
WebAssembly Security
What security-related questions do developers discuss

about WebAssembly?

Bachelor Thesis

Pascal André
from

Tschingel ob Gunten BE, Switzerland

Faculty of Science, University of Bern

December 30, 2021

Prof. Dr. Oscar Nierstrasz
Dr. Mohammad Ghafari

Software Composition Group
Institute of Computer Science

University of Bern, Switzerland

Abstract

WebAssembly (WASM) is a new binary-format code that runs in browsers
and serves as a compilation target for other programming languages. Al-
though WASM is specified to run in a safe, sandboxed environment, there
are still security concerns that we investigate in this thesis. We use Stack
Overflow to gather a dataset of security-related WebAssembly questions.
We investigate what types of security-related WebAssembly questions devel-
opers ask and what topics that they talk about in their posts. Additionally,
we analyse the activity of the developers that are responsible for all the
questions, answers and comments to find out if certain groups among them
are particularly active.

i

Contents

1 Introduction 1

2 Dataset 4
2.1 Keywords . 5
2.2 Keyword Variations . 5
2.3 Stack Overflow . 5
2.4 StackAPI . 6
2.5 Data Transformation . 6
2.6 Cleaning the Dataset . 6

3 Methodology 10
3.1 Checking Question Properties . 11

3.1.1 Was the question resolved by the owner himself or not? 12
3.1.2 Is the question’s answer status property set correctly? 13
3.1.3 Why was the question likely answered or not? 14

3.2 Developer Intentions . 15
3.3 Question Topics . 17

4 Results 18
4.1 General Findings . 18

4.1.1 What are the most popular tags? 19
4.1.2 When were the questions asked? 21
4.1.3 How many questions have answers and are flagged as answered? 22

4.2 RQ #1: Developer Intentions . 23
4.2.1 Identified Developer Intentions 23
4.2.2 Evaluating Developer Intentions 26
4.2.3 Developer Intention Results 29

4.3 RQ #2: Question Topics . 30
4.3.1 Identified Question Topics . 30
4.3.2 Evaluating Question Topics 37
4.3.3 Question Topic Results . 40

ii

CONTENTS iii

4.4 RQ #3: Developers . 41
4.4.1 Evaluating Developers . 41
4.4.2 Developer Results . 45

5 Threats to Validity 46
5.1 Internal Threats . 46
5.2 External Threats . 46

6 Conclusion 47

7 Anleitung zu wissenschaftlichen Arbeiten 48
7.1 GitHub Repository . 48
7.2 Setup and Installation Guide . 49
7.3 StackAPI . 49

7.3.1 Question JSON . 49
7.3.2 Answer JSON . 52
7.3.3 Comment JSON . 54

7.4 Python Scripts . 56
7.4.1 Get all Search Results using Keywords 56
7.4.2 Get all Individual Questions 58
7.4.3 Get all Individual Answers . 59
7.4.4 List Tags with Number of Occurrences 60
7.4.5 List Number of Questions per Quarter 61

1
Introduction

In this introductory chapter, we give a brief overview of WebAssembly and present the
research questions that will guide us through the following chapters.

WebAssembly (or short WASM) is a binary-format code that can be run in browsers
and exists since 2017. It serves as a compilation target for other programming languages.
For example: If you have C++ code from a game or virtual/augmented reality app, it can
be compiled to WebAssembly in order to run inside the browser. Its goals are to aim for
a near-native performance across platforms by taking advantage of common hardware
capabilities and its low-level assembly language can be viewed, written or debugged by
hand.

Figure 1.1: WebAssembly serves as a compilation target for applications written in C,
C++, C# and many other programming languages which can then be run within the
browser.

Although WebAssembly is specified to run in a safe, sandboxed environment, there
are still developers who have security related concerns that we are investigating.

In this paper, we define the following three questions that will guide us through our
research.

1

CHAPTER 1. INTRODUCTION 2

Research Question #1:
What are the intentions behind asking security-related WebAssembly questions?

In a first step, we want to find out what types of questions developers ask and why they
are asking them. Are they asking a question to better learn a theoretical concept they
don’t fully understand? Do they need help implementing a particular feature that they
have no idea how to start with? Do they need help fixing a bug in their code that they
can’t solve themselves? Or do they write various other security-related WebAssembly
questions, for example to apply best practices to an implementation or to clarify setup or
configuration issues?

Using the open card sorting approach, we identified five major question types. The
two most popular categories among them are questions regarding bug fix support and
instructions on how to implement a particular features, as both appear in roughly 50%
of all questions. Issues around fixing bugs most commonly appear when they try
to implement authentication that works locally in development mode but not after
deployment, though the variety of problems is quite wide. When developers ask for
instructions on implementing a particular feature, the question mostly revolves around
implementing third party authentication systems among other related issues such as
assigning user roles.

Research Question #2:
What are the security-related WebAssembly topics that developers are asking?

In a second step, we want to examine the concrete problems that developers encounter and,
as a result, ask the community for help. Do the problems occur in the context of specific
services, frameworks, tools, libraries, and so on? By answering this research question, we
will then know the security-related WebAssembly issue areas that are causing problems
for developers and which of these are particularly prevalent or frequently occur along
with other concerns.

After using open card sorting again, we identified 19 topics. The two most popular
topics by far were Blazor, which appears in 78% of all questions, and Authentication,
which appears in 52% of all questions, followed by other topics such as Azure, Coding
Questions, HTTP Requests, API, Storage, and a handful of other topics that are close
together at a share of 8-12%. We also found that there is a high correlation between
authentication and Blazor, as all questions asked about authentication were also related
to Blazor.

CHAPTER 1. INTRODUCTION 3

Research Question #3:
Can we find groups of developers who ask or answer particularly many questions?

For the third research question, we focus on the developers who raise these security-
related WebAssembly issues. We want to find out if there are certain groups of developers
who are particularly active in the community and either ask or answer a variety of
questions on the topic. In doing so, we will also try to incorporate a developer’s
knowledge and skill level into the assessment to find out how the experience levels
of the developers, from novice to expert, are distributed within the community.

If we look at both the number of questions a developer asks and the number of
accepted answers a developer writes, we find that in both groups the vast majority ask
only one question or write only one answer. Among the developers who write accepted
answers, we could identify a small group of 6.4% of all developers that is responsible for
28% of all accepted answers.

Are there any additional interesting conclusions that we can draw from the dataset?

During our statistical analysis we did at the beginning to find out more details about our
dataset, it became apparent early on when we evaluated the tags that questions about
Blazor are very popular, as eight of the eleven most popular tags have a strong if not
even direct link to Blazor development. From a timeline perspective, we also see that the
official release of Blazor in May 2020 led to a huge increase in security-related questions
about WebAssembly, of which the popularity has remained consistently high.

2
Dataset

In this chapter, we present the steps we have taken to gather a dataset of security-
related WebAssembly questions on which we will base our research. The source of
these questions will be Stack Overflow, which, as one of the largest Q&A forums for
developers, has captured many current relevant discussion topics and issues as well as
those from previous years.

To find the questions that are relevant to us, we use a list of security-related keywords,
each of which we will then combine with WebAssembly to create a search term like
“WebAssembly [keyword]” to collect and download all resulting search results on that
subject from Stack Overflow. In order to automate the process, we will use the StackAPI
to avoid having to manually request the data. For easier processing, we then save the
obtained JSON data in an Excel file after performing some data transformations.

After that, we make sure that only questions that are actually about security-related
WebAssembly issues are present in our dataset and all other questions are omitted.

4

CHAPTER 2. DATASET 5

2.1 Keywords
We begin our research work by consulting security literature to create a list of 35 unique
security-related keywords which should cover a large majority of the security-related
questions that developers ask in regard to WebAssembly on Stack Overflow.

Original 35 Keywords

security, privacy, vulnerability, attack, exploit, risk, danger, threat, compromise, login, authen-
tication, password, privilege, permission, encryption, leak, breach, injection, sanitize, overflow,
bypass, malicious, defense, protect, sandbox, untrusted, trusted, trustworthy, secret, isolate,
hazard, expose, signin, verification, certification.

2.2 Keyword Variations
We manually process the keywords to find all possible variations of them in order to
match as many Stack Overflow questions as possible. To extend the list, we add for
each keyword, if available, its noun (singular and plural), verb (incl. present and past
participle), adverb, adjective (several forms by adding suffixes such as “-able”, “-ed”
or “-ing”) and other similar word variations we could find. We also included different
variations of how a word could be written, like for example “login”, “log-in” or “log
in”. Some keywords such as “defend” even had multiple variations for the noun that we
considered which included “defense” or “defender”.

Following this process, the unique keyword “security” resulted in the following seven
keyword variations: security (noun singular), securities (noun plural), secure (verb),
securing (present participle), secured (past participle), securely (adverb) and securable
(adjective).

This process eventually resulted in a final list of 266 keywords based on our initial
35 unique keywords that we extended by finding all their variations that share the same
lemma which means that they have the same canonical form. The final keyword list can
be found under the additional resources for this paper in section 7.1.

2.3 Stack Overflow
Stack Overflow, or short SO, is a community-based platform where developers post
questions and answers to computer programming related topics. It was created in 2008
by the two American software developers Jeff Atwood and Joel Spolsky [5]. Today, SO
is part of the Stack Exchange Network, a mostly technology-based Q&A platform, where
it serves as their main flagship site.

CHAPTER 2. DATASET 6

Since SO became the go-to platform for many developers over the years as they
seek advice on their programming related issues, it reflects well the problems that the
developer community is facing today or was facing in previous years. It therefore seems
to be the most extensive and reliable source for gathering a dataset that we can then base
our research on.

2.4 StackAPI
In order to automate the process of collecting all SO questions that match the search term
“WebAssembly [keyword]” as well as its answers, comments, developers etc. we are
going to use StackAPI [4] which is a Python wrapper for the official Stack Exchange API
[1]. Using this library, we can write simple Python scripts to access various endpoints
of the Stack Exchange API. To gather the SO questions, we are mostly interested in the
/questions endpoints but for further analysis of the dataset, we are also going to
collect full details for each answer, comment and developer related to the SO questions
via their separate endpoints.

2.5 Data Transformation
Now that we have saved all the necessary data in JSON format, we want to transform
the data so that we can view, compare and process it more easily later. For this purpose,
we save all relevant properties of the questions (incl. title, tags, score, creation date,
questioner etc.) in a separate Excel file, with all data for a single question in one row.
This makes it easier for us to view the data later, perform statistical procedures and add
our results to additional criteria as new columns. We can also use the comment function
in Excel to add our notes and reasons for decisions to individual cells.

2.6 Cleaning the Dataset
Because the questions were collected automatically using our list of security-related
keywords, it does not guarantee that all of them actually feature security-related Web-
Assembly topics. To make sure that false positives (questions which are not related to
WebAssembly security) are excluded, we apply a rating system with a scale from 0-3 as
we process them to assess how strongly the question is linked to WebAssembly security.

CHAPTER 2. DATASET 7

Level 0: Irrelevant in an obvious way
The question is in an obvious way neither related to security nor WebAssembly because
the user has an issue that is explicitly NOT related to WebAssembly or security. Conse-
quently, this question is a false positive and is not relevant for our research work and we
exclude it during our later analysis of the dataset.

Examples for Level 0

Question ID: 61684831
This question was matched during a search request with the term “WebAssembly protect”. In
its body, the owner writes “. . . finding guidance on using Blazor Server (not WebAssembly). . . ”.
The developer describes an issue that is explicitly not related to WebAssembly, so we ignore it.
Question ID: 62114179
The second example features a question that was matched with the search term “WebAssembly
security”. The developer asks “Other than portability and security reasons, why would some-
one want to run their existing Go/Rust/C++ applications in web browsers via WebAssembly?”.
Unlike the first question, this one is actually related to WebAssembly but is clearly not related
to security, so we also exclude it.

Level 1: No relation to WebAssembly Security
Compared to level 0, where it explicitly is NOT related to WebAssembly or security, level
1 does not have such remarks. However, it also does not have any clear safety-related
topics and if we could identify any, they are far-fetched and not related to the original
topic. We therefore do not consider the question at a later stage during our evaluation.

Examples for Level 1

Question ID: 63593076
In this first example, we have an issue from a developer who’s working on a Blazor WebAss-
embly app where the retrieved models have all their properties set to NULL because he forgot
to add get and set to his model properties. Since there are no obvious security-related
implications and the issue is more a general bug, we assign it Level 1.
Question ID: 66923063
The owner from this question asks how to exclude unused .dll files when publishing a
WebAssembly project. This problem is related to configuration settings in the project and does
not have any obvious security-related issues which is why we assign it a Level 1 and do not
consider it later.
Question ID: 62107035
The last example is about an issue where docker does not reflect the changes in the HTML file
from a WebAssembly app due to missing port forwarding. Since this is a general setup issue
without any obvious security-related implications, we assign a Level 1.

https://stackoverflow.com/questions/61684831
https://stackoverflow.com/questions/62114179
https://stackoverflow.com/questions/63593076
https://stackoverflow.com/questions/66923063
https://stackoverflow.com/questions/62107035

CHAPTER 2. DATASET 8

Level 2: Weak link to WebAssembly Security
Level 2 is assigned to those questions which have a slight reference to any, also in a more
distant sense, safety-relevant topic, but which are still related to the given question. This
includes questions where the main question does not have a direct security implication,
but some of the additional questions do, which the developer asks along the way in the
same post. Later on, we will consider these questions for our evaluation.

Examples for Level 2

Question ID: 66733106
The developer’s main question is how JavaScript and WASM virtual machines work. This is
more of a general question that does not have too obvious security implications. Nevertheless,
we assign a Level 2 to the question since in one of the additional questions the user also asks if
the virtual machines provide isolation.
Question ID: 61821267
In this example, the user asks if there exists a consortium that is curating a content delivery
network (CDN) for WebAssembly libraries that would offer improved loading times due to
caching or, in regards to encryption and security, centralized standards for their behavior.
Although it was a more general question, there are safety-related aspects, as just mentioned,
which justify Level 2.
Question ID: 61052684
The developer asks how to load a WebAssembly module locally, which is the main point of
the question. Level 2 is assigned because of the security-related implications that come into
play because he ran into CORS issues that blocked direct access to the local module since he
did not want to use HTTP to load it.

Level 3: Strong link to WebAssembly Security
A question of level 3 has a strong link to security, meaning its topic has a direct impact
on protecting a system from threats that could exploit vulnerabilities, and securing it by
giving access to its resources by only authorized or trusted parties.

Examples for Level 3

Question ID: 66873168
The first example features a developer who’s asking for help on how to implement a user
management module according to best practices. Consequently, this question has a strong link
to security and gets assigned a Level 3, as it is about giving only authorized users access to the
system.
Question ID: 61956919
In the second question, its owner asks how to setup and run the client side of a Blazor
WebAssembly app using HTTPS on a custom domain. We see a strong link to security in this
example since HTTPS supports a secured communication.

https://stackoverflow.com/questions/66733106
https://stackoverflow.com/questions/61821267
https://stackoverflow.com/questions/61052684
https://stackoverflow.com/questions/66873168
https://stackoverflow.com/questions/61956919

CHAPTER 2. DATASET 9

Question ID: 57993453
The third and last example is about a developer who tries to access the memory of a WebAss-
embly module that is loaded by webpack. We assign this question a strong link to security
because it is about exposing memory of a WASM module.

To decide which questions are relevant or irrelevant to our work, we are going to refer
to this scale from level 0-3 to rate how strongly a question is related to WebAssembly
security. With level 0 and 1 we describe questions that have no relation to WebAssembly
security and will therefore be omitted from the final dataset for this reason. In the initial
467 questions, level 0 or 1 is identified for 108 of them. From this we conclude that 23%
of the questions from the original dataset are false positives.

The vast majority of the keywords that we identified within the excluded questions
were “log in” followed by “private” and “sign in”. The keyword “log in” caused the
most false positives because its first half “log” was matched in many questions where
it was used in the context to log data to the console, so it was found in code snippets
and problem descriptions where developers explained how they log data to the console,
but the post itself was not a security-related WebAssembly topic. Similar issues and
consequences occurred with the other two keywords “private” and “sign in” whereas
“private” was matched as the access modifier in code snippets and “sign” was identified
in problems related to signed or unsigned integers.

We can additionally determine from this result that 359 questions (77%) are rated
with level 2 or 3, since they are security-related WebAssembly questions. These 359
relevant Stack Overflow questions are the ones that create the final dataset that we are
going to use in our work from here onward.

Note: Any later mention of the dataset now refers to these 359 questions. Should we
need to address the initial 467 posts at some point, we are going to denote them as the
original dataset.

https://stackoverflow.com/questions/57993453

3
Methodology

In this chapter, we present our methodology for our research approach. We describe the
two processes with which we want to work out a list of developer intentions and question
topics that are featured within our dataset of 359 Stack Overflow questions. We mainly
focus on the process of how these developer intentions and question topics were gathered
to show how we assessed the questions and what rules we based our decisions on. The
results (developer intentions and question topics) will be presented in the subsequent
fourth chapter along with detailed definitions and extensive examples.

The developer intentions focus on the question types why a particular question was
asked whereas the question topic focuses on the problem area in which its corresponding
developer was asking for help. At this stage, all the important properties from the Stack
Overflow questions were saved in an Excel spreadsheet. The remaining data was stored
in separate files in their original unedited JSON format, exactly how they were requested
via the StackAPI.

10

CHAPTER 3. METHODOLOGY 11

3.1 Checking Question Properties
In this section, we process and review basic properties of all 359 questions in our dataset
to better understand them and lay a foundation for later steps. For each question, we
record the following details:

• Brief summary describing the fundamental problem in the question

• Up to about five tags that cover the relevant issues in the question

• Security related keywords from our list that were matched within the question

As we will discuss in more detail shortly, we also record the following properties for
each question:

• Was the question resolved by the question owner himself or a different developer?

• Does the answer status correctly reflect the state of the question?

• Which observations can we draw why the question was likely answered or not?

CHAPTER 3. METHODOLOGY 12

3.1.1 Was the question resolved by the owner himself or not?
We want to keep track of whether a question was resolved by the owner himself or a
different developer. Because there is no attribute that records this property, we manually
check it and save it as a boolean value named resolved-by-owner. If the owner
responds to his question by either writing a comment or posting an answer where he
explains how he solved the issue, we mark the corresponding boolean TRUE or FALSE
otherwise. This property can later help us answer questions such as:

• Which question types are answered by the question owner himself most often?

• Do question owners respond more quickly to their posts compared to other devs?

Additionally, it helps us to exclude the questions where the user was able to fix
the issue himself and therefore did not necessarily require any interaction with another
developer which is useful to know for some of our later analyses of the dataset.

Examples

Question ID: 63000069
Question owner writes solution as comment:
In this first example, the question owner “Ronak SHAH” describes a problem where his
requests using QNetwork are getting blocked due to CORS errors. He later writes in a comment
to the original question that configuring the server to accept requests from different origin (i.e.
through WASM) has solved his issue. Thus, we mark the boolean resolved-by-owner
as TRUE.
Question ID: 66878555
Question owner writes solution as answer:
A similar problem can be found in the second example where the developer “bedrock” has PUT
and DELETE requests being blocked by CORS. The solution, which was written by “bedrock”
as an answer, was to add AllowAnyMethod in CORS config settings of the web service app.
Consequently, we also mark this question’s resolved-by-owner boolean as TRUE

https://stackoverflow.com/questions/63000069
https://stackoverflow.com/questions/66878555

CHAPTER 3. METHODOLOGY 13

3.1.2 Is the question’s answer status property set correctly?
Every question has an is answered boolean property that keeps track of whether
a question has been answered or not. Due to the fact that this boolean is changed by
the owner of the question, this value might not always reflect the current status of the
question, meaning another developer might have given an accepted answer or the owner
was able to resolve the issue himself but, in neither case, marked the question as answered
so the property does not accurately reflect the question’s answer state.

Verifying the is answered boolean gives us more accurate results when answering
questions where the answer status is included in its analysis such as:

• Which types of questions are answered most often?

• Overall, what percentage of questions has been answered?

As we process the questions, we check if the is answered property matches the
state of what we have seen or read in the question, answer or comment. If for instance a
question with is answered: FALSE has either an accepted answer or an answer
from another developer which is not marked as accepted but has a comment from the
question owner that it resolved the issue or finally the owner himself writes a separate
answer or a comment to the original question where he explains how the issue was
resolved, then we flag the question meaning that its is answered property should be
TRUE.

Examples

Question ID: 66949040
Question has an accepted answer:
The first example features the case where the owner has marked one of the answers as the
accepted one but the is answered property of the question is still FALSE, which is why
we flag this question.
Question ID: 63000069
Comment from question owner resolves issue:
This question shows an example where the is answered property is set to FALSE even
though the owner responds to a comment explaining how the issue was resolved. Consequently,
we flag this question because the answer state is not correct.
Question ID: 64291881
Answer from question owner resolves issue:
The last example of a question with is answered set to FALSE is the case where the owner
himself writes a separate answer where he explains how the issue was resolved, which is why
we flag this question as well due to incorrect answer state.

https://stackoverflow.com/questions/66949040
https://stackoverflow.com/questions/63000069
https://stackoverflow.com/questions/64291881

CHAPTER 3. METHODOLOGY 14

3.1.3 Why was the question likely answered or not?
Another feature we want to capture only for unanswered questions are reasons why
a question has not yet been marked as answered. With this data, we could then later
evaluate what were the most common reasons why certain questions were not answered.
The reasons recorded could be, for example:

• The problem was in relation with another tool or library and therefore requires
additional knowledge and experience in order to be solved.

• The question owner gave very few details about the problem which makes it
difficult for other developers to provide assistance because they can only assume
certain details or make an educated guess.

• The question owner did not respond to any comment or answer from another
developer which would tell whether the issue was resolved or not.

Examples

Question ID: 65950937
No response from question owner:
In this example we have a question from developer “user82395214” with two comments and
one answer. Unfortunately, he did not respond to any of them, so we can’t tell if they would
have resolved the issue, so the status remains unanswered because the question was abandoned
by its owner.
Question ID: 65078337
Question owner gave very few details:
The second question features a problem from a developer who created a Blazor WebAssembly
app that he debugged on IIS (Internet Information Service) where the app was opened in a new
Chrome window where he was not signed in. It seems that he gave very few details because he
did not mention what system he was on or which browser version he’s running which, amongst
other additional details, would presumably help in solving the presented issue.
Question ID: 57993453
Problem is related to another tool or library:
The third example covers the case with a specific question in relation to another tool or library.
In the given scenario, the developer asks how to access the memory of a WASM module that
is loaded by webpack. In order to answer this question, it needs additional knowledge of
webpack in order to know how one can access the module’s memory, which is a likely reason
why the question was not answered.

https://stackoverflow.com/questions/65950937
https://stackoverflow.com/questions/65078337
https://stackoverflow.com/questions/57993453

CHAPTER 3. METHODOLOGY 15

3.2 Developer Intentions
In the next step of our methodology, we focus on the question types which will help us
in finding the intentions why developers are asking these security related WebAssembly
questions. This can later help us to answer the following questions:

• Which question types are asked or answered most often?

• Which question types get the quickest response?

• With which intentions do developers ask questions?

Because we don’t have an initial list of categories to which we could assign the
questions, we have to come up with a process that will help us to create said list. We
decided that the open card sorting approach would be most suitable for this process.

Applying the open card sorting approach means that at the beginning we study the
first question and record its intention as “Category A”. Then we go to the second question
and identify its intention. If the identified intention corresponds to the one of “Category
A”, we add it to this category, otherwise we create the new “Category B” and assign it to
this group. We repeat this process for all questions, so that in the end we have a list of
intentions where each category is represented in one question type.

For each intention AKA category in our list, we add a title, a short description and
definition of the intention as well as a sample question from the dataset which is assigned
to this category. If the number of intentions gets too large and exceeds a total count of
15, we might have defined them too specifically. At that point it would make sense to
always try to find the two closest intentions and merge them together, which makes them
a bit less specific and reduces the total number of categories.

After the first 50 questions have been categorized, it has become apparent for many
questions that it would be better if we could assign a question to more than one category,
since in most cases several intentions can be identified in a question. In order to improve
the categorization process and to get more accurate results later in the evaluation, we
decided to revise the original process. In the new process, any number of categories
can now be assigned to a question, depending on which ones can all be identified. In
addition, we use a scale from 0-3 to describe how strongly a category was identified in
the question.

The revised procedure allows for questions to be assigned more accurately to all
appropriate categories. Later, improved results can be obtained when evaluating the data.

CHAPTER 3. METHODOLOGY 16

Similarly, to “How strong is the question related to WASM security?”, we also apply
a scale from 0-3 to reflect how strongly a category is identified within a question:

Level 0 (or just NULL by adding no value at all for simplicity) means that this
category has not been identified within the question and we exclude this question during
later analysis for that particular category.

Level 1 means that the category was identified within the question but it has a weak
link to it and is not relevant enough to the main topic so that we would consider this
question during later analysis for that particular category.

Level 2 is assigned if the category was in the possible selection for the chosen
category in the old procedure, because it was identified in the question and was relevant
to it. Level 2 is the advantageous level that allows us to select other secondary categories
relevant to the question, which will later be included in the evaluation of that category and
should provide better results, as we can record the relevant information more precisely.

Level 3 is selected for the category that reflects the primary category of the question
and corresponds to the category that would have been selected in the old procedure, in
which only one category could be selected. The question will be considered during later
analysis for that particular category.

Categorizing based on Developer Intentions

Question ID: 66567628
In the first example the developer asks how to authenticate users so that they can only fetch their
own personal images with a GET-request. After reading the question and studying its problem
we conclude that he mainly asks for specific instructions on how to implement the feature
regarding the user authentication when fetching personal images during GET-requests, which
is why we assign the category “How-To Instructions” with a level 3 to it. In the question, the
developer also explains a possible solution that he could attempt, where he converts the image
into base64, but this bypasses the browser cache and seems needlessly complicated which is
why he is looking for a better solution and why we also assign “Best Practice Guidance” as a
secondary category with level 2 to it. Of the remaining categories none have been identified.
In summary, this question will be considered during the evaluation of the categories “How-To
Instructions” and “Best Practice Guidance” due to their individual score of a level 2 or 3.

https://stackoverflow.com/questions/66567628

CHAPTER 3. METHODOLOGY 17

3.3 Question Topics
In the previous section, we examined which types of questions developers asked (such
as clarifications, how-to instructions, bug fix support etc.) using the open card sorting
approach. Now we want to make a second similar pass over the dataset but this time we
focus on the topics of the developer’s problems that they ask help for. What are the actual
issues that they are facing which we can identify using the open card sorting approach?

For more accurate results, we still allow multiple topics to be assigned to a question
but because we expect a higher number of topics in comparison to the categories or
question types, we are no longer going to use a scale from 0-3 to reflect how strongly
a topic was identified within a question. This will help us to simplify the evaluation
process due to the higher complexity caused by the increased number of topics. Instead,
we simply use boolean values, meaning if a topic was identified within a question, we
assign a 1 and if the topic was not identified or significant to the problem, we assign a 0.

Using the open card sorting approach, we could identify 19 different topics which we
will present in more detail, including definitions and examples, in the subsequent chapter.

4
Results

In this chapter, we are going to present first our general findings followed by the identified
developer intentions and question topics, by giving a definition and question examples,
that we identified using the open card sorting approach that we explained in chapter 3.
After that, we analyze the dataset based on these new results to gather the information
that will then help us answer our research questions from chapter 1.

For the results that we will present in the following, it should be noted that they are
subject to various threats that could potentially jeopardize their validity which we have
explained in chapter 5. The quantity shares, which we will often report as percentages,
have been rounded to the nearest integer.

4.1 General Findings
In this section, we are going to evaluate our dataset based on the available properties
that we can gather from the Stack Overflow questions as well as our own collected data
that we described in the previous chapter to find general findings that help us to better
understand our dataset. We want to deduce from this what the most popular tags are, how
popularity on the subject changed over time by looking at the number of questions that
were asked in each quarter and how many questions received responses from developers
and are now in an answered state.

18

CHAPTER 4. RESULTS 19

4.1.1 What are the most popular tags?
When we analyse the tags, we need to consider that they are added manually by developers
which means some of them may have been added incorrectly or that not all possible tags
that would suit the question have been added. The final results are therefore affected by
which tags the developer has chosen or which tags were suggested to him depending on
the content of the post.

Table 4.1: Most popular question tags
Tag Count Percentage

blazor 198 55%
blazor-webassembly 135 38%

webassembly 104 29%
asp.net-core 80 22%

c# 80 22%
blazor-client-side 65 18%

authentication 44 12%
identityserver4 41 11%

javascript 31 9%
asp.net 19 5%

asp.net-identity 18 5%

In total 234 unique tags were assigned to the 359 questions a total of 1’348 times,
which is an average of 3.79 tags per question. 147 of these different tags (63%) were
used only once on a question. On the other hand, eleven tags (5%) were added to more
than 5% of the questions, which is 18 or more questions per tag. Out of the 1’348 times a
tag was assigned, the eleven most popular ones, as seen in table 4.1, claim 815 (60%) of
these assignments. We can conclude that 5% of the unique tags cover 60% of all assigned
tags.

Upon closer inspection of the eleven most popular tags, we notice that eight of them
(blazor, blazor-webassembly, asp.net-core, c#, blazor-client-side, identityserver4, asp.net
and asp.net-identity) have a strong or even direct link to Blazor development.

CHAPTER 4. RESULTS 20

Table 4.2: Most popular programming languages featured in question tags
Tag Count Percentage

c# 80 22%
javascript 31 9%

c++ 13 4%
rust 6 2%

typescript 4 1%
c 3 1%

html 2 1%
assembly 1 0%

go 1 0%

If we extract all programming or markup language related tags from the list and
inspect them separately, as seen in table 4.2, we notice that C# is the most popular
because it appears in one out of five questions. A clear second is JavaScript with almost
one out of eleven occurrences. The remaining languages are tagged in less than 5% of all
questions each.

CHAPTER 4. RESULTS 21

4.1.2 When were the questions asked?
To find out how the popularity of the subject of security-related WebAssembly questions
has changed over time, we look at the quarterly number of asked questions within our
dataset.

Figure 4.1: Number of questions asked per quarter since 2016

We notice a massive increase in popularity in 2020. Overall, there were more than
ten times as many questions asked in 2020 than there was a year before in 2019. If we
consider that the majority of question tags are related to Blazor development and Blazor
WebAssembly was officially released in May 2020 (Q2 2020), we can comprehend why
the number of questions suddenly spiked in early 2020, especially Q2 to be more specific.

Since Q2 2020 the number of questions has also remained consistently high. Due to
the fact that the dataset was collected in early April 2021, the question count for Q2 2021
is not fully representative.

CHAPTER 4. RESULTS 22

4.1.3 How many questions have answers and are flagged as an-
swered?

Every Stack Overflow question has an answer count property that holds the number
of answers that the question received and an is answered boolean property that allows
the questioner to set his post as answered or not depending on whether the issue was
resolved or still needs a response from the community that answers the question.

While the answer count simply describes the number of answers that the question
received and therefore does not leave any room for inaccuracies, the is answered
property will hold an incorrect value if the question owner does not set its value ac-
cordingly. This is why in section 3.1 we check that the is answered property is set
accurately and fix it if necessary to make sure that the following results closer reflect the
reality of the answer state.

Figure 4.2: Distribution of the 359 questions according to their answer state and whether
they received answers or not.

Overall, 229 questions (64%) are marked as answered which means their issues have
been resolved, whereas the problems of 130 questions (36%) still need to be addressed.
From the above table we can also gather that ten questions (3%) were answered without
a single answer (for example through just comments or the owner figuring it out on his
own) and 34 questions (9%) received insufficient answers, meaning the answers that
have been given did not resolve the problem.

From the 359 questions, 24 of them (7%) did not have the correct is answered
status set which we fixed as we analysed the questions according to section 3.1.

CHAPTER 4. RESULTS 23

4.2 RQ #1: Developer Intentions

4.2.1 Identified Developer Intentions
As we explained in section 3.2, we used the open card sorting approach to find a list
of question types reflecting the intentions why developers are asking security-related
WebAssembly questions. After categorizing all 359 questions, we identified the following
eight categories for each of which we will give a definition describing its type of question
as well as a concrete example with a question from our dataset.

Category #1: Best Practice Guidance
Developer asks for best practice guidance on how to solve an issue or implement a
certain feature.

Example for Category #1: Best Practice Guidance

Question ID: 66873168
The user develops a Blazor WebAssembly app where he is trying to create a basic user
management module (have admin that can create and handle users including different roles)
by following a guide. He asks for guidance on applying best practices according to today’s
standards.

Category #2: Bug Fix Support
Developer asks for help on resolving a problem with a bug he cannot fix.

Example for Category #2: Bug Fix Support

Question ID: 59696171
The developer asks for help regarding a bug that he has encountered in his Blazor WebAssembly
app where after a successful login procedure (using the Identity Framework) the StateProvider
in WebAssembly (that stores the details about the currently authenticated user) is always false.

Category #3: Clarifications
Developer asks for conceptual clarifications on a given topic that they do not fully
understand yet and need help with.

Example for Category #3: Clarification

Question ID: 42186728
In this example, the user asks for clarification if WebAssembly can be used to enforce digital
rights management (DRM). He wants to know if it is possible for developers to detect if
browser games are used by other people and lock down their access with a WebAssembly
script that is deeply tied into the game mechanics.

https://stackoverflow.com/questions/66873168
https://stackoverflow.com/questions/59696171
https://stackoverflow.com/questions/42186728

CHAPTER 4. RESULTS 24

Category #4: How-To Instructions
Developer asks for specific instructions on how to implement a certain feature. Simple

“How to fix this bug?” questions are not considered in this category and are assigned to
the “Bug Fix Support” category.

Example for Category #4: How-To Instructions

Question ID: 65735822
In the given sample question, the developer asks for specific instructions regarding how
to configure a Blazor WebAssembly app to enforce strict-transport-security in its response
headers.

Category #5: Not Supported
Developer asks for help to implement a feature that cannot be done in such a way or
tries to do something with a tool that is not possible because it does not support that
functionality.

Example for Category #5: Not Supported

Question ID: 61190809
The question owner tries to run WebAssembly on the new V8 Google Apps Script runtime,
but it seems that async functions are terminated after they return a promise. Another developer
writes in his answer that async functionalities are not fully supported in V8 yet and refers to
an open issue tracker regarding this issue.

Category #6: Setup or Configuration Issue
Developer asks for help regarding an error that is related to an incorrect setup or
configuration.

Example for Category #6: Setup or Configuration Issue

Question ID: 66878555
This example features a question from a developer who has issues with his Blazor WebAss-
embly app because the HTTP PUT and DELETE requests are being blocked. Updating the
CORS configuration settings by adding “AllowAnyMethod” in the setup of the web service
app solved the problem.

https://stackoverflow.com/questions/65735822
https://stackoverflow.com/questions/61190809
https://stackoverflow.com/questions/66878555

CHAPTER 4. RESULTS 25

Category #7: Third-Party Bug
Developer asks for help regarding an issue that is caused by a bug in a third-party
software, meaning he did everything right and his project should run fine if it was not for
the issue in the third-party software that he is not responsible for.

Example for Category #7: Third-Party Bug

Question ID: 40625530
The question owner tries to follow a WebAssembly starter guide on his Mac but gets stuck due
to an issue with missing files. It turns out that he did everything right, but the problems were
encountered due to a bug in Emscripten that can cause errors when trying to build binaryen
natively on some OS X setups. The problems were not caused by the developer who asked the
question on SO, but by a third-party, in this case the software Emscripten.

Category #8: Unexpected Results
Developer asks for help on an issue with unexpected behavior or error message that
confuse him and he needs support to understand them.

Example for Category #8: Unexpected Results

Question ID: 65536335
The user has an issue where the build is different when using Docker Compose in Visual
Studio vs. using Docker in CMD despite the fact that both builds should be the same.

https://stackoverflow.com/questions/40625530
https://stackoverflow.com/questions/65536335

CHAPTER 4. RESULTS 26

4.2.2 Evaluating Developer Intentions
In section 3.2 we described the analysis process with which we wanted to record the
intentions why developers ask questions. For example: to better understand a concept
(clarification), to find out how to implement a feature (how-to instructions), to find errors
during setup (setup or configuration issue) or during development in general (bug fix
support), as well as, among others, questions about the implementation of common
standards (best practice guidance). We will evaluate this collected data in the following.

Figure 4.3: Number of questions per category

First, we evaluate the distribution of the different categories. Based on the bar chart
in Figure 4.3, we see that with a share of 50%, every second question dealt with a bug.
Close behind with 47% are questions about getting support on how to implement certain
features. Much further down the list, but still to be found in every fourth question (28%),
is assistance in clarifying certain topics. Setup and configuration problems occur in 22%
and best practice guidance in 12% of all questions.

At the bottom we find the three niche categories “Unexpected Results”, “Not Sup-
ported” and “Third-Party Bugs”, each occurring in less than 3% of all questions. Due to
their low relevance, we will focus on the top five categories in the following.

Next, we will analyze the questions according to their data on the number of views,
upvotes, answers and the duration until a first reaction according to common statistical
evaluation methods by calculating the average, median, range, standard deviation and the
interquartile range.

For the question data, we consider the number of views (how often a question was
viewed), number of upvotes (how often a question received an upvote from a developer),
number of answers (how often the question received an answer from a developer), and
the duration until the first reaction (duration between the time the question was published
until the time the first comment or answer to the question was published).

CHAPTER 4. RESULTS 27

Figure 4.4: Box plot of the number of views that the questions within a category received.

In Figure 4.4 we see the box plots of the number of views the questions received.
On the far left we see the box plot across all 359 questions in our dataset, the other five
are then the further box plots for our five categories, which only contain their relevant
questions. As we can see, there are no significant differences between the categories.
Those questions that would have made a bigger difference are considered outliers from a
statistical point of view.

We have made the same observations for the other criteria on the number of responses,
question scores and response times, which is why we will not discuss and display their
box plots further. However, we record the statistical values for the various properties
such as views, scores, responses and reaction times across our dataset in the table in
Figure 4.5 for the sake of completeness, but as mentioned, we do not go into detail about
the individual categories.

Figure 4.5: General stats over the entire dataset of question properties including views,
scores, answers and reaction time.

CHAPTER 4. RESULTS 28

In section 3.1 we have recorded which questions were answered by the questioner
himself or by another developer. We now want to evaluate our results from Table 4.3.

Category Question Count Percentage

All Questions 73 20%
Setup or Configuration Issues 34 43%

Bug Fix Support 55 30%
Best Practice Guidance 7 16%

How-To Instructions 26 15%
Clarification 11 11%

Table 4.3: Number of questions per category that were answered by the question owner

Over the entire dataset, 73 questions (20%) were answered by the questioner himself.
If we now include the different question types, we notice considerable differences
between the categories. At the top are installation and configuration problems, which
with 43% were most frequently solved by the questioner. Bug fix support questions are
also above the general average with 30%. Best practice guidance and how-to instructions
are clearly behind. Questions to clarify certain topics are answered least often by the
questioner with 11%.

We find that questions about installation, configuration, and bug problems are rela-
tively often solved by the questioner, as one can clarify such questions through one’s own
efforts with debugging, research as well as trial and error. However, this is more difficult
for the other three categories, since the necessary experience including know-how cannot
be acquired so easily to answer questions of this type.

Category Question Count Percentage

All Questions 130 36%
Best Practice Guidance 17 40%

How-To Instructions 63 38%
Bug Fix Support 64 35%

Clarification 31 31%
Setup or Configuration Issues 16 20%

Table 4.4: Number of unanswered questions by category

Since we checked the “answer state” for each question in section 3.1, we next want
to find out how many questions are unanswered in each category, and then calculate
relatively within a category what the proportion of unanswered questions is. The results

CHAPTER 4. RESULTS 29

in Table 4.4 give us an indication which types of questions tend to be more difficult to
answer.

Across the entire dataset, we already know that 130 questions (36%) have yet to
receive a sufficient answer. The highest percentage of unanswered questions is in the
best practices category, where two out of five questions (40%) are unresolved and thus
tend to be more difficult to answer. Also above average are how-to instructions at 38%.
In contrast, questions on installation and configuration problems are the most likely to be
answered, with only one out of five questions (20%) still unanswered.

4.2.3 Developer Intention Results
Motivation: By answering the first research question, we can tell what types of questions
developers are asking and for what reasons they asked the question to seek developer
help from the community.

Approach: In section 3.2, we described the process of the open card sorting approach,
which we used to extract a list of categories AKA question types. When manually
processing the questions, we then assigned the appropriate category to each Stack
Overflow question on a scale from 0-3. In subsection 4.2.2 we then analyzed all the
data and for each category we considered those questions that scored at least a 2 on this
scale. We then compared the number of questions per category to find the most popular
categories among them.

Results: After applying open card sorting, we obtained a list of eight categories or
question types: Clarification, How-To Instructions, Bug Fix Support, Best Practice
Guidance, Setup or Configuration Issues, and the smaller niche categories of Unexpected
Results, Unsupported, and Third-Party Bugs. Due to the low popularity of the last three
niche groups, we did not explore them further. The most popular categories included
Bug Fix Support occurring in 50% of all questions, with How-To Instructions close
behind at 47%. The remaining three categories scored 28% (Clarifications), 22% (Setup
or Configuration Issues), and 12% (Best Practice Guidance).

Summary: In terms of security-related WebAssembly questions, developers on Stack
Overflow mainly ask five different types of questions: Clarification, How-To Instruction,
Best Practice Guidance, Setup or Configuration Issues, and Bug Fix Support. The most
popular among them are Bug Fix Support and How-To Instructions, which appear in
about half of the questions.

CHAPTER 4. RESULTS 30

4.3 RQ #2: Question Topics

4.3.1 Identified Question Topics
Using the open card sorting approach according to section 3.3, we could identify 19
topics which we will now list below along with a definition and several sample questions.
To keep the list as concise as possible, we previously removed any topic with fewer
than five occurrences over the questions within our dataset. This decision caused the
topics SignalR, WebPack and QT to be removed as they were too unpopular. Since every
question can have several topics assigned, the given sample questions could often be
used as an example for multiple topics.

Topic #1: Azure
Questions with issues related to Azure services including Azure Active Directory (AAD),
Blob Storage, B2C etc.

Examples for Topic #1: Azure

Question ID: 65808332
Questioner asks how to upload a file from Blazor WASM app to Azure Blob Storage.
Question ID: 62812702
Questioner asks how to fix an issue where app roles do not work in a Blazor WASM app using
Azure Active Directory.
Question ID: 61973708
Questioner asks how to properly log out a user in a Blazor WASM app using AAD B2C.

Topic #2: API
Questions related to application programming interfaces (API) to perform CRUD op-
erations, changing configuration options, managing endpoints and other API-related
activities.

Examples for Topic #2: API

Question ID: 63782180
Questioner asks how to restrict a user from consuming an API endpoint for one location but
not for the other.
Question ID: 60754751
Questioner asks how to handle multiple tokens for different scopes with protected API’s using
Azure Active Directory in a Blazor WASM app.
Question ID: 63849288
Questioner asks where to store and how to use the Auth0 keys that are required to interact with
his API in his Blazor WebAssembly app.

https://stackoverflow.com/questions/65808332
https://stackoverflow.com/questions/62812702
https://stackoverflow.com/questions/61973708
https://stackoverflow.com/questions/63782180
https://stackoverflow.com/questions/60754751
https://stackoverflow.com/questions/63849288

CHAPTER 4. RESULTS 31

Topic #3: CORS
Questions related to issues around CORS (Cross-Origin Resource Sharing) including
how to enable, configure or disable CORS and fixing the errors it causes.

Examples for Topic #3: CORS

Question ID: 60727676
Questioner is struggling to enable CORS on the server side of his Blazor WASM app even
tough he is following Microsoft’s official documentation.
Question ID: 66884642
Questioner tries to fix a CORS error when trying to access his endpoint /connect/token.

Topic #4: Coding Questions
Questions related to the code such as syntax errors, compilation issues or how to write
the code to implement a certain feature in any programming language.

Examples for Topic #4: Coding Questions

Question ID: 58908855
Questioner asks which JavaScript operations, if there are any, are guaranteed to not cause a
StackOverflow RangeError.
Question ID: 49776226
Questioner asks for help to rewrite a code snippet from JavaScript to C.

Topic #5: Interaction between WASM and Programming Language
Questions related to interactions between WebAssembly and other programming lan-
guages (PL), browsers or tools for instance to pass data from a WebAssembly module to
another PL or calling a WebAssembly module from another PL to describe the opposite
direction.

Examples for Topic #5: Interaction between WASM and PL

Question ID: 50149603
Questioner asks if WASM could be used to check the integrity of a JavaScript function.
Question ID: 61696080
Questioner asks if it is possible to directly access the current URL in WebAssembly.
Question ID: 49538827
Questioner asks how private his code in WebAssembly is and whether it would be possible to
transform the compiled WebAssembly back to C++ if it was sent to the client side.
Question ID: 47529643
Questioner asks how to return a string (or similar datatype) from Rust in WASM.

https://stackoverflow.com/questions/60727676
https://stackoverflow.com/questions/66884642
https://stackoverflow.com/questions/58908855
https://stackoverflow.com/questions/49776226
https://stackoverflow.com/questions/50149603
https://stackoverflow.com/questions/61696080
https://stackoverflow.com/questions/49538827
https://stackoverflow.com/questions/47529643

CHAPTER 4. RESULTS 32

Topic #6: HTTP Requests
Questions related to HTTP requests such as how to create or send them, perform CRUD
operations, set headers, send tokens or fixing any request-related errors.

Examples for Topic #6: HTTP Requests

Question ID: 66567628
Questioner asks how to authenticate users on image requests in a Blazor WASM app.
Question ID: 63831943
Questioner asks how to fix an issue where the HttpClient does not add cookies to the requests
in Blazor WASM.

Topic #7: Browser
Questions with specific issues related to the browser like developer tools, features that
only work in specific browsers or errors that differ depending on the browser that was
used.

Examples for Topic #7: Browser

Question ID: 60164866
Questioner asks if there is a way to determine if a browser will be able to handle the Blazor
WASM app correctly or not.
Question ID: 59790919
Questioner asks how to detect information about the currently used browser from within a
WebAssembly module.
Question ID: 60986461
Questioner asks if there is a way to increase the size of the local storage without having to use
a Google Chrome extension.

Topic #8: Navigation and Redirect
Questions related to navigation within an app and redirecting a user to a different
location.

Examples for Topic #8: Navigation and Redirect

Question ID: 64947553
Questioner asks how to redirect a user after successful login using Azure Active Directory
B2C in a Blazor WASM app.
Question ID: 63443588
Questioner has an issue where Blazor WASM using IdentityServer4 hangs on navigating the
user to the login and register pages.

https://stackoverflow.com/questions/66567628
https://stackoverflow.com/questions/63831943
https://stackoverflow.com/questions/60164866
https://stackoverflow.com/questions/59790919
https://stackoverflow.com/questions/60986461
https://stackoverflow.com/questions/64947553
https://stackoverflow.com/questions/63443588

CHAPTER 4. RESULTS 33

Topic #9: Blazor
Questions related to applications that are developed using Microsoft’s Blazor and subse-
quently use WebAssembly to run the client-side C# code in the browser.

Examples for Topic #9: Blazor

Question ID: 63611732
Questioner asks for suggestions on how to handle 403 errors in a Blazor WebAssembly app.
Question ID: 60593985
Questioner asks how to authorize a Blazor WebAssembly SPA using Identity Server.
Question ID: 62467195
Questioner asks how to use two-way data binding in a Blazor Component Library project.

Topic #10: Hosting and Server
Questions related to hosting an application on a server and other general server-related
issues regarding setup and configuration settings.

Examples for Topic #10: Hosting and Server

Question ID: 61120227
Questioner asks how to host the Blazor WASM client app on a different port to the server API.
Question ID: 63371014
Questioner asks for help on how to fix an issue where a default Blazor PWA project cannot be
hosted into Internet Information Services (IIS).

Topic #11: User Interface
Questions related to the user interface of an application such as adding new elements to
it, adjusting its behaviour or modifying pre-existing template components.

Examples for Topic #11: User Interface

Question ID: 65979821
Questioner asks how to switch between layouts for different types of users in a Blazor WASM
app.
Question ID: 62834687
Questioner wants to know if it is possible to configure a Blazor WASM app that uses OIDC by
adding a custom login component or page.
Question ID: 65238256
Questioner asks how to use the same login page in multiple projects of a Blazor WASM app.

https://stackoverflow.com/questions/63611732
https://stackoverflow.com/questions/60593985
https://stackoverflow.com/questions/62467195
https://stackoverflow.com/questions/61120227
https://stackoverflow.com/questions/63371014
https://stackoverflow.com/questions/65979821
https://stackoverflow.com/questions/62834687
https://stackoverflow.com/questions/65238256

CHAPTER 4. RESULTS 34

Topic #12: Deployment of app
Questions related to building, publishing and deploying a new app or an already pub-
lished or deployed app.

Examples for Topic #12: Deployment of app

Question ID: 60932702
Questioner asks how to fix an issue where login and registration work in development mode
but not as soon as the project is published since it returns a 404 error.
Question ID: 64543545
Questioner asks for help regarding a problem where in a Blazor WASM app tokens are not
used when it is deployed on IIS (Internet Information Services).

Topic #13: Performance
Questions related to performance issues such as finding out why a process performs the
way it does or further improve the performance of an existing process.

Examples for Topic #13: Performance

Question ID: 46331830
Questioner asks for help in figuring out why his WebAssembly function runs slower than the
JavaScript equivalent.
Question ID: 65021896
Questioner asks how to make his ASP.NET Core hosted website using Blazor WebAssembly
load faster.
Question ID: 65011727
Questioner asks if it is okay and optimal to call stateHasChanged() once every second
in his Blazor WebAssembly app or would it impact performance in the long run.

Topic #14: Emscripten
Questions related to the LLVM/Clang-based compiler Emscripten that can compile
source code written in C and C++ to WebAssembly.

Examples for Topic #14: Emscripten

Question ID: 54646505
Questioner asks if you can exploit Emscripten-compiled WASM to run arbitrary JavaScript
code.
Question ID: 63952910
Questioner asks how to access the File System API of Emscripten when compiled with
MODULARIZE option.
Question ID: 56925313
Questioner asks how to return a byte array from JavaScript to Emscripten/Unity WebAssembly.

https://stackoverflow.com/questions/60932702
https://stackoverflow.com/questions/64543545
https://stackoverflow.com/questions/46331830
https://stackoverflow.com/questions/65021896
https://stackoverflow.com/questions/65011727
https://stackoverflow.com/questions/54646505
https://stackoverflow.com/questions/63952910
https://stackoverflow.com/questions/56925313

CHAPTER 4. RESULTS 35

Topic #15: Authentication
Questions related to authentication procedures in order to identify and verify if someone
or something is in fact who they say they are.

Examples for Topic #15: Authentication

Question ID: 66873168
Questioner asks what best practices are when creating a user management module in his Blazor
WebAssembly app using IS4.
Question ID: 59696171
Questioner asks how to fix issue where the sign in is successful but the user is not logged in.
Question ID: 66934600
Questioner asks what the first steps are in creating a website which will communicate with an
API using JWT authentication.
Question ID: 64889232
Questioner asks how to restrict page access on user properties.

Topic #16: How WASM works
Questions related to how WASM works in general or one of its specific features.

Examples for Topic #16: How WASM works

Question ID: 56506468
Questioner asks if WASM is safe to store client-side secrets.
Question ID: 44286798
Questioner asks if WASM programs can leak memory.

Topic #17: Database
Questions related to databases covering issues such as performing CRUD operations
on structured data which is stored on a server using relational database management
systems like SQLite.

Examples for Topic #17: Database

Question ID: 56500709
Questioner asks how to connect to a local MongoDB instance from a WASM module.
Question ID: 66846249
Questioner asks if the database file from SQLite gets downloaded to the user’s device or how
else would he access it.
Question ID: 66960982
Questioner asks how to bypass CORS to make a call to the Firebase Firestore database from a
Blazor WebAssembly app.

https://stackoverflow.com/questions/66873168
https://stackoverflow.com/questions/59696171
https://stackoverflow.com/questions/66934600
https://stackoverflow.com/questions/64889232
https://stackoverflow.com/questions/56506468
https://stackoverflow.com/questions/44286798
https://stackoverflow.com/questions/56500709
https://stackoverflow.com/questions/66846249
https://stackoverflow.com/questions/66960982

CHAPTER 4. RESULTS 36

Topic #18: User Token
Questions related to create, send and manage tokens used for procedures regarding
authentication.

Examples for Topic #18: User Token

Question ID: 61591696
Questioner asks what the best way is to get a Bearer token and pass it on afterwards.
Question ID: 61830255
Questioner asks how to get the raw OAuth token in his Blazor pages.
Question ID: 62306681
Questioner asks how to add roles in JSON Web Tokens with the new version of Blazor
WebAssembly.
Question ID: 65219885
Questioner asks how to get the Azure Active Directory access token from the currently logged
in user in the Blazor WASM app.

Topic #19: Storage
Questions related to CRUD operations in file systems and local storage in browser as
well as memory and cache related issues.

Examples for Topic #19: Storage

Question ID: 45535301
Questioner asks how to read files from the disk using WebAssembly.
Question ID: 62787148
Questioner asks how to protect and encrypt data stored within both the session and local
storage in a Blazor WebAssembly app.
Question ID: 57993453
Questioner asks how to access the memory of a WebAssembly module that was loaded by
webpack.

https://stackoverflow.com/questions/61591696
https://stackoverflow.com/questions/61830255
https://stackoverflow.com/questions/62306681
https://stackoverflow.com/questions/65219885
https://stackoverflow.com/questions/45535301
https://stackoverflow.com/questions/62787148
https://stackoverflow.com/questions/57993453

CHAPTER 4. RESULTS 37

4.3.2 Evaluating Question Topics
In section 3.3, we described the process of using the open card sorting approach to find
a list of 19 topics in which developers ask security-related WebAssembly questions
(e.g. authentication, deployment, tokens, CORS, database, user interface, etc.). We will
evaluate the results of this in the following.

Figure 4.6: Number of questions per topic

First, we look at how many questions were identified for each topic. Figure 4.6
provides an overview. As we expected from the tags, Blazor WebAssembly is the main
topic that developers ask about in our dataset, as 78% of all questions are about this topic.
Also very popular and far ahead of all others are authentication questions, encountered
in 52% of all questions.

In about 10% of all questions, one encounters topics about Microsoft’s Azure, specific
code implementations, tokens, HTTP requests, and interactions between WASM and
other programming languages. The least popular, with a 2-4% share each, are questions
about hosting and server, user interfaces, browsers, CORS, performance, and databases.

CHAPTER 4. RESULTS 38

Since we have more than one topic assigned to a question, in Figure 4.7 we look at
how often a pair of any two topics occur in a question to see which topics frequently
occur together and are interrelated.

Figure 4.7: Number of questions that include a topic in relations with another topic.

Looking at the topics in pairs, we see that for authentication and Azure, among others,
there is a high correlation with Blazor, as all their questions were asked in the context of
Blazor WebAssembly.

For most topics, we see that the majority of questions were asked in the context of
Blazor and authentication. Among the exceptions are for instance “How WebAssembly
works” which has a stronger link to “Interaction between WebAssembly and other
programming languages”, storage and Emscripten which themselves are also more
strongly linked among these topics instead of Blazor and authentication.

CHAPTER 4. RESULTS 39

In order to find the most frequently asked specific questions, we now examine those
pairs that have a particularly high number of questions, which in this case is the pair
Blazor and authentication. We want to find out the questions that have been asked the
most. We will then do the same for the other most popular pairs, so that we end up with
a list of the most frequently asked security-related questions about WebAssembly.

There was a total of 188 questions about Blazor and authentication. Many of them
were unique and asked only once. Among those that were asked more than once, the
following problems (P1-P6) appeared most frequently:

• P1: Implement third-party authentication

• P2: Authentication works locally in development mode but not after deployment

• P3: User navigation not working after login

• P4: How to customize the pre-existing UI elements of the login screen

• P5: How to assign user roles

• P6: How to secure API endpoints to only give access to a group of selected or
authenticated users

Since these problems P1-P6 are not limited to the two topics Blazor and authentica-
tion, they are the same problems that can be found when further investigating the popular
pairs (Blazor, Azure), (Blazor, User Token), (Blazor, HTTP Request) etc. (see Figure
4.7), as P2 appears frequently in the context of deployment, P3 in navigation and redirect,
P4 in user interface, P5 in Azure, and P6 in APIs.

Thus, of the most popular topics, P1-P6 are the most frequently asked questions.

CHAPTER 4. RESULTS 40

4.3.3 Question Topic Results
Motivation: Now that we know the most popular developer intentions, we would like to
go a step further and use this research question to find out what specific topics appear in
developers’ questions. This will allow us to answer where exactly the issues occur and
whether they occur in relation to specific services, tools, libraries, etc.

Approach: In section 3.3, we described how, similar to the developer intentions, we
used the open card sorting approach to develop a list of topics describing the problems
encountered in the developers’ questions. We then assigned each of these topics to
the questions in which they occurred. For each specific problem area, we counted the
number of questions that were assigned to that topic. We have described the results of
this process in subsection 4.3.2. The most popular problems are those topics that have the
most questions. Then we continue analyzing the questions within the most popular pairs
of topics to see which of them were unique or had been asked several times which would
make them the most popular questions we are looking for. Following this process, we
find the most frequently and specifically asked security-related WebAssembly questions.

Results: Using the open card sorting approach, we extracted 19 topics that cover the prob-
lems addressed in the Stack Overflow questions. In subsection 4.3.2, we then analyzed
all our gathered results and found that Blazor was the most popular topic, appearing in
78% of all questions, followed by authentication questions with 52%. Subsequent topics
such as Azure, coding questions, tokens, requests, and how WebAssembly interacts
with other programming languages were found in about 10% of all questions. When
working out the most popular questions, we started with the most popular topics and
found six questions that were asked frequently. They include implementing third-party
authentication, assigning user roles, how to modify predefined UI elements at login, how
to make API endpoints available only to certain users, why the app runs fine locally in
developer mode but not after deployment, and why user navigation does not work after
login.

Summary: In terms of security-related WebAssembly topics that developers discuss,
we found 19 different topics, of which Blazor and authentication were by far the most
popular. Among the specific questions asked by developers, we singled out six questions
that were most frequently asked in this manner, such as how to add user roles, implement
third-party authentication, or how to grant access to API endpoints to only certain users.

CHAPTER 4. RESULTS 41

4.4 RQ #3: Developers

4.4.1 Evaluating Developers
To find out more about the people behind the questions, let us investigate the developers.
Is there a certain group of individuals that asks or answers particularly many questions?
If we take the experience of a developer into account by looking at his reputation score,
what can we way about the relation between the owner of a question and its writer of the
accepted answer if there was one?

The final dataset contains a total of 631 developers that asked 359 questions to which
they wrote 357 answers and 1’097 comments (635 to questions and 462 to answers).

Figure 4.8: Number of developers that asked a given number of questions.

What can we say about the developers asking the questions? The 359 questions have
been asked by 312 developers. 275 of them (88%), which is the vast majority, only asked
a single question. At the other end of the chart only eight developers asked at least three
questions or in other words: 3% of the developers asked 7% of the questions. Looking
at their distribution in the above chart in Figure 4.8, we therefore cannot make out a
significant group of developers that asked particularly many questions.

CHAPTER 4. RESULTS 42

What about the developers who provided an accepted answer to a question? In our
dataset, 109 developers wrote a total of 157 accepted answers to questions. Looking
at the distribution in the chart in Figure 4.9, we still notice that a vast majority of 94
developers (86%) have only written one accepted answer. However, if we look at the
other end of the bar chart, we see that the group of developers which wrote three or
more accepted answers was quite active. These 6% of the developers are responsible for
writing 28% of all accepted answers. As a result, we were able to identify a small group
of developers who made a major contribution in regard to providing accepted answers.

Figure 4.9: Number of developers that wrote an accepted answer to a given number of
questions.

To further analyse the developers more easily, we do not want to treat them indi-
vidually but instead, we will put them together based on similarities in order to handle
them in groups. To achieve this, we are going to use the user reputation leagues from
StackExchange [3]. Every developer has a reputation score that increases for good
behaviour (your question or answer was upvoted; your answer was marked as accepted
etc.) and decreases for bad behaviour (your question or answer was downvoted etc.).
Although the reputation serves as a rough measurement of how much the community
trusts a developer, we can also look at it in a way where the reputation score describes
how much experience the user has on the platform. There is not a one-to-one correlation
between the reputation score and the experience of a developer since a newly registered
user that has a lot of experience will have to start from the very bottom as well, but it still
gives some indication to the experience of a developer and it is the best source for us that
we can use to group developers based on the knowledge and skills that they acquired.

CHAPTER 4. RESULTS 43

The user reputation leagues classify developers based on their total reputation whereas
a minimum score of one corresponds to the lowest league and a score above 100’000
reputation places the developer in the highest league. We use the same values for our
system where a reputation of one or more corresponds to level 1 and 100’000+ to Level
11 as seen in the table below in Figure 4.10.

Figure 4.10: Left table: Minimum total reputation score required for the corresponding
user level according to the reputation leagues on StackExchange. Right chart: Number
of developers per user level.

Let us look at the distribution of all developers within our dataset (they either wrote a
question, answer or comment) after we assigned their corresponding level. From the 631
developers two have deleted their accounts which means we can no longer access their
reputation scores, so we exclude them from the above chart. We notice that the majority
of developers have a low reputation level (38% have Level 1) and more than half of all
developers are Level 3 or lower.

Now let us separate the developers into two groups as seen in Figure 4.11: One where
we gather all developers that asked a question and another with only developers that
either wrote an answer or comment. The “Questions only” (short “Q only”) collection
has a relatively higher proportion of developers with a lower level compared to “Answers
or Comments only” (short “A/C only”) (48% Level 1 for “Q only” versus 36% for “A/C
only”). Similarly, we see that the developers of a higher level (Level 7-11) are relatively
much rarer in the “Q only” collection than in “A/C only” with 8% in Level 7-11 in “Q
only” versus 22% in Level 7-11 for “A/C only”.

CHAPTER 4. RESULTS 44

Figure 4.11: Left chart: Number of developers per user level that asked a question. Right
chart: Number of developers per user level that wrote either an answer or a comment.

In the following, we look at the relationship between the questioner and answerer
who wrote the accepted answer. In the heatmap in Figure 4.12, each cell shows the
number of questions asked by a developer of level Y (along the vertical axis) that received
an accepted answer from a developer of level X (along the horizontal axis). Since we
only want to consider cases where an interaction between two developers has taken place,
we have excluded from this heatmap all questions that have received an accepted answer
from the questioner himself. Under the described conditions, the heatmap thus contains
106 different questions.

Figure 4.12: Relation between the level of the questioner (vertical axis) and the level of
the writer of the question’s accepted answer (horizontal axis).

CHAPTER 4. RESULTS 45

Among the questioners, beginners with level 1-2 are particularly strongly represented,
accounting for a significant amount with 64 questions (60%). Among the answerers on
the other hand, the more experienced half with level 6-11 has a stronger representation
with a share of 72 answers (68%). In 83 questions (78%), the accepted answer comes
from a developer with a higher level than that of the questioner. Conversely, eleven
questions (10%) were answered by a developer with a lower level than the questioner.

4.4.2 Developer Results
Motivation: Lastly, we would like to focus on the people behind the questions and
answers: The developers. We would like to tell if there is a small group within the
community of developers who ask security-related WebAssembly questions that is
particularly active and asks a lot of questions on the topic or, on the contrary, writes a lot
of answers.

Approach: For each question, answer, and comment, there is a user ID property on Stack
Overflow, and thus in our dataset, that references the developer who created that content.
We now separately collect all user IDs for the questions and accepted answers so that
we have the developers who created these posts. Then we count how often each of these
IDs occur so we know how often a particular developer created one of these pieces of
content. We collate the results as for Figure 4.8 and 4.9 and see if the top end of the scale
is a group of developers whose share of all questions asked or accepted answers written
is particularly high.

Results: Among the developers who asked a question, there is no group of developers
who asked a significant number of questions, as 88% alone asked just one question. This
is in contrast to the developers who wrote an accepted answer to a question. There we
found a small group of developers (6%) who wrote almost a third (28%) of all accepted
answers.

Summary: While among developers who ask questions there is no group that asked a
significant proportion of them, as the vast majority only asked a single question, among
developers who wrote an accepted answer there is a small group of 6% that is responsible
for just under a third of those accepted answers.

5
Threats to Validity

Since many parameters of our work have been affected by internal and external threats,
we would like to address them in the following.

5.1 Internal Threats
Internal threats mainly include personal limitations. Depending on how much experience
you have in the field, you know how to assess and evaluate the Stack Overflow questions
differently. Also, the approach, how the data was evaluated, are influential on the
achieved results. The final categories of the questions asked as well as the actual topics
and issues of the questions have therefore been influenced by our chosen open card
sorting approach and are consequently also susceptible to personal views and tendencies
on how we prioritize and evaluate certain aspects of a question differently.

5.2 External Threats
There are also some external threats that have had a decisive impact on our research work.
An originally different selection of security-related keywords could have resulted in a
different dataset where our evaluation steps could have lead to different results. Also, our
choice of data source with Stack Overflow influenced our results, as when considering
other platforms, there is a possibility of encountering other developer groups whose
questions differ from those on Stack Overflow.

46

6
Conclusion

In this bachelor thesis, we performed an analysis on 359 security-related WebAssembly
questions on Stack Overflow. We found that most of the questions on this topic are help
on bug fixes and guidance on how to implement a particular feature, as both appear in
about 50% of the questions. Overall, we identified five relevant question types using the
open card sorting approach.

Second, we examined the topics that were covered in the questions and came up with
a list of 19 different topics. Blazor and authentication were by far the most widespread
of these. For the topics with the most questions, we then attempted to find those specific
questions that were asked the most. We found six questions that were most common
within security-related WebAssembly questions.

Regarding developers, among those who wrote accepted answers, we found a small
group (6%) that captured a relatively large proportion of them (28%). This was not the
case among the questioners themselves.

The release of Blazor WebAssembly in particular has led to a very strong and so far
consistently high number of security-related WebAssembly questions on Stack Overflow,
with questions about authentication standing out in particular.

47

7
Anleitung zu wissenschaftlichen Arbeiten

In this chapter, we focus on the practical implementations that we have developed as part
of our research work. After a brief overview of the technical requirements, we look over
the different endpoints and data objects from the StackAPI which we then use in our
Python scripts to collect all Stack Overflow questions, answers and comments and later
also perform statistical evaluations on.

7.1 GitHub Repository
To share the resources from our research work (including the list of security related
keywords, Python scripts to request data from StackAPI and perform statistical analysis,
JSON files from the questions, answers and comments from our dataset as well as our
notes that we took when processing the questions) we created a GitHub repository to
make them publicly available:

https://github.com/PascalMarcAndre/WebAssembly-Security

48

https://github.com/PascalMarcAndre/WebAssembly-Security

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 49

7.2 Setup and Installation Guide
In order to run the scripts featured in this chapter, a recent installation of Python (between
version 2.7-3.7) is required. Python can be downloaded from its official download page
[2] using a guide from Real Python [6] as guidance. The additional StackAPI library can
be installed using pip install stackapi or following other installation guides
on its official page [4].

7.3 StackAPI
StackAPI [4] serves as a Python wrapper for the official Stack Exchange API [1]. Using
this library, we can write simple Python scripts to access various endpoints of the Stack
Exchange API to request its content. In this section, we mostly focus on the endpoints
and data objects (JSON of questions, answers and comments) that are relevant to our
work to see how they are structured and what properties they provide.

7.3.1 Question JSON
Whenever we request data for a question with full details from the StackAPI (e.g. when
using the /questions/{ids} endpoint where ids is to be replaced with the question
id), it will be returned in the following basic JSON structure:

1 {
2 "tags": string[]
3 "owner": {
4 "reputation": number,
5 "user_id": number,
6 "user_type": string,
7 "profile_image": string,
8 "display_name": string,
9 "link": string

10 },
11 "is_answered": boolean,
12 "view_count": number,
13 "accepted_answer_id": number,
14 "answer_count": number,
15 "score": number,
16 "last_activity_date": number,
17 "creation_date": number,
18 "last_edit_date": number,
19 "question_id": number,
20 "content_license": string,
21 "link": string,
22 "title": string,
23 "body": string
24 }

Listing 1: Shows the structure and JSON of a question object

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 50

A brief description of all question properties assigned to each question object can be
found in table 7.1. The owner property describes the user object of the developer who
wrote the question and has other nested properties described in table 7.2.

Property Description

tags List of keywords that have been added to the question
owner Developer that is the question owner who originally created this question
is answered Boolean representing whether the issues from the question has been resolved or not
view count Number of times the question has been viewed
accepted answer id Unique id number of the answer that has been marked as the “accepted” one
answer count Number of answers that the question received
score Number of upvotes minus number of downvotes that the question received
last activity date Timestamp of the most recent activity to the question
creation date Timestamp of when the question was originally posted / created
last edit date Timestamp of when the question was last edited
question id Unique id number identifying this question
content license Type of license that was attributed to the question (e.g. “CC BY-SA 3.0”)
link URL of the question
title Title of the question
body Content including problem description of the question

Table 7.1: Brief descriptions of all question properties

Table 7.2 describes the JSON properties that are returned whenever data for a user
is returned from the StackAPI. Requesting data for questions, answers, comments etc.
always include details about its owner who posted the content which contain the following
properties describing this user.

Property Description

reputation Reputation score according to the Stack Exchange User Reputation Leagues
user id Unique id number identifying this developer
user type Either “unregistered”, “registered”, “moderator”, “team admin” or “does not exist”
profile image URL of the profile image picture
display name Displayed user name of the developer
link URL of the developer’s profile page

Table 7.2: User property descriptions

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 51

An example of a JSON returned by the StackAPI containing full details of a question can
be found in listing 2. For simplicity, we shortened the value of the body property which
would otherwise contain the full content of the question body.

1 {
2 "tags": [
3 "security",
4 "electron",
5 "webassembly"
6],
7 "owner": {
8 "reputation": 713,
9 "user_id": 1508479,

10 "user_type": "registered",
11 "accept_rate": 64,
12 "profile_image": "https://i.stack.imgur.com/K8WcV.jpg?s=128&g=1",
13 "display_name": "Vinay",
14 "link": "https://stackoverflow.com/users/1508479/vinay"
15 },
16 "is_answered": true,
17 "view_count": 403,
18 "accepted_answer_id": 56507571,
19 "answer_count": 1,
20 "score": 0,
21 "last_activity_date": 1563201029,
22 "creation_date": 1559997717,
23 "last_edit_date": 1563201029,
24 "question_id": 56506468,
25 "content_license": "CC BY-SA 4.0",
26 "link": "https://stackoverflow.com/questions/56506468",
27 "title": "Is wasm safe to store client side secrets?",
28 "body": "The security context of my question is as follows: (...)"
29 }

Listing 2: JSON example for Question ID 56506468

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 52

7.3.2 Answer JSON
Whenever we request data for an answer with full details from the StackAPI (e.g. when
using the /answers/{ids} endpoint where ids is to be replaced with the answer id or
when requesting all answers for a question using the /questions/{ids}/answers
endpoint where ids is to be replaced with the question id), it will be returned in the
following basic JSON structure:

1 {
2 "owner": User,
3 "is_accepted": boolean,
4 "score": number,
5 "last_activity_date": number,
6 "creation_date": number,
7 "answer_id": number,
8 "question_id": number,
9 "content_license": string,

10 "body": string
11 }

Listing 3: Shows the structure and JSON of an answer object

A brief description of all answer properties assigned to each answer object can be found
in table 7.3. The owner property describes the user object of the developer who wrote
the answer and has other nested properties as previously shown in table 7.2.

Property Description

owner Developer that is the answer owner who originally created this answer
is accepted Boolean representing whether this answer solved the issue or not
score Number of upvotes minus number of downvotes that the answer received
last activity date Timestamp of the most recent activity to the answer
creation date Timestamp of when the answer was originally posted / created
answer id Unique id number identifying this answer
question id Unique id number identifying the question to which this answer was posted
content license Type of license that was attributed to the answer (e.g. “CC BY-SA 3.0”)
body Content which describes the solution of this answer

Table 7.3: Brief descriptions of all answer properties

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 53

An example of a JSON returned by the StackAPI containing full details of an answer can
be found in listing 4. For simplicity, we shortened the value of the body property which
would otherwise contain the full content of the answer body.

1 {
2 "owner": {
3 "reputation": 7044,
4 "user_id": 7670262,
5 "user_type": "registered",
6 "profile_image": "https://i.stack.imgur.com/3zdDY.jpg?s=128&g=1",
7 "display_name": "Azeem",
8 "link": "https://stackoverflow.com/users/7670262/azeem"
9 },

10 "is_accepted": false,
11 "score": 2,
12 "last_activity_date": 1586607164,
13 "creation_date": 1586607164,
14 "answer_id": 61156588,
15 "question_id": 61015985,
16 "content_license": "CC BY-SA 4.0",
17 "body": "How to detect (at JS side) an 'uncaught exception' (...)"
18 }

Listing 4: JSON example for Answer ID 61156588

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 54

7.3.3 Comment JSON
Whenever we request data for a comment with full details from the StackAPI (e.g. when
using the /comments/{ids} endpoint where ids is to be replaced with the comment
id or when requesting all comments for an answer using the /answers/{ids}/comments
endpoint where ids is to be replaced with the answer id or when requesting all com-
ments for a question using the /questions/{ids}/comments endpoint where ids
is to be replaced with the question id), it will be returned in the following basic JSON
structure:

1 {
2 "owner": User,
3 "edited": boolean,
4 "score": number,
5 "creation_date": number,
6 "post_id": number,
7 "comment_id": number,
8 "content_license": string,
9 "body": string

10 }

Listing 5: Shows the structure and JSON of a comment object

A brief description of all comment properties assigned to each comment object can be
found in table 7.4. The owner property describes the user object of the developer who
wrote the comment and has additional nested properties as previously shown in table 7.2.

Property Description

owner Developer that is the comment owner who originally created this comment
edited Boolean whether this comment has been edited or not
score Number of upvotes minus number of downvotes that the comment received
creation date Timestamp of when the comment was originally posted / created
post id Unique id number identifying the post (question or answer) to which this comment was posted
comment id Unique id number identifying this comment
content license Type of license that was attributed to the comment (e.g. “CC BY-SA 3.0”)
body Content of the comment

Table 7.4: Brief descriptions of all comment properties

If the comment is a response to another comment, the JSON will include an additional
property called reply to user which is similar to the owner property but includes
the nested user properties as seen in listing 7.2 to describe the developer to which this
comment was addressed to.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 55

An example of a JSON returned by the StackAPI containing full details of a comment
can be found in listing 6. For simplicity, we shortened the value of the body property
which would otherwise contain the full content of the comment body.

1 {
2 "owner": {
3 "reputation": 13400,
4 "user_id": 2940908,
5 "user_type": "registered",
6 "accept_rate": 60,
7 "profile_image": "https://i.stack.imgur.com/E79WU.jpg?s=128&g=1",
8 "display_name": "agua from mars",
9 "link": "https://stackoverflow.com/users/2940908/agua-from-mars"

10 },
11 "reply_to_user": {
12 "reputation": 96,
13 "user_id": 6830857,
14 "user_type": "registered",
15 "profile_image": "https://i.stack.imgur.com/sXQMo.jpg?s=128&g=1",
16 "display_name": "Kasper Olesen",
17 "link": "https://stackoverflow.com/users/6830857/kasper-olesen"
18 },
19 "edited": false,
20 "score": 1,
21 "creation_date": 1574109159,
22 "post_id": 58875620,
23 "comment_id": 104106310,
24 "content_license": "CC BY-SA 4.0",
25 "body": "Yes, that act as if (user.IsAuthorized) (...)"
26 }

Listing 6: JSON example for Comment ID 104106310

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 56

7.4 Python Scripts
In this section we present some of our most important Python scripts that we used to
query the data via the StackAPI at the beginning of the project as well as to perform
statistical analysis of the dataset at a later stage of our research work.

7.4.1 Get all Search Results using Keywords
The purpose of our first Python script as seen in listing 7 was to fetch all Stack Overflow
questions matching the search term WebAssembly “keyword” where the “keyword” gets
replaced one by one with one of the keywords from our separate text file containing all
variations of our security-related keywords. Once we have a list of all unique questions
matching at least one of our search terms, we save all the available and necessary data of
the retrieved question properties in a CSV file for further processing.

For simplicity, we removed some lines from the script that cover similar repeating
actions for the different question properties. In the version below, only the question
properties of the title and score are included, but we commented the lines of code where
similar actions for the remaining question properties should be performed.

1 # Import required libraries
2 from stackapi import StackAPI
3 import datetime as dt
4 import csv
5 import json
6

7 # Create list that holds all keywords from our separate keywords text file
8 keywords = []
9 # Create empty list to which we will add all unique questions from the search results

10 questions = []
11

12 # Parse text file with all keywords and store them in a list
13 with open('../keywords/keywords.txt') as keywords_file:
14 for line in keywords_file:
15 keyword = line.strip("\n")
16 if len(keyword) > 0:
17 keywords.append(keyword)
18

19 # Setup StackAPI to use Stack Overflow (=SO) as its source
20 SITE = StackAPI('stackoverflow')
21

22 # Search questions on SO with "WebAssembly [keyword]" and print to CSV-file
23 with open('all_questions.csv', 'w', encoding='utf-8', newline='') as questions_file:
24 # Create CSV writer to convert data into delimited strings
25 writer = csv.writer(questions_file, delimiter=';')
26

27 # Write header row with labels/titles
28 writer.writerow(['Index','Title','Score'
29 # CUT LINES: Add header for other question properties here
30])
31

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 57

32 # Iterate over keywords and request questions to create final of unique questions
33 for keyword in keywords:
34 # Build search term using "WebAssembly" and the currently selected keyword
35 searchTerm = 'webassembly ' + keyword
36

37 # Use StackAPI endpoint "search/advanced" to fetch matching questions
38 # Use 'q' parameter with search term to match any property (title, body...)
39 new_questions = SITE.fetch('search/advanced', q=searchTerm)
40 # Possible params: sort='relevance, has_more=1, max_pages=1000, page_size=100
41

42 # Check if any new result was matched in previous search
43 for new_question in new_questions['items']:
44 # We assume new question is not in our list yet (not an old questions)
45 old_question = False
46

47 # If an old question matches new question's ID, we mark new question as old
48 for question in questions:
49 if question['question_id'] == new_question['question_id']:
50 old_question = True
51 break
52

53 # If new question is not an old/existing one, we add it to questions list
54 if not old_question:
55 questions.append(new_question)
56

57 # Iterate over list of unique SO questions and print their data into THE CSV file
58 for index, question in enumerate(questions, start=1):
59 # Pre-process some data including dates and nested JSON data
60 creation_date
61 = dt.date.fromtimestamp(question['creation_date']).strftime('%Y-%m-%d')
62 last_activity_date
63 = dt.date.fromtimestamp(question['last_activity_date']).strftime('%Y-%m-%d')
64 owner = question['owner']
65

66 q_title = ''
67 q_score = ''
68 # CUT LINES: Add more variables for other question properties here
69

70 try:
71 q_title = question['title']
72 except KeyError:
73 print(str(index) + ' q_title')
74 try:
75 q_score = question['score']
76 except KeyError:
77 print(str(index) + ' q_score')
78 # CUT LINES: Check values of other question properties here
79

80 # Extract question properties from JSON-fields (only write if no error exists)
81 writer.writerow([index,q_title,q_score
82 # CUT LINES: Print other other question properties to CSV file here
83])
84

85 # Print raw JSON data into separate file for further inspection
86 with open('all_questions.json', 'w', encoding='utf-8') as json_file:
87 json.dump(questions, json_file, indent=4)
88

89 # Success message
90 print('Printed data of ' + str(len(questions)) + ' questions to CSV-file.')

Listing 7: Python script to fetch all SO questions matching WebAssembly “keyword”

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 58

7.4.2 Get all Individual Questions
Based on the list of question ids and some initial details that we had gathered during the
question search using the script in listing 7, we used the following script in listing 8 to
request full details on each of these questions. This script saves all data for a question
within a separate JSON file named after the question’s id number.

1 # Import required libraries
2 from stackapi import StackAPI
3 import json
4

5 # Setup StackAPI to use Stack Overflow as its source
6 SITE = StackAPI('stackoverflow')
7

8 # Open text file with all the ids from the relevant questions
9 with open('../data_files/questions/all_relevant_question_id.txt') as id_file:

10 # Load a list of question ids from the text file
11 lines = [line.rstrip() for line in id_file]
12

13 # Iterate over all question ids
14 for line in lines:
15 # Use StackAPI to fetch full question details (incl. body)
16 # Endpoint: /questions
17 new_question = SITE.fetch(
18 'questions',
19 ids={line},
20 filter='withbody'
21)
22

23 # Puts all questions into JSON-file named after its question id
24 with open('../data_files/questions/json_files/' + line + '.json',
25 'w', encoding='utf-8') as question_file:
26 json.dump(new_question['items'][0], question_file, indent=4)

Listing 8: Python script to fetch full details for a single question

With this script, we collected full details for all 359 questions using the StackAPI
endpoint /questions/{ids}, where ids gets replaced by the question ids from the
relevant questions.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 59

7.4.3 Get all Individual Answers
For our analysis of the answers we used the following Python script to fetch all individual
answers for each Stack Overflow question within our dataset. This script saves all
answers for a question within a separate JSON file named after the question’s id number.

1 # Import required libraries
2 from stackapi import StackAPI
3 import json
4

5 # Setup StackAPI to use Stack Overflow as its source
6 SITE = StackAPI('stackoverflow')
7

8 # Open text file with all the ids from the relevant questions
9 with open('../data_files/questions/all_relevant_question_id.txt') as id_file:

10 # Load a list of question ids from the text file
11 lines = [line.rstrip() for line in id_file]
12

13 # Iterate over all question ids
14 for line in lines:
15 # Use StackAPI to fetch full question details (incl. body)
16 # Endpoint: /questions/{ids}/answers
17 new_answer = SITE.fetch(
18 'questions/{ids}/answers',
19 ids={line},
20 sort='creation',
21 filter='withbody'
22)
23

24 # Puts all answers into JSON-file named after its question id
25 with open('../data_files/answers/json_files/' + line + '.json',
26 'w', encoding='utf-8') as answer_file:
27 json.dump(new_answer['items'], answer_file, indent=4)

Listing 9: Python script to fetch all individual answers to all our questions

With this script, we collected full details for all 357 answers that have been written to
our 359 SO questions using the StackAPI endpoint /questions/{ids}/answers
where ids gets replaced by the question ids from our relevant questions.

Full details for all comments that have either been made to questions or answers
have been collected in a very similar way by requesting the data from the corresponding
StackAPI endpoint.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 60

7.4.4 List Tags with Number of Occurrences
During our general analysis of our dataset we used the following Python script to list all
tags along with their number of questions in which the tag occurred in descending order
and export them into a CSV file:

1 # Import required libraries
2 from operator import itemgetter
3 import json import csv
4

5 # Create empty list that holds all tags and their total number of appearances
6 tags = []
7

8 # Open text file containing all question ids of the relevant questions to be processed
9 with open('../../data_files/questions/all_relevant_question_id.txt') as text_file:

10 # Each 'line' corresponds to one question id in the text file to be processed
11 for line in text_file:
12 # Open the JSON-file of the question from the current question id ('line')
13 with open('../../data_files/questions/json/' + line.strip() + '.json')as file:
14 # Loads the JSON-file content into the 'question' variable
15 question = json.load(file)
16

17 # Iterate over all tags from the current question
18 for new_tag in question['tags']:
19 # Assume this tag appears for the first time
20 is_new_tag = True
21

22 # Iterate over all tags within our 'tags' list
23 for existing_tag in tags:
24 # If a tag in our list matches the currently processed tag...
25 if existing_tag[0] == new_tag:
26 # ...increase its counter of questions by one
27 existing_tag[1] += 1
28 # ...update that the currently processed tag is not a new one
29 is_new_tag = False
30 break
31

32 # If the currently processed tag is a new one...
33 if is_new_tag:
34 # ...add it to our list of tags and set its question count to 1
35 tags.append([new_tag, 1])
36

37 # Sort all tags according to their count
38 tags.sort(key=itemgetter(1))
39 # Reverse order to have results in descending order
40 tags.reverse()
41

42 # Open CSV-file to write the results
43 with open('all_tags.csv', 'w', encoding='utf-8', newline='') as csv_file:
44 # Create CSV writer to convert data into delimited strings
45 writer = csv.writer(csv_file, delimiter=';')
46 # Set column headers to 'Tag' and 'Count'
47 writer.writerow(['Tag','Count'])
48

49 # Iterate over all identified tags
50 for tag in tags:
51 # Write each tag with its count to the CSV writer
52 writer.writerow([tag[0],tag[1]])

Listing 10: Python script to list all tags with number of occurrences in descending order

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 61

7.4.5 List Number of Questions per Quarter
To find out how popularity on security-related WebAssembly questions changed over
time, we used the following Python script during our general analysis to count the number
of questions that have been asked in each quarter of the year.

1 # Import required libraries
2 import json
3 import datetime as dt
4 import pandas as pd
5

6 # Create empty list that holds all quarters with its number of questions
7 quarters = []
8

9 # Open text file containing all ids of questions to be processed
10 with open('../question_id.txt') as text_file:
11 # Each 'line' corresponds to one question id in the text file
12 for line in text_file:
13 # Open the JSON-file of the question related to the current id
14 with open('../questions/' + line.strip() + '.json')as json_file:
15 # Loads the JSON-file content into the 'question' variable
16 question = json.load(json_file)
17

18 # Creates date-variable from the question's creation date
19 date = dt.date.fromtimestamp(question['creation_date'])
20

21 # Finds the year from the creation date timestamp
22 year = date.strftime('%Y')
23 # Finds the quarter number from the creation date timestamp
24 quarter_number = pd.Timestamp(date).quarter
25

26 # Build quarter name based on previously found year and quarter
27 quarter_name = str(year) + "-Q" + str(quarter_number)
28

29 # Assume this is the first question within this quarter
30 is_new_quarter = True
31

32 # Iterate over all quarters in our list
33 for quarter in quarters:
34 # If a quarter in our list matches the identified quarter...
35 if quarter[0] == quarter_name:
36 # ...increase its counter of questions by one
37 quarter[1] += 1
38 # ...update that the identified quarter is not a new one
39 is_new_quarter = False
40 break
41

42 # If the currently identified quarter is a new one...
43 if is_new_quarter:
44 # ...add it to our list of quarters and set its counter to 1
45 quarters.append([quarter_name, 1])
46

47 # Print the results of all quarters
48 print(quarters)

Listing 11: Python script to count the number of question per quarter

Bibliography

[1] Official stack exchange api. URL: https://api.stackexchange.com/.

[2] Python download page. URL: https://www.python.org/downloads/.

[3] Stack exchange user reputation leagues. URL: https://stackexchange.
com/leagues/1/week/stackoverflow.

[4] Stackapi. URL: https://stackapi.readthedocs.io/en/latest/.

[5] Jeff Atwood. Introducing stackoverflow.com, 2008. Article at https://blog.
codinghorror.com/introducing-stackoverflow-com/.

[6] Real Python. Python 3 installation guide for various platforms. URL: https:
//realpython.com/installing-python/.

62

https://api.stackexchange.com/
https://www.python.org/downloads/
https://stackexchange.com/leagues/1/week/stackoverflow
https://stackexchange.com/leagues/1/week/stackoverflow
https://stackapi.readthedocs.io/en/latest/
https://blog.codinghorror.com/introducing-stackoverflow-com/
https://blog.codinghorror.com/introducing-stackoverflow-com/
https://realpython.com/installing-python/
https://realpython.com/installing-python/

	1 Introduction
	2 Dataset
	2.1 Keywords
	2.2 Keyword Variations
	2.3 Stack Overflow
	2.4 StackAPI
	2.5 Data Transformation
	2.6 Cleaning the Dataset

	3 Methodology
	3.1 Checking Question Properties
	3.1.1 Was the question resolved by the owner himself or not?
	3.1.2 Is the question's answer status property set correctly?
	3.1.3 Why was the question likely answered or not?

	3.2 Developer Intentions
	3.3 Question Topics

	4 Results
	4.1 General Findings
	4.1.1 What are the most popular tags?
	4.1.2 When were the questions asked?
	4.1.3 How many questions have answers and are flagged as answered?

	4.2 RQ #1: Developer Intentions
	4.2.1 Identified Developer Intentions
	4.2.2 Evaluating Developer Intentions
	4.2.3 Developer Intention Results

	4.3 RQ #2: Question Topics
	4.3.1 Identified Question Topics
	4.3.2 Evaluating Question Topics
	4.3.3 Question Topic Results

	4.4 RQ #3: Developers
	4.4.1 Evaluating Developers
	4.4.2 Developer Results

	5 Threats to Validity
	5.1 Internal Threats
	5.2 External Threats

	6 Conclusion
	7 Anleitung zu wissenschaftlichen Arbeiten
	7.1 GitHub Repository
	7.2 Setup and Installation Guide
	7.3 StackAPI
	7.3.1 Question JSON
	7.3.2 Answer JSON
	7.3.3 Comment JSON

	7.4 Python Scripts
	7.4.1 Get all Search Results using Keywords
	7.4.2 Get all Individual Questions
	7.4.3 Get all Individual Answers
	7.4.4 List Tags with Number of Occurrences
	7.4.5 List Number of Questions per Quarter

