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Abstract

The promise of search-driven development is that developers will save time
and resources by reusing foreign code in their local projects. To efficiently in-
tegrate this code, users must be able to trust it, thus besides relevance of code
search results their trustability is important as well. In this paper, we introduce
a trustability metric to help users assess the quality of code search results and
therefore ease the risk-cost-benefit analysis they undertake trying to find suitable
integration candidates. The proposed trustability metric incorporates both user
votes and cross-project activity of developers to calculate a “karma” value for
each developer. Through the karma value of all its developers a project is ranked
on a trustability scale. We present JBender, a proof-of-concept code search engine
which implements our trustability metric and we discuss preliminary results
from an evaluation of the prototype. Furthermore we discuss findings from the
creation of a second prototype—RBender—that deals with structured search over
dynamically typed code.

iii



iv ABSTRACT



Acknowledgements

I would like to express my gratitude to everyone who supported me during the
time I was working on this thesis. Only due to your support did I manage to
successfully complete this work!

First of all I want to thank my supervisor Adrian Kuhn - this work would not
have been possible without him. He supported me by providing new ideas, input
and motivation and by sacrificing a lot of time for discussing and working with
me.

Prof. Oscar Nierstrasz for giving me the opportunity to write this thesis at the
Software Composition Group (SCG) and for his inspirational lectures and his
support which contributed a lot to my ongoing interest in computer science.

David Erni for critical input and constructive critics, Niko Schwarz and Martti
Nirkko for their help with the numerical evaluation of my data.

The whole SCG staff which contributed to this work with critical comments or
with interesting discussions and advice.

All the students that accompanied me, not only during the time of this work
but during my whole studies, for the great time we had; be it over lunch, while
learning or working in the SCG student pool.

My friends for motivating and supporting me and especially my parents for their
unconditional support and for always believing in me.

So long, and thanks for all the fish!

Florian, March 2010

v



vi ACKNOWLEDGEMENTS



Contents

Abstract iii

Acknowledgements v

Contents vii

1 Introduction 1
1.1 Approach in a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and related work 5
2.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Code Search Engines 9
3.1 The Code Search Engine in a Nutshell . . . . . . . . . . . . . . . . 9
3.2 Improving Search Efficiency . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Increasing the number of potential results . . . . . . . . . . 10
3.2.2 Increasing result relevance . . . . . . . . . . . . . . . . . . 10
3.2.3 Increasing result suitability . . . . . . . . . . . . . . . . . . 12
3.2.4 Increasing result trustability . . . . . . . . . . . . . . . . . . 13

4 Trustability Metric 17
4.1 Developer Karma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Project Trustability . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 A Toy Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3.1 Sample calculation . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.2 A few things to note . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Implementation and Evaluation . . . . . . . . . . . . . . . . . . . . 21

5 JBender: A trustability enhanced CSE 23
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Jbender’s Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2.1 The Bender core . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.2 JBender’s metadatabase . . . . . . . . . . . . . . . . . . . . 25
5.2.3 JBenders’s codebase . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Trustability enhanced Results . . . . . . . . . . . . . . . . . . . . . 26
5.4 JBenders GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vii



viii CONTENTS

6 RBender: Structured Search over Dynamic Code 29
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Based on Bender / JBender . . . . . . . . . . . . . . . . . . . . . . 29
6.3 Code Search over Dynamically Typed Languages . . . . . . . . . 30

6.3.1 Parsing Ruby source code . . . . . . . . . . . . . . . . . . . 30
6.4 Discussion of RBender . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.4.1 Comments in Ruby . . . . . . . . . . . . . . . . . . . . . . . 31
6.4.2 Dynamic definitions . . . . . . . . . . . . . . . . . . . . . . 32

7 Evaluation 35
7.1 Attributes of the proposed Trustability Function . . . . . . . . . . 35

7.1.1 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.1.2 Power law distribution . . . . . . . . . . . . . . . . . . . . . 36
7.1.3 Some top results . . . . . . . . . . . . . . . . . . . . . . . . 36
7.1.4 Ranking by trustability . . . . . . . . . . . . . . . . . . . . . 37

7.2 A Comment on Ohloh’s Rankings . . . . . . . . . . . . . . . . . . 39
7.2.1 Developer ranking . . . . . . . . . . . . . . . . . . . . . . . 40
7.2.2 Project ranking . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.3 JBender Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.3.1 Evaluation in user study . . . . . . . . . . . . . . . . . . . . 42
7.3.2 Limitations of per-project information gathering . . . . . . 42
7.3.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8 Conclusion 45
8.1 What is missing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A 47
A.1 JBender’s Source Code Index . . . . . . . . . . . . . . . . . . . . . 47

A.1.1 Stored Fields (not indexed) . . . . . . . . . . . . . . . . . . 47
A.1.2 Searchable Fields (indexed) . . . . . . . . . . . . . . . . . . 48
A.1.3 Top Term Tokens for respective Terms . . . . . . . . . . . . 49

B 53
B.1 JBender’s Metadata Base . . . . . . . . . . . . . . . . . . . . . . . . 53

B.1.1 Information stored per project . . . . . . . . . . . . . . . . 53

C 55
C.1 Raw Data from Ohloh . . . . . . . . . . . . . . . . . . . . . . . . . 55
C.2 Metadata based on Ohloh . . . . . . . . . . . . . . . . . . . . . . . 57

List of Figures 59

List of Tables 61

Bibliography 63



Chapter 1

Introduction

The promise of search-driven development is that developers will save time and
resources by searching for software and reusing the search results in their code.
A developer in need of certain functionality would—instead of implementing it
himself—search for foreign source code and, after finding a suitable candidate,
integrate it in his project. This process is not easy: the sources searched are
generally huge and not per se trustable (e.g., the web), therefore integration can
be difficult. But when the effort for integration can be minimised the developer
saves himself the implementation’s work.1

However, to support search-driven development it is not sufficient to imple-
ment a mere full text search over a base of source code. In code search three
major concerns have to be addressed, all regarding the results of the code search
process:

• Result relevance — does the result fulfil the user’s need?

• Result suitability — is the result suitable for integration?

• Result trustability — can the result be trusted?

Previously published work concerning code search engines (CSE) is mainly
focused on result relevance, i.e. providing the CSE user with the most relevant
results. It is not sufficient though to just provide search results that meet the
user’s specification and are thus relevant. Human factors have to be taken into
account as well. In order to increase the efficiency of search-driven development
a search result must also be suitable and trustable [23]. Through this the user
saves time trying to assess whether he can trust the foreign source code found
by the search engine. If the foreign code is also suitable for the developer’s local
environment he can proceed to integrate it, thus solving his initial problem.

There are several ways of increasing the trustability of search results. The easiest
and most straightforward approach would be to read through the found source
code, and to test it properly. After careful examination the user’s trust in the

1In the text of this thesis we use the masculine form for examples of generic users, developers,
etc. This is done solely for reasons of simplicity, no floccinaucinihilipilification is intended.
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2 CHAPTER 1. INTRODUCTION

foreign code should have increased considerably. However, as we are looking for
efficient ways of assessing trustability this is obviously not the way to go. What
we need is to provide a faster way to let the user estimate the trustability of search
results. Another way of increasing the user’s trust in search results is to provide
him with suitable metadata. As an example the user would probably trust source
code when he knows that the person who wrote that code is a renowned and
experienced developer.

The issue of providing meta-information alongside search results and thereby
increasing trustabilty has not been widely studied. We are addressing this with
our work where we focus on why we think trustability of results is important and
how it could be improved. Parts of this work have previously been published in
the form of an extended abstract and a short paper [14, 15].

1.1 Approach in a Nutshell

In this thesis we focus on the trustability of search results. Relevance of code
search results is of course paramount, but trustability in the results can be just
as important. Before attempting to integrate a search result into the local code
base, the developer first has to assess its trustability in order to take a go-or-no-go
decision. A well-designed search interface should allow its users to take this
decision on the spot. Gallardo-Valencia et al. found that developers often look
into human rather than technical factors to assess the trustability of search results
[11]. For example developers will often prefer results from well-known open
source projects over results from less popular projects.

In this thesis we present a trustability metric for search results. This trustability
metric is based on human and social factors. We use data collected from Web
2.0 platforms to assess the trustability of both projects and developers. Our
trustability metric is based on collaborative filtering of user votes and on the
cross-project activity of developers. For example, if a little-known project is
written by developers who also contributed to a popular open source project,
the little-known project is considered to be (almost) as trustable as the popular
project.

As a feasibility study, we implemented the trustability metric in JBender, a proof-
of-concept code search engine. The index of our JBender installation currently
contains trustability assessments for over 3,700 projects, based on 193,000 user
votes and the cross-project activity of over 56,000 developers. This thesis also
discusses results from an evaluation of the JBender prototype are discussed.

A second prototype of a code search engine, RBender, focused on code search over
dynamic languages. Its goal was a first evaluation of the feasibility of structured
code search over dynamic code.
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1.2 Contributions of this thesis

Contributions of this thesis are as follows:

• We argue in favour of a stronger focus on the trustability of code search
results and we explain why we think it is important.

• We introduce a trustability metric for software projects. The trustability
metric is based on human factors, and uses collaborative filtering of both
user votes and cross-project activity of developers.

• We present JBender, a proof-of-concept implementation of our trustability
metric and discuss preliminary results from an evaluation of the prototype.

• We present findings from the making of RBender, a proof-of-concept code
search engine able to parse dynamic source code and provide a structured
search over it.

1.3 Structure of the Thesis

The remainder of this thesis is structured as follows: Chapter 2 discusses back-
ground and related work. Chapter 3 explains the basics of code search engines.
Chapter 4 introduces our trustability metric. In Chapter 5 and Chapter 6 we
present JBender and RBender, two proof-of-concept prototypes of code search en-
gines. Chapter 7 evaluates the earlier proposed trustability metric and discusses
results from an evaluation of the mentioned prototype. Eventually, we conclude
in Chapter 8 with remarks on future work.
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Chapter 2

Background and related work

Since the rise of Internet-scale code search engines, searching for reusable source
code has quickly become a fundamental activity for developers [4, 32]. However,
in order to establish search-driven software reuse as a best practice, the cost and
time of deciding whether to integrate a search result must be minimized. The
decision whether to reuse a search result or not should be taken quickly without
the need for careful (and thus time-consuming and costly) examination of the
search results.

Trustability is a big issue for reusing source code. For a result to actually be
helpful and serve the purpose originally pursued it is not enough to just match
the entered keywords. It is essential that the developer know at least the license
under which certain source code was published. Otherwise he will not be able
to use it legally. Furthermore, it is very helpful to know from which project a
search result is taken when assessing its quality. User studies have shown that
developers rely on both technical and human clues to assess the trustability of
search results [11]. For example developers will prefer results from well-known
open source projects over results rom less popular projects.

2.1 Previous Work

In recent years special search engines for source code have appeared, namely
GOOGLE CODE SEARCH1, KRUGLE2 and KODERS3. These code search engines
(CSE) all focus on full-text search over a huge code base, but lack detailed infor-
mation about the project. Search results typically provide a path to the version
control repository but little meta-information on the actual open source project;
often, even such basic information as the name and homepage of the project are
missing.

1http://www.google.com/codesearch
2http://www.krugle.org
3http://www.koders.com

5
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6 CHAPTER 2. BACKGROUND AND RELATED WORK

SOURCERER4 by Bajracharya et al. [5] and MEROBASE5 by Hummel et al. [18]
are research projects with internet-scale code search-engines. Both provide the
user with ways of structured code search. In terms of trustability both of these
code search engines provide the developer with license information and project
name of the found search results. Merobase also provides a set of metrics such
as cyclomatic and Halstead complexity. An improved version of Sourcerer with
trustability data is in development, though it has not yet been published6.

In addition to the web user interface, both Sourcerer and Merobase are also acces-
sible through Eclipse plug-ins that allow the developer to write unit tests. These
are then used as a special form of query to search for matching classes/methods,
i.e., classes/methods that pass the unit tests [18].

CODE GENIE is the Eclipse plug-in by Lemos et al. based on the Sourcerer code
search engine [25]. It focuses on directly using test cases written during test-
driven development to search for possible result candidates.

CODE CONJURER is the Eclipse plug-in based on Merobase, focusing on lowering
the barrier for software reuse in search/reuse-driven development [18, 21]. Using
unit tests as form of query is a way of increasing technical trustability: unit-
tested search results are of course more trustable, although at the cost of a more
time consuming query formulation (i.e., additionally writing the unit tests).7

The kind of results returned are also limited to clearly-defined and testable
features. A combination of technical trustability factors (e.g., unit tests) and
human trustability factors might be promising future work.

Reiss et al. developed S-68, a prototype of a meta code search engine [28, 29]. It
is based on top of Google Code Search. The focus lies on exact and meaningful
specification of structured search over source code. S-6 also provides unit tests as
search criteria.

Inoue et al. presented a ranking model that could be used to rank software
components by significance [20]. Significance in their ranking is based on use
relations of components. They also presented a search system named SPARSE-J
based on this ranking.

There have also been efforts to set conventional standards for code search engines
and software repositories. Garcia et al. compiled a survey of previous efforts
in research and industry CSEs and identified requirements that state-of-the-art
search engines should meet [12].

4http://sourcerer.ics.uci.edu
5http://www.merobase.org
6Personal communication with Sushil Bajracharya.
7For more information on the subject of unit testing as a form of query formulation see 3.2.2.
8http://www.cs.brown.edu/˜spr/research/s6.html

http://sourcerer.ics.uci.edu
http://www.merobase.org
http://www.cs.brown.edu/~spr/research/s6.html
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2.2 Related Work

We are not the first to use collaborative filtering in code search. Ichii et al. used
collaborative filtering to recommend relevant components to users [19]. Their
system uses browsing history to recommend components to the user. The aim was
to help users make cost-benefit decisions about whether or not those components
are worth integrating. Another approach is the work of Ohira et al. [26]. To
enhance cross-project knowledge collaboration they used collaborative filtering
to match cross-project knowledge and skills of developers in free/open source
project development.

Among other things our approach is based on commit data from project reposi-
tories. Arafat et al. have studied the distributions of commit sizes and commit
categories to open source projects [3] and the comment density therein [2].

Patterson wrote about the experience of writing a search engine and about the
pitfalls that await developers who attempt the same [27]. It constitutes a valuable
first overview of the subject of writing your own search engine.

Starke et al. have worked on relevance of code search results [33]. They espe-
cially investigated how effectively users can specify the information they are
seeking and how they work with the thereafter delivered search results. One of
their conclusions argues that ranking code search results correctly—possibly by
“confidence values”—could be of great value to developers.

Technical trustability factors have been covered by Lemos et al. [24] in the form
of unit tests. If a search result passes the test which was formulated as part of a
query, this can help to assert runnable and working search results.

Dynamic programming languages have a rather small role in the software devel-
opment world today. But importance will increase over the next years and may
well be critial to next-generation application development [9]. We created the
RBender prototype with the aim to provide structured search over dynamic code
in anticipation of this trend.

Corbat et al. have worked on a Ruby refactoring extension for the RDT9 plug-in
for the Eclipse IDE [8]. Their work also includes parsing Ruby source code and
interpreting the thereby obtained AST (abstract syntax tree). We used part of this
parsing functionality for the RBender project.

9Refactoring for Ruby Development Tool - http://r2.ifsoftware.ch/trac

http://r2.ifsoftware.ch/trac
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Chapter 3

Code Search Engines

In this chapter the general idea of a code search engine (CSE) is presented and
different features of CSEs are explained. Also we discuss how CSEs can be
improved to be more efficiently operable by users.

3.1 The Code Search Engine in a Nutshell

The basic idea of a code search engine (CSE) is to let the user search for source
code and to present him results for his query. Similar to a classic text search engine
a CSE gathers a base of source documents and creates an efficiently searchable
index over it. In the case of the CSE these documents, i.e., the body over which to
search, are source code files. Most CSEs use a full text search approach where
a certain query string is parsed and searched in the source code documents
that were indexed for the CSE; in this way most CSEs work the same way as
conventional full text search engines.1

3.2 Improving Search Efficiency

When investigating the efficiency of a CSE and the search tasks that can be
accomplished with it several ways to improve the efficiency come in mind:

Code base A code search engine’s value increases as its underlying code base
increases, providing a greater range of hopefully better matching results
even for complicated and narrow searches.
⇒ Provide more results.

Result relevance The search strategy, which determines how the possible re-
sults are searched for, can be improved. Through this result relevance is

1Of course the parsing of the query string and the source documents differs greatly: source
code and natural language call for different stop-word lists, word-stemming, etc.. A good source of
information about search engines and algorithms can be found in Grossman and Frieder [13].

9



10 CHAPTER 3. CODE SEARCH ENGINES

increased. On the one hand this includes the algorithms of the actual search
engine, on the other hand the possibilities the user has to interact with the
search engine, i.e., to specify his query.
⇒ Provide relevant results.

Result suitability An increase in the suitability of results makes it easier for the
developer to integrate them. A CSE could adapt found results to the local
environment, e.g., adapt the code formatting style to local conventions.
⇒ Provide results suitable for integration.

Result trustability Increasing the trustability and therefore the quality of the
search results provided for a search lowers the time it takes the user to
make decisions and to actually implement the found source code.
⇒ Provide trustable results.

3.2.1 Increasing the number of potential results

The power of a search engine relies heavily on the magnitude of the underlying
index. A code search engine needs a huge code base to index. Only through
that can it provide a big enough solution space for a sufficient level of possible
code searches. For internet scale CSEs this source code is generally collected
by crawlers from big open source repositories. Examples for such repositories
are Sourceforge2, Github3, RubyFore4 or Tigris5. The main selling point of these
repositories is—apart from the easy access—that the contained source projects
are distributed under open source licenses. This makes them actually suitable as
results for search and reuse based development. See Subsection 3.2.3 for more
about licenses of code search results.

3.2.2 Increasing result relevance

In order to examine the efficiency of a CSE we must start at the beginning of a
search task: let’s think about the actual need a user wants to satisfy when using a
code search engine. When a user performs a source code search he does search
for source code, but what he is actually looking for is functionality of some sort or
another: for example a framework, library, class or method performing a certain
task [11].6

This is in contrast to “normal” full text search (i.e., via Google or Yahoo) where
the user is generally looking for a piece of prose. For source code search this
leaves a gap between what the user is searching and what he is looking for.
To enable efficient code search this gap must be overcome by letting the user

2http://sourceforge.net
3http://github.com
4http://rubyforce.org
5http://www.tigris.org
6That is when the user is a developer and not a researcher performing an empirical study on

source code.
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specify the functionality he is looking for as precisely as possible. This is a
task that is hardly accomplished by search engines that use pure full text search
approaches: as source code is a highly structured form of text we should use this
underlying structure and with it the implicit information to the search engine’s
advantage.

Structured code search

One of the basic approaches to increase result relevance is structured code search
[31]. Structured code search does not treat the underlying source code as simple
text but respects its characteristics. This means structured code search takes
advantage of the structured form of source code and works with the thereby
specified functionality. This way the user can more precisely specify the function-
ality he is looking for, thereby increasing result relevance. Also the result for a
structured code search is not limited to an indexed source file as with conven-
tional full text approaches, but can be any possible logic entity: a library, a class,
a method, ...

An example of structured code search is the specification of a method signature
which our results should satisfy:

A user is searching for a function which converts integer values into roman numerals.7

Instead of just searching a code base with the string “roman numeral”, a structured code
search approach would let the user—additionally—specify that he is looking for a method
that takes an integer as the single parameter and returns a string.

The CSEs providing structured code search approaches today are mainly limited
to static programming languages. It is clear that explicitly and statically typed
languages supply much more information that is easily exploitable by a search
engine when compared to dynamically typed languages. In our opinion it is
however feasible as well to invest in structured code search for dynamically
typed languages. They also greatly profit from a more precise query specification
and with the tools in development the analysis of dynamic languages is becoming
more and more promising [8, 30, 17]. We focused on the aspect of structured
search over dynamically typed languages with the work on our prototype RBen-
der: it is a CSE which provides structured code search over Ruby, a dynamically
typed language. See Chapter 6 for more information concerning RBender.

Unit testing as query formulation

Unit tests provide a way of asserting certain functionality in source code [7]. It
follows that unit tests contain a lot of behavioural and structural information
about the source code they are testing. Specifying unit tests as a way of formulat-
ing queries can thus be seen as a special form of structured code search (3.2.2).
This means that a user of a CSE will write one or more unit tests as a part of
his query, possibly alongside a conventional full text search. The code search

7This function would for example return VII for 7 or XXIV for 24.
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engine then runs these unit tests on all possible result candidates (generally the
results from the full text search); only the results that “pass” the unit test(s) are
presented to the user.

Let us reconsider the example from above (see 3.2.2):

Our user is still searching for a function which converts integer values into roman
numerals. As he is using a CSE that offers unit tests as a form of query formulation he
specifies his query as follows: he uses the string “roman numeral” for a full text search
and additionally writes a unit test. The method he is looking for must return the string
”VII” when fed the integer ’7’, string ”XXIV” for integer ’24’ and string ”CLVI” for
integer ’156’. The CSE now provides him only with the results that not only match his
query string, but also comply with the specified unit tests.

Unit tests are an effective way of ensuring result relevance for code search [28,
29, 25]. What also makes them attractive is the fact that unit tests are—or should
be—written before code implementation [7]. This means a developer who has
set up his unit tests in a test-driven development approach could then just start
to fill the “blanks” with search results provided to him by a CSE. The main
disadvantage of unit tests as search queries is that test execution is rather time
consuming. The work of Hummel et al. has shown that code search with unit
tests can possibly take a very long time, thus making it practical only in certain
situations [18]. Given this limitation it is only feasible to use unit test queries as
a final means of filtering the results provided by less time-consuming forms of
code search (conventional full text search, structured code search).

3.2.3 Increasing result suitability

Suitability of code search results is a measure for how suitable these code search
results are for actual implementation. For a result to actually be helpful and serve
the purpose originally pursued with the search it is not enough to just match
the entered keywords. It is essential that the developer know at least the license
under which certain source code was published; otherwise the developer will
not be able to use the code legally. Furthermore the impact of the piece of source
code on its environment should be as small as possible: no developer wants to
integrate a piece of source code into his project when this source code is relying
on half a dozen additional third party libraries.

But there are some more ordinary factors that play into suitability as well: basi-
cally every factor that is an obstacle the developer has to overcome in order to
integrate potential integration candidates decreases suitability. This ranges from
a simple difference in code formatting and naming conventions to discrepancy in
functionality, e.g., a different error handling. Reiss suggested that to maximize
suitability of code search results a code search engine can provide ways of adapt-
ing search results to the local source code—according to the specification of the
developer [28, 29]. These adaptations—as the problems they try to tackle—range
from simple changes like reformatting or renaming to more complex operations
like API transformation and adjustment to existing dependencies. Code search
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engines that provide good examples for improved result suitability are Code
Conjurer and S-6 (see “Previous Work” in Section 2.1).

3.2.4 Increasing result trustability

The trustability of code search results plays a major role in efficient search-driven
development. When a user integrates foreign code into his local project he
basically has only two options: he can either trust the foreign code and integrate
it as is; or he can try to work through it, comprehending its functionality and
finally figuring out if it fits the purpose intended. The latter of the two options
is obviously very time consuming: it implies reading and reverse-engineering
foreign code. The effort of manually assessing the foreign code may well be so
high that it is not feasible for the user to integrate it at all but must implement the
needed functionality himself. It is the aim of search driven development to save
the developer time and resources, hence one must prevent similar scenarios. It
therefore follows that the user is in need of another way of assessing trustability
of his code search results.

What we propose is to display additional trustability information to the user
alongside the code search results. This abstract trustability information—displayed
in a reasonable format—will help the user efficiently assess the trustability of his
search results while browsing them. Thus the additional information the user is
confronted with should have an easily comprehensible form and should in no
way overburden the user with data.

Trustability of source code can be split into two major categories: technical and hu-
man trustability factors. The following two sections clarify this distinction.

Technical trustability factors

Technical trustability factors are intrinsic properties of the source code that make it
more trustable for a potential user. In other words technical trustability factors are
software metrics that suggest increased quality of the software in some way. This
could be for example the test-coverage of a library/project: a high test-coverage
compared to a low test-coverage indicates a certain level of diligence observed by
the developers while working on this project. Furthermore successful unit testing
asserts certain fundamental behaviour of the tested code and through that make
it more trustable. These technical trustability factors are internal properties of the
actual source code; they can be collected and—after refinement—be presented to
a code search user.

A few examples of technical trustability factors are

• test coverage of libraries;

• test coverage of a specific method/class;

• comment-line source-line ratio in the source code; or

• code cohesion.
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Human/social trustability factors

By far not all information that makes source code trustable for a developer is
contained in the source code itself. Recent research showed that source code
alone is often not sufficient to assess the trustability of a search result: one must
take into account human and social factors [11, 23]. We must not forget that
the quality and consequently the trustability of a piece of source code mainly
depends on who it was written by: For example, we would probably trust a piece
of code written by a close colleague because we have some knowledge of his
work. Or we would trust a piece of code that was under its team’s development
for a long time, since the many revisions would probably have solved all/most of
the errors. What makes foreign source code untrustable per se is that developers
lack the meta information implied by the two above examples. To gain trust in
foreign code a developer must somehow be provided with this metadata.

Human and social trustability factors are derived from meta information to a
certain piece of source code. For example:

• Who wrote a certain piece of code/certain project?

• Does this person write good/trustworthy code?

• How do others think about this person?

• How many people use this specific code/project?

• How long has this code/project been in development?

• How regularly is this code/project updated/worked on?

• Is the code/project running actively or does it come from a dead branch?

The problem of human/social trustability factors lies mainly in the fact that they
are not derived from the actual source code but rely on additional external data.
This means that it is no longer sufficient for a CSE to crawl the web (i.e., large free
open source repositories) for source code: often these repositories provide little
or no additional data related to the stored source projects. When a CSE wants to
provide the user with human trustability information this information must be
gathered in some other way. Because the needed meta data cannot be extracted
from the source code, this meta data often ultimately relies on user input.

At this time not many projects come with sufficient additional information. This
is a limitation that greatly reduces the number of open source projects which
could be indexed in a CSE, limiting its source code base drastically compared to
CSEs that eschew human trustability information.

What we propose in this thesis is a trustability metric that takes into account
several human/social trustability factors and calculates a trust value for each
search result. This trust value can then be fed to the user who can for example
sort the search results by trustability. Read more about this approach in Chapter 4
where we present our trustability metric, or in Chapter 5 where we present a
proof-of-concept prototype implementing said metric.
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Presentation of trustability information

After collecting trustability information about the code search results the question
arises as to how this information should be presented to the user. Up to now this
abstract term of trustability information can consist of percentage values (e.g., test
coverage), relations (who developed what?), time spans (time of development),
or any other form of metric about indexed source code. Of course it would be
of no help to the user when the search interface (or rather the results interface)
is overloaded with all this information. Research has shown that even small
variations from familiar interfaces or small distractions in the search process
can disrupt and confuse a user [16]. Providing the user with an abundance of
trustability information for each and every search result is of course out of the
question. This calls for a presentation of the trustability related information that
is non-intrusive and does not overburden the user interface.
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Chapter 4

Trustability Metric

In this chapter, we propose an abstract trustability metric for code search results
that uses collaborative filtering of both user votes and cross-project activity of
developers. It is our aim that this trustability metric help developers quickly
assess code quality while they are browsing through results. In consequence
this either raises or refutes the user’s trust in search results. To finally assess the
trustability of code search results we combine traditional full text search with
meta-information from Web 2.0 platforms.1 In the second part of this chapter a
toy example is presented to demonstrate the calculation of trust values.

In a nutshell We consider a project to be trustable if there are significant contri-
butions by developers who have also significantly contributed to projects that
have received a high number of user votes.

4.1 Developer Karma

Our trustability metric is based on the notion of developer “karma”. We use
karma as a measure of trustability/quality of developers, so in effect trustability
of a project increases or decreases according to the karma of the developers
who worked on it. Our calculation of karma is based on the assumption that
developers who have (significantly) contributed to a lot of successful projects
have a lot of experience and thus deliver high quality source code. Hence we
assign these developers with a high karma value.

The following information is required by our trustability metric in order to
calculate developer karma (and ultimately project trustability):

• A matrix M = (cd,p) with the number of contributions per contributor d to
a project p.

1See Chapter 5 for more information about the implementation of the proposed metric in a
proof-of-concept prototype CSE.

17
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This records how influential a developer is for a specific project and—
summed up—how active a developer is in general.

• A vector V = (vp) with user votes for software projects.
This signals the users’ trust in projects. Gallardo-Valencia et al. refer to user
votes as the number of “fellow users” [11].

We use collaborative filtering of both user votes and cross-project activity of
developers. For example, if a little-known project is written by developers who
have also contributed to a popular open source project, the little-known project
is considered to be as trustable as the popular project. Since both the number
of contributions per contributor and the number of votes per project follow
a power-law distribution,2 we use log weighting and tf-idf 3 weighting where
applicable.

We define the karma Kd of a contributor as

Kd = wd

∑
P

cd,p ln(1 + vp) where wd =
ln(1 + pf(d))

pf(d)

which is the sum of the votes of all projects (vp), weighted by the number of
contributions to these projects (cd,p). We take the log of the user votes vp to limit
the dominating effect of few projects with a very high number of user votes.
The sum is weighted by wd of the contributor, which is the log of the project
frequency divided by the project frequency.4 The project frequency is the count of
the projects a certain developer contributed to. See Section 4.3 for an exemplary
calculation of the karma of a developer.

4.2 Project Trustability

We use the previously defined karma of the involved developers to assess a total
trustability of a certain project. Our trustability metric relies on the assumption
that contributing developers with high karma endorse trustable high quality
projects. Hence if a project has a lot of commits by developers who have a high
karma value we consider the project to have a high trustability. Based on this,
trustability Tp of a project is defined as

Tp =
∑
D

wd,pKd where wd,p =
ln(1 + cd,p)∑

d′∈D ln(1 + cd′,p)

2See Subsection 7.1.2 for more information on the power-law distribution of the user generated
data from Ohloh.

3“Term frequency-inverse document frequency” is a statistical measure used to evaluate how
important a ‘word’ is to a ‘document’ in a corpus. The importance increases proportionally with
the words appearances in the document but is counterbalanced by the frequency of the word in
the corpus. [13]

4In earlier versions of this work we used the inverse log of the project frequency as a weighting.
We observed that this still leads to a strong scattering of single results and therefore applied the
new weighting.
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which represents the sum of the karma of all the projects contributors(Kd),
weighted by the number of their contributions. Note that we divide project
trustability by the total number of contributions, but not contributor karma. This
is done on purpose, as contributors are more trustable the more they commit
(based on the assumption that all accepted commits require approval of a trusted
core developer, as is common in many open source projects) but projects are not
per se more trustable the larger they are.

To summarize, we consider a project to be trustable if there are significant con-
tributions by contributors who have also significantly contributed to projects
(including the project in question) that have received a high number of user
votes.

The proposed definition of trustability is dominated by cross-project contributors,
i.e., contributors who contributed many times to many projects with many votes.
This is in accordance with empirical findings on open source that have shown
how cross-project developers are a good indicator of project success [22]. This
behaviour is also known as “the rich get richer” in the theory of scale-free
networks and is considered an inherent and thus common property of most social
networks [6]. For an overview of the current ranges of karma and trustability
values please see Chapter 7.

4.3 A Toy Example

This section presents a toy example for the trustability metric over a base of 3
projects and 4 developers. We deliberately chose a few numbers to illustrate
some of the properties of the above presented metric. Table 4.1 and Table 4.2
show example base data for the calculation of a trustability metric.

Developer Foo Bar Qux
Alice 500 - 300
Bob 100 - -
Charlie - 50 300
Dave 50 250 -

Table 4.1: Example data: (cd,p) -
number of contributions
per developer Di to a
project Pj .

Project VP

Foo 10000
Bar 400
Qux 50

Table 4.2: Example data: (vp) - num-
ber of user votes per
project Pj .

4.3.1 Sample calculation

As a demonstration let us calculate the karma value of Alice.

KAlice =
ln(1 + pf(Alice))

pf(Alice)

∑
P

cAlice,p ln(1 + vp)
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A word on logarithms: In the formulas presented we used logarithmic func-
tions. What we are using is the natural logarithm ln to the base e. Logarithms
yield values of zero for x = 1 and are not defined for x = 0. To avoid problems
that could be raised by this—e.g., division by zero—we do the following: we
add one within each calculation of a ln(x), i.e., we calculate ln(x + 1). This
avoids zero values for projects with only one vote, for developers who only
worked on one project or for developers who only have a single commit in a
project.

As we can gather from the above table Alice has worked on 2 projects (project Foo
and project Qux), therefore her project frequency is 2.

pf(Alice) = 2

With the values from Table 4.1 and Table 4.2 we calculate the following karma
value for Alice. (Mind the above mentioned +1 operation for log parameters.)

KAlice =
ln(2 + 1)

2

(
ln(10000 + 1) ln(500 + 1) + ln(50 + 1) ln(300 + 1)

)
KAlice = 43.8

Karma for the other developers is calculated similarly.

KBob = 29.5 KCharlie = 25.3 KDave = 38.1

After assigning karma values to all developers we can calculate the trustability of
projects according to the metric presented in the last section. Here as an example
we calculate the trustability of the project Qux.

TQux =
∑
D

ln(1 + cd,Qux)∑
d′∈D ln(1 + cd′,Qux)

Kd

Using the example of the project Qux we enter the correct values and take the
sum over the developers Alice and Charlie:

TQux =
ln(300 + 1)

ln(300 + 1) + log(300 + 1)
43.8 +

ln(300 + 1)
ln(300 + 1) + ln(300 + 1)

25.3

TQux = 34.6

After processing all example data through the two functions for Kd and Tp we get
the trustability data. This gained trustability data consists of the karma values
for each developer and the trust value for each project; it is listed in Table 4.3 and
Table 4.4.
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Developer KD

Alice 43.8
Bob 29.5
Charlie 25.3
Dave 38.1

Table 4.3: Example trustability data:
The karma values for all
developers Di.

Project TP

Foo 37.8
Bar 32.8
Qux 34.6

Table 4.4: Example trustability data:
the trust values for all
projects Pj .

4.3.2 A few things to note

Let’s have a look at the data from the toy example and the results of the conducted
trustability calculation:

• Alice has the highest karma value. This comes mainly from the fact that she
contributed the biggest part of project Foo which is a very popular project:
it has 10,000 user votes.

• Although Charlie and Dave have about the same number of commits (350
vs. 400) Dave has a much higher karma value. This results from the fact that
Dave made the biggest part of his contributions to a moderately successful
project (project Bar; 400 votes), where as Charlie contributed mainly to
project Qux which is less successful (50 votes).

• Project Qux has a higher trust value than project Bar although it is not as
successful. (It has only 50 user votes compared to the 400 votes of project
Qux.) This is because a significant part of project Qux—300 out of the total
of 600 commits—was developed by Alice who has a very high karma value.

• All projects Foo, Bar and Qux have trust values that are relatively close
to each other. This is because in the setup of this example there exists a
(comparatively) strong cross-project activity of developers.

4.4 Implementation and Evaluation

We created a proof-of-concept prototype called JBender which implements the
trustability metric Tp introduced in this chapter. Further details are in Chapter 5.
Chapter 7 covers results from an evaluation of JBender and the trustability metric
implemented therein.
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Chapter 5

JBender: A trustability enhanced
CSE

In this chapter we present our proof-of-concept prototype JBender. JBender is a
code search engine that provides code search over Java source code. It enhances
trustability of the search results delivered by additionally processing meta in-
formation and providing the user with a trustability estimate for each search
result.

5.1 Motivation

It is our aim that the user of a code search engine is provided with as much infor-
mation as possible with as little effort as necessary. Therefore JBender provides
the user with additional meta information along with the actual pieces of code
that were found for a query.

We have developed JBender as a code search engine which enriches code search
results with trustability information. To add to the information content of search
results we combine two main sources to form the JBender code search engine. On
the one hand there is the actual code base of the search engine over which an
index is created. On the other hand we have created a database of metadata for
the projects in the code base.

5.2 Jbender’s Architecture

This section will shortly describe the architecture of JBender. JBender creates a
searchable index over the code base and provides a code search over it. Its novelty
however lies in the underlying metadata which is linked to the projects in the
searchable code base - upon finding results from the latter JBender can supply the
meta information stored for the result’s originating project.

23
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Figure 5.1: Architecture of the JBender prototype. JBender enhances search results
from source code with a trustability estimate that is based on social
data collected from the Web 2.0 website Ohloh.

This meta information has its origin not in the source code over which the
index of JBender was created, but is collected from external sources and saved
in a metadata base alongside the source code index. See also Figure 5.1 for an
illustration.

5.2.1 The Bender core

The core of the JBender prototype—Bender—is a search engine written in Java. It
is an implementation of functionalities provided by the LUCENE1 framework and
provides the most basic functionalities a code search engine must provide. These
are:

• Parsing source code files to extract information.

• Analysing this information to create abstract ’documents’ to index.

• Creating an index with a term-document matrix.

• Searching an existing index and returning a selection of result documents.

The decision to use the Lucene framework was made on the basis of two main
reasons:

1Apache Lucene is a text search engine library written in Java. For further information refer to
http://lucene.apache.org/java/docs .

http://lucene.apache.org/java/docs
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Parsing Java Source Code It was our goal to create a CSE that was able to parse
and index Java source files. As the Lucene Framework is written entirely in Java
the core of our search engine could also be written in Java. Using Java as the
main programming language made it possible for us to use the Java compiler
available from Sun and Eclipse in order to parse Java source files to obtain an
AST.

Focus Result Enhancement We have put the focus of this thesis not on the
actual creation of the index’ search matrix and the algorithms to search therein,
but on the enhancement of search results. The Lucene Framework is a tool that
provided us with the needed functionality and let us concentrate on critical topics
of our search engine.

5.2.2 JBender’s metadatabase

Our source of meta data is the OHLOH2 project. Ohloh is a social networking
platform for open source software projects where projects (or rather their devel-
opers) can specify additional information. However, Ohloh does not allow users
to actually search through or interact with the source code; Ohloh is not a code
search engine. Ohloh provides user-contributed information on both open source
projects and their developers, composing valuable information for search users.
Users can vote for both projects and developers whether and how much they like
them by rating projects and giving “kudos” to certain developers. Furthermore
kudos are (automatically) given to developers who have worked for successful
projects, i.e. projects with large user bases. See Section 7.2 for a more detailed
discussion of Ohloh’s rankings.

For the JBender prototype we collected the trustability meta-information from
Ohloh, which provides user-contributed information on both open source projects
and their developers.

Metadata stored in the database includes (among others):3

• Description of original project

• Project homepage

• Rating of the project

• List of current repositories (type, url, ...)

• Licenses of files in the project

• Employed programming languages (lines of code, comment ratio, ...)

• The project’s users and developers who worked on the project (kudos,
commits per project, ...).

2Find the Ohloh project at http://www.ohloh.net .
3You can find a full list of the stored metadata in Appendix B.

http://www.ohloh.net
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The above listed data is collected on a per-project basis. This allows for better
information density when seen from a trustability point of view: comparing users
or ratings would hardly be possible on a per-file basis. There are some problems
however that arise through generalisation of project information to single files
that are discussed in Subsection 7.3.2.

The amount of data collected per project can be quite extensive. In order not
to clutter the user interface by providing too much information we limited the
actually visible part of the metadata to a small but important subset. Currently
the JBender interface displays

• the trust value calculated by our metric;

• the number of users the project has; and

• the numer of developers who worked on the project.

It would be conceivable that in a future version of JBender the user could cus-
tomize the amount of data presented to him and/or the way it is arranged in
the GUI. This would give the user more freedom and he could adapt the search
engine to his personal needs.

5.2.3 JBenders’s codebase

In addition to the collected metadata, JBender also follows the links to the version
control repositories that are listed on Ohloh. For all accessible repositories JBender
creates full copies in the form of local Git repositories. The source code files in
these local repositories are then parsed and a searchable index is created over
them.4

JBender then provides a basic structured code search over various parts of the
indexed source code. Examples are method and class names or their bodies,
comments, component visibility, dependencies and implemented interfaces. For
a full list of the indexed fields in JBender’s index see Appendix A.

At the time of writing the code base of JBender contains more than 200,000 source
code files and a total number of over 3.5 million indexed terms. Through further
crawling of the projects listed on Ohloh the number of source files could be
increased at least ten-fold.

5.3 Trustability enhanced Results

The results given by JBender present additional meta information alongside the
source code. Furthermore each result is measured by our trustability metric and

4JBender only downloads and parses Java source code. We decided to use Java projects because
they are numerous and the source code—Java being a statically typed language—is easy to parse.
Naturally it would be desirable for a code search engine to ’speak’ any possible programing
language. However this would not have been feasible for our prototype and would not have
promised much additional value on the subject of code trustability.
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Figure 5.2: Screenshot of a JBender search result with trustability estimate. On the
right there is the actual search result, with full name and code snippet.
On the left there is information about the originating project and the
trust value calculated by the trustability metric.

assigned a trustabilty value which is also displayed to the user.

The following data from Ohloh was directly used for the trustability metric:
as contributors we used the developers of the projects and as the number of
contributions we used the number of commits. As user votes we used the
number of developers who “stacked” a project, which is Ohloh’s terminology for
claiming to be an active user of a project. That is, we interpret “votes” as a user
expressing his trust in a project by ‘stacking’ it.

In our case, both users and contributors are open source developers. To be a
user, the developers must be registered on Ohloh and create an account. This
is not necessary for being a contributor, since that information is taken from
version control systems. If a user whose involvement as a developer was already
monitored via version control (e.g., as a commiter in SVN) registers on Ohloh,
he can ‘claim’ these existing commits as his own. The two accounts (the newly
registered one and the existing “contributor” account) are then merged.

As explained in Chapter 4 this trustability metric takes into account several of the
collected meta parameters and calculates a trust metric for each result according
to which the results can be sorted.

5.4 JBenders GUI

The layout of JBender’s search results is deliberately kept very simple and lucid
in order to be efficiently usable. It has been shown that efficient search requires
compact and well-arranged interfaces: interfaces which do not burden the user
with too much information or a complex information seeking process [16].

For future versions of JBender it would be desirable to enable the user to change
the default presentation of results, i.e., which metadata is shown and where it is
located in the GUI.

Figure 5.2 shows a screenshot of a single search result from JBender v1.0.0 as we
would present it to a user. On the right there is the actual search result, with full
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Figure 5.3: Screenshot of the current version of JBender used for research and de-
velopment. The areas in green (right column, metric chooser beneath
search area) are mainly for research and debugging purposes and
would not be implemented in a final application.

name and code snippet with highlighted occurrences of the search term. Further-
more it shows the entities name, implemented interfaces/extended superclass
and containing package. On the left hand side of the result is the trustability
information of the result’s originating project: number of users, number of devel-
opers, main license of the project and of course the metric assigned trust value.
Here the raw trust measurement is displayed as a floating point number to the
user. In a second version of JBender we included a ranked assessment that maps
the trustability to a scale from 0 to 10 to improve usability. (See Subsection 7.1.4
for more information on the trustability rankings.)

Figure 5.3 shows a screenshot of the current version of JBender we used for
research and development. At the top there is a familiar search mask for text
search, on the bottom are results for the executed query. The areas in green are
mainly for research and debugging purposes and would not be implemented in
a final application.



Chapter 6

RBender: Structured Search over
Dynamic Code

This chapter will discuss our work in creating a code search engine with the goal
of providing structured code search over source code of a dynamically typed
programming language. We found that dynamic languages can—and should—be
supported by code search engines via structured code search.

We see RBender as a first step to evaluate the feasibility of structured code search
over dynamic languages. Due to a shift in the focus of this thesis the project
RBender was put aside and never reached a running level.

6.1 Motivation

To our knowledge RBender is one of the first code search engines to actively
support a dynamic programming language: Ruby. Though there exist several
code search engines that have indices of Ruby source code, e.g., Koders1 and
Google Code Search2, none of those CSEs actively support to search within the
structure of the Ruby source code.

With RBender we tried to address this shortcoming: the aim of RBender was to
provide structured code search (see 3.2.2) through a code base of Ruby source
code.

6.2 Based on Bender / JBender

The RBender prototype is based on the same Bender core as the JBender prototype.
The parsing and analysing steps in the index creation chain were adapted to
process Ruby source code. Upon reaching a running version of RBender we

1http://www.koders.com
2http://www.google.com/codesearch
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planned to create a special GUI to allow for the structured functionality based
search we were pursuing with RBender.

6.3 Code Search over Dynamically Typed Languages

One of the main differences of dynamically to statically typed languages is the
lack of type annotations in the source code. This is an information shortfall that
can hardly be compensated. Type information of static languages presents very
valuable information that can be used for structured code search.3 When trying
to implement structured code search over dynamic languages one does not have
access to this information.

Nonetheless, there is still a very clear structure woven through source code:
although type information is missing, there still is structural information available
for classes, methods and modules.

6.3.1 Parsing Ruby source code

In order to get the information for structured code search we performed a static
analysis of the Ruby source code. For this the Ruby source code was parsed and
an AST (Abstract Syntax Tree) was created. This syntax tree was then processed
and the structural information about the code was extracted. To parse the Ruby
source code we looked at the parser contained in the JRuby project4. This parser
was used and expanded by at least two different projects: JRubyparser by Thomas
Enebo5 and RDT by Sommerlad et al. 6. We based our parsing of the Ruby source
code on the work of these two projects, concerning in particular the matter of
Ruby comments in the AST.

Searchable fields

When parsing the Ruby AST we wanted to create a logical model in the code
search engine’s index that provides a fine granularity in order to let the developer
search for code at a very low level, i.e., single classes or methods. To allow for
this and to account for the dynamic form of Ruby source code we decided to let
the user search for logical entities of the following kinds:

File, Module, Class, Method

For each entity that is parsed from the AST and saved in the index various
fields are searchable. Lucene supports logic searches over multiple fields so that
multiple specifications for fields can be combined. Some examples for searchable
fields are:

3More on structured code search in 3.2.2.
4A pure Java implementation of the Ruby programming language — http://jruby.org
5JRubyparser — http://kenai.com/projects/jruby-parser
6Refactoring for Ruby Development Tool [8] — http://r2.ifsoftware.ch/trac

http://jruby.org
http://kenai.com/projects/jruby-parser
http://r2.ifsoftware.ch/trac
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• the entity’s name

• the whole source code

• the entity’s attached comments

• the body of the entitiy

• the parent entities

• the entity’s dependencies (include, require, load)

Static analysis of dynamic code

Currently dynamically typed languages like Ruby or Python still lack powerful
static analysis tools as they exist for mainstream statically typed languages like
Java or C++. This makes it a lot harder to provide structured code search.

The static analysis of Ruby source code we performed provides results upon
which one could base structured code search. However there is of course still
a lot of space for improvement. A better static analysis of Ruby code could
for example work with type inference to compensate (partially) for the missing
type information. Use of analysis tools that are in development for Ruby would
possibly be of great help here. An example is DiamondBack Ruby7, which
provides type checking through type inference for Ruby 1.8 [1, 10].

In order to maximise the information extracted from dynamic source code like
Ruby it would furthermore be advisable though to use some sort of flow analysis
as well. One of the easy ways to achieve this would be by implementing unit
testing in search queries. (See 3.2.2 for more information on unit testing as a sort
of query formulation.) RSpec for example is a tool for unit testing in Ruby and
an implementation thereof can promise results that are similar to the unit test
approaches implemented for Java source indexes (e.g., Merobase, S6).

6.4 Discussion of RBender

Parsing Ruby source code is a challenge for a developer. The subject of static or
dynamic analysis of dynamically typed programming languages is its own field
of research and we can not cover it in full extent. During the development of
RBender several problems came up; there are two issues we would like to point
out here.

6.4.1 Comments in Ruby

Source code comments constitute structural information that is very valuable for
use by search engines. It is therefore desirable to collect all comments, if possible

7DiamondBack Ruby — http://www.cs.umd.edu/projects/PL/druby/

http://www.cs.umd.edu/projects/PL/druby/
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with their respective affiliation (e.g., class or method). This task is not easy to
tackle: in Ruby comments can appear almost everywhere in the source code and
therefore at almost every possible level within the AST. Also there is no clear way
to assign a comment to a specific logical element like a method or a class like
there is for example with Javadoc in Java. Although there are conventions8 those
are not a firm base whereupon one can base interpretation for all Ruby comments.
Comments written by different people may have different intent and therefore a
different meaning.

6.4.2 Dynamic definitions

Ruby allows the user to make dynamic class or method definitions at runtime.
Consider the following snippet of Ruby code:

if bool
class Foo
def bar

puts 'Foo says hello!'
end

end
else

class Foo
def bar

puts 'Foo says goodbye!'
end

end
end

Foo.new.bar

In the above shown example of a dynamic definition a class Foo is defined. The
definition depends upon the runtime value of the variable bool. Consequently
the method bar behaves differently depending on which definition was actu-
ally made. After a static evaluation it is not easily possible to predict what the
call in the last line actually ‘puts’. Such definitions are difficult to handle for
a static analysis tool and therefore also for a search engine: does the class dis-
played in a search result really work as expected or does it possibly change its
behaviour?

These two mentioned examples—erratic comments and dynamic definitions—
show structures that are hard to accommodate: they call for a very flexible
interpretation of the Ruby AST. The analysis of Ruby source code with the goal
of enabling structured code search should be as sophisticated and fine-grained
as possible. Only through this can the search engine use the full potential of the
structural information provided by the source code and, eventually, provide a
better search. The current implementation in RBender is simple but a first step in

8Example: RSpec9—a unit testing framework for Ruby—interprets comments preceding
methods/classes directly as method/class comments respectively. A newline between the comment
and the method/class breaks this link though.

9RSpec project: http://rspec.info

http://rspec.info
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this direction. To further improve the extraction of information from the source
code and therewith the structured search, it would be desirable to include some
of the Ruby static analysis tools that are in development at the moment (for
example Diamondback Ruby).
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Chapter 7

Evaluation

7.1 Attributes of the proposed Trustability Function

This section discusses attributes of the trustability metric we introduced in Chap-
ter 4. We are discussing the metric function coupled with the raw data derived
from Ohloh. Therefore we need to specify certain terms more clearly: as described
in Chapter 5 we used the “stacked users” from Ohloh as our interpretation of
user votes vp in the calculation of Tp. We therefore use the two terms users and
user votes synonymous in this chapter.

7.1.1 Stability

The trustability function we proposed provides a metric that is stable over time
i.e., over updates of the source code and the metadata sets concerning the source
code.1 Among other things, this is due to the fact that we calculated trustability
on a per-project basis; this greatly increases the amount of information that
goes into the calculation of the trustability for a single search result. A bigger
amount of data allows for changes in the project’s developing team, changes
in user numbers and changes in the portfolio of involved developers without
fundamentally changing the trust value calculated by the proposed metric.

Stability is an important attribute a metric must offer for code search users. As
the trustability function provides the user with an abstract number, the user
will need some time to get accustomed to it. It is then of course vital that the
significance of that number stay the same over time and does not change too
abruptly without good reason.

1This does not mean that trustability of a project does not change at all. The trustability of a
project does for example change when new developers with high karma start contributing to it.
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7.1.2 Power law distribution

We found that our input data (i.e., the user-generated data that we crawled from
Ohloh) follows a power law distribution: these are the number of votes per project
(r = 0.95157), the number of commits per developer per project (r = 0.89207),
as well as the number of projects per developer (r = 0.85029). Therefore we
applied log and tf-idf weighting so that the trustability metric is not dominated
by high values. At the moment project trust values calculated by the trustability
function Tp range from zero to about 52, developer karma ranges from zero to
about 72. In Section C.1 the reader can find graphs illustrating the distributions
of the raw data we collected from Ohloh. In Section C.2 there are graphs showing
the distribution of karma and trustability values we calculated based on the raw
data from Ohloh.

7.1.3 Some top results

Table 7.1 illustrates the top ten results from the project ranking by our trustability
metric. These are the ‘most trustable’ projects according to our metric. The
trustability of a project does not simply correspond directly to its number of users
(votes). ‘grepWin’ for example has only 32 user votes on Ohloh but is ranked
by us with top trustability. This is because the developers of grepWin are very
active in other projects and have a high karma value thus making the project
trustable.

Top projects (by trustability) trust value (Tp) no. of votes (vp)
grepWin 51.6 32
GNU Diff Utilities 51.18 645
Eclipse Ant Plugin 49.76 136
Eclipse Java Development Tools 48.36 647
Crimson 42.41 2
GNU binutils 42.18 525
syrep 42.12 2
GNU M4 41.85 54
gzip 41.61 261
Forgotten Edge OpenZIS 40.86 1

Table 7.1: Top projects by trustability. Also indicated is the number of votes of
the project.

Table 7.2 shows the top ten developers by karma. Manual verification determined
those are all developers who ‘deserve’ high karma rank: they have high numbers
of commits to many very successful open source projects and are generally in-
volved in their development for several years. The user ‘darins’ for example is
one of the key developers for the Eclipse Project. His involvement is registered
since 2001 with about 8000 commits for the core project and thousands of more
commits to popular Eclipse plugins like JDT or Eclipse Ant. ‘amodra’ is a devel-
oper working with major contributions at GNU binutils and the Gnu Compiler
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Collection.

Top developers (by karma) karma value (Kd)
darins 71.97
amodra 70.11
darin 69.09
nickc 67.14
Dani Megert 66.51
mlaurent 66.14
Paul Eggert 65.89
kazu 65.78
rth 65.25
hjl 65.04

Table 7.2: Top developers by karma. (See Section 4.1)

7.1.4 Ranking by trustability

The first trustability metric we implemented and tested on JBender was the plain
trustability function presented in Chapter 4. This function is an unbounded con-
tinuous metric. Figure 7.1 shows the distribution of the trustability values.

Figure 7.1: Ranking 1, representing the continuous trust values calculated by Tp.
We can read from this graph that about 1900 out of 3700 projects have
a trust value lower than 10.

After conducting a small selective survey we quickly observed that the bare
numeric values assigned by our trustability function leave the user at a loss about
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their meaning. Although the user could be provided with the present range in
which the trust values lie,2 this range is very likely to change with updates of
project meta data. Table 7.1 shows the top ten projects by trustability. If one
considers only the indicated trust values Tp it is not intuitively clear if those are
trustable projects or not. Concerning the fact that the table is showing the top ten
projects this should be the case!

This calls for a trustability ranking that is stable over time—i.e., over metadata
updates, addition of further projects or similar changes—and that gives the user
an easier way to compare search results against each other.

Discrete ranking

We decided to use a discrete ranking that is a strict weak ordering on the range
from zero to ten: each project gets assigned a trustability level from zero to ten,
zero meaning not trustable (i.e., no trustability related information is available),
ten meaning the project is very trustable (i.e., a large number of good and active
developers worked on the project).

This presents the user with a far clearer picture on how to classify a project when
presented the trust value: the examples from Table 7.1 get assigned trustability
rank 10 (being the top ten results from about 3700). On the given scale from one
to ten, this obviously means that the projects are quite trustable.

The current version of the JBender prototype has access to three different kinds of
project trustability rankings:

• Ranking 1 is the original ranking calculated by the trust metric Tp.

• Ranking 2 is a discrete ranking from 0 to 10 whose levels are uniformly
distributed over the 3700 projects, i.e., with about 336 projects per level.3

• Ranking 3 is a discrete ranking where the calculated trust value Tp is nor-
malized to the range 0–10.

The second listed ranking is problematic because there are equal numbers of
projects for each level of trustability (0 through 10). This probably does not repre-
sent the user’s understanding of how project trustability should be distributed:
a distribution where the very trustable (10) projects appear less likely than the
moderately trustable ones (5) seems more intuitive. Figure 7.2 shows a graph of
the trust level distribution over all projects (sorted by trustability) for ranking
2.

The third listed ranking meets this above-mentioned concern: the discrete values
are distributed as the original values by Tp, therefore the higher levels of trusta-
bility are less likely to occur. This however has the disadvantage that only very
few projects out of the 3700 get assigned high levels: only 55 projects reach level
7 or higher, the majority lies within the range of 1–3. Figure 7.3 shows a graph of

2At the time of writing project trustability ranges from 0 to about 51.
33700 projects, 11 levels (0 through 10)→ 3700/11 ≈ 336 projects per level.
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Figure 7.2: Ranking 2, uniformly distributed trust levels. On each level there are
equal numbers of projects.

the trust level distribution over all projects (sorted by trustability) for ranking
3.

Presently the user of JBender can choose which ranking should be applied for
a search, i.e., what the distribution of the trustability values should look like.
This option to choose the ranking is a choice that we would not want to impose
upon the user in a final search engine. We put it in JBender though because
this is a choice that we have not finally made ourselves. The projection of the
calculated values Tp to the levels 0 to 10 is directly responsible for the distribution
of the trustability values finally presented to the user. Figure 7.4 shows the three
rankings in one graph for comparison. It is desirable that the distribution of the
values presented corresponds with the user’s intuitive understanding of how
trustability of projects is distributed. This topic needs further research to study
how this distribution should look like. Only after this a decision upon the sort of
distribution of the trustability values should be made.

7.2 A Comment on Ohloh’s Rankings

Our implementation of the introduced trustability metric in JBender is based on
metadata crawled from Ohloh. As Ohloh already provides several rankings of its
own it is nessesary that we discuss these here. We also explain why we did not
use Ohloh’s rankings directly to assess code trustability.
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Figure 7.3: Ranking 3, discrete trust levels normalized to the range 0–10. More
than 90% of projects have a trust level of 4 or below.

7.2.1 Developer ranking

The Ohloh website provides its own measurement of developer “karma”, called
kudo-rank. Kudo-ranks are based on a mix of user votes for projects and of user
votes for developers, called kudos. The exact calculation is not disclosed by Ohloh,
though one can extract some information from their homepage.4 Developers get
a high kudo rank through

• getting kudos from other developers on Ohloh, and

• through commits they made to successful projects listed on Ohloh.

Successful here means the project got “stacked” by users many times. This corre-
sponds to a degree with our karma calculation proposed in Section 4.1.5 However
user participation for kudos is very low on Ohloh and therefore weighted strongly.
As a consequence, a small clique of developers can vote itself up to top kudo
ranks, independent of their contributions to any project. Therefore, we decided
against including kudo-ranks from Ohloh in our trustability function.

4http://www.ohloh.net/about/kudos
5“Stacked” is Ohloh’s term for a user adding himself as an active user of a project. In our

implementation of the trustability metric in Chapter 4 this is interpreted as a user vote.

http://www.ohloh.net/about/kudos


7.3. JBENDER PROTOTYPE 41

Figure 7.4: Ranking 1 (continuous), 2 and 3 (discrete) for comparison.

7.2.2 Project ranking

Ohloh also provides a ranking of projects for its search mechanism. By default
projects are sorted by user votes. Table 7.3 shows the top ten projects listed by
Ohloh. One can notice that those are all very popular and successful open source
projects. Basically this could be understood as a very first simple assessment
of trustability. It does not however take into account cross-project activity of
developers and is therefore less accurate and easier to tamper with. Also the
pure success of a single project must not necessarily correspond with good and
trustable source code of this project.6

7.3 JBender Prototype

In this section the JBender prototype and some of its features are discussed.
JBender was designed as a proof-of-concept prototype. We used it to implement
the trustability metric we proposed and to study first results. If JBender were to
become a productive project the performance and the size of the codebase and
metadatabase would have to be improved.

6In Ohloh’s defense we want to add that the ranking of projects never was intended for the
purposes of the proposed trustability ranking.
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Top projects (by votes) no. of votes (vp)
firefox 7207
subversion 5687
apache 5107
mysql 4834
php 4081
openoffice 3118
firebug 3109
gcc 2586
putty 2519
phpmyadmin 2412

Table 7.3: Top projects by votes as ranked by Ohloh. (As of 2009-12)

7.3.1 Evaluation in user study

We see the JBender prototype as a first step into the right direction: to take into
account human and social factors when deciding upon the value of code search
results. We have not conducted a user study to evaluate JBender’s contribution.
For one, the tool was not designed to be in actual productive use. It would take
some time to ‘round off the edges’ and really make JBender fast and easily usable
to the broad public. Secondly, designing the user study would itself demand
careful preparation: How does one measure the user’s trust in the results he is
presented with? How does one measure the advantage a user gets when he is
provided with additional trustability information? These would be interesting
topics for further research.

7.3.2 Limitations of per-project information gathering

The metadata we collect for JBender’s metadatabase is collected on a per-project
basis. For example, we collect the description of projects, the URL of the project
homepage and which developers worked on a project. Collecting data in this
way has both advantages and disadvantages compared to data collection on a
per-file basis.

Collecting metadata for whole projects instead of single files allows for better
information density when seen from a trustability point of view. A lot of the data
we used to assess result trustability was manually specified by users of Ohloh
or deduced from such data. Relying on this data is possible for whole projects.
It is not sensible though to expect similar user contributions for single files of
source code. Consequently, comparing user votes or ratings would hardly be
possible on a per-file basis. Moreover, the calculation of a trustability metric
on a single-file basis would have to pay special attention in order not to be too
dependent on single outstanding developers. To correctly measure the impact of
the few different developers on certain areas of source code and to compare it
with their overall trustworthiness (“karma”), one would have to dive deep into
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repository mining topics. This could be a promising field for future work but
goes beyond the scope of this work.

On the other hand there is information that should be collected for each file. First
and foremost this would be the license under which a specific file was published.
JBender has at this point only knowledge of the license(s) used for a whole source
project. This can pose a problem when a project uses more than one license for
seperate files/sub-projects: Assigning the correct license to a certain file is not
easy. It is not trivial for a CSE, to get licenses on a file-basis. License headers
within files are only a convention and may be missing sometimes or licenses may
be specified ambiguously for projects within projects etc..

7.3.3 Performance

Performance is a key attribute for search engines. JBender, though, is only a
proof-of-concept prototype, therefore we did not pursue this subject. The search
in the source code index of JBender via the Bender core is reasonably fast: to search
through more than 200.000 source files JBender takes about 100–200 milliseconds.
The access to the metadata on the other hand is rather slow. Metadata is saved
in the form of .json files which are parsed at run-time. This results in access
times of around 800 milliseconds. This value depends linearly on the number
of developers and users within JBender’s metadatabase. In a productive version
the performance could be improved by storing the metadata in a fast relational
database.
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Chapter 8

Conclusion

In this thesis we have presented an approach to improve the trustability of search
results. Trustability of search results is important, for developers to quickly assess
search results from external code bases before integrating them into their local
code base.

Our aim is that the developer gains a quick estimate of code trustability in his
results. We therefore created a trustability function, that calculates a trust value
for each originating project depending on the project’s meta data. This trust
value is an indication of the project’s quality, its popularity and the quality of
its source code. Upon reaching a sufficient size of source code and metadata
index, it would also be feasible to sort search results according to their trust
value. As result relevance is paramount, the trustability metric would then be
used to choose from a pool of relevant search results. Under the premise that all
results comply with the user’s technical specification, this would provide the
user working results of the best quality.

We have proposed Tp as a trustability metric for software projects. The proposed
metric uses collaborative filtering of user votes and cross-project involvement of
developers. The trustability of projects is assessed and each project is assigned a
trust value.

We also have presented JBender, a proof-of-concept prototype code search engine
that implements the introduced trustability metric. It allows developers to quickly
assess the trustability of search results presented to them. We have discussed the
choice of our trustability metric and presented preliminary results from a first
evaluation.

In this thesis we also discussed findings from our work on a second prototype,
RBender. RBender is a search engine that parses a dynamically typed programming
language—Ruby—and provides a structured search over it. The RBender project
was a first evaluation of the feasibility of structured search on dynamic code—it
did not reach a running level.
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8.1 What is missing?

JBender was designed as a proof-of-concept prototype—for it to be a useful pro-
ductive tool some changes and improvements would have to be made. The
source code and metadata base of JBender should be increased by crawling more
data from Ohloh and possibly other sources. The performance of JBender should
be improved to provide the user a fast and easy to use search engine. Improve-
ment of performance would mainly be important in the web front end and for
the storage (and access) of the metadata. A final decision would have to be made
upon the trustability ranking: which of the presented rankings is to be applied
and how is it presented to the user? Furthermore the usability of the structured
code search by JBender should be improved to catch up with state-of-the-art code
search engines.

8.2 Future Work

The current trustability metric is defined per project because the trustability data
is collected on a per-project base. We would like to combine this data with file-
base data, e.g., with code ownership data from project history. This would make
it possible to assess the trustability of single classes (or even methods) based on
developer’s karma.

JBender is our first cut on the subject of trustability enhanced code search engines.
It would be interesting to conduct an extensive user study to see how users work
when provided with trustability data and to see if this makes their searches more
efficient.

It would also be of interest to do empirical studies on what mental model users
have of the trustability of source code. What makes source code trustable,
what makes it untrustable? How is trustability distributed over many files/pro-
jects?

We would also like to compare the proposed trustability metric with other trusta-
bility measurements. It might also be promising to combine the proposed trusta-
bility metric, which is currently based on human factors only, with technical
trustability assessments such as, e.g., test coverage.

RBender, a code search engine providing structured search over dynamic code,
never saw the light of the day. Dynamically typed languages are suitable for
structured search, they do however pose a challenge to code search engine devel-
opers and researchers. It might be promising to work with some of the dynamic
and static analysis tools that are currently under development to increase the
information gathered from dynamic code.



Appendix A

A.1 JBender’s Source Code Index

A.1.1 Stored Fields (not indexed)

Field Name Description
FILE NAME Name of the source file.
FILE PATH Path to the file (e.g. for download).
FILE INDEX TIMESTAMP Time of indexing.
FILE SIZE Size of the file in byte.
FILE LOC Number of lines of code in the file.

Table A.1: Stored fields in JBender’s source code index. These are provided with
results but cannot be searched.
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A.1.2 Searchable Fields (indexed)

Field Name Description
COMPLETE SRC CODE The complete source code con-

tained in a file.
COMPLETE JAVADOC The complete javadoc com-

ment code in a file.
PACKAGE The package information of

the source file.
IMPORTS All import statements of the

source file.
INTERFACES Any implemented interfaces

in this source file.
SUPERCLASSES All superclasses (from public

and private classes) extended
in this source file.

CLASS NAMES ALL Names of all classes (public
and private) in this source file.

METHOD NAMES ALL All method names defined in
this source file.

METHOD BODIES ALL All method bodies defined in
this source file.

METHOD NAMES PUBLIC Names of all public methods.
METHOD BODIES PUBLIC Bodies of all public methods.
METHOD NAMES PRIVATE Names of all private methods.
METHOD BODIES PRIVATE Bodies of all private methods.
METHOD NAMES PROTECTED Names of all protected meth-

ods.
METHOD BODIES PROTECTED Bodies of all protected meth-

ods.
METHOD NAMES STATIC Names of all static methods.
METHOD BODIES STATIC Bodies of all static methods.

Table A.2: Searchable fields in JBender’s source code index.
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A.1.3 Top Term Tokens for respective Terms

Complete Source Code Only javadoc comments
rank count term count term

1 167117 org 94711 org
2 141193 string 85625 copyright
3 120449 java 80681 http
4 113549 null 79810 implement
5 97434 util 79473 distribut
6 91164 c 79317 c
7 87530 http 78145 www
8 85751 copyright 75924 licens
9 80923 www 73093 right

10 80171 eclipse 72903 return
11 78333 object 72386 param
12 77658 v 72006 author
13 76195 license 71489 v
14 74144 param 71392 public
15 73882 TRUE 71102 reserv
16 73522 implementation 69030 term
17 71931 author 68949 initi
18 71869 rights 68442 avail
19 71207 reserved 67888 contributor
20 69552 available 67549 materi

Table A.3: Top term tokens in complete source/complete javadoc.
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All Class Names Inherited Superclasses
rank count term count term

1 738 Messages 7381 TestCase
2 481 Activator 1371 EObjectImpl
3 335 AllTests 1290 Exception
4 154 Constants 945 Action
5 107 Main 923 NLS
6 101 Util 848 ItemProviderAdapter
7 88 Node 631 BaseTestCase
8 82 ParseException 605 JPanel
9 71 Base64 568 RuntimeException

10 67 Handler 534 BasicCursorTestCase
11 66 Utils 520 Thread
12 64 Attribute 506 AbstractUIPlugin
13 63 BookCategory 473 BaseCase
14 61 Location 430 EventObject
15 55 User 380 Composite
16 54 Connection 374 AbstractAction
17 52 ResourceLoader 318 Dialog
18 52 Token 314 ServerBasePacket
19 50 Test 301 Plugin
20 49 Client 292 WizardPage

Table A.4: Top term tokens for class names/superclasses.
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Import Statements Implemented Interfaces
rank count term count term

1 902 java.io.Serializable 2014 Serializable
2 895 org.eclipse.osgi.util.NLS 1353 java.io.Serializable
3 606 org.eclipse.emf.ecore.EObject 1313 Runnable
4 598 junit.framework.TestCase 1287 IEditingDomainItemProvider
5 591 java.util.List 1236 EObject
6 542 java.util.* 450 Comparator
7 491 java.io.IOException 435 EventListener
8 425 junit.framework.Test

junit.framework.TestSuite
414 Cloneable

9 387 java.io.* 400 XmlAnySimpleType
10 378 java.util.Map 345 BundleActivator
11 344 org.eclipse.emf.common.util.EList

org.eclipse.emf.ecore.EObject
319 Comparable

12 318 java.util.EventListener 302 ActionListener
13 254 java.util.ArrayList

java.util.List
242 EFactory

14 237 org.eclipse.emf.ecore.EFactory 241 EPackage
15 227 javax.xml.namespace.QName 233 Runnable Runnable
16 226 java.util.EventObject 222 Command
17 221 java.util.ArrayList 202 XMLEvent
18 219 java.util.Iterator 187 IWorkbenchPreferencePage
19 218 javax.xml.stream.XMLStreamReader170 Enumerator
20 182 java.io.File 170 ITreeContentProvider

Table A.5: Top term tokens for imports/interfaces.



52 APPENDIX A.



Appendix B

B.1 JBender’s Metadata Base

B.1.1 Information stored per project

• The project’s full name

• Description of original project

• Project homepage

• A list of descriptive tags assigned by Ohloh

• Ohloh’s rating of the project

• Enlisted repositories

– Type of repository (GIT, SVN, CSV, ...)

– URL

– Time of last access by Ohloh

– Path within the URL

• Licenses

– Exact type of license

– No. of files with that license in the project
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• Employed programming languages

– Name of language

– Total lines of code

– No. of source lines

– No. of comment lines

– No. of blank lines

• List of all developers of the project

– Name and ID of developer

– Kudo rank of developer

– No. of commits

– Programming language of commit

• List of all users of the project

– Name and ID of user

– Kudo rank of user

– Stack size



Appendix C

C.1 Raw Data from Ohloh

Figure C.1: Distribution of the number of projects developers are involved in, i.e.,
have committed to.
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Figure C.2: Distribution of the number of commits per developer per project.

Figure C.3: Distribution of the number of user votes per project.
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C.2 Metadata based on Ohloh

Figure C.4: Distribution of karma values Kd of developers.

Figure C.5: Distribution of trustability values Tp of projects.
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