
Security in Android ICC

Bachelor Thesis

Patrick Frischknecht

from

Laupen BE, Switzerland

Faculty of Science
University of Bern

29 June 2018

Prof. Dr. Oscar Nierstrasz

Pascal Gadient

Software Composition Group

Institute of Computer Science

University of Bern, Switzerland

Abstract

Android Inter-Component Communication (ICC) is complex, largely unconstrained, and
hard for developers to understand. As a consequence, ICC is a common source of security
vulnerability in Android apps. To promote secure programming practices, we have reviewed
related research, and identified avoidable ICC vulnerabilities in Android-run devices and
the security code smells that indicate their presence. We explain the vulnerabilities and
their corresponding smells, and we discuss how they can be eliminated or mitigated during
development. We present a lightweight static analysis tool on top of Android Lint that
analyzes the code under development and provides just-in-time feedback within the integrated
development environment (IDE) about the presence of such security smells in the code.
Moreover, with the help of this tool we study the prevalence of security code smells in more
than 700 open-source apps, and manually inspect around 15% of these apps to assess the
extent to which identifying such smells uncovers ICC security vulnerabilities.

i

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Outline . 3

2 State of the Art 4
2.1 Development Process Integration . 4

2.1.1 On Demand Checks . 5
2.1.2 Just-in-Time (JIT) Feedback . 5
2.1.3 Build Process . 5

3 Background 7
3.1 Android OS . 7
3.2 Android Lint . 8

3.2.1 Abstract Syntax Trees . 10
3.2.2 JUnit Tests . 13
3.2.3 Analysis of Java & Kotlin Code . 14
3.2.4 Analysis of Manifest . 16
3.2.5 Collective Reports . 18

3.3 Additional Tools . 20

4 App-level Security 21
4.1 Threats . 21
4.2 ICC Security Smells . 22

5 Empirical Study 29
5.1 Dataset . 30
5.2 Batch Analysis . 30

5.2.1 Prevalence of Security Smells . 30
5.2.2 App Updates . 30
5.2.3 Evolution . 33
5.2.4 Comparison to Existing Android Lint Checks 34

ii

CONTENTS iii

5.3 Manual Analysis . 36
5.3.1 Tool Performance . 36
5.3.2 Common Security Smells . 36

5.4 Threats to Validity . 38

6 Conclusion 39

A Anleitung zum wissenschaftlichen Arbeiten 42

1
Introduction

Smartphones and tablets provide powerful features once offered only by computers. However, the risk of
security vulnerabilities on these devices is tremendous; smartphones are increasingly used for security-
sensitive services like e-commerce, e-banking, and personal healthcare, which make these multi-purpose
devices an irresistible target of attack for criminals.

A recent survey on the StackOverflow website shows that about 65% of mobile developers work with
Android.1 This platform has captured over 80% of the smartphone market,2 and just its official app store
contains more than 2.8 million apps. As a result, a security mistake in an in-house app may jeopardize the
security and privacy of billions of users.

The security of smartphones has been studied from various perspectives such as the device manufac-
turer [13], its platform [15], and end users [5]. Numerous security APIs, protocols, guidelines, and tools
have been proposed. Nevertheless security concerns are often overridden by other concerns [1]. Many
developers undermine their significant role in providing security [14]. As a result, security issues in mobile
apps continue to proliferate unabated.3

Given this situation, previous work identified 28 security code smells i.e., symptoms in the code that signal
the prospect of security vulnerabilities [4]. The authors studied the prevalence of ten of such smells, and

1http://insights.stackoverflow.com/survey/2017
2http://www.gartner.com
3http://www.cvedetails.com

1

http://insights.stackoverflow.com/survey/2017
http://www.gartner.com
http://www.cvedetails.com

CHAPTER 1. INTRODUCTION 2

realized that despite the diversity of apps in popularity, size, and release date, the majority suffer from at
least three different security smells, and such smells are in fact good indicators of security vulnerabilities.

To promote the adoption of secure programming practices, we build on preceding work, and identify
security smells related to Android Inter-Component Communication (ICC). Android ICC is complex,
largely unconstrained, and hard for developers to understand, and it is consequently a common source of
security vulnerabilities in Android apps.

We have reviewed state of the art papers in security and existing benchmarks for Android vulnerabilities,
and identified twelve security code smells pertinent to ICC vulnerabilities. In this thesis we present these
vulnerabilities and their corresponding smells in the code, and discuss how they could be eliminated or
mitigated during development. Moreover, we present a lightweight static analysis tool on top of Android
Lint that analyzes the code under development, and provides just-in-time feedback within the integrated
development environment (IDE) about the presence of such security smells in the code. With the help of
this tool we study the prevalence of security code smells in more than 700 open-source apps, and discuss
the extent to which identifying these smells can uncover actual ICC security vulnerabilities. We address
the following three research questions:

• RQ1: What are the known ICC security code smells? We have reviewed significant related work,
especially that appearing in top-tier conferences and journals, and identified twelve avoidable ICC
vulnerabilities and the smells that indicate their presence. We discuss each smell, the risk associated
with it, and its mitigation during app development.

• RQ2: How prevalent are the smells in benign apps? We have developed a tool that statically
analyzes apps for the existence of ICC security smells, and applied it to a repository of about 700
apps, mostly available on GitHub. We discovered that almost all apps suffer from at least one ICC
security smell, but less than 10% suffer from more than two smells.

• RQ3: To which extent does identifying security smells facilitate detection of real vulnerabilities? We
manually inspected 100 apps, and compared our findings to the result of the tool. Our investigation
showed that about half of the identified smells are in fact good indicators of security vulnerabilities.

1.1 Contributions

To summarize, this work represents an initial effort to spread awareness about the impact of programming
choices in making apps secure, and to fundamentally reduce the attack surface in Android. We argue that
this helps developers who develop security mechanisms to identify frequent problems, and also provides
developers inexperienced in security with caveats about the prospect of security issues in their code.
Existing analysis tools often overwhelm developers with too many identified issues at once. In contrast we
provide feedback during app development where developers have relevant context. Such feedback makes it
easier to react to issues, and helps developers to learn from their mistakes [11]. This thesis extends earlier

CHAPTER 1. INTRODUCTION 3

work [4] by (i) focusing specifically on ICC vulnerabilities, one of the most prevalent Android security
issues, (ii) providing more precise, while still lightweight, static analysis tool support to identify such
smells, (iii) integrating our analysis into Android Lint, thus providing just-in-time feedback to developers,
and (iv) open-sourcing the Android Lint checks as well as the analyzed data.

1.2 Outline

The remainder of this thesis is organized as follows. In chapter 2 we show the current state of the art for
recent analysis tools used to improve software security. We provide the necessary background about the
Android OS and explain Android Lint in detail in chapter 3. We introduce ICC-related security code smells
in chapter 4, followed by our empirical study in chapter 5. Finally, we conclude the thesis in chapter 6.

2
State of the Art

Numerous tools to assess the security of Android apps already exist, and online wikis that maintain lists
referring to these tools have become quite popular.1 As the tools often lack a proper integration into a
productive environment, e.g., they frequently provide no build process support and return unstructured
results, we specifically focus in this chapter on the different levels of integration of popular tools.

2.1 Development Process Integration

The majority of security analysis tools provide feedback on demand. These tools have to be executed
manually and commonly require the use of shell commands. Besides analysis on demand, other tools
have emerged that are well integrated into an IDE and provide just-in-time feedback. However, most
of these tools need extensive manual effort either to be integrated into any existing build process, or to
provide just-in-time feedback. Only a few tools offer both features, none of them targeting specifically
ICC security code smells.

1https://mobilesecuritywiki.com/2

4

https://mobilesecuritywiki.com/

CHAPTER 2. STATE OF THE ART 5

2.1.1 On Demand Checks

In general, on demand tools provide a command line interface and usually take the .apk file as an argument
amongst others. These tools typically return text output only upon successful analyses. Predestined for
on-demand checks are resource intensive taint-based analyses that track data flows from security-sensitive
sources to potentially insecure sinks by “tainting” each involved variable along the data flow. Common
representatives of this category are Epicc [8] and IccTA [6]; both of them are taint analysis tools used to
find ICC issues and they model the Android app life cycle to achieve high recall and precision. Other on
demand tools that do not rely on command line interfaces can be run manually through UI elements such
as buttons, menus, etc. These tools either run stand-alone or integrated as a plug-in to an IDE, for which
the output is typically made accessible within the tool’s window. A tremendously popular example is the
GUI-based plug-in Find Security Bugs, available for many popular IDEs, that supports developers on the
identification of security issues in Java code.3 This plug-in does not only include checks specific to Java,
but also for Android and other frameworks.

2.1.2 Just-in-Time (JIT) Feedback

JIT tools serve developers instantaneously with feedback on their code while typing. These tools are
generally integrated into IDEs and highlight problematic code sections, provide tooltips and, less commonly,
offer quick fixes to automatically resolve issues. In order to provide meaningful feedback and to avoid any
interferences with the user, these tools must efficiently review the code on every change. Consequently,
JIT tools usually exploit simplified techniques compared to what is used for on demand analyses. A
prime example of JIT analysis is Android Lint, an extensible framework integrated by default into recent
releases of the Android platform’s default Android Studio IDE.4 This extensible framework provides
countless checks in different categories, e.g., performance, correctness, and security. Thereupon, Peck et

al. demonstrated how Android Lint can be extended with new security-related checks and verified the
effectiveness on real world applications [9]. Their new checks have been added to the official Android
Open Source Project (AOSP) and are now part of every Android Lint distribution. While Android Lint’s
focus is set on Android Studio and its underlying JetBrains IntelliJ IDE, Do et al. engineered CHEETAH,
an Eclipse-based IDE tool, that performs taint analysis on Android applications [3].

2.1.3 Build Process

Only very few analysis tools offer interfaces to application build processes. That said, Android Lint is
applicable to any Android app build process, as it is well integrated into Gradle, i.e., the default build
automation system used in Android Studio. Therefore, Android Lint can be executed through its Gradle task
after a successful build, and it is capable of generating HTML and XML reports. To further customize the

3http://find-sec-bugs.github.io/
4https://developer.android.com/studio/write/lint.html

http://find-sec-bugs.github.io/
https://developer.android.com/studio/write/lint.html

CHAPTER 2. STATE OF THE ART 6

analysis, e.g., selection of checks or scope, the build.gradle file of an app project allows developers
to set specific configuration parameters. The competitor Find Security Bugs offers even more functionality
such as Maven / Ant integration and support for Continuous Integration (CI) services based on Jenkins and
SonarQube, however, the tight Gradle integration is currently unavailable off the shelf.

3
Background

In this chapter we briefly explain Android OS-related terms and provide an introduction to Android Lint.
For Android Lint we specifically present its architecture, the internal data structures and use, as well as the
stored reports generated from successful inspections. We also explain how we can analyze both Java and
Kotlin code in a unified way in Android Lint. Furthermore we present the additional tools we created to
simplify batch analysis with Android Lint.

3.1 Android OS

Android is the most popular mobile operating system (OS) with a market share of more than 85%,1 and it
provides a rich set of ICC APIs for app developers to access and share app functionality. Moreover, access
to sensitive APIs is protected by a set of permissions that the user can grant to an app. In general, these per-
missions are text strings that correlate to a specific access grant, e.g., android.permission.CAMERA
for camera access.

Four types of components can exist in an app: activities, services, broadcast receivers, and content
providers. In a nutshell:

1https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-
operating-systems/

7

https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/

CHAPTER 3. BACKGROUND 8

• Activities build the user interface of an app, and allow users to interact with the app.

• Services run operations in the background, without a user interface.

• Broadcast receivers receive system-wide “intents”, i.e., descriptions of operations to be performed,
sent to multiple apps. Broadcast receivers act in the background, and often relay messages to
activities or services.

• Content providers manage access to a repository of persistent data that could be used internally or
shared between apps.

The OS and its apps, as well as components within the same or across multiple apps, communicate with
each other via ICC APIs. These APIs take an intent object as a parameter. An intent is either explicit or
implicit. In an explicit intent, the source component declares to which target component (i.e., defined by a
Class or ComponentName instance) the intent is sent. In an implicit intent, the source component only
specifies a general action to be performed (i.e., represented by a text string), and the target component
that will receive the intent is determined at run time. Intents can optionally carry additional data also
called bundles. Components declare their ability to receive implicit intents using intent filters, which allow
developers to specify the kinds of actions a component supports. If an intent matches any intent filter, it
can be delivered to that component.

An Android app consists of an .apk package file containing the compiled byte code, any needed data, and
resource files. Especially the AndroidManifest.xml file in the root folder of the package file is vital
for app execution, as it specifies countless app-related parameters such as used permissions, component
configurations, etc. The Android platform assigns a unique user identifier (UID) to each app at installation
time, and runs it in a unique process within a sandbox so that every app runs in isolation from other apps.

3.2 Android Lint

A wide range of tools for analysis of Android projects exists as shown in chapter 2. In order to avoid
reinventing the wheel, our goal was to augment an existing tool with new ICC security-related checks.

We found two tools worth considering, hence we compared in a first step Android Lint (AL) with Find

Security Bugs (FSB), the two very popular static analysis frameworks. We discovered that FSB suffers
from severe limitations, such as:

• the inability to parse any .xml files (this is a requirement for many smells that emerge from the
manifest)

• little assistance for Android-related checks as it focuses on traditional (web) applications, whereas
Android Lint targets Android applications and covers a significantly wider range of Android-related
issues

CHAPTER 3. BACKGROUND 9

• support only for Java code, while Android Lint operates also on Kotlin, the emerging language used
in Android apps

• its weak integration into Android Studio compared to Android Lint, which deeply prevents any reuse
of existing GUI components for reasonable visualization

• the exclusive availability of on-demand code checks, whereas the checks of Android Lint are
executed on-the-fly without any interruption of a developer’s workflow

Along with these advantages, the tight integration of Android Lint into the build process of Android apps
further eased our work. Consequently, Android Lint was our preferred choice for the foundation of our
work.

The deployment of the extension is straightforward. Once the extension is built, the generated .jar

archive has to be copied into the ~/.android/lint folder. The new checks will then automatically
run in the Android Studio IDE as well as during any subsequent Gradle builds of an Android project.

Android Lint, and thus our extension, is limited in the scope of the analysis as it provides neither dynamic
nor comprehensive taint analysis. Unfortunately, some of the issues in section 4.2 would require more
sophisticated techniques for proper detection, however, those issues are still reported as the resulting false
positives are further subjects to study. Nevertheless, the just-in-time feedback of Android Lint within the
IDE provides essential context and thus developers should quickly be able to cope with inappropriate
warnings [11].

An extension of Android Lint mainly consists of three elements: Issues, Detectors and Issue Registries.

• Issue: An issue represents a specific problem to find in the code, e.g., the use of insecure implicit
intents, and also includes all the related necessary information required by user dialogs. Therefore,
each issue comprises several parameters, i.e., an id as a short name describing the issue, a brief-
Description, an explanation, followed by the corresponding category and priority,
a severity value, and the actual implementation. In particular, the briefDescription
and explanation both remain visible in the generated reports, but for the information in the
IDE’s tooltips only the explanation is used. Moreover, the category can be one out of eleven
different predefined categories, e.g., “Security”, and the priority has to be a number in the range
of one to ten that indicates the impact of the issue. Finally, the severity allows one to abort
the build process for severe issues, and can be selected from five different values, e.g., Fatal for
immediate termination. The provided Implementation instance relies on two parameters, the
class that refers to specific code of the issue detection, and the scope of the analysis which
defines the required file origins (code, manifest or resources files). Additionally, supplementary
material can be referenced with web links that appear in IDE tooltip messages for any detected
security code smell. These links can be set up with Implementation.addMoreInfo. In order
to avoid any conflicts between custom and existing issues Android Lint requires each issue id to
be unique. Our 20 implemented issues altogether cover the 12 smells we thoroughly explain in

CHAPTER 3. BACKGROUND 10

chapter 4.

• Detector: Detectors find occurrences of an Issue in code and other project resources. A detector
may implement different interfaces depending on the sources to analyze. For our analysis we
used the Detector.XmlScanner (for XML resources) and the Detector.UastScanner
interface (for Java and Kotlin resources). While some detectors need information from multiple
sources and thus have to implement both interfaces, detectors that exclusively rely on one resource
need to only implement either one of the interfaces. Further code reuse among detectors of very
similar issues is ensured with the ability of a single detector to cover multiple issues. Currently, our
implementation contains 16 detectors for 20 issues. Upon successful completion a detector files a
report that includes for each detected smell the location, the XML or UAST node which defines
the highlighted source code area, and a message, which is used within the tooltip. Depending on
the analysis we set the locations accordingly, i.e., (i) for intra-method analysis we always set the
location to what we refer to as the sink node, (ii) for the PathPermission issue the location is set to
the path permission node in the AndroidManifest.xml, and (iii) in all remaining scenarios we
directly report the corresponding (sub)node location.

• Issue Registry: An IssueRegistry collects multiple Issues and promotes them to the An-
droid Lint framework. For a successful Android Lint set-up, each Issue must be registered in
an issue registry and each issue registry must be added to the manifest of the compiled .jar

file; otherwise the framework will ignore them. We use only one IssueRegistry as multiple
registries provide no benefits for our tool.

3.2.1 Abstract Syntax Trees

The Universal Abstract Syntax Tree (UAST) uses an abstract syntax initiated by JetBrains2 to maintain
both Java and Kotlin code in a unified representation. It describes a superset of elements that exist in Java
and Kotlin. This syntax is used by Android Lint for the UAST parser to analyze the Java and Kotlin source
code of a project. Figure 3.2 shows a simplified example of a class written in Kotlin and Java side by side
with the UAST representation of it. The complete UAST implementation can be found open-sourced on
GitHub.3

Previous versions of the detectors had to implement a Program Structure Interface (PSI) to traverse the
PSI tree, and it became inevitable that the Java source code was represented by a PSI tree instead of
a UAST tree. However, in Android Lint 2.4 JetBrains substituted PSI with UAST.4 As a result, PSI
and UAST had to be very similar to ensure backwards compatibility; even the documentation of the
Detector.UastScanner states that UAST is only an augmentation of PSI and that it is not intended

2https://www.jetbrains.com/
3https://github.com/JetBrains/intellij-community/tree/master/uast
4https://groups.google.com/forum/#!topic/lint-dev/7nLiXa04baM

https://www.jetbrains.com/
https://github.com/JetBrains/intellij-community/tree/master/uast
https://groups.google.com/forum/#!topic/lint-dev/7nLiXa04baM

CHAPTER 3. BACKGROUND 11

UElement UResolvable

UAnnotated

UExpressionUDeclaration

UMethod UClass ULoopExpression

UForEachExpressionUForExpression UWhileExpression

UCallExpression UReferenceExpression

USimpleNameReferenceExpression

Figure 3.1: The hierarchy of relevant UAST interfaces

to completely replace it.5 The main reason to prefer the UAST instead of the traditional PSI is that the
UAST is able to represent Java and Kotlin code within the same tree structure, while a PSI representation
may differ due to the different syntax.6

The different types of UAST elements are represented by a series of different interfaces. The actual nodes
of the abstract syntax tree returned by the UAST parser are always represented by Java or Kotlin specific
elements which implement the appropriate UAST interfaces. The root of the element hierarchy is by
definition an element of the base type UElement, which all other UAST elements extend. A hierarchy of
important UAST elements used in our detectors is shown in Figure 3.1, furthermore, Table 3.1 explains the
purpose of essential UAST interfaces.

In order to maintain a tree, each UElement, with or without any children, maintains a reference to its
parent which can be retrieved by the containingElement() method. To traverse the tree UElement
offers the accept() method which accepts a visitor and passes it to all its children.

A wide range of UElement types exist that reference other source code elements, such as a UCall-
Expression that references the UMethod it calls. It is common to resolve expressions as it allows, for
example, to get the declaration of a local variable based on a later reference to it in the method, or to get the
declaration of a parameter in a method. Although the UAST interface is the successor of PSI, the resolution
of fields still requires the use of PSI methods. Consequently, to resolve a reference in a UElement, e.g.,
to get the declaration a reference points to, manipulations on the underlying PSI element, like PsiType or
PsiClass, are required. This feature is quite important as a significant amount of each AST comprises
references that point to a declaration such as class identifiers and variables. The majority of all UElement
entities returned by the UAST parser are backed as well by a PSI element, which can be retrieved by

5https://android.googlesource.com/platform/tools/base/+/studio-master-dev/lint/libs/
lint-api/src/main/java/com/android/tools/lint/detector/api/SourceCodeScanner.kt

6https://groups.google.com/forum/#!topic/lint-dev/7nLiXa04baM

https://android.googlesource.com/platform/tools/base/+/studio-master-dev/lint/libs/lint-api/src/main/java/com/android/tools/lint/detector/api/SourceCodeScanner.kt
https://android.googlesource.com/platform/tools/base/+/studio-master-dev/lint/libs/lint-api/src/main/java/com/android/tools/lint/detector/api/SourceCodeScanner.kt
https://groups.google.com/forum/#!topic/lint-dev/7nLiXa04baM

CHAPTER 3. BACKGROUND 12

Table 3.1: Overview of essential UAST interfaces

UAST Interface Purpose
UElement Basic interface for all UAST elements.
UResolvable Represents a UElement that references another

element in the code, like a method call or a used
variable which both reference their declaration.
Provides the resolve method to retrieve the ref-
erenced PSI element.

UDeclaration Generic interface for all declarations: Classes,
methods and variables.

UClass Declaration of a class. Provides access to all
further declarations, like methods and variables,
within the class.

UMethod Declaration of a method. Provides access to
method parameters and body.

UExpression Represents anything that can be evaluated like
expressions and statements.

UCallExpression Represents any method, constructor, or initializer
call, and provides methods to gain access to the
receiver, the arguments, and the called method.

ULoopExpression Generic interfaces for all for and while loops.
UForExpression Represents a for loop.
UWhileExpression Represents a while loop.
UForEachExpression Represents a for loop used to iterate over a col-

lection of objects with the colon (:) notation.
UReferenceExpression Represents any type of reference.
USimpleNameReferenceExpression Represents plain, non-qualified identifiers.

CHAPTER 3. BACKGROUND 13

// Test.kt
package test.pkg

class Test {
var i : Int = 110

fun calc():Int {
 return 2*i
}

}

UFile Test.java/.kt

UClass Test

UField i = ...

UIdentifier i ULiteralExpression 110

UMethod calc(){...

UReturnExpression return

UBlockExpression {}

UBinaryExpression 2*i

ULiteralExpression 2 USimpleNameReferenceExpression i UastBinaryOperator *

// Test.java
package test.pkg;

public class Test {

int i = 110;

public int
calc(){
 return 2*i;
}

}

Figure 3.2: Representation of a Java and Kotlin class in UAST

the getPsi() method of the UElement interface. Consequently, all UElement entities, which are
resolvable, must implement the UResolvable interface. Note that getPsi() might return null in
case the UElement does not contain any PSI element. In general, UAST is used for everything within
methods and for field initializers, whereas PSI is used on the “outer level” for declaration and signatures
of methods, classes and packages.7 In other words, when we resolve declarative information, e.g., the
receiver type of a UCallExpression or the class containing a this reference, the manipulation of
PSI elements is still a necessity.

3.2.2 JUnit Tests

Android Lint provides a rich testing facility that is based on the well-known Java unit test framework
JUnit 4.8 The class BaseLintDetectorTest extends a plain JUnit TestCase and is the parent of
the abstract class for all detector unit tests LintDetectorTest, which provides numerous methods
that facilitate test initialization, configuration, execution, and verification of results.

Each detector test case has to override getDetector to return the detector class under test. In particular,
getIssues must return a list of all issues to take care of, as one detector could implement multiple
issues, however, not all of them may be suitable for any test. We built any TestLintTask by first calling

7https://android.googlesource.com/platform/tools/base/+/studio-master-dev/lint/libs/
lint-api/src/main/java/com/android/tools/lint/detector/api/SourceCodeScanner.kt

8https://junit.org/junit4/

https://android.googlesource.com/platform/tools/base/+/studio-master-dev/lint/libs/lint-api/src/main/java/com/android/tools/lint/detector/api/SourceCodeScanner.kt
https://android.googlesource.com/platform/tools/base/+/studio-master-dev/lint/libs/lint-api/src/main/java/com/android/tools/lint/detector/api/SourceCodeScanner.kt
https://junit.org/junit4/

CHAPTER 3. BACKGROUND 14

LintDetectorTest.lint, followed by the inclusion of files with the TestLintTask.files
method. This files method expects each file’s content represented as string value encapsulated
in a TestFile object, and several static utility functions on the class LintDetectorTest provide
support in building them. While all java and kotlin related methods in the aforementioned utility
class describe source code files, the xml method describes XML files and it requires a string constant to
distinguish between the different types of XML files used throughout Android projects. For our tool we
exclusively rely on the FN ANDROID MANIFEST XML XML type used in Android app’s manifest.

After successful creation of a test case it can be executed by the run method. The Android Lint framework
will then initiate the issue detection process and return a TestLintResult. The TestLintResult
provides multiple hooks, such as expectCount and expectMatches, to verify the results of the
issue analysis.

In our project we introduced a one to many relationship between detectors and LintDetectorTest
classes as a result of some detectors that cover multiple issues and therefore require multiple test classes.
Based on the complexity of the issue we implemented up to ten test cases. While the elementary issues
found in the manifest file tend to only require few simple test cases, the opposite is true for the more
complex issues in the source code. During our evaluation we encountered several unhandled exceptions
raised within our detectors due to unexpected code statements used in some apps. As a consequence, we
enhanced our test case set with code that caused the issue.

3.2.3 Analysis of Java & Kotlin Code

Android Lint provides multiple helper and utility classes to simplify the use of the UAST.

The relevant classes are namely:

• JavaEvaluator: The JavaEvaluator provides a wide range of methods to get more contex-
tual information about PSI elements such as PsiClass or PsiMethod. Compatible with this
helper class are all classes that implement at least a PSI interface. This also includes classes
that implement both, PSI and UAST interfaces. Unlike the name suggests, this evaluator can be
used for JavaElements and KotlinElements returned by UAST parsers. Crucial meth-
ods are isMemberInClass and isMemberInSubClassOf which allow reasoning about a
method’s origin. The JavaEvaluator can be received by calling getEvaluator() on a
JavaContext.

• ConstantEvaluator: The ConstantEvaluator evaluates constant properties of ordinary U-

Elements. The evaluate() method, for example, returns an Object that either precisely
matches the value of the UElement or its referenced value. The evaluation is rather complex as
the majority of the UElement subclasses demand for disparate treatment. For instance, while
all types of literals can be converted effortlessly into corresponding Java objects, expressions
need to be evaluated beforehand. Furthermore, JavaEvaluator is capable of determining the

CHAPTER 3. BACKGROUND 15

last assigned value for local variables and fields. UElements must evaluate to primitives and
strings, both of them possess literal expressions in Java and Kotlin, in order to foster correct
resolving by the ConstantEvaluator. If the value of a UElement cannot be evaluated the
ConstantEvaluator returns null.

• UastUtils: The UastUtils class contains multiple means to extract additional information
from a UElement. More precisely, it provides methods such as getContainingUMethod()
and getContainingUClass() to unwrap embedded UMethod and UClass objects of a
UElement. Furthermore, these utilities also support tryResolve() for any resolvable UElem-
ent together with other resolving methods that return PSI elements.

Aside from the aforementioned classes there exist several extra such as TypeEvaluator and Resour-
ceEvaluator, moreover, a wide range of helper and utility classes for the PSI are also present in current
releases of Android Lint.

The implementation of the Detector.UastScanner interface is the key factor for the successful cre-
ation of a custom detector. For each UastScanner instance the framework traverses the UAST and calls
the detector’s visit implementation on previously registered element types. These implementations dis-
tinguish UElement objects of type method (visitMethod), constructor (visitConstructor), ref-
erence (visitReference), resource reference (visitResourceReference), and class (visit-
Class). Besides these visit methods, the UastScanner also provides measures to further restrict the
visited elements by name. For example, the methods visited by the visitMethod can be constrained
to the names in the list from getApplicableMethodNames. If this method returns null, no name
restrictions will apply and all elements will be visited, which is the default behavior.

Each visit method retrieves the JavaContext as a parameter which is primarily used to determine the
location of a node, but also to report an issue and to access the JavaEvaluator. Contrary to its name,
the JavaContext works for Kotlin as well. The visitMethod is a core piece of all our detectors,
and unlike the name implies it visits only method calls (UCallExpression), but no method declara-
tions. Although getApplicableMethodNames restricts the visited methods by name, the Java-
Evaluator.isMemberInClass or JavaEvaluator.isMemberInSubClassOf have still to
be used to assure that the visited method does not conflict with another method of a different class. For
some specific cases, i.e., methods that only differ in parameters, the parameter type checks are necessary
to assure a method matches the expected entity.

For elements that lack a corresponding visit method in the UastScanner interface a UElement-

Handler can be used instead. Such UElementHandler instances, returned by createUast-

Handler, only visit UAST elements of types returned by overridden getApplicableUastTypes()
methods. In contrast to ordinary visitors, a UElementHandler is explicitly intended to check spe-
cific UAST elements, but not for generic tree traversal. With the aim of visiting any (partial) tree the
AbstractUastVisitor must be implemented instead. Therefore, AbstractUastVisitor in-
stances are used in our extension to evaluate all statements within a method, whereas the actual visiting

CHAPTER 3. BACKGROUND 16

mechanism is initiated by passing that visitor to the UMethod.accept method. To retrieve the sur-
rounding UMethod of a UElement we used the UastUtils.getContainingUMethod() helper
method.

More complex security issues, e.g., issues that require multiple methods on a specific object to be called
in order, that is, issues which involve multiple separated nodes in the UAST, do not align well with the
Detector.UastScanner interface, as it is primarily intended to find individual nodes. A prime
example of a complex security issue is the ICC security code smell Unauthorized Intent that depends
on specific method calls executed on the intent object to distinguish between an implicit or an explicit
intent. Unauthorized Intent requires exact knowledge of (i) the source of the intent, i.e., the location of
the object creation or retrieval, (ii) any state-changing modifications to the intent, i.e., methods executed
on the intent, and finally, (iii) the method that sends the intent. In general, these complex issues would
yield better results with taint analysis, which tracks data flows from sensitive sources to insecure sinks,
or dynamic analysis techniques, because some of the properties are unavailable in source code, e.g., the
properties of intents that are retrieved from external apps during run time.

Based on the limitations of Android Lint, we focus in our work on the evaluation within particular methods,
also known as intra-method analysis. Due to our intra-method approach we first search for a method
call which could lead to an issue based on its arguments. We term this method call sink and the method
containing the sink a base method. Next, within the base method, we start to resolve the relevant method
arguments to find their sources, i.e., a constructor or the previous assignment of these variables. Finally,
we perform further evaluations on argument objects of the method calls. Because our search is constrained
to the base method we are unable to find sources of arguments that originate from classes or methods other
than the base method. For that reason we are unable to detect changes applied to argument objects which
are accessible outside of the base method. If an argument is considered problematic due to its source or
state changes, the detector will report the issue in the IDE at the location of the sink. Figure 3.3 exemplifies
our intra-method analysis for the Unauthorized Intent issue.

3.2.4 Analysis of Manifest

In addition to plain Java and Kotlin code, Android Lint supports the analysis of eXtensible Markup
Language (XML) data. Android uses XML for various configuration files, such as resource files that
include static content required by the application to build its views, localize string tables, and assign
variable values, e.g., strings, numbers, and colors. A crucial XML file of any Android application is
the AndroidManifest.xml, which contains the essential configuration of the application including
numerous security relevant parameters such as availability of public interfaces, or custom permissions
defined to protect specific components. Each Android Lint issue must define its related scope, i.e., the
type of files to consider for its analysis. The evaluation of the AndroidManifest.xml, for example,
requires Scope.MANIFEST SCOPE. Besides the source code scopes we solely rely on the XML-based
scope Scope.MANIFEST SCOPE in our tool, as we never analyze any further resource files.

CHAPTER 3. BACKGROUND 17

public class MainActivity extends Activity {

@Override
protected void onCreate(Bundle instanceState) {
 Intent i = new Intent("test.pkg.ACTION");

i.setClassName("test.pkg", "Receiver");
sendBroadcast(i);

}
}

Locate the "sink", here sendBroadcast(i)

Try to find further modifications of i. We find
i.setClassName("test.pkg", "Receiver"),
setClassName() sets an explicit target for an intent
therefore it is no longer implicit and we can be sure
it reaches only the intended target. Thus we do not
report anything.

Locate the "source" of the intent argument i
within the sourrounding method. It is an intent
constructor without an explicit target, just an action
thus we still consider our intent implicit.

public class MainActivity extends Activity {

@Override
protected void onCreate(Bundle instanceState) {
 Intent i = new Intent("test.pkg.ACTION");

i.setClassName("test.pkg", "Receiver");
sendBroadcast(i);

}
}

public class MainActivity extends Activity {

@Override
protected void onCreate(Bundle instanceState) {
 Intent i = new Intent("test.pkg.ACTION");

i.setClassName("test.pkg", "Receiver");
sendBroadcast(i);

}
}

Figure 3.3: Intra-method analysis example of an Unauthorized Intent issue within the
Activity.onCreate method

CHAPTER 3. BACKGROUND 18

As expected, the Detector.XmlScanner interface is very similar to the Detector.UastScanner
interface. The interface allows a detector to restrict the access to certain types of XML elements by overrid-
ing getApplicableElements which returns a list of element names (i.e., strings) the detector has to
visit, or null if the detector should visit all elements which is again the default behavior. During the visit-
ing process visitElement is called on any matching element. The same applies for attributes. visit-
Attribute either visits every attribute, or only those returned by getApplicableAttributes

in case they are not null. The XmlContext class provides measures to report an issue including the
affected element’s location in the code. Therefore, all visit methods receive the XmlContext object
as parameter. Each of our detectors usually identifies specific attributes of a certain element type, hence
our tool is able to merely visit the interesting elements by implementing getApplicableElements
accordingly. Thereafter, in the method visitElement, we retrieve each element’s attributes of im-
portance and verify its values. Six detectors implement the Detector.XmlScanner interface in our
tool.

3.2.5 Collective Reports

Issues are either reported just-in-time within the IDE through markers and hints, or exported into collective
HTML and XML reports. Each generated collective report contains a definite collection of issue occur-
rences in an app, and includes for each a specific message, the reported issue, and the location of the issue
in the code. We used this export feature on a large set of open source apps to further evaluate our tool and
a plethora of apps. A detector can report an issue by calling report on the context it receives within the
different visit methods.

The context method report takes up to five arguments:

• issue: The issue instance the detector reports.

• scope: The Android Lint framework will check for suppressive directives, that would cancel the
report if necessary, with respect to the element itself or elements enclosing it. A scope can be any
UElement if the issue remains in the UAST, or be any Node if the issue resides in the manifest
file.

• location: A location object contains the actual file, lines and columns of the content to be
highlighted, furthermore, the location is exported to all HTML and XML reports. The current
location can be retrieved with the context’s getLocation method within any visit method.

• message: A string that describes the problem in short.

• quickfixData: Defines a quick fix which can be applied in the IDE to resolve the issue without any
further user interaction. Quick fixes are not yet implemented in our tool.

In Android Studio each reported issue is highlighted in the source file representation according to its
location. In addition, a short tooltip with the provided message is displayed as soon as the user

CHAPTER 3. BACKGROUND 19

Figure 3.4: A reported issue in the Android Studio. The tooltip shows a brief description of the problem.
An issue in the shouldOverrideUrlLoading method is suppressed by the @SuppressLint
annotation.

Figure 3.5: One reported issue out of a collective HTML report.

hovers over the highlighted area, and when users click on “more” they will see a more comprehensive
explanation of the issue. An example report in Android Studio is shown in Figure 3.4.

A single reported issue out of a collective HTML report looks similar to a reported issue in the IDE.
Nevertheless, the HTML report also provides additional features, such as an overview with hyperlinks to
each issue description. For collective reports each individual report is grouped based on issue categories,
and each report presents a hyperlink to the affected file and message to the user. If a location has
been provided, a code snippet including the highlighted location, is further shown to the user. When
users click on the “explain” button they will see the explanation of the issue.

An example issue of a collective HTML report can be seen in Figure 3.5.

To turn off a single report in Java or Kotlin code a @SuppressLint annotation must be added to the

CHAPTER 3. BACKGROUND 20

enclosing method, or class, as a suppressive directive. The argument of the annotation can either be the id
of a specific issue, or “all” to suppress any issue in the subsequent code section. Figure 3.4 shows the use
of @SuppressLint. Different to the suppression of issues in Java or Kotlin code, XML code requires
the addition of the tools:ignore attribute to the (parent) element. The value of tools:ignore
should contain the id of each issue that should be ignored, or similarly, “all” if all issues should be ignored
in any child element.

3.3 Additional Tools

Android Lint is already integrated into the build process of any Android Gradle project. This enables
the use of Android Lint in batch mode on Gradle projects: provided the projects build successfully, any
number of projects can be analyzed by an initiation of their regular build process. To further streamline
the automated evaluation, we created two tools, one to run the analysis and another to collect the results.
However, we encountered several difficulties. For example, the Gradle project configurations have to be
compatible with recent releases of the Android Build Tools and the Gradle, especially since an
upgrade of these build tools to at least version 3.2.0 is mandatory for UAST support in Android Lint.
Moreover, any prior configuration modifications that disable Android Lint’s HTML or XML reports must
be removed. To facilitate this task we implemented a script that patches all disadvantageous settings before
it initiates a Gradle build. After successful analyses, the results of the generated XML reports are backed
up and aggregated by additional scripts. These aggregating scripts collect the number of reports per issue
for each project and write the result to a .csv file that eases further evaluation with other applications.

4
App-level Security

In this chapter we describe Inter Component Communication (ICC) threats in Android and present a list of
common ICC Security Smells that are detected by our Android Lint extension.

4.1 Threats

ICC not only significantly contributes to the development of collaborative apps, but it also poses a common
attack surface. The ICC-related attacks that threaten Android apps are:

• Denial of Service. Unchecked exceptions that are not caught will usually cause an app to crash.
The risk is that a malicious app may exploit such programming errors, and perform an inter-process
denial-of-service attack to drive the victim app into an unavailable state.

• Intent Spoofing. In this scenario a malicious app sends forged intents to mislead a receiver app that
would otherwise not expect intents from that app.

• Intent Hijacking. This threat is similar to a man-in-the-middle attack where a malicious app,
registered to receive intents, intercepts implicit intents before they reach the intended recipient, and
without the knowledge of the intent’s sender and receiver.

Two major consequences of the ICC attacks are as follows:

21

CHAPTER 4. APP-LEVEL SECURITY 22

• Privilege Escalation. The security model in Android does not by default prevent an app with fewer
permissions (low privilege) from accessing components of another app with more permissions (high
privilege). Therefore, a caller can escalate its permissions via other apps, and indirectly perform
unauthorized actions through the callee.

• Data Leak. A data leak occurs when private data leaves an app and is disclosed to an unauthorized
recipient.

4.2 ICC Security Smells

In order to answer “What are the known ICC security code smells?”, and to draw a comprehensive picture
of recent ICC smells and their corresponding vulnerabilities, our study builds on two pillars, i.e., a literature
review and a benchmark inspection.

Although Android security is a fairly new field, it is very active, and researchers in this area have published
a large number of articles in the past few years. We were essentially interested in any paper explaining
an ICC-related issue, and any countermeasures that involve ICC communication in Android. We used
a keyword search over the title and abstract of papers in IEEE Xplore and the ACM Digital Library, as
well as those indexed by the Google Scholar search engine. We formulated a search query comprising
Android, ICC, IPC and any other security-related keywords such as security, privacy, vulnerability, attack,
exploit, breach, leak, threat, risk, compromise, malicious, adversary, defence, or protect. We read the
title and, if necessary, skimmed the abstract of each paper, and included all security-related ones. We
then read the introduction of these papers, and excluded those that were not primarily concerned with app
security. In order to extend the search, for each included paper we also recursively explored both citing
and cited papers until no new related papers were found. Finally, we carefully reviewed all remaining
papers. During the whole process, we resolved any disagreement by discussion.

We further studied the well-known DroidBench1 and the Ghera2 benchmarks for our evaluation, both built
with a focus on ICC. We collected the symptoms, the smells, and the corresponding vulnerabilities these
benchmark suites revealed to further refine our smell list.

We identified twelve ICC security code smells. For each smell we report the security issue at stake, the
potential security consequences for users, the symptom in the code (i.e., the code smell), the detection

strategy that has been implemented by our tool for identifying the code smell, any limitations of the
detection strategy, and a recommended mitigation strategy of the issue, principally for developers.

SM01: Persisted Dynamic Permission. Resources provided by Android applications can be obtained
through Uniform Resource Identifiers (URIs), if access has been granted during installation or run time.

1https://github.com/secure-software-engineering/DroidBench
2https://bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks

https://github.com/secure-software-engineering/DroidBench
https://bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks

CHAPTER 4. APP-LEVEL SECURITY 23

Issue: Access granted at run time is often intended to be temporary, but if the developer forgets to revoke
the access grant, it becomes more durable than intended.
Consequently, the recipient of the granted access obtains long-term access to potentially sensitive data.
Symptom: Context.grantUriPermission() is present in the code without a corresponding
Context.revokeUriPermission() call.
Detection: We report the smell when we detect a permission being dynamically granted without any
revocations in the app.
Limitation: Our implementation does not match a specific grant permission to its corresponding revocation.
We may therefore fail to detect a missing revocation if another revocation is present somewhere in the
code.
Mitigation: Developers have to ensure that granted permissions are revoked when they are no longer
needed. They can also attach sensitive data to the intent instead of providing its URI.

SM02: Custom Scheme Channel. A custom scheme allows a developer to register an app for custom
URIs, e.g., URIs beginning with myapp://, throughout the operating system once the app is installed.
For example, the app could register an activity to respond to the URI via an intent filter in the manifest.
Therefore, users can access the associated activity by opening specific hyperlinks in a wide set of apps.
Issue: Any app is potentially able to register and handle any custom schemes used by other apps.
Consequently, malicious apps could access URIs containing access tokens or credentials, without any
prospect for the caller to identify these leaks [12].
Symptom: If an app provides custom schemes, then a scheme handler exists in the manifest file or in the
Android code. If the app calls a custom scheme, there exists an intent containing a URI referring to a
custom scheme.
Detection: The android:scheme attribute exists in the intent-filter node of the manifest file,
or IntentFilter.addDataScheme() exists in the source code.
Limitation: We only check the symptoms related to receiving custom schemes.
Mitigation: Never send sensitive data e.g., access tokens via such URIs. Instead of custom schemes use
system schemes that offer restrictions on the intended recipients. The Android OS could maintain a verified
list of apps and the schemes that are matched when there is such call.

SM03: Incorrect Protection Level. Android apps must request permission to access sensitive resources.
In addition, custom permissions may be introduced by developers to limit the scope of access to specific
features that they provide. Depending on a permission’s protection level, the system might grant the
permission automatically without notifying the user if the applications is created by the same developer
(signature protection level), or after the user approval during the app installation (normal protection level),
or may prompt the user to approve the permission at run time (dangerous protection level).
Issue: An app declaring a new permission may neglect the selection of the right protection level, i.e., a
level whose protection is appropriate with respect to the sensitivity of resources [7].
Consequently, apps that were not intended to retrieve the permission may still declare its use and access

CHAPTER 4. APP-LEVEL SECURITY 24

protected features.
Symptom: Custom permissions are missing the right android:protectionLevel attribute in the
manifest file.
Detection: We report missing protection level declarations for custom permissions.
Limitation: We cannot determine if the level specified for a protection level is in fact right.
Mitigation: Developers should protect sensitive features with dangerous or signature protection levels.

SM04: Unauthorized Intent. Intents are popular as one way requests, e.g., sending a mail, or as
requests with return values, e.g., when requesting an image file from a photo library. Intent receivers
can demand custom permissions that clients have to obtain before they are allowed to communicate. As
a result, any call that is able to submit intents supports the declaration of a permission that a potential
receiver must match in order to receive the intent. These intents and receivers are “protected”.
Issue: Any app can send an unprotected intent, or it can register itself to receive unprotected intents.
Consequently, apps could escalate their privileges by sending intents to unprotected privileged targets,
e.g., apps that provide elevated features such as camera access. Also, malicious apps registered to receive
implicit unprotected intents may relay intents while leaking or manipulating their data [2].
Symptom: The existence of an unprotected implicit intent. For intents requesting a return value, the lack of
check for whether the sender has appropriate permissions to initiate an intent.
Detection: The existence of several methods on the Context class for initiating an unprotected implicit
intent like startActivity, sendBroadcast, sendOrderedBroadcast, sendBroadcast-
AsUser, and sendOrderedBroadcastAsUser.
Limitation: We do not verify, for a given intent requesting a return value, if the sender enforces permission
checks for the requested action.
Mitigation: Use explicit intents to send sensitive data wherever possible. When serving an intent, validate
the input data from other components to ensure they are legitimate. Adding custom permissions to implicit
intents may raise the level of protection by involving the user in the process.

SM05: Sticky Broadcast. A normal broadcast reaches the receivers it is intended for, then terminates.
However, a “sticky” broadcast stays around so that it can immediately notify other apps if they need the
same information.
Issue: Any app can watch a broadcast, and particularly a sticky broadcast receiver can tamper with the
broadcast [7].
Consequently, a manipulated broadcast may mislead future recipients.
Symptom: Broadcast calls that send a sticky broadcast appear in the code, and the related Android system
permission exists in the manifest file.
Detection: We check the existence of methods such as sendStickyBroadcast, sendSticky-
BroadcastAsUser, sendStickyOrderedBroadcast, sendStickyOrderedBroadcast-
AsUser, removeStickyBroadcast, and removeStickyBroadcastAsUser on the Context
object in the code and the android.permission.BROADCAST STICKY permission in the manifest

CHAPTER 4. APP-LEVEL SECURITY 25

file.
Limitation: We are not aware of any limitations.
Mitigation: Prohibit sticky broadcasts. Use a non-sticky broadcast to report that something has changed.
Use another mechanism, e.g., an explicit intent, for apps to retrieve the current value whenever desired.

SM06: Slack WebViewClient. A WebView is a component to facilitate web browsing within Android
apps. By default, a WebView will ask the Activity Manager to choose the proper handler for the URL. If
a WebViewClient is provided to the WebView, the host application handles the URL.
Issue: The default implementation of a WebViewClient does not restrict access to any web page [7].
Consequently, it can be pointed to a malicious website that entails diverse attacks like phishing, cross-site
scripting, etc.

Symptom: The WebView responsible for URL handling does not perform adequate input validation.
Detection: The WebView.setWebViewClient() exists in the code but the WebViewClient

instance does not apply any access restrictions in WebView.shouldOverrideUrlLoading(),
i.e., it returns false or calls WebView.loadUrl() right away. Also, we report a smell if the
implementation of WebView.shouldInterceptRequest() returns null.
Limitation: It is inherently difficult to evaluate the quality of an existing input validation.
Mitigation: Use a white list of trusted websites for validation, and benefit from external services, e.g.,
SafetyNet API,3 that provide information about the threat level of a website.

SM07: Broken Service Permission. Two different mechanisms exist to implement a service: onBind
and onStartCommand. Only the latter allows services to run indefinitely in the background, even when
the client disconnects. An app that uses Android IPC to start a service may possess different permissions
than the service provider itself.
Issue: When the callee is in possession of the required permissions, the caller will also get access to the
service. The problem is caused by flawed permission checks that will verify the callee’s permissions
instead of the caller’s permissions.
Consequently, a privilege escalation could occur [7].
Symptom: The lack of appropriate permission checks to ensure that the caller has access right to request
the service by calling startService.
Detection: We report the smell when the caller uses startService, and then the callee uses check-
CallingOrSelfPermission, enforceCallingOrSelfPermission, checkCallingOr-
SelfUriPermission, or enforceCallingOrSelfUriPermission to verify the permissions
of the request. Calls on the Context object for permission check will then fail as the system mistakenly
considers the callee’s permission instead of the caller’s. Furthermore, reported are calls to check-

Permission, checkUriPermission, enforcePermission, or enforceUriPermission
methods on the Context object, when additional calls to getCallingPid or getCallingUid on

3https://developer.android.com/training/safetynet/safebrowsing.html

https://developer.android.com/training/safetynet/safebrowsing.html

CHAPTER 4. APP-LEVEL SECURITY 26

the Binder object exist.
Limitation: We currently do not distinguish between checks executed in Service.onBind or Servi-
ce.onStartCommand, and we do not verify other custom permission checks.
Mitigation: Wherever feasible set permissions to protect a service in the manifest and avoid custom
run time checks within the service implementation. Otherwise, verify the caller’s permissions every
time before performing a privileged operation on its behalf using Context.checkCallingPermis-
sion() or Context.checkCallingUriPermission() checks. If possible, do not implement
Service.onStartCommand in order to prevent clients from starting, instead of binding to, a service.

SM08: Insecure Path Permission. When sharing data with other apps, besides regular permissions
that apply to the whole of a content provider, it is possible to set path-specific permissions that are more
fine-grained.
Issue: The path-permission check in the manifest file differentiates between paths containing double
slashes and paths with one slash. Hence, if there is a mismatch the permission only on the whole content
provider is considered. However, the UriMatcher provided by the Android framework, which is rec-
ommended for URI comparison in the query method of a content provider, considers such paths to be
identical, and will forward the request to the initially intended resource.
Consequently, access to presumably protected resources may be granted to unauthorized apps [7].
Symptom: A UriMatcher.match() is used for URI validation.
Detection: We look for path-permission attributes in the manifest file, and UriMatcher.-

match() methods in the code.
Limitation: We are not aware of any limitation.
Mitigation: As long as the bug exists in the Android framework, use your own URI matcher.

SM09: Broken Path Permission Precedence. In a content provider, more fine-grained permissions
should take precedence over those with larger scope.
Issue: A path permission does not take precedence over permission on the whole provider due to a bug that
we identified in the ContentProvider.enforceReadPermissionInner() method in recent
releases of the Android framework.4 Therefore, any access grant to a provider discloses all protected
subpaths.
Consequently, content providers may mistakenly grant access to other apps.
Symptom: The content provider is protected by path-specific permissions.
Detection: We look for a path-permission in the definition of a content provider in the manifest file.
Limitation: We are not aware of any limitation.
Mitigation: As long as the bug exists in Android, instead of path permissions use a distinct content provider
with a dedicated permission for each path.

4The bug can be found at line 574. The class is publicly available at https://android.googlesource.com/
platform/frameworks/base/+/oreo-r6-release/core/java/android/content/ContentProvider.
java

https://android.googlesource.com/platform/frameworks/base/+/oreo-r6-release/core/java/android/content/ContentProvider.java
https://android.googlesource.com/platform/frameworks/base/+/oreo-r6-release/core/java/android/content/ContentProvider.java
https://android.googlesource.com/platform/frameworks/base/+/oreo-r6-release/core/java/android/content/ContentProvider.java

CHAPTER 4. APP-LEVEL SECURITY 27

SM10: Unprotected Broadcast Receiver. Static broadcast receivers are registered in the manifest file,
and start even if an app is not currently running. Dynamic broadcast receivers are registered at run time in
Android code, and execute only if the app is running.
Issue: Any app can register itself to receive a broadcast, which exposes the app to any other app able to
initiate the broadcast.
Consequently, if there is no permission check, the receiver may respond to a spoofed intent yielding
unintended behavior or data leaks [7].
Symptom: The Context.registerReceiver() call without any argument for permission exists in
the code.
Detection: We report cases where the permission argument is missing or is null.
Limitation: We are not aware of the permissions’ appropriateness.
Mitigation: Register broadcast receivers with sound permissions.

SM11: Implicit Pending Intent. A PendingIntent is an intent that executes the specified action of
an app in the future and on behalf of the app i.e., with the identity and permissions of the app that sends
the intent, regardless of whether the app is running or not.
Issue: Any app can intercept an implicit pending intent [7] and use the pending intent’s send method to
submit arbitrary intents on behalf of the initial sender.
Consequently, a malicious app can tamper with the intent’s data and perform custom actions with the
permissions of the originator. Relaying of pending intents could be used for intent spoofing attacks.
Symptom: The initiation of an implicit PendingIntent in the code.
Detection: We report a smell if methods such as getActivity, getBroadcast, getService, and
getForegroundService on the PendingIntent object are called, without specifying the target
component call.
Limitation: Arrays of pending intents are not yet supported in our analysis.
Mitigation: Use explicit pending intents, as recommended by the official documentation.5

SM12: Common Task Affinity. A task is a collection of activities that users interact with when carrying
out a certain job.6 A task affinity, defined in the manifest file, can be set to an individual activity or at the
application level.
Issue: Apps with identical task affinities can overlap each others’ activities, e.g., to fade in a voice record
button on top of the phone call activity.
Consequently, malicious apps may hijack an app’s activity paving the way for various kinds of spoofing
attacks [10].
Symptom: The task affinity is not empty.
Detection: We report a smell if the value of a task affinity is not empty.
Limitation: We are not aware of any limitation.

5https://developer.android.com/reference/android/app/PendingIntent.html
6https://developer.android.com/guide/components/activities/tasks-and-back-stack.html

https://developer.android.com/reference/android/app/PendingIntent.html
https://developer.android.com/guide/components/activities/tasks-and-back-stack.html

CHAPTER 4. APP-LEVEL SECURITY 28

Mitigation: If a task affinity remains unused, it should always be set to an empty string on the application
level. Otherwise set the task affinity only for specific activities that are safe to share with others. We
suggest that Android set the default value for a task affinity to empty. It may also add the possibility of
setting a permission for a task affinity.

In summary, each security smell introduces a different set of vulnerabilities. We established a close
relationship between the smells and the security risks with the purpose of providing accessible and
actionable information to developers, as shown in Table 4.1.

Vulnerabilities Security code smells
Denial of Service SM01, SM02, SM03, SM04, SM06, SM07, SM10, SM12
Intent Spoofing SM02, SM03, SM04, SM05, SM07, SM08, SM09, SM10, SM11
Intent Hijacking SM02, SM03, SM04, SM05, SM10, SM11

Table 4.1: The relationship between vulnerabilities and security code smells

5
Empirical Study

In this section we first introduce a dataset of more than 700 open-source Android projects that are mostly
hosted on GitHub, and we present the results of our investigation into RQ2 and RQ3 by analyzing the
prevalence of security smells in our dataset. We finish this chapter with a discussion of the manual
evaluation of the tool’s results.

The results in section 5.2 suggest that fewer than 10% of apps suffer from more than two ICC security
smells. With respect to app volatility, we discovered that updates rarely have any impact on ICC security,
however, in case they have, they often correspond to new app features. Moreover, the findings of Android
Lint’s security checks correlate to our detected security smells.

According to our manual investigation in section 5.3, we confirm that our tool successfully finds many
different ICC security code smells, and about 48% of them in fact represent vulnerabilities. The tool can
consequently offer valuable support in security audits.

We performed analyses similar to prior work, e.g., exploring the relation between star rating and smells,
or the distribution of smells in app categories, and we did not observe major differences with our past
findings [4]. Our results are therefore in line with research that did not consider ICC smells, and found
that the majority of apps suffer from security smells, despite the diversity of apps in popularity, size, and
release date.

29

CHAPTER 5. EMPIRICAL STUDY 30

5.1 Dataset

We collected all open-source apps from the F-Droid1 repository as well as several other apps directly from
GitHub.2 In total we collected 3 471 apps, of which we could successfully build 1 487 (42%). In order to
reduce the influence of individual projects, in case there existed more than one release of a project, we only
considered the latest one. Finally, we were left with 732 apps (21%) in our dataset. The median project
size in our dataset is about 1.2 MB, corresponding to 108 files.

5.2 Batch Analysis

This section presents the results of applying our tool to all the apps in our dataset.

5.2.1 Prevalence of Security Smells

Figure 5.1 shows how prevalent the smells are in our dataset. Almost all apps suffer from Common Task

Affinity issues (99%) followed by the much less prevalent Unauthorized Intent smell (11%). Custom

Scheme Channel and Implicit Pending Intent each contribute about 8% of the smells. At the other end
of the spectrum, Sticky Broadcast, Incorrect Protection Level, Broken Service Permission, and Persisted

Dynamic Permission cause less than 2% of all issues. The threat of path permissions is not very common,
as no apps suffered from SM08 or SM09.

We were also interested in the relative prevalence of different security smells in the apps (see Figure 5.2).
Less than 1% did not suffer from any security smell at all, whereas the majority of apps, i.e., over 90%,
suffered from one or two different smells. 9% of all apps were affected by three or more smells. No apps,
fortunately, suffered from more than seven different types of smells. It is important to recall that the more
issues that are present in a benign app, the more likely it is that a malign app can exploit it, e.g., with denial
of service, intent spoofing, or intent hijacking attacks.

5.2.2 App Updates

We investigated the smell occurrences in subsequent app releases. Of the 732 projects, 33 (4%) of them
released updates that either resolved or introduced issues. We noticed that many of the updates targeted
new functionality, e.g., addition of new implicit intents to share data with other apps, implementation
of new notification mechanisms for receiving events from other apps using implicit pending intents, or
registration of new custom schemes to provide further integration of app related web content into the
Android system. We believe this is due to developers focusing on new features instead of security.

1https://f-droid.org/
2https://github.com/pcqpcq/open-source-android-apps

https://f-droid.org/
https://github.com/pcqpcq/open-source-android-apps

CHAPTER 5. EMPIRICAL STUDY 31

0 0 2 2
8 9

34

49

59 60

82

729

0

20

40

60

80

100

700

720

740

ap

ps
 s

uf
fe

ri
ng

 f
ro

m
 s

m
el

l

different types of ICC security smells apps suffer

Figure 5.1: Distribution of security smells in the apps

CHAPTER 5. EMPIRICAL STUDY 32

70.49 %

19.95 %

4.92 %

3.14 %

0.82 %

0.41 %

0.27 %

0 100 200 300 400 500 600

01

02

03

04

05

00

07

apps

di

ff
er

en
t s

m
el

ls
 a

pp
s

ar
e

su
ff

er
in

g

Figure 5.2: Partitioning apps by number of security smells

CHAPTER 5. EMPIRICAL STUDY 33

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

7 8 9 10 11 14 15 16 17 18 19 21

SM12: Common Task Affinity

SM04: Unauthorized Intent

SM11: Implicit Pending Intent

SM02: Custom Scheme Channel

SM10: Unprotected Broadcast Receiver

SM06: Slack WebViewClient

SM05: Sticky Broadcast

SM03: Incorrect Protection Level

SM07: Broken Service Permission

Figure 5.3: Evolution of security code smells in different Android releases

For the majority of the app updates that introduced new security smells, we found that the dominant cause
for decreased security is the implementation of new ICC functionality, i.e., social interactions or data
sharing. Hence, developers should be particularly cautious when integrating new functionality into an app.

5.2.3 Evolution

Figure 5.3 shows the evolution of security smells across Android releases 7 through 21. As in previous
work, we see changes in some of the security smells apps suffer. We believe that the positive trend in
Unauthorized Intent within apps is the consequence of built-in sharing functionalities to external services.
The relative growth of Implicit Pending Intent could correlate to the introduction of a new storage access
framework in Android release 19, which heavily relies on intents, and allows developers to browse and
open documents, images, and other files with ease. Google’s efforts to raise the developer’s awareness of
web related security issues appears to work: the occurrences of Slack WebView Client have decreased in
more recent releases. Despite the lack of comprehensive data on API levels 10 and 11 due to the relatively
few apps available for study, the occurrences of the majority of smells remain constant as a result of the
early feature availability since API level 1.

CHAPTER 5. EMPIRICAL STUDY 34

ICC Security Smells Correctness Correctness: Messages Security Performance Usability: Typography Usability: Icons Usability Accessibility Internationalization Internat.: Bidirectional
ICC Security Smells 0.29 0.27 0.72 0.25 0.21 0.11 0.07 0.25 0.13 0.11
Correctness 0.42 0.45 0.73 0.50 0.49 0.52 0.57 0.53 0.57
Correctness: Messages 0.27 0.42 0.37 0.20 0.27 0.41 0.25 0.32
Security 0.38 0.27 0.26 0.26 0.31 0.20 0.26
Performance 0.49 0.47 0.50 0.61 0.57 0.60
Usability: Typography 0.27 0.34 0.38 0.32 0.36
Usability: Icons 0.29 0.37 0.35 0.37
Usability 0.45 0.40 0.40
Accessibility 0.48 0.49
Internationalization 0.51
Internat.: Bidirectional

Figure 5.4: Correlation matrix of the different Android Lint issue categories

5.2.4 Comparison to Existing Android Lint Checks

In order to compare our findings with other issues in the apps, we correlated the results from the existing
Android Lint framework with security code smells. We wanted to explore whether frequent reports of
specific Android Lint issue categories were also indicative of security issues. We collected all available
issue reports for each app and then extracted the occurrences of each detected issue. Android Lint
categorizes more than 300 issues into 11 different categories; issues in the category “Correctness: Chrome”,
which includes checks that ensure compatibility to Google’s Chrome OS, were almost never detected, and
thus it has been removed from the dataset.

We apply the Pearson product-moment correlation coefficient algorithm. It provides a linear correlation
between two vectors represented as a value in the range of -1 (total negative linear correlation) and +1
(total positive linear correlation). The correlation of the Android Lint categories and our ICC smell
category in Figure 5.4 reveals several interesting findings: (i) Our ICC security category strongly correlates
to the Android Lint security category (+0.72), which contains checks for a variety of security-related
issues such as the use of user names and passwords in strings, improper cryptography parameters, and
bypassed certificate checks in web browsers. (ii) Another discovery is the minor correlation between the
ICC security smells and the Android Lint correctness category (+0.29). This category includes checks
about erroneously configured project build parameters, incomplete view layout definitions, and usages
of deprecated resources. (iii) Furthermore, we assume that usability does not impede security (+0.07),
because issues in usability are closely related to UI mechanics. (iv) Finally, minor correlations are shown
for usability, accessibility, and internationalization. These three categories have in common that they rely
heavily on UI controls and configurations.

To further assess how our tool performs on real world apps against the Android Lint detections, we
take the 100 apps with the most and least prevalent ICC security smells and compare them to Android
Lint’s analysis results. In Figure 5.5 the least and most affected apps clearly correspond in terms of issue
frequency among specific categories. The crosses represent the mean value of the number of different
issues apps are suffering in each category, and, as we hid any outliers to increase readability, these values
can exceed the first quartiles.

CHAPTER 5. EMPIRICAL STUDY 35

(a) 100 least vulnerable apps

(b) 100 most vulnerable apps

Figure 5.5: Prevalence of Android Lint issues in the 100 most and least vulnerable apps

CHAPTER 5. EMPIRICAL STUDY 36

5.3 Manual Analysis

To assess how reliable these findings are to detect security vulnerabilities, we manually analyzed 100
apps. Therefore, we invited two participants independently, to evaluate our tool and report their findings.
Participant A is a junior developer with less than two years of experience, and participant B is a senior
developer with several years of experience in software development. We provided both participants an
introduction to Android Security, and individually explained every smell in detail. We subsequently
selected the top 100 apps with most smells in accordance with our ICC security smell list, and provided
the participants with our tool and a spreadsheet to record their observations. They were asked not only to
evaluate the smells reported by our tool, but also to investigate all occurrences of the described symptoms
of any smell in chapter 4. Moreover, they evaluated the vulnerability potential for each security smell
based on the vulnerability information available in the benchmarks.

5.3.1 Tool Performance

To evaluate the performance of the tool, we selected the tool’s proposal of smells (true and false positives),
and the proposals from both study participants (true positives). Both participants evaluated all smells
detected by our tool, and additionally searched for false negatives according to the ICC security smell
list. We consider the ground truth to be the union of the evaluation results of participants A and B. We
obtained quite high success rates, especially for SM02, SM03, and SM05, as shown in Figure 5.6. We
observed that participants tended to interpret diversely the threat caused by the Unauthorized Intent smell.
We assume that this is caused by the very complex and flexible implementation that has been provided by
Android. As expected, we were able to find false positives, however, only a few false negatives remained
as we continuously improved our tool. Some of the false negatives, however, were caused by Android Lint
encountering errors in file parsing. Despite the Lint failures, false positives were frequently caused by
the lack of context, e.g., unawareness of data sensitivity, or custom logic that mitigates the vulnerability.
For example, our tool was unable to verify custom web page white-listing implementations for WebView
browser components, which would actually improve security.

5.3.2 Common Security Smells

Here too we made some interesting observations. A major discovery was the inappropriate use of regular
broadcasts for intra-app communication. For these scenarios, developers should solely rely on the Local-
BroadcastManager to prevent accidental data leaks. The same applies for intents that are explicitly
used for communication within the app, but do not include an explicit target, which would similarly
mitigate the risk of data leaks. Moreover, unused code represents a severe threat. Several apps requested
specific permissions without using them, increasing the impact of potential privilege escalation attacks.

CHAPTER 5. EMPIRICAL STUDY 37

0

100

200

300

400

500

600

SM02:
Custom Scheme

Channel

SM04:
Unauthorized Intent

SM12:
Common Task

Affinity

SM05:
Sticky Broadcast

SM03:
Incorrect Protection

Level

SM11:
Implicit Pending

Intent

sm

el
l d

et
ec

ti
on

s

tool (TP + FP) participant A (TP) participant B (TP)

Figure 5.6: Tool performance

CHAPTER 5. EMPIRICAL STUDY 38

In conclusion to the remaining reports of the two reviewers, our tool was able to correctly detect the
security risk in 48% of cases, which is mainly due to the fact that discerning data sensitivity is non-trivial.

5.4 Threats to Validity

One important threat to validity is the completeness of this study, i.e., whether we could identify and study
all related papers in the literature. We could not review all the publications, but we strived to explore
top-tier software engineering and security journals and conferences as well as highly-cited work in the
field. For each relevant paper we also recursively looked at both citations and cited papers. Moreover, to
ensure that we did not miss any important paper, for each identified issue we further constructed more
specific queries and looked for any new paper on GoogleScholar.

We were only interested in studying benign apps as in malicious ones it is unlikely that developers will
spend any effort to accommodate security concerns. Thus, we merely collected apps that were available on
GitHub and the F-Droid repository. However, our dataset may still have malicious apps that evaded the
security checks of the community or the market.

We analyzed the existence of security smells in the source code of an app, whereas third-party libraries
could also introduce smells.

Our analysis is intra-procedural and suffers from inherent limitations of static analysis. Moreover, many
security smells are in fact true smells only if they deal with sensitive data, but our analysis cannot determine
such sensitivity.

Finally, the fact that the results of our analysis tool are validated against manual analysis performed by the
authors is a threat to construct validity through potential bias in experimenter expectancy. We mitigated
this threat by including an external reviewer in the process.

6
Conclusion

We have reviewed ICC security code smells that threaten Android apps, and implemented a linting plug-in
for Android Studio that spots such smells, by linting affected code parts, and providing just-in-time
feedback about the presence of security code smells.

We applied our analysis to a corpus of more than 700 open-source apps. We observed that fewer than 10%
of apps suffer from more than two ICC security smells, and discovered that updates rarely have any impact
on ICC security, however, in case they have, they often correspond to new app features. Thus developers
have to be very careful about integration of new functionality into their apps.

A manual investigation of 100 apps shows that our tool successfully finds many different ICC security code
smells, and about 48% of them in fact represent vulnerabilities, thus it constitutes a reasonable measure to
improve the overall development efficiency and software quality.

We recommend security aspects such as secure default values and permission systems, to be considered in
the initial design of a new API, since this would effectively mitigate many issues like the very prevalent
Common Task Affinity smell.

39

Bibliography

[1] R. Balebako and L. Cranor. Improving app privacy: Nudging app developers to protect user privacy.
IEEE Security Privacy, 12(4):55–58, July 2014.

[2] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-application communication in
Android. In Proceedings of the 9th International Conference on Mobile Systems, Applications, and

Services, MobiSys ’11, pages 239–252, New York, NY, USA, 2011. ACM.

[3] L. N. Q. Do, K. Ali, B. Livshits, E. Bodden, J. Smith, and E. Murphy-Hill. Cheetah: Just-in-time
taint analysis for Android apps. In Proceedings of the 39th International Conference on Software

Engineering Companion, ICSE-C ’17, pages 39–42, Piscataway, NJ, USA, 2017. IEEE Press.

[4] M. Ghafari, P. Gadient, and O. Nierstrasz. Security smells in Android. In 2017 IEEE 17th Interna-

tional Working Conference on Source Code Analysis and Manipulation (SCAM), pages 121–130,
Sept 2017.

[5] B. H. Jones and A. G. Chin. On the efficacy of smartphone security: A critical analysis of modifica-
tions in business students practices over time. International Journal of Information Management,
35(5):561 – 571, 2015.

[6] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden, D. Octeau,
and P. McDaniel. Iccta: Detecting inter-component privacy leaks in Android apps. In Proceedings of

the 37th International Conference on Software Engineering - Volume 1, ICSE ’15, pages 280–291,
Piscataway, NJ, USA, 2015. IEEE Press.

[7] J. Mitra and V.-P. Ranganath. Ghera: A repository of Android app vulnerability benchmarks. In
Proceedings of the 13th International Conference on Predictive Models and Data Analytics in

Software Engineering, pages 43–52. ACM, 2017.

[8] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y. L. Traon. Effective inter-
component communication mapping in Android with Epicc: An essential step towards holistic
security analysis. In Presented as part of the 22nd USENIX Security Symposium (USENIX Security

13), pages 543–558, Washington, D.C., 2013. USENIX.

40

BIBLIOGRAPHY 41

[9] M. Peck, K. Gananand, and A. Pyles. Android security analysis final report. MITRE Technical

Papers, Apr. 2016.

[10] C. Ren, Y. Zhang, H. Xue, T. Wei, and P. Liu. Towards discovering and understanding task hijacking
in Android. In USENIX Security Symposium, pages 945–959, 2015.

[11] Y. Tymchuk, M. Ghafari, and O. Nierstrasz. JIT feedback — what experienced developers like about
static analysis. In Proceedings of the 26th IEEE International Conference on Program Comprehension

(ICPC’18), 2018.

[12] R. Wang, L. Xing, X. Wang, and S. Chen. Unauthorized origin crossing on mobile platforms: Threats
and mitigation. In ACM Conference on Computer and Communications Security, 2013.

[13] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang. The impact of vendor customizations on Android
security. In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications

Security, CCS ’13, pages 623–634, New York, NY, USA, 2013. ACM.

[14] J. Xie, H. R. Lipford, and B. Chu. Why do programmers make security errors? In 2011 IEEE

Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pages 161–164, Sept
2011.

[15] M. Xu, C. Song, Y. Ji, M.-W. Shih, K. Lu, C. Zheng, R. Duan, Y. Jang, B. Lee, C. Qian, et al. Toward
engineering a secure Android ecosystem: A survey of existing techniques. ACM Computing Surveys

(CSUR), 49(2):38, 2016.

A
Anleitung zum wissenschaftlichen Arbeiten

The Anleitung consists of the journal paper “Security Code Smells in Android ICC”.1

P. Gadient, M. Ghafari, P. Frischknecht, and O. Nierstrasz. Security code smells in Android ICC.

Submitted to Empirical Software Engineering Special Issue: SCAM 2017, 2018.

1http://scg.unibe.ch/download/supplements/Security-Smells-in-Android-ICC-
(Submission).pdf

42

http://scg.unibe.ch/download/supplements/Security-Smells-in-Android-ICC-(Submission).pdf
http://scg.unibe.ch/download/supplements/Security-Smells-in-Android-ICC-(Submission).pdf

	Introduction
	Contributions
	Outline

	State of the Art
	Development Process Integration
	On Demand Checks
	Just-in-Time (JIT) Feedback
	Build Process

	Background
	Android OS
	Android Lint
	Abstract Syntax Trees
	JUnit Tests
	Analysis of Java & Kotlin Code
	Analysis of Manifest
	Collective Reports

	Additional Tools

	App-level Security
	Threats
	ICC Security Smells

	Empirical Study
	Dataset
	Batch Analysis
	Prevalence of Security Smells
	App Updates
	Evolution
	Comparison to Existing Android Lint Checks

	Manual Analysis
	Tool Performance
	Common Security Smells

	Threats to Validity

	Conclusion
	Anleitung zum wissenschaftlichen Arbeiten

