b

u

b
UNIVERSITAT
BERN

Profiling Cryptography Developers

Bachelor Thesis

Said Ali

from

Riifenacht BE, Switzerland

Faculty of Science
University of Bern

August 2020

Prof. Dr. Oscar Nierstrasz

Mohammadreza Hazhirpasand

Software Composition Group
Institute of Computer Science

University of Bern, Switzerland

Abstract

Profiling developer expertise on the internet can provide valuable information for a mul-
titude of applications such as recruiting. Studies have shown that it is feasible to track and
profile developer activity on various platforms, (e.g., Stack Overflow and GitHub). Further-
more, tracking developer expertise can shed some light on whether developer activity on one
platform is in line with the same developer’s activity on another platform. Recently, studies
have shown that developers often rely on vulnerable cryptography code snippets, which are
commonly found on Stack Overflow or GitHub repositories. Therefore, we are interested to
investigate to what extent cryptography experts on Stack Overflow employ cryptography on

their open-source projects on GitHub.

To achieve our goal, we build a five-stage pipeline. (1) We extract 40 crypto-related tags from
Stack Overflow. (2) We identify 1,000 users who have accepted answers (crypto accepted
answers) in discussions where the selected crypto tags were used. (3) We automatically
and manually scrape the selected users’ profiles on Stack Overflow and find 522 GitHub
links (i.e., users). (4) The 522 users contribute to 23,633 repositories, in which 3.4% are
crypto-related. (5) Finally, we extract the contributors (i.e., crypto contributors) of crypto files
in the crypto-related repositories.

We use statistical and visual analyses to observe whether different groups of developers differ
in terms of crypto activities (crypto score, reputation, and number of crypto accepted answers)
on Stack Overflow and the number of crypto file contributions on GitHub. Our findings reveal
that crypto activities between crypto contributors (189) and users without crypto contributions
(332) do not differ significantly. Moreover, crypto contributors with a high number of crypto
activities on Stack Overflow do not have a higher number of crypto contributions on GitHub.
Overall we are unable to find any correlation between crypto developer activity on Stack

Overflow and crypto developer contribution on GitHub.

Contents

Introduction 1
Related Work 4
Methodology 7
3.1 StepS . . e e 7
31,1 CryptoTag oo 8

312 CryptoUser. e e 9

3.1.3 GitHub Account e 10

3.14 CryptoFile e 12
3.14.1 CryptoLibraries 14

3.1.5 CryptoContributor L 14
Results and Discussion 16
4.1 Results. L 16
42 Discussion e e 20
4.2.1 The Mann-Whitney Utest 20

4.2.2 Crypto contributors v.s. users without crypto contributions 21

423 Cryptocontributors i e e e e e 22
Threats to Validity 25
Conclusion 26
Acknowledgement 27
Anleitung zum wissenschaftlichen Arbeiten 28

il

Introduction

Developer expertise is an essential factor in software development [6]. Profiling developer expertise is
used to estimate developer expertise qualitatively and quantitatively. Hence, the results of such a profiling
approach indicates the skills that a developer has obtained and the levels that a developer performs on
those skills. Profiling developer expertise has been shown to help improve effective task allocation and
developer recruitment [5]. For instance, recruiters often rely on reputation and badges from Stack Overflow
to measure developer expertise [28]. However, profiling developer expertise is a great challenge as their

activities are often spread across multiple online communities [5].

Some studies have focused on profiling developer expertise on a single platform while other have conducted
such studies cross-platform [11, 14, 4,22]. Since developer activity is often spread across multiple online
communities, conducting such studies cross-platform can provide more valuable information. However,
identity linkage is considered a challenge as developers may use different aliases on different platforms
[22]. It is of great interest among researchers to link developer identity between Stack Overflow and
GitHub in order to observe how developers perform on both platforms [2,3,4,22]. Recently Zhang et al.
identified cross-platform profiles by matching the hash (i.e., MD5) of email addresses from public active
users from Stack Overflow and GitHub [4].

We should not lose sight of the fact that such platforms host vulnerable code snippets, and this issue often

adversely affects the developer performance [34]. A recent study showed that developers blindly rely on

CHAPTER 1. INTRODUCTION 2

Stack Overflow discussions to resolve their programming challenges [29]. Yang ef al. concluded that 1.9M
out of 290M function definitions on GitHub contain snippets captured in Stack Overflow [29]. A study has
revealed that developers rely on unvalidated code from online sources (e.g., Stack Overflow and GitHub)
where security vulnerabilities are common [27]. Unfortunately, the connection between experts on Stack
Overflow and their developer productivity is not well-understood [5]. It is of great interest to investigate

developer’ expertise cross-platform (e.g., Stack Overflow and GitHub).

The above security challenges have become critical for the cryptography domain in recent years. To date,
we were unable to find any research paper working on profiling developer expertise in the domain of
cryptography. A series of recent studies have indicated that lack of developer knowledge in the domain
of cryptography has led to many software vulnerabilities [27,30]. In particular, developers commonly
resolve their crypto challenge on online sources such as Stack Overflow or GitHub, which are often not
secure [27]. An empirical study of cryptographic misuse in android applications shows that 88% of 11,748
applications that use cryptographic APIs make at least one mistake [30]. As a result, developers do not use

cryptographic APIs in a way that maximizes overall security.

In this work, we investigate the correlation of crypto developer activity on Stack Overflow and crypto

developer contribution on GitHub. To achieve our goal, we have built a five-stage pipeline.

(1) In the tag analysis, we choose “cryptography” as our base tag, which is used in 11,130 discussions on
Stack Overflow. The discussions contain 2,184 tags. Of the total tags we collect, we extract 40 crypto-
related tags. (2) We fetch 1,000 users who have accepted answers (crypto accepted answers) in discussions
where the selected crypto tags are used. We store a unique identifier and for each user crypto activities
(crypto score, reputation, and number of crypto accepted answers). (3) We automatically and manually
scrape the selected users’ profiles on Stack Overflow and find 522 GitHub links (i.e., users). (4) The 522
users contribute to 23,633 repositories, in which 812 repositories (i.e., 3.4%) contain cryptographic APIs.
(5) Finally, we collect contributors (i.e., crypto contributors) of the crypto files in the repositories (i.e., 812)

and check whether the Stack Overflow developers (i.e., 522) are among the crypto contributors.

In our analysis, we use seven approaches to look for significant differences in the data. We compare the
crypto activities of the 189 crypto contributors with the 332 users who did not contribute to crypto files.
The result of the Mann-Whitney U-test shows that there is no correlation in crypto activities between the
two groups. In other words, a randomly selected value of crypto activities (crypto score, reputation, and
number of crypto accepted answers) from the first group is considered to be equal to a randomly selected
value of the second group. Finally, we were unable to find any significant differences among the 189
crypto contributors based on their number of Stack Overflow crypto activities and their GitHub crypto
contribution. Therefore, we can conclude that there is no correlation between crypto developer activity on

Stack Overflow and crypto developer contribution on GitHub.

The main contributions of this work are to share the analyzed dataset, to identify the extent to which crypto

CHAPTER 1. INTRODUCTION 3

experts use cryptography on their open-source projects, and the pipeline. The data analyses demonstrate
that crypto developer activity on Stack Overflow is not in line with their crypto contribution on GitHub.
However, this matter needs further investigation and may not reflect the developers’ real expertise. To
do so, the pipeline can be extended by adding additional programming languages or crypto libraries.
Furthermore, researchers can employ the pipeline to profile developer activity in other fields (e.g., machine
learning). Eventually, the dataset contains the developers’ social media links (e.g., Twitter, LinkedIn, and

personal websites), which can be used to investigate their shared content on social media.

The remainder of this thesis is organized as follows. After discussing the related work in chapter 2, we
discuss the methodology and the five-stage pipeline in chapter 3. In chapter 4, we present the results of our
investigation and afterwards discuss our findings. In chapter 5, we follow up with threats to validity. We

conclude in chapter 6.

Related Work

Profiling developer expertise has recently gained considerable attention in research. Some researchers
have focused on investigating developer expertise in open-source software communities. For instance,
Saxena et al. presented a method to create a detailed technology skill profile of developers based on
their contributions to GitHub repositories [7]. Zhao et al. proposed a ranking metric network learning
framework for finding experts [10]. They focused on users’ quality relative to given questions and their
social relations. Furthermore, they developed a random walk based learning method with recurrent neural
networks to match the similarities between a user’s question and historical questions posed by other users.
Guo et al. recommended an answer provider model, where a question is given as a query, and a ranked
list of users is returned according to the likelihood of answering the question [1]. Hauff ef al. proposed a
pipeline that automatically suggests matching job advertisements to developers, based on extracted signals

from developers’ activities on GitHub [9].

Several methods are reported in the literature to investigate developer expertise on community question
answering (CQA) sites. For instance Zhang et al. defined a model to identify developer expertise in a
CQA site [13]. Zhao et al. considered the problem of expert finding from the viewpoint of missing value
estimation [15]. To improve the performance of expert finding in CQA systems, users’ social networks are
considered in the user model. They analyzed the missing value of the rating matrix between questions
and users with a graph-regularized matrix completion algorithm. Zhou ef al. proposed a topic-sensitive

probabilistic model that finds experts from CQA sites by considering the topical similarity among users

CHAPTER 2. RELATED WORK 5

and link structure [16]. Yung et al. investigated the challenge of expert finding with the Topic Expertise
Model (TEM)[17]. The probabilistic generative TEM jointly modeled topics and expertise by integrating
textual content model and link structure analysis. Bouguessa et al. approached a method to automatically
identify authoritative actors in CQA sites [14]. They evaluated developer expertise based on the provided
number of best answers and multiple algorithms for estimating ranking scores. Liu et al. investigated the
relative expertise score of users CQA sites [12]. The study focused on the implicit pairwise comparison
between two users that participated in the best answer selection. Zhou et al. investigated how developers
become experts in software projects [18]. They concluded that developer productivity in terms of the

number of tasks per month increases with project time.

Unlike previous studies, some research studied developer expertise cross-platform. The challenging part
of profiling developer expertise cross-platform is to link developer identity. Mo et al. described a tagging-
based approach to identity linkage across software communities [2]. The essential idea of the approach
is to use skills (measured by tags), usernames, concerned topics of developers as hints, and a decision
tree-based algorithm to link user identity. Liu et al. proposed HYDRA, a solution framework, that models
heterogeneous user behavior for cross-platform identity linkage [3]. Recently, Zhang et al. identified
profiles by matching the hash (i.e., MD5) of email addresses from public active users of Stack Overflow and
GitHub [4]. Kouters developed an identity matching algorithm that matches identities and email addresses
that belong to the same individual [22]. Yan et al. proposed an approach to profile developer expertise
across software communities by the heterogeneous information network (HIN) analysis [11]. The HIN
is first built by analyzing developer activity in various communities, in order to estimate the proximity
of developer and skills with their relation. Vasilescu ef al. investigated the interaction between Stack
Overflow’s activities and development process, reflected by code changes committed to GitHub [5]. Huang
et al. proposed CPDScorer, which models and scores the programming expertise of developers through
mining heterogeneous information from both CQA sites and Open-Source Software (OSS) communities
[6]. CPDScorer analyzes the answers posted in CQA sites and evaluates the projects submitted in OSS
communities to assign expertise scores to developers, considering both the quantitative and qualitative
factors. Venkataramani et al. found the most frequent terms on GitHub and mapped them to question
tags found on Stack Overflow [8]. Xiong et al. proposed an approach to mine developer behavior across
GitHub and Stack Overflow [20]. The identity linkage is made through a CART decision tree, leveraging
the features from usernames, user behavior, and writing styles. Sajedi et al. investigated the features
overlap of GitHub and Stack Overflow. They analyze the members’ core contributions, editorial activities,

and influence in the two networks [26].

Further studies investigated task recommendation or code analyses on GitHub. Fu et al. proposed a
novel recommendation approach for task routing in competitive crowdsourced software development
[21]. Melnik et al. presented a matching algorithm based on a fixpoint computation that is usable across
different scenarios [23]. The algorithm takes two graphs as input and produces a mapping between
corresponding nodes of the graphs. Shi ef al. studied the relevance search problem in heterogeneous

networks, where the task is to measure the relativity of heterogeneous objects [24]. Ying et al. proposed a

CHAPTER 2. RELATED WORK 6

reviewer recommendation approach that simultaneously considers developer expertise and authority on
pull-requests in GitHub [19]. Dabbish et al. contributed to the body of knowledge on social coding by

investigating the network structure of social coding in GitHub [25].

A series of recent studies have indicated that lack of developer knowledge in the domain of cryptography
has led to many software vulnerabilities [27, 31,32]. For instance, Hazhirpasand et al. conducted a study
on how developers perform in using cryptographic APIs. On average, 2.5 out of 3.9 crypto uses in each
project are not secure, and developers have considerable difficulties using more than half of the APIs
[27]. Nadi et al. surveyed 11 developers who asked crypto-related questions on Stack Overflow, as well
as 37 developers who used Java cryptography APIs. They concluded that developers are confident in
selecting the right cryptography concepts, but they have difficulties in correctly using certain cryptographic
algorithms. They found out that crypto APIs are generally too low-level, and developers prefer more
task-based solutions [31]. Shuai et al. created a prototype system (i.e., Crypto Misuse Analyzer), which
can efficiently identify the crypto misuse vulnerabilities [32]. They concluded that more than half of the
analyzed Android applications have cryptographic misuse vulnerabilities. It is of great interest to find a

relation between crypto developer expertise and crypto developer contribution to online sources.

To conclude, there exists research that profiles developer expertise cross-platform. To the best of our

knowledge, no prior study has examined developer expertise across platforms in the domain of cryptogra-

phy.

Methodology

3.1 Steps

The objective of this study is to investigate to what extent cryptography experts on Stack Overflow employ
cryptography on their open-source projects on GitHub. In order to meet this objective, we defined the
following pipeline:

Q

N N
= stackoverflow = stackoverflow GitHub GitHub GitHub

Crypto tags Crypto users GitHub accounts Crypto files Contributors

Heuristic 1 e Stack Exchange e Scraping ¢ GH repo API * Git Blame
Heuristic 2 e Manual search ¢ GH code API e File author
e Scraping ® File committer

40 tags 1,000 users 522 accounts 2,404 files 189 contributors

Figure 3.1: A pipeline to identify crypto experts on Stack Overflow, and check their crypto contributions in
open-source projects on GitHub

In each phase of the pipeline, we experienced various challenges. In the following, the challenges, as well

as the pipeline, are explained in detail.

CHAPTER 3. METHODOLOGY 8

3.1.1 Crypto Tag

We assumed that crypto experts participate in crypto discussions on Stack Overflow. To identify crypto-
related discussions, we focused on the tags that are attached to a question. Meier conducted a study
on finding frequent topics on Stack Overflow. The author used an approach to identify crypto-related
tags on Stack Overflow, which we explain in the following. All discussions containing the base tag, i.e.,

“cryptography” were extracted with the help of the Data Explorer platform (Stack Exchange).

=
StackExchange gy vy ey

Viewing Query

= stackoverflow

Q&Afor pr
enthusias

Database Schema B o*=
Posts

[} int

PostTypeld tinyint

as [tags],
._answer], AcceptedAnswerld int

ationbate, questions.Closedbate,
stEditbate],

rentid - questions.id
t<cryptography>s '
nt DESC Revisions

Figure 3.2: Query crypto-related tags from Stack Overflow

The query returned 11,130 discussions from Stack Overflow, which contained 2,184 tags (candidate tags)
that appeared beside “cryptography”. Nevertheless, not all candidate tags are crypto-related (e.g., language
tags). To identify crypto-related tags, two heuristics H1 and H2 were employed. The first heuristic (H1)
investigates to what extent a candidate tag is exclusively associated with the base tag, i.e., “cryptography”.
Therefore, the number of posts containing a candidate tag and “cryptography” are divided by the number
of posts containing a candidate tag. H1 returns a value between zero and one; the nearer the value is to
one the more related it is with “cryptography”. The first heuristic causes a problem when a candidate tag
is used only once in the whole Stack Overflow dataset. Although H1 equals one, it is not significant and
a second heuristic (H2) is needed. In H2, the posts containing a candidate tag and “cryptography” are
divided by the posts containing “cryptography”. For example, if H2 returns a value of 0.01, only 1% of
discussions use the candidate tag with the base tag, i.e., “cryptography”. After a number of observations,
the researcher chose the following values for the two heuristics, H1 (i.e., 0.025) and H2 (i.e., 0.005). The
candidate tags that their two heuristic values are above the specified threshold are considered as crypto

tags. In total, the tag analysis returns 40 crypto-related tags (see Table 3.1).

CHAPTER 3. METHODOLOGY 9

Table 3.1: Selected tags and their frequencies on Stack Overflow

Tag Freq. | Tag Freq.
3des 384 keystore 3256
aes 6586 md5 6682
bouncycastle 2639 openssl 16093
3des 384 keystore 3256
aes 6586 md5 6682
bouncycastle 2639 openssl 16093
cng 141 pbkdf2 339

crypto++ 707 pkes 7 414

cryptoapi 474 pkesll 678

cryptographic-hash-function 74 private-key 1565

cryptography 11130 | public-key 1375
cryptojs 954 public-key-encryption 1797
des 680 pycrypto 988

diffie-hellman 315 rijndael 482

digital-signature 3167 rsa 5905
ecdsa 361 salt 1879
elliptic-curve 371 sha 1511

encryption 41971 | shal 2700
encryption-asymmetric 594 sha256 1813
encryption-symmetric 757 smartcard 2167
hash 39886 | x509 2064
hmac 1329 x509certificate 3287
jee 554 Xor 2514

3.1.2 Crypto User

In this study, we are interested in the developers who provided crypto accepted answers on Stack Overflow.
To do so, we wrote a query to fetch developers who had at least ten accepted answers in discussions where
the crypto-related tags (i.e., 40 tags) were used.

CHAPTER 3. METHODOLOGY 10

StackExchange = s gy
Viewing Query

Cryptograhy related Users
edit description

select userid,sum(score), reputation, count(*)

as answers from (SELECT distinct questions.id, us.Id as UserlID,
us.Id AS [User Link], answers.score,

(select reputation from Users where id = us.Id) as reputation

FROM Posts as questions

left JOTN Posts answers ON answers.parentid = questions.id

left join Users as us ON answers.OwnerUserId = us.id

left join posttags as pt on pt.postid = questions.id

where pt.tagid in

(select id from tags where

tagname = 'cryptography' or

tagname like 'encryption'

or tagname like ‘'hash’

or tagname like '3des’

or tagname like 'aes’

or tagname like 'cryptojs’

or tagname like 'sha'

or tagname like 'md5'

or tagname like 'openssl’

or tagname like 'jce'

or tagname like 'private-key'

)

and

us.Reputation > 20

and answers.PostTypeld = 2

)as sa

group by userid, reputation

having count(*) > 10 and sum(score) > 10

Figure 3.3: Query crypto developers from Stack Overflow

Figure 4.7 shows the query to fetch developers who contributed to crypto discussions on Stack Overflow.
The query returned 1,000 developers who contributed to more than 10 crypto accepted answers. Addition-
ally, in the query, we filtered users with crypto score above 10 (e.g., one upvote on a crypto answer) and
a reputation above 20. The query returned the following information: users’ unique identifier and their
crypto activities (crypto score, reputation, and number of crypto accepted answers). The data is stored in a
MySQL relational database. The reputation is calculated by the sum of upvotes from activities such as
questions and answers. A crypto accepted answer is accepted by the asker in the area of cryptography (40
crypto-tags). The crypto score is the total number of upvotes of a developer’s crypto accepted answers.

Due to the limitations of the resources of Stack Exchange, we had to split the query into multiple queries

with fewer criteria. Finally, this step provides us with 1,000 users (crypto users) who met our criteria.

3.1.3 GitHub Account

The users of Stack Overflow can share their social media addresses (e.g., Twitter, GitHub, and personal
websites) on their profile. however, the users’ profile information was not available on the Data Explorer
platform (Stack Exchange). In this phase, we automatically and manually scraped profiles of the 1,000
Stack Overflow crypto users, who contributed to at least 10 accepted crypto answers in order to check if
their GitHub page is available.

1 for Id in UsersID:

2 # scrap Profile links

3 page = requests.get ('https://stackOverflow.com/users/' + Id)

1

CHAPTER 3. METHODOLOGY 11

soup = BeautifulSoup (page.content, 'html.parser')

profileClass = soup.find(class_="list-reset grid gs8 gsy fd-column fc-medium")

profilelLink = profileClass.find_all (class_="url")

aboutMelLinks = []

aboutMeClass = soup.find(class_="grid--cell mtl6 fs-body2 profile-user--bio")

aboutMeLink = aboutMeClass.find_all("a")

profilelLinks = [Id]

for link in profilelLink:

profilelLinks.append (link.get ('href'))

for link in aboutMeLink:

aboutMeLinks.append(link.get ('href'))

writer.writerow ({"UserId": profileLinks[0], "twitter": profileLinks[1],
"\GH": profilelLinks[2], "webPage": profileLinks[3],
"AboutMe": aboutMeLinks})

Listing 1: Snippet scraping profile links

We employed the code snippet from Listing 1 to extract GitHub links from the developer profile on Stack

Overflow. To parse HTML pages and search for specific elements, we used the BeautifulSoup library.

We used the developer tools to identify div classes that display such links on user profile on the Stack

Overflow profiles. We wrote a Python script to extract information from the identified div classes. In case
that the GitHub page was not linked on the profile, we manually searched for GitHub page. Our manual
investigation consist of two phases. First, we examined the other links provided by users (i.e., Twitter
and their personal websites). For Stack Overflow users with profile pictures, we manually looked for their
GitHub accounts with google search (i.e.,’Stack Overflow-full name’ + GitHub). If the GitHub profile
pictures were identical to Stack Overflow, we considered that as a match.

Finally, we stored the results of our manual and automatic scraping in a MySQL database, (e.g., Twitter,
GitHub, personal websites, and about me).

select * from cryptouserslinks where twitter like "\%github.com/\%" or

gitHub like "\%github.com/\%" or webPage like "\%github.com/\%" or
AboutMe like "\%github.com/\%"

Listing 2: Query GitHub links

Listing 2 returned a total of 522 Stack Overflow developers whose GitHub links were found.

CHAPTER 3. METHODOLOGY 12

o 100 200 300 400 500 600 700 800 500 1000

m No GitHub m GitHub - Scraping m GitHub - Links manual search GitHub - Google manual search

Figure 3.4: Rate of GitHub accounts of Stack Overflow users

Figure 3.4 shows the status of users’ GitHub links found by different approaches. Most of the GitHub
accounts (380) were directly extracted by scraping Stack Overflow profiles. Another 142 developers were
found by manual search. In the manual search step, 66 users linked their GitHub accounts in their social

media or personal websites, whereas 76 were found with a google search.

On the whole, our manual and automatic scraping techniques provide us with 522 GitHub links, which is

52.2% of the total number of users.

3.1.4 Crypto File

We collected repositories of the 522 Stack Overflow crypto users using the GitHub API. In particular, we
used PyGithub, which is a Python library that eases the usage of the GitHub APIs for the most common

operations, such as repository, issue, and branch requests.

for Name in githubName:

try:
user = gl.get_user (Name)
repositories = user.get_repos ()
for repositorie in repositories:
\# Get languages used in a repo
languages = repositorie.get_languages ()
languages_list = []
for language in languages:
languages_list.append (language)
writer.writerow ({"FullName": user.name, "Mail": user.email,
"UserId": row['UserId'], "Repositorie": repositorie.name,

"Language": languages_list})

Listing 3: Snippet GitHub repositories

CHAPTER 3. METHODOLOGY 13

We used the Listing 3 code snippet to collect user repository with the GitHub Repository API. We fetched
GitHub username, repository name, and the programming languages used in a repository. We extracted a
total of 23,633 public repositories from the 522 Stack Overflow developers. In the following, we search for
repositories (crypto repositories) that use crypto APIs. We selected seven languages and searched for their
crypto libraries (see Listing 3).

queryArray = codeSearchArray (cryptolibraries, row['UserName'],
row ['RepositoryName'], language)
for query in queryArray:
for file in gl.search_code (query) :
fileURL.add (file.html_url)
codeSearchFiles.add(file.path)
for codeSearchFile, file in zip(codeSearchFiles, fileURL) :

writer.writerow ({"UserName": row['UserName'], "RepositoryName":
row['RepositoryName'], "UserId": row['UserId'],
"Language": row]['Language'], "CodeSearchFiles": codeSearchFile,

"FileURL": file})

Listing 4: Snippet crypto repositories

In Listing 4, we extract crypto repositories using the GitHub Code Search API. The method codeSearchAr-

ray builds a search query for a given user repository, a language, and their crypto libraries (see Listing 3).

For every search query, we sent a request to the Code Search API. Due to the API limitations, every query
searches a single crypto library. The Code Search API returns 812 crypto repositories (i.e., containing
cryptographic APIs) out of the 23,633 repositories. A challenging part was that the Code Search API
currently does not support exact matches. As a result, we retrieved some repositories that do not use crypto
APIs. Therefore, we wrote a regex script to find the exact matches of crypto usages. Finally, the regex

script returned a total of 2,404 crypto files.

We experienced some challenges when using the GitHub APIs. Due to the GitHub API rate limit, user
repositories collection took 142 hours for the 23,633 repositories. The Repository API rate limit for
authenticated users is 5,000 requests per hour. However, the crypto file collection was much slower as the

Search API only allows 30 requests per minute for authenticated requests.

CHAPTER 3. METHODOLOGY

3.1.4.1 Crypto Libraries

14

Python Ruby 4 C++ Java c# Javascript Rust
from passlib. require 'rbnacl' include "tomcrypt_ include <botan/ Java.security using Org.BouncyCastle require("crypto") use octavo
import passlib require 'digest' include <tomerypth> include "cryptlib.h" Javax.crypto usingSodium aes s use recrypt
import pbkdf2_sha256 require'openssl' include "paillier.h" include <cryptlib> usingSystem.Security.Cryptography rsa.js usering
import nacl require 'berypt’ include"rsa.h" include "aes.h" using PCLCrypto hash.js use crypto
from nacl include "x509.h" using CryptoPP:: nacl_facto use openssl|
import hashlib include "crypto_* include <des.h> ry.js use rustls
from hashlib includ P! 1/ include " h" sjcl.js use md5
from crypto include <themis/ include "secblock.h" hashes.js use blake2
include <wolfssl/
import crypto include "xxhash.h" include "eccrypto.h" require("js-nacl") use digest
include "aes.h" include <helib/ require('crypto’)') use themis

from pyelliptic

import berypt
from berypt

include "mdS.h"
include"shal.h"
include "sha256.h"
include "blowfish.h"

include "des.h

include "cryptopp/
include <cryptopp/

include <openssl/

require('hashes')
require('crypto-js')
goog.module('goog.crypt
JSEncrypt()

require('jsthemis

users’ repositories.

if currentRepository

dest

if currentRepository
shutil.rmtree (dest,
currentRepository
clone = "git clone https://github.com/" + row['UserName']
+ row['RepositoryName']

os.system(clone)

3.1.5 Crypto Contributor

I'= row

Figure 3.5: Crypto libraries

['RepositoryName']:

path + "/" + currentRepository

ignore_errors=True)

row ['RepositoryName']

+ ".git®

Cloning

os.chdir (row['RepositoryName'])

blame
\"author

fileAuthor

os.chdir ('.

writer.writerow ({"UserId":

"RepositoryName" :

"FilePath"

|committer \" |

"git blame \"" + row['CodeSearchFiles']

sort | uniqg"

os.popen (blame) .read ()

)

: row|['CodeSearchFiles'], "Author":

ae

+ "\" —-porcel

nw/m

ain | egrep

row['UserId'],

"UserName" :

row ['RepositoryName'],

Listing 5: Snippet crypto file

row['UserName'],

fileAuthor})

To find common crypto libraries in each language, we consulted with two crypto experts. Then, we
checked the crypto libraries’ GitHub page to observe how popular (i.e., star and fork) they are. Finally,
we compiled a list of common crypto libraries in each language. Finding each library’s APIs required a
considerable amount of work and time. Moreover, this approach could produce false positives in our results
as developers may use similar class names in their repositories. Therefore, we studied what namespaces

one must import to use them. Figure 3.5 shows the list of the namespaces that we consider to look for in

In the last step of the pipeline, we used git blame to get the crypto contributors of the 2,404 crypto files.

CHAPTER 3. METHODOLOGY 15

In Listing 5 we cloned the 812 crypto repositories. We extracted crypto files’ authors and committers
with the help of git blame. Then we checked whether the Stack Overflow developers contributed to the
crypto files. To this end, we used GitHub User API to collect three key elements: email, username, full
name. After fetching the user information with the GitHub API, we queried the crypto file contributors in
Listing 6.

select distinct FileAuthorCrypto.UserId from FileAuthorCrypto.UserId

inner join GithubNames on FileAuthorCrypto.UserId = GithubNames.UserId

where Author like CONCAT (' %', GithubNames.UserName, '\%') or

Author like CONCAT ('\%', FullName, '\%') or Author like CONCAT ('\%', Mail, '\%')

group by FileAuthorCrypto.UserId.UserId

Listing 6: Query crypto file contribution

In summary, the pipeline returned 1,000 Stack Overflow crypto developers, where 522 had a GitHub
account. These 522 developers contributed to 23,633 repositories where only 812 repositories contained

crypto APIs. The 812 crypto repos provided us with 2,404 crypto files.

Results and Discussion

In this chapter, we report the obtained results and discuss our findings in detail

4.1 Results

o Cryptoscore » #Crypto accepted answers

Figure 4.1: Stack Overflow crypto score and number of crypto answers

16

CHAPTER 4. RESULTS AND DISCUSSION 17

Figure 4.1 shows the distribution of the crypto score and the crypto accepted answers of the 1,000 Stack
Overflow crypto users. We defined the crypto score term based on the total number of votes that a user
received by contributing to crypto accepted answers (40 crypto-tags). In particular, an accepted answer
is specified by the asker. Overall, the crypto users had on average a crypto score of 138, whereas the
average of the crypto accepted answers is 38. The majority of the crypto developers’ accepted answers
were between 25 and 250, and such developers’ crypto scores were between 10 and 50. According to
the scatter plot, we observe that the total number of crypto accepted answers of developers is commonly
fewer than the total number of their crypto scores. However, a high number of a crypto score does not

necessarily convey that all the crypto accepted answers of a developer received proportional upvotes.

7000

4000
3000
2000
B I I I I
, [
T N e T T S
5 IS & & S & o IS @ @ & 5 o
o & A o A & &
N &F

Non crypto repositories

Figure 4.2: Crypto users’ top 15 programming languages

Figure 4.2 shows the top 15 languages used in repositories of the users (i.e., 522). Shell was the most used
language with 6,556 repositories, whereas Rust is the least used. We decided to study seven programming

languages, which are commonly used for application programming (see Figure 3.5).

C++

Java Ci# Rust

5000
4500

4000
3500
3000
2500
2000
1500
1000
500
0

Python Ruby C

=

W Non crypto repositore H Crypto related repositorie

Figure 4.3: Crypto amount of programming languages

We checked all the repositories and found that 189 developers out of 522 developers contributed to at least

one crypto file.

CHAPTER 4. RESULTS AND DISCUSSION 18

Figure 4.3 illustrates the seven selected languages for cryptography, where we distinguished between
crypto repositories and repositories without crypto API usage. Overall, crypto APIs were most used in the
Java language with a total of 195 crypto repositories, whilst Rust was the least used with only five crypto
repositories. Regarding the proportional relationships of the crypto repositories, C# was the most popular
language with 10.8% crypto repositories and again Rust was the least popular language with only 1.2%

crypto repositories.

Java

C

c#
Ruby
Python

C++

rost [

o

20 40 60 80 100 120 140

m#Developer contributed to crypto file m #Developer contributed to crypto project

Figure 4.4: Crypto file contribution

Figure 4.4 illustrates the seven selected crypto languages for the 189 crypto developers who contributed
to at least one crypto file. The bar chart compared the developers who contributed to crypto files with
the developers who contributed to crypto repositories. Java has the largest number of developers who
contributed to crypto files and projects. Rust, with only five crypto developers, has the least number of
developers who contributed to crypto files and crypto projects. Out of the total 522 Stack Overflow crypto
developers, 189 have contributed to a crypto file and 343 had at least one repository where others used
crypto APIs. In the following, the crypto file contributors are compared based on their crypto activities for

each language.

CHAPTER 4. RESULTS AND DISCUSSION 19

Figure 4.5: Crypto file contributors per language

C C++
O score [Answers Oscore [Answers
450 140
400 120
350
200 100
250 80
x
200 60 x
150
40
100
-
50 o 20 i Sm— —
o —
o 0
CH# Java
[score [Answers O score [Answers
700 400
600 350
500 300
250
400
200
300
150
200 100
100 50 -
._.I T —
0 0
Python Ruby
O score [Answers O score [Answers
600 700
500 600
500
400
400
300
300
200
x 200 x
100 100
=
I === e e——
0 0
Rust

Oscore [Answers

350

300 -T—
250
200
150 x T
100
50 — X

The seven box-plots show the crypto activities (i.e., crypto score and crypto accepted answers) of the crypto
file contributors (i.e., 189). The interquartile range of the box-plots overlap with one another, therefore the

distribution of the crypto activities is similar.

CHAPTER 4. RESULTS AND DISCUSSION 20

Table 4.1: Crypto contributors per language

#Contributors | avg. #file contribution | avg. #accepted answers | avg. #score

Language

C 42 16.3 37 215.2
C# 40 114 58.4 292.4
C++ 18 23.7 18.4 62.6
Java 49 11.2 40.1 211.7
Python 33 5 322 186.3
Ruby 37 2.8 45.7 193.5
Rust 5 34 54.8 154.2

Table 4.1 explains the number of contributors based on each language, and their average number of crypto
activities.

The crypto contributors of the C# language (i.e., 40 users) had on average the highest number of crypto
accepted answers (i.e., 58.4). In C++ the crypto contributors (i.e., 18 users) had on average the smallest
number of crypto accepted answers (i.e., 18.4). Hence, the C# crypto contributors had the highest crypto
score (i.e., 292.4), whereas C++ had the lowest crypto score. The more accepted answers one had, the more
likely it is to get a higher crypto score. Surprisingly the developers with the lowest crypto score and the
lowest number of crypto accepted answers (i.e., C++) had the highest number of crypto file contributions.
Ruby had on average the lowest number of crypto file contributions (i.e., 2.8).

Based on the seven crypto languages, crypto contributors had visible differences in their crypto activities
and their number of crypto file contributions. Consequently, it was of great interest to us to analyze the
data with statistical methods.

4.2 Discussion

We analyze the data with the Mann-Whitney U test to observe whether different groups of developers
differ in terms of crypto activities (crypto score, reputation, and the number of crypto accepted answers)

on Stack Overflow and number of crypto file contributions on the GitHub.

We compared the data from seven perspectives and looked for significant difference. First, we compared
the crypto activities of the 189 crypto contributors with the 332 users who did not contribute to crypto
files. Thereafter, we looked only into the 189 crypto contributors. We compared them based on their Stack

Overflow crypto activities as well as their GitHub crypto contribution.

4.2.1 The Mann-Whitney U test

We used the Mann-Whitney U test, which is a nonparametric test, to investigate whether two independent
samples were selected from populations having the same distribution. In other words, a randomly selected

value of crypto activities from the first group population is considered to be equal to a randomly selected

CHAPTER 4. RESULTS AND DISCUSSION 21

value of the second group population. The Mann-Whitney U test provides two hypotheses, the null
hypothesis being met if there is no significant difference between the two groups, which is the case when
the calculated p-value is greater than the significance value alpha of 0.05. The alternative hypothesis H1 is

accepted otherwise, which means that there is a significant difference between the two groups.

We selected the Mann-Whitney U test, as the data meet the assumptions of the test. We have independent
data sets, which can be split into independent groups. The data is not normally distributed. Furthermore,
the independence of observations is met, which means that there is no relationship between the observations

in each group of the independent data sets or between the groups themselves.

4.2.2 Crypto contributors v.s. users without crypto contributions

Crypto contributor
[No crypto contributor

Score O Score Answer O Answer Reputation O Reputation
450 60 300000
400
50 250000
350
300 40 200000
250
30 r 150000
200
150 20 L 100000
X x
100
10 : - 50000
50
L
0 0 0 L

Figure 4.6: Crypto activity

In the first group, we compared the crypto activities between the crypto contributors and the users without
crypto contributions. In the crypto score, we observe that the distribution of crypto activities is almost
similar. Crypto contributors have on average a crypto score of 173.5, whereas users without crypto
contributions have an average crypto score of 113. At the same time, the median values are similar. Hence,
it seems as if crypto contributors have a higher crypto score. Regarding the number of crypto accepted
answers, the box-plots are distributed equally. On average contributors with no crypto contribution have
31.8 crypto accepted answers. The median values of crypto accepted answers for crypto contributors
is 19, and for users without crypto contributions 18.5. Furthermore, the distribution of the reputation
looks similar. Crypto contributors have on average a reputation of 67,223.6, whereas users without crypto
contributions have an average reputation of 72,215.

In terms of visual analyses, we do not see noticeable differences in the crypto activities between the
crypto contributors and users without crypto contributions. The following statistical analyses with the

Mann-Whitney U test will illustrate if there is a statistical difference.

CHAPTER 4. RESULTS AND DISCUSSION 22

Table 4.2: Crypto contributors versus users without crypto contribution

P-value | Accepted hypothesis
Category
Score 0.25 HO
Reputation 0.29 HO
Crypto accepted answers 0.46 HO

Table 4.2 shows that all p-values of the crypto activities are greater than the significance value alpha
of 0.05, therefore, the null hypothesis is accepted for the crypto activities. In conclusion, there is no
significant difference in terms of Stack Overflow crypto activities between crypto contributors and users

without crypto contributions.

4.2.3 Crypto contributors

The data analysis focuses only on the 189 crypto contributors. We use the median values (i.e., crypto

contribution and crypto activity) to split the 189 crypto contributors into high and low groups.

60
50
40
30 HIGH
20

10 Low

Figure 4.7: Crypto contributors’ number of accepted answers

Crypto Accepted Answers: We first used the median number of crypto accepted answers (i.e., 19) to
split the crypto contributors into two groups. We compared the number of crypto file contributions for
these two groups. The null hypothesis is accepted with a p-value of 0.14. As a result, there is no difference

in the number of crypto file contributions based on the number of crypto accepted answers.

In other words, whether someone has a high or low number of crypto accepted answers does not affect the

number of crypto file contributions or vice versa.

CHAPTER 4. RESULTS AND DISCUSSION 23

Score

400
350
300
250
200

150 HIGH
100

50 0000

o Low m

Figure 4.8: Crypto contributors’ score

Crypto Score: We split the crypto contributors at the median crypto score of 69. Then, we compared the
number of crypto file contributions to these groups. The null hypothesis is accepted with a p-value of 0.64,
which conveys that there is no difference in the number of crypto file contributions based on the crypto

Score.

The number of crypto file contributions are not affected by whether someone has a high or low crypto

score.

#Cryptofile contribution

© HIGH

0 0000

Low mvn\

Figure 4.9: Crypto contributors’ number of file contributions

Number of Crypto File Contribution: We used the median value of three crypto files to split the
developers into two groups.

Table 4.3: Number of crypto file contribution

P-value | Accepted hypothesis

Category
Score 0.75 HO
Reputation 0.74 HO

Answers 0.26 HO

CHAPTER 4. RESULTS AND DISCUSSION 24

In the comparison of crypto activities, all categories have p-values greater than the significance value alpha
of 0.05. Therefore, the null hypothesis is accepted for crypto activities. The number of crypto activities is

not affected, whether someone has a high or low number of crypto file contributions.

Crypto Activity: Unlike previous tests, we combined the three factors of crypto activities and checked
whether that affects the number of crypto file contributions.

Score Answer Reputation

450 60 250000
350 200000
250 150000

100000
150 20

50000

0 0 0

Figure 4.10: Crypto contributors’ activities

The null hypothesis is accepted for the number of crypto file contributions with a p-value of 0.39. The
number of crypto file contributions are not affected, whether someone has a high or low number of crypto

activities

Threats to Validity

We discuss possible threats that might affect the validity of this work. We focused on the largest two
platforms to study crypto activity and the contribution of users. However adding other online sources such
as crypto Stack Exchange or GitLab could afford more data, leading to a more realistic conclusion. We
collected 1,000 developers from Stack Overflow who contributed to crypto accepted answers, but we only
found 522 of those developers on GitHub. We believe that other techniques lead to finding more GitHub
links [2,3,4,22]. Moreover, there might be users with private crypto repositories, which cannot be studied.
We looked only into a single GitHub account of a Stack Overflow-developer, whereas a developer might
use multiple accounts. We only studied repositories whose programming language was among the selected
languages. Therefore, we have not yet analyzed many repositories in other languages. More importantly,
the diversity of crypto libraries in each programming language is debatable. Still, the list of crypto libraries
in each language could be increased. We used the git blame command to fetch contributors of a crypto file.
Nevertheless, we examined neither commit history nor the lines where crypto APIs were used. Hence,
there are possibilities that developers who contributed to crypto files did not contribute to any crypto APIs.

All these steps would help this study to project more realistic conclusions.

25

Conclusion

Profiling cryptography developers cross online communities has not previously been studied. To this end,
we built a five-stage pipeline to extract crypto developers on Stack Overflow, to find their GitHub page and
identify crypto repositories of such developers, and finally, extract contributors of crypto files.

In view of the visual and statistical analyses, we did not find any significant difference between crypto
contributors and users without crypto contributions regarding their Stack Overflow crypto activities (crypto
score, reputation, and number of crypto accepted answers). In other words, despite a high number of
crypto accepted answers, a developer does not necessarily contribute to many crypto files on GitHub. The
same applies to the crypto score, where a high crypto score does not lead to a higher number of crypto file
contributions. Likewise, the higher number of crypto contribution on GitHub does not necessarily mean
that a developer has a high number of crypto activities on Stack Overflow.

Employing more programming languages, crypto libraries, and users may constitute the object of future
studies.

26

Acknowledgement

I thank my supervisor, Mohammadreza Hazhirpasand, who has contributed an invaluable assistance.

27

Anleitung zum wissenschaftlichen Arbeiten

The Anleitung consists of the conference paper “Profiling Cryptography Developers”. M. Hazhirpasand, S.
Ali, and O. Nierstrasz. Profiling Cryptography Developers Planned for submission to the 28th edition of

the International Conference on Software Analysis, Evolution, and Reengineering (SANER’21)

28

[1]

[6]

(7]

(8]

[9]

Bibliography

J. Guo, S. Xu, S. Bao, and Y. Yu. 2008. Tapping on the potential of Q&A community by recommending
answer providers. In proceedings of the 17th ACM Conference on Information and Knowledge
management. ACM, 921-930.

W. Mo, B. Shen, Y. Chen, and J. Zhu. 2015. Tbil: A tagging based approach to identity linkage across
software communities. In Software Engineering Conference (APSEC), 2015 Asia-Pacific. IEEE, 56-63

S. Liu, S. Wang, F. Zhu, J. Zhang, and R. Krishnan. 2014. Hydra: Large-scale social identity linkage
via heterogeneous behavior modeling. In proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data. ACM, 51-62.

X. Zhang, T. Wang, G. Yin, C. Yang, Y. Yu, and H. Wang. 2017. DevRec: A Developer Recommenda-
tion System for Open Source Repositories. In International Conference on Software Reuse. Springer,
3-11

B. Vasilescu, V. Filkov, and A. Serebrenik. 2013. StackOverflow and GitHub: Associations be-
tween software development and crowdsourced knowledge. 2013 International Conference on Social
Computing (SocialCom). IEEE, 188—195.

W. Huang, W. Mo, B. Shen, Y. Yang, and N. Li. 2016. CPDScorer: Modeling and Evaluating Developer
Programming Ability across Software Communities. In SEKE. §7-92.

R. Saxena, N. Pedanekar. 2017. I Know What You Coded Last Summer: Mining Candidate Expertise
from GitHub Repositories. ACM, 299-302.

R. Venkataramani, A. Gupta, A. Asadullah, Basavaraju Muddu, and Vasudev Bhat. 2013. Discovery
of technical expertise from open source code repositories. In Proceedings of the 22nd International
Conference on World Wide Web. ACM, 97-98.

C. Hauff and G. Gousios. 2015. Matching GitHub developer profiles to job advertisements. In
Proceedings of the 12th Working Conference on Mining Software Repositories. IEEE Press, 362-366.

[10] Z. Zhao, Q. Yang, D. Cai, X. He, and Y. Zhuang. 2016. Expert Finding for Community-Based

Question Answering via Ranking Metric Network Learning. In IJCAI. 3000-3006

29

BIBLIOGRAPHY 30

[11] J. Yan, H. Sun, X. Wang, X. Liu, and X. Song: Profiling Developer Expertise across Software

Communities with Heterogeneous Information Network Analysis, 2018

[12] J. Zhang, M. S Ackerman, and L. Adamic. 2007. Expertise networks in online communities: structure
and algorithms. In Proceedings of the 16th International Conference on World Wide Web. ACM,
221-230.

[13] J. Liu, Y. Song, and C. Lin. 2011. Competition-based user expertise score estimation. In Proceedings
of the 34th International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 425-434.

[14] M. Bouguessa, B. Dumoulin, and S. Wang. 2008. Identifying authoritative actors in question-
answering forums: the case of yahoo! answers. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge discovery and data mining. ACM, 866-874.

[15] Z. Zhao, L. Zhang, X. He, and W.Ng. 2015. Expert finding for question answering via graph
regularized matrix completion. IEEE Transactions on Knowledge and Data Engineering 27, 4 (2015),
993-1004.

[16] G. Zhou, S. Lai, K. Liu, and J. Zhao. 2012. Topic-sensitive probabilistic model for expert finding
in question answer communities. In Proceedings of the 21st ACM International Conference on
Information and knowledge management. ACM, 1662-1666

[17] L. Yang, M. Qiu, S. Gottipati, F. Zhu, J. Jiang, H. Sun, and Z. Chen. 2013. CQArank: Jointly model
topics and expertise in community question answering. In Proceedings of the 22nd ACM International
Conference on Information & Knowledge Management. ACM, 99-108.

[18] M. Zhou and A. Mockus. 2010. Developer fluency: Achieving true mastery in software projects. In
Proceedings of the eighteenth ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 137-146.

[19] H. Ying, L. Chen, T. Liang, and J. Wu. 2016. EARec: leveraging expertise and authority for pull-
request reviewer recommendation in GitHub. In Proceedings of the 3rd International Workshop on

CrowdSourcing in Software Engineering. ACM, 29-35

[20] Y. Xiong, Z. Meng, B. Shen, and W. Yin. 2017. Mining Developer Behavior Across GitHub and
StackOverflow. In SEKE. 578-583.

[21] Y. Fu, H. Sun, and L. Ye. 2017. Competition-aware task routing for contest based crowdsourced
software development. In Software Mining (SoftwareMining), 2017 6th International Workshop on.
IEEE, 32-39.

[22] E. Kouters, B. Vasilescu, A. Serebrenik, and M. GJ van den Brand. 2012. Who’s who in Gnome:
Using LSA to merge software repository identities. In Software Maintenance (ICSM), 2012 28th IEEE
International Conference on Software Maintenance. IEEE, 592-595.

BIBLIOGRAPHY 31

[23] S. Melnik, H. Garcia-Molina, and E. Rahm. 2002. Similarity flooding: A versatile graph matching
algorithm and its application to schema matching. In Data Engineering, 2002. Proceedings. 18th

International Conference on Data Engineering. IEEE, 117-128.

[24] C. Shi, X. Kong, P. S Yu, S. Xie, and Bin Wu. 2012. Relevance search in heterogeneous networks. In
Proceedings of the 15th International Conference on Extending Database Technology. ACM, 180-191.

[25] L. A. Dabbish, H. C. Stuart, J. Tsay, and J. D. Herbsleb, “Social coding in GitHub: transparency and
collaboration in an open software repository,” in CSCW. ACM, 2012, pp. 1277-1286

[26] A. Sajedi Badashian, A. Esteki, A. Gholipour, A. Hindle, and E. Stroulia. Involvement, contribution,
and influence in GitHub and Stack Overflow. In CSSE, 2014

[27] M. Hazhirpasand, M. Ghafari, S. Kriiger, E. Bodden and O. Nierstrasz, ”The Impact of Developer
Experience in Using Java Cryptography,” 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), Porto de Galinhas, Recife, Brazil, 2019, pp. 1-6, doi:
10.1109/ESEM.2019.8870184.

[28] Capiluppi, Andrea & Serebrenik, Alexander & Singer, Leif. (2012). Assessing Technical Candidates
on the Social Web. IEEE Software. 30. 10.1109/MS.2012.169.

[29] Yang, Di & Martins, Pedro & Saini, Vaibhav & Lopes, Cristina. (2017). Stack Overflow in Github:
Any Snippets There?

[30] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical study of cryptographic
misuse in Android applications,” in Proceedings of the 2013 ACM SIGSAC Conference on Computer
Communications Security, ser. CCS *13. New York, NY, USA: ACM, 2013, pp. 73-84.

[31] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical study of cryptographic
misuse in Android applications,” in Proceedings of the 2013 ACM SIGSAC Conference on Computer
Communications Security, ser. CCS *13. New York, NY, USA: ACM, 2013, pp. 73-84.

[32] S. Shao, G. Dong, T. Guo, T. Yang, and C. Shi, “Modelling analysis and auto-detection of crypto-
graphic misuse in Android applications,” 2014, pp. 75-80.

[33] Shrestha, Amendra & Kaati, Lisa & Johansson, Fredrik. (2013). Detecting multiple aliases in social
media. 10.1145/2492517.2500261.

[34] Baltes, Sebastian & Diehl, Stephan. (2018). Usage and Attribution of Stack Overflow Code Snippets
in GitHub Projects. Empirical Software Engineering. 10.1007/s10664-018-9650-5.

	Introduction
	Related Work
	Methodology
	Steps
	Crypto Tag
	Crypto User
	GitHub Account
	Crypto File
	Crypto Libraries

	Crypto Contributor

	Results and Discussion
	Results
	Discussion
	The Mann-Whitney U test
	Crypto contributors v.s. users without crypto contributions
	Crypto contributors

	Threats to Validity
	Conclusion
	Acknowledgement
	Anleitung zum wissenschaftlichen Arbeiten

