
Technical report

Importing JSP into Moose

David Gurtner
Supervised by: Tudor Gı̂rba

University of Bern, Switzerland
Software Composition Group

July 13, 2006

Java Server Pages (JSP) is an already established technology for web appli-
cation development, and thus there is a big need for tools to support reverse
engineering of JSP applications. A first step towards the analysis is creating
the model by parsing JSP. We have built j2moose as an Eclipse plugin to
parse JSP using the Eclipse capabilities. We have validated the approach by
extending the Moose reengineering environment to load the exported models
from j2moose.

1 Introduction

Java Server Pages (JSP) technology is an XML based language that enables Web de-
velopers and designers to rapidly develop dynamic web pages. JSP is part of the Java
technology family and allows for integration with and extension through the Java devel-
oping language.

Additionally there are several big frameworks further faciliating the development of
web applications. Among them the Apache Struts [HDF+02] Model-View-Controller
framework and the rather new Java Server Faces technology [Mah04], which allow for
easily building web application user interfaces.

Because of these major frameworks, the platform independence and the integration possi-
bility with Java based backend solutions, like the Enterprise Java Bean (EJB) technology,
JSP has grown to be one of todays most used web application development technologies.

1

Beeing widely used in the industry, there is a growing need for tools to analyse and
reeingineer JSP applications.

We wanted to build such a tool. The fastest way to build it, was to modify an existing
reengineering application to our needs. We decided to add JSP capabilities to the Moose
reeingineering environment [NDG05].

Moose is language independent, meaning it supports any language, given that language
can be parsed to a format understood by Moose.

Moose did not have support for JSP. For that, we built a parser and we extended
FAMIX [TDDN00] with JSP entities. We named the parser j2moose.

J2moose can convert JSP and Java code to one (or more) of the formats, which can be
imported into Moose.

2 J2moose

2.1 Concept of j2moose

J2moose is realised as an Eclipse [dRB06] plugin, because of those reasons:

• Java model in Eclipse
Eclipse has features such as a package overview for a project, code completion and
code validation. For these features Eclipse has built in models representing Java
applications in different ways. All these models are intended to be used by plugins,
to integrate with Eclipse, by providing access. It is easy to get meta information
on Java code in Eclipse. There’s no need to parse Java code directly, but just
query Eclipse for information.

• JSP conversion support through webtools
As the goal of j2moose is to not only export Java but also JSP code, there needs
to be support for that too. The Eclipse webtools plugin does just that. Similar
to how Eclipse has a representation of the Java code, the webtools plugin has a
model for JSP. As JSP code can be precompiled to plain Java code, the webtools
plugin can be querried for a Java representation of the JSP code, afterwards the
Java code can be fed into one of the Eclipse Java models, which can then be used
to acquire information.

• Exporting from where you work on your code
Another nice feature of having j2moose as an Eclipse plugin is, that it runs from
inside Eclipse. As most JSP applications are developed in Eclipse, the Java and
JSP code can be exported from where its created, without the need for some
additional application or tool.

2

2.2 Architecture of j2moose

The j2moose application consists of three main packages (see figure 1):

• popup.actions
This package makes up the Eclipse plugin and contains the classes implementing
the neccessary interfaces for the Eclipse plugin. This is where the main classes
(the ones starting up j2moose) and the user interface is implemented. The name
of this package was generated by the Eclipse plugin builder wizard. More detailed
information on this package can be found in Section 3.

• converters
The converters package contains the classes implementing the navigation through
the Java project model, find all elements and convert them to a Moose format.
More detailed information on this package can be found in Section 4.

• writers
In this package are classes to write data to a file. The subpackage elements
contains Java beans representing Moose entities to store the data before its written
to a file. More detailed information on this package can be found in Section 5.

3 Building an Eclipse Plugin

Getting a running Eclipse plugin is done through providing a few files describing the
plugin [AI03].

First we need to define that what we’re creating is a plugin. We do this in the manifest
file MANIFEST.MF:

Manifest−Ver s i on : 1 . 0
Bundle−Mani f e s tVer s i on : 2
Bundle−Name: J2moose
Bundle−SymbolicName: ch . unibe . iam . scg . j2moose ; s i n g l e t o n :=true
Bundle−Ver s i on : 0 . 1 . 3
Bundle−Act i va t o r : ch . unibe . iam . scg . j2moose . J2MoosePlugin
Bundle−Lo c a l i z a t i o n : p lug in
Require−Bundle: org . e c l i p s e . ui ,
org . e c l i p s e . core . runtime ,
org . e c l i p s e . j d t . core ,

[. . .]
Ec l ipse−AutoStart : t rue
Bundle−ClassPath : ch . unibe . iam . scg . j2moose . j a r

Bundle-Localization tells Eclipse that the manifest specifies a plugin, Bundle-ClassPath
is where all plugin classes are found, Require-Bundle specifies library dependencies and
Bundle-Activator finally is the mainclass of the plugin.

3

ch.unibe.iam.scg.j2moose

popup.actions

ui

converters

ast

elements types

java

elements

jsp

elements

utils

writers

elements

Figure 1: Package overview of j2moose

A Bundle-Activator class needs to implement AbstractUIPlugin. The one in j2moose
looks like this:

package ch . unibe . iam . scg . j2moose ;
import org . e c l i p s e . u i . p lug in . ∗ ;
[. . .]
public class J2MoosePlugin extends AbstractUIPlugin {

private stat ic J2MoosePlugin p lug in ;
public J2MoosePlugin () {

plug in = this ;
}
public void s t a r t (BundleContext context) throws Exception {

super . s t a r t (context) ;
}
public void stop (BundleContext context) throws Exception {

super . s top (context) ;
p lug in = null ;

}
public stat ic J2MoosePlugin ge tDe fau l t () {

return plug in ;

4

}
[. . .]

}

This class is a default implementation, and will look almost the same for all Eclipse
plugins.

The next step is to add custom extensions, this is done in the plugin.xml file [Ars01]:

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<? e c l i p s e version=” 3 .0 ”?>
<plug in>

<extens i on po int=”org . e c l i p s e . u i . popupMenus”>
<ob j ec tCont r ibut i on

adaptable=” f a l s e ”
id=”ch . unibe . iam . scg . j2moose . j s pF i l eCon t r i bu t i on ”
nameFi lter=” ∗ . j s p ”
ob j e c tC l a s s=”org . e c l i p s e . core . r e s ou r c e s . I F i l e ”>

<menu
id=”ch . unibe . iam . scg . j2moose . jspFileMenu”
l a b e l=”J2Moose”>

<groupMarker name=”ch . unibe . iam . scg . j2moose . j s pF i l e ”/>
</menu>
<ac t i on

c l a s s=”ch . unibe . iam . scg . j2moose . popup . a c t i on s .
ResourceJsp2Moose”

i con=” i con s /moosejsp . g i f ”
id=”ch . unibe . iam . scg . j2moose . Fi leJsp2Moose ”
l a b e l=”Jsp2Moose”
menubarPath=”ch . unibe . iam . scg . j2moose . jspFileMenu/

j s pF i l e ”/>
</ ob j ec tCont r ibut i on>
[. . .]

</ extens i on>
</ p lug in>

point=org.eclipse.ui.popupMenus tells Eclipse to add something to the popup menu
of the element defined in objectContribution. The action to be executed on this
element is defined in action. Finally an optional menu can be specified, where the
extension will be located.

The above example would thus add the menu J2Moose to the context menu of all gui
elements implementing IFile. The J2Moose would have an entry Jsp2Moose, which
would run the FileJsp2Moose action.

The actions we specify in the plugin.xml need then be defined. In the case of j2moose all
actions are of the extension type popupMenus, thus they’re defined in the popup.actions
package.

As all actions do practically the same task (they only differ in their output, depending

5

on the element they are defined on), they are all extending a common class where the
common parts are implemented. This class is called AbstractJ2MooseAction:

package ch . unibe . iam . scg . j2moose . popup . a c t i on s ;
import org . e c l i p s e . u i . IObjectAct ionDelegate ;
[. . .]
public abstract class AbstractJ2MooseAction implements

IObjectAct ionDelegate {
protected She l l s h e l l ;
protected J2MooseUI view ;
[. . .]
public void run (IAct ion ac t i on) {

[. . .]
this . s h e l l = workbenchWindow . g e t Sh e l l () ;
this . view = new J2MooseUI (this , this . s h e l l) ;

}
public void s ta r tExpor t ing () {

[. . .]
ProgressMonitorDia log pmd = new ProgressMonitorDia log (

this . s h e l l) ;
i f (this . javaElement != null) {

Java2Moose conver t e r = new Java2Moose (this . javaElement ,
this . c r e a t e JavaV i s i t o r (wr i t e r)) ;

pmd. run (true , true , c onve r t e r) ;
}
i f (this . resourceElement != null) {

Jsp2Moose conve r t e r = new Jsp2Moose (this . resourceElement ,
this . c r e a t e J s pV i s i t o r (wr i t e r)) ;

pmd. run (true , true , c onve r t e r) ;
}
[. . .]

}
[. . .]

}

In the run method the user interface gets instantiated, which presents the user with a
GUI (see figure 2). In the GUI the user can select to start exporting Java and JSP code to
a Moose format, which will run the startExporting method. Running startExporting
will create and run a Java and a JSP exporter called Java2Moose and Jsp2Moose re-
spectively.

4 Accessing the Eclipse Meta Model

When starting up Eclipse and looking at the Java perspective, the user is presented
with different views, showing different parts of a Java application. There is the package
explorer, with an overview of the projects, their packages and classes, even the the class
attributes and methods. Next is the editor, which shows the sourcecode for the currently

6

Figure 2: J2moose user interface

opened class. Another view shows an outline of the class displayed in the editor. Finally
is a view for different kinds of output, generated by various Eclipse functions.

Now Eclipse does not only have all those different views, but a different internal repre-
sentation for the data displayed in them. So to efficiently get information out of Eclipse,
j2moose needs to access a few of these models, as none really represents the whole of an
application.

In the following sections we present a detailed overview of how j2moose accesses the
different models.

4.1 The Java Representation

The package explorer shows you the package and class file structure of an application, so
that is the place to look for the names and the hierarchical structure of things. Speaking
from a Moose viewpoint, that is where the information about Namespaces, Classes ,
Methods and Attributes is found.

Eclipse has an interface for every Java element displayed in the package explorer. All
those interfaces inherit from IJavaElement. Furthermore those elements containing
others inherit from IParent. Lets clarify this with an example: IJavaProject represents
the root node of a project, it contains elements of type IPackageFragmentRoot. So
IJavaProject would implement IJavaElement and IParent.

To convert Java elements j2moose first gets the one element on which it was run (and
which will be an instance of IJavaElement). Then it gets the exact type, asking all
possible IJavaElement subinterfaces if the element is an instance of them (this is done
in Java2MooseConverterFactory). Knowing the type of an element, j2moose then is
able to convert it. Finally j2moose checks if it the element is an instance of IParent and
if so, it gets all the children and converts them the same way as the original element.
The following bit of code from Java2Moose does exactly that:

package ch . unibe . iam . scg . j2moose . c onve r t e r s ;

7

import org . e c l i p s e . j d t . core . IJavaElement ;
[. . .]
public class Java2Moose implements IRunnableWithProgress {

[. . .]
public void convertJava2Moose (IJavaElement element)

throws Invocat ionTargetExcept ion , Inter ruptedExcept ion {
[. . .]
Java2MooseConverter conver t e r = Java2MooseConverterFactory .

c reateConver te r (element) ;
conve r t e r . convertJava2Moose (this . g e tConve r t e rV i s i t o r ()) ;
i f (IParent . class . i s I n s t a n c e (element)) {

IParent elementAsParent = (IParent) element ;
[. . .]

IJavaElement [] c h i l d r en = elementAsParent .
getChi ldren () ;

this . convertChi ldren2Moose (ch i l d r en) ;
[. . .]

}
}
private void convertChi ldren2Moose (IJavaElement [] c h i l d r en)

throws Invocat ionTargetExcept ion , Inter ruptedExcept ion {
for (int i = 0 ; i < ch i l d r en . l ength ; i++) {

this . convertJava2Moose (ch i l d r en [i]) ;
}

}
[. . .]

}

The IJava2MooseConverterFactory returns instances of a subclass of
Java2MooseConverter holding a reference to the original element, and knowing its type.
Those subclasses accept a visitor of type IJava2MooseConverterVisitor and use double
dispatch to convert the original element to a Moose format. The visitor asks the instances
of Java2MooseConverter subclasses for a typed reference of their element, and querries
the element for information and writes it to a file. The writing is discussed in more detail
in Section 5: “Writing Data to a Moose format”. The visitor allows for the support of
multiple formats. Different visitors convert to different formats.

The IJava2MooseConverterVisitor and implementations thereof are in the
ch.unibe.iam.scg.j2moose.converters.java package.Java2MooseConverter,
Java2MooseConverterFactory and elements created by the factory are in the elements
subpackage as shown in figure 3.

4.2 The Resource Representation

Similar to the Java representation is the resource representation. Where the Java repre-
sentation shows all Java elements, the resource representation shows all files and folders
of a project. There is a relation between them, as every Java element is either a file or

8

ch.unibe.iam.scg.j2moose.converters.java

ch.unibe.iam.scg.j2moose.converters.java.elements

IJava2MooseConverterVisitor

+convertJava2Moose(converter:JavaProjectConverter)

+convertJava2Moose(converter:PackageFragmentRootConverter)

+convertJava2Moose(converter:PackageFragmentConverter)

+convertJava2Moose(converter:CompilationUnitConverter)

+convertJava2Moose(converter:ClassFileConverter)

+convertJava2Moose(converter:TypeConverter)

+convertJava2Moose(converter:MethodConverter)

+convertJava2Moose(...)

Java2CdifConverterVisitor

+convertJava2Moose(typeConverter:TypeConverter)

+convertJava2Moose(methodConverter:MethodConverter)

+convertJava2Moose(packageFragmentConverter:PackageFragmentConverter)

DummyConverterVisitor

+convertJava2Moose(...)

AbstractJava2MooseConverterVisitor

+convertJava2Moose(converter:JavaProjectConverter)

+convertJava2Moose(converter:PackageFragmentRootConverter)

+convertJava2Moose(...)

ch.unibe.iam.scg.j2moose.converters

Java2Moose

-converterVisitor: IJava2MooseConverterVisitor

+convertJava2Moose(element:IJavaElement)

+convertChildren2Moose(children:IJavaElement[])

Java2MooseConverterFactory

+createConverter(element:IJavaElement): Java2MooseConverter

Java2MooseConverter

#element: IJavaElement

+convertJava2Moose(converterVisitor:IJava2MooseConverterVisitor)

TypeConverter

+getTypedElement(): IType

MethodConverter

+getTypedElement(): IMethod

...Converter

+getTypedElement(): ...

Figure 3: Java converter classes

9

a folder. But not necessarily the other way round, as a JSP file for example is only in
the resource representation. So to find and access JSP files, the resource representation
is the correct place.

In the resource representation, every element is an instance of IResource. There are
only three different kinds of IResource elements:

• IProject
Every root node of an Eclipse project is of this type. IProject extends the
IContainer interface.

• IFolder
Represents all folders other than the root node of a project. IFolder extends the
IContainer interface.

• IFile
All files are of this type. IFile knows its own file extension.

The IContainer interface has a method members() returning all resources contained.

Now similar to Java2Moose is Jsp2Moose. It does exactly the same, just for IResource
elements:

package ch . unibe . iam . scg . j2moose . c onve r t e r s ;
import org . e c l i p s e . core . r e s ou r c e s . IResource ;
[. . .]
public class Jsp2Moose implements IRunnableWithProgress {

private IJsp2MooseConverterVis i tor c onv e r t e rV i s i t o r ;
[. . .]
public void convertJsp2Moose (IResource element)

throws Invocat ionTargetExcept ion , Inter ruptedExcept ion {
[. . .]
Jsp2MooseConverter conve r t e r = Jsp2MooseConverterFactory

. c reateConver te r (element) ;
conve r t e r . convertJsp2Moose (this . c o nv e r t e rV i s i t o r) ;
i f (IConta iner . class . i s I n s t a n c e (element)) {

IConta iner conta ine r = (IConta iner) element ;
[. . .]

IResource [] members = conta ine r . members () ;
this . convertMembers2Moose (members) ;

[. . .]
}

}
private void convertMembers2Moose (IResource [] members)

throws Invocat ionTargetExcept ion , Inter ruptedExcept ion {
for (int i = 0 ; i < members . l ength ; i++) {

this . convertJsp2Moose (members [i]) ;
}

}

10

[. . .]
}

The packages ch.unibe.iam.scg.j2moose.converters.jsp and
ch.unibe.iam.scg.j2moose.converters.jsp.elements are very similar to their Java
pendants (ch.unibe.iam.scg.j2moose.converters.java and
ch.unibe.iam.scg.j2moose.converters.java.elements). In the jsp package is an
interface for visitors called IJsp2MooseConverterVisitor and in the elements sub-
package is a factory called Jsp2MooseConverterFactory creating subclasses of the ab-
stract class Jsp2MooseConverter. The subclasses of Jsp2MooseConverter contain the
original element, and if it is a file, folder or project root node. The conversion of files
and folders works the same as the conversion of Java elements.

Because Jsp2Moose finds all files, not only the JSP ones, visitors have to ensure that
files they convert have a jsp ending.

4.3 JSP Translation

As the main idea of j2moose is to provide as much insight into JSP programs as possible,
it needs to be able to get more information out of JSP pages than is possible with just
the mechanisms introduced in Section 4.2 “The Resource Representation”. As JSP can
be translated to plain Java, j2moose uses this to get additional information.

To translate JSP code to Java, j2moose uses another Eclipse plugin called webtools.
The webtools plugin has a class JSPTranslation which can hold both the JSP and
the Java version. To get an instance of JSPTranslation, j2moose has the following
implementation in Jsp2CdifConverterVisitor:

package ch . unibe . iam . scg . j2moose . c onve r t e r s . j sp ;
import org . e c l i p s e . j s t . j sp . core . i n t e r n a l . java . JSPTranslat ion ;
[. . .]
public class Jsp2Cdi fConver t e rV i s i to r extends

AbstractJsp2MooseConverterVis i tor {
public void convertJsp2Moose (F i l eConver te r conver t e r) {

i f (conve r t e r . getElement () . g e tF i l eExtens i on () != null
&& conver t e r . getElement () . g e tF i l eExtens i on () .

toLowerCase ()
. equa l s (Jsp2MooseConverter . JSP FILE EXTENSION

)) {
I F i l e f i l e = (I F i l e) conve r t e r . getElement () ;
[. . .]
// e x t r a c t Java Informat ion from the Jsp code
this . convertJSPContent (f i l e) ;

}
}
[. . .]
public void convertJSPContent (I F i l e f i l e) {

IDOMModel model = null ;

11

try {
// ge t j s p model , g e t t r a n l s a t i o n
model = (IDOMModel) StructuredModelManager .

getModelManager ()
. getModelForRead (f i l e) ;

i f (model != null) {
JSPTranslationAdapterFactory f a c t o r y = new

JSPTranslationAdapterFactory () ;
model . ge tFactoryReg i s t ry () . addFactory (f a c t o ry) ;
IDOMDocument xmlDoc = model . getDocument () ;
JSPTranslationAdapter t rans l a t i onAdapte r = (

JSPTranslationAdapter) xmlDoc
. getAdapterFor (IJSPTrans lat ion . class) ;

JSPTranslat ion t r a n s l a t i o n = trans l a t i onAdapte r
. getJSPTrans lat ion () ;

this . convertJSPTrans lat ion (t r a n s l a t i o n) ;
t r a n s l a t i o n . r e l e a s e () ;

}
} catch (IOException e) {

e . pr intStackTrace () ;
} catch (CoreException e) {

e . pr intStackTrace () ;
} f ina l ly {

i f (model != null)
model . releaseFromRead () ;

}
}
private void convertJSPTrans lat ion (JSPTranslat ion t r a n s l a t i o n)

throws JavaModelException {
ICompi lat ionUnit j avaTrans l a t i on = t r a n s l a t i o n .

getCompi lat ionUnit () ;
[. . .]

}
[. . .]

}

In convertJSPContent(IFile file) the JSPTranslation is created. This makes very
close use of the webtools plugin, und might get outdated with future versions of webtools.

As can be seen in convertJSPTranslation(JSPTranslation translation) the
JSPTranslation has a getter method for an ICompilationUnit which is one of the
subinterfaces of IJavaElement.

ICompilationUnit is the class representing a Java source file, and is therefor not only
present in the IJavaElement hierarchy, but also the root node of Eclipse abstract syntax
tree, which represents sourcecode inside a file. So ICompilationUnit contains additional
information.

Lets have a look at how to get to this information.

12

4.4 The Abstract Syntax Tree

As one of the ideas of j2moose is to find method invocations in JSP code, j2moose needs
the abstract syntax tree (AST), as it is the only place where this information can be
found.

The abstract syntax tree is as the name implies a tree representation of Java source code.
An abstract syntax tree can be built out of an ICompilationUnit or an IClassFile.
One being a representation of a Java source file, the other a representation of a com-
piled Java class. So j2moose creates an AST out of the ICompilationUnit it gets by
translation JSP to Java as seen in Section 4.3.

In ch.unibe.iam.scg.j2moose.converters.ast is the necessary infrastructure to build
an abstract syntax tree and afterwards browse it for information.

As seen in figure 4 the ASTConverter is implemented as a Singleton that accepts a visi-
tor, when an instance is requested. It then accepts either an ICompilationUnit or an
IClassFile. ASTConverter then builds an AST, and calls a
CompilationUnitASTConverter with the AST (or its root node respectively) to start
traversing the tree. The CompilationUnitASTConverter will call the
Jsp2CdifASTConverterVisitor to convert its ASTNode and then call a TypeASTConverter
for all its children. The TypeASTConverter will then convert its ASTNode with the
Jsp2CdifASTConverterVisitor and call a MethodASTConverter for all its children.
Finally the MethodASTConverter will convert its ASTNode, again using
Jsp2CdifASTConverterVisitor.

5 Writing Data to a Moose format

J2moose collects various informations in lots of different places. This information gets
processed and converted into a format which can be imported into Moose. To store
information and pass it to a writer, j2moose has Java beans storing the same informa-
tion as Moose FAMIX entities [DTD01]. The Java beans are defined in the package
ch.unibe.iam.scg.j2moose.writers.elements. The Java bean class MooseClass for
example has the exact same attributes as a FAMIX class entity.

All converters/visitors in j2moose store all information they gather in such an object,
and pass this object to a writer.

At the moment j2moose only supports the FAMIX/CDIF [NTD98] format through
J2CdifWriter, which is implementing the IJ2MooseWriter interface:

package ch . unibe . iam . scg . j2moose . w r i t e r s ;
import ch . unibe . iam . scg . j2moose . w r i t e r s . e lements . MooseClass ;
[. . .]
public interface IJ2MooseWriter {

[. . .]
public void wr i t eC la s s (MooseClass mooseClass) ;

13

co
nv

er
te

rV
is

ito
r:

 J
sp

2C
di

fC
on

ve
rt

er
V

is
ito

r
co

nv
er

te
r:

 A
S

T
C

on
ve

rt
er

vi
si

to
r:

 J
sp

2C
di

fA
S

T
C

on
ve

rt
er

V
is

ito
r

<
<

cr
ea

te
>

>

ge
tIn

st
an

ce
(v

is
ito

r:
 J

sp
2C

di
fA

S
T

C
on

ve
rt

er
V

is
ito

r)

co
nv

er
tA

S
T

2M
oo

se
(ja

va
T

ra
ns

la
tio

n:
 IC

om
pi

la
tio

nU
ni

t)

co
nv

er
te

r:
 C

om
pi

la
tio

nU
ni

tA
S

T
C

on
ve

rt
er

co
nv

er
tA

S
T

2M
oo

se
(.

..)

co
nv

er
tA

S
T

2M
oo

se
(n

od
e:

 C
om

pi
la

tio
nU

ni
t)

co
nv

er
te

r:
 T

yp
eA

S
T

C
on

ve
rt

er

co
nv

er
tA

S
T

2M
oo

se
(.

..)

co
nv

er
tA

S
T

2M
oo

se
(n

od
e:

 T
yp

eD
ec

la
ra

tio
n)

co
nv

er
te

r:
 M

et
ho

dA
S

T
C

on
ve

rt
er

co
nv

er
tA

S
T

2M
oo

se
(.

..)

co
nv

er
tA

S
T

2M
oo

se
(n

od
e:

 M
et

ho
dD

ec
la

ra
tio

n)

Figure 4: The flow of a sample abstract syntax tree conversion

14

public void writeMethod (MooseMethod mooseMethod) ;
public void wr i t e I nh e r i t a n c eDe f i n i t i o n (

Moose Inhe r i t anceDe f in i t i on moose Inhe r i t anceDe f i n i t i on) ;
public void writeNamespace (MooseNamespace mooseNamespace) ;
public void writeJSPPage (MooseJspPage mooseJspPage) ;
public void writeJSPAttr ibute (MooseJspAttribute mooseJspAtribute)

;
public void writeJSPInvocat ion (MooseJspInvocation

mooseJspInvocat ion) ;
public void c l o s e () ;

}

6 Conclusion

To import JSP into Moose various tasks needed to be done: parsing JSP and Java code,
writing FAMIX entities to file and adding support for JSP FAMIX entities to Moose.

We built j2moose to parse JSP and to output in the FAMIX/CDIF format. Now we will
add support for the new FAMIX/MSE format. We will also enhance the Java support
with additional FAMIX entities and metrics.

References

[AI03] Jim Amsden and Andrew Irvine. Your First Plug-in. Technical report,
Object Technology International, Inc., 2003.

[Ars01] Simon Arsenault. Contributing Actions to the Eclipse Workbench. Technical
report, Object Technology International, Inc., 2001.

[dRB06] Jim des Riviers and Wayne Beaton. Eclipse Platform Technical Overview.
Technical report, International Business Machines Corp., 2006.

[DTD01] Serge Demeyer, Sander Tichelaar, and Stéphane Ducasse. FAMIX 2.1 —
The FAMOOS Information Exchange Model. Technical report, University of
Bern, 2001.

[HDF+02] Ted Husted, Cedric Dumoulin, George Franciscus, David Winterfeldt, and
Craig R. McClanahan. Struts in Action: Building Web Applications with the
Leading Java Framework. Manning Publications Company, 2002.

[Mah04] Qusay H. Mahmoud. Developing Web Applications with JavaServer Faces.
Technical report, Sun Microsystems, Inc., 2004.

[NDG05] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gı̂rba. The story of Moose:
an agile reengineering environment. In Proceedings of the European Software

15

Engineering Conference (ESEC/FSE 2005), pages 1–10, New York NY, 2005.
ACM Press. Invited paper.

[NTD98] Oscar Nierstrasz, Sander Tichelaar, and Serge Demeyer. CDIF as the in-
terchange format between reengineering tools. In OOPSLA ’98 Workshop
on Model Engineering, Methods and Tools Integration with CDIF, October
1998.

[TDDN00] Sander Tichelaar, Stéphane Ducasse, Serge Demeyer, and Oscar Nierstrasz.
A Meta-model for Language-Independent Refactoring. In Proceedings of
ISPSE ’00 (International Symposium on Principles of Software Evolution),
pages 157–167. IEEE Computer Society Press, 2000.

16

