
Exploring Security Issues in
Open Source Software

Bachelor Thesis

Noah Bühlmann
from

Sursee LU, Switzerland

Faculty of Science
University of Bern

19 June 2020

Prof. Dr. Oscar Nierstrasz
Dr. Mohammad Ghafari

Software Composition Group
Institute of Computer Science

University of Bern, Switzerland

Abstract

Background: Identifying and resolving security issues in open source
projects are paramount due to the large impact of these projects in the
software industry. Previous work has mostly focused on the prediction of
security issues, but how such issues evolve and are discussed is less well-
known.
Aims: With this study we aim to understand how security issues evolve,
learn what their characteristics are and pave the way for further, more de-
tailed research on very specific elements of the security issue life cycle.
Method: We performed a large-scale analysis of metadata and quantita-
tive features of security and non-security issues from 182 different GitHub
projects. Additionally, we performed a more detailed manual analysis on a
subset consisting of 333 security issues, where we also investigated the issue
discussions and any related pull requests.
Results: We were able to identify differences and similarities between secu-
rity and non-security issues and describe various characteristics of security
issues. Furthermore, we were able to identify differences and similarities
between accepted, pending and rejected security issues and speculate on fac-
tors that influence the probability of a security issue to be accepted. Finally,
we were able to describe various characteristics of security issues that result
in a different resolution time.
Conclusion: We were able to present an overview of security issues in Open
Source Software that will be useful for both researchers and practitioners
in understanding and further improving the security culture in Open Source
Software engineering.

i

Contents

1 Introduction 1

2 Related Work 4

3 Background 7

4 Methodology 16
4.1 Selection of GitHub projects . 16
4.2 Classification of security issues . 17
4.3 Large-scale analysis . 18

4.3.1 Features in issue dimension 18
4.3.2 Features in repository dimension 20
4.3.3 Features in comment dimension 20

4.4 Sampling procedure for manual analysis 21
4.5 Manual analysis . 22

4.5.1 Features in issue dimension 22
4.5.2 Features in comment dimension 26

5 Results 30
5.1 Prevalence and emerging of security issues 30
5.2 Reporters of security issues . 32
5.3 Reports of security issues . 34
5.4 Reaction to security issues . 35
5.5 Resolution of security issues . 37
5.6 Discussion of security issues . 38

5.6.1 Participants in discussion . 38
5.6.2 Comments in discussion . 39

5.7 Assignment of security issues . 45
5.8 Pull requests related to security issues 46
5.9 Trends in security issues over the age 51
5.10 Trends in security issues over the years 57

ii

CONTENTS iii

5.11 Other general findings . 61
5.11.1 Role of bots . 61
5.11.2 Tools to detect security issues 61
5.11.3 Rejected security issues . 61
5.11.4 CVE entries . 62
5.11.5 Unique issues . 62

6 Discussion 63

7 Threats to validity 69
7.1 External validity . 69
7.2 Internal validity . 70

8 Conclusion and future work 71
8.1 Conclusion . 71
8.2 Future work . 71
8.3 Acknowledgement . 72

A Anleitung zum wissenschaftlichen Arbeiten 78
A.1 GitHub GraphQL API . 78
A.2 Environment . 79
A.3 Basics . 80
A.4 Searching repositories . 82
A.5 Downloading issues and comments . 83

1
Introduction

Open Source Software development has become impressively popular in recent years.
For instance, GitHub, the leading software development platform worldwide, has more
than 40 million developers who have closed 20+ million issues only in 2019.1 The
advancements in Open Source Software have encouraged the software industry and large
companies such as Google and Facebook to open source their otherwise proprietary
software for reasons such as an engaging, large community, obtaining prompt responses,
and getting fast feedback [13]. With the increasing adoption of Open Source Software in
the industry, the impact of security issues in such software increases as well.

HeartBleed [2] and the Equifax [15] Breach are two remarkable examples of vul-
nerabilities located in Open Source Software. The former vulnerability, located in the
OpenSSL library (CVE-2014-0160), exposed an enormous number of secrets to the
Internet, and the latter, located in the Apache Struts 2 (CVE-2017-5638), leaked the
private records of more than 140 million customers of Equifax.

Timely reaction to security issues has received great attention recently. For instance,
Jiang et al. developed a model to detect security bug reports from thousands of bug
reports automatically [10].

Zhang et al. conducted a large-scale study to understand whether machine learning
models can detect the abundance of vulnerabilities in an application [38]. They concluded
that such models help, but no single feature, such as the code complexity, has reliable
prediction power.

Younis et al. developed prediction models to discern vulnerabilities that have an

1https://octoverse.github.com

1

CHAPTER 1. INTRODUCTION 2

exploit versus those without an exploit [34].
Wang et al. developed a toolset to identify secret security patches in Open Source

Software [31]. These patches fix vulnerabilities that are neither reported to CVE2, nor
are they mentioned in the software changelogs.

Mu et al. investigated the reproducibility of 368 crowd-reported vulnerabilities and
found that missing information in such reports is prevalent, and that security profes-
sionals should heavily rely on manual debugging and speculation to infer the missed
information [19].

Finally, it is the developer’s responsibility to discuss security issues and resolve them.
However, when such discussions happen and how they progress are mostly unexplored.

In this thesis we aim to understand how prevalent security issues are, how they evolve,
and how developers discuss such issues in Open Source Software. In particular, we ask
the following research questions.

1. How prevalent are security issues and how do they evolve?

2. What are the characteristics of security issues and their discussions?

In order to answer these questions, we collected a dataset of nearly 250 000 issues from
182 different GitHub Java projects and classified the issues into security issues and
non-security issues using a labelling-based approach. We then performed a large-scale
analysis of various features of security and non-security issues together with the com-
ments of their discussions. Furthermore, we selected a small sample of 333 commented
security issues from our full dataset in order to perform a more qualitative analysis of
the security issue reports and their comments. During our study we investigated differ-
ent areas of security issues such as prevalence, reporters, reports, reaction, resolution,
discussion, assignment and pull requests of security issues.

We found that security issues are more often reported by core project members than
non-security issues. Moreover, security issue have a faster initial reaction time and a
slower proceeding discussion than non-security issues. Also, security issues are resolved
significantly slower than non-security issues. Furthermore, we could identify that ac-
cepted security issues are more clearly explained, more often contain documentation and
reproducibility information and have a significantly higher proportion of thematically
relevant comments compared to rejected security issues. Also, security issues that have
an assignee have a significantly higher acceptance rate than security issues which do
not have an assignee. Finally, we found that security issues are resolved significantly
faster when the issue report or the discussion contains CVE information, when the issue
reporter is involved in the pull request process and when there is a fast initial reaction to
them.

2Common Vulnerabilities and Exposures

CHAPTER 1. INTRODUCTION 3

Unexpectedly, we also found that the prevalence of CVE information has not changed
significantly over the past six years and that the resolution time of security issues is
longer if further documentation is provided in the comments of the discussion.

We believe that this work has several implications for researchers and practitioners.
Practitioners should include detailed documentation or reproducibility information in
their security issue reports and explain them clearly. Moreover, they should create a pull
request for fixing security issues to have a more involving discussion on the changes to
be made. Researchers, on the other hand, can leverage our findings regarding security
vs. non-security issues, accepted vs. rejected security issues or the resolution time of
security issues in order to build or refine prediction models that are used for security bug
report prediction or to determine the outcome of security issues.

Further investigations revealed that there is no significant difference in the acceptance
rate for male vs. female security issue reporters. We were also able to identify a small
group of 328 developers who were assigned to security issues. We found that this group
of developers was responsible for reporting more than 40% of all security issues and more
than one-third of all comments in security issue discussions. These security assignees
also had a significantly higher acceptance rate and lower resolution time for reported
security issues than other developers.

The remainder of this thesis is organised as follows. In chapter 2 we give an overview
of related work in the research field of security issues. In the following chapter 3 we
provide background information on the concept of issue tracking on GitHub and the used
terminology. Chapter 4 describes the methodology we followed throughout our study.
Our results are presented in chapter 5 and discussed in chapter 6. We report possible
threats that could impact the validity of our results in chapter 7. Finally, we deliver our
conclusion in chapter 8.

2
Related Work

There has been a lot of recent research in the area of security issues (mostly called
security bug reports) especially in the field of security bug report classification, i.e. the
classification of bug reports into security-related and non-security-related classes. In this
chapter we present the state-of-the-art in security issue and GitHub research and how
this study connects to previous work.

Several stages of the software development process have been addressed by various
authors. Vasilescu et al. analysed quality and productivity outcomes relating to continu-
ous integration on GitHub [30] and found that productivity of project teams is increased
by the use of continuous integration functionality without an observable diminishment in
code quality. Another study has proposed a data mining model that leveraged GitHub
and other software repository services to predict the complexity of software bugs [21].
This model first uses existing techniques to estimate the fix time of a bug, and then maps
it to a complexity cluster. Also concerning bugs, an empirical study by Zhang et al.
from 2012 has identified concrete factors that influence bug fixing time and delays [37].
Among the most influential factors were the type, severity and description of a bug,
but also the used operating system and the comments of a bug played an important
role. Two related studies by the same research team investigated how, in the context of
GitHub, social and technical factors on the one hand [28] and discussions on the other
hand [29] could be used to evaluate contributions in GitHub. Pull requests, which are an
essential functionality of GitHub, have also attracted the interest of research. Pull request
discussion texts, project-specific information and developer-specific information from
a large-scale dataset were used by Rahman and Roy in their paper in order to contrast
between successful and unsuccessful pull requests [24]. They found an increasing failure

4

CHAPTER 2. RELATED WORK 5

rate of pull requests in projects with more than 3000 forks or 4000 developers, and
suggest that developers are most productive when they have between 20 and 50 months
of experience. A more specific study from 2015 tried to identify determinants of pull
request evaluation latency and found that latency is a complex issue, requiring many
independent variables to be explained adequately, such as the size of the pull request,
the delay to the first human response and the availability of continuous integration [35].
Finally, a large systematic mapping study of software development with GitHub has been
conducted in 2017 that analysed 80 publications from 2009 until 2016. Consentino et al.
raised concerns about how reliable those publications are “given that, overall, papers use
small datasets, employ a scarce variety of methodologies and/or are hard to replicate” [5].

Multiple studies from the last decade also addressed the matter of using GitHub
as a source for research. In 2012 a project called “GHTorrent” was set up with the
aim to create a scalable offline mirror of GitHub’s data [8]. Unfortunately, we could
not use this valuable tool as the project was discontinued in 2019. Later in 2014,
Kalliamvakou et al. published “The Promises and Perils of Mining GitHub” [11], which
proved to be very useful for our study because it provides peril avoidance strategies that
we could apply. A long article by Munaiah et al. focused on selecting projects from
GitHub through the use of a proposed framework in order to separate the signal (e.g.
repositories containing so-called “engineered software projects”) from the noise (e.g.
repositories containing personal experiments) [20]. Finally, there are two very recent
papers concerning data collection. Wu et al. proposed a CVE-assisted large-scale security
bug report dataset construction method that can be used to create high-quality datasets
of security bug reports, which are needed for prediction models described in the next
paragraph, in an automated and inexpensive way [32]. The other paper is a presentation
of LibVCS4j, a Java library that can be used to mine various version control systems and
issue trackers [27], which can be beneficial if the research focus lies on analysing the
source code (e.g. for code smells) or commit history and their relationship with issues.

There has been a series of papers published on the topic of security bug report
prediction in post-release phases, i.e. by using the bug reports themself and not the
source code to detect security vulnerabilities. Early examples include a 2010 industrial
case study on identifying security bug reports via text mining [6] and a 2014 paper
by Chawla and Singh on “Automatic Bug Labeling using Semantic Information from
LSI [Latent Semantic Indexing]” [3]. In 2017 FARSEC1 was proposed, a framework
that greatly improves the performance of text-based prediction models for security bug
reports by using a special filtering and ranking system to prevent mislabelling [22].
Goseva-Popstojanova and Tyo found that supervised learning approaches to classify
security issues slightly outperform unsupervised learning methods, but in general, the
performance varies between datasets due to differences in the amount of security-related

1a framework composed of a combination of Filtering And Ranking methods to reduce the mislabelling
of SECurity bug reports by text-based prediction models

CHAPTER 2. RELATED WORK 6

information [7]. Another study suggests that for text-based prediction models, one
should be augmenting standard security keywords with domain- or project-specific
security vocabulary in order to get more accurate prediction results [17]. In 2019 the
performance of the proposed FARSEC method was further improved by the addition of
hyperparameter optimisation of both the control parameters of the learner and the data
preprocessing methods [26]. Finally, with the publication of the article “LTRWES2: A
new framework for security bug report detection” [10] in April 2020 a new approach was
proposed that was proven to outperform FARSEC and therefore superseded FARSEC as
the state-of-the-art method for text-based security bug report prediction.

Of course, GitHub is not the only interesting data source for security vulnerability
research. Other studies have leveraged other websites and social media for research in
this area. A large-scale study of Stack Overflow posts has been carried out where Yang
et al. used Latent Dirichlet Allocation to identify topics in those posts, analyse them
and draw implications for researchers, educators and practitioners [33]. Another study
makes comparisons between mentioning of security vulnerabilities on two social media
conversation channels (Reddit and Twitter) and a collaborative software development
platform (GitHub). The researchers identified characteristics of the three platforms and
were able to show that Reddit and Twitter can be used to accurately predict activity on
GitHub [9].

Finally, we are left with a group of publications that are most related to this thesis. In
2014 Pletea et al. already analysed security discussions on GitHub with the specific intent
to extract emotions from the comments. They found that more negative emotions are
expressed in security-related discussions than in other discussions, which confirms the
anecdotal evidence that implementing application security can often lead to frustration
and anger among developers [23]. The next study focused on perceived language
complexity in security discussions on GitHub and how individuals adhere to project-
specific or overall GitHub language. They found that lack of conformity to the project-
specific language norm increases issue resolution times by a small amount [12]. For an
extensive article Morrison et al. did an empirical analysis of three Open Source projects
to study process-related differences between vulnerabilities and defects. It turned out that
vulnerabilities are found later in the development cycle and are resolved more quickly
than defects; however, the results indicate that “opportunities may exist for more efficient
vulnerability detection and resolution” [18]. Another linguistic analysis was carried
out by Meyers et al. who analysed five linguistic metrics (formality, informativeness,
implicature, politeness and uncertainty) in security conversations in the Chromium
project and found that they only play a small role [16]. Finally, there was an empirical
study that tried to understand the key themes and topics of security issues by using topic
modelling techniques and qualitative analysis in 2018 [36].

2Learning To Rank with Word Embedding for Security bug report prediction

3
Background

The goal of this chapter is to briefly explain the main concepts of issue tracking on
GitHub and clarify the terms that are used throughout this thesis.

Issues are the bug tracking functionality of GitHub. They have their own section in
every repository that has issue tracking enabled. A typical overview of the issue section
in a repository is shown in figure 3.1. The overview displays a chronological list of open
issues in a repository and shows not only the title of the issue but also the creation date,
the author, labels and further information such as the number of comments, linked pull
requests or any assignees. Those concepts are explained in more detail in the following
paragraphs.

A typical issue on GitHub is shown in figure 3.2. The top section contains the title
of the issue, the consecutive number of the issue in the repository indicated by the “#”
prefix. Below the title, we see the state of the issue, which can be either open or closed,
and next to it the username of the issue author (reporter) together with the date of creation
and the current number of comments. In the right section of the issue a sidebar is located,
where assignees, labels, projects, milestones, linked pull requests, notification settings
and participants for the issue are displayed. A more populated issue sidebar is displayed
in detail in figure 3.3.

An assignee is a person who is responsible for the issue. One or multiple users can
be assigned to an issue. They receive a notification in GitHub when they are assigned to
a new issue. Labels are a way to organise issues in a project. The labels are predefined
categories for a project that can be applied to issues and pull requests. An issue can be
labelled with one or multiple labels. For this thesis, we were particularly interested in
issues that have a security label, like the example in figure 3.4. Milestones are another

7

CHAPTER 3. BACKGROUND 8

Figure 3.1: Typical GitHub issues overview

option on GitHub to group issues that correspond to a project, feature, or time period.
Below the milestones, we see a list of linked pull requests for every issue. Those are
pull requests that are associated with the issue and have been linked to the issue by
users who used GitHub’s referencing capabilities in either the pull request or the issue
discussion. Next in the sidebar, we find the notifications settings. GitHub users can
subscribe to issues they are interested in, to receive notifications of future updates. They
are automatically notified if they are an assignee of the issue or if they already left a
comment on the issue. Finally, we see a list of avatars that shows the participants in
the issue. This list includes every user who performed any action with the issue, be it
creating, labelling, commenting, assigning or closing the issue.

In the bottom right of figure 3.2, we see the main section of every GitHub issue, the
issue timeline. The issue timeline is a log of everything that happens with a GitHub
issue. Not only does the timeline show the initial issue report and all the comments by
the community, but also the addition of new labels, any assignments, any references
elsewhere on GitHub and of course if and how an issue gets closed. Examples of those
additional timeline entries can be seen in figure 3.5.

Now that we saw all basic elements of a GitHub issue, we also take a closer at the
comments that user can make on the issues. A typical GitHub issue comment is shown

CHAPTER 3. BACKGROUND 9

Figure 3.2: Typical GitHub issue

in figure 3.6. On the top of every comment, we see the author and the creation date of
the comment. Furthermore, we are informed of the author’s association with the project
and can react to an issue using a single emoji. The author’s association with a project
can be one of the following categories:

• Owner / Member: The owner is the GitHub user who created the repository. If the
repository was created and is maintained by an organisation, then all developers
who belong to that organisation fall into the member category.

• Collaborator: Collaborators are users who were invited by the project owners to
contribute to a project and have write access to the repository.

• Contributor: Contributors are users who do not have collaborator access to a
repository but have contributed to a project and had a pull request they opened
merged into the repository.

• None: All other users who do not belong to one of the first three categories fall

CHAPTER 3. BACKGROUND 10

Figure 3.3: Issue sidebar

into this category, in which case no indication of their association is made in the
top section of the comment.

As is visible in figure 3.7, an additional author label is displayed next to the association
if the author of the comment is the initial author of the issue.

In order to style and format their comments, developers can make use of the GitHub
Flavored Markdown syntax, which is a dialect of the “Markdown” markup language. It
allows users to highlight text, include hyperlinks or include source code snippets (see
figure 3.2). Most importantly though, it allows users to make references to other commits,
issues, pull requests or repositories within the GitHub ecosystem. Additionally, users can
attract the attention of other users by mentioning them using @-mentions. An example
of this feature in use is shown at the very beginning of the comment in figure 3.7. When

CHAPTER 3. BACKGROUND 11

Figure 3.4: Security label on an issue

Figure 3.5: Additional issue timeline entries

users get mentioned this way, they receive a personal notification.
There are three ways to close an issue on GitHub. The author of an issue or entitled

users with write access can close an issue manually. This mostly happens when no
code changes have been implemented, and the issue is rejected. The second way is
to automatically close an issue with a direct commit to the repository. If the commit
message of a commit contains certain keywords like “closes” followed by “#” and the
number of an issue, then the issue is automatically closed, and the commit gets linked
to the issue. An example is shown in the bottom half of figure 3.8. The final and most
common way to close an issue is to create a pull request that fixes the problem and link it
to the issue as just described. The pull request then also gets linked to the issue as shown
in the top half of figure 3.8 and the issue is automatically closed when the pull request
gets merged.

Pull requests are a common concept in modern software engineering and part of
many open source code hosting platforms. We will only explain a particular set of
features in GitHub pull requests here that were relevant for our study. As we already
saw, pull requests are closely related and integrated with issues on GitHub. It is therefore

CHAPTER 3. BACKGROUND 12

Figure 3.6: Typical GitHub issue comment

Figure 3.7: Mentioning in an issue comment

unsurprising that a typical pull request, shown in figure 3.9, looks very similar to an
issue. In addition to issues, pull requests also contain information about commits and
changed files that belong to them. Most importantly though, we can see at the top right a
list of reviewers who have been added to the pull request. Feedback from one or multiple
users can be requested by adding them as a reviewer to a pull request. They then receive
a notification and have the ability to review the proposed code changes. They can leave
comments in the discussion or at specific lines in the source code and either approve the
pull request or request changes to the proposal. Their verdict is indicated by the icon
next to their username under “Reviewers”.

Generally, any GitHub user who has read access to a repository can submit an issue.
For public open source projects, this means every GitHub user can create an issue. In
order to do so, one has to fill out a simple form shown in figure 3.10. The form only
consists of the title and description field. For the description, the reporter can make
use of the Markdown syntax mentioned above to style and format the issue report or

CHAPTER 3. BACKGROUND 13

include source code snippets, mention other developers, reference existing issues and
pull requests and more. A project may provide issue templates that have a predefined
structure (i.e. a section for reproducibility information) that the issue reporter should
follow because it is desired by the community. The author may also attach files to an
issue. Labelling and assigning of issues only happens after the creation of an issue and
can only be performed by GitHub users with the status owner, member or collaborator
for the project, i.e. developers with write access to the repository.

Figure 3.8: GitHub issues closed by linked pull request (top) and direct commit (bottom)

CHAPTER 3. BACKGROUND 14

Figure 3.9: Typical GitHub pull request

CHAPTER 3. BACKGROUND 15

Figure 3.10: Empty issue submission form

4
Methodology

In this chapter we describe the methodology that we followed throughout our study from
the selection of the dataset to the analysis of the data. In order to answer the questions
outlined in the introduction, we decided to do our analysis in two parts. First, we selected
a large number of GitHub projects according to the criteria outlined in section 4.1. After
classifying all issues of the selected projects into security issues and non-security issues
as described in section 4.2, we ended up with a dataset of projects, corresponding issues
and their discussion comments that we could use to perform the large-scale analysis
outlined in section 4.3. Because we were particularly interested in qualitative features of
the issue discussions and pull requests, we also selected a significant sample of issues
from the large-scale dataset in order to perform a manual, more qualitative analysis by
hand as described in section 4.5. The sampling procedure is described in section 4.4.

4.1 Selection of GitHub projects
We had to make a selection of GitHub projects (repositories) for three reasons. Firstly,
the dataset would have been too big to be practically handled if we wanted to analyse all
GitHub projects. Secondly, not all GitHub projects are so-called “engineered software
projects” [20] that we are interested in. Finally, not all “engineered software projects”
were suitable for this analysis, because not all of them have issue tracking enabled and
not all of them use English as their issue tracking language. Therefore we set up the
following selection criteria on projects and incorporated some of the peril avoidance
strategies proposed by Kalliamvakou et al. [11] in their analysis of the promises and

16

CHAPTER 4. METHODOLOGY 17

perils of mining GitHub:

1. Primary programming language is Java

2. Repository is not a fork of another repository

3. More than 10 forks

4. More than 10 stars

5. More than 2 kB in size

6. Pushed to at least once after 01.01.2019

7. More than 10 issues

8. More than 50 commits

9. Issue tracking language is English

Criterion (1) was mainly introduced to drastically reduce the scope of the search for
projects, while still adhering to a fairly popular programming language. Criteria (1) -
(8) could be automatically incorporated into the data collection process. This process
resulted in 6 104 available repositories on GitHub. After semi-automatically applying
criterion (9) we were left with 5 572 repositories. With those 5 572 repositories we
proceeded to the next step of classifying the issues as described in section 4.2 and then
later removing the projects from the dataset that turned out not to include any issues that
were classified as security issues.

4.2 Classification of security issues
For the classification into security issues and non-security issues, we used a simple
label-based approach. For all the 5 572 remaining repositories from the previous step
we extracted any labels that contained the string “security”. We found 276 repositories
that had at least one such label available, and in 182 instances such a label was actually
used to tag at least a single issue in the project. We proceeded with those 182 projects
because we only wanted to include projects in our analysis that had both security and
non-security issues. We completed our dataset by downloading all the issues of those
182 GitHub projects and classifying those issues that were labelled with one of the
aforementioned security labels as security issues and all other issues as non-security
issues. In the rest of this thesis whenever we refer to security or non-security issues, we
mean the classification described in this section.

We ended up with our final dataset of 182 GitHub projects containing a total of
249 043 issues, of which 3 493 were labelled as security issues, and a total of 860 948

CHAPTER 4. METHODOLOGY 18

Metric commits forks stars issues pull requests age [years]
Mean (Std. Error) 6 135 (679) 629 (123) 1 751 (335) 1 368 (178) 1 416 (222) 5.20 (0.18)
Std. Deviation 9 167 1 657 4 524 2 397 2 999 2.42
Minimum 79 11 12 12 0 0.49
25th percentile 931 41 75 229 122 3.51
Median 2 530 141 339 624 436 5.02
75th percentile 8 025 539 1 501 1 455 1 357 6.86
Maximum 68 171 16 270 47 805 23 100 1 357 11.75

Table 4.1: General statistics of the 182 repositories in the dataset

discussion comments. Key statistics of the 182 GitHub projects are summarised in
table 4.1.

4.3 Large-scale analysis
For the large-scale analysis we used the full dataset established during the procedure
described in section 4.2. Our main source of data was the GitHub GraphQL API1. To
determine the gender of GitHub users based on their names, we used the services of
Genderize.io2. The accuracy of Genderize.io has been evaluated in research [25]. We
wanted to automatically download, calculate and derive as many features as possible in
the repository, issue and comment dimension on the full dataset so that we would get a
comprehensive overview of security issues and can also compare them to non-security
issues. Our downloaded data represents a snapshot at the 11.04.2020 14:00 UTC.

4.3.1 Features in issue dimension
We downloaded, calculated or derived the features prefixed by the letter I and listed
in the middle section of table 4.2 for all 249 043 issues automatically. In the follow-
ing paragraphs additional explanations to selected features in the issue dimension are
provided.

I authorName: GitHub users can choose to disclose their full name to the public.
In the first case, the real name of the author was used; otherwise the GitHub username of
the author was used.

I authorGender: We populated the first word in I authorName to the Genderize.io
API and used the result. In case the GitHub user chose an invented username or had a
gender-neutral first name the API could not provide a result, and the value “unknown”
was used.

1https://developer.github.com/v4/
2https://genderize.io/

CHAPTER 4. METHODOLOGY 19

Feature name Description Data type Possible values Data source
R name The name of a repository. String GitHub API
R createdAt The exact date-time when a repository was created. Datetime GitHub API

R age
The time interval for which a repository
already has been existing. Duration GitHub API

R commits The number of commits of a repository. Integer GitHub API
R releases The number of releases of a repository. Integer GitHub API
R forks The number of forks of a repository. Integer GitHub API
R stars The number of stars of a repository. Integer GitHub API
R pullRequests The number of pull requests created for a repository. Integer GitHub API
R issues The number of issues created for a repository. Integer GitHub API
R securityIssues The number of security issues for a repository. Integer Calculation
R ratioSecurityIssues The quotient of R securityIssues divded by R issues. Decimal Calculation

R timeUntilFirstIssue
The time interval between the creation of a repository
and the creation of its first issue. Duration Calculation

R timeUntilFirstSecurityIssue
The time interval between the creation of a repository
and the creation of its first security issue. Duration Calculation

R meanIssueInterval
The mean interval between
the creation of the issues of a repository. Duration Calculation

R meanSecurityIssueInterval
The mean number of days between
the creation of the security issues of a repository. Duration Calculation

I title The title of an issue. String GitHub API
I url The GitHub URL of an issue. String GitHub API
I createdAt The exact date-time when an issue was created. Datetime GitHub API
I authorName The name of the author of an issue. String GitHub API

I authorAssociation
The association of the author of an issue
with the repository. Enum

member,
collaborator,
contributor,
none

GitHub API

I authorGender The gender of the author of an issue. Enum
male,
female,
unknown

Genderize.io

I state The state of an issue. Enum
open,
closed GitHub API

I closedAt The exact date-time when an issue was closed. Datetime GitHub API
I numberOfComments The number of comments in the discussion of an issue. Integer GitHub API
I numberOfAssignees The number of users who were assigned to an issue. Integer GitHub API

I numberOfParticipants
The number of distinct participants in the discussion
of an issue. Integer Calculation

I assignmentActorName
The name of the user who performed
the first assignment of an issue. String GitHub API

I firstAssigneeName The name of the first assignee of an issue. String GitHub API

I timeUntilFirstComment
The time interval between the creation of an issue
and the creation of the first comment. Duration Calculation

I meanCommentInteraval
The mean time interval between the creation the
comments of an issue. Duration Calculation

I timeUntilFirstAssignment
The time interval between the creation of an issue
and the first assignment. Duration Calculation

I timeUntilClosed
The time interval between the creation and closure
of an issue. Duration Calculation

I age
The time interval for which a issue
has been existing. Duration Calculation

I labeledAsSecurityIssue If an issue has a label containing the word security. Boolean
true,
false Calculation

I status If an issue is pending or has been accepted or rejected. Enum
accepted,
pending,
rejected

Calculation

C createdAt The exact date-time when a comment was created Datetime GitHub API
C authorName The name of the author of a comment. String GitHub API

C authorAssociation
The association of the author of a comment
with the repository. Enum

member,
collaborator,
contributor,
none

GitHub API

C authorGender The gender of the author of a comment. Enum
male,
female,
unknown

Genderize.io

Table 4.2: Automatically extracted features

CHAPTER 4. METHODOLOGY 20

I numberOfParticipants: This feature should not be confused with the number of
participants in an issue that is displayed on every GitHub issue. Our feature only includes
distinct people who left a comment on the issue, while GitHub’s number also includes
people who merely performed an action on an issue (e.g. adding a label or closing the
issue), even when they did not leave a comment. This is why we had to calculate this
feature using the comments we downloaded.

I timeUntilFirstComment: This feature is often referred to as the reaction time of
an issue.

I age: This feature is the same as I timeUntilClosed for closed issues but also
expresses how long open issues have been pending until the moment of the analysis.

I labeledAsSecurityIssue: The details of this feature are explained in section 4.2.
I status: We introduced this feature to make comparisons between issues with

different resulting outcomes. We derived the values “accepted”, “pending” and “rejected”
as follows: Issues with I state “open” are classified as “pending”. Issues with I state
“closed” are classified as “accepted”, if a change of code relating to this issue has been
incorporated into the project via a linked and merged pull request or a linked direct
commit to the repository, as described in chapter 3. Issues with I state “closed” that do
not meet the criteria just mentioned are classified as “rejected”.

4.3.2 Features in repository dimension
We downloaded, calculated or derived the features prefixed by the letter R and listed
in the top section of table 4.2 for all 182 repositories automatically. In the following
paragraph additional explanations to a selected feature in the repository dimension are
provided.

R meanSecurityIssueInterval: If a repository only included a single security issue,
no value for this feature was assigned to it.

4.3.3 Features in comment dimension
We downloaded, calculated or derived the features prefixed by the letter C and listed in
the bottom section of table 4.2 for all 852 341 comments automatically. In the following
paragraphs additional explanations to selected features in the comment dimension are
provided.

C authorName: GitHub users can choose to disclose their full name to the public.
In the first case, the real name of the author was used; otherwise the GitHub username of
the author was used.

C authorGender: We populated the first word in C authorName to the Genderize.io
API and used the result. In case the GitHub user used an invented username or had a
gender-neutral first name the API could not provide a result, and the value “unknown”
was used.

CHAPTER 4. METHODOLOGY 21

4.4 Sampling procedure for manual analysis
Because doing a detailed qualitative analysis of all the security issues from the full dataset
would have exceeded our time and resource constraints we decided to draw a significant
sample from the full dataset and then perform our manual analysis with that sample.
Because we were particularly interested in the discussions of the security issues and we
wanted to focus our resources, we decided to exclude all issues with zero comments,
where a meaningful analysis of the discussion was not possible anyway. With those
restrictions our population of 3 493 security issues already shrank to 2 354 commented
security issues. We analysed the two-dimensional distribution of this population along
the features I status (accepted, pending, rejected) and I numberOfComments (separate
quartiles per status group), because we wanted to perform a stratified-random sam-
pling [1] in order to preserve the distribution of two features and get a broad insight into
different security issue discussions, while still maintaining sufficient representativeness
to draw conclusions for the population of commented security issues. In a bigger and
more widespread dataset, we would not have to worry about the I numberOfComments-
quartiles because quartiles are by nature already equally distributed, however, the distri-
bution of the number of comments was very squeezed, which caused some quartiles to
contain more entries than others. The composition of the population of 2 354 commented
security issues can be seen in table 4.3. We determined we want to achieve a confidence
interval of ±5% at a confidence level of 95%. We then calculated the required sample
size with those parameters using the formula proposed by Krejcie and Morgan [14]:

s =
X2NP (1− P)

d2(N − 1) +X2P (1− P)
s = required sample size.

X2 = the table value of chi-square for 1 degree of
freedom at the desired confidence level (3.841).

N = the population size (2 354).
P = the population proportion (assumed to be .50

since this would provide the maximum sample size).
d = the degree of accuracy expressed

as a proportion (.05).

With our parameters this resulted in a minimum required sample size of 331. We
distributed the samples to the strata according to table 4.3 and ended up using a sample of
333 security issues in order to accommodate for rounding imprecisions. The composition
of this sample can be seen in table 4.4. Finally, we used a true random number generator3

3https://www.random.org

CHAPTER 4. METHODOLOGY 22

Accepted Pending Rejected Total
1 321 (13.6%) 162 (6.9%) 267 (11.3%) 750
2 357 (15.2%) 120 (5.1%) 138 (5.9%) 615
3 165 (7.0%) 142 (6.0%) 122 (5.2%) 429
4 247 (10.5%) 139 (5.9%) 174 (7.4%) 560

Total 1 090 563 701 2 354

Table 4.3: Population of 2 354 commented security issues (issue status vs. number-of-
comments-quartile)

Accepted Pending Rejected Total
1 45 23 38 106
2 50 17 19 86
3 23 20 17 60
4 36 20 25 81

Total 154 80 99 333

Table 4.4: Sample of 333 commented security issues (issue status vs. number-of-
comments-quartile)

to randomly select the number of issues as specified in table 4.4 from our different strata
of the population.

4.5 Manual analysis
For the manual analysis we used the sample of 333 security issues established during
the procedure described in section 4.4. We qualitatively analysed the issue reports, the
comments in the issue discussions and any related pull request discussions. The features
we manually collected are listed in table 4.5. In order to test our questionnaire, refine the
questions we wanted to answer and mitigate subjective influence, we first conducted a
pilot study with 17 randomly selected security issues. Those issues for the pilot study
were drawn from the remaining 2 021 commented security issues that were not used
for the actual study. The results of the pilot study were compared and discussed by the
author and the supervisor of this thesis until consensus was reached.

4.5.1 Features in issue dimension
In addition to the features already present from the large-scale analysis, we answered the
questions for features listed in table 4.5 and prefixed by the letter I for the 333 selected
issues. In the following paragraphs additional explanations to selected features in the

CHAPTER 4. METHODOLOGY 23

Feature name Description Data type Possible values
I clear Is the issue clearly explained? Boolean true, false

I info
What information does the issue provide
or refer to via hyperlinks? Enum

none,
fix,
documentation,
cve,
reproducibility

I pullRequest Is there a pull request and if yes is it reviewed? Enum

no,
no review,
single review,
multiple reviews

I roleOfAuthorInPR Is the author of an issue involved in the pull request? Enum
no,
creator,
reviewer

I numberOfCommentsInPR
The number of comments in the discussion
of an associated pull request to the issue. Integer

I numberOfParticipantsInPR
The number of distinct participants in the
discussion of an associated pull request to an issue. Integer

I prDiscussionChallenge
How challenging is the discussion of an
associated pull request to an issue? Enum

low,
medium,
high

C mention Is the comment referring to another person? Enum

no,
author of issue,
member,
collaborator,
contributor,
other

C confident Is the comment formulated confidently? Enum
true, false,
not applicable

C info
What information does the comment
provide or refer to via hyperlinks? Enum

none,
fix,
documentation,
cve,
reproducibility

C nature What is the nature of the comment? Enum

elaboration,
ask/request,
reminder,
notification,
instruction,
other

C keyPoint Is the comment a key point in the discussion? Boolean true, false

Table 4.5: Manually extracted features

CHAPTER 4. METHODOLOGY 24

issue dimension are provided.
I clear: Based on our personal impression and the reaction of the community in

the follow-up discussion, we judged if the author of an issue clearly explained the issue
in his or her report. Clear issue reports are reports that contain enough detail and are
written in such a way that the problem or unexpected behaviour can be understood. They
can, but do not have to, be structured or contain source code snippets. Figure 4.1 shows
an example of a clearly described issue that even includes reproducibility information.
Figure 4.2, however, shows an example of an unclear issue. The description only contains
an error message and does not provide any further context.

I info: We categorised resources that were provided either directly in the issue or
via a hyperlink into the categories “fix”, “documentation”, “cve” and “reproducibility”.
A “fix” is generally a concrete suggested change to the source code that is likely to
resolve the issue. “Documentation” refers to further information about the functionality
of software or a third-party library. “CVE” included all kinds of entries in vulnerability
databases. We used the value “reproducibility” if the report included any kind of resources
that described how to reproduce an issue. Finally, we assigned the value “none” if none
of the information mentioned before was provided.

I pullRequest: We checked if a pull request was directly linked to an issue. If no
pull request could be found we assigned the value “no”. If a pull request existed, we
checked whether or not (and how many times) the review functionality on GitHub was
used on the pull request corresponding to the issue. If no review had been performed,
we assigned the value “no review”. If one review had been conducted, we assigned the
value “single review”, and if more than one review had been done, we assigned the value
“multiple reviews”.

I roleOfAuthorInPR: We differentiated if the author of the issue also created the
pull request, was assigned as a reviewer of the pull request or was not involved at all in
the pull request. These roles are exclusive, as the creator of a pull request should not
review his or her own pull request.

I numberOfParticipantsInPR: This feature should not be confused with the num-
ber of participants in a pull request that is displayed on every GitHub pull request. Our
feature only includes distinct people who left a comment on the pull request, while
GitHub’s number also includes people who merely performed an action on a pull request
(e.g. adding a label or merging the pull request), even when they did not leave a comment.

I prDiscussionChallenge: This is a personal impression on how challenging the
discussion on a pull request was. We did take into consideration how long it took to reach
the final merge state or the decision to merge or abandon the pull request and how strong
the participants disagreed or argued. We assigned a value “low” if there was basically no
disagreement between the participants of the discussion, a value “medium” if there was a
moderate discussion going on and a value “high” if it was very challenging to come to a
conclusion or the pull request was highly controversial.

CHAPTER 4. METHODOLOGY 25

Figure 4.1: Clear issue report

Figure 4.2: Unclear issue report

CHAPTER 4. METHODOLOGY 26

During the manual analysis we also took notes on special or interesting findings on
security issues that we made during the course of the study. Some interesting results are
described in section 5.11.

4.5.2 Features in comment dimension
In addition to the features already present from the large-scale analysis we answered the
questions for the features listed in table 4.5 and prefixed by the letter C for the 1 335
comments that were posted in the discussions of the sampled 333 security issues. In
the following paragraphs additional explanations to selected features in the comment
dimension are provided.

C mention: We checked if any developer was mentioned in the comment using
the @-mention functionality of GitHub as described in the background chapter and
categorised the mentions into “author of issue”, “member”, “collaborator”, “contributor”
or “other” according to their association with the issue and the repository the issue
belongs to.

C confident: Based on the style, formulation and use of words, we tried to judge if
the person who commented was confident about his or her opinion and the issue itself.
In some cases, this could not be judged or was irrelevant in which case we assigned
the value “not applicable”. Figure 4.3 shows an example of all three values. The first
comment is clearly confident, and the author knows what he is talking about. The middle
comment is rather unconfident. The use of words like “seems” or “maybe” indicates the
uncertainty of the author of this comment. The final comment at the bottom of figure 4.3
is simply a notification that a pull request was created and the determination is irrelevant.

C info: We categorised resources that were provided either directly in the comment
or via a hyperlink into the categories “fix”, “documentation”, “cve” and “reproducibility”.
A “fix” is generally a concrete suggested change to the source code that is likely to
resolve the issue. “Documentation” refers to further information about the functionality
of software or a third-party library. “CVE” included all kinds of entries in vulnerability
databases. We used the value “reproducibility” if the comment included any kind of
resources that described how to reproduce an issue. Finally, we assigned the value “none”
if none of the information mentioned before was provided.

C nature: This is one of the most important features of our manual analysis. We
assigned each comment one of the categories “elaboration”, “ask/request”, “reminder”,
“notification”, “instruction” or “other” based on the nature of the comment. The value
“elaboration” was used whenever there was an addition of more information or an
explanation of the issue or any facts related to it. We assigned “ask/request” if someone
asked for further information about the issue or requested clarification by the author of
the issue. If someone asked if there are any updates on an issue or mentioned certain
developers to remind them of an issue, we used the value “reminder”. For notifications

CHAPTER 4. METHODOLOGY 27

Figure 4.3: Confident vs. unconfident vs. not applicable comments (from top to bottom)

of any kind, e.g. the notification that a pull request was created or that the issue will be
closed or reopened, we used the value “notification”. If a user instructed another user or
a group of developers to perform certain actions, we assigned the value “instruction”.
Finally, if none of the mentioned characteristics applied to a comment, we used the value
“other”, e.g. when someone simply thanked a contributor for fixing an issue. A concrete
example for each comment nature can be found in figure 4.4.

C keyPoint: In some issues a single or even multiple comments can be identified as
a key point (or turning point or decision point) during the discussion. Where we were
able to identify such a comment in an issue discussion, we used the value “yes” for
this feature of the comment; otherwise we assigned the value “no”. Figure 4.5 shows a
short issue discussion, where the second comment marked a key point in the discussion
as the author of the comment notified the community that she will now close the issue
because a new method has been added to the code. Other common key points include
the identification of the root cause of a problem, the decision that a pull request can be
created or the decision that an issue should be closed.

CHAPTER 4. METHODOLOGY 28

Figure 4.4: Examples of different comment natures

CHAPTER 4. METHODOLOGY 29

Figure 4.5: Key point in an issue discussion

5
Results

In this chapter we present the results of our analysis that we did, using the methodology
described in chapter 4 in order to answer the questions outlined in the introduction.

We thematically grouped our results into sections 5.1 to 5.8, where we look at
various characteristics of security issues and also compare them to non-security issues.
Furthermore, we make comparisons between the different issue statuses. In section 5.9
we look at how certain characteristics of security issues evolve over the lifespan of an
issue and if certain factors have an impact on the resolution time of security issues. In
the next section 5.10, we present our findings concerning the evolution of security issues
over the last six years. In the final section 5.11, we present other general observations we
made over the course of the study during any stage of data collection or analysis.

5.1 Prevalence and emerging of security issues
Our full dataset consisted of 182 GitHub projects which included a total of 249 043
issues, of which 3 493 (1.42%) are security issues and 245 550 (98.60%) are non-security
issues. When analysing the percentages of security issues in each individual project, we
found the distribution displayed in table 5.1. We can see that, even though the data is
quite spread out, security issues generally make up for a very small percentage of all the
issues of a project. We find that 75% of all projects have a percentage that is lower than
2.23%.

Furthermore, we were interested when security issues emerge in a project. We
analysed the time interval between the creation of a project and the creation of the first

30

CHAPTER 5. RESULTS 31

Metric Value
n 182
Mean (Std. Error) 3.92% (0.94%)
Std. Deviation 12.67%
Minimum 0.02%
25th percentile 0.29%
Median 0.91%
75th percentile 2.23%
Maximum 92.31%

Table 5.1: Percentage of security issues in individual projects

security issue and also the mean time interval between subsequent security issues in a
project. We found that the median is 655.50 days (interquartile range (IQR) 1 202.25
days) until the creation of the first security issue. Once the first security issue is created,
we found that the median time between subsequent security issues is 54.37 days (IQR
107.06 days). To put these results into perspective, we also calculated the numbers for
non-security issues and found that the median is 28.21 days (IQR 140.03 days) until the
creation of the first non-security issue. Once the first non-security issue is created, we
found that the median time between subsequent non-security issues is 2.53 days (IQR
4.68 days). This shows that security issues are created later in a project and emerge less
frequently than non-security issues.

We were particularly interested if the activity of a project is related to the number of
security issues it contained. When assessing the activity, we used three different metrics.
The number of commits is an indicator for the activity in terms of code changes, while
the number of forks and the number of stars give an idea of how many developers are
involved in a project. The results of our statistical correlation analysis, using the Pearson
correlation coefficient to measure the relationship between the number of security issues
and all three metrics separately, can be found in table 5.2. We found that there is a
statistically significant positive correlation between the number of security issues and all
three metrics with the 2-tailed p-value being smaller than 0.001. According to Cohen [4],
the correlation coefficient indicates that the effect is medium for the number of commits
(r=0.374) and strong for the number of forks (r=0.552) and stars (r=0.593). We can say
that the more active a project is (in terms of code contributions and involved persons),
the more security issues it contains or vice versa.

The relationship between the number of commits and the number of security issues
in a project is displayed in figure 5.1. A quick background check using linear regression
analysis showed that the number of non-security issues increases (also in relation to
the number of commits) at a higher pace with a standardised regression coefficient of
β = 0.374 for security issues and β = 0.503 for non-security issues.

CHAPTER 5. RESULTS 32

r p n
commits 0.374* 0.000 182
forks 0.552* 0.000 182
stars 0.593* 0.000 182

Table 5.2: Correlation analysis of activity of a project with number of security issues in
project

0 500 1,000 1,500 2,000 2,500
0

50

100

150

commits

#
se

cu
ri

ty
is

su
es

Projects

y = 1.83 + 2.84 ∗ 10−4 ∗ x

Figure 5.1: Number of commits vs. number of security issues in projects (outliers
removed)

5.2 Reporters of security issues
We analysed how the reporters of security and non-security issues are associated with
the project the issue belongs to and came up with the results in figure 5.2. A noticeable
difference exists between security issues and non-security issues. For security issues
only 733 of 3 493 (21.0%) issues are reported by outside users who are not associated
with the project at all, 1 257 of 3 493 (37.5%) come from core members (members and
collaborators) and 1 448 of 3 493 (41.5%) from established contributors to the project.
For non-security issues a lot more issues are reported by unassociated users, namely
86 325 of 245 550 (35.2%). Here core members account for 70 626 of 245 550 (31.1%)
and contributors for 82 684 of 245 550 (33.7%) of non-security issues. The Chi-Square
p-value for these findings is 0.000, so they are significant.

Our comparison between different issue statuses for this feature can be seen in
figure 5.3. It reveals that accepted security issues are more often reported by core
members of a project than rejected security issues and that the latter are more often
reported by users who are unassociated with the project. The p-value for these findings
is also 0.000.

In this context it is also interesting to see if the issue reporters are the same per project.

CHAPTER 5. RESULTS 33

Non-sec. issues Security issues

0

50

100

35.2
21.0

33.7

41.5

5.2
8.8

25.9 28.7
is

su
es

[%
]

Member Collaborator Contributor Other

Figure 5.2: Reporters of non-security issues and security issues

Accepted Pending Rejected Total

0

50

100
14.2 18.7

35.2
21.0

47.1 37.5

35.8

41.5

4.6 17.0
7.6

8.8

34.1 26.8 21.4 28.7

is
su

es
[%

]

Member Collaborator Contributor Other

Figure 5.3: Reporters of security issues

We counted how many security issues and non-security issues reporters posted in the
analysed projects. We found that for security issues, the mean is 2.37 (SE 0.40) reported
issues per reporter, and for non-security issues, the mean is 2.61 (SE 0.72) reported
issues per reporter. The median is one issue in both cases. This is not a significant
difference. Also, we found that 15 reporters are cross-project security issue reporters, i.e.
they created security issues in more than one of the 182 projects in our dataset. Thirteen
of those reporters reported security issues in two projects, while two reported in five
projects.

Furthermore, we analysed how far reporters of issues in general and security issues
in particular overlap. In our dataset we found 30 490 distinct reporters of issues. Only
611 of 30 490 (2.0%) developers reported both security and non-security issues. 29 749

CHAPTER 5. RESULTS 34

(97.6%) reported only non-security issues and 130 (0.4%) only security issue. This leads
us to the conclusion that only 741 of 30 490 developers (2.4%) are reporting security
issues. Other than that no notable impact on other characteristics by the type could be
measured.

We also did a gender analysis of the reporter of issues in our dataset. We were
able to identify the gender of a reporter in 66.8% of the issues in our global dataset of
issues, in 62.3% of the security issues and in 66.8% of the non-security issues. Our
analysis revealed 155 of 2 175 (7.1%) security issues were reported by females, which is
higher than 6 300 of 157 850 (3.8%) for non-security issues. Furthermore, we found that
females have an acceptance ratio of 70.4 % for reported security issues vs. 72.0 % for
male security issue reporters. This difference is not significant as the p-value is 0.724,
so we cannot reject the independence of gender and acceptance rate. Splitting this up
even further into core members (members and collaborators) and outsiders (contributors
and other) we find that acceptance ratios differ even less for core members (male vs.
female: 75.6% vs. 72.0%) and slightly more for outsiders (male vs. female: 57.6% vs.
60.0%). However, none of these findings are significant neither for outsiders nor for core
members with p-values of 0.853 and 0.447, respectively. We tried to identify if there
were any other observations in characteristics between issues reported by female and
male developers and the only significant difference we found was that female-reported
security issues have a lower number of comments with 1.41 (SE 0.18) comments vs. 3.08
(SE 0.12) for security issues reported by males.

5.3 Reports of security issues
During our manual analysis we investigated two aspects of security issue reports, i.e. the
text that the issue reporter submits to GitHub. As described in the methodology section,
we analysed the clarity of the issue report and if an issue reporter provides additional
information.

As can be seen from figure 5.4, security issues are mostly clearly explained with
276 of 333 (82.9 %) issues considered clear. There is a significant difference (p-value =
0.013) however, between accepted and rejected security issues with 13.0% of accepted
issues and 25.3% of rejected issues considered as unclearly explained.

We found that 200 out of 333 security issue reports (60.1%) include further in-
formation. Figure 5.5 shows that those issues include different types of information.
Most notably accepted security issues more often refer to documentation (44.2%) or
reproducibility information (16.9%) than rejected security issues (34.3% resp. 14.1%).
Furthermore, there was no occurrence of a pending security issue containing a reference
to a CVE entry. This cross-comparison between further information and issue statuses is
significant, with a p-value of 0.027.

CHAPTER 5. RESULTS 35

Accepted Pending Rejected Total

0

50

100
13.0 15.0

25.3 17.1

87.0 85.0
74.7 82.9

is
su

es
[%

]

Clear Unclear

Figure 5.4: Security issue report clarity

Accepted Pending Rejected Total

0

50

100 2.0 0.75.1 7.2 4.5

16.9
11.2

14.1 14.7

44.2

40.0
34.3 40.2

33.8
48.8 42.4 39.9

is
su

es
[%

]

None Documentation Reproducibility CVE Fix

Figure 5.5: Further information in security issue reports

5.4 Reaction to security issues
We wanted to know how fast developers react to security issues. In order to answer this
question, we analysed two metrics. We looked at the time it takes for the first comment
to emerge on a reported security issue (see table 5.3) and the mean time it takes between
every comment that follows after the first comment in the discussion (see table 5.4).
Naturally, issues without any comments were excluded from this analysis.

Judging by the mean non-security issues get their first comment approximately six
days faster than security issues (47.52 days vs. 53.17 days). However, the median reveals
a different picture. 50% of all security issues have their first comment within 264.95
minutes vs. 321.28 minutes for non-security issues, which is a difference of nearly one

CHAPTER 5. RESULTS 36

Metric Accepted Pending Rejected Sec. issues Non-sec. issues Total
n 1 090 563 701 2 354 192 391 194 745
Mean (Std. Error) 35.89 (4.48) 57.21 (7.07) 76.80 (7.77) 53.17 (3.55) 47.52 (0.43) 47.59 (0.43)
Std. Deviation 147.89 167.77 205.60 172.42 188.06 187.88
Minimum 0 0 0 0 0.00 0.00
25th percentile 0.15 [min] 0.03 [min] 8.76 [min] 0.18 [min] 5.73 [min] 5.65 [min]
Median 172.22 [min] 106.56 [min] 1.17 264.95 [min] 321.28 [min] 320.78 [min]
75th percentile 6.82 6.97 32.53 12.52 5.89 5.93
Maximum 2 215.97 1 232.21 1 724.11 2 215.97 2 848.49 2 848.49

Table 5.3: Time until first comment [days]

Metric Accepted Pending Rejected Sec. issues Non-sec. issues Total
n 769 401 434 1 604 134 380 134 984
Mean (Std. Error) 38.36 (3.84) 83.54 (9.22) 79.70 (8.28) 60.84 (3.74) 74.22 (0.47) 74.06 (0.46)
Std. Deviation 106.48 184.62 172.42 149.79 171.64 171.40
Minimum 0.00 0.00 0.00 0.00 0.00 0.00
25th percentile 9.30 [h] 23.06 [h] 11.98 [h] 12.11 [h] 5.26 [h] 5.31 [h]
Median 4.23 14.94 11.06 6.87 4.71 4.74
75th percentile 24.43 92.52 73.16 50.47 56.32 56.21
Maximum 1 567.72 2 017.01 1 707.25 2 017.01 3 517.41 3 517.41

Table 5.4: Mean time between comments [days]

hour. Standard deviation is very high with this metric indicating that the data is very
spread out and outliers (e.g. issues taking years until their first comment) are influencing
the mean. This explains the big difference between mean and median values.

With our second metric, the mean time between subsequent comments in the issue
discussion, we find a similar picture with outliers influencing the distribution. Here the
quartile and median values suggest that the discussions proceed slower in security issues
than in non-security issues (median 6.87 days vs. 4.71 days).

When analysing data for this question, we need to keep in mind that comparisons
between security and non-security issues should be made with caution. Due to class
imbalance, the data for non-security issues is suspected to be stronger influenced by the
extensive use of bots. In our manual analysis 73 out of 333 security issues (21.9%) were
first reacted to by a bot.

We also compared these two metrics between accepted, pending and rejected security
issues. As can be seen from table 5.3 rejected security issues have a much slower reaction
time than accepted security issues, which is less than half the time with 35.89 (SE 4.48)
days vs. 76.80 (SE 7.77) days. Also, the mean time between discussion comments is
significantly longer in pending and rejected security issues than it is in accepted security
issues, as can be seen from table 5.4.

CHAPTER 5. RESULTS 37

5.5 Resolution of security issues
The resolution time of security issues is a very important metric. When observing the
gathered data for the resolution time of issues in table 5.5, we can see that the data is
very spread out with a standard deviation of 283.51 days. 25% of the security issues
are resolved within 1.90 days or less, and 25% take 94.88 days (approximately three
months) or more to be resolved. When judged by the mean security issues are resolved
slightly faster than non-security issues (110.08 days vs. 116.97 days), when judging by
the median; however, non-security issues are resolved in half the time of security-issues
(8.06 days vs. 15.32 days). When analysing the data per project, we found that in 94 out
of 182 available projects (51.6%) security issues were on average resolved slower than
non-security issues.

The comparison between accepted and rejected security issues is also shown in
table 5.5. We can see that accepted security issues are resolved significantly faster than
rejected security issues with a mean of 84.95 (SE 5.03) vs. 153.32 (SE 9.61) days. As
a comparison we can also add the mean age of pending security issues here, which is
625.94 (SE 17.84) days.

We also analysed how long issues without a single comment have been pending and
how long the resolution time for accepted and rejected issues with zero comments was.
We found that in such cases non-security issues have been pending only insignificantly
longer than security issues with means of 614.65 (SE 5.18) days vs. 602.29 (SE 28.28)
days. 50% of such non-security issues have been pending for more than 420 days, and
50% of such security issues have been pending for more than 417 days. For closed
issues without any comments the resolution times were on average 34.58 (SE 0.67) days
and 33.49 (SE 4.17) days for accepted non-security and security issues respectively
while 132.02 (SE 3.50) days and 48.27 (SE 11.92) days for rejected non-security and
security issues respectively. This shows us that issues without any comment get rejected
significantly faster in the case of security issues than for non-security issues.

Further results concerning the resolution time of security issues are presented in
section 5.9.

Metric Accepted Rejected Sec. issues Non-sec. issues Total
n 1 598 929 2 527 209 939 212 466
Mean (Std. Error) 84.95 (5.03) 153.32 (9.61) 110.08 (4.80) 116.97 (0.62) 116.89 (0.62)
Std. Deviation 201.25 293.10 241.36 283.98 283.51
Minimum 0.00 0.00 0.00 0.00 0.00
25th percentile 2.14 0.99 1.90 0.53 0.54
Median 13.12 24.23 15.32 8.06 8.11
75th percentile 70.39 138.87 94.88 74.26 74.59
Maximum 2 215.98 1 954.81 2 215.98 3 311.65 3 311.65

Table 5.5: Resolution time of closed issues [days]

CHAPTER 5. RESULTS 38

5.6 Discussion of security issues

5.6.1 Participants in discussion
We analysed how many developers participate in discussions of security issues. In order
to answer this question, we excluded pending issues and only included closed issues into
our analysis because a lot of very recently created issues do not yet have any participants
in their discussions. Looking at the number of distinct participants in issue discussions
in table 5.6 we can see that there is no real difference between security issues and non-
security issues, except for a few high outliers with non-security issues that are expected
due to the much higher number of cases. In total, issue discussions have a mean of 1.55
(SE 0.00) participants with a median of 1. When analysing the data per project, we found
that in 91 out of 182 available projects (50.0%), security issues have more participants in
discussions than non-security issues.

The distribution of the number of participants in closed security issue discussion can
be seen in figure 5.6. This figure reveals a minor difference between accepted and rejected
security issues. In accepted security issues there are more cases with no participants, i.e.
no comments at all, than one participant, whereas with rejected security issues, it is vice
versa.

We also analysed how many developers participate in the security issue discussions
of a whole project. We found that on average only 7.78 (SE 1.47) developers are involved
in all security issues of a project combined. The median is even lower with only three
developers. This is very few especially when we compare it to the number of participants
in non-security discussions of a whole project where we find that on average 4 628.79
(SE 725.32) developers are involved in all issues of a project combined, with the median
being 1 550 participants.

In this context it is interesting to know how far participants in issue discussions
in general and in security issue discussions in particular overlap. In our dataset we
found 37 093 distinct participants of issue discussions. Only 941 of 37 093 (2.5%)

Metric Sec. issues Non-sec. issues Total
n 2 527 209 939 212 466
Mean (Std. Error) 1.51 (0.03) 1.55 (0.00) 1.55 (0.00)
Std. Deviation 1.66 1.47 1.47
Minimum 0 0 0
25th percentile 0 1 1
Median 1 1 1
75th percentile 2 2 2
Maximum 17 43 43

Table 5.6: Number of participants in closed issue discussions

CHAPTER 5. RESULTS 39

0 5 10 15

0

200

400

600

800

participants

fr
eq

ue
nc

y

Closed security issues
Accepted
Rejected

Figure 5.6: Number of participants in closed security issue discussions

developers participated in both security and non-security issue discussions. 35 904
(96.8%) participated only in non-security issue discussions and 248 (0.7%) only in
security issue discussions. This leads us to the conclusion that only 1 189 of 37 093
developers (3.2%) are involved in security issue discussions.

Furthermore, we checked how frequently developers participate in issue discussions.
For each participant in security issue discussions we calculated the ratio between the
total number of security issues in a project and the number of security issues in a project
that he or she participated in. We found that the developers participate in more than
one-fourth of the security issue discussions of a project with the mean ratio being 0.25
(SE 0.01). Of course, this value is magnitudes lower for non-security issues where the
mean participation ratio is only 0.0083 (SE 0.00029).

5.6.2 Comments in discussion
First of all, we counted how many comments there were in issue discussions. We found
that security issue discussions have a mean of 2.87 (SE 0.09) comments. This is less
than non-security issue discussions that have a mean of 3.47 (SE 0.01) comments. The
detailed statistics are visible in table 5.7. 75% of all security issue discussions have three
or fewer comments; the median is one single comment. When analysing the data per
project, we also found that in 81 out of 182 analysed projects (44.5%) security issue
discussions contained on average fewer comments than non-security issue discussions in
the same project. The distribution of the comment count in security issue discussion can
be seen as a histogram in figure 5.7.

We also compared this feature among different issue statuses for security issues.
The results can be seen in the left part of table 5.7. The only significant difference is
between the pending and all other security issues. Pending issues have fewer comments

CHAPTER 5. RESULTS 40

Metric Accepted Pending Rejected Sec. issues Non-sec. issues Total
n 1 598 966 929 3 493 245 550 249 043
Mean (Std. Error) 3.00 (0.13) 2.38 (0.15) 3.15 (0.21) 2.87 (0.09) 3.47 (0.01) 3.46 (0.01)
Std. Deviation 5.14 4.55 6.29 5.33 5.52 5.52
Minimum 0 0 0 0 0 0
25th percentile 0 0 1 0 1 1
Median 1 1 1 1 2 2
75th percentile 4 3 3 3 4 4
Maximum 67 60 116 116 385 385
Total comments 4 797 2 301 2 923 10 021 850 927 860 948

Table 5.7: Number of comments in issue discussions

0 10 20 30

0

200

400

600

800

1,000

1,200

comments, outliers removed

fr
eq

ue
nc

y

All security issues
Accepted
Pending
Rejected

Figure 5.7: Number of comments in security issue discussions

than accepted and rejected issues. It is also worth mentioning that 508 of 1 598 (31.8%)
accepted security issues had zero comments, 403 of 966 (41.7%) pending security
issues had zero comments and 228 of 929 (24.5%) rejected security issues also had zero
comments. As with the participants in the previous section, we can observe here that
there are fewer rejected security issues with zero comments than with one comment.

We further analysed the number of comments that the issue reporter of a security
issue made in the discussion (after the initial issue report). We found that in 144 out
of 333 security issues (43.8%), the issue reporter did not leave any more comments.
The mean value is 1.39 comments (SE 0.14) with a standard deviation of 2.55. The
distribution is visualised in figure 5.8, where we see that no notable differences exist
between different issue statuses. On a large scale we also analysed this question for
closed security issues vs. closed non-security issues. We found that in security issues
the author is posting a mean of 1.13 (SE 0.05) comments and in non-security issues a
mean of 1.81 (SE 0.00) comments. This means that, admittedly on a low level, the issue
reporter is leaving slightly more comments in the discussion of “his or her” issue in
non-security issues than in security issues.

CHAPTER 5. RESULTS 41

Accepted Pending Rejected Total

0

2

4

6

8

10

12

14

#
co

m
m

en
ts

,1
ou

tli
er

re
m

ov
ed

Figure 5.8: Number of comments by the issue reporter in security issue discussions

As described in the methodology chapter, we manually investigated various qualita-
tive features of the comments in security issue discussions. Our results are presented in
the following paragraphs.

First and foremost, we categorised discussion comments based on their nature. Both
figure 5.9 and figure 5.10 are based on the same data, but they emphasis two different
perspectives of comment natures in security issue discussions. Figure 5.9 compares the
percentages that issue comments of a certain nature take up in security issue discussion
across the three issue statuses accepted, pending and rejected. In figure 5.10, on the
other hand, every bar represents the mean composition of a security issue discussion
with the corresponding issue status. We find that elaborative comments are much more
common in accepted (30.6%) and pending (33.2%) security issues compared to rejected
security issues (20.4%). Notably, the share of comments that are of a thematically
relevant nature (elaboration, ask/request and instruction) differs significantly between
accepted and rejected security issues (39.7% vs. 30.1%). Other things worth noting are
that notifications make up for more than half of all comments in rejected security issue
discussions (53.4%) and that reminders are a lot more common in still pending security
issues (29.6%). Our cross-comparison between comment natures and issue statuses is
significant, with a p-value of 0.000.

For the 145 reminders that we found during our manual analysis, we wanted to see if
they speed up the resolution process of the security issues. We were unable to find any
significant evidence that would support this assumption. We found though, that 98 of
145 (67.6%) reminders were posted by bots.

Looking at our next feature, we found that developers are generally quite confident
with 73.1% of all elaborative comments being confident. When comparing different
issue statuses in figure 5.11, we see that developers are only slightly more confident in
accepted security issues (75.5%) than they are in pending (71.1%) or rejected security
issues (70.1%). The cross-comparison between confident comments and issue statuses is

CHAPTER 5. RESULTS 42

significant, with a p-value of 0.049.
As with the issue reports, we also checked if developers provided any further informa-

tion in their comments during the discussions of security issues. As shown in figure 5.12,
nearly 80% of all comments in security issue discussions do not contain any further
information directly or via a hyperlink. Few occurrences of documentation and fixes
were found, very few references to CVE entries or reproducibility information. There
were no notable differences among the different issue statuses.

Very similar to further information, mentioning other people is not very common
in security issue discussions. As shown in figure 5.13, in only 30.9% of all comments
was someone mentioned. Core members or established contributors to the project were
mentioned in 20.8% and the initial author of the security issue in 6.2% of comments.

CHAPTER 5. RESULTS 43

Elab
ora

tio
n

Ask
/R

eq
ue

st

Rem
ind

er

Noti
fica

tio
n

Ins
tru

cti
on

Othe
r

0

20

40

60

m
ea

n
sh

ar
e

of
co

m
m

en
ts

[%
]

Accepted Pending Rejected

Figure 5.9: Distribution of comment natures in security issue discussions (error bars
indicate standard error of mean)

Accepted Pending Rejected Total

0

50

100
10.3 10.5 8.8 10.0

1.4 1.2 2.7 1.7

34.0
14.8

53.4
35.1

16.0

29.6

7.7

16.8

7.7 10.7

7.0
8.2

30.6 33.2
20.4 28.2

co
m

m
en

ts
[%

]

Elaboration Ask/Request Reminder

Notification Instruction Other

Figure 5.10: Mean composition of security issue discussions

CHAPTER 5. RESULTS 44

Accepted Pending Rejected Total

0

50

100

24.5 28.9 29.9 26.9

75.5 71.1 70.1 73.1

co
m

m
en

ts
[%

]

Confident Unconfident

Figure 5.11: Confident vs. unconfident elaboration in security issue discussions

None 79.6%

Documentation 11.9%

Fix 7.4%

CVE, Reproducibility, Other
0.6%, 0.1%, 0.4%

Figure 5.12: Further information in security issue discussions

No mentioning 69.1%

Member 14.1%
Contributor 6.7%

Author of issue 6.2%
Other 3.8%

Figure 5.13: Mentioning in security issue discussions

CHAPTER 5. RESULTS 45

5.7 Assignment of security issues
In this section we present our results concerning the assignee feature of GitHub. We
found that in 1 698 of 3 493 (48.6%) security issues was someone assigned to the issue,
whereas for non-security issues this share was lower with 107 923 of 245 550 (44.0%)
having at least one assignment. In figure 5.14 we can see the comparison of the number
of assignees between the different statuses of security issues (p-value = 0.000). We find
that for accepted issues 1 069 of 1 598 (66.9%) issues have one or multiple assignees,
while for pending issues only 316 of 966 (32.7%) and for rejected issues only 313 of 929
(33.7%) security issues have an assignee. We observe that security issues have at most

Accepted Pending Rejected Total

0

50

100

33.1

67.2 66.3
51.4

is
su

es
[%

]

0 assignees 1 assignee 2 assignees

3 assignees 4 assignees

Figure 5.14: Assignees of security issues

four assignees and rarely (3.8%) more than one assignee. We can conclude that accepted
issues have most assignees while in pending and rejected issues about two-thirds of the
security issues do not have an assignee. This is also confirmed by the mean values with
0.71 (SE 0.01) assignees for accepted, 0.31 (SE 0.02) for pending and 0.33 (SE 0.02)
for rejected security issues. In reverse, this also yields a much higher acceptance rate
for security issues that have an assignment with 77.4% vs. 46.3% for issues with no
assignment.

Further analysis shows that in 1 075 of 1 698 (63.3%) security issues with assignees,
actually a self-assignment took place, i.e. a user assigned himself to a security issue.
Additionally, in 444 of 1 698 (26.2%) issues, the reporter of the security issue is added
as an assignee. A developer who is assigned to a security issue is posting an average of
1.44 (SE 0.06) comments on that issue.

Furthermore, we were interested in the developers who were assigned to security
issues, which we will call security assignees for this section. In the 1 698 security issues
that had at least one assignee, we identified 328 such security assignees. We found that

CHAPTER 5. RESULTS 46

those 328 security assignees reported 1 505 of 3 493 (43.1%) of the security issues in
our dataset. The mean number of reported security issues by such a security assignee is
7.00 (SE 0.80). This is significantly more than the 2.37 (SE 0.40) security issues for the
“normal” developer that we calculated in section 5.2.

Additionally, those 328 security assignees were responsible for 3 942 of 9 901 (39.8%)
comments in all the security issues. 1 522 of 3 493 (43.6%) security issues have received
at least one comment by a security assignee. The mean number of total comments across
all security issues by a security assignee is 15.28 (SE 1.97) comments. The mean number
of comments per security issue they are involved in is 2.59 (SE 0.08) comments. In issues
they are assigned to security assignees leave a mean of 1.00 (SE 0.03) comments, whereas
in security issues of their project that they are not assigned to only they leave a mean
of 0.22 (SE 0.03) comments. We can conclude by stating that security assignees were
involved in 2 230 of 3 493 (63.8%) security issues by either reporting or commenting.

Further investigations revealed that of the 1 117 developers who were not security
assignees, 1 079 (96.6%) have fewer comments in security issues and fewer security
issue reports than the average security assignee. Six persons have more reports but
fewer comments, 18 have fewer comments but more reports and only seven have more
comments and more reports and outperform security assignees in both metrics. We also
found that the acceptance rate for security issues reported by security assignees is 77.7%,
which is higher than the global acceptance rate for security issues of 63.2%. Also, the
mean resolution time for security issues reported by security assignees is 80.86 (SE 5.95)
days, which is significantly shorter than the global resolution time for security issues of
110.08 (SE 4.80) days that we calculated in section 5.5.

Finally, we also analysed when the first assignment of a security issue happens. On
average, the first assignment takes place 51.00 (SE 4.52) days after the creation of a
security issues. It happens earlier for accepted issues with a mean of 39.29 (SE 5.30)
days than for pending and rejected issues with means of 87.19 (SE 13.10) and 54.49 (SE
9.69) days respectively. At the time of the first assignment, a mean of 1.34 (SE 0.09)
comments have already been left on the security issues, and a mean of 2.81 (SE 0.11)
comments follow after the first assignment.

5.8 Pull requests related to security issues
Submitting a pull request to a repository is the most common way to fix an issue on
GitHub. We found that 106 out of 154 analysed accepted security issues (68.8%) were
fixed by a pull request, while with the majority of other instances namely in 44 issues
(28.6%) the implementation was made with a direct commit to the repository without a
pull request. In four cases it was unknown where or how a fix was implemented. The
distribution is visualised in figure 5.15. Furthermore, we found that 12 of 80 pending
security issues (15.0%) had a pull request and six of 99 rejected security issues (6.1%)

CHAPTER 5. RESULTS 47

106

44
4

Pull request
Direct commit
Unknown

Figure 5.15: Implementation of accepted security issues

Accepted Pending Rejected Total

0

50

100

42.5 50.0 50.0 43.6

42.5 33.3 33.3 41.1

15.0 16.7 16.7 15.3

pu
ll

re
qu

es
ts

[%
]

No Review Single Review Multiple Reviews

Figure 5.16: Review situation of pull requests

as well. We were interested why those six pull requests were rejected and found that
in five cases a fix was implemented and merged in another (unlinked or not properly
linked) pull request and in one case the pull request was actually closed unmerged and
subsequently the corresponding issue was closed as well, without any further explanation.
We already saw that 31.2% of accepted security issues were closed without a pull request,
for rejected security issues this number is naturally much higher with 93 of 99 (94.0%).

A key functionality of pull requests on GitHub is the possibility to add users as
reviewers so that they take a look and evaluate the proposed code changes. Fortunately,
we found that 105 of 124 (84.7%) analysed pull requests were reviewed at least once by
another person than the pull request creator. In 54 of 124 (43.6%) pull requests there
were even multiple reviews carried out. Across different issue statuses there were no
notable differences (figure 5.16). However, we need to keep in mind that data is scarce
here with only twelve and six pull requests available for pending and rejected security
issues, respectively.

We were interested in the role of a security issue reporter in a pull request that
emerged from a security issue. Figure 5.17 shows us that in 50.8% of analysed cases,
the issue reporter is not involved in the pull request emerging from a security issue at all.

CHAPTER 5. RESULTS 48

Accepted Pending Rejected Total

0

50

100
14.2 8.3

16.7 13.7

32.1 50.0

66.7

35.5

53.7
41.7

16.6

50.8pu
ll

re
qu

es
ts

[%
]

Not involved Creator Reviewer

Figure 5.17: Role of the security issue reporter in corresponding pull request

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

50

participants

fr
eq

ue
nc

y

Figure 5.18: Number of participants in pull request discussions

There are some differences between the different issue statuses, but we need to keep in
mind that data is scarce here with only twelve and six pull requests available for pending
and rejected security issues, respectively. Still, it is interesting to see that in four of six
rejected security issues with a pull request, the creator of the issue also created the pull
request.

Naturally, we also analysed the discussions of pull requests. The number of par-
ticipants in pull request discussions emerging from security issues follows a normal
distribution with a mean of 2.09 (SE 0.11) and a standard deviation of 1.20, as can be
seen in figure 5.18. No pull request discussion with more than six participants was found
across all 124 analysed pull requests.

The distribution of the number of comments in the 124 analysed pull request discus-

CHAPTER 5. RESULTS 49

0 2 4 6 8 10 12 14 16 18 20 >22
0

5

10

15

20

25

comments

fr
eq

ue
nc

y

Figure 5.19: Number of comments in pull request discussions

Accepted Pending Rejected Total

0

10

20

30

40

50

#
co

m
m

en
ts

,3
ou

tli
er

s
re

m
ov

ed

Figure 5.20: Number of comments in pull request discussions

sions emerging from security issues can be seen in figure 5.19 and a comparison between
the different issue statuses in figure 5.20. We found that pull request discussions have
a mean of 10.06 comments (SE 1.48) with a standard deviation of 16.52. As can be
seen from figure 5.19, the data is widely spread out with several outliers (maximum is
110 comments) and nine pull requests having 22 or more comments which influence the
mean heavily. Comparisons between different issue statuses in figure 5.20 should be
made tentatively because data is scarce with pending and rejected security issues pull
requests, but there is a visible tendency that pending pull requests have slightly more
comments than accepted and rejected pull requests.

Now that we have analysed the number of comments in issue and pull request
discussions, it seems logical to compare them. The relation between the number of
comments in the discussion of the security issue itself and the number of comments
in the pull request discussion is shown in figure 5.21. Statistical correlation analysis

CHAPTER 5. RESULTS 50

0 10 20 30 40 50

0

10

20

30

40

comments in issue discussion

#
co

m
m

en
ts

in
pu

ll
re

qu
es

td
is

cu
ss

io
n

Accepted Pending Rejected y = 5.07 + 1.2 ∗ x

Figure 5.21: Number of comments in security issue discussions vs. number of comments
in pull request discussions

using Pearson’s correlation coefficient has shown that the number of comments in the
discussion of the security issue and the number of comments in the pull request discussion
correlate significantly (r = 0.427, p = 0.000, n = 124). The more comments there are in
the issue discussion, the more comments there are in the discussion of the pull request or
vice versa. According to Cohen [4], the strength of this effect is medium. Recalling the
results from table 5.7 we can also state that pull request discussions have a significantly
higher number of comments than security issue discussions with a mean of 10.06 (SE
1.48) comments vs. 2.87 (SE 0.09) comments for the issue discussions (for accepted
security issues also only 3.00 (SE 0.13) comments). This is also visible in figure 5.21.

Finally, we had 62 instances of security issues available where we identified a key
point in the discussion and also a pull request corresponding to this issue was created. We
found that in 27 cases the key point was before the pull request, and in 35 cases the key
point was after the pull request. Whenever the key point happened before the pull request,
the discussion of the issue generally came to a conclusion, and there was consensus that
a pull request can now be created to implement a fix. When the key point happened after
the pull request, it was generally a notification that informed the community that a pull
request that addresses this security issue has been created and merged and that this issue
can now be closed.

CHAPTER 5. RESULTS 51

5.9 Trends in security issues over the age
As the resolution time of a security issue is critical in mitigating potential damage, we
were interested if we could identify any other characteristics that potentially have an
impact on resolution time. This is what we report in the first part of this section. In the
second part, where we also take pending security issues into consideration, we look at
how certain characteristics of security issues evolve as the issue ages.

The results of the correlation analysis between other numeric features and the resolu-
tion time are shown in table 5.8. We can see that there are four statistically significant
correlations indicated by an asterisk in the table. We find that there is a positive, yet
weak according to Cohen [4], correlation between the resolution time of a security issue
and its number of comments, number of participants and number of participants in the
pull request. This means that the bigger the discussion of a security issue is, the longer
it takes to resolve it or vice versa. Additionally, we have a strong correlation between
the resolution time of a security issue and its reaction time, i.e. the time until the first
comment. This signifies the importance of the first comment in a security issue. The
faster there is a first comment, the faster a security issue is resolved or vice versa.

r p n
comments 0.228* 0.000 2 527
participants 0.230* 0.000 2 527
assignees -0.019 0.352 2 527
reaction time 0.637* 0.000 1 791
comments PR 0.104 0.276 112
participants PR 0.193* 0.042 112

Table 5.8: Correlation analysis of resolution time with other numerical characteristics

At this point, we should also add that we found a statistically significant weak
correlation between the age of a project and the number of participants involved in
security issues (r = 0.289, p = 0.000, n = 3 493) and also between the age of a project and
the number of participants involved in pull requests corresponding to security issues (r =
0.203, p = 0.024, n = 124). This means that more participants are involved in security
issues as the project gets older or vice versa.

CHAPTER 5. RESULTS 52

Doc
. in

co
mmen

ts
CVE

Rep
ort

er
inv

olv
ed

in
PR

Rep
ort

er:
co

re
mem

be
r

PR: n
o/s

ing
le

rev
iew

0

50

100

150

200

250

m
ea

n
re

so
lu

tio
n

tim
e

[d
ay

s] Yes No

Figure 5.22: Mean resolution time of closed security issues for different values of
categorical features

For the categorical features we recorded in the manual analysis, we compared the
mean resolution time for the security issues with different values. We were able to
make the following observations (the following enumeration corresponds to the x-axis in
figure 5.22:

1. Security issues where additional documentation is provided in the comments are
resolved significantly slower.

2. Security issues with a CVE reference in the report or the comments are resolved
significantly faster.

3. Security issues where the issue reporter is involved in the pull request are resolved
significantly faster.

4. Security issues that are reported by core members (members and collaborators)
are resolved significantly slower.

5. Security issues with pull requests that were not reviewed or reviewed once are
resolved significantly faster than security issues with pull requests that were
reviewed more than once.

Furthermore, we checked if the mean resolution time was different when a security
issue has an assignee. We found that there is no significant difference between the
mean resolution times of security issues with assignee 109.81 (SE 6.36) days vs. 110.42
(SE 7.31) days for security issues without an assignee. Interestingly though, there are

CHAPTER 5. RESULTS 53

ageBin Min age
[days]

Max age
[days]

issues in
full dataset

issues
in sample

0 0 0.25 348 24
1 0.25 2.27 351 30
2 2.27 7.34 350 36
3 7.34 20.95 351 30
4 20.95 47.30 346 30
5 47.30 103.99 350 37
6 103.99 193.46 349 39
7 193.46 426.71 350 32
8 426.71 898.27 349 37
9 898.27 3 042.50 349 38

Table 5.9: Age binning of security issues

differences between issue statuses. Accepted issues have a slightly longer resolution time
if they have an assignee with 88.29 (SE 6.44) vs. 78.19 (SE 7.84) days, while rejected
issues have a significantly longer resolution time if they have an assignee with 183.29
(SE 16.78) days vs. 138.09 (SE 11.69) days. Finally, pending issues have a significantly
“younger” age if they have an assignee, namely 553.29 (SE 29.09) days vs. 661.25 (SE
22.31) days for pending security issues without an assignee. No significant differences
could be identified for the other categorical features.

In order to analyse how security issue evolve when they age, we grouped the 3 493
security issues in our dataset into ten “age bins”, according to the 10%-quantiles of the
age of the issues. The binning details are shown in table 5.9. We then made figure 5.23
to show the number of accepted, pending and rejected security issues per age bin. We
see that in general as security issues age the numbers of accepted and rejected issues
decrease (because they are closed) and the number of pending issues increases of course.
For very short-lived or very old issues there are more rejected than accepted security
issues, while for issues between two days and two months old, there are more than twice
as many accepted issues than rejected issues. The cross-comparison between the age bin
and the issue statuses is significant with a p-value of 0.000.

In figure 5.24 and table 5.10 we see the evolution of the number of comments in
security issue discussions over the age of the issue. Overall we can say that the more
issues age, the more comments they receive. Pending issues generally have fewer than
three comments, while accepted and rejected issues are similarly discussed.

Finally, in figure 5.25 and table 5.11 we see the evolution of the number of participants
in security issues discussions over the age of the issue. We observe that accepted and
rejected issues are generally discussed by fewer than two participants; issues older than
half a year involve more participants though. In pending issues the number of participants
increases, but it seems that if an issue is not resolved after half a year, fewer participants

CHAPTER 5. RESULTS 54

get interested in joining the discussion. We also analysed if the occurrences of further
information (documentation, reproducibility information, cve or fix) varied over the age
of issues, but we did not find any notable changes.

0 1 2 3 4 5 6 7 8 9
0

50

100

150

200

250

300

350

age bins

#
is

su
es

Accepted Pending Rejected Total

Figure 5.23: Number of security issues per age group

CHAPTER 5. RESULTS 55

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

age bins

m
ea

n
#

co
m

m
en

ts

Accepted Pending Rejected Total

Figure 5.24: Mean number of comments of security issues per age group

ageBin Accepted
Mean (SE)

Pending
Mean (SE)

Rejected
Mean (SE)

0 1.66 (0.24) - 1.61 (0.19)
1 1.76 (0.17) 1.00 (0.26) 1.64 (0.23)
2 2.23 (0.28) 0.82 (0.40) 2.08 (0.29)
3 2.45 (0.25) 0.80 (0.27) 2.28 (0.28)
4 3.05 (0.29) 1.71 (0.48) 2.60 (0.35)
5 3.31 (0.31) 1.51 (0.28) 3.17 (0.49)
6 3.87 (0.41) 2.88 (0.45) 4.32 (0.69)
7 6.65 (1.00) 2.35 (0.25) 4.79 (0.60)
8 6.30 (1.25) 2.19 (0.24) 7.20 (1.62)
9 7.05 (1.75) 2.93 (0.36) 5.70 (1.85)

Table 5.10: Mean number of comments of security issues per age group

CHAPTER 5. RESULTS 56

0 1 2 3 4 5 6 7 8 9
0

1

2

3

age bins

m
ea

n
#

pa
rt

ic
ip

an
ts

Accepted Pending Rejected Total

Figure 5.25: Mean number of participants in security issues per age group

ageBin Accepted
Mean (SE)

Pending
Mean (SE)

Rejected
Mean (SE)

0 0.88 (0.10) - 0.78 (0.07)
1 1.04 (0.08) 1.00 (0.26) 1.08 (0.13)
2 1.19 (0.10) 0.55 (0.28) 1.25 (0.11)
3 1.33 (0.10) 0.63 (0.18) 1.44 (0.13)
4 1.63 (0.11) 1.03 (0.25) 1.62 (0.18)
5 1.80 (0.13) 0.99 (0.15) 1.54 (0.18)
6 1.95 (0.16) 1.60 (0.17) 2.06 (0.24)
7 2.53 (0.19) 1.56 (0.13) 2.20 (0.19)
8 2.43 (0.30) 1.28 (0.10) 2.38 (0.20)
9 2.95 (0.66) 1.20 (0.10) 2.35 (0.40)

Table 5.11: Mean number of participants in security issues per age group

CHAPTER 5. RESULTS 57

5.10 Trends in security issues over the years
In this section we report our observations about security issues over the course of the last
few years. Our dataset contains security issues that were created between June 2010 and
April 2020. Unfortunately, the number of issues before 2014 in our dataset is extremely
low and would not allow for accurate analysis. This is why we focus on issues created
from 2014 until 2020 in this section. In figure 5.26 we see the number of security issues
over the last six years. The cross-comparison of the creation year and the issue statuses
is significant with a p-value of 0.000. What is evident is a big increase in the number
of security issues after 2016. We have to keep in mind though, that our selection only
includes projects that were pushed to at least once after 01.01.2019 (see section 4.1).
The decrease in 2020 is explained by the fact that at the time of writing we could only
include issues until April 2020.

2014 2015 2016 2017 2018 2019 2020
0

200

400

600

800

1,000

1,200

year (creation)

#
is

su
es

Accepted Pending Rejected Total

Figure 5.26: Number of security issues per year

Figure 5.28 and table 5.12 show the development of the mean number of comments
in security issues discussions from 2014 to 2020. This graph suggests that in recent years
fewer comments have been needed to resolve issues. We need to keep in mind however,
that this analysis is biased, as the data point for every year can only include issues up
to the age of the difference between that year and today. So data points in earlier years
include older issues, while data points in more recent years do not. 75% of security
issues are resolved in less than 95 days though, which should mitigate this problem.

Figure 5.29 and table 5.13 show the development of the number of participants in
security issues discussions from 2014 to 2020. It is obvious to see that the number of
participants involved has not really changed over the years.

Finally, we analysed if there are any trends in the resolution time of security issues
over the years in figure 5.27. But as with the number of comments, we need to keep

CHAPTER 5. RESULTS 58

in mind that earlier years include longer-lasting security issues. One interesting thing
though, is that rejected security issues are resolved slower than accepted security issues.

As with the trends over the age, we also analysed if the occurrences of further
information (documentation, reproducibility information, cve or fix) varied over the last
years, but we did not find any notable changes to report at this point.

2014 2015 2016 2017 2018 2019 2020
0

100

200

300

400

500

year (creation)

m
ea

n
re

so
lu

tio
n

tim
e

[d
ay

s]

Accepted Rejected Total

Figure 5.27: Mean resolution time of closed security issues per year

CHAPTER 5. RESULTS 59

2014 2015 2016 2017 2018 2019 2020
0

1

2

3

4

5

year (creation)

m
ea

n
#

co
m

m
en

ts

Accepted Pending Rejected Total

Figure 5.28: Mean number of comments of security issues per year

year Accepted
Mean (SE)

Pending
Mean (SE)

Rejected
Mean (SE)

2014 3.56 (0.57) 1.87 (0.49) 5.27 (1.15)
2015 2.63 (0.42) 3.33 (0.71) 4.76 (0.66)
2016 3.75 (0.63) 3.43 (1.13) 5.08 (2.01)
2017 2.95 (0.52) 2.54 (0.38) 3.81 (0.53)
2018 2.94 (0.21) 2.18 (0.25) 3.39 (0.28)
2019 2.90 (0.19) 2.54 (0.24) 1.81 (0.18)
2020 1.91 (0.30) 1.33 (0.19) 2.47 (0.49)

Table 5.12: Mean number of comments of security issues per year

CHAPTER 5. RESULTS 60

2014 2015 2016 2017 2018 2019 2020
0

1

2

3

year (creation)

m
ea

n
#

pa
rt

ic
ip

an
ts

Accepted Pending Rejected Total

Figure 5.29: Mean number of participants in security issues per year

year Accepted
Mean (SE)

Pending
Mean (SE)

Rejected
Mean (SE)

2014 1.39 (0.21) 1.00 (0.20) 1.67 (0.26)
2015 1.18 (0.15) 1.27 (0.30) 1.77 (0.18)
2016 1.80 (0.24) 1.24 (0.20) 1.67 (0.19)
2017 1.21 (0.11) 1.09 (0.11) 1.72 (0.13)
2018 1.73 (0.08) 1.34 (0.12) 2.18 (0.12)
2019 1.57 (0.07) 1.57 (0.10) 1.09 (0.08)
2020 0.97 (0.13) 0.87 (0.10) 1.36 (0.17)

Table 5.13: Mean number of participants in security issues per year

CHAPTER 5. RESULTS 61

5.11 Other general findings
The goal of this section is to describe a few general findings that were made mainly
during the manual analysis for this study and are unrelated to any other specific topic.

5.11.1 Role of bots
Bots are a common tool used in collaborative software engineering. The GitHub Market-
place1 currently lists 35 bot applications that can be directly installed into any GitHub
project. During the manual analysis of 333 security issues we were able to identify three
main areas where bots were used. In four projects a “stale bot” was used to label issues as
stale when there was no activity on them for a certain number of days and automatically
close them after a further waiting period. In two projects a bot was used to import older
issue threads from a different previously used issue tracking system into GitHub in order
to consolidate all the history about the project in one place. Finally, in two projects a bot
was used to automatically “ping” a certain user group based on a label that was assigned
to the issue in order to attract their attention (e.g. a group of senior projects members
specialised in security questions were automatically notified when the label “security”
was assigned to an issue).

5.11.2 Tools to detect security issues
During our manual analysis we watched out for any tools that developers mention in their
security issue reports that have helped them to identify a security issue. We were not able
to identify any specific tools, but we found that in some cases, projects used GitHub’s
Security Advisory feature2. GitHub Security Advisories builds upon the foundation of the
Common Vulnerabilities and Exposures (CVE) list. Project developers can be notified if
their project uses a dependency that has a known vulnerability. A new feature is currently
in a closed beta phase that allows periodic scanning of the source code to detect known
vulnerability patterns. Furthermore, GitHub is a CVE Numbering Authority (CNA) and
is authorised to assign CVE identification numbers if users create a GitHub Security
Advisory for a vulnerability in their own project, that does not yet have a CVE identifier.

5.11.3 Rejected security issues
Even though we did not have a feature in our manual analysis for the reason a security
issue gets rejected, we did notice some recurring patterns. The most common reason for
the rejection of security issues was that an issue had been resolved when another related

1https://github.com/marketplace?query=bot
2https://github.com/advisories

CHAPTER 5. RESULTS 62

or unrelated issue was fixed or because an external dependency was updated. We also
found cases where an issue was declared as a duplicate issue. Finally, there were a few
cases where the issue was not reproducible, or it was found that issue did not concern
this project but rather a third-party product or dependency.

5.11.4 CVE entries
During our manual analysis of 333 security issues we found four security issues that
directly led to the creation of a CVE entry. The first one, CVE-2019-11405, was created
because the OpenAPI Tools OpenAPI Generator3 used http:// instead of https:// in various
Gradle build files, which may have caused insecurely resolved dependencies. The other
three security issues all occurred within the FasterXML jackson-databind4 project. They
led to a series of CVE entries being created. Two vulnerabilities would allow an attacker
to perform remote code execution (RCE) attacks (CVE-2018-14718 and CVE-2018-
14719), one would allow external XML entity (XXE) attacks (CVE-2018-14720), another
one server-side request forgery (SSRF) attacks (CVE-2018-14721) and the final one
would allow exfiltration of content (CVE-2018-11307).

5.11.5 Unique issues
We came across a few security issues that are quite special in some aspect. In two cases a
security vulnerability was not disclosed publicly (“responsible disclosure”), but an issue
was simply created to get a contact email address where the details could be submitted to.
In one other case, a financial reward of unknown amount was paid directly to the reporter
of a security vulnerability by a core member of the project. Furthermore, a group of
researchers from the University of Nebraska reported a security issue to a project in one
instance. Finally, we saw two occasions where a used dependency was upgraded more
than one year after it became public, that the used version of the dependency contained a
vulnerability, which even received a CVE identifier.

3https://github.com/OpenAPITools/openapi-generator
4https://github.com/FasterXML/jackson-databind

6
Discussion

In this chapter we discuss our results from the previous chapter and connect different
findings in order to create a coherent picture of security issues in Open Source Software.

As expected, we were able to measure in section 5.1 that security issues only make
up a very small part of all issues in Open Source Software projects (1.42%). Only 2.4%
of all developers in our analysed dataset are reporting security issues, and only 3.2%
are involved in the discussion of security issues. Nevertheless, we were able to identify
significant differences and similarities between security issues and non-security issues:

• Security issues are more often reported by core members or established contributors
to the project and less often by outsiders than non-security issues.

• Initial reaction time for security issues is faster than for non-security issues.

• Discussions proceed slower in security issues than in non-security issues.

• Generally, discussions of security and non-security issues involve a similar number
of participants.

• Discussions of security issues are shorter (in terms of the number of comments)
than discussions of non-security issues.

• Discussions of security issues include fewer comments by the issue reporter than
discussions of non-security issues.

• Security issues are resolved significantly slower than non-security issues.

63

CHAPTER 6. DISCUSSION 64

• Long pending issues without comments are rejected faster in security issues than
in non-security issues.

A possible explanation for the differences might be the complexity and urgency of
security issues. Due to the severe consequences they can have, security issues are in
general rather urgent compared to non-security issues and addressing or reporting them
requires specialised knowledge that only a limited number of developers possess. This
might explain why security issues are mostly reported by developers associated with
the project. Additionally, if a matter is very complex, then the discussion might be
progressing more slowly, there might be fewer comments and the issue can take longer
to be resolved. Short initial reaction time could be explained by the urgency that comes
with security issues.

Moreover, we found that in 50% of all analysed projects, it takes 656 days or more
until the first security issue is created. This nearly two-year time span may be explained
by the setup and initial development of a project that is required until a security issue can
even emerge and by the fact that some projects do not have issue tracking enabled right
from the beginning or do not enforce strict labelling right from the beginning. Once the
first security issue of a project is created, a new one appears on average every 54 days.

Furthermore, we were able to measure a medium correlation between the activity
of a project (in terms of the number of commits) and the number of security issues in
a project and a strong correlation between the popularity of a project (in terms of the
number of forks and stars) and the number of security issues in a project. This finding
would lead to the hypothesis that the more developers are involved in a project, the more
security issues (of all existing security problems) are discovered.

Our findings further support the hypothesis of the scarcity of security knowledge. In
section 5.6 we measured that security issues have a low mean of only 2.87 comments and
1.51 involved distinct participants per issue in their discussions. Furthermore, all security
issues are discussed and, as mentioned in the introductory paragraph to this chapter, also
reported by a very small circle of developers.

In section 5.2 we also analysed the gender of issue reporters. We found that the
percentage of female issue reporters is slightly higher for security issues than for non-
security issues, but there is no significant difference in the acceptance rates between male
and female security issue reporters.

During our manual analysis we compared many features between security issues with
different statuses, and we were able to identify significant differences between accepted
and rejected security issues.

• Accepted security issues are more often clearly explained than rejected security
issues.

• Accepted security issues have a faster initial reaction and faster proceeding discus-
sions than rejected security issues.

CHAPTER 6. DISCUSSION 65

• Reporters of accepted security issues more often provide further information than
reporters of rejected security issues. Notably accepted security issues more often
contain or refer to documentation and reproducibility information than rejected
security issues.

• The discussions of accepted security issues have a significantly higher proportion
of thematically relevant comments (elaboration, ask/request or instructions) than
discussions of rejected security issues, where generic comments (notifications,
reminders and other) are more common.

• Accepted security issues more often have an assignee than rejected security issues.

• Accepted security issues are resolved faster than rejected security issues.

These findings constitute significant differences between accepted and rejected security
issues. It remains to be analysed by future studies if those factors have a causal influence
on the acceptance rate of security issues. At this point we can also mention a few more
findings. In section 5.6 we found that pending security issues have the slowest reaction
time among all issue statuses. Unsurprisingly, reminders are most common in pending
issues. Also, notifications nearly make up for more than 50% of the comments in rejected
security issues. Furthermore, elaboration in discussions is only slightly more confident
in accepted security issues than it is in rejected security issues.

We found that among all issue statuses, comments in the discussion of security issues
do not contain a hyperlink or further information in eight of ten comments. There are
no notable differences between the issue statuses when it comes to the type of further
information either. Mostly, further documentation is provided, followed by proposed fixes.
No differences were also observed with the mentioning feature of GitHub. Developers
do not mention another user in seven of ten comments. There are no notable differences
between the issue statuses when it comes to the association with the project of the person
who is mentioned. Members are most commonly mentioned, followed by contributors
and the author of the issue himself. Finally, the issue reporter does not participate in the
follow-up discussion at all in four of ten security issues.

In section 5.8 we also analysed pull requests that are associated with security issues.
We found that two-thirds of all accepted security issues use the pull request feature of
GitHub (and other functionality that comes with it like code review, build pipelines, etc.),
while one-third of all accepted security issues had their code changes directly committed
to the repository. On a positive note, we found that nearly 85% of the analysed pull
requests were reviewed by another developer.

Interestingly, and this was quite unexpected, the issue reporter of a security issue
is not involved at all in the pull request in 50% of the cases, neither as creator nor as a
reviewer or discussion participant of the pull request. This could be partially explained
if the security issue is reported by an external person who is not otherwise involved

CHAPTER 6. DISCUSSION 66

in the project because pull requests and therefore code changes are mostly handled by
established contributors or core members of a project. This assumption was confirmed
by a quick background check. The number of comments in the issue discussion and
the difficulty of the pull request discussion suggest that those issues were presumably
relatively easy to fix and did not even require the reporter of the issue to be involved in
the pull request.

When analysing the number of comments and distinct participants in pull request
discussions, we found that the numbers are significantly higher than the equivalent
numbers for the security issue discussions. A potential explanation that can be supported
by observations made during the analysis is that the code changes that are discussed
and reviewed in pull requests, often cause a lot of “going back and forth” if the matter
is complex or hard to fix. This causes a high number of comments in the pull request
discussion.

Furthermore, we also did correlation analysis during our manual analysis. We found
that the number of comments in the discussion of a security issue has a statistically
significant correlation of medium effect with the number of comments in the pull request
discussion. This is consistent with the intuition that a hard or complex security issue that
requires more discussion also leads to more discussion during the implementation phase
(pull request) because the changes are likely more complex as well.

We made several investigations concerning the assignment feature of GitHub and
reported our results in section 5.7. Most importantly, we could observe that the acceptance
rate of security issues with an assignee is more than 30% higher than for security issues
without an assignee. Rather interestingly two-thirds of all assignments in security issues
are self-assignments, where a developer assigns himself to a security issue. Also, in one-
fourth of the cases the assigned developer was actually the reporter of the security issue
itself. We found that the group of developers who is assigned to security issues plays
an important role in resolving security issues. Those security assignees were involved
in roughly 64% of all security issues, either by commenting and reporting. When they
reported security issues, they had an acceptance rate of 77.7%, which is higher than the
average for security issues. Their resolution time was significantly shorter than the global
mean as well. Furthermore, we found that security assignees outperform nearly 97% of
the other developers involved in security issues, based on the number of comments and
reported issues.

In section 5.9 we analysed the relationship between the resolution time and other
characteristics of security issues. We were able to make the following significant obser-
vations:

• There is a strong positive correlation between the reaction time and the resolution
time of security issues.

• There is a weak positive correlation between the number of comments and the
resolution time of security issues.

CHAPTER 6. DISCUSSION 67

• There is a weak positive correlation between the number of participants and the
resolution time of security issues.

• There is a weak positive correlation between the number of participants in the pull
request and the resolution time of security issues.

• The resolution time of security issues is longer if further documentation is provided
in the comments.

• The resolution time of security issues is shorter if a CVE report is referenced in
the issue report or in the comments.

• The resolution time of security issues is shorter if the issue reporter is a core
member of the project.

• The resolution time of security issues is shorter if the issue reporter is involved in
the pull request.

• The resolution time of security issues is shorter if a pull request is not reviewed or
reviewed only once, versus multiple reviews.

These findings constitute significant differences in resolution time for categorical features
or significant correlation of resolution time with other numerical features. It remains to
be analysed by future studies if those factors have a causal influence on the resolution
time of security issues. Interestingly, there was no significant difference between the
mean resolution time for security issues with and without an assignee.

When comparing security issues of different age or resolution time in section 5.9 we
found that for very short-lived and very old issues, there are more rejected than accepted
security issues. For issues that are between two days and two months old, on the other
hand, there are more than twice as many accepted security issues than pending security
issues. Generally, we can say that the number of comments and participants increases
as security issues age, but the numbers also show that if a security issue is not resolved
after half a year, fewer participants are joining the discussion.

In section 5.10 we provided an overview of security issues that were reported from
2014 until 2020. Most importantly, we found a big increase in security issues in the years
2018 and 2019. We were also able to show that the number of participants in security
issues over the years is rather constant, while there is a visible decrease in the number
of comments and the resolution time of security issues over time; however, a certain
grouping bias certainly applies for those analyses.

Finally, we were able to report some general or special findings in our last results
section 5.11. Not only did we observe frequent usage of bots in security issues, but we
did also observe a few unique issues that involved responsible disclosure, financial reward
for reporting security issues and researchers pointing out security issues to the open

CHAPTER 6. DISCUSSION 68

source community. Furthermore, we observed that security issues are mostly rejected
because they are duplicate issues or they have been resolved elsewhere. Finally, we were
lucky enough to find security issues in our manual analysis that led to the creation of new
CVE reports.

7
Threats to validity

Even though all the research that was carried out for this thesis was done to the best of
our knowledge and with extreme caution, there are still possible threats to the validity of
our results that we would like to report transparently in this chapter.

7.1 External validity
Threats to external validity are related to the generalizability of our findings. A major
threat to validity is the sampling bias of our project selection, which is described in
section 4.1. Especially the restrictions to Java projects and projects with English issue
tracking, which have been imposed for logistical reasons, might bias the results. Further
bias might have been introduced during the sampling of security issues for the manual
analysis. Even though we tried to pick a sample as representative as possible, while
still getting insights into the wide variety of our population using the stratified-random
approach, the results might have looked different with another sample. Furthermore, we
have to keep in mind that software engineering projects are of highly dynamic nature,
and the data for our study represents a snapshot of a very specific point in time. The
projects will likely evolve in the future, and the results could look different if the study
were to be carried out in the future, especially with the open source community rapidly
growing at the moment.

69

CHAPTER 7. THREATS TO VALIDITY 70

7.2 Internal validity
Threats to internal validity relate to experimenter bias and errors. There is a threat to
validity concerning the classification of issues into security issues and non-security issues.
As described in the methodology section 4.2, we used a simple label-based approach to
do the classification. It was clear that we will not be able to capture all security issues
with this approach and multiple studies have proposed new ways using machine learning
that provide more accuracy at higher costs [10, 22, 26]. It should be noted positively
though, that we did not find any false-positive security issues among the 333 security
issues we analysed during our manual analysis.

Another threat to internal validity could be the assignment of the issue statuses
(accepted, pending and rejected). It is possible that despite our efforts to automatically
detect all code changes we missed some, which would result in misclassification of
actually accepted issues. Sometimes such code changes are poorly linked to the issue or
only mentioned in a comment. To mitigate this threat, we manually checked all rejected
issues in the manual analysis for missed code changes.

Finally, personal bias is also a threat to validity. We tried to describe our methodology,
principles and criteria as transparently as possible and adhere to them in order to minimise
the effects of our personal opinions or expectation of results. Furthermore, we tried to
mitigate subjective influence during the manual analysis by conducting a pilot study
previous to the real study, where results were discussed and agreed upon between the
experimenters.

8
Conclusion and future work

8.1 Conclusion
In this thesis we present our results of an explorative study on security issues on GitHub
in order to answer the two research questions posed in the introduction.

We were able to show that the prevalence of security issues is low. We described how
security issues evolve in the areas of reporters, reports, reaction, resolution, discussion,
assignment and associated pull requests. Furthermore, we presented trends in security
issues over the course of their lifespan and in recent years. We were able to identify
multiple characteristics of security issues and their discussions that differentiate them
from non-security issues, but also similarities between those two classes of issues.
Additionally, we compared security issues that were accepted, pending and rejected
security issues and found possible factors that may lead to their respective outcomes.
Finally, we compared the resolution time of security issues for different characteristics
and were able to report significant differences.

We believe our work is a substantial contribution to the open source community
and will be useful for both researchers and practitioners in understanding and further
improving the security culture in Open Source Software engineering.

8.2 Future work
This project is mainly of explorative nature. We were able to describe certain charac-
teristics of security issues and identify similarities and differences among them, but

71

CHAPTER 8. CONCLUSION AND FUTURE WORK 72

a lot of future work is still required to fully understand the reasons, explanations and
causal connections behind these findings. The differences between security issues and
non-security issues we listed in the discussion need further investigation to be fully
explained. It would also be desirable if future research can confirm the possible factors of
security issue acceptance and security issue resolution time we propose and use them to
devise further recommendations to the open source community. Furthermore, it could be
interesting to see if researches can leverage our findings to build prediction models that
predict if a security issue gets accepted or rejected and how long it will take to resolve it.

Future studies on security issues in Open Source Software could widen the scope by
looking at issues from other programming languages than just Java or even including
other popular source code hosting and issue tracking systems than GitHub. Furthermore,
future studies could make use of advanced methods to classify security issues using
machine learning. One example would be the FARSEC approach proposed by Peters
et al. in 2017 [22], which was proven to outperform labelling based classification used
in this study, which is simply because not all projects and developers are consequent
with labelling security issues strictly and errors in manual labelling also happen. Even
more recently a new framework called LTRWES was proposed that even outperforms
FARSEC [10]. Those are just two examples of how future studies could improve the
classification of security issues and therefore use a dataset of greater quantity and quality
for analysis.

In terms of the content of the analysis, it would be very interesting to see future
works that leverage more or other metadata features of security issues than we did. For
example, one could analyse the number of words in security issue reports or the use
of source code snippets. Furthermore, it would be interesting to analyse if there are
characteristics of different types of security issues, e.g. code injection vs. data breach
vulnerabilities. Additionally, the content of the comments in the discussion or the security
issue report itself could be taken into consideration by using natural language processing.
That way one could possibly make statements about the informativeness of security issue
reports, create a list of keywords that identify security issues or describe a relationship
between the issue description and commit messages. Another dimension that could prove
worthwhile to explore would be the difficulty of a fix for a security issue, especially when
combined with existing metrics like the time it takes to resolve a security issue.

8.3 Acknowledgement
I want to thank Dr. Mohammad Ghafari and Prof. Dr. Oscar Nierstrasz for supervising
this thesis. Additionally, I would like to thank Lars Galliker for proofreading and his
valuable inputs. Finally, I am really grateful to my family for the outstanding support
they provided me with over the course of this project.

Bibliography

[1] Sebastian Baltes and Paul Ralph. Sampling in software engineering research: A
critical review and guidelines, February 2020.

[2] Marco Carvalho, Jared DeMott, Richard Ford, and David A. Wheeler. Heartbleed
101. IEEE Security & Privacy, 12(4):63–67, July 2014.

[3] Indu Chawla and Sandeep K. Singh. Automatic bug labeling using semantic
information from LSI. In 2014 Seventh International Conference on Contemporary
Computing (IC3), pages 376–381, Los Alamitos, CA, USA, August 2014. IEEE.

[4] Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences. Routledge,
Cambridge, MA, USA, May 2013.

[5] Valerio Cosentino, Javier L. Canovas Izquierdo, and Jordi Cabot. A systematic
mapping study of software development with GitHub. IEEE Access, 5:7173–7192,
2017.

[6] Michael Gegick, Pete Rotella, and Tao Xie. Identifying security bug reports via
text mining: An industrial case study. In 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010), pages 11–20, Los Alamitos, CA, USA,
May 2010. IEEE.

[7] Katerina Goseva-Popstojanova and Jacob Tyo. Identification of security related
bug reports via text mining using supervised and unsupervised classification. In
2018 IEEE International Conference on Software Quality, Reliability and Security
(QRS), pages 344–355, Los Alamitos, CA, USA, July 2018. IEEE, IEEE.

[8] Georgios Gousios and Diomidis Spinellis. GHTorrent: Github's data from a firehose.
In Michael W. Godfrey and Jim Whitehead, editors, 2012 9th IEEE Working
Conference on Mining Software Repositories (MSR), pages 12–21, New York, NY,
USA, June 2012. IEEE.

[9] Sameera Horawalavithana, Abhishek Bhattacharjee, Renhao Liu, Nazim Choud-
hury, Lawrence O. Hall, and Adriana Iamnitchi. Mentions of security vulnerabilities

73

BIBLIOGRAPHY 74

on reddit, twitter and GitHub. In IEEE/WIC/ACM International Conference on Web
Intelligence on - WI '19, pages 200–207, Los Alamitos, CA, USA, October 2019.
ACM Press.

[10] Yuan Jiang, Pengcheng Lu, Xiaohong Su, and Tiantian Wang. LTRWES: A new
framework for security bug report detection. Information and Software Technology,
124:106314, August 2020.

[11] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
German, and Daniela Damian. The promises and perils of mining GitHub. In
Proceedings of the 11th Working Conference on Mining Software Repositories,
MSR 2014, pages 92–101, New York, NY, USA, 2014. ACM Press.

[12] David Kavaler, Sasha Sirovica, Vincent Hellendoorn, Raul Aranovich, and Vladimir
Filkov. Perceived language complexity in GitHub issue discussions and their
effect on issue resolution. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 72–83, Los Alamitos, CA, USA,
October 2017. IEEE.

[13] Pavneet Singh Kochhar, Eirini Kalliamvakou, Nachiappan Nagappan, Thomas
Zimmermann, and Christian Bird. Moving from closed to open source: Observa-
tions from six transitioned projects to GitHub. IEEE Transactions on Software
Engineering, 46:1–1, 2019.

[14] Robert V. Krejcie and Daryle W. Morgan. Determining sample size for research
activities. Educational and Psychological Measurement, 30(3):607–610, September
1970.

[15] Jeff Luszcz. Apache struts 2: how technical and development gaps caused the
equifax breach. Network Security, 2018(1):5–8, January 2018.

[16] Benjamin S. Meyers, Nuthan Munaiah, Andrew Meneely, and Emily
Prud'hommeaux. Pragmatic characteristics of security conversations: An ex-
ploratory linguistic analysis. In 2019 IEEE/ACM 12th International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE), pages 79–82,
Los Alamitos, CA, USA, May 2019. IEEE.

[17] Patrick Morrison, Tosin Daniel Oyetoyan, and Laurie Williams. Identifying security
issues in software development: Are keywords enough? In Proceedings of the
40th International Conference on Software Engineering: Companion Proceeedings,
ICSE ’18, pages 426–427, New York, NY, USA, 2018. Association for Computing
Machinery.

BIBLIOGRAPHY 75

[18] Patrick J. Morrison, Rahul Pandita, Xusheng Xiao, Ram Chillarege, and Laurie
Williams. Are vulnerabilities discovered and resolved like other defects? Empirical
Softw. Engg., 23(3):1383–1421, June 2018.

[19] Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang Hu, Xinyu Xing, Bing Mao,
and Gang Wang. Understanding the reproducibility of crowd-reported security vul-
nerabilities. In Proceedings of the 27th USENIX Conference on Security Symposium,
SEC’18, pages 919–936, USA, 2018. USENIX Association.

[20] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. Curat-
ing GitHub for engineered software projects. Empirical Software Engineering,
22(6):3219–3253, April 2017.

[21] Naresh Kumar Nagwani and Ashok Bhansali. A data mining model to predict
software bug complexity using bug estimation and clustering. In 2010 International
Conference on Recent Trends in Information, Telecommunication and Computing,
volume 1, pages 13–17, Los Alamitos, CA, USA, March 2010. IEEE.

[22] Fayola Peters, Thein Than Tun, Yijun Yu, and Bashar Nuseibeh. Text filtering
and ranking for security bug report prediction. IEEE Transactions on Software
Engineering, 45(6):615–631, June 2019.

[23] Daniel Pletea, Bogdan Vasilescu, and Alexander Serebrenik. Security and emotion:
Sentiment analysis of security discussions on github. In Proceedings of the 11th
Working Conference on Mining Software Repositories, MSR 2014, pages 348–351,
New York, NY, USA, 2014. Association for Computing Machinery.

[24] Mohammad Masudur Rahman and Chanchal K. Roy. An insight into the pull
requests of GitHub. In Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR 2014, pages 364–367, New York, NY, USA, 2014.
ACM Press.

[25] Lucı́a Santamarı́a and Helena Mihaljević. Comparison and benchmark of name-to-
gender inference services. PeerJ Computer Science, 4:e156, July 2018.

[26] Rui Shu, Tianpei Xia, Laurie Williams, and Tim Menzies. Better security bug
report classification via hyperparameter optimization, May 2019.

[27] Marcel Steinbeck. Mining version control systems and issue trackers with Lib-
VCS4j. In 2020 IEEE 27th International Conference on Software Analysis, Evo-
lution and Reengineering (SANER), pages 647–651, Los Alamitos, CA, USA,
February 2020. IEEE.

BIBLIOGRAPHY 76

[28] Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of social and technical
factors for evaluating contribution in GitHub. In Proceedings of the 36th Interna-
tional Conference on Software Engineering, ICSE 2014, pages 356–366, New York,
NY, USA, 2014. ACM Press.

[29] Jason Tsay, Laura Dabbish, and James Herbsleb. Let’s talk about it: Evaluating
contributions through discussion in github. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2014, pages 144–154, New York, NY, USA, 2014. ACM Press.

[30] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. Quality and productivity outcomes relating to continuous integration in
github. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, pages 805–816, New York, NY, USA, 2015. ACM
Press.

[31] Xinda Wang, Kun Sun, Archer Batcheller, and Sushil Jajodia. Detecting ”0-day”
vulnerability: An empirical study of secret security patch in OSS. In 2019 49th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pages 485–492, Los Alamitos, CA, USA, June 2019. IEEE.

[32] Xiaoxue Wu, Wei Zheng, Xiang Chen, Fang Wang, and Dejun Mu. CVE-assisted
large-scale security bug report dataset construction method. Journal of Systems and
Software, 160:110456, February 2020.

[33] Xin-Li Yang, David Lo, Xin Xia, Zhi-Yuan Wan, and Jian-Ling Sun. What security
questions do developers ask? a large-scale study of stack overflow posts. Journal
of Computer Science and Technology, 31(5):910–924, September 2016.

[34] Awad Younis, Yashwant Malaiya, Charles Anderson, and Indrajit Ray. To fear or
not to fear that is the question: Code characteristics of a vulnerable functionwith
an existing exploit. In Proceedings of the Sixth ACM Conference on Data and
Application Security and Privacy, CODASPY ’16, pages 97–104, New York, NY,
USA, 2016. Association for Computing Machinery.

[35] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan
Vasilescu. Wait for it: Determinants of pull request evaluation latency on GitHub.
In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories,
MSR ’15, pages 367–371, New York, NY, USA, May 2015. IEEE.

[36] Mansooreh Zahedi, Muhammad Ali Babar, and Christoph Treude. An empirical
study of security issues posted in open source projects. In Tung Bui, editor,
51st Hawaii International Conference on System Sciences, HICSS 2018, Hilton

BIBLIOGRAPHY 77

Waikoloa Village, Hawaii, USA, January 3-6, 2018, pages 1–10, Red Hook, NY,
2018. ScholarSpace / AIS Electronic Library (AISeL).

[37] Feng Zhang, Foutse Khomh, Ying Zou, and Ahmed E. Hassan. An empirical study
on factors impacting bug fixing time. In 2012 19th Working Conference on Reverse
Engineering, WCRE ’12, pages 225–234, USA, October 2012. IEEE.

[38] Mengyuan Zhang, Xavier de Carne de Carnavalet, Lingyu Wang, and Ahmed
Ragab. Large-scale empirical study of important features indicative of discovered
vulnerabilities to assess application security. IEEE Transactions on Information
Forensics and Security, 14(9):2315–2330, September 2019.

A
Anleitung zum wissenschaftlichen

Arbeiten

In this appendix we describe the process we followed in order to obtain the data for our
study from GitHub. Future projects can use this as a reference in order to facilitate the
data collection process. The provided source code and described principles should be
easily adaptable for other APIs or data sources.

A.1 GitHub GraphQL API
The main source for the data of our study was the GitHub GraphQL API v41. GraphQL
is an Open Source data query and manipulation language for APIs. It was originally
developed by Facebook but now hosted by the non-profit Linux Foundation.

The GitHub GraphQL API is free for use by any registered GitHub user after one
has obtained an API key. Like any public API, GitHub enforces a rate limit to prevent
excessive or abusive calls to their servers. This rate limit is based on a scoring system.
All API calls by the same user must not exceed 5000 cumulative points in a one hour
period. The details of the rate limitations and very detailed documentation can be found
on the website in the footnote. Furthermore, GitHub provides an “explorer”, where
queries can be tested directly in a web browser.

1https://developer.github.com/v4/

78

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 79

A.2 Environment
As we did not perform any serious computation tasks, no special hardware was required.
A fast and stable Internet connection is highly recommended though because some
downloading tasks can span over multiple hours.

We performed our downloading tasks on a Lenovo T470s with an Intel Core i7-7600U
CPU at 2.80 GHz and 20 GB of RAM. Our operating system was Windows 10, but
macOS or a Linux distribution would work equally well.

Our downloading scripts were written in Python. We chose Python because of
personal preference and because there are many useful libraries available for Python that
can be used for data analysis and scientific computations like NumPy2, matplotlib3 and
pandas4. We did not use a dedicated IDE but a browser-based, interactive computational
environment called Jupyter Notebooks5. A Jupyter Notebook consists of “cells” that
contain Markdown, executable Python source code or Python output and therefore allow
you to document your process very well. A typical screenshot of the Jupyter interface
can be seen in figure A.1.

Figure A.1: Typical Jupyter Notebook

2https://numpy.org/
3https://matplotlib.org/
4https://pandas.pydata.org/
5https://jupyter.org/

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 80

A.3 Basics
For sending basic queries to the GitHub API that do not require any pagination, we used
the function shown in listing 1. As a parameter it takes a GraphQL query string, performs
the API call and returns the result in JSON. We saved all responses from the API into
.json files that we could later parse into CSV files and use with any data analysis tool.

1 import requests
import json

API_KEY = ""
5 BASE_URL = "https://api.github.com/graphql"

Simple function to perform basic query on the GitHub GraphQL API
def run_query(query):

errorMsg = "Query failed to run by returning code of {}. {}"
10 headers = {"Authorization": "Bearer {}".format(API_KEY)}

tries = 10
for i in range(tries):

request = requests.post(BASE_URL, json={'query': query},
↪→ headers=headers)

if request.status_code == 200:
15 return request.json()

else:
if i<tries:

continue
raise Exception(errorMsg.format(request.status_code,

↪→ query))

Listing 1: Simple query function

For performing more sophisticated queries that may require pagination because they
result in long lists of objects or subobjects (e.g. a list of more than 100 issues), we used
the class shown in listing 2 and created a subclass from it for every use case separately.
The request itself is performed in the generator function, while the iterator function is
implemented in the subclasses to loop through multiple pages of results when pagination
was used.

For simplicity reasons we will not show the implementation of the subclasses in this
appendix, but only the GraphQL queries that were used for the different use cases.

1 import requests
import json

Base class to perform complex querys on the GitHub GraphQL API
5 class GitHubGraphQLQuery:

BASE_URL = "https://api.github.com/graphql"
def __init__(

self,

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 81

github_token=None,
10 query=None,

query_params=None,
additional_headers=None

):
self.github_token = github_token

15 self.query = query
self.query_params = query_params
self.additional_headers = additional_headers or dict()

@property
20 def headers(self):

default_headers = dict(
Authorization=f"token {self.github_token}",

)
return {

25 **default_headers,

**self.additional_headers
}

def generator(self):
30 while(True):

try:
yield requests.request(

'post',
GitHubGraphQLQuery.BASE_URL,

35 headers=self.headers,
json=dict(query=self.query.format_map(self.

↪→ query_params))
).json()

except requests.exceptions.HTTPError as http_err:
raise http_err

40 except Exception as err:
raise err

def iterator(self):
pass

Listing 2: Base class for complex queries

When performing hundreds of API calls over multiple hours, we had to keep in mind
the rate limits of the API. As the number of remaining “points” and the time of the next
reset was included in every response, we implemented an easy logic that was called after
every API call. The source code is shown in listing 3. When the remaining “points”
fall under a certain threshold, the program simply pauses and resumes at the reset time
provided in the response of the API.

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 82

1 # Check rate limits
remaining_rate_limit = result["data"]["rateLimit"]["remaining"]
print("Remaining rate limit - {}".format(remaining_rate_limit))

5 resetAtUTC = datetime.datetime.strptime(result["data"]["rateLimit"]["
↪→ resetAt"], "%Y-%m-%dT%H:%M:%SZ")

nowUTC = datetime.datetime.utcnow()
if(int(remaining_rate_limit) < 15):

print("Rate limit nearly exceeded, waiting for {} seconds until
↪→ reset".format((resetAtUTC-nowUTC).seconds))
time.sleep((resetAtUTC-nowUTC).seconds)

Listing 3: Rate limit check

A.4 Searching repositories
For searching the repositories on GitHub, we used the GraphQL query shown in listing 4.
The variables $searchString and $pointer are populated by the surrounding python code.

1 {
search(query: "$queryString", type: REPOSITORY, first: 50, after:
↪→ $pointer) {
pageInfo {
hasNextPage,

5 endCursor
}
repositoryCount
edges {
node {

10 ... on Repository {
id
name
url
description

15 createdAt
pushedAt
releases {releases: totalCount}
forks: forkCount
pullRequests {pullRequests: totalCount}

20 stargazers {stars: totalCount}
totalIssues: issues {totalIssues: totalCount}
master: object(expression:"master") {

... on Commit {
history {

25 commits: totalCount
}

}

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 83

}
labels(first: 10, query: "security") { nodes {name} }

30 primaryLanguage {primaryLanguage: name}
languages(first: 3) { nodes {name} }

}
}

}
35 }
}

Listing 4: Search query

The first line indicates that we want to use the “search” query type with four parameters.
We want to have all the repositories that match the search string paginated into responses
with 50 repositories. The pointer for the parameter after is provided with the response
of the API and can be used to get the next 50 repositories with the next API call. In
accordance with our criteria, we used the following search string:

stars:>10 forks:>10 size:>2048 created:$timeFrame
fork:false pushed:>2019-01-01 language:java

The filtering for more than ten issues and 50 commits per repository had to be done
locally later because the “search” query type does not support those criteria. We had
to separately query the repositories for every half-year-interval since the creation of
GitHub in 2009 because even with pagination, the search would not return the full results
for search queries that produce more than 1000 results. We did so by populating the
$timeFrame variable with the desired time frame (e.g. “2016-01-01..2016-06-30”).

As can be seen in the lower parts of listing 4 from line 10 to line 31, the APIs
response will include all necessary details we need about repositories, especially labels
that contain the word “security”, if any of those exist.

A.5 Downloading issues and comments
After we locally filtered and selected 182 repositories, we had to download all the issues
and corresponding comments from those repositories. From the previous step we had a
list with the ids of all repositories. Such an id uniquely identifies a node in the GitHub
GraphQL data model (in this case a repository object). We could now use our list of ids
with the “node” query type, as shown in listing 5. The $repoIds variable is populated with
the array containing all 182 repository ids. This query uses nested pagination because
we need all the issues of every repository and all the comments on every issue. We are
navigating between the pages using the variables $issuePointer and $commentPointer
the same way as described in the previous section.

In the first part of listing 5 between line 6 and 34, the details requested about every
issue are specified (title, author, state, etc.). In the middle part between line 35 and

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 84

52, we specify the details of the request for the comments of every issue (creation date,
author, author association, etc.). In the final part from line 53 on, a list of timeline
items for every issue is requested. We wanted to have all timeline items with type
REFERENCED EVENT, CROSS REFERENCED EVENT and ASSIGNED EVENT with
the details that belong to them. We did this, because we later wanted figure out, at what
point in time an issue was assigned to whom, and if an issue was referenced anywhere
else on GitHub, e.g. in commit messages, in other issues or in pull requests.

1 {
node(id: $repoIds) {

... on Repository {
id

5 name
issues(first: 10, after: $issuePointer) {

pageInfo {
hasNextPage
endCursor

10 }
totalCount
nodes {
id
title

15 number
author {

... on User {
id
name

20 }
}
bodyText
authorAssociation
createdAt

25 closedAt
url
state
assignees(first: 30) {

totalCount
30 nodes {

id
name

}
}

35 comments(first: 50, after: $commentPointer) {
pageInfo {

hasNextPage
endCursor

}
40 totalCount

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 85

nodes {
createdAt
author {

... on User {
45 id

name
}

}
authorAssociation

50 bodyText
}

}
timelineItems(first: 50, itemTypes:

[REFERENCED_EVENT,
55 CROSS_REFERENCED_EVENT,

ASSIGNED_EVENT]) {
totalCount
nodes {

__typename
60 ... on ReferencedEvent {

id
createdAt
commit {

id
65 oid

url
}
isCrossRepository

}
70 ... on CrossReferencedEvent {

id
createdAt
willCloseTarget
source {

75 __typename
... on Issue {
id
url

}
80 ... on PullRequest {

id
url

}
}

85 }
... on AssignedEvent {

id
createdAt
actor {

APPENDIX A. ANLEITUNG ZUM WISSENSCHAFTLICHEN ARBEITEN 86

90 ... on User {
id
name

}
}

95 assignee {
... on User {
id
name

}
100 }

}
}

}
}

105 }
}

}
}

Listing 5: Issue and comment query

	1 Introduction
	2 Related Work
	3 Background
	4 Methodology
	4.1 Selection of GitHub projects
	4.2 Classification of security issues
	4.3 Large-scale analysis
	4.3.1 Features in issue dimension
	4.3.2 Features in repository dimension
	4.3.3 Features in comment dimension

	4.4 Sampling procedure for manual analysis
	4.5 Manual analysis
	4.5.1 Features in issue dimension
	4.5.2 Features in comment dimension

	5 Results
	5.1 Prevalence and emerging of security issues
	5.2 Reporters of security issues
	5.3 Reports of security issues
	5.4 Reaction to security issues
	5.5 Resolution of security issues
	5.6 Discussion of security issues
	5.6.1 Participants in discussion
	5.6.2 Comments in discussion

	5.7 Assignment of security issues
	5.8 Pull requests related to security issues
	5.9 Trends in security issues over the age
	5.10 Trends in security issues over the years
	5.11 Other general findings
	5.11.1 Role of bots
	5.11.2 Tools to detect security issues
	5.11.3 Rejected security issues
	5.11.4 CVE entries
	5.11.5 Unique issues

	6 Discussion
	7 Threats to validity
	7.1 External validity
	7.2 Internal validity

	8 Conclusion and future work
	8.1 Conclusion
	8.2 Future work
	8.3 Acknowledgement

	A Anleitung zum wissenschaftlichen Arbeiten
	A.1 GitHub GraphQL API
	A.2 Environment
	A.3 Basics
	A.4 Searching repositories
	A.5 Downloading issues and comments

