
Scripting Diagrams with EyeSee

Matthias Junker, Markus Hofstetter
Software Composition Group

University of Bern, Switzerland

June 1, 2007

Abstract

Presenting numbers in the right way is crucial for understanding their
meaning. However, many existing diagram drawing tools do not make
understanding the numbers as easy as it could be. They often insert too
many visual distractions or require a fixed input format. EyeSee is a
model-independent diagram drawing engine that allows for programmatic
specification of the presentation, while offering default values that produce
uncluttered diagrams. As a validation, we demonstrate the simplicity to
create well-known diagrams.

1

Contents

1 Introduction 3
1.1 Document structure . 4

2 EyeSee by Example 5

3 EyeSee Internals 9
3.1 Decorators. 11

4 EyeSee Validation 13
4.1 Horizontal Bar Diagram . 13
4.2 Vertical Bar Diagram . 13
4.3 Composite Diagrams . 13
4.4 Deviation Diagram . 15
4.5 Scatterplot . 16
4.6 Line Diagram . 17
4.7 History Diagram . 19
4.8 Stack Diagram . 19
4.9 Range Diagram . 20

5 Field study and future work 22
5.1 MooseDen . 22
5.2 Interactivity . 23

6 Conclusion 24

7 Appendix 25
7.1 Quick Reference . 25
7.2 Availability . 27

2

1 Introduction

Presenting numbers is one of the most important practices in business and sci-
ence. Because much of our perception is dedicated to vision, it is often more
natural to extract the meaning of numbers from a well drawn picture than to
reason about the numbers themselves [3]. Diagrams and tables are powerful
tools to help people understand the patterns, relationships and trends in num-
bers. They exploit human’s ability to recognize patterns and the capability of
extracting a lot of information in a short period of time from familiar visualiza-
tions.

However, reading and understanding diagrams is not always as easy as it could
be. If the important data is distracted by too many unnecessary visual elements,
it can be hard to get the numbers. Edward Tufte and Stephen Few wrote books
about this topic, giving advice on creating accurate diagrams [1, 2]. They
suggest general rules which should be applied in every kind of diagram and also
provide examples for the most common kind of diagrams. The most important
suggested rule is: Reduce Chart Junk and Maximize Data Ink [2].

This means that a good diagram should eliminate chart chunk like dominant
background colors or fancy 3D effects that do not convey actual information.

With EyeSee, we want to introduce a diagram drawing engine which provides a
solution for the following aspects:

Flexibility. EyeSee does not require the data to be passed in a fixed format.
The user can specify programmatically how to extract the data, which gives
him the freedom to accommodate any data model he is using.

Scriptable. Maybe the user does not know from the beginning which type of
diagram is the most suitable for his data or he is not satisfied with the look of
the automatically generated visualization. This is why he should be allowed to
change the parameters of the diagrams with little effort. For this purpose we
provide scripting methods, with which you can change most of the properties
of a diagram (e.g., the color of the elements, the type of axis, the size etc). Our
goal is to generate the diagrams in a way, so the user does not have to script
anything but still can, if he chooses to.

3

Defaults. The line diagram on the left side was generated by the diagram
wizard of Excel while the one on the right was created by EyeSee. With EyeSee
we implemented a diagram engine that aims to produce uncluttered diagrams
by default, so that the user does not have to change the default values to get a
result that focuses on the data.

1.1 Document structure

In Chapter 2 we give an example of how the user can script a diagram with
EyeSee.

In Chapter 3 we present the internals of EyeSee and talk about some of the
issues we had to solve.

In Chapter 4 we validate EyeSee by showing how to create various established
diagrams.

In Chapter 5 we give an outlook on the directions we plan to go with Eye-
See.

In Chapter 6 we recapitulate the problem and explain how we tried to solve it
with EyeSee.

4

2 EyeSee by Example

In this section we show the basic facilities of EyeSee using hands-on examples.
For building a model, we require data, which we extract from a model. This
is in most cases a collection of objects, which contain the data. Our model in
this example is a collection called contributors containing the contributors to a
certain project, as obtained from a versioning system. A contributor has the
attributes name, number of commits, lines of code, team and versions.

Basic Diagram. In our first example we want to create a vertical bar diagram
which shows us the commit activity of all developers. By providing a block or a
symbol which represents a selector, we tell EyeSee how to extract the data from
a contributor which will be used for the height of the corresponding bar.

diag := DiagramRenderer new.
(diag verticalBarDiagram)

y: #numberOfCommits;
models: contributors.

diag open

Axis and Labels. As we see, it is a vertical bar diagram, but it is still useless
because we cannot see which bar is from which contributor, and we cannot get
the actual values from the diagram. So we want to add some axis, and label
the bars with the name of the contributor. We can do this with two additional
lines:

diag := DiagramRenderer new.
(diag verticalBarDiagram)

y: #numberOfCommits;
regularAxis;
identifier: #name;
models: contributors.

diag open

regularAxis adds an axis with ticks and labels. ”Regular” means that the
distance between two ticks is constant. Instead, we could also use valueAxis,
which draws ticks only if there is a corresponding value in the diagram. This

5

can make it easier to tell at a glance where the majority of the values are located
in a diagram. To put a label below every bar, we can use identifier:. In our
example, we use the name of the contributor to identify the bars.

Color. If we want to encode another attribute in our diagram, we have this
possibility by coloring or shading the bars differently. In our example we want
to use different colors to show, who belongs to which team. By default, the
values for the color get encoded with shades of gray. By sending the message
codelightColors or strongColors, we can use a set of ten colors which are distinct
enough so they can be easily separated.

diag := DiagramRenderer new.
(diag verticalBarDiagram)

y: #numberOfCommits;
identifier: #name;
color: #team;
regularAxis;
models: contributors.

diag open

If we want to provide our own colors for the encoding, we can use useColors:.

diag := DiagramRenderer new.

6

(diag verticalBarDiagram)
identifier: #name;
y: #numberOfCommits;
color: #team;
useColors: #(#seaGreen #limeGreen #paleGreen);
regularAxis;
models: self model.

diag open

Size. To change the default size of diagrams, we can specify this width and
height. If there is not enough space for the identifiers to be displayed horizon-
tally, they automatically get rotated.

diag := DiagramRenderer new.
(diag verticalBarDiagram)

identifier: #name;
y: #numberOfCommits;
color: #team;
regularAxis;
width: 200;
height: 200;
models: self model.

diag open

7

Of course we can also configure to have them rotated manually by using the
setRotatedLabels message. Optionally you can also change the padding of the
diagram with xPadding: and yPadding:.

Grid lines. It is not always easy to estimate the values displayed in a diagram,
especially when the axis with the values are far away from the actual data
elements (e.g. bars). Putting a grid over the actual content is the usual approach
to that problem. But since we want to minimize non-data-ink, we adopted the
approach from Tufte [2]:

diag := DiagramRenderer new.
(diag verticalBarDiagram)

identifier: #name;
y: #numberOfCommits;
color: #team;
regularAxis;
gridLine;
models: self model.

diag open

8

3 EyeSee Internals

Wrapper, Decorator, Chain of Responsibility, UML,

Diagram. The AbstractDiagram class is the root of our diagram hierarchy. It
contains the model of the data and the logic that creates the painting of the
diagram. The model can be set using the models: message. We assume this
to be a collection of the model objects that the user is working with. To let
the diagram know how to extract the data from the model object we use the
y: (and in the case of a scatter plot which displays two properties also the x:)
message. The parameter is a block or a symbol representing a selector that,
when sent to one of the model objects will let it answer the relevant value. It
is mandatory to set those two attributes (or three in the case of a scatterplot)
if the user wants to create a meaningful diagram. For the other attributes of
the diagrams like width, line color or padding we provide reasonable default
values. Once this is done, we can call the setup method to properly initialize
the axis and the elements of a diagram. The elements of a diagram encapsulate
the graphical representation of the values with the corresponding model object.
For example an element in a bar diagram consists of a rectangleShape (the bar),
the color we want to draw this bar in and the model object that belongs to this
bar. If an element receives the displayOn: message, it simply forwards it to its
shape. The possibility to return the underlying model object allows for some
interactivity.

The DiagramRenderer class provides scripting methods to create our diagrams.
When it receives the open message it prepares the diagram for drawing by calling
its setup method. Then it opens a VisualizationUI containing the diagram.
VisualizationUI is a class that belongs to the CodeFoo package. It enhances our
visualization with a context menu that gives access to some of its features such
as exporting our diagrams to the .png format or zooming. It also comes with
a status bar that we use to show the name of the model object that belongs to
the figure that the mouse is hovering over. Since EyeSee is written in Smalltalk
it is also possible to inspect the model objects behind a figure at runtime by
choosing inspect in the context menu.

Scaling. There are three groups of instance variables that relate to the size of
a diagram; width/height, borders and padding. The user can adjust the overall
size by setting the width and height attributes. They determine the maximum
space that the diagram may occupy. EyeSee scales the diagram to fit in this
space. If the user wants a padding around his diagram he can specify an x- and
y padding that will create whitespace around the diagram.
The borders are calculated automatically. The border is the space EyeSee is us-
ing for things like the labels of the axis or identifiers (labels of bars). If there are
long identifiers EyeSee will assign more space to the border. For example if the
identifiers are month names fully typed out (instead of abbreviated) EyeSee will
widen the border a bit and the diagram itself will be drawn on a slightly smaller
space to ensure that the specified width and height will not be exceeded.

The size of padding, border and the diagram itself will add up to the extent

9

that is specified via width and height. This is useful if the user wants to create
a diagram of a certain size. All he has to do is set the width and height of the
diagram and specify the padding (if he wants padding).

Translation. An issue we encountered while creating EyeSee was that the
coordinate System of Smalltalk has its origin in the upper left corner of the
screen and its y axis grows downwards. To model the graphical representation
of our diagrams more naturally, we decided to change the coordinate system to
have a y axis that grows upwards. Also the origin is usually translated to the
origin of the diagram. To achieve this we implemented a wrapper for the class
GraphicsContext that is responsible for drawing in VisualWorks. Whenever the
displayOn: method of a diagram is called we wrap the graphicsContext that is
passed in our DiagramGraphicsContextWrapper before we draw anything. This
DiagramGraphicsContextWrapper transforms every shape or point that is about
to be drawn by the scale point and translation that it stores. Then it forwards
the translated shape to the GraphicsContext for drawing. Usually this means
that the y axis is inverted and that the origin is translated down by the height
of the diagram. However, the StackDiagram for example is created from top to
bottom and does not invert the y axis.

It is also possible to translate the axis by a different amount than the content
of a diagram. A typical use case for this is a VerticalBarDiagram that contains
negative values. In this case the x axis must be moved up to the zero on the y
axis. To allow for these multiple layers every diagram has a layerHolder that
stores the multiple wrappers. For every layer there is one wrapper (e.g., one
wrapper for the content and one for each axis). When drawing the diagram, we
change the active wrapper every time we draw a part of the diagram that has
its own layer.

displayOn:
color
values
start
end
moveBy
scaleFactor
minValue
maxValue

AbstractAxis

Axis

AxisDecorator

1

decoratedAxis

displayOn:
BaseLineDecorator

displayOn:
ValueTickDecorator

displayOn:
LabelDecorator

...

displayOn:
scaleAndTranslation
createAxis
createElements
setUp
width:
height:

Diagram

1..2
Object

1

model

10

Axis. The Axis class contains the collection of values that are relevant to this
axis (e.g. the y-axis of a horizontal bar diagram knows about the height of the
bars) and some other properties like the color. But an axis has no knowledge
of the other parts of the diagram (diagram and axis).

To allow for the axis of the diagrams to be displayed in various manners ac-
cording to the needs of the user, we implemented a decorator pattern. Every
axis can be wrapped in several decorators. The decorators and the axis are
subclasses of AbstractAxis and every decorator knows the axis/decorator it dec-
orates. If a decorator receives the displayOn: message it forwards it to the
axis/decorator and then displays itself. This leads to a chain of responsibility
where every decorator only draws the parts of the axis which it is responsible
for. We provide some basic decorators (e.g., RegularTickDecorator, ValueTick-
Decorator, LabelDecorator, BaseLineDecorator etc.) that can be composed by
the user.

The benefit of this pattern is that the displaying behavior of the axis can be
changed depending on the used decorators. For example we could show Ticks
on the Axis in regular intervals or by changing the decorator we could show
them only if there is a corresponding value in the diagram. This also allows for
extensibility because if there is a new idea on how the axis should be drawn
the only thing that needs to be done is the implementation of a decorator that
responds to the displayOn: message in the desired way.

Since it can get tedious to set up this ”chain” of decorators all the time to
create the standard looking axes that are used very often, we provide scripting
methods in the diagrams that will create them automatically.

3.1 Decorators.

This list introduces briefly all of the decorators we implemented and what they
will display.

• BaseLineDecorator : this is the most basic decorator. It simply draws a
straight line for the axis.

• RangeBaseLineDecorator : this draws a straight line from the minimum
Value of the axis to its maximum. This is useful to show the range of the
values.

• RangeLabelDecorator : displays the labels for the values at the maximum
and the minimum of an axis.

• FewBoxPlotBaseLineDecorator : displays the median, upper and lower
quartile and the range of the data on the axis as proposed by Few [1].
Those four important points on the axis are marked by slightly shifting
the line.

• BoxPlotBaseLineDecorator : does the same as the FewBoxPlotBaseLineDec-
orator but draws the box instead of only shifting the lines.

• BoxPlotLabelDecorator : draws four labels with the values at the points
that are emphasized by the box plot (i.e., max, min, median, upper and

11

lower quartile).

• IdentifierDecorator : responsible for drawing the identifiers of a diagram.

• ValueTickDecorator : draws a tick on the axis whenever there is a corre-
sponding value in the diagram. For example it will draw a tick at the
height of every bar when it is added to a VerticalBarDiagram.

• ValueLabelDecorator : draws a label for every value in the diagram just
like the ValueTickDecorator does for the ticks. If there are many values
close together, the labels would overlap when drawing every one of them.
To solve this issue the decorator checks if the labels would overlap before
drawing them. If this situation occurs on a x axis it rotates the labels by
90. If it occurs on a y axis it leaves out some of the labels to gain space.

• RegularTickDecorator : draws ticks on the axis that always have an equal
distance from each other. It divides the axis into intervals of the same
size.

• RegularLabelDecorator : most of the time this decorator is used in con-
junction with the RegularTickDecorator. It is smart enough to choose an
interval size that is a multiple of 5 and that gives the labels enough space
so that they do not overlap.

• RegularGridLineDecorator : this decorator draws a white line over the
whole width of a diagram wherever there is a regular tick on the y axis.
This is useful in bar diagrams because it makes it easier to estimate the
height of a bar.

• LabelDecorator : this draws the label of an axis (e.g., LOC ,NOM)

• StackedValueDecorator : this decorator is only used in the StackedBar-
Diagram to display its labels at the right position and with the correct
value.

We designed the axis to have very little information about their environment.
They do not know if there are any other axes or if they are at the top, bottom,
left or right side of a diagram. This becomes an issue when we want to draw the
labels. Depending on where the axis is they must be drawn in another direction.
The diagram knows where its axes are, so we could let it tell them, in which
direction the labels should be drawn. As you can see in the UML diagram of
the diagrams the position of the axis can change in any subclass. For example
RangeDiagram has its x-axis at the top while in VerticalBarDiagram it is at the
bottom. This makes it impossible to inherit the logic for the label positioning
from their common superclass (AbstractBarDiagram). On the other hand it
leads to duplicated code if we put the logic in every diagram since there are
only four places an axis can be in.

To solve this we implemented a strategy pattern. The logic for all four cases
is stored in separated classes (LeftAxisStrategy, BottomAxisStrategy, TopAxis-
Strategy and RightAxisStrategy) and the diagram plugs the correct strategy into
its axis by sending it the labelPointCalculationBlock: message with the correct
strategy as parameter.

12

4 EyeSee Validation

4.1 Horizontal Bar Diagram

Horizontal bar diagrams can be useful when the order of the bars is important
(for example if we have a rank order), or when the identifiers for the bars are
too long and we do not want them to be rotated. Taking the example from
section 2, all we have to do is change the diagram type and use the number of
commits for the x axis.

diag := DiagramRenderer new.
(diag horizontalBarDiagram)

identifier: #name;
x: #numberOfCommits;
color: #team;
regularAxis;
models: contributors.

diag open

4.2 Vertical Bar Diagram

The most common diagram is certainly the vertical bar diagram. In this kind
of diagram, quantitative information is represented by bars. These can be very
well distinguished because of their distinct visual appearance, making it easy
to compare them and also to focus on individual bars. The base of the bars
should always be zero. Even if a bar has a width and a length, only the length
carries meaning. The width should be the same for all bars [2]. Therefore,
inEyeSee, you can only define the y values as variable, the width of the bars
being a constant value. We have already seen the possibilities of bar diagrams in
EyeSee in section 2. Therefore, we want to put the focus on another possibility:
combining diagrams.

4.3 Composite Diagrams

A powerful option in EyeSee is that you can combine any kind of available
diagrams in one diagram. We are going to show this possibility with two vertical
bar diagrams, the first one being the example from section 2. Additionally, we

13

create another vertical bar diagram (Note that this could be any other diagram
too), which shows us how many lines of code each contributor has written. The
only difference is that we now do not have to create a DiagramRenderer, because
for now, we only need the diagram, and do not want to render it yet. We add
a title to each y axis with yAxisLabel: so we do not confuse them.

With gapFraction we can define, what the ratio between bar and gap is. We
want to change this value from its default, so the bars which represent the lines
of code are less broad than the ones representing the number of commits. Then
with rightYAxis, we tell EyeSee to move the axis from this diagram to the right
side. Otherwise, both axes would be on the same side. The next step is rather
optional. We chose to color the axes and bars in the same shade of gray. The
color from defaultColor: is used for the bars, while axisColor: is used for
everything which is related to the axis (e.g. labels, axis titles, base line). By
coloring the axes and bars with the same colors, we can at first glance see which
axis belongs to which set of bars.

diag1 := (VerticalBarDiagram new)
identifier: #name;
setRotatedLabels;
y: #numberOfCommits;
yAxisLabel: ’Commits’;
regularAxis;
models: contributors;
yourself.

diag2 := (VerticalBarDiagram new)
y: #loc;
yAxisLabel: ’LoC’;
regularAxis;
gapFraction: 2 / 3;
rightYAxis;
defaultColor: #lightGray;
axisColor: #lightGray;
models: contributors;
yourself.

What is left to do, is assembling the two diagrams. For this purpose, we have
to create a DiagramRender. Then, we add the two diagrams we created, and
finally set the size of the diagram. We could also set the size of the diagrams
when creating every one of them, but since they need to have the same size in
our example, we can define the size in the composite diagram, which does the
resizing for us.

compositeDiagram := DiagramRenderer new.
(compositeDiagram compositeDiagram)

addDiagram: diag1;
addDiagram: diag2;
height: 300;
width: 400.

compositeDiagram open

14

4.4 Deviation Diagram

Another kind of a bar diagram is the deviation diagram. The difference to a
normal bar diagram is that it does not show absolute values but the deviation
from a base value. We can script this kind of diagram in EyeSee by providing
this deviation value:

diag := DiagramRenderer new.
(diag deviationDiagram)

y: #loc;
identifier: #name;
deviationValue: 3000;
highlightAboveDeviation;
valueAxis;
models: contributors.

diag open

By default, all bars have the same color. However, we can choose to highlight
the values which are below the deviation line or the ones which exceed the line
with highlightBelowDeviation and highlightAboveDeciation. The coloring as

15

described of course only applies when we do not use the color: message to
color our bars. In this case, the former messages are useless. If we do not want
to display the deviation values absolutely but as percentage, we can instead use
the labelsInPercent method.

4.5 Scatterplot

Instead of having a composite of two vertical bar diagrams, there is the possi-
bility to visualize two attributes in one diagram with a scatterplot.

diag := DiagramRenderer new.
(diag scatterPlot)

y: #numberOfCommits;
x: #loc;
color: #team;
shape: #team;
mediumObjects;
valueAxis;
models: contributors.

diag open

Dot Shapes. Besides encoding the two attributes on the y and x axis, we also
encode the team of the contributors with the color: and shape:. If we do not
encode a third attribute, we can still change the default shape (circles, crosses
or rectangles). We can also define the size (mediumObjects, smallObjects or
bigObjects) and the drawing style of the shapes (by default filled). Changing
the drawing style to strokedShapes can be useful when a lot of points are close
together, making it hard to tell the actual count of points in some areas. In our
example, we can see this on the rectangles which overlap.

diag := DiagramRenderer new.
(diag scatterPlot)

y: #numberOfCommits;
x: #loc;
shape: #team;
mediumObjects;
strokedShapes;

16

boxPlotAxis;
models: contributors.

diag open

Alternative Axis. Another variation of axis is available with boxPlotAxis,
which provides as additional information the median, upper and lower quartile
and the maximum and minimum. A simpler version can be obtained with
rangeAxis, which only displays the maximum and minimum.

4.6 Line Diagram

Usually, line diagrams are used for showing mathematical functions or if we
want to display a set of data with continuous values whose order has meaning.
In our example, we want a line diagram which represents the change of lines of
code of a project. Instead of using a regular axis, we use a value axis. Notice
that when there are many values which are close in the diagram, not all the
labels get displayed, because they would overlap. Only the first value of a series
of close values is displayed as label. But even in this case the ticks are drawn
anyway so it is easy to tell if there is only one further value in the neighborhood
or if there a lot.

diag := DiagramRenderer new.
diag lineDiagram

y: #loc;
identifier: #versionNumber;
yAxisLabel: ’LoC’;
valueAxis;
defaultColor: #blue;
models: versions;
deviationValue:

((versions collect: #loc) average);
deviationDescription: ’average’;
axisMinY: (versions minValue: #loc).

diag open.

17

Deviation lines. These can be used to emphasize a certain value. In our
example it represents the average value of lines of code of all versions. The
problem is, that a mere number cannot express its meaning by itself. By adding
a description for the deviationLine, not the deviation value is displayed on
the right side of the line, but the description, and we can explicitly state our
intention of the deviation line.

Defining Range. Another issue is the minimum value on the y axis. For
bars we stated that they should always start at zero. This does not necessarily
have to be true for line diagrams. In our case, all values are between three
and five-thousand. This means we have a lot of white space when our diagram
starts at zero on the y axis. This can be avoided by setting the minimum value
with axisMinY:. We can alternatively also set the range of the axis with the
corresponding methods (axisMaxX:,...).

Mathematical Line. The line of the diagram does not start right at the y
axis, as you may have noticed. This approach is rather un-mathematical, but
is used when we want to compose a line diagram and a vertical bar diagram,
so that the points of the line are aligned with the bars. If we nevertheless want
the line to start at zero, we can use startLineAtZero.

18

4.7 History Diagram

The history diagram is an alternative to a line diagram with multiple lines with
the difference that the lines are not just drawn overlapping each other but are
stacked on top of each other.

In our example, we have a collection of projects (Alpha, Beta,...), each having
stored its history with the different versions. What we want to display is the
change of lines of code of the versions from all projects, so we can compare the
trends of the size of the projects with each other.

dataset: tells EyeSee which collections of values should be used for the different
lines (here: the collection of versions of the project), and y: then tells it how
the actual values displayed on the y axis can be resolved from these collections
(lines of code of each version). For the shading of the area below the lines, we
use the name of the project.

diag := DiagramRenderer new.
diag historyDiagram

dataset: #versions;
y: #linesOfCode;
regularAxis;
diagramTitle: ’Size of projects 2007’;
color: #projectName;
models: projects.

diag open.

4.8 Stack Diagram

Our eye is not very good at comparing areas, especially if they are not rectangu-
lar. So using pie charts is not a very good strategy to present data. Stephen Few

19

suggests instead another approach for part-to-whole graphs: Stack diagrams [1].
Even if bar diagrams are still a better way to display part-to-whole data, we
implemented this kind of diagram as a replacement for the pie chart.

diag := DiagramRenderer new.
(diag stackDiagram)

y: #impactOnSystem;
color: #name;
diagramTitle: ’Percentage of Participation’;
models: contributors.

diag open

Legends. The legend in the stacked bar diagrams is automatically put on
the right side of the diagram. The default placement of the legend can be
scripted in every kind of diagram which supports coloring with verticalLegend

or horizontalLegend.

4.9 Range Diagram

Assuming one wants to visualize the time period during which a contributor
has been active in a project, we do not have an accurate way to do this with
the previously presented diagrams. One solution to do this is using a range
diagram, which uses bars to show activity.

(diag rangeDiagram)
identifier: #name;
minX: #firstVersionTime;
maxX: #lastVersionTime;
labels: #asDate;
valueAxis;
models: contributors.

diag setup.

Because the bars do not start at zero, we have to provide two values for each
bar. In our example, we get the time in seconds of the first version a contributor

20

committed for the beginning of the bar, and the corresponding value of the last
version, and tell EyeSee to use these values with minX: and maxX:.

Formatting Labels. Let us assume that the point of time is provided by a
number of seconds since a determined point of time. If we use this number
of seconds for the labels on the axis, no human being could possibly get any
meaning from them. If we want to change the manner in which the labels are
displayed, we can use labels: to define a block how the labels get formatted.
In our example, we use this technique to change the provided label value in
seconds to a human-readable date.

21

5 Field study and future work

5.1 MooseDen

MooseDen is a Seaside project which among other things provides in the Moose-
Forge section information about different Smalltalk projects developed at the
University of Bern. To display the diagrams on websites, we use EyeSee’s ability
to export the diagrams as png images. The first idea was to visualize activity of
different projects in the past month. Because this diagram was supposed to be
placed within a table, the space available for the diagram was rather small. By
setting the padding to zero, and not adding any labels or axis, we made sure to
maximize the space used for the data. And instead of using a line diagram, we
used a history diagram with only one line.

The second application was to display the period of activity of the contributors
for each project. The solution was a range diagram.

22

5.2 Interactivity

To make the customization of diagrams a bit easier we plan to build a graphical
user interface for EyeSee. A benefit of this for the user is that he does not
have to memorize or look up the name of the scripting commands. Instead he
can change the parameters directly via sliders, checkboxes etc. For example the
number of intervals in a histogram can be changed using a slider.

Another direction we want to advance EyeSee in is interaction between dia-
grams. For example there often are datasets that have more than two or three
relevant values. To address this, we could use a third attribute like shape or
color or even introduce a third dimension in our diagram. The problem with this
approach is that it makes the diagrams harder to read and a three-dimensional
chart does often not convey its message well on a two dimensional medium.
To solve this it might be possible to create a visualization that shows two dia-
grams at the same time. For example a scatterplot and a bar diagram. If the
user selects a point in the scatterplot the corresponding bar in the bar diagram
would be highlighted. Or maybe we want to display a popup containing a small
histogram when we move the mouse over a property to see how it is distributed.
We want such interactions to be scriptable directly within the tool that is used
to create the diagrams.

23

6 Conclusion

Many diagram drawing tools require this input to be passed in a fixed format.
These tools are not flexible enough to be adapted to different models. Fur-
thermore the output of these tools is often a diagram that is cluttered with
chart junk that distracts the reader from the content. The goal of EyeSee was
to create a diagram drawing engine that addresses these problems. We imple-
mented scripting methods to make it easy to create and customize diagrams.
The scripts are small and hide the internals of our model. We also provided a
scripting interface to allow the user to tell EyeSee how to extract data from the
used model. This makes EyeSee model-independent. Finding the diagram that
is most suitable for communicating the given set of data can be done quickly,
because EyeSee gives the user a wide range of predefined solutions. However,
EyeSee allows the user to customize a lot parameters (for a complete list, see
the appendix). The user cannot only customize the diagrams, but also compose
them in any way he wishes to.

We validated EyeSee by drawing some of the most common diagrams using
short scripts and by using EyeSee in MooseDen we showed how easy it is to
draw diagrams with any kind of model.

Our plans for the future of EyeSee are to provide a graphical user interface
to make it more user-friendly. We will also take the opportunity of the user
interface to explore the possibilities of interactivity. Besides, we will also look
for new kinds of diagrams we could implement to expand the possible range of
application.

24

7
A

p
p
e
n
d
ix

7
.1

Q
u
ic

k
R

e
fe

re
n
ce

In
th

is
se

ct
io

n,
yo

u
ca

n
fin

d
a

co
m

pl
et

e
lis

t
of

al
l

di
ag

ra
m

s
w

it
h

th
e

av
ai

la
bl

e
sc

ri
pt

in
g

m
et

ho
ds

.
A

n
‘x

’
m

ea
ns

,
th

at
th

e
di

ag
ra

m
un

de
rs

ta
nd

s
th

e
sc

ri
pt

in
g

m
et

ho
d,

w
hi

le
a

‘-
’

m
ea

ns
,

th
at

it
do

es
no

t
or

th
e

co
m

bi
na

ti
on

w
ou

ld
no

t
m

ak
e

se
ns

e.

V
er

ti
ca

l
B

ar
H

or
iz

on
ta

l
B

ar
C

om
p

os
it

e
D

ev
ia

ti
on

S
ca

tt
er

p
lo

t
L

in
e

H
is

to
ry

S
ta

ck
R

an
ge

h
e
i
g
h
t
:

x
x

x
x

x
x

x
x

x
w
i
d
t
h
:

x
x

x
x

x
x

x
x

x
x
P
a
d
d
i
n
g
:

x
x

x
x

x
x

x
x

x
y
P
a
d
d
i
n
g
:

x
x

x
x

x
x

x
x

x
a
x
i
s
M
a
x
X
:

-
x

-
-

x
-

-
-

x
a
x
i
s
M
i
n
X
:

-
-

-
-

x
-

-
-

x
a
x
i
s
M
a
x
Y
:

x
-

-
x

x
x

x
-

-
a
x
i
s
M
i
n
Y
:

-
-

-
-

x
x

-
-

-
m
o
d
e
l
s
:

x
x

-
x

x
x

x
x

x
x
:

-
x

-
-

x
x

x
x

-
y
:

x
-

-
x

x
x

x
x

-
m
i
n
X
:

-
-

-
-

-
-

-
-

x
m
a
x
X
:

-
-

-
-

-
-

-
-

x
i
d
e
n
t
i
f
i
e
r
:

x
x

-
x

-
x

-
-

x
c
o
l
o
r
:

x
x

-
x

x
-

x
x

-
d
e
f
a
u
l
t
C
o
l
o
r
:

x
x

-
x

x
x

-
-

x
a
x
i
s
C
o
l
o
r
:

x
x

-
x

x
x

x
x

x
v
e
r
t
i
c
a
l
L
e
g
e
n
d

x
x

-
x

x
-

x
x

-
h
o
r
i
z
o
n
t
a
l
L
e
g
e
n
d

x
x

-
x

x
-

x
x

-
u
s
e
C
o
l
o
r
s
:

x
x

-
x

x
-

x
x

-

25

V
er

ti
ca

l
B

ar
H

or
iz

on
ta

l
B

ar
C

om
p

os
it

e
D

ev
ia

ti
on

S
ca

tt
er

p
lo

t
L

in
e

H
is

to
ry

S
ta

ck
R

an
ge

s
e
t
I
n
v
e
r
t
e
d
L
i
n
e
a
r
F
i
l
l

x
x

-
x

-
-

-
x

-
s
e
t
L
i
n
e
a
r
F
i
l
l

x
x

-
x

-
-

-
x

-
s
e
t
C
o
l
o
r
e
d
F
i
l
l

x
x

-
x

-
-

-
x

d
i
a
g
r
a
m
T
i
t
l
e
:

x
x

-
x

x
x

x
x

x
x
A
x
i
s
L
a
b
e
l
:

-
x

-
-

x
-

-
-

x
y
A
x
i
s
L
a
b
e
l
:

x
-

-
x

x
x

x
-

-
l
a
b
e
l
s
:

x
x

-
x

x
x

x
x

x
s
e
t
R
o
t
a
t
e
d
L
a
b
e
l
s

x
x

-
x

x
x

-
-

x
r
e
g
u
l
a
r
A
x
i
s

x
x

-
x

x
x

x
-

x
v
a
l
u
e
A
x
i
s

x
x

-
x

x
x

x
-

x
b
o
x
P
l
o
t
A
x
i
s

x
x

-
x

x
x

x
-

x
r
a
n
g
e
A
x
i
s

x
x

-
x

x
x

x
-

x
r
i
g
h
t
Y
A
x
i
s

x
-

-
x

-
x

-
-

-
g
r
i
d
L
i
n
e

x
x

-
x

-
-

x
-

-
d
e
v
i
a
t
i
o
n
V
a
l
u
e
:

x
x

-
x

-
x

-
-

x
d
e
v
i
a
t
i
o
n
D
e
s
c
r
i
p
t
i
o
n
:

x
x

-
x

-
x

-
-

x
h
i
g
h
l
i
g
h
t
A
b
o
v
e
D
e
v
i
a
t
i
o
n

-
-

-
x

-
-

-
-

-
h
i
g
h
l
i
g
t
h
B
e
l
o
w
D
e
v
i
a
t
i
o
n

-
-

-
x

-
-

-
-

-
s
h
a
p
e
:

-
-

-
-

x
-

-
-

-
s
m
a
l
l
O
b
j
e
c
t
s

-
-

-
-

x
-

-
-

-
m
e
d
i
u
m
O
b
j
e
c
t
s

-
-

-
-

x
-

-
-

-
b
i
g
O
b
j
e
c
t
s

-
-

-
-

x
-

-
-

-
s
t
r
o
k
e
d
S
h
a
p
e
s

-
-

-
-

x
-

-
-

-
c
i
r
c
l
e
s

-
-

-
-

x
-

-
-

-
c
r
o
s
s
e
s

-
-

-
-

x
-

-
-

-
r
e
c
t
a
n
g
l
e
s

-
-

-
-

x
-

-
-

-
a
d
d
D
i
a
g
r
a
m
:

-
-

x
-

-
-

-
-

-
d
a
t
a
s
e
t
:

-
-

-
-

-
-

x
-

-
g
a
p
F
r
a
c
t
i
o
n
:

x
x

-
x

-
-

-
-

x

26

7.2 Availability

EyeSee can be obtained via Cincoms VisualWorks (http://smalltalk.cincom.com/)
in the store of the SCG group at the University of Bern by logging in with:

• Environment: db.iam.unibe.ch:5432 scgStore

• User Name: storeguest

• Password: storeguest

If you load the latest version of the bundle EyeSeeDevelopment, you can find
all the examples provided in this paper and more in the EyeSeeTest package in
the Examples class. There you can also find the models we used in the protocol
models.

You can run these examples by executing the first line in each example which
is commented out (for example "self new lineDiagram" in the lineDiagram ex-
ample).

References

[1] Stephen Few. Show me the numbers: Designing Tables and Graphs to En-
lighten. Analytics Press, 2004.

[2] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics
Press, 2nd edition, 2001.

[3] Colin Ware. Information Visualization. Morgan Kaufmann, 2000.

27

