architectural style of composing components, and they are
tailored for a specific application domain.

We have summarized the features and properties of several scripting languages and
identified two essential concepts for scripting:encapsulation and wiringand aforeign
code concept. These two features can be deduced from the main purpose of scripting
(i.e. connecting components) and are found in any scripting language. Furthermore, we
have analyzed the essence of “eval” features, a popular mechanism of several scripting
languages for executing dynamically created code, and came to the conclusion that any
eval-like feature should be considered as astring-based interfaceto a reusable and adapt-
ableinterpreter component.

We have presented the FORM calculus, an offspring of the asynchronousπ-calculus,
as a formal foundation for a composition language. The definition of the FORM calculus
is motivated by a set of requirements illustrated in section2.5. In particular, a formal
foundation helps to specify different object and component models, to integrate different
compositional abstractions (e.g. synchronization, incremental derivation), and to explore
notions of contracts and type compatibility for concurrent systems.

The FORM calculus replaces the tuple communication of theπ-calculus by the com-
munication of forms, a special notion of extensible records. This approach overcomes the
problem of position-dependent arguments, since the contents of communications are now
independent of positions and, therefore, makes it easier to define flexible, extensible, and
robust abstractions. Furthermore, the FORM calculus integrates polymorphic form ex-
tension and restriction as basic composition mechanisms on forms. Various experiments
have shown that a combination of these two mechanisms, together with keyword-based
parameters and a binary matching operator, provides a powerful mechanism for software
composition, since it allows a user to express the composition of the services of a given
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set of components in a more flexible way. To our knowledge, the FORM calculus is the
first process calculus which integrates forms, polymorphic form extension and restriction
as well as a binary matching operator as primitives.

The development of concurrent object-based programming languages has suffered
from the lack of any generally accepted formal foundation for defining their semantics,
although several formal models have been proposed (refer to [Men94] for a summary).
Most of these models define objects and object-oriented abstractions as primitives, but
they either hard-wire the underlying inheritance model [Red88], integrate concepts in a
non-orthogonal way [FKF98], or do not incorporate important features found in object-
oriented programming languages (e.g. they lack inheritance [ACV96]).

The FORM calculus, on the other hand, does not integrate objects and object-oriented
abstractions as primitives, but provides the required mechanisms to define various object
(and component) models. In fact, the FORM calculus can be viewed as a kind of work-
bench for evaluating and implementing object models, which facilitates the mediation
between different object and component models. One of the main insights in using the
FORM calculus for modelling objects is the fact that it allows for a compositional view of
features found in object-oriented programming languages and, therefore, makes a stronger
separation between functional elements (i.e. methods) and their composition. Hence, in-
heritance is not a fundamental composition mechanism, but is simply an application of
object composition.

Summarizing the main observations of PartIII , we can say that the FORM calculus fa-
cilitates the specification of both concurrent objects and compositional abstractions, and
clarifies various concepts which are typically merged (or confused) in existing program-
ming languages. Although our experiments are neither exhaustive nor canonical, we think
that the results represent to a certain degree the essence of component-based software de-
velopment.

11.2 Future work

In this section, we suggest some possibilities for future developments in the area of a
composition language in general and a composition calculus in particular.

Composition calculus. The FORM calculus integrates both the notions of agents and
forms as primitives. However, the similarity of these two concepts suggests an oppor-
tunity for unifying the two concepts. Is it possible to simplify the calculus by viewing
an agent as an expression that evaluates to a form? Furthermore, as we have shown in
section7.3.3, the FORM calculus allows us to encode boolean constants as values. How-
ever, we could have used a process-based encoding of booleans instead, similar to the
one presented for theπ-calculus in section7.1. These observations somehow indicate
that there are redundant mechanisms in the calculus, although the primitives of the FORM

calculus are all orthogonal (i.e. none of them can be expressed as a combination of other
primitives). Therefore, the question arises whether there is something more fundamental
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behind the notions of agents and forms, which has the same expressive power, flexibility,
and extensibility as the FORM calculus.

As we have outlined in section8.7, there are situations where the expressive power
of the FORM calculus is not enough, and we illustrated compositional abstractions which
require information about all labels of a given form. Therefore, another question arises
whether the FORM calculus should be extended in a way thatlabels are first-class values.
First-class labels would make polymorphic extension obsolete as it could be replaced by
an abstraction (based on binding extension and full label introspection) with the same
behaviour. This, however, suggests that a calculus with labels as first-class values could
be a first step into the direction of a unifying concept for agents and forms.

In [PS95], Parrow and Sangiorgi present complete axiomatisations of equivalences for
several variants of theπ-calculus. They claim that these axiomatisations are applicable for
other calculi where value-passing is a basic construct and where logical tests can be made
on identity of the values. Therefore, it should be possible to adapt the presented axiomati-
sations to the FORM calculus as well. This would help us to clarify the completeness and
correctness of the labelled transition system as well as the bisimulation relation presented
in sections7.3.7and7.3.8, respectively.

Type system. The fundamental purpose of a type system is to prevent the occurrence
of run-timeerrors when executing a program, as types impose constraints which help to
enforce the correctness of a program [CW85]. This is of particular importance in the
context of composition as we would like to detect compositional mismatches based on
mismatched types as early as possible. Furthermore, our previous work in modelling
objects in theπ-calculus has revealed that, besides scoping rules, a type system is an
important mechanism for controlling the visibility of features: type restriction can be
used to hide features, whereas type extension allows us to add and/or redefine features
[LSN96, SL97]. Therefore, it is a natural step to define an appropriate type system for the
FORM calculus.

Lumpe has presented a first-order type system for theπL-calculus that incorporates
asymmetric record concatenation [Lum99]. The presented type system does not incorpo-
rate parametric polymorphism, which is supported by the type system of PICT [Tur96].
However, our previous work in modelling objects in PICT has shown that parametric poly-
morphism is an essential feature for genericity [LSN96, SL97], and several of the compo-
sitional abstractions we have illustrated in this work (e.g. the class abstractions presented
in section8.3) cannot be statically type-checked without using parametric polymorphism.
Hence, a type system for the FORM calculus as well as a type inference algorithm should
integrate parametric polymorphism.

Typing polymorphic form restriction presents similar problems to those encountered
in typing polymorphic form extension [Lum99]. Due to the subsumption rule, we must
ensure that ifF\X1 is well-typed andX2 is a subtype ofX1, thenF\X2 is well-typed and
can be used in any context whereF\X1 can be used. Hence, an interesting question arises
what kind of typing rules we have to use in order to statically type-check polymorphic
form restriction and what kind of constraints we have to specify for both arguments.
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Another aspect in the context of a composition calculus related to typing is the no-
tion of component substitutability[ND95]. Traditional approaches of substitutability
(e.g. subtyping, matching) are based on the types ofinterfaces. However, such an ap-
proach is generally not applicable when components have their own thread of control and
may delay the servicing of requests according to synchronization constraints. In order to
overcome the problems of interface-based component substitutability, Nierstrasz has pro-
posed a type framework that characterizes objects and components as regular finite state
processes [Nie95], and it would be an interesting research topic to adapt and integrate
this approach in a type system for the FORM calculus. The corresponding results would
also answer the question how dynamic aspects of components can be expressed in a type
system.

The concept of forms defined in the FORM calculus is suitable for specifying the
providedservices of components. However, our modellings do not address the question
how requiredservices of components can be expressed using forms. Since a type system
for a composition language must be able to verify the correct wiring of the provided and
required services of all components of an application, it is essential that we have the
possibility to specify both the provided and required services of components.

Distribution. In the field of concurrent and distributed systems, various process calculi
have recently been proposed that incorporate other aspects of distributed computation,
such as communication failure, distributed scopes, and security [CG98, FG96, VC98]. In
our work, we have focussed on composed systems within a single administrative domain
and do not take into account other distribution aspects. It is obvious, however, that a
composition calculus that properly addresses these aspects will play a crucial role for
modelling composition of distributed components.

Object models. Although meta-level approaches for modelling objects are usually as-
sociated with ametaobject protocol(MOP), the meta-level framework presented in sec-
tion 8.6 only incorporates a basic metaobject protocol. Therefore, two main questions
arise: what kind of MOP is needed for a composition language, in particular for mediat-
ing between various object models, and what kind of type system is necessary in order
to type-check the resulting MOP? The meta-level framework defined in this work goes a
long way to support the required flexibility and extensibility, but additional experiments
with different kinds of class models are needed in order to end up with a suitable frame-
work that also incorporates aspects such as distribution and persistence. Furthermore,
most programming languages that support a run-time MOP are not statically typed, and it
would be a challenging work to investigate static type-checking for run-time metaobject
protocols, especially in the context of keyword-based parameters as well as asymmetric
record concatenation and restriction.

Composition language. Ultimately, we are targeting the development of open, hence
distributed systems. The overall goal of our work is the development of a formal model
for software composition, integrating a black-box framework for modelling objects and
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components, and an executable composition language for specifying applications as com-
positions of software components.

Throughout PartIII , we have used PICCOLA(F), an experimental programming lan-
guage currently under development at our institute, as an executable specification lan-
guage. One of the reasons of using PICCOLA(F) was to explain our modelling steps at
a higher level of abstraction, as using the plain FORM calculus is like programming in a
concurrent assembler. Furthermore, we hope that our experiments give us insights what
kind of abstractions are needed for software composition and to base the first version of
a composition language on the main results of our prototype implementation. The results
we described in this work show that a composition language can be directly built on top
of a unifying foundation of agents and forms. Before a first version of such a language
can be defined, further aspects have to be considered (definition of a higher-level syntax,
foreign code concept, distributed and concurrent run-time system to name just a few).
However, a detailed discussion of all aspects is beyond the scope of this work.

Methodological issues. In this thesis, we have focussed mainly on technological issues,
but there are just as many, and arguable equally important,methodological issues: compo-
nent frameworks focus on software solutions, not problems, sohow can we drive analysis
and designso that we will arrive at the available solutions? Frameworks are notoriously
hard to develop, sohow can we iteratively evolve existing object-oriented applications
in order to arrive at a flexible component-based design? Given a problem domain and a
body of experience from several applications, how do we re-engineer the software into
a component framework? As we develop a component framework, how do we select a
suitable architectural style to support black-box composition? Finally, and perhaps most
important, software projects are invariably focussed toward the bottom line, sohow can
we convince managementto invest in component technology?

Although we do not pretend to have the answers to all the questions raised in this
section, we believe that separating applications into components and scripts (i.e. making
a clear separation between computational elements and their relationships) is a necessary
step towards a methodology for component-based software development.
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Appendix A

Source code of UniBE phone book
application

In the following, we list the complete source code of the stream framework (sec-
tion A.1), the string dictionaries used (sectionA.2) as well as the HTML-page parsing
filter ParseAddr (sectionA.3). For the source of theubtb and the top-level function
main , refer to Figure6.2.

A.1 Stream framework

class Stream:
’’’
An abstract class supporting streams of items. next() returns the
next item, or None, if we are at the end of the stream.
’’’
def next(self):

’’’ Returns next item, or None ’’’
raise "Subclass responsibility!"

def asList(self):
’’’ Returns contents of stream as a list. ’’’
contents = []
for item in self:

contents.append(item)
return contents

def or (self, target):
’’’ Pipe: compose stream with target function or input stream. ’’’
return target(self)

def getitem (self, key):
’’’ Allow streams to be used in for loops. ’’’
next = self.next()
if next is None:

raise IndexError
else:

return next
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+ next (): Object
+ __or__ (InputStream): Stream
+ __getitem__ (Integer):Object

{abstract}

- streams: List of Stream

CatStream

Stream

+ next (): Object

+ next (): Object

Transform

- transform: Object -> Object

Filter

- filter: Object -> Boolean

+ next (): Object

ParseAddr

...

+ next (): Object
...

...

InputStream
{abstract}

- input: Stream

+ __call__ (Stream): Stream
# getInput (): Object

return target (self)

- file: File

+ next (): Object

FileStream

+ __str__ (Stream): String

Figure A.1: UML diagram of stream framework.

def str (self):
’’’ Return a string representation of the stream contents. ’’’
contents = []
for item in self:

contents.append(item)
return string.join(contents, ’’)

def add (self, arg):
’’’ Concatenate an argument stream to the end of this one. ’’’
return CatStream([self, arg])

# ====================================================================== #

class InputStream(Stream):
’’’
An abstract class supporting pipes and filters composition of streams.
A Stream can be piped into an InputStream, causing the stream to be
bound to input variable of the InputStream. The next() method of the
InputStream should normally be defined in terms of getInput().
’’’
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def call (self, input):
self. input = input
return CompositeStream(input, self)

def getInput(self):
return self. input.next()

# ====================================================================== #

class CompositeStream:
’’’
Helper class for composing input streams with a possibly still unbound
input: ’ call ’ is forwarded to the lefthand stream, all other
methods to the righthand stream.
NOTE: not a subclass of ’InputStream’, but offers same interface...
’’’
def init (self, left, right):

self. left = left
self. right = right

def getattr (self, name):
if name == " call ":

return getattr(self. left, name)
else:

return getattr(self. right, name)

# ====================================================================== #

class CatStream(Stream):
’’’
Concatenate a list of streams.
’’’
def init (self, streams):

self. streams = streams

def next(self):
’’’ Return the first item available from the first non-empty stream ’’’
while 1:

if len(self. streams) == 0:
return None

next = self. streams[0].next()
if next is None:

# The first stream is empty, so move to the next one:
self. streams = self. streams[1:]

else:
return next

def add (self, arg):
return CatStream([self, arg])

# ====================================================================== #

class FileStream(Stream):
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’’’
Wrap a file as a stream.
’’’
def init (self, file):

self. file = file
def next(self):

item = self. file.readline()
if len(item) == 0:

return None
else:

return item

# ====================================================================== #

class Filter(InputStream):
’’’
Filters a stream by some predicate. A filter must be used in a pipes
and filters chain. A filter is first instantiated with
just the filter function. The resulting function object is treated
as the target of a pipe, causing the stream to be bound.
’’’
def init (self, filter):

self. filter = filter

def next(self):
’’’ return next element in stream that matches filter predicate. ’’’
while 1:

next = self.getInput()
if next is None:

return None
elif self. filter(next):

return next

# ====================================================================== #

class Transform(InputStream):
’’’
Transforms a Stream by some function. As with Filter, must be used in
a pipes and filters chain by early-binding the transform function
and late-binding the stream.
’’’
def init (self, transform):

self. transform = transform

def next(self):
’’’ Return the next element in the stream. ’’’
next = self.getInput()
if next is None:

return None
else:

return self. transform(next)
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A.2 String dictionaries
class FmtDict(UserDict):

’’’
A wrapper around a dictionary that has some smarts about how
to display its fields.
’’’
def init (self):

UserDict. init (self)

def display(self, fields=None, padding=20):
’’’ Display key value pairs as formatted text ’’’
if fields is None:

fields = self.fields # must be defined by subclasses
lines = []
for key in fields:

if self.has key(key):
lines.append(("%%-%ds%%s"%padding) %(key+’:’, self[key]))

return string.join(lines, ’ \n’) + ’ \n’

def select(self, fields):
’’’ Return the list of values associated with a list of keys. ’’’
return map(lambda k, d=self: d.get(k,’’), fields)

def delText(self, fields=None):
’’’ Display values as a single line of a delimited text table. ’’’
if fields is None:

fields = self.fields
return joinFields(self.select(fields))

# ====================================================================== #

def joinFields(fields):
’’’ Join a list of fields into tab-separated values. ’’’
return ’"%s"’ % string.join(fields, ’" \t"’)

# ====================================================================== #

class Address(FmtDict):
’’’ A FmtDict that knows which address fields are of interest. ’’’
fields = [ ’Title’, ’Name’, ’Institute’, ’Address’,

’Phone’, ’Alternate phone’, ’Email’, ’Personal URL’ ]

A.3 HTML parsing filter
class ParseAddr(InputStream):

’’’
Parse input lines and emit Address objects.
’’’
def init (self):

# Pre-compile a couple of regular expressions ...
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import re
# Recognize(key, value) pairs:
self. getFields = re.compile(r’ˆ<strong>([ˆ<]*)</strong> \s*(.*)$’)
# Get rid of the HTML anchors surrounding text:
self. stripAnchor = re.compile(r’ˆ<a href=[ˆ>]+>([ˆ<]+)</a>$’)
self. prevKey = None

def next(self):
addr = Address() # Create an empty Address object
self.startAddr() # Find the start of the address
while 1:

line = self.getInput()
if line is None or line[:13] == "&nbsp;<p><hr>":

# We reached the end of this address
if addr:

return addr
else:

return None
(key, val) = self.gf(line)

if key:
if addr.has key(key):

# A continuation line, so extend last value
addr[key] = "%s, %s" %(addr[key], val)

else:
addr[key] = val

def startAddr(self):
’’’ Queue to the start of an Address to parse(or eof). ’’’
while 1:

line = self.getInput()
if line is None or line[:10] == "</pre><h2>":

return

def gf(self, line):
’’’ Get(key,value) fields, if present in line. ’’’
mo = self. getFields.match(line)
if mo:

(key,val) = mo.group(1,2)
val = self.sa(val)
if key == "":

key = self. prevKey
self. prevKey = key
return(key, val)

else:
self. prevKey = None
return(None, None)

def sa(self, val):
’’’ Strip off the HTML anchor from a string value. ’’’
return self. stripAnchor.sub(r’ \1’, val)
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Congruence of weak bisimulation

In this appendix, we present the proofs concerning
F≈ being a congruence relation, which

have been omitted in section7.3.8.

Lemma B.1 For every agentA andσ = {F/X} with fv(A) = ∅, it holds that

Aσ = A.

PROOF: By induction on the structure ofA. 2

Proposition B.1 Let A be a closed agent (i.e.fv(A) = ∅) and µ be an action. Then
A

µ
=⇒ A′ impliesfv(A′) = ∅ (i.e. a closed agent evolves to a closed agent).

PROOF: We proceed by induction on the structure ofA. We consider the most significant
caseA = a(X).A1 (the other cases are similar).

Then we haveA
a(〈̃l=b〉)
===⇒ A1{ ˜〈l=b〉/X}. Furthermore,fv(A) = ∅ implies that the set of

free variablesfv(A1) can be at least a singleton (i.e.fv(A1) = {X}), since the communi-
cation removes the binder forX. By definitionV( ˜〈l=b〉) = ∅. Therefore,A1{ ˜〈l=b〉/X}
does not add any free form variables, which implies thatfv(A1{ ˜〈l=b〉/X}) = ∅ as re-
quired. 2

Proposition B.2
F≈ is an equivalence relation.

PROOF: Symmetry is by definition, while reflexivity is immediate. The only nontriv-

ial property to show is transitivity. We show that the relation(
F≈ ◦ F≈) is a weakF-

bisimulation. Suppose that

A
F≈ ◦ F≈ C.

Then for some agentB we have

229
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A
F≈ B andB

F≈ C.

Consider the case ofτ or output actionswith bn(µ) ∩ fn(A|B|C) = ∅:

• LetA
µ

=⇒ A′ andµ eitherτ or output. SinceA
F≈ B, for some agentB′ it follows

thatB
µ

=⇒ B′ andA′
F≈ B′.

• SinceB
F≈ C, we have for some agentC ′, C

µ
=⇒ C ′ andB′

F≈ C ′.

Hence,A′
F≈ ◦ F≈ C ′. Similarly, if C

µ
=⇒ C ′ we can find an agentA′ such thatA

µ
=⇒ A′

andA′
F≈ ◦ F≈ C ′.

Consider the case of composition with output:

• If A
F≈ B, then for all messagesa( ˜〈l=b〉) we have by definition

A | a( ˜〈l=b〉) F≈ B | a( ˜〈l=b〉).

• SinceB
F≈ C, for all messagesa( ˜〈l=b〉) we have by definition

B | a( ˜〈l=b〉) F≈ C | a( ˜〈l=b〉).

Hence,A | a( ˜〈l=b〉) F≈ ◦ F≈ C | a( ˜〈l=b〉). Similarly if we start withC. 2

Proposition B.3 For any agentsA andB and namec:

A
F≈ B ⇒ (ν c)A

F≈ (ν c)B.

PROOF: We show that the relation

R = { ((ν c)A, (ν c)B) | A F≈ B } ∪ F≈

is a weakF-bisimulation.

Considerτ or output actionswith bn(µ) ∩ fn(A|B) = ∅:

(ν c)A
µ

=⇒ (ν c)A′ is inferred fromA
µ

=⇒ A′. SinceA
F≈ B, this implies that

B
µ

=⇒ B′ with A′
F≈ B′. Then(ν c)B

µ
=⇒ (ν c)B′ is the required move, since

((ν c)A′, (ν c)B′) ∈ R.

Considerinput actions:

(ν c)A
a(〈̃l=b〉)
===⇒ (ν c)A′ is inferred fromA

a(〈̃l=b〉)
===⇒ A′. SinceA

F≈ B and, by defini-
tion, (A|a( ˜〈l=b〉), B|a( ˜〈l=b〉)) ∈ R for all messagesa( ˜〈l=b〉), this implies that

B
a(〈̃l=b〉)
===⇒ B′ with A′

F≈ B′. Then(ν c)B
a(〈̃l=b〉)
===⇒ (ν c)B′ is the required move, since

((ν c)A′, (ν c)B′) ∈ R. 2
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Proposition B.4 For any agentsA,B, andC it holds that

A
F≈ B ⇒ A|C F≈ B|C.

PROOF: We show that the relation

R = { (A|C,B|C) | A F≈ B } ∪ F≈

is a weakF-bisimulation. Input and output are straightforward. We only show the case
for τ transitions. There are two possibilities:

• COM:A|C τ
=⇒ A′|C ′ is inferred fromA

a(〈̃l=b〉)
===⇒ A′ andC

a(〈̃l=b〉)
===⇒ C ′. SinceA

F≈ B,

this impliesB
a(〈̃l=b〉)
===⇒ B′ with A′

F≈ B′. ThenB|C τ
=⇒ B′|C ′ with C

a(〈̃l=b〉)
===⇒ C ′

is the required move, since(A′|C ′, B′|C ′) ∈ R. We have a similar reasoning if

A
a(〈̃l=b〉)
===⇒ A′ andC

a(〈̃l=b〉)
===⇒ C ′.

• CLOSE:A|C τ
=⇒ (ν c̃)(A′|C ′) is inferred fromA

(ν c̃)a(〈̃l=b〉)
======⇒ A′ andC

a(〈̃l=b〉)
===⇒

C ′. SinceA
F≈ B, this impliesB

(ν c̃)a(〈̃l=b〉)
======⇒ B′ with A′

F≈ B′. ThenB|C τ
=⇒

(ν c̃)(B′|C ′) with C
a(〈̃l=b〉)
===⇒ C ′ is the required move, since(A′|C ′, B′|C ′) ∈ R. We

have a similar reasoning ifA
a(〈̃l=b〉)
===⇒ A′ andC

(ν c̃)a(〈̃l=b〉)
======⇒ C ′. 2

Proposition B.5 For any agentsA andB, namea, and form variableX:

A
F≈ B ⇒ a(X).A

F≈ a(X).B.

PROOF: a(X).A can only move on input. Therefore, in the case of an input action, we

havea(X).A
a(〈̃l=b〉)
===⇒ A{ ˜〈l=b〉/X}. SinceA

F≈ B, this implies thata(X).B has the same

move such thata(X).B
a(〈̃l=b〉)
===⇒ B{ ˜〈l=b〉/X} and(A{ ˜〈l=b〉/X}, B{ ˜〈l=b〉/X}) ∈ R.

SinceA andB are closed, i.e.X /∈ fv(A|B), by LemmaB.1we haveA{ ˜〈l=b〉/X} = A,
B{ ˜〈l=b〉/X} = B, and it follows(A,B) ∈ R. 2

In fact, an input prefix in the FORM calculus, unlike theπ-calculus, is not a binder for
names. Therefore, we havebn(A)− bn(a(X).A) = ∅.

Lemma B.2 !a(X).A
F≈ !a(X).A|a(X).A

PROOF: We show that the relation

R = { (!a(X).A|C, !a(X).A|a(X).A|C) | C arbitrary } ∪ F≈
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is a weakF-bisimulation. The case for output is obvious. We only show the case for input.

Remaining cases are similar. Assume!a(X).A|C a(〈̃l=b〉)
===⇒ !a(X).A|C ′. But if C

a(〈̃l=b〉)
===⇒ C ′

the result trivially holds. If not, we should have

(REPL)
a(X).A

a(〈̃l=b〉)
===⇒ A{ ˜〈l=b〉/X}

!a(X).A
a(〈̃l=b〉)
===⇒ A{ ˜〈l=b〉/X} | !a(X).A

and

(PAR)
!a(X).A

a(〈̃l=b〉)
===⇒ A{ ˜〈l=b〉/X} | !a(X).A

!a(X).A | C a(〈̃l=b〉)
===⇒ (A{ ˜〈l=b〉/X} | !a(X).A) | C

,

but then

(PAR)
a(X).A

a(〈̃l=b〉)
===⇒ A{ ˜〈l=b〉/X}

a(X).A | !a(X).A
a(〈̃l=b〉)
===⇒ A{ ˜〈l=b〉/X} | !a(X).A

and

(PAR)
a(X).A | !a(X).A

a(〈̃l=b〉)
===⇒ A{ ˜〈l=b〉/X} | !a(X).A

(a(X).A | !a(X).A) | C a(〈̃l=b〉)
===⇒ (A{ ˜〈l=b〉/X} | !a(X).A) | C

,

hence done. 2

Using LemmaB.2, a term!a(X).A can be replaced by an arbitrary number of parallel
compositions ofa(X).A.

Proposition B.6 For any agentsA andB:

a(X).A
F≈ a(X).B ⇒ !a(X).A

F≈ !a(X).B.

PROOF: We show that the relation

R = { (!a(X).A|C, !a(X).B|D) | a(X).A
F≈ a(X).B and C

F≈ D} ∪ F≈

is a weakF-bisimulation. Output transitions are easy. Forτ transitions, only the transition
between!a(X).A andC is not immediate. Therefore, we assume that

!a(X).A|C τ
=⇒ !a(X).A|A{ ˜〈l=b〉/X}|C ′.

Then

a(X).A|C τ
=⇒ A{ ˜〈l=b〉/X}|C ′

and bya(X).A
F≈ a(X).B and LemmaB.2, there is aD′ such that
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a(X).B|D τ
=⇒ B{ ˜〈l=b〉/X}|D′

andC ′
F≈ D′, which implies that

!a(X).B|D τ
=⇒ !a(X).B|B{ ˜〈l=b〉/X}|D′

as required. For input, suppose!a(X).A|C a(〈̃l=b〉)
===⇒ !a(X).A|A{ ˜〈l=b〉/X}|C, but then

a(X).B
a(〈̃l=b〉)
===⇒ B{ ˜〈l=b〉/X}

andA{ ˜〈l=b〉/X} F≈ B{ ˜〈l=b〉/X}, hence

!a(X).B|D a(〈̃l=b〉)
===⇒ !a(X).B|B{ ˜〈l=b〉/X}|D,

but by PropositionB.4, (!a(X).A|A{ ˜〈l=b〉/X}|C, !a(X).B|B{ ˜〈l=b〉/X}|D) ∈ R as
desired. 2
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PICCOLA(F) language definition

Script ::= ’ module’ Name[ Imports] Declarations[ Main ]

Imports ::= ’ load’ NameList’ ;’

NameList ::= Name[ ’ ,’ NameList]

Declarations ::= Declaration[ Declarations]

Declaration ::= ’ extern’ String Name
’ new’ NameList
’ run’ Agent
’ procedure’ Name’ (’ [ Name] ’ )’ ’ do’ Agent
’ value’ Name’ =’ Form
’ function’ Name’ (’ [ Name] ’ )’ ’ =’ Form

Main ::= ’ main’ Agent

Agent ::= PrimaryAgent[ ’ |’ Agent]

PrimaryAgent ::= ’ null’
Location’ !’ Form
Location’ ?’ ’ (’ Name’ )’ ’ do’ Agent
Location’ ?∗’ ’ (’ Name’ )’ ’ do’ Agent
’ let’ Declarations’ in’ Agent’ end’
’ if ’ BoolExpression’ then’ Agent[ ’ else’ Agent] ’ end’
Application
’ (’ Agent’ )’
PrimaryForm’ ;’ [ Agent]

234
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BoolExpression ::= Value Built-in-BoolOperator Value
’ [’ Form ’ <−’ Label ’ ]’

Location ::= Name
Variable ’ .’ Label
PrimaryForm’ .’ Label

Application ::= Location’ (’ [ Form ] ’ )’
PrimaryForm’ .’ Identifier ’ (’ [ Form ] ’ )’

Form ::= SeqForm

SeqForm ::= ReturnForm[ ’ ;’ SeqForm]

ReturnForm ::= [ ’ return’ ] RestrictedForm

RestrictedForm ::= PrimaryForm[ Restrictions]

Restrictions ::= ’ \’ Form [ Restrictions]
’ \’ Label[ Restrictions]

PrimaryForm ::= ’ <’ [ FormElementList] ’ >’
’ let’ Declarations’ in’ Form ’ end’
Application
’ if ’ BoolExpression’ then’ Form [ ’ else’ Form ] ’ end’
’ (’ Form ’ )’
Variable

FormElementList ::= FormElement[ ’ ,’ FormElementList]

FormElement ::= Variable[ Restrictions]
Application[ Restrictions]
Label ’ =’ Value
’ procedure’ Name’ (’ [ Name] ’ )’ ’ do’ Agent
’ function’ Name’ (’ [ Name] ’ )’ ’ =’ Form

Value ::= Location
Number
String
Form



Appendix D

Filter algebra

Operands= {IOE, IO, IE, OE, I, O, E, Q, S,∅}.
Operators= {<, |, >, |&, >&}.

• Operator ‘<’:

IOE < Q → OE
IE < Q → E =⇒ IX < Q → X
IO < Q → O (binding of Q to I)
I < Q → ∅

• Operator ‘>’:

IOE > S → IE
OE > S → E =⇒ OY > S → Y
IO > S → I (binding of O to S)
O > S → ∅

• Operator ‘>&’:

IOE >& S → I =⇒ XOE >& S → X
OE >& S → ∅ (merge of O and E, binding to S)

IO >& S → I =⇒ XO >& S → X
O >& S → ∅ (binding of O to S)

IE >& S → I =⇒ XE >& S → X
E >& S → ∅ (binding of E to S)

• Operator ‘|’:

IOE | IOE → IOE
OE | IOE → OE =⇒ XOE | IYE → XYE
IOE | IE → IE (binding of O and I, merge of error)
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OE | IE → E

IOE | IO → IOE
OE | IO → OE
IOE | I → IE
OE | I → E
IO | IOE → IOE
O | IOE → OE =⇒ XO | IY → XY
IO | IE → IE (binding of O and I, no error merge)
O | IE → E
IO | IO → IO
O | IO → O
IO | I → I
O | I → ∅

• Operator ‘|&’:

IOE |& IOE → IOE
IOE |& IO → IO
IOE |& IE → IE
IOE |& I → I =⇒ XOE |& IY → XY
OE |& IOE → OE (merge of O and E, binding to I)
OE |& IO → O
OE |& IE → E
OE |& I → ∅

IO |& IOE → IOE
IO |& IO → IO
IO |& IE → IE
IO |& I → I =⇒ XO |& IY → XY
O |& IOE → OE (binding of O to I)
O |& IO → O
O |& IE → E
O |& I → ∅

IE |& IOE → IOE
IE |& IO → IO
IE |& IE → IE
IE |& I → I =⇒ XE |& IY → XY
E |& IOE → OE (binding of E to I)
E |& IO → O
E |& IE → E
E |& I → ∅
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Glossary

Architectural description language: anarchitectural description language(ADL) is a
notation that allows for a precise description and analysis of the externally visible
properties of a software architecture, supporting different architectural styles at dif-
ferent levels of abstraction.

Architectural mismatch: architectural mismatchstems from mismatched assumptions
a component makes about the structure of the system it is to be part of.

Architectural pattern: anarchitectural patterndescribes the solution of a particular re-
curring design problem that arises in specific design contexts. The solution scheme
describes the overall structural organization (components, their responsibilities, and
the relationships between them), the constraints of its application, and the associ-
ated composition and design rules.

Architectural style: anarchitecturalstyle is an abstraction over a set of related software
architectures. It defines a vocabulary of component and connector types and a set
of rules how components and connectors can be combined.

Component: a softwarecomponentis a static abstraction with plugs and a composable
element of a component framework.

Component framework: a component frameworkis a collection of software compo-
nents with a software architecture that determines the interfaces that components
may have and the rules governing their composition.

Component platform: acomponent platformdenotes any soft- or hardware a component
is built upon.

Compositional mismatch: a compositional mismatchoccurs whenever it is impossible
to successfully interconnect components of a component framework with the avail-
able connectors of the framework.

Coordination: coordination is the management of dependencies between concurrent
and/or distributed components.

Glue: glue is the part of an application which overcomes compositional mismatches.
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Interoperability: interoperabilityis the ability of software components to communicate
and cooperate with each other.

Scripting: scripting is a high-level binding technology for component-based systems.

Scripting language: a scripting languageis a high-level language used to create, cus-
tomize, and assemble components into a predefined software architecture.

Software architecture: a software architecturedescribes a software (sub-)system as a
configuration of components and connectors. A connector connects required ports
of a set of components to provided ports of other components. A configuration of
components and connectors can be used as a component of another (sub-)system.

Software composition: software compositionis the process of constructing applications
by interconnecting software components through their plugs.
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