
Introduction to Filesystem and GitFS

Max Leske
Software Composition Group

University of Bern, Switzerland

March 22, 2011

Abstract

The purpose of this document is to provide users of Filesystem and GitFS with a short
introduction to the main features and the basic use of both systems. When the reader
has finished reading he or she will be able to work with any filesystem that supports the
Filesystem public protocol and specifically know how to create, read and manipulate Git
repositories from within a Pharo Smalltalk image.

Introduction

This document consists of two parts: The first part explains how to use Filesystem and
gives examples on common operations; The second part focuses on the GitFS extension
of Filesystem and shows how Git repositories can be used from Pharo Smalltalk.
A basic knowledge of the concepts and keywords in Git is necessary for reading this
document. We recommend the reader study the tutorials available from the Git project
website at http://www.git-scm.com.

The requirements to successfully reproduce the examples discussed on the following
pages are a Pharo image (the one-click image from the Pharo website at http://www.

pharo-project.org is recommended), a basic knowledge of the Pharo environment (this
includes a basic knowledge of Smalltalk. Consider reading “Pharo by Example” [Blac0
9a] for an introduction.) and an internet connection to load additional packages.

1

http://www.git-scm.com
http://www.pharo-project.org
http://www.pharo-project.org

1 How to Use Filesystem

The purpose of this section is to give a concise overview of how to use the Filesystem
framework. We use a disk filesystem for the examples because this type of filesystem
is known to most people. Nevertheless, most of the messages and workflows can be
equally applied to other filesystems since every filesystem inherits the public protocol of
FSFilesystem.

To start using Filesystem the relevant Monticello package needs to be loaded into the
image. This can be done by evaluating the following in a workspace:

Gofer new

renggli: 'fs';

package: 'Filesystem';

load.

1.1 Filesystems and references

The disk filesystem is implemented in FSDiskFilesystem and its platform specific sub-
classes. An instance of the filesystem of the current platform can be retrieved by evalu-
ating the following in a workspace:

disk := FSDiskFilesystem current.

Subclasses of FSFilesystem implement many methods, but most of them should not
be called directly. These methods implement the low-level behavior of the respective
filesystems and are private to the framework. References (instances of FSReference)
are the central object of the framework and provide the primary mechanism for working
with files and directories. We now ask the filesystem for a reference to the working
directory and assign it to the variable “working”. The working directory is the directory
containing the running image.

working := disk working.

Sending the message #root to the filesystem object returns a reference to the root of
the filesystem (“/” in Unix, “C:\” in Windows usually). But since we do not want to
corrupt any data and permissions might be a problem we will use the working directory
instead.

1.2 Navigating the Filesystem

The reference assigned to the variable “working” allows us to browse the filesystem. We
list the entries of a directory by sending #children to the reference:

working children.

2

Sending #allChildren to the reference answers a collection of all subdirectories recur-
sively:

working allChildren.

The slash operator answers a reference to a specific file or directory within the working
directory:

cache := working / 'package-cache'.

Navigating back to the parent is easy. We send #parent to the reference. We expect
the parent to be the working directory and test for that:

parentOfCache := cache parent.

parentOfCache = working. " --> true "

The slash operator interprets the string sent to it as the name of the directory to navigate
to. If the string argument contains a slash it is interpreted as part of the directory
name and not as a separator. To remedy the situation references understand a second
navigation message called #resolve:. Resolve expects a string argument in the form
used by the “cd” command known from the Unix command line (the same syntax applies
to Windows systems):

disk working resolve: '/'. " the same as 'disk root' "

disk working resolve: '.'. " the same as 'disk working' "

disk working resolve: '/home/leske'. " an absolute path to a directory or file "

disk working resolve: '../projects'. " a relative path from the working directory "

Evaluating the following expressions reveals information about the cache directory:

cache exists. " --> true "

cache isFile. " --> false "

cache isDirectory. " --> true "

cache basename. " --> 'package-cache' "

Even more information is available via the filesystem entry. The entry is an instance of
FSDirectoryEntry. Every reference has an associated entry holding the header infor-
mation:

cache entry creation. " --> 2010-09-14T10:34:31+00:00 "

cache entry modification. " --> 2010-09-14T10:34:31+00:00 "

cache entry size. " --> 0 (directories have size 0) "

The framework also supports locations; they are late-bound references that point to a
file or directory. When asking to perform a concrete operation a location behaves the
same way as a reference. Filesystem supports the following locations:

FSLocator desktop.

FSLocator home.

FSLocator image.

FSLocator vmBinary.

FSLocator vmDirectory.

3

A location will dynamically adapt and always point to the place expected even when
moving the image to another platform.

1.3 Opening Read and Write Streams

FSReference provides easy access to streams:

stream := (working / 'letter.txt') writeStream.

stream nextPutAll: 'Hello Alice'.

stream close.

stream := (working / 'letter.txt') readStream.

stream contents. " --> 'Hello Alice' "

stream close.

Note that #writeStream overrides any existing file and that #readStream throws an
exception if the file does not exist. There are also short forms available which ensure
the correct closing of the stream:

working / 'letter.txt' writeStreamDo: [:stream | stream nextPutAll: 'Hello Alice'].

working / 'letter.txt' readStreamDo: [:stream | stream contents].

1.4 Creating Renaming, Copying and Deleting Files and Directories

Files and directories can be copied between references in the same filesystem (first line of
next example) or even across different types of filesystems (second line of next example)
such as between a disk filesystem and a memory filesystem:

(working / 'letter.txt') copyTo: (working / 'letter_backup.txt').

memory := FSMemoryFilesystem new working.

(working / 'letter.txt') copyTo: (memory / letter_backup.txt).

memory children first basename. " --> 'letter.txt' "

Supposing one wanted to backup an entire directory there needs to be a suitable target
directory. Since there are no directories in the memory filesystem just created we will
now create one to hold the mentioned backup:

backup := memory / 'cache-backup'.

backup createDirectory.

Finally, we copy the directory to be backed up to the destination directory:

cache copyAllTo: backup.

The target directory would also have been created automatically by the message
#copyAllTo: had it not existed already. From time to time the backup needs to be
cleaned up. In this case, we no longer need the backup of the file “letter.txt”:

(memory / 'letter_backup.txt') delete.

4

A complete directory tree can be deleted by sending #deleteAll:

backup deleteAll.

1.5 Other Filesystems

The filesystem framework is easily extensible and there are several implementations
including a ZIP, a cURL and a Git filesystem. All of these implementations comply
with the public protocol of the framework and therefore it does not matter to the user
on which filesystem he or she is working. Some filesystems specify additional messages
to provide access to functionality beyond the scope of a simple filesystem. The ZIP
filesystem for example defines the message #close which needs to be sent to the instance
of a ZIP archive to flush it.

GitFS is one of the extensions it provides access to Git repositories through Filesystem.
The following section gives an overview of the available messages and shows how to
perform basic operations on repositories.

5

2 How to use GitFS

GitFS extends the Filesystem framework to enable work with Git repositories. The
class FSGitFilesystem defines additional messages to the standard Filesystem protocol
to manipulate and read repositories. GitFS is not part of the standard Filesystem
package and needs to be loaded into the image separately. The following code loads all
the required packages (with their required versions) into the image:

Gofer new

url: 'http://www.squeaksource.com/GitFS';

package: 'ConfigurationOfPharogenesis';

load.

((Smalltalk at: #ConfigurationOfFSGit) project version: #stable) load.

2.1 Working with Repositories

There are two classes a user of GitFS needs to know: FSGitRepository and
FSGitFilesystem. FSGitFilesystem implements the public Filesystem protocol and
is the central object for most of the work. FSGitRepository encapsulates the knowl-
edge of communication with a Git repository and is the starting point for working with
Git.

A speciality about GitFS is that it provides a filesystem on top of another filesystem.
Therefore, to instantiate a repository we need a reference to another filesystem. For this
introduction we will work on a disk filesystem:

repoReference := FSDiskFilesystem current root resolve: '/Developer/webApp'.

repo := FSGitRepository on: repoReference.

FSGitRepository defines four messages to browse the contents of a git repository:

repo head.

#head answers an FSGitFilesystem object representing the head commit of the current
repository.

repo branches.

#branches answers a dictionary of branch names (strings) associated with
FSGitFilesystem objects. Each object represents the head commit of a branch.

repo tags.

#tags answers a dictionary of tag names (strings) associated with FSGitFilesystem ob-
jects. Each object represents a commit referenced by a tag found in the repository.

repo versions.

6

#versions answers a collection of FSGitFilesystem objects, one for every commit found
in the repository (independent of the active branch). Depending on the size of the
repository this statement may take several minutes to complete.

2.2 First Steps with the Git filesystem

The idea behind using FSGitFilesystem objects is to modify the working copy of a
Git repository and then commit those changes. Here is a simple example of how to
modify the working copy. In a first step we assign an instance of FSGitFilesystem to
the variable “workingCopy”. The FSGitFilesystem object contains the working copy
of the head commit of the created repository (the repository is empty so the working
copy is too):

workingCopy := repo head.

We then assign a reference (instance of FSReference) to the variable “newFile”. The
reference points to a file that does not yet exists. We create it by writing some content
to it:

newFile := workingCopy root / 'newfile.txt'.

newFile writeStreamDo: [:stream |

stream nextPutAll: 'some content'].

Note that workingCopy root answers the root of the Git filesystem and not the root of
the disk filesystem. If you made a mistake and simply want to have a clean workingCopy
again you can send #reset to the workingCopy:

workingCopy reset.

Assuming that the changes are fine, the file is committed to the repository thus saving
the state of the working copy. The message #commit expects a message string describing
the changes made:

workingCopy commit: 'created a new file'.

Committing the changes will create and update objects and references in your reposi-
tory as needed. After the commit has succeeded the FSGitFilesystem object (the one
referenced by the variable workingCopy) will point to that commit with all the recent
changes reflected in the working copy.

The contents of the file we committed can be retrieved using the Filesystem proto-
col:

fileContents := newFile readStreamDo: [:stream |

stream contents asString].

7

2.3 Advanced manipulations

To provide a better picture of what Git is capable of we will create a second commit so
that the repository holds two versions of the working copy:

anotherFile := workingCopy root resolve: 'dir1/anotherFile.txt'.

anotherFile writeStreamDo: [:stream |

stream nextPutAll: 'beginning of another file.'].

workingCopy commit: 'added a second file'.

Evaluating the following will now answer a collection of four references: “/”,
“/newFile.txt”, “/dir1” and “/dir1/anotherFile.txt”:

workingCopy root allChildren.

Once you are satisfied with your changes you might want to commit and at the same time
mark that commit specially. GitFS offers convenience methods for this scenario:

workingCopy

commit: 'a commit message'

andTag: 'version 1.0'.

#commit:andTag: creates a commit and a tag referencing that commit (at the moment
only light tags are supported). From now on it will be easy to identify the commit that
was used for the release of version 1.0. You might also choose to tag another commit
you made earlier:

workingCopy

tagRevision: workingCopy parents first

with: 'introduces cool new feature'.

Version 1.0 will probably not be the last version. It might therefore be convenient to do
new work on a separate branch to separate versions clearly:

workingCopy

branch: 'my fork'

message: 'a commit message'.

#branch:message: creates a commit with the current changes and a new branch ref-
erencing that commit. If the branch already exists it will be updated to the current
commit. Of course you can also commit to a new branch and tag that commit with only
one message if you like:

workingCopy

branch: 'my fork'

message: 'alpha release'

andTag: '1.1 alpha'.

When comparing versions it can be useful to know the signature hash of an object to
determine if two objects are equal. Send #nameOf: to an FSGitFilesystem object to
find the name for any object in a commit:

8

buggyVersion := workingCopy nameOf: (workingCopy root / 'aFileWithABug.php') path.

You could also use the signature of an object in a commit message to tell other developers
where a bug occurred:

workingCopy message.

#message answers the commit message of current commit, e.g. “I fixed the string conver-
sion bug that was introduced in object ebf14a3157efd4ffbf840538414b6a6aa6e19c50”.

9

References

[Blac09a] Andrew Black et al. Pharo by Example. Square Bracket Associates, 2009.

10

	How to Use Filesystem
	Filesystems and references
	Navigating the Filesystem
	Opening Read and Write Streams
	Creating Renaming, Copying and Deleting Files and Directories
	Other Filesystems

	How to use GitFS
	Working with Repositories
	First Steps with the Git filesystem
	Advanced manipulations

