b

u

b
UNIVERSITAT
BERN

Adherence of class comments to style
guidelines

Bachelor’s Thesis

Suada Abukar

from

University of Bern

Faculty of Science, University of Bern

31.08.2021

Prof. Dr. Oscar Nierstrasz

Pooja Rani

Software Composition Group
Institute of Computer Science

University of Bern, Switzerland

Abstract

Code comments are essential for program comprehension and maintenance tasks. They are written in
natural language and are either semi-structured or unstructured. As a result, determining their quality
is a difficult task. To control certain aspects of quality such as consistency, readability, or preciseness,
programming languages provide comment-related conventions in the coding style guidelines. One of the
ways to assess comment quality in the aforementioned aspects is to verify whether or not the code adheres
to the respective coding style guidelines. However, what specific types of conventions they suggest related

to code comments and if developers follow these conventions while writing comments is not yet explored.

Previous works have proposed to automatically assess code quality using various linters or static tools.
However, the extent to which these tools support comments is limited and comment validation on a
semantic level is not provided. Additionally, one project can follow more than one style guideline. Thus,
verifying which convention is from which guideline and to what extent it is followed is an essential but
nontrivial task. This thesis provides an empirical study investigation of the content of popular commenting
style guidelines and commenting practices in Java and Python. We extract comment-related rules from
style guidelines used by 13 open-source projects. Furthermore, we assess nearly 700 statistically significant
samples of class comments originating from these 13 projects. The projects vary in domain, size, and

number of contributors and are selected from two popular programming languages: Java and Python.

This thesis uncovers the quality of class comments written in open-source projects and the content of the
comment style guide. We discovered that 57% of the comment conventions rules do not apply to the class
comment samples. From the applicable portion, 83% of class comments follow the convention rules. The
rules that are followed by the comments address predominantly the content and writing style of comments.

On the other side, rules addressing the structure of a comment are often violated.

Our results highlight the importance of writing clear and straightforward rules in the style guidelines since
they are used and interpreted by developers with different levels of coding experience. In addition, the

high percentage of adherence proves that developers do consult style guidelines when coding.

Contents

Introduction 1
Related Work 4
2.1 Commentanalysisworks 4
2.2 Coding style guidelines 5
2.3 Adherence of conventions to coding style guidelines 5
Comment Conventions 7
3.1 Introduction e 7
3.2 Methodology e e e 8

32.1 Datacollection e e 8

322 TweakingtheDataset 9

3.2.3 Extracting comment relatedrules oL 10
33 Results. oo 11

33.1 Styleguidelines 11

332 Ruletypes e 12
3.4 TImplication and Discussiono 15
35 Conclusion e 16
Convention Adherence 18
4.1 Introduction L 18
4.2 Methodology e 19
43 Results. e 21

4.3.1 Adherencetoruletypes 23

432 Notapplicablerules 24
44 Implicationand Discussion L oo 25
45 Conclusion e e e 26
Threats to Validity 27
5.1 Threats to construct validity 27

il

CONTENTS

5.2 Threats tointernal validity
5.3 Threats to external validity

Conclusion and Future Work

Anleitung zu wissenschaftlichen Arbeiten

Comment Conventions v v i e e e e e e

Finding the style guides o
Identifying the style guide version
Analyzing the style guide content,
7.1.3.1 Standard guidelines
7.1.3.2 Project-specific guidelines
Extractingtherules
Categorizing therules

Convention Adherence e

Ruleconditions

iii

28
29

30

Introduction

Software documentation assists developers in understanding various details about the software. Studies
have shown that documentation is appreciated by developers and that it reduces the time required for
maintenance tasks of the software [9]. It exists in various forms in software artifacts such as being
separated from the source code (wikis, design documents) or embedded in the code (code comments).
Code comments help developers gain an overview and understanding of the code without having to read
the code beforehand.

Code comments are one of the main forms of code documentation. They can contain various types
of information about the code. Previous work has highlighted these information types in Java, Python,
and Smalltalk [4, 5, 13]. Some information types are written in comments using directives or tags, e.g.,
:return:, @param. In contrast, some are written implicitly in the comment without using any specific
tag. As code comments are written in natural language, writing high-quality code comments is difficult.
To write high-quality comments, several coding style guidelines are suggested by various programming

languages and organizations.

Coding style guides, also known as code conventions or coding standards, are a set of rules or
suggestions to write code including comments. They have the purpose to improve the consistency,
readability, and maintainability of the code [8]. They provide comment guidelines or rules about where a
comment should be located within the source code, for example, class comments in Java should precede

the class definition. Similarly, they suggest how a comment should be formatted, for instance, whether it

CHAPTER 1. INTRODUCTION 2

should have the same indentation as the surrounding code and whether spaces or tabs should be used to
indent. In addition, the guidelines describe how various components of a comment should be written and

which writing style to chose when documenting the source code.

Projects can follow various standard guidelines for comments or choose to follow their own guidelines.
Previous works have investigated code conventions in various projects but did not study comment conven-
tions in detail. Therefore, it is unknown in the context of comments whether the various style guidelines
complement each other or contain conflicting guidelines. To obtain this understanding, we formulate our
first research question: RQq: What do coding style guidelines suggest about comments?

We want to find out which kinds of conventions various style guidelines suggest for comments. We
analyze standard guidelines and project-specific guidelines from two popular languages, Java and Python.
Rani et al. investigated comments of diverse Java and Python projects that vary in domain, size, and the
number of contributors [5]. We use their projects to analyze project-specific guidelines. We identify all
comment-related rules from these guidelines and categorize them into a taxonomy, extended from the

taxonomy proposed by Rani et al. [6].

Even though the coding style guidelines suggest various comment-related guidelines, it is unknown
if developers follow these guidelines in writing comments or not. To have high-quality comments, it is

essential to know if comments adhere to the comment guidelines or not.

Linters, also known as style checkers, consist of rules from various style guidelines or introduce their
own. They can validate code or its comments against the rules and point out rule violations [3]. However,
these tools provide limited support to verify the quality of comments. For example, they can verify whether
the comment for a code entity is present or not but they do not check its content. i.e., Checkstyle can be
configured to verify rules from the Google Java style guide.! However, only some rules from the style
guide are covered partially and many are not covered at all by Checkstyle.? As they are not able to detect
violations for the content of comments, there is no knowledge available regarding the quality of comment

components and whether these components adhere to style guidelines or not.

To gain this understanding, we formulate another question in this thesis: RQg: To what extent do
developer’s class comments follow style guidelines?
As mentioned previously, the adherence of comments to the style guidelines is not yet explored, so we
use the list of comment-related rules from RQ; and validate them against the comments of Java and
Python projects. Since various types of code comments exist in code, for instance, documentation or
implementation comments, we set our focus on a specific type of documentation comments i.e., class
comments. Rani ef al. investigated class comments of diverse Java and Python projects, and we use their
dataset for this RQ [5]. In the validation of comments against the rules, we define various conditions for

each rule that has to be fulfilled for the rule to be considered as followed, not followed, or not applicable.

Overall, this thesis provides an empirical study investigating various style guidelines for comments and

Ihttps ://checkstyle.sourceforge.io/index.html accessed August 31, 2021
’https://checkstyle.org/google_style.html accessed August 31,2021

https://checkstyle.sourceforge.io/index.html
https://checkstyle.org/google_style.html

CHAPTER 1. INTRODUCTION 3

developers commenting practices in adopting them in their comments for Java and Python. In the first step,
we extract comment-related rules from style guidelines suggested by Java and Python open-source projects
and curate a list of all the code comment-related rules from them. In the second step, we categorize and
prioritize the extracted rules and develop conditions under which they can be verified for comments. In the
last step, we validate the comments from the dataset with the defined conditions.

We found that the comment-related rules that style guidelines contain are mostly of the type Content
(32% for Java and 40% for Python) and Formatting (19% for Java and 21% for Python). According
to our results, a significant portion of the rules does not apply to the comments, mainly due to rules
addressing information that is missing in the comment. However, 83% of Java comments and 82% of
Python comments adhere to the rules. The rules that are often followed by comments are of type Writing

style and Content. On the other side, Structure rules are often violated.
Contribution of the thesis: The thesis provides insights into various comment aspects as following:

* we learn what popular Java and Python style guidelines say about code comments. We present this

in the form of a taxonomy.

* we highlight various weak points in the style guidelines that need to be improved to have more

coherent, adequate, and precise comment conventions.

» we show the adherence of certain rule types against comments and highlight what tools can focus on

to improve the code comment quality.
+ we provide a labeled dataset of comments indicating if they follow the rules or not.?

The rest of the thesis is structured as follows. In Chapter 2 we discuss related research. In Chapter 3 we
take a close look at style guides and what rules they contain about comments. Chapter 4 follows up with a
validation of our class comment data set with the in Chapter 3 extracted rules, to analyze the adherence to
the style guide. Lastly, we point out threats to validity in Chapter 5 and conclude in Chapter 6.

3https://doi.org/10.5281/zenodo.5296443

https://doi.org/10.5281/zenodo.5296443

Related Work

2.1 Comment analysis works

Understanding source code is important to developers to have well-maintained software. Code comments
play a role in understanding source code. Previous research has analyzed code comments of a variety of
programming languages and demonstrated how critical, high-quality code comments are for supporting
program understanding activities and increasing the effectiveness of maintenance duties [6]. A few studies
explored the content inside comments and developer commenting practice to write various information
types in comments [4, 6, 13]. Pascarella et al. investigated Java comments [4] and Zhan ef al. investigated
Python comments [13]. Both devised a taxonomy for code comments and found that the summary is

predominantly present in code comments.

Rani et al. lied in another work the focus especially on class comments and the different types of
information they contain [5]. They investigated the class comments from Java, Python, and Smalltalk and
produced a taxonomy for the classification of comment types. The classification consists of information
types which are types of semantic information. They analyzed the characteristics of the information
types present in the class comments written in the languages mentioned above and created a tool that can

accurately and automatically identify such information types.

Though measuring the quality of these information types is critical, it is not well-supported or

CHAPTER 2. RELATED WORK 5

investigated for many other popular languages. Steidl ef al. measure the quality of comments based on
specific quality attributes such as consistency and coherence [10]. They propose a model for comment
quality, that is based on a categorization of comments done with machine learning. In the paper, they
focused on comments from Java and C/C++ programs. They did a survey to test the validity of their
metrics. Their metrics capture the coherence between comments and code and the length of comments.

2.2 Coding style guidelines

To control the quality of comments, various coding style guidelines are proposed. A few studies have
analyzed the style guidelines in the context of code but none of them explored the style guidelines
specifically for comments in Java and Python or compared the developer’s commenting practices to
standard guidelines [1-3, 7, 11].

Steinbeck and Koschke investigated what types of Javadoc violations exist and which elements in
the source code (class, interface, annotation, enum, field, method, constructor) are prone to be affected
by Javadoc violations [11]. The authors examined Javadoc comments from 163 different open-source
projects and further analyzed the longevity of the Javadoc violations observed in the projects. Steinbeck
and Koschke developed a tool for the detection of the Javadoc violations. However, the tool is limited to
detecting violations caused by missing or incorrect components. For simplicity, the authors evaluated only
the length of the description of comment components. Therefore, whether the descriptions are meaningful
and relevant to the code is not evaluated, which leads to semantic violations caused by such components
not being detected. In this thesis, we manually validate the descriptions of comment components up to a

semantic level.

Bafatakis et al. evaluated the coding style compliance of Python code snippet fragments on Stack
Overflow with the style checking tools, Pylint and Flake8 which cover the PEP 8 style guide and flag
violations [1]. However, the authors considered docstrings as unnecessary to their evaluation and excluded
missing-docstring violations detectable by Pylint. Their focus was dedicated to Python code and not
necessarily Python code comments which is relatable since the interest in Stack Overflow lies more on

code than comments.

2.3 Adherence of conventions to coding style guidelines

Smith ef al. investigated whether adherence to code conventions influences software maintainability [9].
They studied 71 coding conventions adapted from Checkstyle documentation and surveyed developers
to rate the importance of these 71 conventions. They examined the adherence of open-source software
projects to these conventions over their project lifetime. For evaluation of adherence, the authors used the
linter, Checkstyle. However, their focus was more on the general side of coding convention and not on the

comment conventions. We focus on the conventions related to comments.

Ueda et al. point out bad practices in the use of coding rule violation detection tools [12]. They

CHAPTER 2. RELATED WORK 6

highlight that from all detected violations 80% are not fixed by developers. One of the reasons is due to
the negligence of tool customization to the software project. Thus, amongst all detected violations, those
deemed irrelevant to the developers are featured as well. In this paper, Ueda et al. took up the task to
create an automatic customization of ASATs (Automatic Static Analysis Tools) to project source codes.
Their tool takes source code as an input and generates an ASAT with a configuration that might be of
interest to the developer. According to their results, their tool assists developers to set their focus on rule
violations relevant to them. This is particularly important since, according to Ueda et al., a high percentage
(80%) of detected code violations are ignored by developers. We will be investigating whether this applies
to class comments too.

Simmons et al. investigated the adherence of open-source Data Science projects to coding standards
and how they differ from non-Data Science projects [8]. They did a comparison between 1048 Data Science
and 1099 non-Data Science projects, all written in Python, and evaluated the adherence by using Pylint.
They found that Data Science projects have numerous functions rich with parameters and local variables.
Additionally, Data Science projects use a different naming convention for variables than non-Data Science
projects. Simmons et al. did not focus on whether code comments adhere to the code convention. Thus,
the paper examined the adherence with a style checker which is currently unable to validate the semantic

information in comments.

Rani et al. investigated the commenting practices in Pharo and found 23 information types from
Smalltalk class comments [6]. From the 23 information types observed in Pharo class comments, only 7
were suggested by the default class comment template that is automatically generated when creating a
new class. In addition, they assessed the extent to which developer commenting practices adhere to the
default template. We use the same terminology when referring to information types and follow the same
methodology to verify the adherence of class comments in Java and Python to the style guidelines. Similar
to their results, we found that Java and Python class comments follow similar types of rules and violate

structure and syntax rules.

Comment Conventions

3.1 Introduction

Code comments help developers gain an overview of the source code and make code maintainable.
Therefore, if code comments are well-formatted and written consistently, developers will have a better
understanding of the code and the software maintenance cost can be reduced [9]. To help developers write
code comments, coding style guidelines suggest what code comment components are expected and what
information a code comment should contain. Coding style guidelines consist of conventions and best
practices on how to write good code comments and ensure consistency in style and formatting throughout
the code base. However, what conventions the style guidelines suggest for comments is not yet explored.

Therefore, we study the research question RQ;: What do coding style guidelines suggest about comments?

To find out what coding style guidelines suggest about code comments, we first need to investigate
what kind of coding style guidelines are used by developers and applied to projects. For that, we identify
the coding style guidelines various Java and Python open-source projects recommend to their developer
to follow when contributing to the project. We consider six Java projects which were previously used by
Pascarella et al. for their investigation in understanding what types of code comments developers write
and the purpose those code comments have [4]. Additionally, we consider code comments from seven
Python projects studied by Zhan et al. for the classification of Python code comments [13]. Rani ef al.

used projects of both papers and created a dataset with only class comments [5]. From each coding style

CHAPTER 3. COMMENT CONVENTIONS 8

guideline suggested by these 13 projects, we extract all comment-related rules with the intention to filter
afterward for comment-related rules that are applicable for class comments. In the next step, we categorize
the extracted comment-related rules according to the initial rule type taxonomy proposed by Rani et al. [6].
Thus, we categorize all rules into five rule types as Formatting, Content, Syntax, Structure, and Writing
style.

For the majority of the projects, we found the Sun Java Coding Convention and Google Java Style
Guide to be standard coding style guidelines in Java. The Python projects mention PEP 8/257, NumpyDoc,
and the Google Python Style Guide as standard style guidelines. Interestingly, some projects follow their
own style guidelines on top of the standard style guidelines. Smit ef al. referred to these project-specific
rules as self-imposed standards [9]. The number of comment-related rules in the coding style guidelines
vary as not all projects provide the same details for comment conventions. For instance, the Sun/Oracle
Java Code convention has a whole coding style guideline document dedicated to code comments while the
Google Java Style Guide has dedicated a small section to code comments. Lastly, after the categorization
of the extracted rules, we discover that the Content and Formatting rules are predominantly present in the
coding style guidelines of both languages. On the other hand, Writing style rules make a small fraction of
all extracted rules in both languages, Java and Python.

3.2 Methodology

3.2.1 Data collection

To answer RQ;, we use the dataset of projects studied by Rani et al. for the analysis of information types
present in Java and Python class comments. The dataset consists of class comments extracted from six
Java and seven Python projects. The selection of the open-source projects was done by Pascarella et al.
[4] (for Java projects) and Zhan et al. [13] (for Python projects) based on the code base size, the number
of contributors, domain, the number of stars on GitHub (for Python projects), all of them being publicly
available on GitHub, and due to Java and Python being popular programming languages. However, Rani e?
al. [5] extracted the class comments from those 13 projects. Table 3.1 describes the dataset in terms of the
projects and analyzed sample classes and their class comments. Notice that the number of classes and
class comments are equal in Python but not in Java. Previous work combined the inner class comments
with the main class comments while in our case we separate them to analyze if there is any difference.

More information about the data pre-processing can be found in Section 3.2.2.

A snapshot was made from all projects at the time of the analysis done by Rani e? al. (end of 2019).
Further details are documented in Section 7.1.2. Since the web pages of the style guidelines display their
latest version, we made sure to extract the rules from the style guideline version that was the latest at the

time of Rani ef al.’s [5] analysis.

CHAPTER 3. COMMENT CONVENTIONS

Language Project # classes # class comments

Java Hadoop 153 195
Eclipse.cdt 110 136
Vaadin 41 85
Guava 49 59
Guice 10 19
Spark 13 14

Python Django 108 108
Pipenv 107 107
Pytorch 49 49
Pandas 35 35
Mailpile 25 25
iPython 22 22
Requests 4 4

Table 3.1: Java and Python projects used in our analysis

3.2.2 Tweaking the Dataset

In the dataset we use in this thesis, we have in addition to Java class comments also class comments of
inner classes. Each Java file in a Java project has one entry with all class comments from that file. We
split such entries of Java files by inner classes. To do this, we wrote a parser that splits class comments
and preserves for each class comment the source file name. In Figure 3.1 you can see an example of an
entry with several comments separated with a pipe character. All three comments were written in the

Utils.java source file. The source file with the class and inner class comments depicted green is displayed

in Figure 3.2. More details about the parser can be found in the replication package.

/Utils.javﬂ \

/

*
*

oE oE o A— @ o ow E—

A utility class. It provides
A path filter wutility to filter out ocutput/part files in the output dir

This class filters output(part) files from the given directory
It does not accept files with filenames _logs and _SUCCESS.
This can be used to list paths of cutput directory as follows:
Path[] fileList = FileUtil.stat2Paths(fs.listStatus{outDir,
new QutputFilesFilter()));

This class filters log files from directory given

It doesnt accept paths having _logs.

This can be used to list paths of output directory as follows:
Path[] fileList = Fileutil.stat2Paths(fs.listStatus(outDir,

new QutputLogFilter())}); /

Figure 3.1: Class comment from Hadoop (not split)

CHAPTER 3. COMMENT CONVENTIONS 10

fos
/ * Licensed to the Apache Software Foundation (ASF) under one \

* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information

* regarding copyright ownership. The ASF licenses this file

* to you under the Apache License, Version 2.8 (the

* "License”); you may not use this file except in compliance

* with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.8

* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
f
package org.apache.hadoop.mapred;
import org.apache.hadoop.classification.Interfacedudience;
import org.apache.hadoop.classification.InterfaceStability;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.PathFilter;
g
* A utility class. It provides
A path filter utility to filter out output/part files in the output dir
*
@InterfaceAudience. Public
@InterfaceStability.Stable
public class Utils {
public static class OutputFileUtils {
g
* This class filters output(part) files from the given directory
* It does not accept files with filenames _logs and _SUCCESS.
* This can be used to list paths of output directory as follows:
* Path[] fileList = FileUtil.stat2Paths(fs.listStatus(outDir,
new QutputFilesFilter()));
¥
public static class QutputFilesFilter extends QutputlogFilter {
public boolean accept(Path path) {
return super.accept{path)
&8 IFileQutputCommitter.SUCCEEDED_FILE_NAME
.equals(path.getName());
}
}

I
* This class filters log files from directory given

* It doesnt accept paths having _logs.

* This can be used to list paths of output directory as follows:
¢ Ppath[] fileList = FileUtil.stat2Paths(fs.listStatus(outDir,
- new OutputLogFilter()));

*/
public static class OutputlogFilter implements PathFilter {

public boolean accept{Path path) {

return 1" _logs".equals(path.getName());

N /

Figure 3.2: Utils.java

3.2.3 Extracting comment related rules

For each project, we search for the mention of the style guidelines developers are expected to follow when
contributing to a project. We mainly checked the project web pages and their GitHub repositories. For
instance, for Hadoop and Eclipse.cdt the style guideline is mentioned on the project page.

Once we find which coding style guidelines the project recommends, we scan the whole guidelines and
their associated pages to find comment-related rules or conventions. To preserve the context of the rules,
section titles and examples given in the guideline were extracted as well. As one sentence can talk about
different types of comments (class, function, variables) or parts of comments (summary, parameters), we

split the rules based on types of comments. Thus, we extracted all comment-related rules.

After the extraction of all rules, we categorize the rules, adapting a taxonomy proposed by Rani e?

CHAPTER 3. COMMENT CONVENTIONS 11

al. [6]. They propose two main categories, namely Content and Writing style. The Content type defines
the information types written inside the comment and the Writing style type defines the rules or practice
about the grammar and punctuation. Besides these two types, we extended the taxonomy with three more
categories: Formatting, Syntax, and Structure, to cover all aspects of comments. In case the rule does not
fit in any of the mentioned categories, we classified it as Other. The rule categorization is discussed in

more detail in Section 7.1.5.

3.3 Results

After finding the coding style guideline and extracting the comment-related rules, we categorized them

according to the described taxonomy.

3.3.1 Style guidelines

We found that of the six Java projects four suggest its developers adhere to the Sun Java Code Convention
and the other two projects suggest the Google Java Style Guide. Table 3.2 shows the selected Java and
Python projects and the style guidelines they follow. For the Python projects, we found three main standard
style guides, PEP 8/257, NumpyDoc, and Google Python Style Guide. The iPython project recommends
developers follow two style guides, PEP 8/257 and NumpyDoc. There are specific projects that do not refer
to any specific guidelines of their own. For example, Guava and Guice in Java and Pipenv and Mailpile in

Python do not define project-specific guidelines as shown in Table 3.2.

Finding 1. The Java projects suggest the Sun Java Code Convention and Google Java Style Guide
for writing code comments. The Python projects suggest PEP 8/257, Google Python Style Guide, and
Numydoc.

CHAPTER 3. COMMENT CONVENTIONS 12

Language Project Project-specific guideline Style guideline

Java Eclipse.cdt v Oracle
Hadoop v Oracle
Vaadin v Oracle
Spark v Oracle
Guava X Google
Guice X Google

Python Django v PEP 8/257
Requests v PEP 8/257
Pipenv X PEP 8/257
Mailpile X PEP 8/257
iPython v PEP 8/257, Numpydoc
Pandas v Numpydoc
Pytorch v Google

Table 3.2: Overview of the Java and Python projects and the style guidelines they use.

3.3.2 Rule types

According to the taxonomy, we found that the majority of the rules for all projects were about Formatting
and Content. Figure 3.3 displays a similar distribution of rules types in the Java and Python style guides
with the exception of the percentage of Java Structure rules being slightly higher than the percentage of
Java Syntax rules. For both languages Writing style rules are the least present in the style guides. The
definition of each rule type can be found in Section 7.1.5.

Finding 2. Most rules present in style guidelines, for Java and Python, are of type Content followed by

Formatting. Writing style rules are the least present.

CHAPTER 3. COMMENT CONVENTIONS 13

Java #Python

50%

40%

30%

20% 40%

32%
10% 19% 21% g0 18%
L 13% B8 00
0.4% 0.43%
0%
Content Formatting Syntax Structure Writing style Other

Percentage rule type Java and Python

Figure 3.3: Average rule type percentages across all projects.

Figure 3.4 gives an overview of the rule type distribution for each project and standard style guideline.
The projects marked with an asterisk have project-specific rules (i.e., Spark). The style guidelines are
underlined (i.e., Oracle) The numbers in parentheses indicate the number of comment-related rules each
project and style guide has in total. For the projects that follow a standard style guideline and have
self-imposed standards defined, the number of rules of both standards is added into a sum. For instance,
as shown in Figure 3.4, Hadoop has in total 152 comment-related rules that should be followed by its
developers. In Table 3.2 we see that Hadoop uses the Sun Java Code Convention. With the 149 rules from

the Sun Java Code Convention and the 3 rules in Hadoop, we get a total of 152 rules for Hadoop.

In both languages, the Content rules followed by Formatting rules are most represented. Furthermore,
Syntax and Structure rules make out on average about the same percentage on Java whereas in Python the
percentage of syntax rules is higher than in Java.

CHAPTER 3. COMMENT CONVENTIONS 14

Content # Formatting Syntax Structure Writing style Other

Oracle (149) 38% 14% 21% 14% 11% 1%
Spark* (190) 42% 13% 22% 12% 11% 1%
Eclipse* (153) 39% 14% 22% 14% 11% 1%
Hadoop* (152) 39% 14% 21% 14% 11% 1%
Vaadin* (150) 38% 15% 21% 14% 1% 1%
Google (19) 21% 26% 11% 26% 16%
Guice (19) 21% 26% 11% 26% 16%
Guava (19) 21% 26% 11% 26% 16%
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of rule types in Java conventions
PEP 8/257 (55) 38% 27% 9% 15% 1%
Mailpile (55) 38% 27% 9% 15% 11%
Pipenv (55) 38% 27% 9% 15% 1%
Requests* (66) 33% 30% 11% 12% 14%
Django* (66) 36% 30% 9% 12% 12%
Numpy (110) 48% 10% 29% 11% 1% 1%
Pandas* (213) 42% 9% 30% % 10% 3%
iPython* (170) 44% 18% 22% 12% 5% 1%
Google (59) 42% 15% 12% 14% 17%
Pytorch* (102) 40% 21% 11% 18% 11%
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of rule types in Python conventions

Figure 3.4: Rule type percentage of the Java and Python projects.

Figure 3.5 shows the rule type distribution for code comment-related rules that apply to class comments.
The distribution of class comment related rules is also dominated by Content and Formatting rules.
Otherwise, compared to Figure 3.4 there is no significant change of rule type ratio. Interestingly, the
present rule type categories do not contain Other rules whereas we spot for Numpy, Pandas, and iPython
rules of type Other. Taking a closer look, those rules come solely from Numpy and Pandas, since Pandas
and iPython suggest following the Numpy style guide and Pandas’ self-imposed rules contain Other rules,

therefore the 3% in Pandas and 1% in iPython.

CHAPTER 3. COMMENT CONVENTIONS 15
Content Formatting Syntax Structure Writing style Other

Oracle (94) 41% 13% 24% 16% 5%
Spark* (125) 42% 12% 26% 14% 6%
Eclipse* (97) 41% 13% 25% 15% 5%
Hadoop* (97) 42% 13% 24% 15% 5%
Vaadin* (95) 41% 14% 24% 16% 5%

Google (13) 23% 23% 15% 15% 23%

Guice (13) 23% 23% 15% 15% 23%

Guava (13) 23% 23% 15% 15% 23%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of rule types of class comment related rules in Java conventions
Content = Formatting Syntax Structure ~ Writing style = Other
PEP8/257 (29) 21% 38% 7% 17% 17%
Django* (39) 23% 38% 8% 13% 18%
Requests* (37) 19% 41% 8% 14% 19%
Mailpile (29) 21% 38% 7% 17% 17%

Pipenv (29) 21% 38% 7% 17% 17%

Numpy (76 41% 14% 34% 8% 1%1%
Pandas* (170) 38% 11% 32% 5% 12% 3%
iPython* (107) 35% 21% 26% 10% 7% 1%

Google (21) 14% 29% 14% 14% 29%

Pytorch* (33) 12% 36% 18% 12% 21%
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of rule types of class comment related rules in Python conventions

Figure 3.5: Rule type percentage of class comment related rules of the Java and Python projects.

3.4 Implication and Discussion

From the Java coding style guides only the Sun Java Code Convention contained a comment style guide
dedicated to writing documentation comments. In Python, we found that PEP 257 contained rules specific
to docstrings. The other conventions had rules about other things such as naming conventions, file
structure, and programming practices and have a section dedicated to comments where implementation
and documentation comments were differentiated. Interestingly, all style guides gave information about
the dedicated location of the comments and how they should be indented. Not all style guides went into
the same level of detail about what content should be written inside comments.

Since many rules are about formatting and indentation, this indicates that style guidelines are concerned
with the look of code and how it is displayed. The second focus of the style guidelines seems to lie on the
information inside the comments. Formatting rules usually discussed how comments within the source
code and components inside the comment should be indented. They also defined where and how many
blank lines should be inserted between the comment and the source code, and between the components

CHAPTER 3. COMMENT CONVENTIONS 16

inside the comment. Lastly, for each project there was at least one Formatting rule, either defined in the
standard style guide or the project convention, that defined a limit of characters allowed per line. Content
rules usually gave general statements on what should be inside a comment i.e., “Comments should be used
to give overviews of code.” but were in some cases more precise i.e., “The first sentence of deprecated-text
should at least tell the user when the API was deprecated and what to use as a replacement.” In other cases,

Content rules defined what should not be inside a comment i.e., “Do not use @version tags.”

Writing style rules make the smallest percentage of all extracted rules. This means when a comment is
already well-formatted and contains relevant information, then how the information is written is not as
important anymore. However, since even comments with good content, correct syntax, and formatting can
be written in different writing styles, inconsistencies between code comments are not avoided. The lack of
Writing style rules reveals a gap in the style guidelines on how to write the comment content concerning

language and grammar.

As we can see that the style guidelines provide Content rule types more often than other rule types but
these rules are not well covered by linters or style checkers. The linters are often limited to checking the
presence of comments or their formatting but rarely contain the rules to check the content inside. Having
linters configured in the projects can ensure that developers follow the formatting rules. In addition, there

is a strong need to conduct studies on linters to see how well they support checking code comments.

There is no clear answer as to why Syntax, Structure, and Writing style rules have a low presence in
both Java and Python style guides. This raises the question of whether there is a correlation between the
number of rule types present in a style guide and the adherence of the comments to a specific rule type.
Going one step further, are the predominantly present Formatting and Content rules in the style guideline
more followed by developers than rule types that with less presence? Lastly, whether the small percentage

of Syntax and Structure rules is related to the projects using linters, can also be explored in future work.

3.5 Conclusion

In this chapter, we consulted the style guides used by 13 open-source projects: 6 Java and 7 Python projects.
We found that Java projects use the Sun Java Code Convention and Google Java Style Guide. The Python
projects use PEP 8/257, Numpydoc, and Google Python Style Guide. Of the 13 projects, 9 (from which 4

Java and 5 Python projects) have additionally a convention specific for their project defined.

From the Java coding style guides only the Sun Java Code Convention contained a comment style
guide dedicated to writing documentation comments. In Python, we found that PEP 257 contains rules
specific to docstrings. The other conventions had rules about other things such as naming conventions, file
structure, and programming practices and have a section dedicated to comments where implementation
and documentation comments were differentiated. Interestingly, all style guides gave information about
the dedicated location of the comments and how they should be indented. Not all style guides went into

the same level of detail. Project conventions defined exceptions to the style guide and added additional

CHAPTER 3. COMMENT CONVENTIONS 17

information which in some cases were already covered by the style guide itself.

From the style guidelines used by the projects, we extracted all comment-related rules and categorized
them according to an adapted taxonomy: Content, Formatting, Syntax, Structure, Writing style, and Other.
It turns out that Content and Formatting rules are the most frequent rule types. Only a small portion of the

rules per each style guide were Writing style rules.

Convention Adherence

4.1 Introduction

The previous chapter described how programming languages, various communities, organizations, or
projects provide style guidelines to write consistent, readable, and maintainable comments. They provide
various conventions to dictate the formatting, style, or content aspect of comments. However, whether
developers follow these conventions while writing comments is not known. In order to have high-quality
comments, it is essential to verify the adherence of developer commenting practices to the style guidelines.
In this chapter we answer RQ2: To what extent do developers follow style guides when writing class

comments?

As verifying all comments against all rules is not a trivial task, we select sample class comments and
carefully analyze each rule to develop the condition under which we can say that a comment follows a rule
or not. Therefore, following the methodology given in Chapter 3, we validate each rule against the sample
of the selected class comments.

We find that developers follow Writing style rules more often than other rule types. Moreover,
developers follow Content rules often however the majority of the Content rules are not applicable to
comments due to the absence of comment components targeted by the rules. For instance, the Content rule
from the Sun Java Code Convention “The @deprecated description in the first sentence should at least

18

CHAPTER 4. CONVENTION ADHERENCE 19

tell the user when the API was deprecated.” is addressing the purpose of the description following the
“@deprecated” tag. However, the comment adherence to this rule can only be verified if the comment
contains the “@deprecated” tag addressed in the rule. If the comment does not have “@deprecated” tag,
this aforementioned Content rule cannot be applied due to the absence of this tag. Of the applicable rules,
not all rules are followed by developers. We find that developers often violate Structure rules. Our results
confirm the finding from the previous work of Rani ef al. [6] in which Pharo class comments adhere

predominantly to Content and Writing style rules described in the Pharo class comment template.

4.2 Methodology

To answer RQ-, we evaluate the rules extracted from the style guidelines (in the previous chapter) against
comments to see if developers follow these rules when writing comments or not. However, verifying each
comment against each rule is not a trivial task. We notice some open rules that are hard to verify. We

carefully identify such rules.

Validated Rules. To evaluate code or comments against the style guidelines automatically, various
tools known as linters or style checkers are available. However, not all rules are supported by these tools.
There are already existing tools to validate and fix the formatting of source code.! However, they provide
limited support for verifying comment rules. They provide limited support for checking the formatting of
comments and do not support checking all other types of rules, therefore the majority of the rules require
manual analysis. We, thus, first focus on the rules that require manual validation i.e., all rules other than
formatting rules. To restrict the scope of the work and reduce the manual effort, we focus on specific types
of comments and specific types of rules. As explained in Section 3.2.1, we reuse the dataset prepared
by Rani et al. [5]. They analyzed class comments and identified the information types sentence-wise.
From the dataset, we consider the class comments extracted from open-source Java and Python projects.
Additionally, we use the rule taxonomy formulated in Chapter 3. As we focus on class comments, we
consider only the rules about class comments and the rules types (Content, Syntax, Structure, Writing style,

Other) except Formatting type and the rules categorized as Other.

Table 4.1 and Table 4.2, displayed below, describe all rules that were validated, not validated due
to various reasons such as some rules being of type Formatting (NV-Format) and some rules not being

constrictive enough or not possible to be validated with the class comments in our dataset (NV-Other).

Language # Allrules # CCrules # Valid #N-Valid #NV-Format # NV-Other
Java 217 145 83 62 21 41
Python 397 252 180 72 51 21

Table 4.1: Rules that are validated or not validated

lwww. jetbrains.com/help/idea/reformat-and-rearrange-code.html accessed August 31, 2021

www.jetbrains.com/help/idea/reformat-and-rearrange-code.html

CHAPTER 4. CONVENTION ADHERENCE 20

In Table 4.1 we see the total number of rules we extracted from the style guides per language. The
column A/l rules shows all the comment-related rules, and the column CC rules shows all class comment
related rules. The column Valid shows all the validated rules, the column NValid shows the total number
of rules that are not validated due to any reason. The column NValid is further described with the reason
for non-validation due to the formatting rules (the column NV-Format) or any other reason (the column
NV-Other).

Out of all extracted rules, 69% (Java) and 64% (Python) are class comment related. As mentioned
earlier, we excluded Formatting rules to focus on rules requiring manual analysis. The dataset consists
of class comments and not any related code of the class or other classes mentioned in the comment. We
find various rules (43% for Java and 37% for Python) that cannot be validated with class comments alone.
Thus, in addition to excluding Formatting rules, we exclude rules that cannot be validated with our dataset
and require the consultation of the source code. For instance, the rule “The closing quotes are on the same
line as the opening quotes” cannot be validated due to the absence of comment delimiters (i.e.,/**...%/,
”) and indentation in the dataset. Similarly, some rules are excluded due to being unprecise such as the
rule “A doc comment may contain multiple @version tags.” In this case, this rule is always considered as
followed since there is no constriction on the number of @version tags used in the comment. Therefore,
this rule cannot be violated. Cases, where the @version tag is missing are the exception, and the rule is

considered not applicable to those comments leading to those comments being marked as not applicable.

Style guide # Allrules # CCrules # Valid #N-Valid #NV-Format # NV-Other

Oracle 149 94 54 40 12 28
Google 19 13 8 5 3 2
s Vaadin 1 1 0 1 0
= Eclipse.cdt 4 3 2 1 1 0
Hadoop 3 3 1 2 1 1
Spark 41 31 18 13 3 10
PEP 55 29 12 17 11 6
Google 59 21 12 9 6 3
Numpy 110 76 63 13 11 2
£ Django 11 10 6 4 4 0
2> Pandas 103 94 78 16 8 8
iPython 5 2 1 0
Pytorch 43 12 5 7 6 1
Requests 11 8 3 5 4 1

Table 4.2: Number of extracted rules from each style guide (including project-specific style guides)

Table 4.2 displays the number of rules that got extracted from each Java and Python code style guide
and convention specific for the projects. The column Style guide show lists all style guides suggested

CHAPTER 4. CONVENTION ADHERENCE 21

by the projects and the projects with project-specific rules. The style guides and projects are ordered by
the programming language they are written in, starting with Java and below the horizontal line followed
with Python style guides and projects. As in Table 4.1, the columns All rules and CC rules show all
comment-related rules and how many rules are class comment related. The columns Valid and N-Valid
show how many of the class comment related rules are validated and not validated. The column NV-Format
shows how many not validated rules are Formatting rules. The column NV-Other shows the rules that were

not validated for other reasons.

The Java projects Guava and Guice as well as the Python projects Pipenv and Mailpile are not listed in
Table 4.2 since they do not have any project-specific rules defined. Overall the rules defined by projects

tend to be more class comment-related.

Adherence of comments against the rules. We identified whether each comment or part of it follows
the rules by labeling it with followed, not followed, or not applicable. We consider a comment or part of it
following the rule (followed) when it satisfies all the conditions of the rule fully otherwise we label not
followed. In case the rule is not applicable to the comment or the comment component targeted in the rule

is missing, we label it as not applicable.

The validation was done manually with the occasional help of regular expressions. Let’s consider
the following rule: “If the member has no replacement, the argument to @deprecated should be ‘No
replacement’.” First, we filter the dataset for class comments with the deprecated tag. After this step, we
can already consider the rule to be not applicable to the class comments that are filtered out. Next, for the
comments that contain the @deprecated tag, we filter again for the pattern “No replacement”. Then we go
through the comments and identify the sentence or part that is about the deprecation information. We check
whether this part satisfies the rule. If the rule is satisfied, the comment is labeled as “followed”. Comments
that did contain the @deprecated tag but not the “No replacement” pattern are labeled as “not followed”.
Regular expressions could not be used for rules that target the description of a comment component, e.g.,
for a rule like “the first sentence of the class comment needs to be a summary”. In such cases, we manually
examine each class comment and validated it accordingly. We use a search term to find the occurrence
of the exact term and in case the condition/rule does not specify the exact term, we composed a regular

expression.

One author validated all the rules against the selected comments. Another author reviewed all the
evaluations independently. The second author reviewed the doubtful cases. In the end, using the majority

voting mechanism, we resolved all the conflicts.

4.3 Results

This research question aims to verify the adherence of class comments to the style guidelines. In Figure 4.1
we see the adherence of the class comments to the comment-related rules. The Java and Python projects

are listed on the y-axis and the percentage of each category is displayed on the x-axis. For each project,

CHAPTER 4. CONVENTION ADHERENCE 22

the distribution of the class comments categorized as followed, not followed, or not applicable is displayed.
The last category (not applicable) is due to a rule being not applicable to the class comment. For instance,
in Guice, 53% of the comments follow the coding style guideline suggested by Guice. However, 2% of
the class comments do not adhere to the coding style guideline and 45% of the comments could not be
validated due to rules being not applicable to them. Generally, we see that a high percentage of class
comments are labeled as not applicable since they often do not contain the components addressed by the
rules. For instance, not all comments contain the @deprecated tag and therefore rules about this tag do
not need to be taken into consideration. Pandas and iPython are two extreme cases here. Considering the
labels Followed and Not followed more class comments do follow the style guidelines rule than the ones
violating them. Noteworthy is the high percentages of the not applicable category. Out of the 263 rules we
validated against the class comments, on average 55% of the Java class comments and 60% of the Python
rules did not apply to the comments. In addition, the percentage of Java class comments violating the rules
is lower (on average 2%) than Python 7%. Interestingly, Pandas, which has its own self-imposed rules and
adopts the Numpydoc style guide, follows the highest number of rules from all 13 projects and has the
highest percentage of the not applicable rules.

Not applicable. Rules that could not be validated against comments due to missing information inside
the comment usually target optional or circumstantial comment components. For the latter, we consider
for instance the deprecation of an option as circumstantial. Most rules that are not applicable are of type

Content, Syntax, and Structure.

Followed. Rules such as “Avoid Latin”, “Comments should never include special characters such as
form-feed and backspace.”, both from the Sun Java Code Convention, were followed by all comments of

Projects that suggest following the Sun Java Code Convention.

Not followed. The percentage of comments violating rules is very low. Interestingly, there was never a
rule that was violated by all comments within a project. To be more specific, the highest percentage of
comments violating a rule lies by 35.7%. Compared to this we have several rules that are 100% Followed
or 100% Not applicable. This 35.7% of rule violating comments, were recorded in Spark for the rule from
the Sun Java Code Convention “Doc comments are meant to describe the specification of the code, from an

implementation-free perspective.”.

Finding 1. A large portion of comments is not applicable to rules. Java shows a higher portion than
Python.

CHAPTER 4. CONVENTION ADHERENCE 23

Followed Not followed Not applicable
Guice 53% 2% 45%
Guava 63% 3% 35%
o Hadoop 24% 2% 74%
s
- Spark 25% 2% 73%
Vaadin 32% 3% 65%
Eclipse.cdt 27% 3% 70%
Requests 38% 12% 50%
Pytorch 49% 10% 42%
- Pipenv 54% 6% 40%
=]
éi Pandas ~11% 3% 86%
= Mailpile 47% 10% 43%
iPython 16% 2% 83%
Django 49% 7% 44%
0% 25% 50% 75% 100%

Figure 4.1: Comment adherence across all projects

4.3.1 Adherence to rule types

Figures 4.2 and 4.3 illustrate what rule types tend to be followed or not followed by the class comments.
Missing rule type categories for a project in the graph indicate that no comments were validated against
that specific category. In Figure 4.2 it is noticeable that across nearly all Java and Python projects rules
of type Writing style are followed the most. As an exception, we see that for Pandas Structure rules are
followed the most. On the other hand, in Figure 4.3, we see that rules of type Structure (on average 27%)

tend to be violated the most.

4 N\

Finding 2. Writing style rules are followed the most across all projects except for Pandas in which

comments tend to adhere more to Structure rules.

(. J

4 N\

Finding 3. Structure rules are those rules that tend to be not followed by the majority of the projects,
with Spark leading with 75% of its Structure rules not being followed.

(. J

CHAPTER 4. CONVENTION ADHERENCE

100%
90%

80%

60%
50%
40%
30%
20%

10%

Eclipse

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%
Eclipse.cdt

Content Structure Syntax Writing style

Hadoop Spark Vaadin Guava Guice Dijango iPython Mailpile Pandas Pipenv Pytorch

Java ; = Python
T'ype of rules followed in comments °

Figure 4.2: Types of rules that are followed

Content Structure Syntax Writing style

Hadoop Spark Vaadin Guava Guice Django iPython Mailpile Pandas Pipenv Pytorch

Java Type of rules not followed in comments Fython

Figure 4.3: Types of rules that are not followed

4.3.2 Not applicable rules

24

Requests

Requests

In Table 4.3 you see Java rules that were for some or several projects never applicable to any class comment.

The hyphen indicates that this rule does not belong to the style guide of the project. For instance, the first

two rules “Any of the standard ‘block tags’ that are used appear in the order @param, @return, @throws,

@deprecated” and “Any of the standard ‘block tags’ @param, @return, @throws, @deprecated never

appear with an empty description.” are from the Google Java Style Guide, which is the style guide for

Guava and Guice. We have six rules from the Sun Java Code Convention and one rule from the Google

Java Style Guide that were never applicable to the class comments in our dataset. For the Python rules,

we found that the following PEP 8/257 rule was never applicable to any Python class comment: “The

CHAPTER 4. CONVENTION ADHERENCE 25

docstring for a class should list the public methods.”

r

Finding 4. From the 83 Java class comment related rules we validated, 7 were never applicable to any

class comment. For the Python class comments, only one rule was never applicable.

.

Rule Eclipse.cdt | Hadoop | Spark | Vaadin | Guava | Guice

Any of the standard “block tags” - - - - X X
that are used appear in the order
@param, @return, @throws, @dep-
recated

Any of the standard “block tags” - - - - v X
@param, @return, @throws, @dep-
recated never appear with an empty

description.
@serial field-description. X X X X - -
The optional field-description de- X X X X - -

scribes the meaning of the field and
its acceptable values. The field-
description can span multiple lines.

{ @linkplain package.class#member X X X X - -
label }

@serial field-description | include | X X X X - -
exclude

Use XXX in a comment to flag X X X X - -
something that is bogus but works.

Use FIXME to flag something that X X X X - -

is bogus and broken.

Table 4.3: Examples of not applicable Java rules.
(x) rule was not applicable to any class comments of that project, (v') rule was applicable to some class
comments of that project, (-) rule is from a style guideline not suggested by the project

4.4 Implication and Discussion

According to our results, rules of type Writing style are followed the most amongst all rule types. Consid-
ering the results of Chapter 3, where we found that from all rule types present in style guidelines Writing
style rules make up a small portion. We assume this result may be due to grammar rules being followed by
developers per default unrelated when it comes to writing code comments or other types of documentation.

However, this can be further investigated in future work.

As we have seen in Figure 4.1, Pandas has with 86% the highest percentage of comments with non-
applicable rules. We found that due to the possibility of comment components being optional and several

rules addressing optional comment components, the percentage of not applicable comments rises. For

CHAPTER 4. CONVENTION ADHERENCE 26

instance, the Pandas rule “This section has a header, ‘See Also’ (note the capital S and A), followed by the
line with hyphens and preceded by a blank line.” is not applicable to 91% of the class comments in Pandas.
Since the See Also section is optional many comments will be not applicable to this rule as shown with
the previous example. We found that the same applies to various other optional sections and comment

components.

4.5 Conclusion

The Java projects have higher adherence to the rules in the style guide than the Python projects. Moreover,
the class comment related rules of the Java projects do not apply to 60% of the Java comments whereas
the percentage lies by 55% for the Python comments. This high percentage is caused by certain parts
of comments being optional or only used in certain scenarios (i.e., object deprecation). Therefore, rules
targeting such optional or circumstantial comment components will only apply to a small portion of all
comments in a project. We even had in both languages rules that never applied to any class comments in
our dataset. However, there is room for bias since the projects vary in sample size and rules. This may lead
to projects with fewer rules show a higher adherence to the style guide. This might be the case for the Java

projects Guava and Guice.

Additionally, rules of type Writing style tend to be followed more by developers. Contrary, Structure
rules are more violated than other rule types. Lastly, projects tend to show more not applicable rules if the

number of samples is close to or smaller than the number of rules.

Threats to Validity

In this chapter, we highlight various threats to the validity of our study.

5.1 Threats to construct validity

This concerns the measurement used in our study.

Selection of sample guidelines. We did not consider all style guidelines available in the Java and
Python ecosystems and instead focused on the selected guidelines. To mitigate this concern, we focused
on the popular standard guidelines used in Java and Python open-source projects. As these guidelines are
considered as a baseline for many other guidelines and used frequently in projects, they should give a

reliable overview of commenting conventions recommended by the style guidelines.

Selection of sample projects. We did not consider all projects in each language but considered a sample
of them. In order to utilize the carefully considered heterogenous projects from various related works, we
considered the same projects[4, 5, 13]. The projects originate from different ecosystems such as Google

and Oracle, and thus follow different coding style guidelines for their comments.

Selection of sample comments. As we did not consider all comments of a project, this can be a concern
related to subjectiveness and bias in the evaluation. However, we leveraged the dataset of sample comments

from the previous work [5]. The sample comments represent the statistically significant sample set for

27

CHAPTER 5. THREATS TO VALIDITY 28

both languages. Additionally, they are selected using a hybrid approach of stratified and random sampling
approaches. However, as we used the dataset from Rani et al., we relied on their classified comments.
Their focus was just on the content of the comments and not on other aspects such as syntax or structure
of comments. Thus, the dataset worked well for their case study, but we noticed some issues for our
analysis. For instance, there were reported cases of dangling comments, where the comments precede the
class definition but are written using the block comment symbols rather than the documentation comment
symbols. Additionally, we found very few cases of inline comments even though their focus is just on
class comments. In such cases, we consulted the source file of the class and manually verified whether
the extracted comment was in fact a class comment. Some source files for the classes do not exist in the
latest version of the project. In future work, we plan to validate the comments with the latest version of the

projects.

5.2 Threats to internal validity

This concerns confounding factors that could influence our results.

Rule taxonomy. Another important concern is the definition of the rule type taxonomy and mapping
of the rules to the taxonomy are performed by two human subjects. To reduce this risk, we extend the
taxonomy proposed by the earlier work following the same methodology [6]. However, as the system
evolves, there are high chances that the style guidelines are updated and the conventions present in them
are changed, replaced, or reformulated. This can affect the categorization of the rule type. Similarly, there
can be additional external links added in the guidelines to point to further commenting conventions. For
example, Python PEP 8 refers to the PEP 257 guideline for Docstring related conventions. To ensure the
accuracy of the current version of the taxonomy, we iterated the style guidelines over the course of the
thesis not to miss any comment-related rule. Two authors independently categorized each rule and in case

of a conflict, the third author reviewed and marked the decision using the majority voting mechanism.

Comment adherence to the rules. When validating if a rule follows a comment or not, our understanding
of the rule can be subjective and can lead to a wrong validation. To prevent this and provide reproducibility
of the validation process, for each rule we mutually defined various validation conditions under which
a comment can be considered as followed, not followed, or not applicable. We performed a two-step
validation approach, where first the author independently validated each rule against each comment, and
then another author independently reviewed the validations. Whenever the opinions diverged, we discussed
until a final consensus was reached.

Additional research is needed to test whether our results generalize to closed-source projects that are

maintained in a corporate setting with the same or a different set of developers.

CHAPTER 5. THREATS TO VALIDITY 29

5.3 Threats to external validity

This concerns the generalization of our results. The main goal of this thesis is to analyze the commenting
conventions proposed by various style guidelines for the selected programming languages. The proposed
approach may achieve different results in other programming languages or projects. To reduce this threat,
we considered both static and dynamic programming languages, following different style guidelines.

Additionally, the projects considered also vary in terms of size, domain, language, and contributors.

Conclusion and Future Work

We found that the six Java open-source projects in our dataset suggest their developers to use the Sun
Java Code Convention and Google Java Style Guide. The seven Python projects suggest PEP 8/257,
Numpydoc, and Google Python Style Guide. Besides the suggested style guide the projects often defined
a project-specific convention where either new rules besides the ones present in the style guide were
defined or rules from the style guide are changed or complemented. Interestingly, all style guides gave
information about the location of the comments within the source code and how they should be indented.

We discovered that not all style guides went into the same level of detail regarding code comments.

From the style guidelines used by the projects, we extracted all comment-related rules and categorized
them according to an adapted taxonomy. Our results show that Content and Formatting rules are the most

frequent rule types. Only a small portion of the rules per each style guide was Writing style rules.

We validated the class comment-related style guideline rules against the Java and Python class
comments in our dataset and found that the Java class comments have a higher adherence to style guide
rules than the Python projects. Moreover, the class comment related rules of the Java projects do not apply
to 60% of the Java comments whereas the percentage lies by 55% for the Python comments. This high
percentage in both languages is caused by optional comments components or comment components only
used in certain scenarios. This leads to such rules only applying to a small portion of all comments in a
project. Additionally, according to our results, rules of type Writing style tend to be followed more by

developers. In contrast, Structure and Content rules are more violated than other rule types.

30

CHAPTER 6. CONCLUSION AND FUTURE WORK 31

With this thesis, we point out the unbalanced distribution of the rule types present in Java and Python
style guides. This finding might encourage writing better style guides for code comments. Future work

might investigate whether there is a link between the content of style guides and coverage of linters.

For future work, we plan to extend our work to other programming languages such as C/C++, C#
and analyze other comment types such as method comments, package comments, inline comments to
see if developers follow the guidelines specific to a type. We also plan to involve developers via surveys
and interviews to validate our rule taxonomy and labeled comments. This step is important to strengthen
our results, such as where the current style guidelines lack, and design tools to enable the automatic
adherence of comments to the style guidelines. Lastly, our analysis focused only on open-source Java and
Python projects on GitHub. Additional research is necessary to confirm whether our results generalize to

closed-source projects.

Anleitung zu wissenschaftlichen Arbeiten

This chapter provides various guides related to Chapter 3 in Comment Conventions and Chapter 4 in
Comment Adherence. An overview of the thesis is displayed in Figure 7.1. In the following, we will provide
more details for certain steps mentioned in the previous chapters. The Comment Conventions section
provides a guide to the finding of the style guidelines (Section 7.1.1) for the various projects presented in
Data collection (Section 3.2.1), identifying comment-related rules from the content of the style guidelines

(Extracting comment-related rules), and organizing the rules into the taxonomy as discussed in Chapter 3.

The Comment Adherence section presents a guide to validate comments to the rules in Chapter 4. In
Section 7.2.1 we describe the step we took before validating the style guide rules against our comments in
the dataset. Moreover, we explain how we defined conditions under which a rule is considered as followed,

not followed, or not applicable to a comment.

32

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 33

Projects
6 Java projects
7 Python projects

¥

Finding the style guide
in project documentation,
referenced in project documentation

¥

Rule collection RQ1: What do coding style
comment related, indentation - guidelines suggest about
and file formatting comments?

¥

not CCrules € Rule categorization

¥

CC rules

¥

Filter the ruls and define
conditions for rules for validation

¥

CC rules to
validate

RQ2: To what extent do
* - developer's class comments
follow style guidelines?

Rule condition
followed, not followed and not
applicable

v

Rule validation

Figure 7.1: Thesis overview

7.1 Comment Conventions

7.1.1 Finding the style guides

Projects can, when suggesting developers which guideline to use, reference multiple guidelines or specific
sections of guidelines. Generally, this information is documented on the project web page, or the version
control repository (e.g., GitHub) under the contribution guideline section or the documentation guideline.
The purpose of these two guidelines is to tell developers which conventions to refer to for what part of the
code when contributing to the open-source project. As all 13 projects in our dataset are popular, have their
own web page, and are hosted on GitHub, we searched in both sources for a reference to style guides.

In most cases, we found this information located in the “Contribute” section of the project web page

where the required material about the project set up, workflow, and collaboration rules is mentioned, or in

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 34

the README of the GitHub repository.!

In the case of the Vaadin project, we could not find a direct mention of the style guideline, so we
consulted the linter file (Checkstyle file) in its GitHub repository.? Similarly, for the Python projects
Mailpile and Pipenv, we found no mention of the usage of the style guidelines for those projects. Thus,
finding the style guideline for both of them was not a trivial process. In the following paragraph, we
detailed the strategy adopted to find which style guideline these projects follow.

Pipenv mentions on its project page that the documentation is written in restructuredText (described
later on) and states “When contributing documentation, please do your best to follow the style of the
documentation files. This means a soft-limit of 79 characters wide in your text files and a semi-formal, yet
friendly and approachable, prose style.” > However, this statement does not refer to comments in Python
source code but instead the documentation text files that reside in a designated directory in their GitHub
repository. The plain text markup language, restructuredText, is used to create Python comments, simple
web pages, and standalone documents. However, it does not contain rules on how Python comments
should be written.* We checked the pull requests of the GitHub repository since they contain information
about changes developers push to the repository. According to the pull requests, some developers pushed
changes to the code to make their changes adhere to PEP 8, confirming that Pipenv developers use PEP
8/257 as a style guideline. > Similarly, we found that Mailpile uses the PEP 8/257 style guideline. As we
did not find any mention of a project-specific guideline neither on Pipenv’s and Mailpile’s project page
nor in their GitHub repository, we assumed that Pipenv and Mailpile had not any project-specific style
guideline defined. Thus, we analyzed the adherence of the comments from Pipenv and Mailpile solely for
PEP 8/257 rules.’

Once we found out which style guideline the projects refer to, the next important thing is finding out

which version of the style guide to use.

7.1.2 Identifying the style guide version

Over time, style guides evolve and new conventions are added, deleted, or changed. After determining the
style guide the projects in our dataset suggest, we consulted the version of the style guide that is available
online, which is usually the latest version. However, since the snapshot of our projects in the dataset dates
to the end of 2019, we had to search for the version of the style guide that was available at that time and

compare it to the online version.

"https://cwiki.apache.org/confluence/display/HADOOP/How+To+Contribute accessed August 31,
2021

2https://github.com/vaadin/framework/blob/727accead38ec3a292900054764af59%ca89e0fda/
checkstyle/vaadin-checkstyle.xml accessed August 31, 2021

3https://pipenv.pypa.io/en/latest/dev/contributing/#documentation-contributions ac-
cessed August 31, 2021

“https://docutils.sourceforge.io/rst.html accessed August 31,2021

Shttps://github.com/pypa/pipenv/pull/87 accessed August 31, 2021

Shttps://github.com/mailpile/Mailpile/pull/62 accessed August 31,2021

"https://docs.python-requests.org/en/latest/dev/contributing/ accessed August 31, 2021

https://cwiki.apache.org/confluence/display/HADOOP/How+To+Contribute
https://github.com/vaadin/framework/blob/727accead38ec3a292900054764af59ea89e0fda/checkstyle/vaadin-checkstyle.xml
https://github.com/vaadin/framework/blob/727accead38ec3a292900054764af59ea89e0fda/checkstyle/vaadin-checkstyle.xml
https://pipenv.pypa.io/en/latest/dev/contributing/#documentation-contributions
https://docutils.sourceforge.io/rst.html
https://github.com/pypa/pipenv/pull/87
https://github.com/mailpile/Mailpile/pull/62
https://docs.python-requests.org/en/latest/dev/contributing/

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 35

We hypothesized that in the time frame between the project snapshot and the time of writing, both
style guide versions will differ slightly. We could trace back older versions of the style guides since the
content of the style guides very often is stored also as a text file which is situated in a GitHub repository.
We compared the online version from which we extracted the rules to the version dating to the end of
2019. Most style guidelines did not change at all or did not change any comment-related rules. Pandas
has changed the wording, however, the meaning is still the same. We could not find any versioning of
project-specific rules defined for the Eclipse.cdt project. Therefore, used the rules available on the website
at the time of writing. To guarantee the reproducibility of the thesis, we have a copy of each style guide
version that was considered in the thesis recorded in the replication package.

7.1.3 Analyzing the style guide content

Once the version of the style guide to use is determined, the next step is to analyze the content of the
style guide and extract comment-related rules. In the following paragraphs, we describe the steps taken to

achieve this.

7.1.3.1 Standard guidelines

All style guidelines are written in natural language, and provide examples as an addition to the text. The
examples are usually code fragments or comments. Some style guides (Figure 7.2) provide examples of
good and bad code or comments. The style guide content is ordered in sections for better orientation. All
style guides are written in English and some have translations available. In this thesis, we only considered

the English translation of the style guide.

Good:

def astype(dtype):
Cast Series type.
This section will provide further details.

pass
Bad:

def astype(dtype):
Casts Series type.
Verb in third-person of the present simple, should be infinitive.

pass

Figure 7.2: Pandas style guide good and bad example of short summary

We discovered that standard style guidelines address other things besides comments such as naming

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 36

conventions, file organization, indentation and formatting, code statement writing, programming practices,
and comments. Additionally, some style guidelines, refer to other sources for more details about a certain
comment component. For instance, the Sun Java Code Convention often refers when it comes to tags to

another style guide.

Java. From all style guides, the Sun Java Code Convention has the most sources, from which rules
were extracted. Among the sources, there is a style guide named ”"How fo Write Doc Comments for the
Javadoc Tool” that is specific to writing documentation comments. Google provides a style guide for the
majority of popular programming languages. The Google Java Style Guide is one of the many style guides
defined by Google. It serves as a complete convention of Google’s coding standards for Java source code.
and also includes rules about how to write good comments. Compared to the Sun Java Code Convention,
the Google Style Guide does not go into as much detail regarding comments and the comment components

(i.e., summary, field description, examples, tags etc.) that exist and how they should be documented.

Python. Five out of the seven Python projects claim to follow the PEP style guide for writing
documentation comments. This is not surprising since PEP is the standard Python-style convention. PEP §
refers to PEP 257 to gain more details for documentation comments. We, therefore, always considered
rules from PEP 257, even a project only claims to follow PEP 8. Contrary to the Sun Java Code Convention
the summary line in multi-line docstrings is separated from the description that follows by a blank line.
NumpyDoc follows PEP 8 and PEP 257 and has it extended with its own conventions as well. The style
guide is structured by the sections a docstring can contain. Such sections are: Short summary, extended
summary, parameters, returns/yields/receives, raises, warns, see also and notes section. NumpyDoc
has rules specific to classes, methods, and modules. The Google Python Style Guide contains Python
rules which include code formatting, indentations of code and comments, and docstrings. Similar to the
NumpyDoc, the summary line is separated from the description by a blank line. Regarding sections, the
Google Python Style Guide mentions only four sections: Args, Returns/Yields, Raises, and Attributes while

Numpy mentions the ones listed earlier.

7.1.3.2 Project-specific guidelines

As stated before, projects can follow one or several style guidelines or can define their own. For both
languages, Java and Python, we had two projects per language (Guava, Guice, Pipenv, Mailpile) (Table 3.2)
that only refer to the style guidelines of the language. On the other hand, the project iPython, suggests its
developers to follow the two style guides: PEP 8/257 and Numpydoc. To avoid overlapping or conflicting
rules, projects can prioritize the conventions of one style guide over another. Generally, we gave rules
defined in the project-specific guideline a higher priority than the rules present in the standard style

guidelines.

Java. In the case of Eclipse.cdt, Hadoop, and Vaadin, only a few rules were defined as exceptions
to the standard style guide suggested by the projects. The Eclipse.cdt style guideline defines that an
indent should be four spaces wide, @version tags should not be used, and that all HTML tags must be

terminated. Hadoop defines that comments should not contain @author tags and the indentation should

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 37

be two spaces per level instead of four. Additionally, Hadoop mentions that public classes and methods
should be documented with informative Javadoc comments. However, this rule is already covered by
the Sun Java Code Convention. Vaadin adds to the line length 80 rule from Sun Java Code Convention
that member declarations are not wrapped onto the next line. Among all Java projects, Spark has the
most project-specific rules. This is due to the fact that Spark has 65% of the code in Scala and thus uses
Scaladoc. Although many rules in Scaladoc are similar to the Sun Java Code Convention, we carefully
selected the rules applicable for Javadoc comments. For instance, rules about the @group tag used in Scala
were not extracted, since this tag does not exist in the Java programming language.

Python. In Python, we also found exceptional cases where the rule in the project-specific guideline
contradicts the style guideline suggested by the project. In those cases, the project either defined an
exception or adaption or defines a rule that contradicts a rule in the suggested style guide. For example,
the Django guideline recommends the line length for the documentation, comments, and docstrings to be
79 characters compared to 72 suggested by PEP eight. Similarly, iPython recommends using four spaces
for indentation and never tabs. We documented all such exceptions and prioritized them over the rules

suggested by the baseline guideline.

7.1.4 Extracting the rules

Finding the rules The aim is to identify the code comment-related rules. In each style guide, we searched
for keywords like ‘documentation’, ‘comment’, and ‘class’. As the web page presents the content divided
into various sections, we extracted the section titles to preserve the context of the rule. It facilitated
identifying which type of comment the rule targets. The rule target tells what type of comment the rule
(inline, block, or documentation) is addressed. Moreover, it provided information about which object is
addressed (class, interface, method, field, etc.) and therefore helped and identifying whether a rule is class
comment related. In case a rule needed more context to make it understandable we extracted information
that gives the rule more context. As code comments are written in source code files, some conventions
given for the code also apply to comments e.g., file formatting, indentation, or the maximum number of

characters allowed per line. Therefore, We collected the rules that can apply to comments as well.

Extraction order We extracted rules in the order they appeared on the style guide’s web page to
facilitate their traceability for the future, and to help understand the context of the comments. As the rules
can be scattered across multiple sections, paragraphs, or sentences within a paragraph, we gathered which
component of each comment the rule refers to and thus grouped the rules according to the comment type.
We kept the wording as used in the style guide to avoid changing the interpretation of the rule during the
validation. Some rules were phrases and were extracted from a sentence that had multiple rules within a
sentence. In such cases, we added the necessary and missing information, which usually was the comment
type or component the rule targets. For example, the rule from the Sun Java Code convention ”Include
paragraphs marked with @link or @see tags that refer to the new versions of the same functionality.”
recommends the user to add replacement information in the description of the Javadoc @deprecated

tag. However, this is not clear from the rule alone, so we attached a note to the rule explaining that

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 38

the @deprecated tag is addressed here. If the solution above was not applicable, we added the missing

information directly to the rule but wrote it in ifalics to visually distinguish it from the rest of the rule.

Interpreting rules In addition, to directly mentioning the guideline, sometimes the style guideline
gave examples on how to write a comment without further description or elaboration. In such cases, we
formulated rules from the examples. For instance, Figure 7.3 shows two examples from Request, and

based on these examples, we formulated two rules:
* Single-line docstring, opening and, closing triple quotes should be on the same line.

* Multi-line docstring, opening triple quotes should be followed by text. Closing triple quotes should
be on a separate line.

def the_earth_is flat():
""UNASA divided up the seas inteo thirty-three degrees.”™""
pass

def fibonacci_spiral tool():
"""With my feet upon the ground I lose myself / between the sounds

;T Fow T

and open wide to suck it in. / I feel it move across my skin. / I'm

reaching up and reaching out. / I'm reaching for the random or
whatever will bewilder me. / Whatever will bewilder me. / And
following our will and wind we may just go where no one's been. [/
We* Ll ride the spiral to the end and may just go where no one's

been.

Spiral out. Keep going...

Figure 7.3: Docstring examples of Requests

As another example, the Google Java Style Guide stated that the formatting of Javadoc single-line
comments should look as follows: ”/** An especially short bit of Javadoc. */” In this case, we formulate
that “before and after the comment delimiters should have a space” and “the comment should fit on a line,

and should start and end with the comment delimiters”.

Rule exceptions If rules mention cases where it is permissible to not follow them, we considered
such exceptions in validating the comments. For instance, the Google Java Style Guide states that the
number of characters on a line should not exceed 100 but lines with more than 100 characters are accepted
if they contain shell commands that may be copy-pasted into a shell are an exception. Thus, if a comment

contained a shell command, and it exceeded the line length limit, we considered the comment as followed.

Rule splitting After having extracted all rules from the style guide and the secondary sources (if
mentioned), we split the rules (if possible) so that each rule can be validated individually. Each split

rule was documented to preserve the traceability to its main rule (or sentence). For instance the rule “the

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 39

@deprecated description in the first sentence should at least tell the user when the API was deprecated
and what to use as a replacement.” is split into “the @deprecated description in the first sentence should
at least tell the user when the API was deprecated.” and “the @deprecated description in the first sentence
should at least tell the user what to use as a replacement.”.

A single style guide has, in most cases, rules across several web pages. We considered references to
other web pages and extracted the rules from them as well. We paid close attention to preserve the source
of each extracted rule for traceability. We followed the same process for extracting the rules as we used for

the main style guide.

Once we gathered all the rules from all the style guides, the next step is to categorize the rules into

various rule types. The following section describes various categories and their intention.

7.1.5 Categorizing the rules

We categorized the rules into various categories so that future studies interested in focusing on a specific
aspect of comments, can focus on a category. Rani ef al. defined two categories (Content and Writing

style) of the rules, we extended their taxonomy by adding three additional categories.

* Content. Rani er al. defined the content type rules as the rules that provide which types of
information comments should contain [6]. For example, the rule “If the member has no replacement,
the argument to @deprecated should be ‘No replacement’.” from the Sun Java Code convention is a

rule of type content.

* Structure. This type tells the organization of the information type inside the comment. They clarify
how the different information types inside the comment should be organized and informs about
where they should be located. Structure rules are not only about the information organization inside
the comment but also around the comment and in the source code itself. A typical example would

be how the information in the comment should be listed, eg. the order of tags, sections, etc.

* Formatting. The rules provide information about how comments should be indented within the
source code, whether the components of the comment should be separated by a blank line, and
if so by how many. Rules of this type usually complement structure rules and add details to the
formations and use of spacing, indentions of the information types. In case a rule suggests white
space in combination with another character, we consider this rule as syntax. e.g., “This sentence
ends at the first period that is followed by a blank, tab, or line terminator, or at the first tag” (from
Oracle).

« Syntax. Syntax rules tell you how to specifically write something. ”If you have more than one

paragraph in the doc comment, separate the paragraphs with a <p> paragraph tag”

» Writing style. This type of rule entails anything about language-specific like grammar, punctuations,

and capitalization. Such rules explain which words to use which to avoid. For example the rule from

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 40

Django “Avoid use of ‘we’ in comments, e.g. ‘Loop over’ rather than ‘We loop over’.” is a Writing

style rule.

* Others. Rules that do not fit in any of the categories mentioned above.

7.2 Convention Adherence

7.2.1 Rule conditions

Depending on the rule, we adapted our validation strategy. Some rules can be either considered as followed
or not followed. Such rules typically suggest specific information should be present in the comment.
Rules that can fall under all three categories usually suggest how a comment component should be
written. Depending on whether the component is written as recommended the comment is considered to

be following the rule or not. In case of the absence of the comment component, the rule cannot be applied.

For instance, for the rule from the Sun Java Code Convention “If the member has no replacement,
the argument to @deprecated should be ‘No replacement’.” we defined the following set of conditions:
The class comment follows this rule if the description of the @deprecated tag contains the text "No
replacement” and thus labeled followed. The comment does not follow the rule (not followed) if something
besides “No replacement” is present in the corresponding text. We decided to be strict here since the rule
clearly states what should be written. The rule is not applicable if a replacement of the deprecated instance

is provided or if the @deprecated tag is not present in the class comment.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Bibliography

N. Bafatakis, N. Boecker, W. Boon, M. C. Salazar, J. Krinke, G. Oznacar, and R. White. Python
Coding Style Compliance on Stack Overflow. In 2019 IEEE/ACM 16th International Conference on

Mining Software Repositories (MSR), pages 210-214. IEEE, 2019.

W. M. Ibrahim, N. Bettenburg, B. Adams, and A. E. Hassan. On the Relationship between Comment
Update Practices and Software Bugs. Journal of Systems and Software, 85(10):2293-2304, 2012.

M. Ochodek, R. Hebig, W. Meding, G. Frost, and M. Staron. Recognizing lines of code violating
company-specific coding guidelines using machine learning. Empirical Software Engineering,
25(1):220-265, 2020.

L. Pascarella and A. Bacchelli. Classifying code comments in Java open-source software systems.
In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR), pages
227-237. IEEE, 2017.

P. Rani, S. Panichella, M. Leuenberger, A. Di Sorbo, and O. Nierstrasz. How to Identify Class
Comment Types? A Multi-language Approach for Class Comment Classification. Journal of Systems
and Software, 181:111047, 2021.

P. Rani, S. Panichella, M. Leuenberger, M. Ghafari, and O. Nierstrasz. What do class comments tell
us? An investigation of comment evolution and practices in Pharo. CoRR, abs/2005.11583, 2020.

E. Rodrigues and L. Montecchi. Towards a Structured Specification of Coding Conventions. In
2019 IEEE 24th Pacific Rim International Symposium on Dependable Computing (PRDC), pages
168-16809. IEEE, 2019.

A. J. Simmons, S. Barnett, J. Rivera-Villicana, A. Bajaj, and R. Vasa. A large-scale comparative
analysis of Coding Standard conformance in Open-Source Data Science projects. In Proceedings of
the 14th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 1-11, 2020.

M. Smit, B. Gergel, H. J. Hoover, and E. Stroulia. Maintainability and source code conventions: An
analysis of open source projects. University of Alberta, Department of Computing Science, Tech. Rep.
TRI11,6,2011.

41

BIBLIOGRAPHY 42

[10] D. Steidl, B. Hummel, and E. Jiirgens. Quality Analysis of Source Code Comments. 2013 21st
International Conference on Program Comprehension (ICPC), pages 83-92, 2013.

[11] M. Steinbeck and R. Koschke. Javadoc Violations and Their Evolution in Open-Source Software. In
2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 249-259. IEEE, 2021.

[12] Y. Ueda, T. Ishio, and K. Matsumoto. Automatically Customizing Static Analysis Tools to Coding
Rules Really Followed by Developers. In 2021 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 541-545. IEEE, 2021.

[13] J. Zhang, L. Xu, and Y. Li. Classifying Python code comments based on supervised learning. In
International Conference on Web Information Systems and Applications, pages 39—-47. Springer,
2018.

	Introduction
	Related Work
	Comment analysis works
	Coding style guidelines
	Adherence of conventions to coding style guidelines

	Comment Conventions
	Introduction
	Methodology
	Data collection
	Tweaking the Dataset
	Extracting comment related rules

	Results
	Style guidelines
	Rule types

	Implication and Discussion
	Conclusion

	Convention Adherence
	Introduction
	Methodology
	Results
	Adherence to rule types
	Not applicable rules

	Implication and Discussion
	Conclusion

	Threats to Validity
	Threats to construct validity
	Threats to internal validity
	Threats to external validity

	Conclusion and Future Work
	Anleitung zu wissenschaftlichen Arbeiten
	Comment Conventions
	Finding the style guides
	Identifying the style guide version
	Analyzing the style guide content
	Standard guidelines
	Project-specific guidelines

	Extracting the rules
	Categorizing the rules

	Convention Adherence
	Rule conditions

