
The Lego Playground
Providing an IDE for live programming Lego

Mindstorm robots

Bachelor Thesis

Stefan Borer
from

Kleinlützel SO, Switzerland

Faculty of Science
University of Bern

February 16, 2016

Prof. Dr. Oscar Nierstrasz
Dr. Mircea Lungu, Dr. Jan Kurš

Software Composition Group



2

Institut für Informatik und angewandte Mathematik
University of Bern, Switzerland



Abstract

The Lego Mindstorms robotics kit with its visual programming language is
often used in schools and universities teaching programming and mathemat-
ics. Meanwhile Live Programming is gaining traction in the field of robotics,
offering the programmer more feedback and control over the robot than
traditional methods. In his work on the back end of this project, Theodor
Truffer implements a new way to program Lego Mindstorms robots in a
Live Programming way using the Polite programming language. This thesis
provides an Integrated Development Environment for the back end including
state machine visualization, inspection and manipulation of state machine
objects, creating a Live Programming experience.

1



Contents

1 Introduction 4

2 Related Work 6
2.1 Lego Mindstorms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Live Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 LRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Polite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Back end 10
3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 State Machine Model . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Additions to State Machine Model . . . . . . . . . . . . . . . . 11
3.1.3 Nested State Machines . . . . . . . . . . . . . . . . . . . . . . 12

4 Requirements 13
4.1 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Code Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.2 State Machine Visualization . . . . . . . . . . . . . . . . . . . 13
4.1.3 Inspection and Manipulation . . . . . . . . . . . . . . . . . . . 14
4.1.4 Saving and Loading . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.5 Connection handling . . . . . . . . . . . . . . . . . . . . . . . 14

5 Implementation of Lego Playground 15
5.1 Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.2.1 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.1.1 PLEditorPane . . . . . . . . . . . . . . . . . . . . . 17
5.2.1.2 PLRightPane . . . . . . . . . . . . . . . . . . . . . . 17

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3.1 Code Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3.2 From Code To Visualization . . . . . . . . . . . . . . . . . . . 19

2



CONTENTS 3

5.3.3 Inspect and Manipulate . . . . . . . . . . . . . . . . . . . . . . 20
5.3.4 Nested state machines . . . . . . . . . . . . . . . . . . . . . . 20

6 Usability Testing 22
6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.1.1 Usage Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Conclusion and Future Work 26

8 Anleitung zu wissenschaftlichen Arbeiten 27
8.1 Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8.1.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.1.2 Connecting via IP . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.1.3 An example program . . . . . . . . . . . . . . . . . . . . . . . 28
8.1.4 Running the example . . . . . . . . . . . . . . . . . . . . . . . 30

8.1.4.1 Inspection and manipulation . . . . . . . . . . . . . . 30
8.1.4.2 Nesting . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.1.4.3 Reaching end and disconnecting . . . . . . . . . . . 32



1
Introduction

Lego Mindstorms EV3 is an easy solution to enter the fields of robotics that is often used
to teach programming and mathematics at a beginners level from schools to university.
The principle of Live Programming has emerged more and more in the field of robotics,
providing better control and interaction to the programmer than traditional approaches.
Live Robot Programming (LRP) [1] is a notable project following this principle. It makes
use of the Pharo Smalltalk environment in order to provide interaction with robots in
real-time, both by monitoring and changing its behavior.

The Polite Smalltalk programming language written by Mircea Lungu and Jan Kurš
[2] addresses a problem most traditional languages ignore: inconvenient identifiers.
Defining meaningful identifiers is often solved by gluing together words by using ei-
ther camel case or underscores. This convention reduces readability of programming
languages compared to natural language and may feel intimidating for beginners and
inexperienced programmers. Polite solves this problem by introducing space separated
identifiers, resulting in a syntax that is closer to natural language. Being still a language
of the Smalltalk family, Polite inherits all its object-oriented principles and the perks of a
Smalltalk environment.

Theodor Truffer’s work [3] pairs the Live Programming principle with the Polite
language for a solution to interact with EV3 robots. It lets the programmer create state
machine driven programs for the EV3 robot and interact with it in real-time by changing
transitions and other properties on the fly. Truffer’s project makes use of JetStorm to
interface with the robot and adds an abstraction layer to further simplify interaction.

4



CHAPTER 1. INTRODUCTION 5

Using Polite and a user-friendly API, this project acts as the back-end for an alternative
to visual programming languages for beginners interested in robots but it lacks a suitable
front-end.

In this thesis we introduce the Lego Playground which aims to provide an Integrated
Development Environment (IDE) for live programming of EV3 robots based on the
mentioned back-end. Following the Live Programming approach, the IDE comes with
features like real-time modification of program properties, visualization of its logical
state machine including highlighting of the current state and more.

After a short Chapter on related work, we will learn about the most important
concepts implemented in the back end. The third Chapter collects requirements for the
IDE, followed by a description on how the Lego Playground is implemented based on
these requirements. At last the proposed solution is evaluated through usability testing
and made accessible in a tutorial.



2
Related Work

This Chapter provides an overview of related products and projects that influence the
topic discussed in this thesis.

2.1 Lego Mindstorms
Lego Mindstorms1 is a kit containing software and hardware to build and program robots.
The core element of this kit is the programmable brick, which is used to connect with
electromotors and sensors. Starting from 1994 a whole series was developed with the
most recent generation called Lego Mindstorms EV3. It features software based on
LabVIEW2 which offers a visual programming language to program the brick.

The programming language is based on graphical elements of different kinds, identified
by color. The elements can be dragged onto the workspace and interconnected to design
a program flow. For example green boxes represent motors and offer handles to set
different properties such as their speed percentage or when to stop. Differently colored
elements feature ways to control program flow through loops and timers, read out sensor
values, compare them through logical operators and more.

1https://www.lego.com/en-us/mindstorms
2http://www.ni.com/labview

6

https://www.lego.com/en-us/mindstorms
http://www.ni.com/labview


CHAPTER 2. RELATED WORK 7

Figure 2.1: A sample program in LabVIEW.3

While this graphical approach aims for beginners, there are also alternative ways
to control the EV3 brick for advanced users. Numerous projects exist to use different
programming languages, either running directly on the brick like e.g., Java using the
leJOS firmware4 or interface with the brick through its remote control interface such as
ROBOTC, a C-based programming language5.

2.2 Live Programming
Live Programming is a concept introduced by Tonimoto in VIVA [4]. Initially limited to
visual programming languages it defines different levels of liveness for programs. The
highest level of liveness is reached - and thus regarded as Live Programming - when
programs are continually active and their behaviors are modified immediately when
changed by the programmer [5].

3Taken from http://arstechnica.com/gadgets/2013/08/review-lego-mindstorms-ev3-means-giant-robots-
powerful-computers

4http://www.lejos.org/
5http://www.robotc.net

http://arstechnica.com/gadgets/2013/08/review-lego-mindstorms-ev3-means-giant-robots-powerful-computers
http://arstechnica.com/gadgets/2013/08/review-lego-mindstorms-ev3-means-giant-robots-powerful-computers
http://www.lejos.org/
http://www.robotc.net


CHAPTER 2. RELATED WORK 8

2.2.1 LRP
Live Robot Programming (LRP) is a programming language for nested state machines
designed around the principles of Live Programming [1]. In addition to the language it
features an Integrated Development Environment programmed and running in Pharo6

that comes with state machine visualization (see Figure 2.2). One of its targets is the EV3
brick which - equipped with a Wifi key - can be interfaced using JetStormForPhratch7.

Figure 2.2: The Live Robot Programming IDE

2.3 Polite
Polite is a programming language introduced by Mircea Lungu and Jan Kurš in 2013
[2][6][7]. It’s derived from Pharo Smalltalk but allows a different grammar for identifiers.
It features so called sentence case or phrase case identifiers which are replacements of
camelCaseIdentifier or underscore identifier. As a result program entities such as classes
or methods can be declared using phrases as names.

The main motivation for Polite is that naming of program entities is critical for read-
ability. With good class and method names, code can be made nearly self-explanatory.

6http://pharo.org/
7http://www.phratch.com/jetstorm

http://pharo.org/
http://www.phratch.com/jetstorm


CHAPTER 2. RELATED WORK 9

As its syntax favors readability, Polite seems to be a good idea for this project because
its code looks friendlier to both newcomers in Smalltalk and programming beginners in
general.



3
Back end

In his work, Theodor Truffer describes the computational model that allows the use of
Polite with state machines, how it interacts with the LEGO Mindstorms hardware and
how we can take control over the robot using this API[3]. The following sections provide
a short overview of this architecture, specifically of the underlying state machine model,
as it serves as the back end to this project.

3.1 Architecture
The back end is designed around the PoliteVehicle class. This class represents a robot,
which can be seen as its physical entities and the means to control it in a programmable
way. As such, PoliteVehicle uses the JetStorm library to connect to the LEGO robot
and provides a wrapper for specific functionalities such as driving forward or reading a
sensor.

Once a PoliteVehicle is initalized, a state machine can be run on it through
the PLProcessor instance, which implements the main execution loop. It accepts a
PLStartState as the beginning of a state machine and makes use of further information
stored in a PLContext. We will now go into more details.

3.1.1 State Machine Model
To control the behavior of a robot, finite state machines are popular choice. State
machines can be used as a representation of a robot’s physical (e.g., driving speed,

10



CHAPTER 3. BACK END 11

distance from an object) and logical (e.g., what to do if condition X is encountered) state,
while the robot is always in exactly one state at a given time, called the current state.
From a given state, there is a finite set of transitions to successor states available. One of
the transitions is used once its condition becomes true, resulting in a change of state.

Because the program of a robot can be modeled using state machines, they offer a
natural way to control it and a convenient way to visualize and keeping track of a robot’s
program. However, by default finite state machines do only passively keep track of a
system without possiblity to interact with it.

Mealy Machines A Mealy machine is a kind of finite state machine. It is a set of states
connected by transitions which themselves are evaluated under a certain condition and,
as an extension to basic finite state machines, result in an action.

In the back end, states and transitions are represented by instances of the PLState

and PLTransition classes. A PLStartState is a kind of PLState which indicates the
start of a state machine, while any state lacking an outgoing transition implicitly is an
end state.

Figure 3.1: A transition of a Mealy Machine, which changes from the state Driving to
Turning if the condition (Color Sensor = black) is met, resulting in an action (Turn left).

The action or output function of the Mealy Machine is needed to change the robot’s
behavior while running a program. Instead of just being a passive object as in a normal
finite state machine, the Mealy Machine makes the robot an active subject in its environ-
ment. However, in order to get more flexibility out of this state machine model, we need
to introduce some additions to the basic state and transition concept.

3.1.2 Additions to State Machine Model
In order to allow more flexible programming of robots, the paragraphs introduce exten-
sions to the traditional state machine model.

Wildcards Wildcards are a kind of transitions, consisting of conditions and actions but
without a starting state. Instead, a PLWildcard can be triggered at any time of execution



CHAPTER 3. BACK END 12

(that is, no matter what the current state is). This allows regular checking for certain
conditions (e.g., if the distance is less than 10 cm), without the need of defining such a
transition for every state there is.

Variables The use of variables gives us more computational possibilities. For example,
variables can be incremented in a PLTransitions action block every time a black tile is
detected through the color sensor. In turn a PLTransitions condition can be dependent
on the value of a variable, allowing more versatile logic.

Timers Timers are much like special variables containing a timer object which keeps
track of the time passed since its creation. In the program flow, timers offer another
possibility to control the robot’s behavior.

These elements are all stored in the PLContext upon execution time, allowing modifi-
cation during execution.

3.1.3 Nested State Machines
A nested state machine is an ordinary state machine. As such, it consists of a
PLStartState, transitions and a set of states, at least one of which is an implicit end
state. Once such a state machine is saved to a script (more about this later), it can be
referenced by another state machine through its script name.

As a result, a transition can take a whole state machine definition as an action block,
execute this nested state machine and continue to the succeeding state once the nested
state machine is terminated.

Nesting of state machines allows to simplify scripting of robots, because a complex
task can be divided into multiple simpler tasks. It also promotes reuse of existing code,
since a saved script can be interpreted as a state machine on its own and therefore
referenced in another script, treating it as a nested state machine.



4
Requirements

This thesis aims to describe a full-fledged Integrated Development Environment (IDE)
to control LEGO Mindstorms robots using the back end of the previous Chapter 3,
combined with the Polite Smalltalk language. We will now take a look at what such an
IDE should offer to the programmer.

4.1 Graphical User Interface

4.1.1 Code Editor
The most important part of an IDE is obviously the code editor. As such, it needs to
take keyboard input and print it to a text field. To support the programmer, highlighting
key elements of the used syntax is an effective solution: The programmer finds variable
names based on visual preattentive processing or gets signaled of syntax errors when the
code turns red.

4.1.2 State Machine Visualization
It is helpful for the robot programmer to have an ongoing visualization of this repre-
sentation, as it enables him to verify the correctness of the code in an easy way. Also,
debugging of misbehavior is simplified, because the logical state of the robot can be
tracked in a real time manner.

13



CHAPTER 4. REQUIREMENTS 14

Because the state machine model in this project is extended by additional elements,
it must draw the state machine not only with its states and transitions, but also take
into account the special elements that were added as well. Nesting of state machines as
well as wildcards should each get a fitting representation, while not making the main
visualization confusing for the programmer.

Highlighting Having a representation of the state machine is one thing, but how can
we verify in which state it is at the moment? This is where highlighting comes into play.
It means that the current state in the current state machine should be distinguishable from
other states/state machines and that this highlighting must be updated upon each change
of state.

4.1.3 Inspection and Manipulation
Next to visualizing the underlying state machine, live manipulation of elements adds
up to a good programming experience using an IDE, encouraging the user to interact
with the robot in as natural a fashion as possible. To provide this kind of immersion,
key elements such as variables and timers should expose a way to interact with them,
changing values and inherently the characteristics of the program.

4.1.4 Saving and Loading
As the programmer writes more and more complex scripts, the possibility to save his
work and load it again is another requirement. This standard task is of special importance
in our project, because state machines can be nested by a reference to a script containing
a state machine definition.

4.1.5 Connection handling
Because the IDE needs to interact with a LEGO Mindstorms brick, there needs to be
a way to connect to and disconnect from it. This should be as easy as possible, only
needing the IP as information.



5
Implementation of Lego Playground

To fulfil the requirements mentioned in the previous Chapter, there are a number of
decisions to make. Some of which are of a technical nature, such as the decision about
the toolkit used for drawing the GUI, some are about the interaction of the UI with the
underlying subsystem and some are design related. As this project takes place in the
Pharo Smalltalk environment, the implementation resides in this ecosystem.

5.1 Toolkit
To start the implementation of the user interface, a decision about the tools used for
drawing its elements is necessary. There are a number of available tools to draw graphical
elements in Pharo which we will discuss here.

Morphic Morphic is Pharo’s graphical user interface and everything drawn inside
Pharo is a Morph. It is very low-level as every element of a UI is a subclass of Morph, the
most basic object to be rendered in a Pharo VM.

Glamour Glamour is a dedicated framework to describe the navigation flow of browsers.
Thanks to its declarative language, Glamour allows one to quickly define new browsers
for their data.

Spec Spec is a widget based framework which promotes reuse. It takes a model and
layout description to create a widget, which can be reused and combined with others to

15



CHAPTER 5. IMPLEMENTATION OF LEGO PLAYGROUND 16

create a UI. This allows for flexible and complex interfaces.

Decision Morphic is a rather exhaustive tool to implement complex user interfaces. It
leaves the programmer a lot of freedom in the design but also requires a big amount of
work to implement.

Glamour is good higher level framework for displaying and interacting with data.
Because the Lego Playground is not browser for data, it somehow misses the point in
this use case.

Therefore decision on the toolkit was in favor for the Spec framework, because it has
good online documentation, a robust API and parts of the UI can be reused from the LRP
project. Mainly the state machine visualization pane could be integrated, which does
exactly what is need in the Lego Playground as well.

5.2 Graphical User Interface
According to Chapter 4 there are a number of characteristics a suitable GUI for live
programming robots should offer. The PLPlayground class is the implementation of
this GUI, containing all the functionality discussed in Chapter 4.1 It interacts with the
back-end to control the robot and also to get feedback from the robot and its logical state.

1To install the software, the reader is referred to Theodor Truffer [3, p. 38], which contains a tutorial.



CHAPTER 5. IMPLEMENTATION OF LEGO PLAYGROUND 17

Figure 5.1: The Lego Playground

5.2.1 Layout
The Lego Playground (implemented by the PLPlayground class) consists of two columns,
the left one containing the PLEditorPane and the right one the PLRightPane.

5.2.1.1 PLEditorPane

The PLEditorPane holds three rows: the top menu, the code editor and the console output.
The menu contains buttons for saving and loading from a file, connecting to the EV3
brick, storing to a method and running the script. The code editor plugs in the code
highlighter and the Polite parser.

5.2.1.2 PLRightPane

This is where the run time action is going on. In the upper part, the method list presents
state machines already stored and offers to open them in the code editor or delete them.
There are lists for states and meta objects, each with an inspection button allowing to
inspect and manipulate a selected object in the list.

On the bottom, the state machine visualization is taking place. A big pane provides
space for sophisticated state machine representations, while the left-hand list acts like a
stack, showing the nesting depth of the current state machine running.



CHAPTER 5. IMPLEMENTATION OF LEGO PLAYGROUND 18

Figure 5.2: The PLRightPane in action, showing (1) available methods, (2) States of the
current SM, (3) Context and Robot objects to check wildcards and various properties, (4)
SM visualization and (5) the current machine nesting.

5.3 Implementation

5.3.1 Code Editor
According to our requirements, a code editor needs to take text input, print it to the
screen, allow edits of the text and highlight the syntax of the language in use. Thanks
to the widget driven design of Spec, we can reuse an existing implementation. In this
case a RubScrolledTextMorph does the job, providing a code pane with line numbers
display. The code highlighting is done by the PoliteTextStyler.2 Every time the
code is changed, the PoliteTextStyler parses it and returns a colorized version. If the
programmer hits the GO button, the text is passed to PoliteSmalltalk>>execute.

2Please note that this project relies on version PoliteSmalltalk-TheodorTruffer.62 of [8].



CHAPTER 5. IMPLEMENTATION OF LEGO PLAYGROUND 19

5.3.2 From Code To Visualization
Once the code is executed i.e., the state machine is built, PLProcessor>>execute: takes
over and runs the state machine. But how does the IDE know what the state machine
looks like and what the current state is? The PLProcessor notifies the IDE everytime
something changed.

On launch of PLProcessor>>execute: it passes the PLStartState to PLRightPane
>>pushMachine.

Figure 5.3: A running program with current state Driving and current machine Treasure
Hunter.

As the terminology suggests, state machines are treated in a stack-like fashion. The
method pushes the new state machine to the machine list, making it the top stack element.
It also parses the state machine to get all states and populates the states list as well as
draws the visualization.

From now on, the PLProcessor notifies the UI every time the state changes. In turn,
the UI updates the visualization pane which highlights the new current state. For the
highlighting, a color-based approached is used, where the current state is colored black
and the nesting is highlighted in blue. This approach is straight forward to implement
and sufficiently effective in hinting the current system state.



CHAPTER 5. IMPLEMENTATION OF LEGO PLAYGROUND 20

Figure 5.4: After the program hit an transition resulting in nesting, the current machine
is now Celebrate and its current state is corner1.

5.3.3 Inspect and Manipulate
In the top right part of the UI are the States and Meta objects lists. The former holds the
states objects of the state machine, while the latter consists of just two items: Context and
Robot. Both lists come with an Inspect button, which launches a Pharo-native inspect
window of the selected item. This allows viewing the details of each object and even
manipulating its properties.

For example, inspection of a state object enables the programmer to interact with its
transitions and change their conditions, actions or next state.

The Context item offers a similar functionality: interaction with all the variables and
timers stored in PLContext.

The robot item does the same and offers the programmer means to change PoliteVehicle
related values, such as the default speed. Most interestingly, we can read out sensor

values such as color or distance from an object.

5.3.4 Nested state machines
Push When nesting of state machines occurs, a couple of changes happen to the
UI which are handled by PLRightPane>>pushMachine:. It pushes a new item to the
machine list and highlights it, collects the new states, repopulates the states lists and
lastly redraws the visualization with the new machine.

Pop Similar actions are taken once a nested machine terminates. This time, PLRightPane
>>pushMachine: takes care of the process utilizing a backed up copy of the underlying



CHAPTER 5. IMPLEMENTATION OF LEGO PLAYGROUND 21

state machine.



6
Usability Testing

A popular way to test a user interface for its usability is the heuristic evaluation proposed
by Nielsen and Molich [9]. Authors propose a list of fundamental usability principles
(called heuristics) which can be used to compare the individual UI elements with.

It’s an easy, fast and cheap usability engineering method, relying only on a small
set of evaluators: The sweet spot in most cases lies between three to five evaluators. A
single evaluator was able to find 35% of usability problems averaged over 6 projects,
while there was a decreasing benefit from each additional expert [10].

6.1 Method
The most important question to answer before the conduct of an heuristic evaluation is
the number of experts needed. A couple of parameters play into the decision.

One of these is the complexity of the user interface. As this project never aimed to be
a feature rich and extendable IDE (such as e.g., Eclipse1), the resulting user interface is
of relatively low complexity.

A big reason for the low complexity is its domain specific use case: The sole purpose
of the Lego Playground is to program one exact model of Lego Mindstorms robots
using state machine definitions in Polite Smalltalk language over a wireless network
connection.

The previous points give rise to the last: cost. Introducing an expert into a domain
specific software is cost intensive. At the same time the user interface is of limited

1http://www.eclipse.org/ide/

22

http://www.eclipse.org/ide/


CHAPTER 6. USABILITY TESTING 23

complexity, suggesting only a small number of experts.
As a result of these considerations, the evaluation was conducted by one expert.

Given the highly domain specific use case of this project (including the Polite Smalltalk
programming language), leaving the expert unguided during the session seems unrea-
sonable. In such a case the authors suggest to provide a usage scenario by listing the
required steps for the evaluator to fulfill.

6.1.1 Usage Scenario
A suitable scenario for our use case contains all important dialogue elements but shouldn’t
make the evaluator learn the Polite Smalltalk language beforehand. It should however let
the expert interact with the state machine handles.

As a compromise, the following list of steps was aggregated:

1. Connect to the EV3 robot
2. Load a script from file given by path and name
3. Run the script
4. Inspect the state Driving
5. In the first transition of Driving, change the minimal distance to 150
6. Observe the visualization, wait for the robot to finish
7. Make change from step 5 to the script and save it to file
8. Disconnect the robot

6.2 Results
In the conducted Heuristic Evaluation a number of usability problems were found. Each
list entry is denoted by the violated heuristics as found in Table 6.1.

• There is no text-based menu bar to connect the EV3 robot. One has to guess which
icon identifies which functionality, e.g., the Connect button, only the tooltips may
help. This violates a de-facto standard present in other applications. However it is
consistent inside the Pharo environment, as applications therein lack traditional
menu bars. Still the button could be text driven as e.g., in the Monticello browser
(see Figure 6.1 for a comparison). (2, 3)

Figure 6.1: The Monticello menu bar using labels instead of icons.



CHAPTER 6. USABILITY TESTING 24

• After hitting Connect, there is no way to tell if the connection was successful or
not. The status of the connection is invisible in the main window. A second click
on the button reveals a new dialogue to disconnect the robot, so one has to guess
the connection was successful. (1)

• When inspecting the state Driving, there is no way to tell which transition is in
question for modification. In the worst case, one has to click each entry in order to
find the correct transition (see Figure 6.2). (6)

Figure 6.2: The transition of interest is found in array element 1, but no hint points to
that entry.

• Individual panes cannot be minimized to get a better look at the visualization. This
restricts the user’s flexibility interacting with the UI. Resizing the whole window
is similarly problematic, the user cannot decide how big each pane is. (7)



CHAPTER 6. USABILITY TESTING 25

1. Visibility of system status: The system should always keep users informed about
what is going on, through appropriate feedback within reasonable time.

2. Match between system an the real world: The system should speak the users’
language, with words, phrases, and concepts familiar to the user, rather than
system-oriented terms. Follow real-world conventions, making information appear
in a natural and logical order.

3. User control and freedom: Users often choose system function by mistake and
will need a clearly marked ”emergency exit” to leave the unwanted state without
having to go through an extended dialogue. Support undo and redo.

4. Consistency and standards: Users should not have to wonder whether different
words, situations, or action mean the same thing. Follow platform conventions.

5. Error prevention: Even better than good error messages is a careful design which
prevents a problem from occurring in the first place.

6. Recognition rather than recall: Make objects, actions, and options visible. The
user should not have to remember information from one part of the dialogue to
another. Instructions for use of the system should be visible or easily retrievable
whenever appropriate.

7. Flexibility and efficiency of use: Accelerators – unseen by the novice user – may
often speed up the interaction for the expert user to such an extent that the system
can cater to both inexperienced and experienced users. Allow users to tailor
frequent actions.

8. Aesthetic and minimalist design: Dialogues should not contain information which
is irrelevant or rarely needed. Every extra unit of information in a dialogue
competes with the relevant units of information and diminishes their relative
visibility.

9. Help users recognize, diagnose, and recover from errors: Error messages should
be expressed in plain language (no codes), precisely indicate the problem, and
constructively suggest a solution.

10. Help and documentation: Even though it is better if the system can be used without
documentation, it may be necessary to provide help and documentation. Any such
information should be easy to search, focused on the user’s task, list concrete steps
to be carried out, and not be too large.

Table 6.1: Revised set of usability heuristics by Nielsen [10]



7
Conclusion and Future Work

As we found in the Heuristic Evaluation, the Lego Playground has its usability issues.
Nevertheless the Lego Playground can be a suitable tool for live programming Lego
Mindstorms robots and as such fulfills the requirements of Chapter 4.

Software - especially graphical software - is never finished. This is indeed true for
integrated development environments where software progression is very well noticeable.
There are many approaches to assist programmers in their tasks, from project-wide
code refactoring to git integration, static code analysis and debugging tools. With these
enrichments happening in popular IDEs, the bar has risen for code editors to satisfy the
modern programmer. While these were not the requirements for this project, there are
many possible ways to extend the proposed IDE in the future without adding specific
examples.

Leaving aside generic IDE tools, there are also possible enhancements specifically
targeting our problem domain. One improvement could be migrating the back end to
the newer Polite Smalltalk version as proposed by Thomas Steinmann [8]. This most
recent version is able to replace standard Smalltalk with the exception of class methods,
thus it would be possible to implement the large parts of the back end using Polite
itself. As an integration in the Lego Playground, the programmer could extend the basic
PoliteVehicle with different robot builds thanks to support for classes and inheritance.

26



8
Anleitung zu wissenschaftlichen Arbeiten

8.1 Tutorial
This section is a tutorial on how to use the Lego Playground. It contains information on
how to connect and disconnect an EV3 robot and how to interact with it based on a given
example. The main focus lies on the usage of the IDE. For instructions how to prepare
the robot and how to install the software please refer to Theodor Truffer’s thesis’ section
Anleitung zu wissenschaftlichen Arbeiten.

8.1.1 Prerequisites
We assume that the EV3 robot is connected to the same wireless network as the computer
in use and we know the EV3 brick’s IP address. Also, there needs to be an appropriate
installation of Pharo present as well as a prepared image with the PoliteSmalltalk project
installed. If that’s the case, we can start the Lego Playground (which internally is called
PLPlayground) in Pharo by executing the following command in a workspace using
‘Super + D’):
PLPlayground open.

8.1.2 Connecting via IP
At this point we are presented with the Lego Playground, which we first use to connect
to our EV3 robot. This is done via the green arrow in the top bar. We enter the EV3’s IP

27



CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 28

address and confirm the input. If no error message shows up in the Console field, we are
good to go.

Figure 8.1: Connection dialog asking for an IP address.

8.1.3 An example program
Now it’s time to run a program. The example may seem a bit overwhelming, but we will
go through it step by step.

|start, end, driving, turning, speedup |
start := PLStartState, new Called: 'Start'

machine Called: 'Treasure Hunter'.
driving := PLState, new Called: 'Driving'.
turning := PLState, new Called: 'Turning'.
end := PLState, new Called: 'End'.

start,
when: [ :rt | true ]
do: [ :rt | rt, robot, drive forward.

rt, context, add Timer: #MachineTimer;
when: [ :runtime |

(runtime, context, get Time Of: #MachineTimer) > 100 ]
do: [ :runtime | runtime, robot, stop ]
goTo: end;
when: [ :runtime | (runtime, robot, color = #black) ]
do: [ :runtime | MyScripts, celebrate.

runtime, robot, drive Forward. ]
goTo: driving. ]

goTo: driving.

driving,
when: [ :rt | (rt, robot, distance < 200) ]
do: [ :rt | rt, robot, stop ]
goTo: turning;
when: [ :rt | (rt, robot, color = #red) ]
do: [ :rt | rt, robot, stop. ]
goTo: end.

turning,



CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 29

do: [ :rt | (rt, robot, turn Random; drive Forward) ]
goTo: driving.

PLRunTime, processor, start: start.

A script called celebrate is already saved in the project, so we can simply call it using
MyScripts, celebrate. In doing so, the Lego Playground will spawn a nested state
machine celebrate which holds its own states and transitions and return to the Treasure
Hunter machine once it terminates.

We declare a state machine called Treasure Hunter which consists of 4 states:

• start
• driving
• turning
• end

With the states declared, we can start adding transitions to them as well as wildcards.

start The state start is a PLStartState and thus accepts a machine name, in this case
Treasure Hunter. start is a special state not just because it’s used to declare a machine
name, it is also the place where we should enter wildcards.
start,

when: [ :rt | true ]
do: [ :rt | rt, robot, drive forward.

rt, context, add Timer: #MachineTimer;
when: [ :runtime |

(runtime, context, get Time Of: #MachineTimer) > 100 ]
do: [ :runtime | runtime, robot, stop ]
goTo: end;
when: [ :runtime | (runtime, robot, color = #black) ]
do: [ :runtime | MyScripts, celebrate.

runtime, robot, drive Forward. ]
goTo: driving. ]

goTo: driving.

We add a transition to start whose condition is true and points to the state driving
as its successor. The main reason for this transition is its action block which we use to
define a number of items the context takes care of. Namely, we add

• Timer MachineTimer
• Wildcards

1. Wildcard:
– When: MachineTimer is greater than 100 seconds



CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 30

– Do: Stop the robot
– Go to: end

2. Wildcard:
– When: Color is black
– Do: Run nested state machine called celebrate and drive forward after-

wards
– Go to: driving

driving The state driving is active whenever the robot is just driving forward. It checks
if there’s an obstacle ahead or if it finds a red spot on the floor.

1. Transition:

• When: Distance is less than 200 millimeter
• Do: Stop the robot
• Go to: turning

2. Transition:

• When: Color is red
• Do: Stop the robot
• Go to: end

turning All this state does is turning the robot for a random amount of degrees to the
left or right. Afterwards it goes back to driving.

1. Transition:

• Do: Turn around randomly
• Go to: driving

8.1.4 Running the example
Having cleared out all the details of this example, we can run it using the green arrow in
the top row. The robot should now start moving and the Lego Playground gets updated
with information about this state machine: The visualization shows up, the states list gets
populated as well as the machines list.

8.1.4.1 Inspection and manipulation

Let’s now go ahead and inspect the states. This is done by selecting an item - let’s say
Driving - in the states list and hitting the Inspect button. In the opening window, we see
all the state’s properties including transitions. Navigating to transitions → array → 1 →
condition, we can edit the block statement which defines this transition’s condition.



CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 31

We can for example change the distance to 150 millimeters, letting the robot drive
closer to obstacles than originally defined. These changes apply immediately, making the
manipulation a truly live experience. Of course there are endless possibilities for similar
manipulations. Some more examples are:

• Changing Timers in the Context
• Adding and / or changing action blocks of transitions and wildcards
• Changing color in condition blocks of transitions and wildcards

Figure 8.2: Inspector on driving used to change its transitions.

8.1.4.2 Nesting

When the robot finds a black spot on the floor, the second wildcard is triggered and thus
the nested machine celebrate is executed. As a result, the state list consists solely of the
new machine’s states, the machine list features an new top element and the visualization
pane has a new drawing to it.



CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 32

Figure 8.3: The updated view in PLRightPane, featuring states, an additional machine
list item and fresh visualization of the nested machine Celebrate.

8.1.4.3 Reaching end and disconnecting

As we defined in the program, the state end is reached if the timer reaches 100 seconds
or a red spot is found under the color sensor, assuming these transitions have not been
altered by the programmer during execution. Once it’s reached, the Lego Playground is
in a clean state leaving only the visualization.



CHAPTER 8. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 33

We can now hit the Connection icon and agree to disconnect the robot.

Figure 8.4: Disconnecting the EV3 robot makes it available to other parties.



Bibliography

[1] Johan Fabry and Miguel Campusano. Live robot programming. In Ana Bazzan
and Karim Pichara, editors, Advances in Artificial Intelligence – IBERAMIA 2014,
number 8864 in Lecture Notes in Computer Science, pages 445–456. Springer-
Verlag, 2014.

[2] Mircea Lungu and Jan Kurš. On planning an evaluation of the impact of identifier
names on the readability and maintainability of programs. USER, 13:13–15.

[3] Theodor Truffer. A Polite solution to interact with EV3 robots. Bachelor’s thesis,
University of Bern, September 2016.

[4] Steven L. Tanimoto. Viva: A visual language for image processing. Journal of
Visual Languages & Computing, 1(2):127 – 139, 1990.

[5] Miguel Campusano and Johan Fabry. Live robot programming: The language, its
implementation, and robot API independence. Science of Computer Programming,
133:1–19, 2017.

[6] Mircea Lungu and Jans Kurs. Polite Programmers, Use Spaces in Identifiers If
Needed, October 2016.

[7] Jan Kur, Mircea Lungu, Oscar Nierstrasz, and Thomas Steinmann. Polite Smalltalk
- An Implementation, September 2016.

[8] Thomas Steinmann. Adding class support and global methods to Polite Smalltalk.
Bachelor’s thesis, University of Bern, May 2016.

[9] Jakob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces. In Pro-
ceedings of the SIGCHI conference on Human factors in computing systems, pages
249–256. ACM, 1990.

[10] Jakob Nielsen. Heuristic evaluation. Usability inspection methods, 17(1):25–62,
1994.

34


	1 Introduction
	2 Related Work
	2.1 Lego Mindstorms
	2.2 Live Programming
	2.2.1 LRP

	2.3 Polite

	3 Back end
	3.1 Architecture
	3.1.1 State Machine Model
	3.1.2 Additions to State Machine Model
	3.1.3 Nested State Machines


	4 Requirements
	4.1 Graphical User Interface
	4.1.1 Code Editor
	4.1.2 State Machine Visualization
	4.1.3 Inspection and Manipulation
	4.1.4 Saving and Loading
	4.1.5 Connection handling


	5 Implementation of Lego Playground
	5.1 Toolkit
	5.2 Graphical User Interface
	5.2.1 Layout
	5.2.1.1 PLEditorPane
	5.2.1.2 PLRightPane


	5.3 Implementation
	5.3.1 Code Editor
	5.3.2 From Code To Visualization
	5.3.3 Inspect and Manipulate
	5.3.4 Nested state machines


	6 Usability Testing
	6.1 Method
	6.1.1 Usage Scenario

	6.2 Results

	7 Conclusion and Future Work
	8 Anleitung zu wissenschaftlichen Arbeiten
	8.1 Tutorial
	8.1.1 Prerequisites
	8.1.2 Connecting via IP
	8.1.3 An example program
	8.1.4 Running the example
	8.1.4.1 Inspection and manipulation
	8.1.4.2 Nesting
	8.1.4.3 Reaching end and disconnecting




