
A Metrics Front-End for the Moose
Reengineering Environment

Informatikprojekt

vorgelegt von

Calogero Butera

2002

Leiter der Arbeit:

Prof. Dr. Oscar Nierstrasz
Prof. Dr. St́ephane Ducasse

Michele Lanza

Institut für Informatik und angewandte Mathematik
Universïat Bern

2

Abstract

Moose is a language independent tool environment to reverse engineer and reengi-
neer object-oriented systems. It consists of a repository to store models of software
systems, provides query and navigation facilities, metrics and other analysis sup-
port. Models consist of entities representing software artifacts such as classes and
methods.

This document describes a metrics front-end for Moose, whose goal is to vi-
sualize the relationship among different metrics of the same model and export this
information to an external file.

With this tool the user can analyse software metrics and observe the relationships
among them. Collecting these informations leads to a better understanding of the
software which has to be analysed or reengineered. The ability to export metric
values into an external statistic tool such as MS Excel enables the user to create
diagrams and apply statistical analysis methods.

i

Contents

Abstract i

1 Introduction 1
1.1 MOOSE . 1
1.2 Metrics and Entities . 1
1.3 Motivation of the Project . 2
1.4 Structure of this Document . 2

2 The Moose Reengineering Environment 3
2.1 Moose . 3
2.2 Entities . 3
2.3 Metrics . 4

2.3.1 The importance of Metrics 4
2.3.2 Categories of Software metrics 4

3 Momfe, the Moose Metrics Front-End 6
3.1 Momfe and its Components . 6
3.2 The Moose Model Metrics Viewer 7
3.3 The Metric Descriptor . 9
3.4 The Metric Manager . 10

3.4.1 The Metrics Table Configurator 12
3.4.2 The Entity Metric Table (EMT) 13
3.4.3 The Excel Exporter . 13

4 Evaluation 19
4.1 Introduction . 19
4.2 Case Study . 19

4.2.1 Presentation of the Case Study 19
4.2.2 Doing the case study . 21
4.2.3 Case Study Evaluation 22

4.3 Conclusion . 23

5 Conclusion 26
5.1 Momfe, conclusion . 26

ii

CONTENTS iii

A Technical Details 27
A.1 Architecture . 27

A.1.1 Introduction and Overview 27
A.1.2 The Class: MooseModelMetricsUI 27
A.1.3 The Class: MSEMetricDescriptionUI 28
A.1.4 The Class: MSEMetricsManagerUI 29
A.1.5 The Class: MSEMetricsTableConfiguratorUI 29
A.1.6 The Class: MSEMetricsTableUI 30
A.1.7 The Class: MSEMetricsTableExporter 30
A.1.8 The Class: MSEModelInformation 30

A.2 User Manual . 31
A.2.1 Before Running Momfe 31
A.2.2 Running Momfe . 31

List of Figures

3.1 Moose Model Metrics Viewer. The partial overview of the LanApp. 8
3.2 Moose Model Metrics Viewer. The complete overview of the LanApp. 8
3.3 The Metric Descriptor. Displaying information about the WMSG-

metric. WMSG is thenumber of messages of all the methods of a
class, WMSG can be applied on classes. This value is only avail-
able for models of software written in Smalltalk. 9

3.4 The Moose Metric Manager. Without any filtering it shows 48 dif-
ferent metrics. 10

3.5 The Moose Metric Manager. There are 12 different metrics that
can be used on source code written in Smalltalk. 11

3.6 The Moose Metric Manager. There are 7 different class metrics
that can be used on source code written in Smalltalk. 11

3.7 The Moose Metric Manager. There are 3 different class metrics
beginning with the letter N that can be used on source code written
in Smalltalk. 12

3.8 The Moose Metric Manager. The description of the NOCCL metric. 13
3.9 The Moose Metric Table Configurator. The user can chose the met-

rics matching few filter criteria. 14
3.10 The Moose Metric Table Configurator. Like in the Metric Man-

ager, the user can double-click on a metric to know more about the
chosen metric. 15

3.11 The Moose Metric Table Configurator. If the user clicks on ”Open
Table”, an EMT appears with the LOC and the NOS values for the
entity kind methods. 16

3.12 The Entity Metric Table. The table can be reconfigured following
the requests of the user. 17

3.13 The Entity Metric Table. After clicking the button ”Export to Ex-
cel” a dialog asks the user to enter a path and a filename. 18

4.1 Here we see a first overview on the system we want to deal with
(the Refactoring Browser V 3.5.1. 20

4.2 To get missing metric values, we run these operators on the loaded
model. 21

iv

LIST OF FIGURES v

4.3 The Entity Metric Table for the Refactoring Browser V 3.5.1. . . . 22
4.4 Correlation: This diagram shows the correlation between the NI

and NMAA metric for the Refactoring Browser V 3.5.1. The on
the x-ax one can see each methods in the model while on the y-ax
one can see the related metric-value 25

A.1 Moose Metric Table Configurator: from here the user can chose
the metric he wants to display 32

A.2 The Entity Metric Table . 33

List of Tables

2.1 The class metrics used in this project. 5

4.1 Case Study, mean values for each metric on the Refactoring Browser
V 3.5.1. 23

4.2 Case Study, median values for each metric on the Refactoring Browser
V 3.5.1. 23

4.3 Case Study, variance values for each metric on the Refactoring
Browser V 3.5.1. 24

4.4 Case Study, standard deviation values for each metric on on the
Refactoring Browser V 3.5.1. 24

4.5 Correlation Matrix of some method metrics. 24
4.6 Correlation Matrix. Values over 0.5 or under -0.5 correlate strongly.

This relationship in the matrix is represented with an X 25

vi

Chapter 1

Introduction

1.1 MOOSE

TheMoose Reengineering Environmentis a language independent tool environ-
ment to reverse engineer, understand, and reengineer software systems. Moose
supports reengineering of applications developed in different object-oriented lan-
guages. It supports reengineering by providing facilities for analyzing and storing
multiple models, for refactoring and by providing support for analysis methods
such as metrics and the inference of properties of source code elements [DLT01].

With its fully object-oriented implementation, Moose provides a complete de-
scription of the metamodel elements in terms of objects that are easily parameter-
ized, extended or manipulated. These properties make Moose an ideal foundation
for reengineering tools such as CodeCrawler [DDL99] or Supremo [KN01].

1.2 Metrics and Entities

Moose uses entities and metrics as an important source of information for the anal-
ysis of the software. Entities build a central role in the Moose environment. They
represent software artifacts such as classes, methods, etc.

Metrics measure certain properties of a software project by mapping them
to numbers (or other symbols) according to well-defined, objective measurement
rules. The measurement results are then used to describe, judge or predict charac-
teristics of a software project. Thus software metrics support numerous reengineer-
ing tasks, because they help to focus reengineering efforts. They aid in forming an
initial understanding of the legacy system and can often uncover hints about design
flaws that are obstructing the modification and the extension of the system.

Metrics of software artifacts can be categorized in different groups such as
Complexity Metrics, Coupling Metrics, Cohesion Metricsand Inheritance Tree
Metrics[DD99].

1

2 CHAPTER 1. INTRODUCTION

1.3 Motivation of the Project

Moose is a powerful tool which simplifies the analysis and the understanding of
a software which has to be reengineered. At the same time Moose has a lot of
potential extensions. However a feature that is not provided through a friendly user
interface can become difficult to use. The need of some user-friendly interfaces
becomes stronger and stronger. Through such interfaces many existing features
of a software can be used in a different manner. This makes many functionalities
more accessible and interesting to the user.

Momfe and its Components In the context of a student project we built Momfe
(a Moose Metrics Front-end). Momfe can be described as a group of graphical user
interfaces and functionalities which use existing features of Moose to visualize the
meaning of any software metrics, configure a metrics table by choosing the wanted
metrics and export the configured table to an external file which can be imported
in MS Excel or any other statistic software. This gives the user the opportunity to
analyze the chosen metric values and make statistical evaluation of that data.

1.4 Structure of this Document

This document is structured in three parts. In order to describe Momfe and its fea-
tures, we begin with an introduction (chapter 1) of Moose explaining the concept
of metrics and their importance. The presentation of Momfe is done in the second
part (chapter 3). Here we explain what Momfe is and its features. To show the
potential of Momfe we do an evaluation of Momfe in the third part. Here we show
what can be done with Momfe and what its utility is. In the appendix A we speak
about the architecture of Momfe and with a short user manual we explain how to
use it.

Chapter 2

The Moose Reengineering
Environment

2.1 Moose

The Moose Reengineering Environment. In the context of the FAMIX project,
a Reengineering Environment called Moose has been developed at the IAM of the
University of Berne. This language independent tool environment was created with
the goal to simplify the reverse engineering and reengineering of complex software
systems. Moose was implemented in VisualWorks (a Smalltalk programming en-
vironment). It consists of a repository to store models of software systems, and
provides facilities to analyze, query and navigate them. Models consist of entities
representing software artifacts such as classes, methods, etc.

Moose, an ideal Foundation for Reengineering Tools. The software engineer
can load the software he is going to analyze into the Moose environment, which
creates a model. In order to work with this model it is necessary to divide it in
different elements which should be able to provide some information to the user.
The fully object-oriented implementation of Moose provides a complete descrip-
tion of the meta model elements in terms of objects that are easily parameterized,
extended or manipulated [DLT01]. These properties make Moose an ideal founda-
tion for reengineering tools such as CodeCrawler [DDL99] or Supremo [KN01].

2.2 Entities

Entities build a central role in the MOOSE environment. They represent software
artifacts such as classes, methods, etc. Every entity is represented by an object,
which allows direct interaction and consequently an easy way to query and navigate
a whole model.

3

4 CHAPTER 2. THE MOOSE REENGINEERING ENVIRONMENT

2.3 Metrics

Metrics measure certain properties of a software project by mapping them to
numbers (or other symbols) according to well-defined, objective measurement rules.
The measurement results are then used to describe, judge or predict characteristics
of a software project with respect to the property that has been measured. Usually,
measurements are made to provide a foundation of information upon which deci-
sions about software engineering tasks can be both planned and performed better
[DD99].

2.3.1 The importance of Metrics

Software Metrics support numerous reengineering tasks, because they help to focus
reengineering efforts. They aid in forming an initial understanding of the legacy
system and can often uncover hints about design flaws that are obstructing the mod-
ification and the extension of the system. Metrics lend themselves to automation
and with appropriate tools they can provide easy access to meaningful information
about the source code without requiring the software engineer to read through all
the source code by hand. Instead you can use the information to make a more
efficient study of the source code based on the points of interest indicated by the
metrics result.

2.3.2 Categories of Software metrics

Software Metrics fall into several categories depending on the aspects of a system
they measure. We can identify the following categories:Complexity Metrics, Cou-
pling Metrics, Cohesion MetricsandInheritance Tree Metrics[DD99]. The table
2.1 shows some examples of software metrics.

2.3. METRICS 5

Name Description
HNL Hierarchy nesting level, also calleddepth of inheritance tree. The number of

classes in superclass chain of class. In case of multiple inheritance, count the
number of classes in the longest chain.

NA Number of accessors, the number of get/set - methods in a class.
NAM Number of abstract methods.
NC Number of constructors.
NCV Number of class variables.
NIA Number of inherited attributes, the number of attributes defined in all super-

classes of the subject class.
NIV Number of instance variables.
NMA Number of methods added, the number of methods defined in the subject class

but not in its superclass.
NME Number of methods extended, the number of methods redefined in subject

class by invoking the same method on a superclass.
NMI Number of methods inherited, i.e. defined in superclass and inherited unmod-

ified.
NMO Number of methods overridden, i.e. redefined in subject class.
NOC Number of immediate children of a class.
NOM Number of methods, each method counts as 1. NOM = NMA + NME + NMO.
NOMP Number of method protocols. This is Smalltalk - specific: methods can be

grouped into method protocols.
PriA Number of private attributes.
PriM Number of private methods.
ProA Number of protected attributes.
ProM Number of protected methods.
PubA Number of public attributes.
PubM Number of public methods.
WLOC Lines of code, sum of all lines of code in all method bodies of the class.
WMSG Number of message sends, sum of number of message sends in all method

bodies of class.
WMCX Sum of method complexities.
WNAA Number of times all attributes defined in the class are accessed.
WNI Number of method invocations, i.e. in all method bodies of all methods.
WNMAA Number of all accesses on attributes.
WNOC Number of all descendants, i.e. sum of all direct and indirect children of a

class.
WNOS Number of statements, sum of statements in all method bodies of class.

Table 2.1: The class metrics used in this project.

Chapter 3

Momfe, the Moose Metrics
Front-End

Momfe. Momfe is a tool of Moose, which was developed in the context of a stu-
dent project at the IAM (Institute of Computer Science and Applied Mathematics)
of the University of Berne. The major goal of the project was to provide a graphi-
cal user interface (GUI) to visualize information about metrics, represent the metric
values in a table and export this data into an external file, which can be loaded into
MS Excel or any other statistical tool. The last feature leads to new possibilities
for the analysis of the source code of the software by displaying diagrams or com-
puting statistical evaluations.

3.1 Momfe and its Components

Momfe consists of six components:

• The Moose Model Metrics Viewer

• The Metrics Descriptor

• The Metrics Manager

• The Metrics Table Configurator

• The Metrics Table

• The Metrics Table Exporter

In this chapter we describe all these components from the user point of view.
We will also show some examples with some figures in order to give an idea of the
appearance of Momfe to the reader.

6

3.2. THE MOOSE MODEL METRICS VIEWER 7

3.2 The Moose Model Metrics Viewer

TheMoose Model Metrics Viewerwas implemented in order to give a first overview
on a model loaded in Moose. This helps the user to get an idea of the size and the
complexity of the model he is going to analyze. It gives also an idea of the effort
needed to analyze, extend, reengineer or simply understand the source code.

The GUI of theMoose Model Metrics Vieweris implemented in such a manner
that the user sees in a first overview information about the system he is going to
analyze. Thus the Moose Model Metrics Viewer displays a GUI containing a table
which shows the number of:

• Classes

• Methods

• Attributes

• Inheritance Definitions

• Invocations

• Accesses

If the user needs more informations, he can click on the button”Show Complete
Table” and some supplementary data will be displayed.

• Access Arguments

• Entities

• Expression Arguments

• Formal Parameters

• Global Variables

• Implicit Variables

• Named Properties

The examples in the figures 3.1 and 3.2 show the values for theLanApp, an
example Model.

8 CHAPTER 3. MOMFE, THE MOOSE METRICS FRONT-END

Figure 3.1: Moose Model Metrics Viewer. The partial overview of the LanApp.

Figure 3.2: Moose Model Metrics Viewer. The complete overview of the LanApp.

3.3. THE METRIC DESCRIPTOR 9

Figure 3.3: The Metric Descriptor. Displaying information about the WMSG-
metric. WMSG is thenumber of messages of all the methods of a class, WMSG
can be applied on classes. This value is only available for models of software
written in Smalltalk.

3.3 The Metric Descriptor

One little feature which can be helpful for the Moose user is theMetric Descrip-
tor. In Moose metrics are often displayed as acronyms. As an example we can take
the WMSG-metric. Let us suppose that the user sees this acronym and he is not
confident with the Moose system. He will have some questions about WMSG like:
What does this acronym mean? On which kind of entities is it applied and can it
be applied on the source code written in a specific language?

The Metric Descriptor can be considered as the solution to this problem. It
consists of a GUI which displays the following information about a chosen metric:

• A short description of the metric

• The metric name (acronym)

• The languages supported by this metric

• The entities on which the metric is applied

The figure 3.3 represents an example where the user can see the description of
WMSG. WMSG is thenumber of messages of all the methods of a class, WMSG
can be applied on classes. This value is only available for models of software
written in Smalltalk.

10 CHAPTER 3. MOMFE, THE MOOSE METRICS FRONT-END

Figure 3.4: The Moose Metric Manager. Without any filtering it shows 48 different
metrics.

3.4 The Metric Manager

The Metric Descriptorwithout any tool which provides the possibility to find
the desired metric does not make any sense. This observation led us to the imple-
mentation of a new tool, theMetric Manager. This tool should give an overview
on how many and which metrics the Moose system provides and the possibility to
select any of them and get a description of it.

The GUI of theMoose Metric Managerenables the user to look for a metric
using different criteria. The searching criteria are: the language, the entity, and
a string filter which enables the user to find the metric he is looking for. The
string filter supports wild-cards. Double-clicking on an metric launches theMetric
Descriptorand the description of the chosen metric is given. The GUI also contains
a button called”Description” which offers the same functionality.

In the figures 3.4, 3.5, 3.6, 3.7 and 3.8 the reader can see some snapshots of the
Moose Metric Manager. Figure 3.4 shows the GUI without selecting any criteria,
in figure 3.5 we used the language filter, in figure 3.6 we used the entity filter and
in figure 3.7 the name filter was applied. As already mentioned the user can get the
description of any already selected metric (like in figure 3.8) at any time.

3.4. THE METRIC MANAGER 11

Figure 3.5: The Moose Metric Manager. There are 12 different metrics that can be
used on source code written in Smalltalk.

Figure 3.6: The Moose Metric Manager. There are 7 different class metrics that
can be used on source code written in Smalltalk.

12 CHAPTER 3. MOMFE, THE MOOSE METRICS FRONT-END

Figure 3.7: The Moose Metric Manager. There are 3 different class metrics begin-
ning with the letter N that can be used on source code written in Smalltalk.

3.4.1 The Metrics Table Configurator

The principal goal of the project is to display a table with the metric values for a
chosen set of entities. This feature should be configurable. That means that the
user must be able to choose the metrics that match the following criteria.

• The metrics can be applied to a specific group of entities (classes, attributes,
methods, functions) chosen by the user

• The metrics work only for a specific programming language, are language-
independent or both

• The metric’s acronyms match to a string. The use should be able to use
wild-cards. (Example: ”*”, ”N*”, ”N*A” etc.)

TheMetrics Table Configuratorhelps the user to choose the metric values that
will be displayed in the columns of theEntity Metric Table(EMT). As soon as the
selection of the metrics is done, the user will click on the button”Open Table”. The
result of this action is that the configurator window is closed and a new window
contains theEntity Metric Tableappears.

3.4. THE METRIC MANAGER 13

Figure 3.8: The Moose Metric Manager. The description of the NOCCL metric.

The figures 3.9, 3.10 and 3.11 show what theMetrics Table Configuratorlooks
like and some examples of how the filtering fields could be used.

3.4.2 The Entity Metric Table (EMT)

The Entity Metric Table (EMT)shows for each chosen entity kind and metric the
related metric values. The rows represent the entities and the columns the metrics.
It is possible to sort the values by double-clicking on the column titles. If the table
does not correspond to the user’s wish it is possible to reconfigure it by clicking on
the Configuration button. This GUI representing theEntity Metric Table (EMT)
gives also the possibility to export the table into an external file. This file can
be imported into MS-Excel in order to make statistical analysis on the collected
results. That task is provided by the button ”Export to Excel”. Figure 3.12 shows
the EMT for the LOC and NOS metrics applied to the methods of the example
application.

3.4.3 The Excel Exporter

TheTable Exporteris the last component of the Momfe project. Its task is to take
the data collected in the EMT and export them to an external (tabulator-separated)
file.

14 CHAPTER 3. MOMFE, THE MOOSE METRICS FRONT-END

Figure 3.9: The Moose Metric Table Configurator. The user can chose the metrics
matching few filter criteria.

When the user clicks on the”Export to Excel” button a dialog appears. This
dialog asks the user for the path and filename of the file, which is going to be cre-
ated. If the user only gives the filename, the file is saved in the working directory.
The application just takes the values displayed in the table and writes a stream and
saves it into the file. Figure 3.13 shows the dialog that appears after clicking the
button”Export to Excel”.

3.4. THE METRIC MANAGER 15

Figure 3.10: The Moose Metric Table Configurator. Like in the Metric Manager,
the user can double-click on a metric to know more about the chosen metric.

16 CHAPTER 3. MOMFE, THE MOOSE METRICS FRONT-END

Figure 3.11: The Moose Metric Table Configurator. If the user clicks on ”Open
Table”, an EMT appears with the LOC and the NOS values for the entity kind
methods.

3.4. THE METRIC MANAGER 17

Figure 3.12: The Entity Metric Table. The table can be reconfigured following the
requests of the user.

18 CHAPTER 3. MOMFE, THE MOOSE METRICS FRONT-END

Figure 3.13: The Entity Metric Table. After clicking the button ”Export to Excel”
a dialog asks the user to enter a path and a filename.

Chapter 4

Evaluation

4.1 Introduction

Moose is a powerful system which helps the software engineer to analyze the
source code of a software in order to improve, modify or simply understand it.
Momfe provides a user-friendly interface to some functionalities and extends them
with an export tool. In this chapter we will present the utility of Momfe working
on an case study.

4.2 Case Study

Before doing the case study we have to decide what model we want to chose, what
entities we are interested in, and which metrics we want to visualize in order to
analyze them later using a tool like MS Excel. In this section we go through all
important steps of our case study: The choice of a specific case, the data collection
with Momfe, and the evaluation of the results.

4.2.1 Presentation of the Case Study

We chose the Refactoring Browser Version 3.5.1 written in Smalltalk for the Visu-
alWorks 3.0 environment as the software code to analyze. We decided to choose
some metrics which can be computed on the entity kindmethods. The following
list presents the 7 metrics that we chose:

• LOC Number of lines of a method

• MHNL Depth of a method within the inheritance hierarchy

• MNL Method Name Length

• MSG Number of messages of a method

• NI Number of method invocations within a method

19

20 CHAPTER 4. EVALUATION

• NMAA Number of attribute accesses within a method

• NOS Number of statements of a method

After loading the model of the Refactoring Browser into Moose we already have
a first view on the model and we see that this software contains 248 classes, 719
methods, 4060 invocations, 17621entities etc. (see figure 4.1).

Figure 4.1: Here we see a first overview on the system we want to deal with (the
Refactoring Browser V 3.5.1.

After loading the model we must run the Moose operators in order to compute
the values for the metrics which are not yet stored in the Moose model (see figure
4.2). The operators we run on this case study are the following:

• Candidate Invocations With Base Operator

• Language Independent Metrics Operator

• Smalltalk Annotation Operator

• Smalltalk Candidate Invocation Operator

• Smalltalk Metrics Operator

4.2. CASE STUDY 21

Figure 4.2: To get missing metric values, we run these operators on the loaded
model.

The next steps is the configuration of the Entity-Metric-Table and its visual-
ization. Later we export these data and load them into MS Excel where we make
some statistical evaluation and visualize the data with some diagrams.

4.2.2 Doing the case study

To study the values of the metrics we are interested in, we run theMetric Table
Configurator, we choose the LOC, MHNL, MNL, MSG, NI, NMAA and the NOS
metric, then we open theEMT where we can already see our values (see figure
4.4). To do some evaluation in MS Excel we need to export the data into a file.

Now we do some statistical analysis. We computed the following parameters:

• the mean value (see table 4.1)

• the median (see table 4.2)

• the variance (see table 4.3)

• the standard deviation (see table 4.4)

• the correlation between each pair of metrics (see tables 4.5 and 4.6)

22 CHAPTER 4. EVALUATION

Figure 4.3: The Entity Metric Table for the Refactoring Browser V 3.5.1.

4.2.3 Case Study Evaluation

After loading the model into Moose, choosing the metrics, doing some statistical
evaluation we can observe the following. The methods of theRefactoring Browser
V 3.5.1have on average about seven lines of code, the method name length is
on average about nine character, and the methods contain on average about three
invocations. We also observe that 50% of the methods do only one invocation. We
can also look at the correlation matrices which tell us that each of the MSG, NI,
NMAA and NOS metric do correlate strongly with the other three (These metrics
are defined in the table 2.1. That means that:

• NI correlates strongly with NOS, NMAA and MSG

• NMAA correlates strongly with MSG, NI and NOS.

• NOScorrelates strongly with MSG, NI and NMAA

• MSG correlates strongly with NI, NMAA and NOS

Before doing this case study we could expect this relationships otherwise we
should think about refactoring the software to make it easier to understand and to

4.3. CONCLUSION 23

LOC 7,44
MHNL 1,35
MNL 9,35
MSG 3,72
NI 3,09
NMAA 3,53
NOS 2,32

Table 4.1: Case Study, mean values for each metric on the Refactoring Browser V
3.5.1.

LOC 5
MHNL 1
MNL 9
MSG 1
NI 1
NMAA 2
NOS 1

Table 4.2: Case Study, median values for each metric on the Refactoring Browser
V 3.5.1.

modify.

4.3 Conclusion

Doing such evaluations helps the software engineer to get an idea of the quality
of the code. To give some examples of how quality can be observed we can say
that having small methods makes the code easier to read and to modify, having a
low cohesion between different classes makes the code more flexible and too short
method names can make the code more difficult to understand. Such an analysis is
important in the software reengineering process, because it helps to distribute the
available resources of a software company in the best way. The help of Moose with
Momfe accelerates and simplifies this process.

24 CHAPTER 4. EVALUATION

LOC 110,21
MHNL 0,37
MNL 14,30
MSG 26,67
NI 20,30
NMAA 27,18
NOS 5,83

Table 4.3: Case Study, variance values for each metric on the Refactoring Browser
V 3.5.1.

LOC 10,50
MHNL 0,61
MNL 3,78
MSG 5,16
NI 4,51
NMAA 5,21
NOS 2,41

Table 4.4: Case Study, standard deviation values for each metric on on the Refac-
toring Browser V 3.5.1.

LOC MHNL MNL MSG NI NMAA NOS
LOC 1,00 -0,18 0,11 0,22 0,21 0,12 0,12
MHNL -0,18 1,00 -0,05 -0,08 -0,11 -0,10 -0,12
MNL 0,11 -0,05 1,00 -0,02 -0,01 -0,00 -0,05
MSG 0,22 -0,08 -0,02 1,00 0,98 0,89 0,89
NI 0,21 -0,11 -0,01 0,98 1,00 0,93 0,91
NMAA 0,12 -0,10 -0,00 0,89 0,93 1,00 0,95
NOS 0,12 -0,12 -0,05 0,89 0,91 0,95 1,00

Table 4.5: Correlation Matrix of some method metrics.

4.3. CONCLUSION 25

LOC MHNL MNL MSG NI NMAA NOS
LOC X O O O O O O
MHNL O X O O O O O
MNL O O X O O O O
MSG O O O X X X X
NI O O O X X X X
NMAA O O O X X X X
NOS O O O X X X X

Table 4.6: Correlation Matrix. Values over 0.5 or under -0.5 correlate strongly.
This relationship in the matrix is represented with an X

Figure 4.4: Correlation: This diagram shows the correlation between the NI and
NMAA metric for the Refactoring Browser V 3.5.1. The on the x-ax one can see
each methods in the model while on the y-ax one can see the related metric-value

Chapter 5

Conclusion

5.1 Momfe, conclusion

Momfe is a tool which provides some new interfaces to the Moose user. It take
already existing functionalities and makes them more accessible. The user needs
less know-how to work with metrics and this simplifies working with Moose. The
exporting utility of Momfe makes it possible to use some external software to an-
alyze the data in order to get another point of view on any software system. And
this opens the way to new possibilities: combining Moose with other tools in order
to extend the features of Moose.

26

Appendix A

Technical Details

A.1 Architecture

A.1.1 Introduction and Overview

All the functionalities of MOMFE were implemented in the application named
MooseMetricsUIApp. This application contains following classes:

• MooseModelMetricsUI

• MSEMetricDescriptionUI

• MSEMetricsManagerUI

• MSEMetricsTableConfiguratorUI

• MSEMetricsTableUI

• MSEMetricsTableExporter

• MSEModelInformation

In the following subsections we will describe each class. We will present the
structure of the class and its function in the context of the whole Momfe project.

A.1.2 The Class: MooseModelMetricsUI

The class which generates the Moose Model Metrics Viewer object is named Moose-
ModelMetricsUI and its instance variables are:

• tableInterface

• infoTableArray

• fillingSelector

27

28 APPENDIX A. TECHNICAL DETAILS

• metricsInformator

• metricsTable

• isCompleteTableDisplayed

The task of the Moose Model Metrics Viewer is to display a GUI with a table
which visualizes the Number of:

• Access Arguments

• Accesses

• Attributes

• Classes

• Entities

• Expression Arguments

• Formal Parameters

• Global Variables

• Implicit Variables

• Inheritance Definitions

• Invocations

• Methods

• Named Properties

• Objects

What is the task of this Class? Basically with MooseModelMetricsUI Momfe
asks theCurrent Modelfor the informations listed above and displays them in a
table.

A.1.3 The Class: MSEMetricDescriptionUI

The class which generates theMetrics Descriptor Objectis named MSEMetricDe-
scriptionUI and its instance variables are:

• metric

• description

• metricAttributes

• metricLanguages

• availableMetrics

A.1. ARCHITECTURE 29

What is the task of this Class? MSEMetricDescriptionUI instantiates an object
which displays information about the metric by directly asking the metric.

A.1.4 The Class: MSEMetricsManagerUI

The class which generates theMetrics Manager Objectis named MSEMetrics-
ManagerUI and its instance variables are:

• availableMetrics

• languangeSelection

• selectedMetric

• filterString

• languageList

• entityList

• metricNamesList

What is the task of this Class? The available metrics are directly taken from
the MSEMetricManager-Object. The filter criteria simplify the view of the metric,
which the user is looking for.

A.1.5 The Class: MSEMetricsTableConfiguratorUI

The class which generates theMetrics Table Configurator Objectis named MSE-
MetricsTableConfiguratorUI and its instance variables are:

• entitiesToShow

• runOperators

• availableEntities

• metricsList

• chosenMetricsList

• metricsFilter

• availableMetrics

• languageList

What is the task of this Class? This class instantiates a GUI which helps the
user to chose the metric values, that will be displayed in the columns of theEMT ,
theEntity Metric Table.

30 APPENDIX A. TECHNICAL DETAILS

A.1.6 The Class: MSEMetricsTableUI

The class which generates theMetrics Table Objectis named MSEMetricsTableUI
and its instance variables are:

• tableInterface

• tableRows

• numberOfColumns

• columnLabelsArray

• aTableAdaptor

• tableMenu

• sortAscending

What is the task of this Class? The main task of this class is to display a table
with following data. For each entity of the chose entity kind the table displays a
value of the chosen metric(s).

A.1.7 The Class: MSEMetricsTableExporter

The class which generates theExcel Exporter Objectis named MSEMetricsTable-
Exporter and it has no instance variables.

What is the task of this Class? This class simply creates an object which is able
to generate a stream containing the values of the EMT and stores this stream into a
file.

A.1.8 The Class: MSEModelInformation

This is the central class of the Momfe project, which implements most methods
needed by the graphic user interfaces. It instantiates a singleton, in order to keep
the all collected informations about theCurrent Model. And it sends these in-
formations to any object belonging to MooseMetricsUIApp which will ask for it.
The class which generates theMoose Model Metrics Information Objectis named
MSEModelInformation and its instance variables are:

• currentModel

• availableMetrics

• metricsInTable

• entitiesInTable

• tableContents

A.2. USER MANUAL 31

What is the task of this Class? Thus the instantiated object keeps Labels for the
GUIs, fetches the ”list of metrics and the entities” available in the system, com-
putes the metrics-values for each entity-kind, builds the table-informations which
are visualized in the application, and keeps some information about the table itself.
It also gives the number of access arguments, accesses, attributes, classes, entities,
expression arguments, formal parameters, global variables, implicit variables, in-
heritance definitions, invocations, methods, named properties and objects for the
Moose Model Metrics Viewer.

A.2 User Manual

This short manual should give an introduction how to run and use Momfe.

A.2.1 Before Running Momfe

Before using Momfe to display data on a Table or export them into any file the user
should load some code into Moose and run the operators. After that the user can
run Momfe.

A.2.2 Running Momfe

The command to start Momfe into the VisualWorks 3.0 environment isMSEMet-
ricsTableConfiguratorUI new open. This command starts thetable Configurator
(see figure A.1).

This GUI helps the user to configure the desired table. After having configured
the table the user can display it. To do that he just must click on theOpen Table
button.

As soon as the table appears (see figure A.2) the user can sort the values. This
action is executed after double-clicking on the title of the desired column. The
table-GUI can be reconfigured, exported to an external file or can be simply closed.

Note that in the configurator the user can ask for information about the acronym
of a metric by double-clicking on the acronym.

32 APPENDIX A. TECHNICAL DETAILS

Figure A.1: Moose Metric Table Configurator: from here the user can chose the
metric he wants to display

A.2. USER MANUAL 33

Figure A.2: The Entity Metric Table

Bibliography

[DD99] St́ephane Ducasse and Serge Demeyer, editors.The FAMOOS Object-
Oriented Reengineering Handbook. University of Bern, October 1999.
See http://www.iam.unibe.ch/˜famoos/handbook.

[DDL99] Serge Demeyer, Stéphane Ducasse, and Michele Lanza. A hybrid re-
verse engineering platform combining metrics and program visualiza-
tion. In Francoise Balmas, Mike Blaha, and Spencer Rugaber, editors,
Proceedings WCRE’99 (6th Working Conference on Reverse Engineer-
ing). IEEE, October 1999.

[DLT01] Stéphane Ducasse, Michele Lanza, and Sander Tichelaar. The moose
reengineering environment.Smalltalk Chronicles, August 2001.

[KN01] Georges Golomingi Koni-N’sapu. A scenario based approach for refac-
toring duplicated code in object oriented systems. Diploma thesis, Uni-
versity of Bern, June 2001.

34

