
Representing Software Features in
the Eclipse IDE

Bachelorarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Markus Balsiger
November 2010

Leiter der Arbeit:

Prof. Dr. Oscar Nierstrasz

Dr. David Röthlisberger

Institut für Informatik und angewandte Mathematik

Further information about this work and the tools used as well as an online version of this
document can be found under the following addresses:

Markus Balsiger
markus.balsiger@students.unibe.ch
http://scg.unibe.ch

Software Composition Group
University of Bern
Institute of Computer Science and Applied Mathematics
Neubrückstrasse 10
CH-3012 Bern
http://scg.unibe.ch/

http://scg.unibe.ch
http://scg.unibe.ch/

Abstract

The Eclipse IDE only provides static views of the source code, thus missing runtime information
of a software system. In a polymorphic object-oriented language like Java, however, it is difficult
to understand the runtime behavior and therefore maintain the features of an application based
on the static source code alone.
We present BOA, an Eclipse plug-in representing features and supporting developers in bug
fixing. BOA is able to record features in terms of dynamic information stored in an invocation
tree, to graphically represent recorded features and to present metrics calculated based on the
dynamic information of a feature. The focus of BOA is the simple and user friendly use by
creating a single compact view, XML storage, and an open and a flexible recording mechanism
based on aspects. We describe the BOA plug-in and all the techniques applied to implement
feature recording, transmission and analysis.
Finally, we analyze BOA’s performance by experimenting with different recording techniques
and evaluate the use of the plug-in by means of a case study. For this evaluation we create a set
of scenarios to measure the performance impact of different recording techniques and document
the use of BOA in different real-world software systems.

iii

iv

Acknowledgements

I especially thank David Röthlisberger, who shared his knowledge and ideas with me. His
devotion to computer science and enthusiasm motivated me during this project. Without his
encouragement and the hints and advice he gave me, I would not have been able to complete
this thesis.
Also I want to thank Oscar Nierstrasz for giving me the chance to work on my bachelor thesis
at the Software Composition Group.

v

vi

Contents

Contents vii

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Problem Identification . 1

1.1.1 The Addressed Problems . 1
1.1.2 Requirements . 2

1.2 BOA - Feature Recording and Visualization 2
1.3 Contributions . 4
1.4 Structure of the Thesis . 4

2 State of the Art 7
2.1 Dynamic Information Recording with Major 7
2.2 Feature Driven Browsing - Integration of Features in IDEs 8
2.3 Seesoft-A Tool For Visualizing Line Oriented Software Statistics 8
2.4 Runtime Information in Eclipse - Senseo . 9
2.5 Other Related Research . 10
2.6 Metric Information . 11

2.6.1 Feature Dedication . 11
2.6.2 Bug Relevance . 11
2.6.3 Miscellaneous Metrics . 12

3 BOA 15

4 Implementation 21
4.1 Fundamentals . 21

4.1.1 Java . 21
4.1.2 Eclipse IDE . 22

4.2 Dynamic Information Gathering and Tree Creation 22
4.2.1 The Invocation Data Model . 22
4.2.2 Examined Dynamic Information Gathering Techniques 27

4.3 Custom Data Transmission from the Application to BOA 31

vii

viii CONTENTS

4.4 Data Storage . 33
4.5 Plug-in Design . 34

4.5.1 Specifications . 34
4.5.2 Eclipse Plug-in . 34

5 Evaluation 39
5.1 Analyzed projects . 39
5.2 Benchmarks. 40
5.3 Detecting Faulty Methods . 45

6 Conclusions and Perspectives 47
6.1 Conclusions . 47
6.2 Perspectives . 47

A Installation 49

B User’s Guide 51

C Developer’s Guide 53

Bibliography 57

List of Figures

2.1 FeatureEnv’s views . 8
2.2 A screenshot of Seesoft’s visualization . 9
2.3 Eclipse with installed Senseo plug-in. (1) Tooltip information, (2) frequency

of invocation, (3) average number of invocations, (4) augmented package ex-
plorer with dynamic information, (5) calling context ring chart, (6) dynamic
collaborations view . 10

2.4 Example invocation tree . 13

3.1 The FeatureView . 15
3.2 The GraphicalTree view . 16
3.3 The FeatureDedicationMatrix with methods ordered by their feature dedication 17
3.4 AspectJ’s LTW Aspectpath configuration tab view 17
3.5 The Weaver Excludes tab with disabled heuristics check 18
3.6 The BugMapper . 19

4.1 Invocation information model . 23
4.2 Equal subtrees when it comes to loops . 24
4.3 Tree creation process . 25
4.4 The cache array filling process . 33
4.5 Queue process for compressed and uncompressed items 34
4.6 The UML of the custom STW tree used in the GraphicalTree representation . . 37
4.7 The heatmap color images. Left: Text, Right: Background 38
4.8 With markers annotated methods inside the Java editor of Eclipse 38

A.1 Eclipse’s installation window with BOA selected for installation 50

ix

x LIST OF TABLES

List of Tables

4.1 Tree creation process step by step . 26

5.1 jEdit and Pixelitor from within Eclipse using the standard Java run configuration 41
5.2 jEdit and Pixelitor started with the Java Debugger 41
5.3 Time spent to start jEdit and Pixelitor with the Data Gathering run configuration

and deactivated recording . 42
5.4 Time spent to start jEdit and Pixelitor with the Data Gathering run configuration

and activated recording . 43
5.5 Time spent to start jEdit and Pixelitor with Major. 43
5.6 Time spent to start jEdit and Pixelitor with Major. No preparations. 44
5.7 Summary of the benchmarks (OH stands for overhead) 44

Chapter 1

Introduction

1.1 Problem Identification

1.1.1 The Addressed Problems

We address two general problems in software development in this project: The gap between the
static source code and dynamic runtime behavior of a software system and the fact that modern
IDEs do not provide a feature representation. These two problems exist in all programming
languages and are especially relevant for polymorphic object-oriented languages such as Java,
C++ or Smalltalk. Code reading and maintenance of complex software systems is difficult
in such polymorphic languages, because of the gap between the static code and the dynamic
behavior at runtime. We introduce three problems in more detail:

Dynamic behavior of a software system. The first problem derives from the fact that the
dynamic behavior of an application is not always predictable from the static source code
alone [5, 19]. In an object-oriented programming language like Java, C++, C# or Smalltalk,
where classes inherit from others, the developer is not always able to determine the actual
implementation of a method that was invoked at runtime simply by reading the static source
code. A developer often does not precisely know what happens at the class- and method-level
inside a running application when a feature is executed. We understand the term feature as a
single well defined part of the solution to a system’s problem domain.

Best practices make source code reading even more difficult. A feature is often scattered
in many small pieces of code. Small pieces of code have their origin in many best practices
encouraging developers to write small methods [2].

1

2 CHAPTER 1. INTRODUCTION

Gap between a feature and methods, classes and packages. It is a very natural way for a
customer to talk about software by talking in terms of features, as first of all what the customer
will pay for or where problems may arise are specified features [15], and second in most cases
he does not have the knowledge to talk about source code or functions. What he thinks of is the
behavior of a system, triggered by a user [7]. When software engineers talk about features, they
talk about source fragments like methods, packages or classes. There is a big gap in between a
feature and a piece of code, as these are not related to each other elsewhere than in the heads
of the developers and sometimes in the software system documentation or as comments in the
source code itself. As a software system grows, it is impossible to know every part of it by heart.
A developer often is not the original author of the piece of code he has to maintain. Reading
and understanding code is 50% - 60% of the work time job of every engineer [1, 3], but reading
and understanding an unknown software system can be a difficult job. A developer might be
confronted with unknown code because of the following facts:

• the developer is not the original author

• the code was written a long time ago

• lack of documentation

1.1.2 Requirements

To solve the two general problems in software development, a feature in terms of method
invocations at runtime must be recorded and visualized inside the IDE. The requirements of a
solution that solves our three detailed problems are:

• be embeddable into an IDE, providing feature information inside standard views like the
source code editor and therefore help the developer in reading and understanding code

• be able to record, update and delete features in terms of method invocations without
forcing the developer to change his habits or slow him down in the process of software
development

• connect a feature with its corresponding methods

1.2 BOA - Feature Recording and Visualization

BOA is an Eclipse plug-in which enriches the standard views of the IDE with feature informa-
tion in terms of method invocations and delivers additional information like metric data about
the number of called methods or the call stack depth of a certain method within new views.
BOA supports the developer in reading and understanding code by adding feature-relevant
information like the relevance of a method for a feature or source code markers, which are icons
displaying hints inside the editor or the package explorer. The main view of the plug-in is called
FeatureView. The FeatureView is designed in a way that it can be easily embedded into most
perspectives, which are settings describing the positioning of views in Eclipse, for example the

1.2. BOA - FEATURE RECORDING AND VISUALIZATION 3

Java perspective, the project browser perspective or the debug perspective.

The process of recording a feature using the plug-in is similar to launching the application
with the standard launch mechanisms of Eclipse. The recording slows down the developer in
his work as little as possible, which means the applications starts and responds fast even with
recording activated.

Besides the feature representation and information views, BOA offers the BugMapper, which
assists the developer in finding methods that are relevant for a certain bug. The developer selects
the features in which the bug arises and in which not, where the latter can be a subset of all
features that are verified to be bug-free. The BugMapper then analyzes the selected features and
compares the bug-affected with the bug-free ones. The result is a list of methods ordered by the
relevance for the analyzed bug. From within this view, double-clicking brings the developer to
the source code of the method, which connects the probably faulty method to the source code.

To make the plug-in usable for as many projects as possible, BOA is flexible in terms of the
project setup like the folder structure, launching parameters, Java runtime or used technologies
like AspectJ, which is supported. At least every plain Java project that Eclipse is able to launch
can be analyzed by BOA. Also the plug-in represents and handles the running application in a
similar way Eclipse does out of the box. For example, Eclipse’s built-in console is connected to
the standard output stream of the application, status information is available, and the application
from which features are recorded can be launched and stopped from inside the IDE, just like the
developer is used to. As soon as the run configuration was made once, it is stored in the IDE.
To make the first-time experience as satisfying as possible, BOA supports the developer with
heuristics that aim at avoiding recording classes that are not possible to record because of the
maximum class file size of the Java Virtual Machine. The plug-in allows experienced developers
to exclude classes by manually adding them to an exclude list. BOA avoids side-effects by
running the application in a new Virtual Machine instance and communicating with it over
sockets.

To ensure the suitability of BOA inside the incremental software development methods of agile
software development, recorded features can be saved in an XML file and stored inside the
project. The feature information is not only available right away from the start when creat-
ing or reopening a project, but can also be stored and versionized with the source code. As a
result, feature information cannot only be recorded, changed, deleted and therefore analyzed dur-
ing the whole development process, but also restored to a specific version of the software system.

Other than recording and presenting features, BOA calculates metric information like call stack
depth or number of invocations of a certain method. This metric information helps developers
when it comes to locating and eliminating performance bottlenecks.

4 CHAPTER 1. INTRODUCTION

1.3 Contributions

The contributions of this work are as follows:

Data gathering technique. Data gathering is the process of recording a feature in terms of
method invocations. BOA comes with its own data gathering technique using aspects.

Eclipse plug-in BOA BOA including the BugMapper which helps developers finding faulty
methods, all the view enhancements like the FeatureView and the BOA client which is woven
into the applications classes for data gathering. A built-in storing mechanism enables the
developer to store the features of any project during the development process.

Transmission technique. The transmission technique is the mechanism used to transmit the
invocation information from the BOA client to the Eclipse plug-in, containing the model and
the indexing solution which lowers the size of the transmitted data by sending already sent
invocation information only as integer values pointing to the actual information.

User guide and software system documentation. Besides the implementation, we provide
a small user’s guide with installation instructions and a developer’s guide.

1.4 Structure of the Thesis

After this short introduction, problem statement and solution description we discuss related
work in the domain of feature representation, method invocation recording and metric analysis
which we took into account when creating BOA. Furthermore we talk about implementation
details and make an evaluation of BOA.

State of the Art. We take a look at work done in the topics of feature recording and feature
representation in IDEs and the metrics used in this project. Also we discuss why currently avail-
able solutions in the domain of feature representation and recording do not fit the requirements
we described in Section 1.1.2 - Requirements.

BOA. In this Chapter we present our solution step by step regarding the requirements we
formulated. We introduce the plug-in by screenshots and functional descriptions, as well as the
basic architecture of the recording system.

1.4. STRUCTURE OF THE THESIS 5

Implementation. In the fourth Chapter we describe the implementation of BOA and its
mechanisms. We present the final product and describe why the final implementation of BOA is
based on the decisions we made. We take a look at source code fragments and create a basic
knowledge about the structure of BOA.

Evaluation. In the evaluation Chapter, we discuss the tests we made with BOA and give a
summary of our lessons learnt when using BOA in multiple projects and compare different
implementations of the recording technique using some basic benchmarks in various scenar-
ios.

Summary and conclusions. In the Chapter summary and conclusions we discuss further
perspectives of BOA.

Appendix. In the Appendix we offer a user’s and a developer’s guide.

6 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

In this Chapter we study related work concerning dynamic information recording and feature
representation in the IDE.
There are four feature related topics we would like to take a close look at and which influenced
this project the most: Major, FeatureEnv, Seesoft and Senseo. Furthermore we would like to
discuss other related research work and introduce a few metrics which BOA provides.

2.1 Dynamic Information Recording with Major

Major1 is an advanced tool to weave aspects into applications and even into the Java runtime
libraries. It is part of the Ferrari project. Major’s name is recursively defined Major Is AspectJ
With Overall Rewriting. As one might guess from the name, the underlying framework is
AspectJ. The advantage of Major derives from a custom UDI. Major also includes Carajillo2, a
tool that allows Major to do efficient calling context reification and access to the calling context
directly within aspects.

The distribution of Major features a set of example aspects which allow the developer to obtain
precise invocation information. For instance, the examples contain the cct aspect, which creates
the calling-context tree or the mem-leak aspect, which aims at detecting memory leak candidates.
Major was used in Senseo and in this project in version 0.5.

Major is not enough to fit our formulated requirements. Major is a technique to record dynamic
information of a running application, and is therefore taken into consideration when it comes
to dynamic information recording in this project. But it is not a plug-in for the Eclipse IDE
enabling the developer to record and visualize features.

1http://www.inf.usi.ch/projects/ferrari/MAJOR.html
2http://www.inf.usi.ch/projects/ferrari/CARAJillo.html

7

http://www.inf.usi.ch/projects/ferrari/MAJOR.html
http://www.inf.usi.ch/projects/ferrari/CARAJillo.html

8 CHAPTER 2. STATE OF THE ART

2.2 Feature Driven Browsing - Integration of Features in IDEs

David Röthlisberger et al. [17, 18] validated the usefulness of a feature-centric perspective on
software maintenance. They implemented a prototype of a feature browser for the Squeak
IDE in Smalltalk called FeatureEnv. Besides the structural and textual representation of the
software system, the feature browser presented visual representations and metrics of features.
The FeatureDedicationMatrix of BOA, which will be introduced later, was inspired by the
compact feature overview of FeatureEnv. Figure 2.1 presents an overview of FeatureEnv.

Figure 2.1: FeatureEnv’s views

The feature browser called FeatureEnv presented in the Feature Driven Browsing paper fulfills
many of our requirements, for example the graphical feature information available inside the
IDE. It supports a developer in reading and understanding code. But it does not support him in
automatically locating faulty methods from a feature’s dynamic information.

2.3 Seesoft-A Tool For Visualizing Line Oriented Software
Statistics

Stephen G. Eick et al. [6] implemented a tool called Seesoft which allows developers to analyze
code visually by mapping each line of code to a thin colored row and each source code file to a
column. The coloring of such a row is based on statistical information which Seesoft calculates
using the information from version control systems and profilers. The basic data is information
about a line of code like the author, the number of developers changing a line, the last change or
the total number of changes of a line.
The visualization is interactive, allowing the developer to view information about a line of code
by hovering over a line with the mouse cursor or highlighting only lines of code touched by a
selected modification request. We present an example screenshot of Seesoft in Figure 2.2. Due
to Seesoft’s visualization allowing one to see desired information in an overview, Seesoft can be

2.4. RUNTIME INFORMATION IN ECLIPSE - SENSEO 9

used in application areas like code discovery, developer training, project management or system
testing.

Figure 2.2: A screenshot of Seesoft’s visualization

The field experiences made with Seesoft show interesting facts about source code, for example
that files changed by many developers have more bugs than files only maintained by one or two
developers.
We were inspired by the visualization using colors and the statistical information used by Seesoft.
Despite the visualization, Seesoft does not solve the problems we described. Seesoft is not
embedded into an IDE and represents line based statistics, but not features.

2.4 Runtime Information in Eclipse - Senseo

Senseo [10] is an Eclipse plug-in created by Marcel Härry in his Master thesis. It enriches the
Eclipse IDE’s standard views with several metrics about the dynamic behavior of a software
system. Also additional views for example a ring-chart and a collaboration view are provided.
Senseo uses Major to record method invocations.

Senseo comes close to what we need to solve the described problem available at the time we
started engineering. It is able to record method invocations in all Java libraries and even in the
Java runtime itself by instrumentalizing the JRE. Senseo can recapture method invocations, and
therefore build a whole stack of information about all possible invocation trees inside a software
system. Also it provides a heatmap-like annotation inside the source code editor, enabling the
developer to read invocation information along with the code. It captures many interesting

10 CHAPTER 2. STATE OF THE ART

metrics, for example how many objects were instantiated from a single method invocation.
Figure 2.3 presents the views of the Eclipse IDE enriched by Senseo.

Figure 2.3: Eclipse with installed Senseo plug-in. (1) Tooltip information, (2) frequency of
invocation, (3) average number of invocations, (4) augmented package explorer with dynamic
information, (5) calling context ring chart, (6) dynamic collaborations view

The reason why we do not consider Senseo to be a solution for our specified problem is the fact
that it does not capture method invocations in the context of a particular feature, but uses the
dynamic information to analyze the application. Senseo helps the developer to understand code
and offers metrics and views to locate bottlenecks, but it is not a feature-centric extension for
Eclipse. The fact that Senseo is able to capture even invocations in the Java system libraries is
one of the big advantages delivered by Major. But as BOA aims at helping software engineers
to read a software system’s code and find faulty methods of features, the capturing of the system
libraries is not an important point, as a developer normally does not care about the actual runtime
based implementation of a standard feature of the JRE when it comes to bug-fixing or code
reading.

2.5 Other Related Research

Supporting developers in understanding object-oriented software systems by visualizing the
runtime information is provided by [4, 9, 12, 14]. Other tools that use dynamic information of
an application are for example the Program Explorer written by Danny B. Lange and Yuichi
Nakamura [14] or GraphTrace by Michael F. Kleyn and Paul C. Gingrich [13]. In the domain of
Java programming, Reiss [16] developed Jive3, a tool to visualize the runtime activity of Java
applications in real time.

3urlhttp://www.cse.buffalo.edu/jive/

2.6. METRIC INFORMATION 11

Our approach is different from the ones above because we deliver a plug-in for Eclipse that aims
at enabling the representation of features in terms of method invocation trees and supporting a
developer in detecting faulty methods from recorded features throughout the entire development
process.

2.6 Metric Information

Metrics are an important means in software engineering, as they enable software engineers to
compare software systems. They can help developers to detect flaws in the implementation of a
software system. For example showing the developer how many objects were created from a
single call of a certain method tells him where an optimization might be necessary. We discuss
what kind of metrics BOA provides in the following Sections.

2.6.1 Feature Dedication

Feature dedication is a metric expressing how specific a method is for a certain feature. For
example a method is very specific for a certain feature if only that feature uses this method.
Methods that are used by almost every feature are likely to be nondedicated for all features. The
calculation of feature dedication is simple.

NumberOfFeatures−NumberOfFeaturesUsingMethod
NumberOfFeatures−1

This metric returns a value between 0 and 1, where 1 means the method is very specific to
a certain feature, and 0 means it is not dedicated at all. BOA uses the feature dedication
in the GraphicalTree, which is a graphical representation of the invocation tree, to enable
the developer to find important methods quicker. Also feature dedication is shown in the
FeatureDedicationMatrix, a view displaying a colored square per method, allowing the developer
to get an overview of the most important methods of a feature.

2.6.2 Bug Relevance

The Bug Relevance is a metric describing how relevant a method is for a certain bug. The
information used to calculate Bug Relevance are the features in which the bug arises and in
which it does not. What we actually describe with this metric is the fact that the chance of
a method being wrong is smaller the more features use it without yielding undesired results.
For example, analyzing only two features with a bug, and a method that is used only by these
two features, the chance that this method is defective is bigger than for methods used by many
correctly running features.
In a way, this metric describes the same as feature dedication. If the developer selects a single
feature as bug-affected, and all other features in the software system as bug free, then what he

12 CHAPTER 2. STATE OF THE ART

receives as a result by Bug Relevance is the dedication of the methods in the selected feature.
The two differences are the following:

Multiple features. Bug Relevance takes multiple features into account to calculate the rele-
vance, while the feature dedication only compares the occurrence of method invocations inside
the invocation tree of a single feature with all recorded features of the software system.

Selective rest of features. Bug Relevance does not check the methods of multiple features
against all other features, but just those we know to be free of a certain bug. Feature dedication
in contrast compares to all other recorded features in the software system.

The formula which calculates the bug relevance is:
NumberOfMethodOccurrencesInFaultyFeatures

NumberOfFeatures−NumberOfMethodOccurrencesInBugfreeFeatures

It is important that the developer only selects the bug free features that are of the same kind.
The same kind here means features that are similar to the bug-affected features. Otherwise the
bug relevance suffers from noise. In most cases, the developer should keep the focus inside
a certain group of features. For example all export functionalities or all features dealing with
statistical calculations. All these features have a big chance of using a method in the same way,
and therefore being vulnerable to the same bug. Truly, this is just a best practice, because it
might also be the right choice to take all recorded features in the whole system into account.
This aspect of bug-free feature selection is another reason why we created a tree-like category
structure to store the features. The tree structure makes it easier to select a whole group of
similar features.

2.6.3 Miscellaneous Metrics

We now introduce miscellaneous metrics for invocation trees. We explain every metric with an
example based on Figure 2.4, which represents a simple invocation tree.

Maximum call stack depth of a method. The maximum call stack depth of a method is a
metric which represents the maximum depth of the call stack from a method in the method
invocation tree of a feature. Identical methods can have different call stack depths in different
places inside the method invocation tree. For instance, a method calling another method, which
returns a value without executing other methods, has a call stack depth of one.
In our example invocation tree, the Maximum call stack depth of method C is three (C here
stands for both C* and C**).

Invocation depth. The invocation depth describes how deep in the invocation tree the selected
method is. Identical methods can have different invocation depths at different places in the
method invocation tree. For example, the first triggered method of a Java application’s feature

2.6. METRIC INFORMATION 13

Figure 2.4: Example invocation tree

has the invocation depth 0.
In the example invocation tree, the invocation depth of method C* is two while method A has
depth of zero.

Number of invocations. This metric shows how often a method has been executed at a
specific position of the method invocation tree. Identical methods can have different numbers of
invocations at different places of the method invocation tree. A method which was executed ten
times in a row, for example in a loop, has a number of invocations of ten.
In the sample tree, the number of invocations of method E is one and the one of method C** is
two.

Number of invocations in an entire feature. Unlike the number of invocations, this metric
not only represents repetitions of a method execution in a row, but counts executions of a method
inside a features method invocation tree.
In our example tree, the number of invocations of C is three and the one of F is two (because
C** is called twice).

Number of method calls from a method. The number of method calls by a method describes
the size of the invocation subtree of a method in terms of nodes of the method’s subtree. For
example, a method that calls two methods, which both again call two methods, has a number of
methods called of seven.
In the example invocation tree, method E calls seven methods.

14 CHAPTER 2. STATE OF THE ART

Number of method calls per feature A feature’s number of method calls is equal to the
number of methods called by the root method of the feature’s method invocation tree.
The metric value of the feature represented by the sample tree is eleven.

Number of different callers. This metric describes how many different callers a method has.
If a method A is called twice from method B and once from method C, then the number of
different callers is two.
In the example invocation tree, method G has only one caller, while method C has the two
different callers B and E.

Chapter 3

BOA

BOA is a plug-in for Eclipse. It can be installed and updated over the update-site mechanism.
Eclipse’s built in OSGi implementation automatically downloads other dependencies, for exam-
ple the AspectJ plug-in.

After the installation, a new view called FeatureView is available. This is the main view of BOA.
With this view, the developer records, updates, deletes and visualizes features. The FeatureView
actually contains four sub-views:

• The FeatureTree containing all recorded features in a tree-like category structure

• The SimpleTree represents the method invocations of a feature and allows manipulation
like removing invocation information recorded from a specific thread

• The GraphicalTree which represents the method invocations graphically and additional
information like the signature or the feature dedication

• The FeatureDedicationMatrix displaying all methods of a feature and the corresponding
feature dedication

Figure 3.1 shows the feature view after the successful installation of BOA.

Figure 3.1: The FeatureView

The FeatureTree is used to select already recorded features. Features are organized in a tree-like

15

16 CHAPTER 3. BOA

category structure because of two facts: First, the chance of complicating the feature search
because of the list’s length or different naming-patterns of the features is huge. With a tree
structure, a developer will find a feature quicker. Second, when using the BugMapper, it is
often a good choice to only select nearby bug-free features when analyzing bugs, where nearby
means features of the same functional type. For example, a functional type can be all export
features or all features dealing with a web service.

The SimpleTree is a fast and easy-to-read visualization of a selected feature’s invocation tree, as
it only represents the invocation tree without any further graphical information. In addition, it
provides the developer with the ability to remove invocations from an accidentally recorded
thread using the delete key. We will cover this in more detail later in Chapter four.

The GraphicalTree is the heart of the FeatureView. It renders the tree showing more information
like the signature of a method while hovering over an item of the invocation tree and taking the
user to a source code fragment or showing metric information like the number of invocations
over the context menu. When first looking at the tree, most parts of it are collapsed to ensure
quick loading and to not confuse the viewer with too much information. Each method invocation
item is colored accordingly to its feature dedication, using a color heatmap. On Figure 3.2, a
simple application is represented by the GraphicalTree view.

Figure 3.2: The GraphicalTree view

The FeatureDedicationMatrix displays a single square for every method in the selected feature.
The squares representing the method invocations are heatmap colored like in the GraphicalTree.
The developer benefits from a visualization of the most important methods of a selected feature.
Figure 3.3 shows the FeatureDedicationMatrix of a feature which has only a single method in
common with all other features in the system.

To run an application with feature recording activated, the developer has to launch it with
BOA’s own run configuration called DataGathering. Once configured, the run configuration
is stored in Eclipse. The most important tabs of the DataGathering run configuration are the
LTW Aspectpath tab, which provides load time weaving configuration, and the Weaver Excludes
tab. We present these two views on Figure 3.4 and 3.5. The settings inside these tabs must be
maintained by the developer. All other tabs are automatically set up by the plug-in or Eclipse

17

Figure 3.3: The FeatureDedicationMatrix with methods ordered by their feature dedication

and normally do not need any attention for the first run of an application. BOA uses aspects
to weave classes and collect invocation information. To add support for related projects and
even load time weaving AspectJ projects, the LTW Configuration tab is available. Inside the
Exclude tab, classes, methods and packages which fail to weave or which should be excluded in
every run can be excluded from recording using complete names or wild-cards. Also a heuristic
check that analyzes classes and excludes them if their weaved size possibly grows bigger than
the maximum allowed class file size of the Virtual Machine is available.

Figure 3.4: AspectJ’s LTW Aspectpath configuration tab view

When the application is launched, feature recording can be started with the Start button in the
FeatureView. A click not only starts the recording of a feature on plug-in side, but also activates
BOA’s client, which will then start recording. As long as the user does not record any feature
information, the application runs faster than during recording. When hitting the Start button,
the plug-in sends a command over a socket to the application. Receiving this command, the
application connects to BOA over another socket and sends the invocation data in an optimized

18 CHAPTER 3. BOA

Figure 3.5: The Weaver Excludes tab with disabled heuristics check

manner to the plug-in, which builds up the invocation tree. When hitting Stop again, all socket
connections from the application to BOA are closed by sending the corresponding command.
A dialog asking the developer about the name and category for the recorded feature opens up.
Categories are organized in a tree-like structure. Every category can hold sub-categories or
features. From the beginning, the Features category with a single sub-category called Uncatego-
rized is available. These two items in the category tree cannot be deleted. When a category is
deleted, all the features inside the category or its sub-categories are moved to the Uncategorized
category. After filling out the information, the updated feature information of the project is
automatically saved and the new feature is available in the FeatureView.

The storage mechanism is storing the data inside an XML file called ”boa.xml”. The tree
structure of the features and categories is written 1:1 as a simple DOM. This allows advanced
users to import the structure into other tools which provide features that BOA does not, for
example other metrics or another visualization. Furthermore it is easier to merge different
versions of files containing stored features when they are not binary and human readable.
When moving from a project to another using Eclipse’s ResourceView or the Navigator, the
corresponding feature information is loaded automatically from the projects file or from a cache.
When working with related projects, the FeatureView always shows the information that is
currently of interest. However, when switching to a Java source file from another project via the
editor, BOA does not load the project’s feature information, as reading other classes does not
always mean developing in the corresponding project.

The BugMapper button brings up a selection window asking the developer about bug appearance
information. The developer selects both features that are affected by a bug and those that are
not. The part where features that are non-affected are selected is important because of two
facts: first of all, it is possible that a feature was not yet tested for a certain bug. And second,

19

if all non-affected features inside the software system are selected as bug free features, noise
of other features might lead to a fuzzy result. Selecting solely features that use certain objects
and methods in a similar way leads to a reliable result. Hitting the Map button returns a
list of methods ordered by their bug relevance. Double-clicking opens the editor with the
corresponding source fragment. A screenshot of the BugMapper with an exemplary selection of
bug affected and non-affected features is presented on Figure 3.6.

Figure 3.6: The BugMapper

20 CHAPTER 3. BOA

Chapter 4

Implementation

We now discuss the following implementation details of BOA

• The fundamental decisions like the IDE, covering plug-in and environment

• The dynamic information gathering technique and how it evolved during this project

• The implementation of the data transmission between BOA and its client

• The storage mechanism of BOA and the plug-in design specific implementation details

4.1 Fundamentals

4.1.1 Java

BOA is a plug-in supporting Java software engineers. Java is widely used in new software
engineering projects. Creating a plug-in for Java makes sense as it allows us to provide a useful
addition for a big audience, also because of the fact that the development kit and Java applica-
tions in general run on multiple platforms. Our initial intent was to give Java developers a tool
to solve their bugs or performance problems faster and to enable them to read and understand
source code faster.
When this thesis was written, Java was available in version 1.6 and under the main development
of Sun (Oracle). In this project, Sun’s reference implementation and the open source version
called OpenJdk were both applied as development and testing runtime to ensure that the solution
works with at least these two often used Virtual Machines. Both were available in version 1.6.

21

22 CHAPTER 4. IMPLEMENTATION

4.1.2 Eclipse IDE

As introduced before, one of the main requirements of this work is to offer the FeatureView
in a handy way. As many Java developers work in Eclipse or proprietary derivates like BEA
Workspace or MyEclipse, creating a plug-in for the Eclipse IDE again makes sense to provide a
solution for a big audience. BOA was integrated into Eclipse Classic in version 3.6 and tested
under Linux.

4.2 Dynamic Information Gathering and Tree Creation

Dynamic information gathering defines the task of recording a feature in terms of method
invocations and building a method invocation tree. How this recording process perturbs the
running application and what information exactly is transformed into the invocation tree are the
two most important specifications. A high amount of transmitted information can slow down
the running application while skipping the transmission of important information decreases the
available information for the developer, and thus the possible fields of application of the plug-in.
The final implementation of BOA uses AspectJ to gather dynamic information. Because there
are very few Java applications not applying multi-threading, method invocations are captured
on multiple threads. Also besides the actually called method, the first declaration, which in Java
can be for example a method of an abstract class, is recorded.

4.2.1 The Invocation Data Model

BOA has two internal representations of invocations. First we present the invocation data which
is transmitted from the BOA client inside the running application to the plug-in. This model is
transfered into a tree model when it comes to representation of invocation trees. The root node
of such a tree model is stored together with a name in a feature. Such a feature is attached to a
single category. Categories are used to organize and differentiate the features and are organized
in a tree structure.

Figure 4.1 is the UML class diagram of the two different invocation information representa-
tions.

The requirements for the transmission model are simple and small by design. What BOA needs
to know are the following seven invocation details:

• Package

• Class

• Method

• First declarator

4.2. DYNAMIC INFORMATION GATHERING AND TREE CREATION 23

Figure 4.1: Invocation information model

24 CHAPTER 4. IMPLEMENTATION

• Definitor

• Before/After indication

• Thread ID

BOA uses a small transmission model because of the fact that the object is serialized and
transmitted from the application to BOA over a socket. BOA’s client in the running application
transmits both the definitor (first declarator) and the actual executed method to give a little bit
more detailed information when it comes to the BugMapper, while having the definitor available
to check for loops more generally.

To represent the invocation tree structure, BOA uses another, more complex model with children
and parent relationships. This more complex class is called MethodTreeItem. The Method-
TreeItem implements SWT’s TreeNode interface for out of the box representation inside SWT
tree components. The legitimation of a tree structure is as follows: Without any invocation
context information about a method invocation, the plug-in would lose too much information to
provide a helpful set of metrics and invocation information to the developer. BOA could use a
flat structure like a list. If for example every feature would be a list of methods that have been
executed during runtime, and possibly a number expressing how many invocations occurred in
that specific feature, the developer would not see which method calls produce deep call stacks,
which different callers a method has, etc. The downside of a tree structure is the fact that it takes
more resources to store, display and transmit the information. For that reason, optimizations are
made to mitigate this negative aspect.

Whenever a new tree is recorded by BOA, the invocation structure is compressed [8, 11]. For
example loops are compressed into items with a value describing the amount of invocations.
A loop is recognized as such if one or more invocations in the current item repeat themselves
twice or more often. Loops are summarized displaying the number of their invocations in the
GraphicsTree. BOA ignores the difference between overwritten methods. For example, the two
trees presented in Figure 4.2 are considered equal in BOA’s loop detection.

Figure 4.2: Equal subtrees when it comes to loops

4.2. DYNAMIC INFORMATION GATHERING AND TREE CREATION 25

The tree is built up in a very natural way on the plug-in side: Every thread of the running
application has its own server thread in BOA building up the invocation information. At the
beginning, a MethodTreeItem named by the thread id is created and stored inside a variable
called currentItem. Every time a new invocation information arrives, BOA checks whether
the item was sent before the actual method execution or after. In the first case, a new Method-
TreeItem containing the invocation data is added as a child of the currentItem. If the method was
executed and it was after the actual invocation, BOA puts the parent of the currentItem variable
into currentItem. What BOA does is some kind of preorder, just without knowing the tree yet.
We present a graphical interpretation of this process in Figure 4.3, followed by an exemplary
source code snippet which would lead to this invocation tree and Table 4.1 explaining the tree
generation process step by step.

Figure 4.3: Tree creation process

public static void main(String[] args) {
mod(7f, 3f);

}

private static float mod(float aFloat, float divisor) {
return aFloat - MultiplyIntQuotient(aFloat, divisor);

}

private static float MultiplyIntQuotient(float aFloat, float divisor) {
return multiply(divisor, (int) divide(aFloat, divisor));

}

private static float divide(float divident, float divisor) {
return divident / divisor;

}

private static float multiply(float aFloat, float multiplicator) {
return aFloat * multiplicator;

}

After the recording, all the thread roots are added to a new root, a MethodTreeItem called
Application, and then stored in a feature.

26 CHAPTER 4. IMPLEMENTATION

Table 4.1: Tree creation process step by step
Description Transmitted

invocation
item

Invocation
type

Current item

Initialization of the tree. The current
item is an item named by the thread
id. In this example, the thread id is
MainThread.

- - MainThread

Start of the application. Whenever
an invocation item of the type before
is transmitted, the arriving informa-
tion is added to the current item as
a child and replaces it in the cur-
rent item variable. After this step,
MainThread has 1 child called main
and the current item is main.

main before main

Call of method mod. The invoca-
tion information of mod is set as the
current item and added to the item
called main as a child. The tree node
called main now has one child called
mod.

mod before mod

Call of method multiplyIntQuotient.
The invocation information of mul-
tiplyIntQuotient is set as the current
item. MultiplyIntQuotient is now a
child of mod.

multiply-
IntQuotient

before multiply-
IntQuotient

Call of method divide. Divide re-
places the current item and is now a
child of multiplyIntQuotient.

divide before divide

The thread returns to the multiplyIn-
tQuotient method after the execution
of divide. The parent of divide (mul-
tiplyIntQuotient) is set as the current
item because of the after type.

divide after multiply-
IntQuotient

Call of method multiply. Multiply is
added to the children of multiplyIn-
tQuotient. MultiplyIntQuotient has
2 children after this step: divide and
multiply.

multiply before multiply

...

4.2. DYNAMIC INFORMATION GATHERING AND TREE CREATION 27

4.2.2 Examined Dynamic Information Gathering Techniques

Recording feature invocations in Java is tricky, as the language itself does not provide a satisfying
possibility out of the box. But there are in fact several different solutions to this problem. In
the next three subsections we discuss all the approaches considered possible and tested in this
project. These are:

• The Java Debugger

• Byte code injection

• Aspect oriented approaches

Parsing Java Debugger Information

The first setup is using the Java Debugger, also called JDB. The Java Debugger, which actually
was activated by a parameter of the Java application launcher Java in older versions of the JDK,
is able to print out the signature of each method call of a running application. This is in fact
sufficient for the earlier described model, but there is already the first drawback: JDB prints out
the signature after every enter and exit of a method inside the call stack. This signature must
then be parsed, which is time consuming. Also the Virtual Machine runs in debug mode, which
does not allow runtime performance enhancements and therefore lowers the performance of the
running application.

This is a short snippet of an exemplary run. In this point of execution, the method getBar(),
which does not invoke any other method, is executed on the thread called ”main”. The command
trace methods triggers the printout of the method invocation information and pauses the running
application until the cont command is executed. Alternatively the command trace go methods
does not pause the application.

> run foo.bar.Loop
run foo.bar.Loop
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
>
VM Started: trace methods
>
Method entered: "thread=main", foo.bar.Loop.getBar(), line=17 bci=0

main[1] cont
>
Method exited: return value = 1, "thread=main", foo.bar.Loop.getBar(), line=17 bci=3

There are three other, less important but bothersome problems with the Java Debugger solution:
Although this is not an important requirement, you do not receive invocation information about
standard Java library methods that are called. Second, the application first has to start in debug
mode before the trace go methods command can be triggered. So the invocations start, while
the plug-in might not be ready yet. The process needs some kind of synchronization to ensure
that BOA does not lose the first invocations. Of course BOA could record all invocations to a

28 CHAPTER 4. IMPLEMENTATION

log file, parse and pick out the required information later on. But therefore BOA would have to
add precise nanosecond time-stamps to the log file, which would again slow down the recording
process. And last but not least: It is difficult to attach the JDB task to the console and task
manager of the IDE, as BOA would have to filter the call signatures out from the actual printouts
to a console. Otherwise the console output ends up in a mix of the applications print out to the
standard output stream and the JDB logs.

Drawbacks of the Java Debugger:

• The slowdown of the Virtual Machine due to not available runtime enhancements

• The log parsing and filtering problems

Using Javassist to Inject Byte-Code

Another solution we examined is to inject byte code into compiled classes. By injecting the
information transmission code and a technique that adds information about the method and
class the code was injected into, the invocation information can be transferred directly to BOA.
This approach is good because once the code injected, the developer can just run the binaries as
usual. Here’s an example of a simple printout statement that is injected into a method with the
name myMethod inside the class called myClass using Javassist.

ClassPool pool = ClassPool.getDefault();
CtClass cc = pool.get(myClass);
CtMethod cm = cc.getDeclaredMethod(myMethod, new CtClass[0]);
cm.insertBefore("{ System.out.println(\\"Here we go!\\"); }");
cc.writeFile();

The problem with this technique is the low level of abstraction. For example, byte code snippets
can be added at the top and the end of a method’s code. But if the method returns a value,
this value has to be held back by storing it into a temporary variable before transmitting the
information. Otherwise the injection generates dead code after a return. Even more complex is
the fact that if an exception is thrown, the byte code at the end of the method is not invoked
as the interpreter never steps over these lines of byte code. This leads to invalid invocation
trees because no after is sent. Besides the code at the beginning and the end of a method, BOA
needs to check whether the method has thrown an exception, and if so, still send the after
invocation info. Injecting into catch-parentheses properly is difficult because inside a catch
parenthesis, another exception can be thrown or exceptions can be uncatched, for example an
IndexOutOfBoundsException or other exceptions extending RuntimeException.

Another more general problem of injecting data gathering code into byte code is that the re-
sulting class file will be bigger than the original class file. So the Virtual Machine will have to
handle more data, which decreases the performance of the software system. And, as we will see
later, injecting byte code into huge classes can lead to invalid classes, as the size of a class file
is limited by the class loader or by the Virtual Machine respectively.

4.2. DYNAMIC INFORMATION GATHERING AND TREE CREATION 29

Summarized, the reasons why byte code injection using Javassist is a suboptimal solution:

• Lack of abstraction

• Class file size (performance issues and limit of maximum class file size)

Aspect Oriented Approach

Aspect oriented programming (AOP) is a methodology which delivers concepts, constructs and
many benefits to modularize cross cutting concerns in software engineering. AOP introduces
the ability to weave together independent source code fragments with actual code.

AspectJ The most widely used aspect oriented framework for Java is called AspectJ1. The
first step was to create the aspect, which is woven into the application’s byte-code. We present
the aspect used in BOA in the next paragraph. As we will see, the aspect is woven into every
method enter and exit, so BOA again receives two invocation information packets per method
call, one when the thread enters the method, and one when it leaves the method. Again it is
simple and elegant to build up an invocation tree with this information.

To make sure that most classes are weavable and therefore their invocations can be captured, we
tried to make the code which is injected as small as possible. As BOA’s aspects inject code into
classes, the class file size will grow and the problem of the Virtual Machine’s maximum size
of a class file does apply for this solution too. The reduction of the injected code has the nice
side-effect that not only more classes are able to be recorded, but also the increase of memory
load of the resulting application is smaller, which results in a slightly faster running application.
In our first runs, the aspects were woven into the byte code of the application. So first we built a
jar file, which was then passed to the AspectJ byte code weaver. The result was a completely
woven jar file, which any Java runtime with the AspectJ runtime would be able to start. Due to
the fact that the developer probably does not want to weave every library in the project on every
run, we used the AspectJ load time weaver which weaves the aspect into the classes flexibly
on load-time with a custom class loader. This load time technique makes the application a bit
slower when new classes are loaded, like for example just right at the start of the application,
but in general increases the overall performance when only the desired libraries are woven or
not all libraries inside the class path are loaded.

One important feature of AspectJ is that the after advice automatically triggers the method when
an exception is thrown. We never end up with incorrect trees when an exception is thrown.
In this project we used AspectJ in version 1.6 including weaver version 7. The drawback of
AspectJ is the fact that it is not easy to weave into the Java Runtime classes. There are many
reasons why, for example:

• Native code cannot be woven

1http://www.eclipse.org/aspectj/

http://www.eclipse.org/aspectj/

30 CHAPTER 4. IMPLEMENTATION

• Class files could get too big after weaving

To reach almost every class of the Java runtime, we tried to instrument it. We used the list of the
Major project’s implementation, about which we talk in the next Chapter, to get the first few
classes to exclude in BOA’s aspect. Then we run the AspectJ compiler to weave the aspect into
Sun’s Java runtime. After a few crashing runs unveiling more classes that were not weavable
using BOA’s aspect in the Java Runtime 1.6, we finally seemed to have all uninstrumentable
classes excluded. But the problem arising after that was that the byte code weaving seemed to
use a lot of RAM. We tried to weave the runtime library on a server with 4GB of RAM and
different Virtual Machine arguments, but still we were not able to finish the instrumentation
due to a memory exception. As the recording of all standard Java classes was not an important
requirement, we did not continue these tests.

The aspect used in BOA. The most important thing about aspect oriented programming is
the aspect which is woven into the byte code of an application. We now take a look at the aspect
we used in BOA.
public aspect TracePointAspect {

pointcut tracePoints(): call(* *..*.*(..)) && !within(ch.byteality.ba..*) && !
within(methodinvocationplugin..*);

before() : tracePoints() {
try {

SimpleSerializerClient.getClient().pushInfo(thisJoinPoint, gointo
);

} catch (IOException e) {
e.printStackTrace();

}
}

after() : tracePoints() {
try {

SimpleSerializerClient.getClient().pushInfo(thisJoinPoint, leave)
;

} catch (IOException e) {
e.printStackTrace();

}
}

}

There are two advices, one before, and one after any method body specified in the tracepoint.
What the injected code actually does is send the invocation information over the serialization
client to the plug-in. The gointo and leave arguments describe whether a method is entered or
left by the current thread. The thread id, which is the unique indicator for our thread differentia-
tion, is added before sending the generated invocation information in the pushInfo method.
To ensure that no infinite loop is created on runtime, all classes from within this project are
excluded. Also many Java standard classes and packages are excluded, but their exclusion is con-
figured in the aop.xml, which is written by BOA’s custom launcher, as we will see in Chapter 4.3.

The SimpleSerializerClient’s getClient method returns a thread-local SimpleSerializerClient
instance. This way we ensure that every Thread has its own client and no synchronization is

4.3. CUSTOM DATA TRANSMISSION FROM THE APPLICATION TO BOA 31

needed. Further information about the use and the specific responsibility of a class are available
in the developer’s guide.

MAJOR As described in the state of the art Chapter, Major is a tool offering techniques to
weave even into the Java runtime library. Therefore Major is able to deliver information about
invocations on the Java runtime.

BOA used the cct-slow aspect which creates the calling-context tree. The cct-slow aspect was
used in the Senseo project. A weaved Java application is able to capture metrics like new
instances created. Major sends the data over a socket in a predefined interval. We used 5
seconds. While running, Major builds up a shadow stack and sends the whole information to
the server, which was in our case BOA.

We did not use Major in BOA because of the fact that our Major launch configuration took more
than twice the time to prepare and start the application compared to our AspectJ solution. Also
it was difficult to attach the running application to the Eclipse IDE the way a developer is used
to, for example the functionalities of the console or the kill-button of Eclipse.

4.3 Custom Data Transmission from the Application to BOA

First we implemented the data transmission using Java RMI. But quickly we found out that the
use of RMI would slow down the recording and therefore the application. Also the whole RMI
system seemed to be too extensive. We needed something more lightweight. So we chose to
create our own data transmission system using the Java serialization technique.

To transmit the data from the application to the plug-in, BOA uses a simple client server archi-
tecture. The Eclipse plug-in is actually the server, to which the running application connects.
The reason why we are using sockets is that the application should run by itself, as loose from
the plug-in as possible. Only that way possible side-effects can be avoided.

As the application handles all the user requests and is therefore by nature the performance
bottleneck, the BOA client which is added to the application is as thin as possible. It does
nothing with the data but sending it over the serialization stream. The whole tree generation and
tree item instantiation is done on the server respectively on plug-in side.

To make sure that no concurrency problems occur, every thread has its own thread-safe socket to
transmit the data. On plug-in side, we only have to draw a difference between the different sock-
ets, not about which thread actually triggered the invocation. We send the thread id with every
invocation information, as the stream between the client socket of a thread and the server socket
of the plug-in might break. In this case, a new connection is established from the client and

32 CHAPTER 4. IMPLEMENTATION

therefore the server would not know whether it is the same thread again or not. When the thread
id is available, it is no problem to assign the invocation information to the correct invocation tree.

After a new invocation information arrives, the controller fetches the current tree item from a
hash-table, of which the thread-id is the key value. To that tree item, the controller will add a
new sub-item or move to its parent, as describe in Section 4.2.1. Synchronization is not needed
on plug-in-side, as two threads never try to modify the same item.

To reduce the transmission load, the invocation data of a certain method is only sent once to
the plug-in completely. After that first transmission, only an index number telling BOA what
method invocation was detected is transmitted. The complete information packet is called
ExplicitMethodInformation, while the index representation of such an item in the cache is
called CompressedInvocationInformation. The CompressedInvocationInformation only holds
the thread id, the type (which can be after or before) and the index of the corresponding Explic-
itMethodInformation, which is an integer. Because of the fact that the smaller CompressedInvo-
cationInformation is deserialized quicker than the complete information holding six strings and
a long value, and because of the fact that Java does not deserialize serially, the CompressedIn-
vocationInformation item is often available before the necessary ExplicitMethodInformation
is deserialized. To solve this issue, BOA queues the CompressedInvocationInformation if the
ExplicitMethodInformation at the specified index is not yet available and periodically checks if
new information solves index-references to pending ExplicitMethodInformation in the queue. If
so, the complete ExplicitMethodInformation is cloned from the cache array and attached to the
tree where the compressed item would have gone before.

The cache mechanism works as follows: both BOA and BOA’s client parts inside the running
application hold a cache array of complete invocation data. Whenever an invocation is triggered,
the BOA client checks the cache array whether the invocation was already sent to BOA or not.
In the first case, only the index number of the item inside the cache array is transmitted within
a CompressedInvocationInformation item. Otherwise, the whole ExplicitMethodInformation
item is sent and stored inside the cache array for further compressed transmission use. On
plug-in side, BOA does the same: whenever a complete information arrives, it is added to the
current invocation tree and stored inside the cache array. When, a few seconds later, only a
CompressedInvocationInformation passes the socket, the method item inside the cache array at
the index from within the CompressedInvocationInformation is cloned and added to the current
invocation tree. Clearly, items are only added to the tree if the queue is empty. Otherwise BOA
might skip invocations, which would lead to an incorrect invocation tree. Figure 4.4 shows
based on the example execution tree we used in Chapter 4.2 (Figure 4.3) how the cache array is
filled with ExplicitMethodInformation objects and how the CompressedInvocationInformation
objects are transformed into ExplicitMethodInformation objects again.

The lazy lookup works as follows: As soon as a CompressedInvocationInformation arrives, that
means an integer value representing the cache array index in which the ExplicitMethodInforma-
tion is held, BOA checks whether the item in the cache array is null or not. If it is not null, then

4.4. DATA STORAGE 33

Figure 4.4: The cache array filling process

it is added to the tree or to the queue depending on whether there are already items inside the
queue or not. Otherwise BOA would skip invocations that are currently inside the queue. The
same applies to the ExplicitMethodInformation, with one difference: the information is also
being added to the cache array, and BOA then tries to solve the references of the CompressedIn-
vocationInformation indexes to the cache array inside the queue. Again, after that procedure,
if the queue is empty, the invocation information is being added to the tree and otherwise to
the queue. The following Figure 4.5 contains a flow chart describing the queue mechanism in
detail.

4.4 Data Storage

It is important for the daily use to enable the developer to store the features in files or anywhere
in the project in a way they can be versionized in a version control system such as SVN or Git.
If not, feature analysis could not efficiently be done during the whole development process. A
developer should be able to check out a project and have the recorded features for that specific
state of the source code of the project right with the code. Only that way can we ensure that the
feature representation is really used and useful during the software development.

34 CHAPTER 4. IMPLEMENTATION

Figure 4.5: Queue process for compressed and uncompressed items

The method invocation trees are stored in a simple XML file called boa.xml. That way the trees
can be imported or analyzed by other tools. Also because of the human readable format, they
can be more easily repaired or merged. To store and read the XML data structure, BOA uses
Dom4j, a very common Java library to read and write XML files.

4.5 Plug-in Design

4.5.1 Specifications

One requirement is the platform independency which should be ensured for this plug-in, as
Eclipse is used on several platforms. Also it should embed in the standard views of Eclipse and
fit the habits of a software developer. It should run under the newest stable release of Eclipse
and Java available. The installation should be possible using the standard plug-in mechanism of
Eclipse.

4.5.2 Eclipse Plug-in

The Eclipse rich client platform allows one to add plug-ins to any Eclipse environment by
simply writing an OSGi bundle. For Eclipse this means creating a plug-in development project.
Creating views or extending other parts of Eclipse is mostly done by implementing an inter-
face or extending an abstract class of the Eclipse project and registering the new component
inside the plugin.xml. For example the run configuration, which is added by implementing the
ILaunchDelegate interface for the actual launch process controller and the ILaunchConfigura-
tionTabGroup for the run configuration user interface. Eclipse OSGi implementation Equinox

4.5. PLUG-IN DESIGN 35

handles dependencies, like in our case the Java development tools JDt, the debug core or the
AspectJ plug-in called AJDt.
Eclipse plug-ins are updated over an update site, which responds to requests with an XML of
update information. The IDE can update the plug-in itself without the developer having to
interact or install anything manually.

Feature representation. As features in BOA are method invocations in a tree structure, the
most simple way to represent a feature is to show the invocation tree. BOA represents a
simple tree using the standard SWT tree widget. Besides that we wanted to integrate a more
decent representation of method invocations. So we implemented a tree graph painter called
GraphicalTree using a horizontal compact tree layout and SWT’s canvas to paint on. To not
overload the view and make it quicker to render, BOA collapses all tree items of depth four and
more at the beginning. The following Figure 4.6 is the UML of the custom tree component. A
tree is generated from a root MethodTreeItem, and transformed into a view model containing
bounds, lines and rectangles. The FeatureDedicationMatrix is a custom component too, painting
colored squares on a SWT canvas.

The heatmap used to represent the feature dedication of methods in the GraphicalTree and the
FeatureDedicationMatrix is based on two images, one used for the background color and one
used for text, for example the name of the method in the GraphicalTree. Depending on the
feature dedication of a method, a color from inside the image is selected. Implementing the
heatmap with images makes the heatmap representation easy to change, even in installations.
Figure 4.7 shows the two heatmap images used by default in BOA.

Integrating information into Eclipse. BOA primarily features a single view, the FeatureView.
This view is meant to be placed near the console and definition view at the bottom of Eclipse,
just beneath the source code editor. This view features the start/stop button, the FeatureTree,
the SimpleTree, the GraphicalTree view and the MethodDedicationMatrix for every selected
feature. Also from inside this view the developer can open the BugMapper dialog to analyze the
bug relevance of the selected feature’s methods. We added new markers to the standard views
of the IDE, precisely to the standard Java editor. For example when selecting a feature, a marker
is placed on every class and method that was touched by this feature. That way the feature
view supports the developer on navigating inside the source code. Figure 4.8 presents Eclipse’s
Java editor with markers on the left and right side. The left side simply marks currently visible
methods used in the selected feature with an Eclipse icon, while on the right side, all methods
of this class used in the selected feature are visible in an overview.

Launching an application using a custom launcher. We now take a look at how BOA
launches the application with dynamic information gathering support.

We tried to reuse as much as possible from Eclipse to ensure that the flexibility of BOA is
as big as the one of Eclipse’s standard Java launcher. The source code of the application

36 CHAPTER 4. IMPLEMENTATION

is compiled into a directory with the standard Java development tools from Eclipse. From
the project preferences, BOA reads all class path entries like libraries and other projects the
application relies on. Then BOA’s launcher creates the aop.xml, which contains all information
about the aspects that should be woven on load-time into the application, the information about
excluded classes and other weaver options like the verbosity. All project internal classes used to
communicate with the Eclipse plug-in, the whole model of BOA and about 30 classes of the
Java standard library are excluded automatically from the aspect weaving. If the user selects the
heuristics check inside the run configuration’s ExcludeTab, additionally each class file of the
project is checked whether its resulting class file is potentially too big after load time weaving.
This mechanism relies on the fact that the resulting size of the compiled class is more or less
defined by the number of lines of code. BOA multiplies the number of methods in the class
file that is woven by ten and adds this value to the number of lines of code of the file. If this
resulting number of lines of code is bigger than 5000, the class is excluded from weaving. This
is a very simple check. It is not very precise as a line of code does not always lead to the same
number of bytes in a class file, but, probably because of the fact that classes with such a big
number of lines are statistical outliers, in the tested scenarios this worked pretty well. Also the
developer can add classes to exclude by himself in the run configuration dialog and disable
this heuristic check. To simplify this manual entry, when an application is executed, the names
of the excluded class files are copied to the clipboard, so the developer can simply open the
run configuration and press ctrl+V to insert the classes BOA’s heuristic check would exclude.
After the generation of the aop.xml, BOA launches the application identically to the AspectJ
plug-in.

4.5. PLUG-IN DESIGN 37

Figure 4.6: The UML of the custom STW tree used in the GraphicalTree representation

38 CHAPTER 4. IMPLEMENTATION

Figure 4.7: The heatmap color images. Left: Text, Right: Background

Figure 4.8: With markers annotated methods inside the Java editor of Eclipse

Chapter 5

Evaluation

As usability and speed are two of the main goals of BOA, we benchmarked the feature recording
and tested the BugMapper on a sample scenario. We tested BOA with a real-world application
which is currently under development and with jEdit and Pixelitor, two software systems hosted
on SourceForge.

5.1 Analyzed projects

The three projects analyzed in this Chapter are:

jEdit. jEdit is a programmer’s text editor supporting source code highlighting for Java and
for about 130 other programming languages. The application is written entirely in Java and the
project contains about 550 Java source files. jEdit is a SourceForge project 1 since 2001.
We used jEdit to benchmark different recording techniques.

Pixelitor. Pixelitor 2 is an open source image editor supporting many features like layers,
filters or color adjustments. The project is hosted on sourceforge and contains about 530 Java
source files.
Like jEdit, we used Pixelitor for our benchmarks.

ScanMe ScanMe is the internal project name of an application written for the Swiss rescue
services. It is a Swing application used to trace patients during serious accidents like plane
crashes, train accidents and other casualties. It uses Hibernate to store data inside a Derby
database, Swing with custom components, the Restlet libraries to transmit data to a central server

1http://sourceforge.net/projects/jedit/
2http://pixelitor.sourceforge.net/

39

http://sourceforge.net/projects/jedit/
http://pixelitor.sourceforge.net/

40 CHAPTER 5. EVALUATION

and about 25 other Java libraries. Information about patients is transmitted over the Internet to a
server which is able to provide hospitals with information concerning arriving patients or the
number of available transport vehicles like ambulances or helicopters. The advantage of ScanMe
is the support of 2D barcodes for patients, vehicles and transport destinations. Registering the
relocation of a patient is done with 5 scans, rather than by typing data in a computer by hand
or writing it down on a sheet of paper. The transport information is available at once for all
hospitals in Switzerland over a web-based application.
The ScanMe application was used to evaluate the BugMapper.

We first present our benchmarks and afterwards show our results of the test with the BugMap-
per.

5.2 Benchmarks.

To check whether the solution is suitable to replace the standard launch configuration and
integrate into the standard work-flows of developers or not, we did a few benchmarks with and
without feature gathering activated. We timed the start up times of jEdit and Pixelitor with a
stopwatch.

The test environment. The scenarios presented in this Chapter were all executed on the
following computer system:

• Lenovo T500

• 2 gigabytes of RAM

• Intel Core2Duo P8600 2x2.4Ghz (4788.2 Bogomips)

The software environment was as follows:

• Ubuntu Linux 10.04 (32Bit / i686), Kernel 2.6.32

• Java: 1.6.0 22-b44 (Sun)

The benchmarked techniques. On the following pages we present benchmark results of the
following three dynamic information gathering techniques:

• Java Debugger

• BOA’s final implementation (using AspectJ)

• Major using the cct-slow aspect

5.2. BENCHMARKS. 41

jEdit and Pixelitor started with standard Java run configuration from within Eclipse.
The following Table 5.1 shows how long it took to start jEdit and Pixelitor from within Eclipse
using the standard Java run configuration.

Table 5.1: jEdit and Pixelitor from within Eclipse using the standard Java run configuration
Run Start jEdit [ms] Start Pixelitor [ms]

1 3600 2430
2 2350 2360
3 2700 2350
4 2610 2410
5 2720 2410

Mean 2796 2392

The time used to start jEdit and Pixelitor is between two and three seconds, with Pixelitor being
a little bit faster. The average time spent in these jEdit and Pixelitor runs is used to calculate the
overheads of the following tested feature recording implementations. The overhead is the ratio
between the mean time spent in the corresponding standard Java run and the time used in the
measured run. An overhead of one means the measured run took exactly as long as the average
Java run.

jEdit and Pixelitor started with the Java Debugger. The following durations were mea-
sured when starting jEdit with the Java Debugger, using the trace go method command to
record invocations without halting. We present our measurements of the Java Debugger in Table
5.2.

Table 5.2: jEdit and Pixelitor started with the Java Debugger

Run Start jEdit [ms] Overhead jEdit Start Pixelitor [ms] Overhead Pixelitor
1 111870 40.1 72260 30.2
2 109540 39.3 73290 30.6
3 113680 40.7 71860 30.0
4 110010 39.4 72220 30.1
5 111510 39.9 72640 30.4

Mean 111322 39.9 72454 30.3

jEdit and Pixelitor with BOA and deactivated recording. The time was measured from
the beginning when the application launcher was clicked with heuristics and recording enabled
but recording deactivated (start button inside the FeatureView not clicked before launching, so
no recording of invocations during the start phase of jEdit but the possibility to start recording
anytime by clicking the start button).

42 CHAPTER 5. EVALUATION

The following class files inside the jEdit project were automatically excluded by the heuristics
check:

• com.microstar.xml.XmlParser

• org.gjt.sp.jedit.jEdit

• org.gjt.sp.jedit.bsh.Parser

• org.gjt.sp.jedit.textarea.TextArea

Neither the heuristic check excluded class files of Pixelitor, nor had we to exclude files manu-
ally.

Table 5.3 lists our measured results of BOA’s Data Gathering run configuration with deactivated
recording.

Table 5.3: Time spent to start jEdit and Pixelitor with the Data Gathering run configuration and
deactivated recording

Run Start jEdit [ms] Overhead jEdit Start Pixelitor [ms] Overhead Pixelitor
1 23140 8.3 13380 5.6
2 18830 6.7 11360 4.8
3 19420 6.9 11410 4.8
4 19390 6.9 12190 5.1
5 18510 6.6 11830 4.9

Mean 19858 7.1 12034 5.0

The fact that the first run was more than four seconds slower is because of the heuristics check
which finishes faster for all subsequent runs. As there is no mechanism inside BOA to cache the
results of the heuristics check, we assume that this speed up is the consequence of another cache
mechanism, for instance by providing faster access to files after they have been read for the first
time. We can say for sure that it is the heuristics check that takes more time in the first run,
because in the second run the exclude information dialog comes up almost immediately.

jEdit and Pixelitor with BOA and activated recording. Again we tested jEdit and Pixelitor
with BOA, but this time with recording activated. That means we clicked the start button before
we actually started jEdit.

Again the following class files from jEdit were automatically excluded by the heuristics
check:

• com.microstar.xml.XmlParser

• org.gjt.sp.jedit.jEdit

• org.gjt.sp.jedit.bsh.Parser

5.2. BENCHMARKS. 43

• org.gjt.sp.jedit.textarea.TextArea

Table 5.4 shows the time spent to start jEdit and Pixelitor with BOA and activated recording.

Table 5.4: Time spent to start jEdit and Pixelitor with the Data Gathering run configuration and
activated recording

Run Start jEdit [ms] Overhead jEdit Start Pixelitor [ms] Overhead Pixelitor
1 26900 9.6 16130 6.7
2 22380 8.0 14200 5.9
3 22370 8.0 13980 5.8
4 23010 8.2 14180 5.9
5 22710 8.1 14010 5.9

Mean 23474 8.4 14500 6.1

As in the first BOA test runs, we measure three to four seconds less time consumption after the
first run.

jEdit and Pixelitor with Major. First we measured the entire time taken by our experimental
Major run implementation to compile the class files, create the jar file and start it with Major
using the cct+slow aspect to record dynamic information. The following Table 5.5 shows the
results of the first Major tests.

Table 5.5: Time spent to start jEdit and Pixelitor with Major.

Run Start jEdit [ms] Overhead jEdit Start Pixelitor [ms] Overhead Pixelitor
1 90210 32.3 34220 14.3
2 73200 26.2 31790 13.3
3 76030 27.2 30910 12.9
4 75010 26.8 31200 13.0
5 73870 26.4 31110 13.0

Mean 77664 27.8 31846 13.3

As we saw in the log file, the jar building took about half of the starting-time. The configuration
of BOA’s experimental Major run configuration is definitely not optimal, as not the entire build
from the last launch has to be cleaned up. For example not every class has to be recompiled on
every single run or even the jar file could be reused in some cases. The cct+slow aspects we
used also delivers much more information than BOA’s Data Gathering, for example information
about the invocation inside the Java runtime libraries, and metrics that BOA’s aspect does not
deliver. When Major has properly started and jEdit or Pixelitor are launched, the performance
of the application seems to be better than with BOA’s final implementation. It is just the fact

44 CHAPTER 5. EVALUATION

that the preparations take a while and Major takes some time to start that makes these statistics
look as if Major was in fact slower. To be fair and to show that Major is very fast, we measured
the time spent to completely launch jEdit and Pixelitor from the point when all preparations
were done. That means from the point when Major starts up. Table 5.6 presents the lower time
consumption of Major ignoring the preparations.

Table 5.6: Time spent to start jEdit and Pixelitor with Major. No preparations.

Run Start jEdit [ms] Overhead jEdit Start Pixelitor [ms] Overhead Pixelitor
1 30210 10.8 11000 4.6
2 28560 10.2 11200 4.7
3 29410 10.5 11010 4.6
4 28210 10.1 11470 4.8
5 28850 10.3 10940 4.6

Mean 29048 10.4 11124 4.7

As we can see, Major is already very fast now. JEdit only takes about 15 to 20 seconds to
start. The other ten to 15 seconds are used to initialize Major. Major hence scales definitely
better than BOA’s Data Gathering. Pixelitor even starts faster with Major than with BOA’s own
solution.

Summary. We now summarize the average time spent for every technique we benchmarked
in Table 5.7.

Table 5.7: Summary of the benchmarks (OH stands for overhead)
Run jEdit [ms] OH jEdit Pixelitor [ms] OH Pixelitor
Normal Java run 2796 1 2392 1
Java Debugger 111322 39.9 72454 30.3
BOA, recording deactivated 19858 7.1 12034 5.0
BOA,recording activated 23474 8.4 14500 6.1
Major with preparations 77664 27.8 31846 13.3
Major without preparations 29048 10.4 11124 4.7

As we can see, both BOA techniques are fast. Sadly, the difference between recording activated
and recording deactivated is quiet small. Running BOA’s Data Gathering run configuration
with deactivated recording only improves the speed by about 15 to 20 percent. Still the speed
of BOA is the best out of the dynamic information gathering techniques we examined when
ignoring the Major runs without preparations.

5.3. DETECTING FAULTY METHODS 45

5.3 Detecting Faulty Methods

To evaluate the support of the plug-in concerning the help provided by BOA detecting faulty
methods, we tested the BugMapper in a bug-fixing scenario.

Preparations. To check whether BOA’s BugMapper helps in finding faulty methods or not,
we first checked out the project from the subversion repository in a version in which we knew
about a bug in the export functionality, located in a barcode generator. The barcode generators
implement a simple interface with a method returning a byte array representing the binary image
data of a barcode for a certain object in the system. We captured all export features and ten
additional random features of the ScanMe application and stored them in the XML file.

Finding the Faulty Method We opened the BugMapper and tested two scenarios: The buggy
feature against all other export features and the buggy feature against all features we recorded.
Our defined goal was that the faulty method was in the first 5 methods listed by the BugMapper.

The results of the BugMapper. The BugMapper listed the faulty method on the fifth place
when we tested the buggy feature against all export functionalities, and on the third place when
we tested against all recorded features in the software system. The first 7 methods in the list
had all the same bug relevance in the first test, while in the second test, two methods left their
leading positions in the ranking. The two methods were the getter and the setter of a field
of an exported object. As the rest of the export functionalities did not touch this object, the
bug relevance for these accessors was very high. Due to the fact that a feature updating local
information from the Internet touched these two methods, their bug relevance went down and
we produced a better result when testing against all recorded features.

Conclusions. The conclusions of these results are that a developer should not always test the
bug relevance against only a few other, very specialized features. Even though the check of a
getter or setter is easy, the problem can also arise with other methods than accessors. Over all,
we are happy with the result. Even though the BugMapper listed other methods first, the faulty
method was in the first five listed methods in both scenarios.

46 CHAPTER 5. EVALUATION

Chapter 6

Conclusions and Perspectives

6.1 Conclusions

During this project we developed BOA, a plug-in to record, visualize and analyze features inside
the Eclipse IDE. We used different feature recording techniques and selected the one fitting
our formulated requirements best. BOA’s final recording technique uses AspectJ. We created a
custom run configuration providing BOA’s feature recording technique called Data Gathering.
We analyzed different feature recording techniques in an evaluation. Also we evaluated the
Bug Relevance, a metric we implemented and which describes the relevance of a method for
a specified bug. The transmission technique used in BOA was written completely from the
ground up after using Java RMI. BOA is a fully functional plug-in for Eclipse and is released as
a open source project on SourceForge.

6.2 Perspectives

BOA demonstrates that feature recording, analysis and representation inside Eclipse can be
done in a way that developers can use it in their Java projects. The feature gathering technique
as well as the user interface certainly need enhancements. The following future work is planned
for BOA:

Faster data gathering technique. The data gathering technique could be improved regarding
speed. The next step is to improve the speed of an application with dynamic information
recording deactivated. We should be able to improve the speed by adding an advice checking
the recording state of the plug-in when the application starts up, and that way reducing the
lookup time on every invocation due to the fact that the BOA client currently has to check this

47

48 CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

in a suboptimal way. If we can be sure that no recording is requested from the beginning, we
can trust the recording-socket to inform the client when recording should start.

Improve the bug relevance. In our tests we discovered that in some cases, many methods
are listed on top of the list with the same bug relevance. To improve the bug relevance, other
factors like the number of lines of code inside a method could be considered. Even information
from repositories like the age of a method or the number of developers working on a piece of
code could be used to improve the metric.

Gathering more information. The recognition and transmission of information about other
performance relevant facts like the number of created objects or the execution time of a methods
execution could be integrated into BOA’s models and views.

Appendix A

Installation

We assume that the user has already installed the following software on his computer:

• JDK 1.6 from Sun / Oracle1

• Eclipse Classic 3.62

The best way to install BOA is to use the update site mechanism of Eclipse. That way not only
the installation process is processed almost automatically, but also updates can automatically be
downloaded and installed by Eclipse.
First a new site location has to be set up. Click Help - Install new software in Eclipse’s menu
bar. In the following window, click the add button. Enter a name (e.g. BOA update site) and
the update site URL of BOA. The current update site URL can be found on the SourceForge
page3. Click OK and select the site you just added in the drop-down at the top of the installation
window. A tree-like category structure should be available now. Select the plug-in called BOA
and hit next. Figure A.1 presents how the installation window could look like before clicking
next.

The next view will display the plug-ins installed by the operation. Clicking next again brings up
the licence. Accept the license agreement by selecting the upper radio button and hit next again
to install BOA.
Further help is available in Eclipse by selecting Help - Install New Software.

1http://www.oracle.com/technetwork/java/javase/downloads/index.html
2http://www.eclipse.org/downloads/moreinfo/classic.php
3http://boaforeclipse.sourceforge.net/

49

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/moreinfo/classic.php
http://boaforeclipse.sourceforge.net/

50 APPENDIX A. INSTALLATION

Figure A.1: Eclipse’s installation window with BOA selected for installation

Appendix B

User’s Guide

We now present two basic tasks that can be done with BOA. In the following tutorials we assume
BOA is properly set up and the developer is developing a standard Java application he wants to
record features from.

Recording and Representing a Feature

To start a Java application from within Eclipse with feature recording enabled, a Data Gath-
ering run configuration has to be configured first. To create a run configuration for a project,
right-click on the main-type of the project. The main-type is the Java class containing the static
main method starting the application. In the appearing context menu, click on Run As. In the
sub-menu, select Run Configurations... to get to Eclipse’s run configurator which enables the
user to manage the run configurations.

In the left column presenting all possible run configurations of Eclipse with their corresponding
already saved run configurations, right-click on Feature Gathering to select New. A new run
configuration appears. The Java application specific details under Main should automatically
be filled out by Eclipse. If not, use the configuration details from Eclipse’s standard Java run
configuration used so far to launch the application.

Next, open the tab called LTW Aspectpath. Click on User Entries and afterwards on the button
on the right of the window called Add project. Select all projects related with the application
as well as the project itself and click OK. The next step is to make sure the heuristic check to
exclude big Java classes is enabled. To make sure, open the Weaver Excludes tab and select the
Use Heuristics check-box. Click apply and Run to launch the application with feature recording
enabled.

51

52 APPENDIX B. USER’S GUIDE

The application should start up now. Referencing our benchmarks, the speed of the application
should be around 7 times slower. When the application has finished loading and all preparations
like loading files or creating a specific application state are done, go to the FeatureView and
hit the start button. From now on, every method invocation inside the Java application will be
recorded. Execute the desired feature and hit stop again in the FeatureView.

A new dialog asking for information about the feature appears. Fill out the information to store
the newly recorded feature. Now, other features can be recorded. Therefore hit start again, just
as in the first case. When all the features are recorded, close the application from within the
application or kill it with the red button in the top-right corner of Eclipse’s built in console.
We recommend to create the category structure first, and then start recording. The categories
should order the features in a way that features in the same category fulfill similar demands.
For example, rather put all export functionalities in one category than all features handling
operations on the User object of a project. As a consequence, features are easy to find and in a
comfortable structure for further use with the BugMapper.
Double clicking on a feature in the FeatureTree view opens the selected feature in all other
representations of the FeatureView.

Searching a Bug with BOA

We assume that all features of the analyzed application are already recorded. To start the
BugMapper, click the Map a Bug button in the FeatureView. A new dialog asking for informa-
tion about the bug appearance opens up. The two trees presented are used to select the features
in which the bug arises and in which not. First, select all features in which the bug arises.
Features as well as entire categories containing sub categories and features can be selected.

In the second tree, select the features or categories in which the bug did not arise. Do not select
features that were not tested yet or categories containing such. In our tests, we often received
better results when selecting only bug free features in the same domain as the bug affected, for
example all export features.

The BugMapper will create a list of methods ordered by their bug relevance when the Map
button is clicked. Double click on a method inside the list to navigate to the corresponding
source code fragment inside the Java source code editor.

Appendix C

Developer’s Guide

In this Chapter we will shortly introduce the most important packages and classes of BOA. The
description should help a developer when it comes to contribute code.

ch.byteality.swttree

The custom SWT base tree used for the GraphicalTree representation in the FeatureView is
completely inside this package. It depends on the MethodInvocationTree model of BOA.

TreeWindow The TreeWindow renders the GraphicalTree and contains three internal classes.

Bounds Bounds is a class that encapsulates the boundary variable of a rendered item

LineElement The LineElement is used to create the connecting lines between two RectEle-
ments.

RectElement The RectElement represents a renderable TreeNode. It also contains the whole
layout logic.

A TreeWindow is updated using the setTree(MethodTreeItem) method.

ScrollableTreeWindow The ScrollableTreeWindow class is the most simple way to embed
the tree inside a component. The class extends SWT’s ScrolledComposite class and instantiates
its own TreeWindow, wrapping its interface to enable tree updates.

53

54 APPENDIX C. DEVELOPER’S GUIDE

PainItemController The PaintItemController holds all items that should be painted in a list.
It enables the TreeWindow to display more than a single tree.

methodinvocationplugin.ctrl

The ctrl or controller package contains all controllers as well as the socket server and the
BugMapper logic of BOA.

Aspecter The Aspecter is responsible to build up the invocation tree and holds the cache array.
The class implements the process of caching indexed information and queueing unresolvable
references of CompressedInvocationInfo objects.

DataController The DataController implements the SelectionListener of Eclipse and there-
fore reacts on user interaction with Eclipse’s navigator and resource browser by reading the
projects xml or writing it if a new feature was recorded.

Launcher The Launcher implements the ILaunchDelegate. The class starts an application
with built in feature recording ability. It is also the class that implements the heuristic check
whether a class should be excluded due to its potential size after weaving or not.

MappingController The MappingController is the heart of the BugMapper, calculating the
Bug Relevance for a specified bug.

SimpleSerializationServer and SimpleSerializationServerThread The SimpleSerialization-
Server passes the incoming connections over socket port 1337 on to the SimpleSerialization-
ServerThread, which holds an ObjectInputStream to deserialized the invocation information
from the BOA client. To build up the tree, the SimpleSerializationThread calls the Aspecter’s
addMethodCall method when a new objects passes the stream.

SpeedyGonzalesCheese SpeedyGonzales is the speed up mechanism that leads to the op-
timized transmission, only transferring data when recording is activated. The SpeedyGonza-
lesCheese is a socket client, that sends the start and stop commands to the BOA client.

methodinvocationplugin.model

This package contains the different models used in BOA. Therefore it is important that the
newest library is available as a jar inside the class path of the running weaved application.

55

CompressedInvocationInfo and ExplicitInvocationInfo These two classes are used to trans-
fer the invocation information from the BOA client to the plug-in. As described in Chapter 4,
the CompressedInvocationInfo only holds the index of the actual ExplicitInvocationInfo, while
the last one holds the whole information. When new information is added to the ExplicitInvoca-
tionInfo, it is important that the cheapClone method is correctly extended. Otherwise copied
invocation information from the cache array will suffer from information loss.

Feature The Feature is holding a name and a root of the type MethodInvocationTree repre-
senting a single feature.

FeatureGroup Categories are organized in FeatureGroups. A FeatureGroup can hold other
FeatureGroups as sub-categories and Features.

MetricInformationHolder The MetricInformationHolder simply holds the metric informa-
tion of a MethodInvocationItem.

TreeUtil This class is used for common used tree transformations and other stuff. A developer
should write general tree utility methods in here.

methodinvocationplugin.views

The views package contains all user interfaces of BOA.

LauncherUI The LauncherUI contains all the launcher tabs that are available to the run
configuration of the Feature Gathering technique of BOA. These include

• The JavaMainTab

• The JavaJRETab

• The CommonTab

• The LTWAspectPathTab

• The CustomLTWExcludeTab

When adding new views, it is important that they are correctly set up in the initializeFrom, set-
Defaults and performApply methods. All tabs have to implement or extend a class implementing
ILaunchConfigurationTab.

56 APPENDIX C. DEVELOPER’S GUIDE

FeatureView The FeatureView is the main view of BOA. It is the only one besides the
LauncherUI that is directly integrated inside Eclipse and therefore registered in the plu-
gin.xml

MetricWindow The MetricWindow is used to show the metric information of a method inside
a feature.

methodinvocationplugin.views.components

The views.components package contains all components written for BOA.

BugMapperFrame This is the view of the Bugmapper.

MethodDedicationMatrixUtil This view is used to generate the heatmap using images of
such a heatmap representation.

MethodDedicationMetrix This component renders a square per method, relying on the
MethodDedicationMatrixUtil to render the heatmap color.

Bibliography

[1] Victor Basili. Evolving and packaging reading technologies. Journal Systems and Software,
38(1):3–12, 1997.

[2] Robert C.Martin. Clean Code, A Handbook of Agile Software Craftsmanship. Prentice
Hall, 2008.

[3] Thomas A. Corbi. Program understanding: Challenge for the 1990’s. IBM Systems
Journal, 28(2):294–306, 1989.

[4] Wim De Pauw, Richard Helm, Doug Kimelman, and John Vlissides. Visualizing the
behavior of object-oriented systems. In Proceedings of International Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’93),
pages 326–337, October 1993.

[5] Alastair Dunsmore, Marc Roper, and Murray Wood. Object-oriented inspection in the
face of delocalisation. In Proceedings of ICSE ’00 (22nd International Conference on
Software Engineering), pages 467–476. ACM Press, 2000.

[6] Stephen G. Eick, Joseph L. Steffen, and Sumner Eric E., Jr. SeeSoft—a tool for visualizing
line oriented software statistics. IEEE Transactions on Software Engineering, 18(11):957–
968, November 1992. Depth.

[7] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Locating features in source code.
IEEE Computer, 29(3):210–224, March 2003.

[8] Philippe Flajolet, Paolo Sipala, and Jean-Marc Steyaert. Analytic variations on the
common subexpression problem. In Automata, Languages, and Programming, volume
443 of LNCS, pages 220–234. Springer Verlag, 1990.

[9] Orla Greevy, Michele Lanza, and Christoph Wysseier. Visualizing live software systems
in 3D. In Proceedings of SoftVis 2006 (ACM Symposium on Software Visualization),
September 2006.

[10] Marcel Haerry. Augmenting eclipse with dynamic information. Master’s thesis, University
of Bern, May 2010.

57

58 BIBLIOGRAPHY

[11] Abdelwahab Hamou-Lhadj and Timothy Lethbridge. An efficient algorithm for detecting
patterns in traces of procedure calls. In Proceedings of 1st International Workshop on
Dynamic Analysis (WODA), May 2003.

[12] Dean Jerding, John Stasko, and Thomas Ball. Visualizing message patterns in object-
oriented program executions. Technical Report GIT-GVU-96-15, Georgia Institute of
Technology, May 1996.

[13] Michael F. Kleyn and Paul C. Gingrich. GraphTrace — understanding object-oriented
systems using concurrently animated views. In Proceedings of International Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’88),
volume 23, pages 191–205. ACM Press, November 1988.

[14] Danny Lange and Yuichi Nakamura. Interactive visualization of design patterns can
help in framework understanding. In Proceedings ACM International Conference on
Object-Oriented Programming Systems, Languages and Applications (OOPSLA’95), pages
342–357, New York NY, 1995. ACM Press.

[15] Alok Mehta and George Heineman. Evolving legacy systems features using regression
test cases and components. In Proceedings ACM International Workshop on Principles of
Software Evolution, pages 190–193, New York NY, 2002. ACM Press.

[16] Steven P. Reiss. Visualizing Java in action. In Proceedings of SoftVis 2003 (ACM
Symposium on Software Visualization), pages 57–66, 2003.

[17] David Röthlisberger, Orla Greevy, and Adrian Lienhard. Feature-centric environment. In
Proceedings IEEE International Workshop on Visualizing Software for Understanding
(Vissoft 2007) (tool demonstration), 2007.

[18] David Röthlisberger, Orla Greevy, and Oscar Nierstrasz. Feature driven browsing. In
Proceedings of the 2007 International Conference on Dynamic Languages (ICDL 2007),
pages 79–100. ACM Digital Library, 2007.

[19] Norman Wilde and Ross Huitt. Maintenance support for object-oriented programs. IEEE
Transactions on Software Engineering, SE-18(12):1038–1044, December 1992.

	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Identification
	The Addressed Problems
	Requirements

	BOA - Feature Recording and Visualization
	Contributions
	Structure of the Thesis

	State of the Art
	Dynamic Information Recording with Major
	Feature Driven Browsing - Integration of Features in IDEs
	Seesoft-A Tool For Visualizing Line Oriented Software Statistics
	Runtime Information in Eclipse - Senseo
	Other Related Research
	Metric Information
	Feature Dedication
	Bug Relevance
	Miscellaneous Metrics

	BOA
	Implementation
	Fundamentals
	Java
	Eclipse IDE

	Dynamic Information Gathering and Tree Creation
	The Invocation Data Model
	Examined Dynamic Information Gathering Techniques

	Custom Data Transmission from the Application to BOA
	Data Storage
	Plug-in Design
	Specifications
	Eclipse Plug-in

	Evaluation
	Analyzed projects
	Benchmarks.
	Detecting Faulty Methods

	Conclusions and Perspectives
	Conclusions
	Perspectives

	Installation
	User's Guide
	Developer's Guide
	Bibliography

