
Using Local Slant Correction to
Normalize Handwritten Text Samples

Adrian Kuhn
University of Bern

akuhn@iam.unibe.ch

December 2005, University of Bern

Abstract. In this paper we propose to use variable slant correction
instead of an global correction, since the slant of handwritten text is not
constant over a line of text. We present an algorithm that computes local
slant, based on generalized projection and dynamic programming, and
introduce a technique called slant map propagation.
We apply it on a case study and report the results: local slant correc-
tion improves the word recognition rate from 37.3% to 42.24% and the
word level accuracy from -14.99% to -3.18%, compared to global slant
correction.

1 Introduction

Preprocessing handwritten text samples with slant correction is crucial
to the recognition process. Since the HMM based recognition system [4]
divides the text sample into thin slices, it is important that vertical strokes
are as perpendicular as possible. Otherwise vertical strokes do not fit into
the slices and appear to the recognition system as slanted strokes that
harm the modeling of the characters. For example the letter P might once
start like a slash, once like a backslash, where indeed it should start with
a perpendicular stroke.

Handwritten text is not uniform and slant may change over the course
of a line. Therefore a global and thus uniform slant correction can not
guarantee that all vertical strokes are as perpendicular as possible. In fact
we need a variable slant correction to make sure each vertical stroke is
corrected exactly. But such a variable slant correction must not be too
sensitive, since there are a great many false positives.

most false positives are produced by short strokes and can be avoided
by a simple weighting scheme: short strokes are ignored and a larger
weight is assigned to long strokes. But still, there remain two classes of
false positives: First long but slanted strokes as found in e.g. the letters
A, M, N or X, and second the connectors in cursive handwriting.

Thus our requirements are: a local slant correction that smoothly con-
forms to the variation of slant in handwritten text, corrects each vertical
stroke while avoiding false positives. As a further requirement, we demand
that the algorithm must not require any parametrization.

In this paper we combine two previously published approaches. Nic-
chiotti and Scagliola proposed to use generalized projection for normal-
ization of handwriting [2], while Uchida et al. used dynamic programming
for the same task [3].

2 Local Slant Correction

In short the algorithm works as follows: Compute the generaliyed projec-
tion [2] for each column and each possible slant angle, which results in a
slant map. Then modify the resulting slant map to avoid false positives.
And finally apply a dynamic programming algorithm to get an optimal
but smooth solution.

This section explains each step in detail and motivates why it is ap-
plied and how it affects the result. While Figure 1 to 2 illustrate the
algorithm on as series of images.

Input is a black-white image containing a line of handwritten text. The
background is white, the handwritten text is black. In our case study
these images have a height of 128 pixel and a length of about 2000 pixels,
however the algorithm is independent of these numbers and works with
input of any size.

Output is a vector p = {p1, p2, .., pwidth} with the optimal slant angles
for each column of the input image. A slant line sl(x0, p0) is a discrete
line ranging from position (x0 + p, 1) to position (x0 − p0,height) on the
input image, with the angle p0 given as pixel offset.

The solution has to meet the requirement that subsequent angles may
not differ by more than ±1, thus |pj−pj+1| ≤ 1 holds true for all elements
of p. This requirement guarantees a smooth solution, but there is another
reason it has to be met – since otherwise subsequent slant lines might
intersect and cross each other and thus fall behind their predecessors
leading to an undesired repetition of input pixels on the output image.

2.1 Setting up the Slant Map

A slant map is a matrix A containing the generalized project values of all
possible slant lines. Its row indices i ∈ P correspond to all possible slant

Fig. 1. The input is a line of handwritten text as black-white image. The vertical lines
show the output of the algorithm, i.e. the local slant detected by the algorithm.

Fig. 2. The same line of handwritten text but with corrected slant, i.e. the local slant
correction has been applied to the input image.

Fig. 3. A raw slant map of the text line: the columns correspond to the columns of the
input image, the rows ranges from slant angle −45◦ to +60◦. The grayscales show the
generalized projection at the corresponding column and angle – more see Section 2.1.

Fig. 4. The modified slant map, all hotspots have been propagated along the x-axis
as explained in Section 2.2. The white line shows the solution found by the dynamic
programming algorithm.

Fig. 5. A visualization of the cost-function of the dynamic programming algorithm:
the axes are the same as on the slant map, the grayscales show the penalty of the cost
function – more see Section 2.3

Fig. 6. Illustrates different kind of hotspots: E – one hotspot due to the long vertical
stroke; X – two false hotspots and halfway between these two points the ad-hoc hotspot
with the correct slant; M – in total four hotspots, two of them false positives; H - two
hotspots; A – again as with the X, two false positives and halfway between them the
ad-hoc hotspot with the correct slant.

angles and the columns indices j ∈ X to the columns of the input image.
Each entry ai,j has the value of the generalized projection along the slant
line sl(i, j):

ai,j = gp(sl(i, j))

The generalized projection along slant line sl is defined as the sum of
the squared lengths of all subsequent runs of black pixels:

gp(sl) :=
∑

y/inY

by

by :=

0, if white pixel
1, if first black pixel
by−1 + 2, if subsequent black pixel

Thus subsequent runs of black pixels weight more than the same num-
ber of single black pixels. The longer a run the higher its weight. The
weight of n subsequent black pixels is n2. With the generalized projection
we ignore short stokes and add weight to long strokes.

Note: We use a slightly different generalized projection than [2], by our
definition the weight of n subsequent black pixels is n2, instead of 1

2n(n+
1). Which is basically the same – apart from a factor of ×2 – but allows
for a much easier handling of formulas.

2.2 Modifying the Slant Map

Once we obtained the slant map, we modify its content to make sure the
dynamic programming algorithm will find each vertical stroke and leave
out the false positives.

A hotspot on the slant map is a local maximum in the matrix A, these
maxima appear where the generalized projection algorithm detects long
strokes in the input image. Real hotspots are e.g. the vertical strokes of
the letters E, H, M or P, while e.g. the oblique strokes of the letters A,
V, N or X are false positives.

Furthermore what we call ad-hoc hotspot marks the bisecting line
between a pair of oblique strokes, see Figure 6. On the slant map this is the
the position halfway between the hotspots of both oblique strokes. Even
though there is no hotspot at that position on the slant map, the dynamic
programming algorithm has to cross this position, since the bisecting line
between e.g. the oblique strokes of A, X or V is a strong indicator of the
correct slant.

Propagating Hotspots On a raw slant map the hotspots show up as
butterfly patterns, but this is suboptimal for the dynamic programming
algorithm, there is too much distracting noise around the hotspot which
leads to erratic solutions. We would like it to cross the hotspot as “hori-
zontal” as possible to ensure a smooth solution. Figure 7 shows a hotspot
before and after this propagation.

Thus we propagate the hotspots along the x-axis. This is done by
“reversing” the generalized projection to the left and right:

a′i,j := max
l∈X

{
ai,l − |j − l|2

}
In that way, the hotspot of a stroke with length n is propagated n

pixels to the right and n pixels to the left. For example a stroke of length
4 has a hotspot of value 16 at position j. This value is propagated into
both direction such that at position j ± 1 it is 16− 12 = 15, at j ± 2 it is
16− 22 = 12, at j ± 3 it is 16− 32 = 7, and at j ± 4 it is 16− 42 = 0. If
two propagated hotspots overlap, the larger value is used.

A First Estimation In this step we compute a vector p′ with a first
estimation of optimal slant angles for each column in the slant map. Be
aware that these optima are based only on the current column and do not
take into account their context, thus they are a sub-optimal solution of

Fig. 7. Illustrates the slant map propagation technique: On the left the butterfly shape
of a raw hotspot; on the right the propagated hotspot.

problem that do not meet our requirement of smoothness. However this
vector is the input of the dynamic programming algorithm in the next
step.

The sub-optimal slant angle p′j is defined as the weighted mean of
column j, with the row indices i as data set and the entries a′i,j as weights:

p′j :=
∑

i× a′i,l∑
a′i,l

With this step, we solve the problem of the ad-hoc hotspots. The
weighted mean of two false positives is halfway between the two prop-
agated hotspots, and thus exactly at the location of the desired ad-hoc
hotspot.

2.3 Applying Dynamic Programming

In this step we apply dynamic programming to find the optimal solution
p based on the sub-optimal solution p′. The dynamic programming al-
gorithm is used to find the cheapest path in the slant map fulfilling the
condition that subsequent angles may not differ by more than ±1, thus
|pj − pj+1| ≤ 1 holds true for all i. The cost function f(i, j) is:

f(i, j) := min
{
|p′j − i|2, max

k∈P
a′k,j

}
The first parameter of the minimum is obvious: the farer away from

the estimation p′j the more expensive the path. The second parameter is
the squared length of the longest stroke found in column j of A′, that is
if an estimation p′j is missed by more than the length of its corresponding
stroke the cost does not increase any more. Thus missing a short strokes
has less impact on the solution than missing a long one, which is exactly
the behavior we aim for.

3 Validation

We applied the local slant correction on a random subset of writer in-
dependent task [4] from the the IAM database [1] using single gaussian
recognition, and compared the results to an ordinary global slant correc-
tion. First a brief description of global slant correction, then the results.

3.1 Global Slant Correction

Global slant correction differs from local correction in that it returns only
a single over-all slant angle p and not a vector p with multiple slant angles.

p :=
∑

i · ri∑
ri

ri :=
∑
j∈J

ai,j

The algorithm starts with the same slant map as the local correction,
but then computes the weighted average of the row sums and returns this
as the optimal global slant correction angle.

3.2 Results

Both word recognition rate and word level accuracy improved signifi-
cantly, as shown in the table below.

global local
word recognition rate 37.3% 42.24%
word level accuracy -14.99% -3.18%

The results are very promising and show that our local slant correction
clearly outperforms global correction.

References

1. U.-V. Marti and H. Bunke. A full english sentence database for off-line handwriting
recognition. In ICDAR ’99: Proceedings of the Fifth International Conference on
Document Analysis and Recognition, page 705, Washington, DC, USA, 1999. IEEE
Computer Society.

2. Gianluca Nicchiotti and Carlo Scagliola. Generalized projections: A tool for cursive
handwriting normalization. In ICDAR, pages 729–732, 1999.

3. Seiichi Uchida, Eiji Taira, and Hiroaki Sakoe. Nonuniform slant correction using
dynamic programming. In ICDAR, pages 434–438. IEEE Computer Society, 2001.

4. M. Zimmermann. Offline Handwriting Recognition and Grammar based Syntax
Analysis. PhD thesis, University of Bern, Bern, Switzerland, 2003.

