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Abstract

Biomimicry has received much attention in engineering, and many breakthrough discoveries
have been guided by a solution found in nature. However, many biomimicry-based proposals
apply to a specific problem, provide limited context, and lack implementation details. That
makes it unnecessarily hard for practitioners to find relevant literature for their problems.

To investigate this problem, we performed a literature review on 111 publications related
to biomimicry and extracted several characteristics, e.g., meta-data, the solution, and the
investigated species. In particular, we were interested in whether the proposed algorithms
could be used for other use cases.

Our results indicate a structural issue: publications related to new or adapted algorithms
very prominently emphasize a specific use case, instead of the generalized problem category,
e.g., clustering. We found that 38% lack generalization in at least one of the introductory
elements (i.e., title, abstract, and introduction), and that 53% of them lack generalization
entirely. Moreover, 40% of the proposed algorithms lack at least one major characteristic, e.g.,
code samples or benchmarks against state of the art algorithms.

We motivate the generalization problem with our adapted implementation of an algorithm
proposed for load scheduling. Moreover, the artifacts of this study can support practitioners in
finding more efficiently existing solutions across research domains.
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1
Introduction

We are surrounded by problems and solutions that have been perfected over thousands of years by nature,
but unfortunately they are unnecessarily hard to find: While reviewing existing work to find applicable
algorithms for a mathematical problem, we realized that essential information was missing in many
publications, making it hard for practitioners to fully understand and adapt the proposed approaches.

For example, a paper titled “Hybrid Genetic-Gravitational Search Algorithm for Load Scheduling in Cloud
Computing” [2] proposes a new algorithm specifically tailored for load scheduling in cloud computing,
however the algorithm itself is solving a clustering problem. Therefore, the very same algorithm can be
used to cluster any data.

Researchers have investigated ways to interact with unstructured data and proposed semantic search
engines [4, 6, 9] and well-thought methodologies [7, 11], but unfortunately, such tools require additional
effort from the user, they require expert knowledge to master them, and the methodologies barely consider
this aspect.

To investigate the prevalence of that problem, we performed a literature review on papers which relate
to biomimicry, and finally collected 111 publications in six categories (algorithm, concept, framework,
comparison, survey, review). In these works, we were interested in the used models, similarities among
them, and other characteristics.

We motivate our work with an implementation of the aforementioned load scheduling algorithm in which
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CHAPTER 1. INTRODUCTION 2

we show that the proposed algorithm supports another use case than the one that has been reported. This is
due to more general nature of the proposed algorithm that has not been covered: its ability to find solutions
for combinatorial problems, e.g., clustering.

In order to assess the problem for practitioners, we answer the following research questions:

RQ1: What biomimicry literature is available? We found 68 journal articles and 43 conference or
workshop paper submissions. Algorithmic submissions dominate (89 submissions, 80%), followed by
novel concepts and reviews (each 6, 5%). Each remaining category, i.e., comparison, framework, and
survey has been assigned to less than 4% of all submissions. The People’s Republic of China contributed
the most publications (18%), followed by India (12%), Iran (9%), and the United Kingdom (6%). The
United States (4%), Australia (3%) and major countries in Western Europe (<=3%) remain rather at the
end of the spectrum.

RQ2: What are the characteristics of the proposed algorithms in the existing literature, and how com-

prehensive is their support? When considering publications related to algorithms, only a minority (15,
17%) introduce a novel algorithm. Most publications (51, 57%) try instead to improve meta-heuristics,
e.g., by adjusting parameters or introducing additional features. About 26% are dedicated to a specific
use case; often adapting an existing concept to an unrelated field of application. 38% lack a discussion of
their algorithm’s generalization capabilities in at least one of the introductory elements (i.e., title, abstract,
introduction), and 53% of them lack generalization entirely. That is, they do not provide any information
to readers about other problem domains for which their algorithm could be used. Furthermore, 40% lack
at least one major characteristic, i.e., they did not provide any information about the stability, reliability,
efficiency, or the pseudo-code of the algorithm.

RQ3: How can we generalize a specialized algorithm, and what are the gains?

We implemented a highly specialized algorithm in a different context and show that generalization can be
achieved while still maintaining the same benefits. Our implementation is able to cluster candidates more
efficiently than its variant without the gravity component, and than other rather trivial approaches.

In summary, we collected 111 publications related to biomimicry and analysed their metadata as well
as their proposed algorithms. We adapted an algorithm tailored for a very specific use case and made it
suitable for any clustering problem. The supplemental material is available online,1 i.e., the list of papers
including their characteristics, and the source-code of the algorithm that has been adapted for other use
cases.

The remainder of this thesis is structured as follows: We present the metadata from the literature review
in chapter 2, then we report properties of the found algorithms in chapter 3, and we exemplify the adaptation
of a specialized algorithm in chapter 4. Finally, we declare our threats to validity in chapter 5, we list the
related work in chapter 6, and we conclude in chapter 7.

1https://github.com/Dean442/BSc-Thesis-Supplement

https://github.com/Dean442/BSc-Thesis-Supplement


2
Literature Review

In this section, we first describe the process we have followed to collect relevant publications, before we
answer RQ1: What biomimicry literature is available? based on the metadata of the collected literature.

2.1 Process

To find relevant publications, we used the search term “nature inspired software” on the catalogues of
Google scholar, Elsevier, and Springer. We skimmed through the first 20 result pages and collected all
publications in the biomimicry domain. Next, we recursively reviewed all citations and included all related
cited works. Eventually, we collected 111 papers. Next, we classified our collected papers based on criteria
inspired by the works of Kitchenham et al. [8]. For example, we have been interested in the publication
date, the publisher, and the originating country.

2.2 Observations

We elaborate on metadata such as the publication date, the submission target, the publisher, the origins,
and the contribution.
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Figure 2.1: The interest in biomimicry research over time

2.2.1 Publication Date

We are interested in how the interest evolved over time to see whether this research area is still an emerging
topic. In Figure 2.1, we present the year of release for all publications in our dataset. The y-axis denotes
the number of publications we found. Our dataset contains publications between 1999 and 2019, and
we can clearly see that the interest has increased during the past 20 years with a peak in 2015. The 14
publications of 2015 were submitted from 9 different countries, and most of them were either proposing
an original concept (5), improving an existing proposal (4), or adapted an existing algorithm for a specific
use case (4).

2.2.2 Submission Target

Most publications in our dataset underwent a strict review: 68 papers (61%) targeted a journal, whereas
only 43 papers (39%) targeted a workshop or conference.

2.2.3 Publisher

The papers have been published by 20 different publishers, namely Elsevier (59, 53%), before IEEE (24,
22%), and Springer (9, 8%). The rest were published by local publishers from different countries (e.g.,
India, Germany, and Helsinki), and online publishers such as arXiv.
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Figure 2.2: Participating countries in biomimicry research

2.2.4 Origins

We were interested in finding countries that host institutions which are specifically involved with
biomimicry. Hence, we identified the corresponding country for each paper in our dataset by resolving
the location of the first author’s institution. In Figure 2.2, we present a world map with countries that
participate in biomimicry research. The number of publications determines the color of the respective
country in the map. Countries with no assigned publications are indicated with the lightest shade of grey.
We can see that China is very active in this domain with 19 publications (17%), followed by India and
Iran each with 13 publications (12%). Surprisingly, European countries are less prevalent. For example,
Turkey is only responsible for 8 (7%), the United Kingdom for 6 (5%), and Germany and Belgium are
each accountable for a mere of 3 publications (3%).

2.2.5 Contribution

In order to select relevant publications for further evaluation, we determined the type of their contribution,
i.e., a novel algorithm, concept, framework, or a comparison, survey, or review. The majority of research
focuses on algorithms (80%), and much less on reviews (6%), concepts (5%), frameworks (4%) and
surveys (4%). Only few works presented a comparison between two different algorithms (2%). The
lack of diversity for comparisons might pose a threat to validity for such research. Furthermore, we
classified the algorithmic contributions into the three subcategories new, improvement, and potential use.
We found 51 publications that improve an existing algorithm, e.g., tweaking parameter configurations or
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integrating additional criteria, 23 publications presented a potential use case, and only 15 publications
proposed a novel algorithm. Most novel algorithms received at least one follow up publication dedicated
to improvement. China’s researchers were particularly interested in advancing existing algorithms: 15
publications (88% of all Chinese papers) targeted improvements of prior work.



3
Findings

In this section, we focus on the proposed algorithms, their underlying theories, and evaluations to answer
RQ2: What are characteristics of the proposed algorithms in existing literature, and how comprehensive

is their support? We reveal white spots in the research landscape and eventually show the lack of
generalization in algorithmic publications. Our criteria for the algorithms are inspired by the work of
Izto et al. [5], however we collected more features and provide a more accurate analysis. For example,
we classified the publications according to the different domains in nature, and we determined distinct
features such as the species, habitat, and pack size.

3.1 Classification of Life

In Figure 3.1, we present the classification of life that inspired the design of the algorithms. The x-axis
denotes the classification of the algorithms, whereas the y-axis indicates the number of corresponding
papers. For seven publications we were unable to determine a category, e.g., when a proposal was related
to genetics. We observe that categories containing species with very large numbers of collaborating
individuals, e.g., insects and birds are preferred for modeling algorithms. Mammals live in communities
with fewer individuals, however they show complex social behavior and coordination that has been of
interest for many researchers, e.g., the collective search for prey. The interest in plants was mostly about
their reproduction through seeds. Rather primitive life forms such as viruses and protista only received
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Figure 3.1: Prevalence of publications related to the domains in our dataset

little attention for their abilities to spread across an organism.

We see much potential in habitats that host intelligent species, but only received little attention. For
example, we assume that the category aquatic animals provides many opportunities for future research.

3.2 Identified Species

In Figure 3.2, we present the particular species that inspired the design of the algorithms. The x-axis
denotes the classification of the algorithms, whereas the y-axis indicates the number of corresponding
papers. As before, we were unable to determine the value for seven publications. We can see that bee

dominates as source of inspiration for biomimicry algorithms, closely followed by bird. The fact that bees
are so outstandingly represented compared to the other species is surprising. According to Abbass [1],
the reason is that they exhibit many features that distinguish their use as models for intelligent behavior,
i.e., division of labor, communication on the individual and group level, and cooperative behavior. The
bird (unspecified) species provides various exploration and swarm behaviors that have been adapted to
many different applications, e.g., finite element modeling, or load scheduling in cloud computing. Bats
received much interest in their echolocation abilities that have been adapted in many different forms, e.g.,
the concept of echolocation combined with chaotic behavior to improve the search mobility for more
robust global optimization. Cuckoos and grey wolves share a similar interest due to their complex social
behaviors, i.e., wolves have strict social rules when hunting for prey, whereas the cuckoos reported in the
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Figure 3.2: Interest in particular species

scientific work live their early life as brood parasites. At the end of the spectrum, the representation count
of the species drops quickly and we find that twenty of our thirty identified species are only represented by
one or two publications, e.g., fruit fly, krill, or whale. All of these publications present a novel strategy,
however there exists no literature that further improved them.

Since there exist many life forms, especially insects, whose behavior resembles that of bees we believe
that there remain many opportunities for new discoveries in this field that could lead to improvements of
the current state.

3.3 Habitat

We pragmatically categorized the problem domain of the proposed algorithms to better understand the
problem scope. We could distinguish 12 categories including generic optimization which comprises
solutions for abstract mathematical problems, e.g., multi-modal numerical optimization. Next, we labelled
the considered life form in each proposal with respect to its natural habitat, i.e., land, water, air, or
intestines and related it to the problem domain. We could not determine the habitats for eight papers,
because that information was unavailable.

In Figure 3.3, we present the prevalence of habitats across different problem domains. The x-axis denotes
the number of algorithmic proposals, whereas the y-axis lists the found types of problems. We can clearly
see that air is the most common habitat, before land, water, and intestines. However, the habitat air has
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Figure 3.3: Preferred habitats for different problem domains

currently not been adapted to most problem domains as it only supports seven types of problems (58%).
The most domains are supported by algorithms that emerged from the land habitat, i.e., 9 of 12 problem
types (75%) are supported. The most specialized habitat is intestines which only supports two problem
types (16%).

Interesting for further research are problem types addressed in only a few papers and considering only a
few different habitats. For example, we expect that problems in the domain of classification, harmonic

estimation, object tracking, testing, and vertex coloring could greatly benefit from insights gained in other
habitats. In particular, generic optimization, clustering, and feature selection received diverse interest and
could provide valuable ideas for them.

3.4 Pack Size

We determined the pack size of the species for each paper, because we were interested in the researchers’
use of scale. We first elaborate on the distribution of pack sizes for different problem domains, before we
investigate the pack sizes across different habitats.

3.4.1 Distribution Across Problem Domains

In Figure 3.4, we show the prevalence of pack sizes for each problem domain. The x-axis presents the
different problem domains, whereas the y-axis indicates the number of corresponding papers. Each bar
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Figure 3.4: Representation of pack size in different fields

reveals the proportional use of the four different pack sizes: fewer than 10 individuals, 10 to 25 individuals,
26 to 100 individuals, or more than 100 individuals. We could not determine the habitats for seven papers,
because that information was unavailable. The very large pack size is the most prevalent and suits the
needs of nine different problem domains. All smaller pack sizes only support up to five different problem
domains. Interesting is also their distribution: preferred are very large pack sizes with > 100 individuals
(50%). The remaining pack sizes received much less interest: the large, medium, and small pack sizes only
gained 11%, 22%, and 17%, respectively.

Clustering, which encompasses algorithms for the organization of resources demonstrates less interest
in large or very large pack sizes, i.e., the small or medium pack sizes are the most prevalent. We found
that this is due to increased interest in single but complex interactions between individuals, rather than
the instinct-driven interactions of less intelligent individuals. Similarly, feature selection, engineering,
and damage assessment prefer medium sized pack sizes. The solutions of these problem domains have in
common that they define an initial suboptimal (local) solution and then actively begin to search for better
solutions from that starting point. Such active searches require awareness that is only found in species
with a higher intellect that usually live in smaller packs.

These findings reveal that the intellect of life seems to be an important factor to find solutions for rather
distinct complex problems. However, further research is required to exclude any potential bias introduced
by the researchers’ assumptions.
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3.4.2 Distribution Across Habitats

In Figure 3.5, we show the prevalence of pack sizes for each habitat. The x-axis denotes the different
habitats and their use of pack sizes, whereas the y-axis indicates the number of papers. We could not
determine the habitats for nine papers, because that information was unavailable or ambiguous. Air is
the most dominant habitat, i.e., it holds the most publications (51%) and it also claims the largest variety
in terms of pack size. Land is the second most dominant habitat (30%) followed by water (14%) and
intestines (5%). However, for land and water only few small and large pack sizes have been explored.
Intestines primarily hosts countless microorganisms and thus we do not see any smaller pack sizes.

Water seems to be underrepresented and research provides further evidence for our discovery: terrestic
life is better researched than aquatic life in which 91% of all species are expected to be unknown [10].
Moreover, we see a lack of interest for small and large pack sizes in land. Therefore, we encourage
researchers to perform future studies on species from these domains.

3.5 Popularity

We are interested to see how long-lasting the interest of novel biomimicry concepts is. In Figure 3.6, we
show the popularity of the three most prevalent species over time, i.e., ants, birds, and bees. The x-axis
denotes the time, whereas the y-axis indicates the number of papers. The first ant-related publication in
our dataset is from the year 1999. The highest interest emerged three years later, and during subsequent
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Figure 3.6: The popularity of the three most prevalent species over time

years follow up literature has been released, but at a lower pace until the year 2012. On the other hand,
the interest in bees emerged in the year 2001, and has increased eight years later. Unlike the ant-related
concepts, research of bees still remains a hot topic even 17 years later. Finally, the first biomimicry
publication related to birds is from the year 2014; the interest has increased four years later. The research
community remains very active and at least one publication has been released in every recent year.

The activity of certain biomimicry approaches seems to depend heavily on the flexibility of the applications
and the quality of the result. Bees seem to provide many benefits, particularly more than ants. The data we
have for birds is not enough to establish any long-term claims. We found that the interest increases three
to eight years later after the initial publication. Based on the current data, we expect many bee and bird
related publications in the near future, but only few related to ants, if any.

3.6 Efficiency Gains

We are interested in the achieved efficiency gains, because such knowledge could guide future prioritization
of problem domains, i.e., researchers could investigate domains with a lack of efficient solutions. For the
efficiency classifications, if possible, we relied on the numerical values found in the proposals that compare
existing work. If the numbers were not accessible, we searched in the text for efficiency-related statements
from the authors. In Figure 3.7, we present the efficiency gains across different problem domains. The
x-axis denotes the number of algorithmic proposals, whereas the y-axis enumerates the different domains.
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Figure 3.7: Reported efficiency gains for the different problem domains

Each bar consists of up to four different sections: black indicates a lack of information, red indicates a
low gain (up to 5% better efficiency), yellow indicates a medium gain (up to 10% better efficiency), and
green indicates a high gain (more than 10% better efficiency). The most claimed efficiency gain is high

(52%), followed by medium (34%), and low (8%). We were unable to find any efficiency claims for five
publications (6%). The distribution of the different levels of efficiency gain in each category is rather
consistent: medium and high gains are for most problem types in majority. In other words, such gains have
been achieved in 88% of all papers. However, classification did not benefit from such efficiency gains.
We further found that 82% of the papers benchmarked their proposals against algorithms from generic
optimization, 15% benchmarked only against their adapted original algorithm, and 3% did not provide any
benchmarks.

We can see that classification lacks an efficient biomimicry-inspired solution. Moreover, researchers
achieved in the problem domains harmonic estimation and testing only mediocre gains. Finally, almost
every fifth publication did not perform a comprehensive evaluation.

3.7 Generalization

The ability to generalize existing work increases its value for the community, because such work may
contribute to other problem domains. For each algorithmic publication, we skimmed through the title, the
abstract, and the introduction to find information regarding the support for generalization, i.e., whether
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the researchers provide any information that a proposed algorithm solves a generic problem. That is,
we searched for statements such as “performs the numerical optimization of multi-dimensional features.”
Whenever we found no indication of such support, we count that as support being absent. After reviewing
all algorithmic publications, we found that 38% lack generalization in the title, 26% in the abstract, and
22% in the introduction. Moreover, 38% lack generalization in at least one section, and 20% in all three
sections. Usually, the lack of generalization was present when very specialized statements existed, e.g.,
“the purpose of this algorithm is to optimize the load-balancing of cloud services.”

The lack of generalization hinders researchers from finding potential algorithms for their problems. Hence,
if properly adapted, we expect numerous viable alternative techniques for a particular problem domain.

3.8 Replicability

In order to leverage a proposed algorithm, its implementation must be reproducible. For each proposal
we investigated the existence of the provided implementation, i.e., whether the source code exists, and its
writing style. We found that 22% did not provide any pseudo code, and that 1% provided pseudo code in
prose. 73% of all papers provided pseudo code that could be used for further adaptation.

More than every fifth paper did not provide any pseudo code. This makes it unnecessarily hard for
practitioners to adapt a proposed solution.

3.9 Discussion

Biomimicry represents rather a small subset of algorithmic research. However, the merits are considerable
in the field of metaheuristics for very complex problems that frequently occur in connected and distributed
systems. In the proposals, we discovered a dominance of the habitat air, and a much lesser prevalence
of the habitat water that is still left to be explored. For example, the aquatic animals, which are in our
data primarily represented by fish, contain many species which express a swarming pattern similar to bees,
ants, and birds. However, there are much fewer publications concerning them in comparison to insects and
birds.

Similar strategies can be found in quite dissimilar species from different habitats. As a result, there is
evidence that every problem domain can learn from species of different habitats. In particular, we expect
that most proposals relying on the same pack size are interchangeable to a certain degree. Moreover, we
expect additional gains when combining one or more strategies to leverage their advantages, while limiting
the impact of the drawbacks a single strategy might entail. We envision a similar adaptation process as for
algorithms related to bees: a single idea sparked seven publications across different problem domains.

We found a particular lack of information for many proposals. For example, gains have not been clearly
reported, evaluations were not comprehensive, or generalization has not been any concern.

It is important that existing literature is properly found, understood, and used, which currently seems to
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not be the case. That would require that generalization be considered an important factor for future work.
We exemplify the missed potential of a very specific algorithm for load scheduling by creating a generic
adaptation that could be used for purposes beyond load scheduling, and reveals its true purpose: clustering.



4
Adaptation of Existing Knowledge

In this section, we answer RQ3: How can we generalize a specialized algorithm, and what are the gains?

We want to show that a highly specialized algorithm can be generalized to be used in other contexts.
We implemented such an algorithm and applied it to a clustering problem. We finally show that the
individual components of the algorithm indeed contribute to its success, even beyond the sole purpose of
load scheduling.

The generalization itself is a manual process and requires basic mathematical knowledge in order to
identify the actual purposes. Usually, related keywords are used that can help to identify them, e.g., for
clustering the words “grouping”, “scheduling”, etc. Papers that are suitable for generalization are usually
highly specialized and propose an algorithm for a particular technical problem, e.g., load scheduling,
software testing, or mining data. As a result, we were interested in algorithms that provide pseudo code,
but lack generalization in the title, the abstract, and the introduction. We randomly chose the algorithm
reported in the paper “Cost optimized Hybrid Genetic-Gravitational Search Algorithm for Load scheduling
in Cloud Computing” (HGGSA) by Divya et al. [2], which matches these criteria. The original publication
proposes the algorithm exclusively for load scheduling in cloud computing, based on genetics and gravity.
However, we realized that the algorithm itself is designed for clustering, but this information is unavailable
in the publication. In fact, the entire publication does not even mention once the word “cluster.” After the
actual purpose has been identified, we started with the implementation.
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Figure 4.1: The concept behind the hybrid genetic-gravitational search algorithm
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4.1 Implementation

We used the Java programming language for the implementation, and we closely followed the pseudo code
presented in the original paper shown in Figure 4.1. We constructed a whiteboard view that can visualize
each step of the optimization process. The whiteboard view relies on a two-dimensional boolean array
that maintains the state and is initially populated with some random true values. Each value, true or
false, represents a black or white pixel on the whiteboard, respectively. The fitness is calculated as how
many other black pixels are adjacent to a specific pixel.

The proposed algorithm uses a combination of existing algorithms, i.e., a genetic and a gravitational search
algorithm. The genetic function first generates new pixel coordinates by mating a black pixel with another
black pixel in its vicinity. This process creates two offspring pixels by crossing the x and y coordinates of
the parents, and of those two pixels only the child with the higher fitness survives and does not turn white.
Consequently, for the next iteration the parents are eradicated as well. Next, a gravitational force is applied
that pulls the survivors one field towards the center of mass to accelerate the process of clustering. The
current state is returned, if the reduction of the population reaches a predefined threshold. Otherwise, the
procedure iterates one more time with the survivor pixels as new parents until the end criteria is met.

A typical run of our implementation is shown in Figure 4.2. At first, 20 000 black pixels are placed
randomly on the whiteboard as presented in 4.2a. Next, the reduction of black pixels to clusters starts. 4.2b
shows the process midway in which the majority of black pixels already has been assigned to a particular
cluster. Finally, after 205 iterations at the end of the execution we can see in 4.2c that the black pixels are
reduced to few clusters in the center of mass.

4.2 Evaluation

We repeated the measurements ten times each time using a different randomly generated board, and
calculated the mean value. We used the following configuration: 800 by 600 pixels board size, 20 000
random black pixels as starting condition, gravity constant set to two, and the coordinates of the center of
mass set to (400,300). In order to make the individual contribution of each of the combined algorithms
tangible, we ran the same experiment three times: once using the genetic algorithm (GA), once using the
gravity search algorithm (GSA), and once using a combination of both (HGGSA).

Figure 4.3 presents the results. The x-axis denotes the number of iterations, whereas the y-axis presents
the number of separated clusters present at a particular iteration. The lines represent the three algorithms.
In general, we can see that every algorithm is able to cluster data and therefore reduces the number of
black pixels over iterations. However, there exist substantial differences between the three algorithms.
GA and HGGSA reduce the cluster count from 20 000 to 1 000 in only 16 iterations or less, compared
to 195 iterations required for GSA. Whereas HGGSA and GA achieve an exponential efficiency, GSA
only achieves a polynomial efficiency. HGGSA reached the optimum after 205 iterations, GSA after 403
iterations, and GA started to stagnate from the 32. iteration. This is an intrinsic property of GA that is
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(a) initial configuration (0 iterations)

(b) progressed configuration (102 iterations)

(c) final configuration, a single cluster left at the center of mass (205
iterations)

Figure 4.2: HGGSA clustering progress



CHAPTER 4. ADAPTATION OF EXISTING KNOWLEDGE 21

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 30 60 90 120 150 180 210 240 270 300 330 360 390

#
 c

lu
st

er
s

# iterations

HGGSA GA GSA

Figure 4.3: Performance of the generalized HGGSA

by design unable to converge, because it will build populations that are separate from each other, and
since these populations eventually remain too far apart they cannot mate and thus result in non-converged
clusters. Moreover, the time it takes to reach a converged state for the gravity-based algorithms depends
on the used gravity constant; the higher it is set, the faster the system will converge. However, in the worst
case, an inappropriate gravity setting prevents a converged state due to underfitting. In other words, “pixels
would continuously move around the center of mass.”

In conclusion, HGGSA is able to maintain the initial momentum and quickly achieves a converged state
compared to the other algorithms. Its genetic part reduces the distance between the local clusters and
is able to connect different populations. On the other hand, the gravity part ensures that distant clusters
collide over time, i.e., the distance between pixels is continuously reduced.



5
Threats to Validity

An important threat to validity is the completeness of this study, i.e., whether we could find and study all
related literature. Although we could not review all papers, we aimed to explore top-tier biomimicry and
applied computation journals and conferences as well as highly-cited work in the field. Moreover, we
might have missed relevant criteria. We mitigated that threat by peer-reviewing the criteria catalogue.

Another major threat represents the correctness of the collected data, i.e., whether the labelled data are
accurate. We established criteria for the correct labelling of each property to prevent any ambiguities.
Whenever a labelling task was not clear, the problem has been resolved by discussion with a supervisor.

Finally, the fact that the adapted algorithm is validated by the author is a threat to construct validity through
potential bias in experimenter expectancy. We mitigated this threat by including a supervisor in the process.
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6
Related Work

The concept of biomimicry is not new and some researchers already investigated the rationale behind
seeking inspiration from nature. For example, Steer et al. reasoned about the features which are a valuable
source for the design of successful nature-inspired algorithms [12]. This work complements our study:
they elaborate on the process to find relevant algorithms, where we report what life has not received much
attention and ask for a more generalized argumentation.

There also exist multiple books that cover nature-inspired algorithms [3, 13, 14]. Unfortunately, all of
them are structured around the origins of the algorithms instead of their supported optimization problems.
Such information is not much of use for practitioners. Furthermore, they do not provide an exhaustive
list of published work, but instead they present a few selected algorithms and present them often in great
detail.

Fister et al. performed a survey of nature-inspired algorithms [5]. They compiled a list of 78 algorithms
for optimization. Contrary to our work, they focused primarily on the rudimentary classification of the
different algorithms and barely collected features from them. Although they established a brief list of
algorithms for practitioners, they do not provide any usable information on where to use them. We argue
that generalization is key to find relevant algorithms for specific problems.

In summary, existing work provides only shallow information for practitioners and is not aware of the
generalization problem. Information about generalization would ease the search for algorithms that suit a
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particular optimization problem.



7
Conclusion

We have performed a literature review on 111 publications related to biomimicry and extracted several
characteristics, e.g., meta-data, the solution, and the investigated species. Our results indicate a structural
issue: publications related to new or adapted algorithms very prominently emphasize on a specific use case,
instead of the generalized problem category, e.g., clustering. We found that 38% lack generalization in at
least one of the introductory elements (i.e., title, abstract, and introduction), and that 53% of them lack
generalization entirely. Moreover, 40% of the proposed algorithms lack at least one major characteristic,
e.g., code samples or benchmarks against state of the art algorithms. We motivate the found generalization
problem with our adapted implementation of an algorithm proposed for load scheduling. Moreover, the
artifacts of this study can support practitioners in finding more efficient existing solutions across research
domains.
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A
Anleitung zum wissenschaftlichen Arbeiten

The Anleitung consists of the conference paper “Biomimicry-based Algorithms and Their Lack of Gener-
alization”.1

P. Gadient, D. Klopsch, M. Ghafari, and O. Nierstrasz. Biomimicry-based Algorithms and Their Lack of
Generalization.

Scheduled for submission to International Conference on Metaheuristics and Nature Inspired Computing:

META 2022, 2022.

1http://scg.unibe.ch/download/supplements/Biomimicry-based-Algorithms-and-Their-Lack-
of-Generalization-(Submission).pdf

28

http://scg.unibe.ch/download/supplements/Biomimicry-based-Algorithms-and-Their-Lack-of-Generalization-(Submission).pdf
http://scg.unibe.ch/download/supplements/Biomimicry-based-Algorithms-and-Their-Lack-of-Generalization-(Submission).pdf

	Introduction
	Literature Review
	Process
	Observations
	Publication Date
	Submission Target
	Publisher
	Origins
	Contribution


	Findings
	Classification of Life
	Identified Species
	Habitat
	Pack Size
	Distribution Across Problem Domains
	Distribution Across Habitats

	Popularity
	Efficiency Gains
	Generalization
	Replicability
	Discussion

	Adaptation of Existing Knowledge
	Implementation
	Evaluation

	Threats to Validity
	Related Work
	Conclusion
	Anleitung zum wissenschaftlichen Arbeiten

