
“Information Mural” visualisation of Duploc - 16. August 1999 page 1 of 64

computer science project 98/99

´,QIRUPDWLRQ�0XUDO´
YLVXDO LVDWLRQ�RI �'XSORF

Pietro Malorgio
Software Composition Group, University of Berne

malorgio@iam.unibe.ch

Wednesday, 14. July 1999

“Information Mural” visualisation of Duploc - 16. August 1999 page 2 of 64

Contents
1 PROJECT SUMMARY..3

2 AN INTRODUCTION TO DUPLOC..6

2.1 DOTPLOT - A TECHNIQUE FOR REPRESENTING DUPLICATED LINES OF CODE...6
2.2 THE DATAFLOW CONCEPT INSIDE DUPLOC...8
2.3 USING DUPLOC IN THE ORIGINAL INTERACTIVE MODE..9

2.3.1 Starting the original version..9
2.3.2 Selecting the Source Code Language ..9
2.3.3 Reading Source Code ..9
2.3.4 Viewing the comparison matrix(es)...10
2.3.5 Exploring the selected comparison matrix(es) ..11

3 THE PROJECT GOAL..13

3.1 THE PROBLEM – A LIMITED DISPLAY CAPABILITY ...13
3.2 THE SOLUTION - OVERCOMING THIS LIMITATION WITH THE INFORMATION MURAL TECHNIQUE........................13
3.3 THE PROJECT GOAL – INTEGRATING THE INFORMATION MURAL TECHNIQUE INTO DUPLOC..............................14

4 THE NEW GRAPHICAL USER INTERFACE...15

4.1 NEWLY INTRODUCED CONCEPTS..15
4.1.1 The raw matrix set...15
4.1.2 Representing a large raw matrix...16

4.2 USING DUPLOC IN THE NEW INFORMATION MURAL INTERACTIVE MODE..19
4.2.1 Starting the new version ..19
4.2.2 Unchanged loading features from the previous version..19
4.2.3 Selecting the raw matrix..19
4.2.4 Exploring the raw matrix ..19
4.2.5 The bin value colouring function...27

5 DESIGN ...33

5.1 INTRODUCTION..33
5.2 SYSTEM OUTLINE...33
5.3 SYSTEM DETAILS..54

5.3.1 Representing a raw matrix ..54
5.3.1.1 Introduction ... 54
5.3.1.2 Defined abbreviations .. 54
5.3.1.3 Two level / three level view representation selection criteria .. 55
5.3.1.4 Attribute value definitions ... 55
5.3.1.5 Three level view representation concept.. 56

5.3.2 RawMatrix class update protocol to its dependants..56
5.3.3 AbstractRawSubMatrix class behaviour to RawMatrix class changes..56

5.3.3.1 Adaptation behaviour concept ... 56
5.3.3.2 Received update and sent changed protocol .. 57

5.3.4 The AbstractInformationMuralMatrix class extends the AbstractRawSubMatrix class behaviour...........58
5.3.4.1 Received update and sent changed protocol .. 58

5.3.5 The DuplocPresentationModelProtocolTransformer class...58
5.3.6 The ‘bin value colouring model’ ...58
5.3.7 Duploc source code information ...60

5.3.7.1 Where is the source code of this project located? .. 60
5.3.7.2 What are the specific classes of this project? ... 60

5.3.8 Implementation concepts...61
5.3.8.1 Introduction ... 61
5.3.8.2 The concept of ‘self neighborInstance’... 61
5.3.8.3 The concept of ‘self topology’ .. 61

5.3.9 Used graphical notation..61

6 CONCLUSIONS..63

7 APPENDIX ..64

7.1 REFERENCES..64

“Information Mural” visualisation of Duploc - 16. August 1999 page 3 of 64

1 Project summary
Duploc is a tool written in Smalltalk (VisualWorks 2.5/3.0), which is currently under continuous development inside the
Software Composition Group at the University of Bern1. It is designed for representing graphically the comparison
results of found duplicated lines of code (duploc) out of a set of loaded source code files. Duploc supports different
programming languages (C++, C, Java, Smalltalk etc.). The loaded files are compared line-by-line using a simple
string-match comparison function – the comparison results are stored in a two dimensional comparison matrix. The
previous Graphical User Interface (GUI) represents the obtained comparison matrix as a dotplot diagram – in this two
dimensional grid of black painted dots, each dot stands for two identical found lines of code in two different files.
Figure 1 shows a dotplot diagram of a comparison matrix with 229x229 elements. (The comparison matrix size is
shown with the format ‘height@width’ in the bottom information line of the GUI.)

1 http://www.iam.unibe.ch/~rieger/duploc/index.html

“Information Mural” visualisation of Duploc - 16. August 1999 page 4 of 64

This GUI uses a scrollbar to provide some navigation facility over the comparison matrix. It is therefore only suitable
for visualising comparison matrixes up to some hundred elements per matrix side (e.g. 800x800). The project goal was
to integrate into the Duploc application a technique named Information Mural in order to visualise a large comparison
matrix. Figure 2 shows the Information Mural overview image of a comparison matrix with 24278x24278 elements.
This image was produced with the new developed GUI. Each dot stands for the ‘match density’ inside a correspondent
region in the underlying comparison matrix. Darker dots indicates a region of the comparison matrix with more
matches then lighter dots. This new developed GUI is typically capable to visualise a comparison matrix with up to two
million elements per side. It also provides navigation facilities for exploring parts of the comparison matrix in a dotplot
like display mode. This display mode appears like the previous GUI - see Figure 1.

“Information Mural” visualisation of Duploc - 16. August 1999 page 5 of 64

Project context
This project was formulated as the mandatory project in the computer science course. Pietro Malorgio, the author,
wrote it under the supervision of Matthias Rieger and Dr. Stephane Ducasse.

Structure of this document
This document is divided in 6 main chapters. Chapter 2 gives from an user point of view an introduction to some
comparison aspects and to the previous Duploc application. Chapter 3 presents the Information Mural technique, which
was used in the new developed Graphical User Interface presented in Chapter 4. The internal application design is the
subject of Chapter 5. The last chapter discusses the conclusions drawn from the project.

Acknowledgement
I would like the express my thanks first to Stéphane for having introduced me to this project, then to Matthias, with
which I spent some many hours talking about the project and who implemented the discussed changes to his previous
work in order to implement these achieved extensions. My thanks goes also to Prof. Nierstrasz for having set early the
guidelines of this project, to Serge Demeyer who helped to keep the project on track and again to Stéphane, who gave
me some early introductions to the Smalltalk environment. For the received feedback about the user interface I can not
forget to express my thanks to Sander Tichelaar and Robb Nebbe.

Pietro Malorgio

“Information Mural” visualisation of Duploc - 16. August 1999 page 6 of 64

2 An introduction to Duploc

2.1 Dotplot - a technique for representing duplicated lines of code
The purpose of Duploc is to identify duplicated lines of code. This document will not describe the actual implemented
comparison process for finding duplicated lines of code – instead it describes, how duplicated lines of code are
represented. Dotplot[1] is a technique for visualising patterns of string matches in millions of lines of digital
information. Figure 3 shows an illustrative example of this technique by comparing words in a sentence. A sequence is
tokenised and plotted from left to right and top to bottom with a dot where the tokens match. Dots off the main diagonal
indicate similarities. This dotplot is symmetrical, because the two compared sentences are identical.

The information in a dotplot can be represented as a matrix of Boolean like data type – this type of matrix is referenced
in this document as a comparison matrix. A dotplot is a graphical representation of a comparison matrix. The example
above is extended in Figure 4 by adding another sentence, probably appropriate for our computer science time period:
’to copy or not to copy’.

“Information Mural” visualisation of Duploc - 16. August 1999 page 7 of 64

There are four comparison matrixes for these two sentences. Let’s reference them in the following way. ‘A’ stands for
the first sentence: “to be or not to be”. ‘B’ stands for the second introduced sentence: “to copy or not to copy”.
Therefore the upper left comparison matrix is referenced with ‘AA’ (= ‘A’ vs. ‘A’) and the bottom right comparison
matrix is referenced with ‘BB’. The bottom left comparison matrix is referenced with ‘BA’ and the top right
comparison matrix is referenced with ‘AB’. ‘AA’ and ‘BB’ are always symmetrical. They show the duplicated words in
each respective sentence. In this example ‘AB’ and ‘BA’ are symmetrical, but by choosing the sentence ‘B’ with more
or less words then the sentence ‘A’ they would be asymmetrical. Further, each one is the transposed comparison matrix
of the other one (‘AB’ = ‘BA’t).
Comparing two source code files supposes to define, what has to be compared. Duploc compares two files line-by-line
using a simple string-match comparison function. Previously, comments and white spaces are removed, so that each line
is in some kind of normal form. Empty lines or lines containing only a ‘}’ (in C++) are dismissed. Table. 1 shows the
text of two simple C programs. The text underlined with a wave line indicates the actual text, which would be used in
the comparison process of Duploc. Figure 5 shows the corresponding comparison matrix.
For a extensive interpretation of those dotplot patterns see paper of the Helfman [1].

UINT.C UINT32.C
#include <stdio.h>
#include <sys/types.h >

main()
{

u_int foo;

foo = 1;
}

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

main()
{

u_int32_t foo;

foo = 1;
}

Table 1. contents of file UINT.C and UINT32.C

“Information Mural” visualisation of Duploc - 16. August 1999 page 8 of 64

2.2 The dataflow concept inside Duploc
The following Figure 6 illustrates the data-flow concept inside Duploc around the two main repositories.

“Information Mural” visualisation of Duploc - 16. August 1999 page 9 of 64

The user requests Duploc to read in source code files from the underlying file system. Each read in file is transformed in
a normal form2 and stored in the internal file repository. After the transformation, the file is called a Source Code
object. Based on the current file repository contents all possible combinations of comparison matrixes between two
Source Code objects are stored in the internal comparison matrix repository. Figure 6 shows a representative image of
this comparison matrix repository: All comparison matrixes form a sort of table – the alignment of the Source Code
objects in the file repository influences the structure of this table, so that new read in files make the table grow in the
direction of the lower right corner. The user can select two available views onto the comparison matrix repository:

• all: Displays all the comparison matrixes at once. The rectangular lines delimit each comparison matrix.

• selected: This mode displays the comparison matrixes for two selected files. The two files are selected in a
auxiliary window, which lists up3 the available files in the file repository.

In both views a dotplot of the selected comparison matrix(es) is displayed: Each match is depicted as a black painted
dot with separation lines between neighbouring comparison matrixes. The Graphical User Interface provides
functionality’s to the user to examine in a point-and-click concept the displayed comparison matrix(es). The next
section presents these available functionality’s.

2.3 Using Duploc in the original Interactive Mode
The following sections present the original Interactive Mode of Duploc:

2.3.1 Starting the original version
Consult the ‘Duploc Tutorial’ document [2] for a proper installation of the tool. The original Duploc version is started
by evaluating

DuplocApplication open

in a VISUALWORKS workspace or by selecting the windowSpec resource of DuplocApplication in a Resource
Finder and pressing START.

2.3.2 Selecting the Source Code Language
Duploc is able to read source code of a number of different languages. The code reader is set initially to the language
specified in the ini -File4. The language can be changed interactively with the Select Source Language... menu item
in the Configuration menu. Changing the source language takes effect immediately. This means that the next file that
is read in after a language switch is assumed to be written in the newly selected language. The files already loaded will
not change their language and the comparison process is language independent. (This means that you can compare C ++

files with SMALLTALK files, for a lark.)

2.3.3 Reading Source Code
Files can be read into the file repository using the normal VISUALWORKS FileBrowser, which is invoked from the File
menu (see Figure 7).

2 see section above
3 see following section
4 consult the ‘Duploc Tutorial’ document [2]

“Information Mural” visualisation of Duploc - 16. August 1999 page 10 of 64

The directory path and file pattern must be entered in the top input field. The pop-up menu, appearing when the operate
button5

 is pressed on the file list in the middle of the window, offers two items which are Duploc specific:

1. read in: Reads in the selected file and puts it into the file repository.

2. read in all: Reads all the files that are currently displayed in the file list and puts them into the file repository.

The files that are currently loaded into the tool are displayed in the window that is opened with Windows >> File List
(see Figure 8). The operate pop-up menu for this list allows to remove individual files from the file repository. The
same window is also used for determining the currently defined ‘selected’ comparison matrix (see next section).

2.3.4 Viewing the comparison matrix(es)
Once files are present in the file repository two views are available onto the comparison matrix repository, which
contains all comparison matrixes. The selection occurs with the radio button group on the lower left side of the main
window labelled with ‘Display’ – see Figure 9.:
• all: Displays all the comparison matrixes at once (see right window in Figure 9). The rectangular lines delimit

each comparison matrix.

• selected: This mode displays the comparison matrix for two selected files (see left window in Figure 9). The two
files are selected in the auxiliary window, which lists up the available files in the file repository.
(see Figure 8. – currently the comparison matrix between file ‘uint32.c ’ and ‘rlimit.c ’ is
displayed.)

5 The operate is the middle mouse button

“Information Mural” visualisation of Duploc - 16. August 1999 page 11 of 64

The bottom information line in the main window displays following information:
• First field: The current selected source language.
• Second field: The total vertical and horizontal size of all currently displayed comparison matrixes.

(see right window in Figure 9 – it indicates, that the size of all comparison matrixes is currently 23x23.)
• Third field: This field shows during the comparison process, which comparison matrix is currently built.
• Fourth field: This field shows the percentage progression of a comparison process in progress (N.B. Figure 9 shows

‘0%’, because no comparison process is in progress) .

2.3.5 Exploring the selected comparison matrix(es)
Once a view is selected, following functions allow the user to examine the comparison matrix(es):

Dot size slider
The size of the dots can be selected between 1 and 10 screen pixels with the slider in the upper right corner of the main
window – see Figure 10.

Hiding Borders
The delimiting lines between neighbouring comparison matrixes can be hidden by pressing the button Hide Borders or
by deselecting the menu item Show Borders in the Display window menu – see Figure 10. The reverse of this
function can be obtained by pressing on the same button respectively by selecting the same menu item.

Zooming
A zoom facility allows to enlarge interesting zones of the dotplot. By pressing the left mouse button over the dotplot
diagram, while dragging the mouse, a rubber band rectangle defines the zone which should be enlarged. By selecting
Zoom Back on the mouse menu, the zooming can be undone – see disabled menu item below the menu item
NewViewer in the opened mouse menu in Figure 10.

Source Code Examination
By using the mouse cursor on the dotplot, the user can explore the compared files. The co-ordinates of the mouse cursor
translated to a position in the source code is displayed in the upper left corner of the main diagram – in Figure 10 the
mouse cursor is not visible, but its current position is over the dot, which stands for the found match between line 5 of

“Information Mural” visualisation of Duploc - 16. August 1999 page 12 of 64

file ‘ syserr.c ’ and line 6 of file ‘uint32.c ’. By clicking with the left mouse button on a dot the user opens a
‘Files compared’ window which displays the source code of the two compared files. The lines that matched are
emphasised in red (see Figure 11). By opening the mouse menu with the operate button on the same dot and selecting
the menu item Display Files, the equivalent action is achieved.

Filtering
When looking at matched source code lines, the user may decide that specific lines are not interesting. By clicking on
the Delete Line button of the ‘Files compared’ window, the emphasised line is marked as ’deleted’. All the matches
that are generated by these lines are no longer displayed. The user can look at all the lines that are currently ’deleted’
using the window that is opened in the main window under Window >> Deleted Lines. Individual lines can be
’undeleted’ through the operate mouse button pop-up menu.

“Information Mural” visualisation of Duploc - 16. August 1999 page 13 of 64

3 The project goal

3.1 The problem – a limited display capability
The visual representation of large quantities of comparison matrix(es) is subject to a 'natural' barrier, which is the
number of pixels on the screen. The previous implementation of Duploc makes it possible to display a dotplot down to a
maximal reduction of one pixel per dot. This limits the quantity of comparison matrix(es) presented with a dotplot in a
reasonable way onto the screen. Depending on the normalised file sizes, a dotplot with some hundred rows respectively
columns can be displayed. e.g. a dotplot with 800x800 elements needs at least 800x800 screen pixels. This screen pixel
number increases to 8000x8000, if the maximal dot size of 10 pixels per dot is selected. Such a dotplot, which can cover
between 800x800 and 8000x8000 pixels, can still be explored with two scrollbars. A dotplot with several thousand rows
respectively columns can not be explored in a reasonable way anymore. Even by providing a scrollbar the overall
context will be lost.

3.2 The solution - overcoming this limitation with the Information Mural technique
The technique of the Information Mural enables to visualise several data elements per pixel [JS96]. The Information
Mural is a two-dimensional, reduced representation of an entire information space that fits entirely within a display
window or screen. The mural creates a miniature version of the information space using visual attributes such as
greyscale shading, intensity, colour, and pixel size, along with anti-aliased compression technique. The original
information space is partitioned in equal sized regions – named bin regions. Each Information Mural element, named
bin, represents some characteristics of the correspondent bin region. Consult the paper [JS96] for the different presented
applications.

In the context of this project, the information space that must be represented is a matrix6 of Boolean like data type – see
in Figure 12 the upper left dotplot representing this matrix. This matrix is partitioned in equal sized 2x2 rectangles,
referenced as the bin regions – see in Figure 12 the bottom left dotplot.

The chosen representation of the observed matrix is its match density: An Information Mural matrix is computed, where
each matrix element represents the match density (bin density) inside the correspondent bin region – see the bottom

6 N.B. no reference to a comparison matrix is made here. See further down the introduced term raw matrix.

“Information Mural” visualisation of Duploc - 16. August 1999 page 14 of 64

right matrix of floats in Figure 12. The Information Mural is the graphical representation of this Information Mural
matrix. By using a bin value colouring function each Information Mural matrix element is represented in the
Information Mural as a grey shaded dot. The obtained plot is referenced as the binplot – see the top right plot in Figure
12. In the binplot of Figure 12 a darker dot stands for a denser and a lighter dot for a sparser bin density inside the
correspondent bin region.

3.3 The project goal – integrating the Information Mural technique into Duploc
The project goal was to integrate the Information Mural technique into the Graphical User Interface of Duploc by:
• providing an Information Mural overview binplot of the current selected comparison matrix(es).
• providing navigation means, in order to explore sections of the comparison matrix(es) with a conventional dotplot.

“Information Mural” visualisation of Duploc - 16. August 1999 page 15 of 64

4 The new Graphical User Interface

4.1 Newly introduced concepts

4.1.1 The raw matrix set
The first dataflow concept (see Figure 6) was extended by the raw matrix set – see Figure 13. The reason for the
introduction the concept of the raw matrix set is, that each defined raw matrix groups the contents of a specified set of
comparison matrixes and presents them as a single large matrix:
• Definition: A raw matrix set contains some defined raw matrixes.
• Definition: A raw matrix groups the contents of a defined set of comparison matrixes. It has a co-ordinate system,

where the top left element has co-ordinates (1,1).

Currently two raw matrixes are defined; they correspond with the ‘all’ and ‘selected’ views described above:
• ‘all’ raw matrix: Groups the contents of all comparison matrixes contained in the comparison matrix

repository.
• ‘selected’ raw matrix: Groups only the contents of the selected comparison matrix.

In Figure 13 the two window snapshots of the previous Graphical User Interface are identical with the ones shown in
Figure 6. This is to illustrate, that each view is the dotplot of the correspondent raw matrix.

“Information Mural” visualisation of Duploc - 16. August 1999 page 16 of 64

4.1.2 Representing a large raw matrix
The problem of representing a large raw matrix is equivalent with the project goal stated above. A large raw matrix
must be represented by:
• providing an Information Mural overview binplot.
• providing navigation means, in order to explore sections of the raw matrix with a conventional dotplot.
The new implemented Graphical User Interface represents a selected raw matrix depending on its size with two
techniques: A two level view representation and a three level view representation.

A two level view representation
Up to a certain raw matrix size the Graphical User Interface offers two views onto the current selected raw matrix – see
Figure 14:

“Information Mural” visualisation of Duploc - 16. August 1999 page 17 of 64

• user selection view: A 200x200 element section of the raw matrix, referenced as the user selection region, is
displayed as a conventional dotplot, referenced as the user selection dotplot – see bottom right window. Depending
on the selected dot size, this dotplot varies between 200x200 and 2000x2000 screen pixels. The user selection
dotplot shown in Figure 14 uses 400x400 screen pixels, because the selected dot size is 2. The user selection region
has an origin position (top left corner) on the raw matrix. The user can explore sections of the raw matrix through
this dotplot by modifying the user selection origin position – see next section.

• overview view: The complete raw matrix is represented as a density Information Mural matrix of 100x100
elements. The graphical representation is an Information Mural binplot of 100x100 bin dots. This binplot is
referenced as the overview binplot – see top right window. Inside this binplot an orange rectangle indicates the
current position of the user selection region. Depending on the selected dot size for drawing the bin dots, this
binplot varies between 100x100 and 1000x1000 screen pixels. The overview binplot shown in Figure 14 uses
500x500 screen pixels, because the selected dot size is 5. The size of the bin regions depends on the raw matrix
size: The raw matrix is partitioned in 100x100 regions; therefore the width respectively the height of each bin
region is the 1/100 of the raw matrix width respectively height – consult chapter 4, the design chapter, for further
explanations about the calculations. Here each bin represents a region of 19x19 elements in the raw matrix.

The ‘displaying barrier’ of the two level view representation
In the overview binplot the user selection region must be represented as an orange rectangle with the right proportions.
Above, it is mentioned, that the user selection dotplot has a size of 200x200 dots and that the overview binplot has a
size of 100x100 bin dots. Let us consider one moment for both plots a higher limit: e.g. 400x400 dots. With this
reasonable size of 400x400 dots for the overview binplot and the user selection dotplot, a bin dot in the overview binplot
represents max. 400x400 dots in the user selection dotplot. Therefore a raw matrix with more than 400x400 = 160’000
lines per side can not be represented with this two level strategy; in the correspondent overview binplot the user
selection region would be represented as an orange rectangle around a fraction of a single bin dot. With a 200x200 dots
limit, this ‘displaying barrier’ would occur already above a raw matrix size of 200x200 = 40'000 lines per side.

A three level view representation
The solution to this ‘displaying barrier’ problem is to introduce a third level – see Figure 15:
• user selection view: This corresponds with the user selection view in the two level view representation – see bottom

left window.
• overview view: This corresponds with the overview view in the two level view representation with a modification:

Only a section of the raw matrix is represented by this Information Mural binplot of 100x100 bin dots. This binplot
is again referenced as the overview binplot – see bottom right window. As in the two level view representation an
orange rectangle indicates the current position of the user selection region, if the overview region covers it – see
rectangle in the bottom right window. As for the user selection region the overview region has an origin point (top
left region corner) in the raw matrix. The user can explore the raw matrix by modifying this origin position – see
next section.

• super overview view: This view corresponds with the overview view in the two level view representation – see top
right window. The complete raw matrix is represented as a density Information Mural matrix of 100x100 elements.
The graphical representation is again an Information Mural binplot of 100x100 bin dots. This binplot is referenced
as the super overview binplot – see top right window. Inside this binplot the orange rectangle indicates the current
position of the user selection region and the blue rectangle indicates the current position of the overview region.

For understanding the criteria, when a switch between two level view representation and three level view representation
occurs, consult the calculations explained in the design chapter – see chapter 5.
With the current settings of 200x200 dots for the user selection dotplot and 100x100 bin dots for the super overview and
overview binplot, the limit of this current three level view representation is a raw matrix with a size of 2'000'000
(=100x100x200) lines per side. By choosing higher binplot sizes this limit can be pushed further:
e.g. 200x200 dots for the user selection dotplot, 200x200 bin dots for the super overview binplot and overview binplot;
the limit of this three level view representation is a raw matrix of 8'000'000 lines per side.

“Information Mural” visualisation of Duploc - 16. August 1999 page 18 of 64

“Information Mural” visualisation of Duploc - 16. August 1999 page 19 of 64

4.2 Using Duploc in the new Information Mural Interactive Mode

4.2.1 Starting the new version
Consult the ‘Duploc Tutorial’ document [2] for a proper installation of the tool. The new Duploc version is started by
evaluating

DuplocInformationMural open

in a VISUALWORKS workspace or by selecting the windowSpec resource of DuplocInformationMural in a
Resource Finder and pressing START.

4.2.2 Unchanged loading features from the previous version
The following loading features are invoked by the user like in the previous version7:
• Selecting the Source Code Language
• Reading Source Code

4.2.3 Selecting the raw matrix
The raw matrix selection occurs with the radio button group on the lower left side of the main window labelled with
‘display RawMatrix’ – see Figure 16.:
• all: Displays the all raw matrix.
• selected: Displays the selected raw matrix.

4.2.4 Exploring the raw matrix
Depending on the raw matrix size, which is indicated in the second field of the status bar on the bottom of the Duploc
window (see Figure 16), a two level or three level view representation is automatically chosen by Duploc. (Consult the
design chapter, chapter 5)

Let’s begin with a raw matrix, which has a size of 1983x1983 elements and which is explored in a two level view
representation – see Figure 16.

User selection (view) display mode 8

Each new selected raw matrix starts in this display mode. This is indicated in the radio button group display view,
where user selection is set. The user selection label and the diagram border are both coloured in orange – the colour
attributed to this display mode. The absolute co-ordinate of the upper left corner of the user selection region is shown
on the left side of the main window under the label origin: (N.B. the top left position of the raw matrix has co-ordinates
(1,1)).The size of the user selection region is indicated under the label region size: . Red borders around the diagram
border indicate that the outer border of the raw matrix has been reached, green borders indicate that the user selection
region can be displaced/moved in that direction.

Common features with the previous version
The following features available in the previous version are also available in this display mode9:
• setting the dot size slider
• hiding the delimiting lines between the neighbouring comparison matrixes.
• zooming
• examining the source code

Selecting the user selection region size
The user selection region size can be selected over the following mouse menu items – see Figure 17:
size 200x200, size 400x400, size 600x600 and size 800x800.

7 see section 2.3 Using Duploc in the original Interactive Mode
8 the user selection view display mode is referenced as the user selection display mode from here on.
9 see section 2.3.5 Exploring the selected comparison matrix(es)

“Information Mural” visualisation of Duploc - 16. August 1999 page 20 of 64

“Information Mural” visualisation of Duploc - 16. August 1999 page 21 of 64

Modify/Position the user selection region
The user selection region can be moved inside the boundaries of the raw matrix by selecting the Move user selection
region mode in the mouse menu (see Figure 17): In the situation of Figure 16, for exploring the raw matrix area further
to the right, move the cursor (which turns into a hand icon over the dotplot) near the right dotplot border, click the left
mouse button and drag the mouse cursor towards the left dotplot border. The user selection region can also be
positioned by selecting the Position user selection region mode: The user selection region centre will be aligned with
the clicked position.– this mode results in a sort of two-dimensional scrolling. To De-select either of the two modes,
click on Stop Moving/Positioning in the mouse menu.

Switching view level
Selecting the menu item up in the mouse menu corresponds with the selection of the overview display mode in the radio
button group on the left hand side of the window.

Resetting
By selecting the mouse menu item Reset the user selection region is resized to 400x400 elements and repositioned at
(1,1).

Overview (view) display mode 10 in a two level view representation
In the two level view representation, the complete ‘all’ raw matrix introduced in Figure 16 is represented with this
overview Information Mural binplot – see Figure 18. The radio button group display view indicates overview. This
overview label and the diagram border are both coloured in blue – the colour attributed to this display mode. The
overview Information Mural binplot represents the complete ‘all’ raw matrix. Therefore the absolute co-ordinate of the
upper left corner is set at (1,1) – see under the label origin: . The size of the overview region is computed by multiplying
the number of dots in the Information Mural binplot indicated under the label region size:11 and the bin size indicated
under the label bin size:. In Figure 18 the represented overview region has 100x20 = 2000 elements per side – this is a
larger region as the raw matrix region with 1983 elements per side. The current user selection region is represented by
an orange rectangle12 in the binplot. As in the user selection display mode the same colour coding with the red/green
borders is applied13, but here the red/green lines are drawn inside the orange rectangle.

Common features with the user selection display mode
The following features available in the user selection display mode are also available in this display mode:
• setting the dot size slider
• zooming
• resetting

Mouse pointer information
The bin density under the current mouse cursor position is indicated in the upper left window corner.

Move/Position the user selection region
The user selection region can be moved inside the boundaries of the raw matrix by selecting the Move user selection
region mode in the mouse menu (see Figure 19): In the situation of Figure 18, for moving the user selection region
towards the right, move the mouse cursor (which turns into a hand icon over the binplot) over the binplot area, click the
left mouse button and drag the mouse cursor towards the right binplot border. The user selection region can also be
positioned by selecting the Position user selection region mode: The user selection region centre will be aligned
with the clicked position. To De-select either of the two modes, click on Stop Moving/Positioning in the mouse menu.

Enable/Disable showing objects
In order to appreciate the Information Mural binplot, the drawing of the orange rectangle, which represents the user
selection region, can be omitted.

Spying bins
By selecting the mouse menu item Spy bin region and by clicking on any bin dot, the contents of the correspondent bin
region is displayed next to the bin dot in a red painted rectangle – see Figure 20.

Switching view level
Selecting the menu item down in the mouse menu corresponds with the selection of the user selection display mode in
the radio button group on the left hand side of the window.

10 the overview view display mode is referenced as the overview display mode from here on.
11 the label region size: should be renamed plot size:.
12 remember, that the colour orange was attributed to the user selection display mode.
13 see section user selection display mode on page 19

“Information Mural” visualisation of Duploc - 16. August 1999 page 22 of 64

“Information Mural” visualisation of Duploc - 16. August 1999 page 23 of 64

“Information Mural” visualisation of Duploc - 16. August 1999 page 24 of 64

Let’s continue with a raw matrix, which has a size of 10703x10703 elements and which is explored in a three level view
representation – see Figure 21.

Super overview (view) display mode 14 in a three level view representation
In the three level view representation, the complete ‘all’ raw matrix is represented with this super overview Information
Mural binplot – see Figure 21. The radio button group display view indicates 2. overview – this label text was chosen
because of the restricted space. This 2. overview label and the diagram border are both coloured in black – the colour
attributed to this display mode. The super overview Information Mural binplot represents the complete ‘all’ raw matrix.
Therefore the absolute co-ordinate of the upper left corner is set at (1,1) – see under the label origin: . The size of the
super overview region is computed by multiplying the number of bin dots in the Information Mural binplot indicated
under the label region size: and the bin size indicated under the label bin size:. In Figure 21 the represented super
overview region has 100x108 = 10800 elements per side. The current user selection region is represented by an orange
rectangle and the current overview region is represented by a blue rectangle in the binplot. The overview region can be
moved or positioned in this display mode. The red respectively green lines on the inside of the blue rectangle indicate if
a side did respectively did not reach the outer border of the raw matrix. The user selection region can not be moved in
this display mode, because the moved distance would correspond with a multiple of the bin region size. If this bin
region size is much bigger then the actual user selection region, then you would loose the precision in positioning it.
Therefore the inside of the orange rectangle on the super overview binplot is drawn with red lines on four sides. Moving
or positioning the user selection region has to occur in the overview display mode – see further down.

Common features with the overview display mode in the two level view representation
The following features available in the overview display mode are also available in this display mode:

14 the super overview view display mode is referenced as the super overview display mode from here on.

• setting the dot size slider
• zooming
• resetting

• mouse pointer information
• enable/disable showing objects
• spying bins

Move/Position the overview region
The overview region can be moved inside the boundaries of the raw matrix by selecting the Move overview region
mode in the mouse menu (see Figure 22): In the situation of Figure 21, for moving the overview region towards the
right, move the mouse cursor (which turns into a hand icon over the binplot) over the binplot area, click the left mouse
button and drag the mouse cursor towards the right binplot border. The overview region can also be positioned by
selecting the Position overview region mode: The overview region centre will be aligned with the clicked position. To
De-select either of the two modes, click on Stop Moving/Positioning in the mouse menu.

Switching view level
Selecting the menu item down in the mouse menu corresponds with the selection of the overview display mode in the
radio button group on the left hand side of the window.

Overview (view) display mode in a three level view representation
Figure 23 shows the overview display mode for the raw matrix introduced in Figure 22. This display mode corresponds
with the overview display mode for a two level view representation with some modifications discussed above: Because
this overview region covers only a part of the raw matrix (in the example of Figure 23 it is 1500x1500 elements), the
absolute co-ordinate of the upper left corner is displayed under the label origin: . If the current user selection region is
covered by this overview region, then it is represented by an orange rectangle.

Common features with the overview display mode in a two level view representation
This display mode supports all features presented in the overview display mode in a three level view representation:

Move/Position the overview region
The Move overview region mode and Position overview region mode allow to move and position the overview
region in the same way as the two equivalent modes in the user selection display mode allow to do with the user
selection region (see Figure 24). The menu item Focus on user selection aligns the overview region centre with the
current user selection region centre.

Switching view level
Selecting the menu item down/up in the mouse menu corresponds with the selection of the user selection / super
overview display mode in the radio button group on the left hand side of the window.

“Information Mural” visualisation of Duploc - 16. August 1999 page 25 of 64

“Information Mural” visualisation of Duploc - 16. August 1999 page 26 of 64

“Information Mural” visualisation of Duploc - 16. August 1999 page 27 of 64

4.2.5 The bin value colouring function
A binplot is the graphical representation of a density Information Mural matrix. The bin dot shading occurs with a
defined bin value colouring function (see Figure 12). A bin-value, in the range from 0.0 to 1.0 is mapped to a grey level
between white and black. By modifying the function, different binplots can be obtained, which can help to identify
some interesting regions of the raw matrix. Duploc binds to the super overview and the overview Information Mural
binplot two independent bin value colouring functions. The bin value colouring function settings of the current
Information Mural binplot visible in the current display mode are presented in an auxiliary window – the bin colouring
tool. This tool can be started in the super overview and overview display mode from the mouse menu under open <bin
value colorer> tool, if it is not open yet – see Figure 25b. Figure 26 shows the starting appearance of the tool, which
displays the settings of the bin value colouring function used for generating the super overview Information Mural
binplot displayed in Figure 25.

“Information Mural” visualisation of Duploc - 16. August 1999 page 28 of 64

The available input range is the range from the smallest bin value (which is bigger than zero) to the largest bin value
that occur in the bound Information Mural matrix. The available input range of this super overview Information Mural
matrix displayed in Figure 26 has a minimum of 8.57339e-5 and a maximum of 0.066358. Each bin value colouring
function defines an input range, which is equal or smaller then the actual available input range. By clicking on the
button Available Range, the input range is set on the available input range. The information box on the bottom right
part of the window in Figure 26 displays always the current set input range.

“Information Mural” visualisation of Duploc - 16. August 1999 page 29 of 64

The available input range is not displayed numerically; only a graphical representation is available. Three horizontal
axis below the mapping function show the relationship between the maximal range (from 0.0 to 1.0), the available input
range and the input range. All three axis have a vertical mark, so that the length between the left vertical axis and this
mark before the arrow head represents one horizontal unit. On the middle and bottom axis two types of coloured
rectangle appear: A rectangle coloured in orange with the smaller height, referenced as the available input range
rectangle, represents the available input range relatively to the horizontal unit. A rectangle coloured in red with the
higher height, referenced as the input range rectangle, represents the input range relatively to the horizontal unit.
(Figure 29 shows this different rectangle heights better then Figure 26.) The bottom horizontal axis represents the
maximal range (from 0.0 to 1.0). Therefore the position and width of the available input range rectangle represents the
available input range in reference to the maximal range and the position and width of the input range rectangle
represents the input range in reference to the maximal range. The middle horizontal axis represents the available input
range. Therefore the available input range rectangle covers the middle horizontal axis. The position and width of the
input range rectangle represents the input range in reference to the available input range.
The upper horizontal axis represents the current input range. The mapping function, which is displayed in red, maps a
percentage of the input range to the vertical grey scale. This percentage can be set with the two sliders indicated by
arrow #1. The function degree can be set with the slider indicated by arrow #2. Currently the function degree in Figure
26 is one; therefore a linear mapping is selected. The two sliders indicated by arrow #3 delimit the function output
range, which is effectively mapped linearly onto the grey level range selected with the two sliders indicated by arrow
#4.
Figure 27 shows some selected linear restrictions on the current input range (which in this example still corresponds
with the available input range):

The mapping function is only applied between the 30th% and the 70th% of the input range. The function degree
remains on one for achieving a linear mapping. Only the values lying between the 20th% and the 73th% of the output
range are effectively mapped linearly onto the grey level range between 0.0 (white) and 0.9 (dark) – see filled rectangle
on the right of the mapping function. Once the update button is pressed the super overview Information Mural binplot
will appear like in Figure 28. Only bins between 0.0252692 and 0.0391864 are visible – this visible range is indicated in
the information box. By pressing the button Visible Range the input range can be restricted on this current visible
range – see Figure 29. Repeating the updating will only reproduce the binplot shown in Figure 28.

“Information Mural” visualisation of Duploc - 16. August 1999 page 30 of 64

“Information Mural” visualisation of Duploc - 16. August 1999 page 31 of 64

“Information Mural” visualisation of Duploc - 16. August 1999 page 32 of 64

In order to demonstrate the usefulness of this tool, the input range is restored on the available input range. By choosing
a high function degree of 6.8 like shown in Figure 30 only dense bins will appear darker – see Figure 31. With this
simple settings the dense region in any current set input range will also appear darker.

“Information Mural” visualisation of Duploc - 16. August 1999 page 33 of 64

5 Design

5.1 Introduction
The design of the application extension is explained in two sections:
• ‘System outline’
• ‘System details’

The system is implemented in Smalltalk – therefore this chapter makes references to Smalltalk expressions: e.g. ‘self’.

System outline
A sequence of diagrams explains the outline of the system. The system is designed according to an implementation
concept, which is described in the section 5.3.8 Implementation concepts. These diagrams are based on a defined
graphical notation, which reflects the used implementation concept. This graphical notation is described in section
5.3.9. Used graphical notation

System details
This section contains next to the mentioned implementation concept and graphical notation the details about the used
models, the behaviour of certain classes and update protocols between classes and its dependants.

5.2 System outline
A serie of 15 diagrams are presented in four parts for describing the implemented design:
• part I (Diagram 1) presents the main application structure around two ‘clouds’ of classes: One cloud, referenced as

the graphical cloud, groups classes used for the MVC pattern and one cloud, referenced as the model cloud, groups
classes used for representing the current raw matrix.

• part II (Diagram 2a, 2b) presents the class hierarchy, which models the user selection, overview and super overview
regions introduced above.

• part III (Diagram 3a – 3h) presents the details of the graphical cloud.
• part IV (Diagram 4a – 4d) presents the details of the model cloud.

The diagrams are inserted after the following text, which describes them. N.B. all mentioned sections are subsections of
the section 5.3 System details.

Diagram 1. Classes around the application model class DuplocInformationMural

The Diagram 1 shows the application structure around the class DuplocInformationMural (highlighted by a shadow),
which is a subclass of DuplocApplication, the application model of the old implementation. The SelectionInList class
references the set of defined raw matrixes. A raw matrix is modelled with the RawMatrix class. The
DuplocPresentationModel instance has a method ‘diagramModel’, which returns a reference on the current selected
RawMatrix instance. The bottom cloud on the diagram is the model cloud: It represents the classes used by the
DuplocPresentationModel instance for representing a current RawMatrix instance. Depending on the current raw
matrix size, a two level or three level view representation of the current raw matrix is realised. The MVC model is
formed by the DuplocPresentationModelView class, DuplocPresentationModelController class and
DuplocPresentationModel class. The DuplocPresentationModelView instance is signalled by the window system to
(re)draw the GUI view area and the DuplocPresentationModelController instance is signalled to respond to the mouse
events - see event symbols. Both classes can assume different states: The DuplocPresentationModelView class must
display different diagrams and the DuplocPresentationModelController class must support different mouse functions.
These states are implemented with the ‘state’ design pattern, where the incoming events are forwarded to the state
classes. The top cloud on the diagram is the graphical cloud, which groups the ‘view’ and ‘controller’ state classes. It
also contains a class for displaying via the UIBuilder class the raw matrix information below the current mouse cursor
position. It is important to remember the two different types of lines used for the two clouds - they are used throughout
the diagrams as an orientation help. The selection of the current raw matrix by the user through the corresponding radio
button will send an event to the SelectionInList instance.
The selection of the current display mode by the user through the corresponding radio button will send an event to the
ValueHolder instance, which is accessed by the DuplocPresentationModelView instance with the ‘viewSelector’
method.

“Information Mural” visualisation of Duploc - 16. August 1999 page 34 of 64

DuplocInformat ionMural
model()

#presentat ionModel

#rawMatr ixSiL

select ionHolder()

#rawMatr ixAdaptor

current raw matrix

value()

diagramModel()

comparisonMatr ixView()

model() model()

viewSelector() various classes modeling the
cursor, view sate and

controller state

various classes for
representing a raw matrix

Diagram 1. Classes around the application model class DuplocInformationMural

symbols :

cloud of classes

dependant

builder()
UIBuilder

ValueHolder

choiceOfView()

DuplocPresentat ionModelView DuplocPresentat ionModelControl ler

DuplocPresentat ionModel

ValueHolderSelectionInList

RawMatr ix

2

defined raw matrixes 'al l ' and 'selected'

dependant

controller() view()

'display view'
radio button

event

Event

'draw
' event

from
 the w

indow
system

'm
ouse' event

from
 the w

indow
system

'display raw matrix'
radio button event

referencing

“Information Mural” visualisation of Duploc - 16. August 1999 page 35 of 64

Diagram 2a. RawMatrix and AbstractRawSubMatrix classes

The RawMatrix class represents the raw matrix model. (see section 4.1.1 The raw matrix set)
• Features of the RawMatrix class:

• It has a height n and width m.
• The upper left corner has co-ordinates (1,1).
• and the bottom right corner has co-ordinates (n, m).

• Methods summary of the RawMatrix class:
• The class provides a set of methods for accessing the comparison results: e.g. ‘hasMatchAt:aPoint’ returns a

Boolean for indicating the comparison result at the co-ordinates aPoint – true for a match and false for no
match.

• It also provides so called enumerating methods: e.g. ‘forSubMatrix:aRectangle do:aBlock’ evaluates for
each found match lying in the specified region aRectangle the block aBlock. There are further enumerating
methods ‘columnBordersIn:aRectangle do:aBlock’ and ‘rowBordersIn:aRectangle do:aBlock’, which
return within the bounds of the specified region aRectangle all first columns respectively first rows belonging
to the next file in the raw matrix.

The user selection, overview and super overview regions introduced above are each realised as an own class – this is
described below. All three regions are a sort of raw sub matrix:

Definition: A raw sub matrix represents a region of an observed raw matrix. It has an origin position inside the raw
matrix and a certain size.

There is an important consistency condition:

Consistency conditions: A raw sub matrix must always represent a sub-region of an observed raw matrix. It must be
contained in the raw matrix area.

The AbstractRawSubMatrix class models a raw sub matrix:
• Features of the AbstractRawSubMatrix class:

• The attribute region stores an instance of the Rectangle class: This rectangle represents the covered raw matrix
area. The upper left corner, referenced as the origin point, is expressed in the co-ordinate system of the raw
matrix.

• The region has a height n’ and width m’.
• It has a local co-ordinate system in its covered region:

• The upper left corner has co-ordinates (0,0)
• and the bottom right corner has co-ordinates (n’ - 1, m’ - 1).

• Methods summary of the AbstractRawSubMatrix class:
• The class provides a set of methods equivalent to them available in the RawMatrix class, which uses the local

co-ordinate system.
• The origin position of the region can be moved to a new position with the method ‘movedTo:aPosition’. A

position, which would move the raw sub matrix region outside the raw matrix, is refused. Instead a linear
approximation is made. The ‘Consistency condition’ is guaranteed.

The AbstractRawSubMatrix class is designed using the ‘self topology’ implementation concept – see section 5.3.8.3 The
concept of ‘self topology’. Therefore this class and all its subclasses are independent from the application topology. The
reference to the RawMatrix instance is returned by sending the message ‘self topology rawMatrix’.

Each class, which is a subclass of the AbstractRawSubMatrix class, is a dependant of the current RawMatrix class. How
this dependency is realised is explained in the fourth part.

“Information Mural” visualisation of Duploc - 16. August 1999 page 36 of 64

+hasMatchAt: aPoint
+columnFi lename: aPoint
+columnLineNumber: aPoint
+rowFilename: aPoint
+rowLineNumber: aPoint

+columnBordersIn: aRectangle do: aBlock
+countMatchesIn: aRectangle
+forSubMatrix: aRectangle do: aBlock
+rowBordersIn: aRectangle do: aBlock

+height
+width
+empty

RawMatrix
#region :Rectangle

+abstractInit ial izeAt:aRectangle

+hasMatchAt: aPoint
+columnFi lename: aPoint
+columnLineNumber: aPoint
+rowFilename: aPoint
+rowLineNumber: aPoint

+rowBordersDo:aBlock
+columnBordersDo: aBlock
+forRawSubMatr ixDo: aBlock
+forRawSubMatr ixRegion: aRectangle Do: aBlock
+countMatchesIn: aRectangle

+height
+width

+moveRegionsOriginTo:aPoint

+translateAbs:aPoint
+translateRel:aPoint

+topology

AbstractRawSubMatrix

0..ndependants

Diagram 2a. RawMatrix and AbstractRawSubMatrix classes

topology().rawMatrix()

“Information Mural” visualisation of Duploc - 16. August 1999 page 37 of 64

Diagram 2b. Subclasses of the AbstractRawSubMatrix class

The AbstractUserSelection class is a subclass of the AbstractRawSubMatrix class. It represents the user selection
region. The AbstractOverView class and AbstractSuperOverView class represent the overview respectively super
overview region. They are subclasses of the AbstractInformationMuralMatrix class, which is a subclass of the
AbstractRawSubMatrix class.
• Features of the AbstractInformationMuralMatrix class:

• AbstractInformationMuralMatrix class stores in the attribute imMatrix the Information Mural matrix, which
represents the match densities of the own raw sub matrix region.

• The Information Mural matrix has height n’’ and width m’’ .
• The upper left corner has co-ordinates (1,1)

(This definition results from the usage of the TwoDList class)
• and the bottom right corner has co-ordinates (n’’, m’’) .

• The size of each bin region is stored in the binLen attribute.
• Methods summary of the AbstractInformationMuralMatrix class:

• The method ‘buildImMatrixReportingProgressionTo:aValueHolder PercentageStep:aValue’ builds the
Information Mural matrix for the covered region.

• The class provides a set of methods for mapping co-ordinates between the raw sub matrix region and the
Information Mural matrix.

• It also provides an enumerating method: ‘forInformationMuralMatrixDo:aBlock ’ evaluates for each bin
value the block aBlock.

The current raw matrix is presented by the DuplocPresentationModel instance with a two level or three level view
representation. The DuplocPresentationModel instance holds three instances: The first is a sort of
AbstractUserSelection, the second is a sort of AbstractOverView and the third is a sort of AbstractSuperOverView – the
details are described in the third part. The section 5.3.1 Representing a raw matrix explains the formulas, how the
parameters about the binLen and the region sizes for each three classes are selected. The class methods and class
attributes, which are underlined in the Diagram 2b, implement these described formulas.

The raw matrix size changes, according to the loading of new files or deleting of present files, and the contents changes,
if lines are ‘deleted’ in the ‘Files compared’ window – see section 2.3 Using Duploc in the original Interactive Mode.
Therefore an update protocol between the RawMatrix instance and its dependants, which are subclasses of the
AbstractRawSubMatrix class, is used – see section 5.3.2 RawMatrix class update protocol to its dependants. These
dependants have a defined behaviour to changes – see section 5.3.3 AbstractRawSubMatrix class behaviour to
RawMatrix class changes. If a dependant is a subclass of the AbstractInformationMuralMatrix class, then the behaviour
must also be extended – see section 5.3.4 The AbstractInformationMuralMatrix class extends the
AbstractRawSubMatrix class behaviour.

“Information Mural” visualisation of Duploc - 16. August 1999 page 38 of 64

AbstractRawSubMatrix

Diagram 2b. Subclasses of the AbstractRawSubMatrix class

R S M m i n
R S M m a x

+abstract In i t ia l izeAt:aRectangle
+abstract In i t ia l izeMaxSizeAt:aPoint
+abstractReini t ia l izeMaxSize

AbstractUserSelection

#binLen : In teger
imMatr ix : TwoDLis t

+abst ract In i t ia l izeAt :aRegion Wi thBinLen:aLen Fi l ter ingContents :aBoolean

+bui ld ImMatr ixRepor t ingProgress ionTo: aValueHolder PercentageStep:aValue

+binValueAt : aPoint
+binValueAt : aPoint put :aValue

+for In format ionMura lMatr ixDo: aBlock

+ imHeigh t
+ imWid th
+imMatr ix

+correspondentBin: aPoint
+correspondentBinIndex: aPoint
+correspondentBinOr ig in :aPoint

AbstractInformatinMuralMatrix

I M M m i n
I M M m a x

+abstract In i t ia l izeWithFi l teredContents:aBoolean
+RSMsize :aRawMat r i x
+RSMbinS ize :aRawMat r i x
+RSMmin :aRawMat r i x
+RSMmax :aRawMat r i x
+ IMMsize :aRawMatr ix

AbstractSu perOverView
I M M m i n
I M M m a x
O b j U S m i n

+abstract In i t ia l izeAsNthOV:aIntegerPosi t ion OutOf :aIntegerSize
Fi l ter ingContents :aBoolean
+abstract In i t ia l izeAsNthOV:aInteger At :aPoint F i l ter ingContents:aBoolean
+forTwoLeve l :aRawMat r ix
+RSMsize :aRawMat r i x
+RSMbinS ize :aRawMat r i x
I+MMsize :aRawMatr ix
+RSMmin :aRawMat r i x
+RSMmax :aRawMat r i x
+Opera to rWindowSize :aPo in t On:aRawMat r i x
+OVdis t r ibut ionPol icy :aRawMatr ix AsNthOV:aIntegerPosi t ion OutOf :a In tegerSize

AbstractOverView

“Information Mural” visualisation of Duploc - 16. August 1999 page 39 of 64

Diagram 3a. Classes, which model the view state, the controller state and the cursor information. They interact with classes,
 which implement the RawSubMatrix class type, and with classes, which store cached data.

cursorPosit ion()

0..1cachedImage()

view()

viewState()

controller()

control lerState()

DuplocPresentat ionModelView

<<type>>
Presentat ionModelViewState

<<type>>
Presentat ionModelControl lerState

<<type>>
Matr ixCursorPosit ion

DuplocPresentat ionModelControl ler

UIBuilder

#mainModelBui lder

CachedObservat ionData CachedImage

<<type>>
RawSubMatr ix

#matr ixModel

cachedObservat ionData()

cachedObservat ionData()

view()

model()

DuplocPresentat ionModel
3userSelect ion(), overview(), superOverview()

model()

BinValueColorerView

BinValueColorerInterface

binValueColorerInterface()

diagramView()

model()

BinValueColor ingModel

0..1

binValueColor ingModel()

RawMatr ix

rawMatr ix()

bvcm()

“Information Mural” visualisation of Duploc - 16. August 1999 page 40 of 64

Diagram 3a. Classes, which model the view state, the controller state and the cursor information. They interact with
classes, which implement the RawSubMatrix class type, and with classes, which store cached data.

This third part describes the role of the classes inside the graphical and model cloud introduced in Diagram 1. This
Diagram 3a describes the topology of the graphical cloud, meaning all the classes and relationships forming the
graphical cloud, and the concept of the model cloud.
As mentioned in the first part, the DuplocPresentationModelView class and DuplocPresentationModelController class
have several states: These states are implemented according to the ‘state’ design pattern. The role of the classes inside
the graphical cloud is to represent these different states. The PresentationModelViewState type class stands for the set
of all classes, inside which each class implements a DuplocPresentationModelView state. The
PresentationModelControllerState type class stands for the set of all classes, inside which each class implements a
DuplocPresentationModelController state. The MatrixCursorPosition type class represents the different
implementation classes used to display via the UIBuilder class the raw matrix information below the current mouse
cursor position.
In each application state, the three instances of the implementation classes inside the graphical cloud interact with the
instances of the classes drawn in the model cloud. The model cloud consist of a more complex topology than the one
sketched in Diagram 3a. The complete topology of the model cloud is described in the fourth part.

The role of the classes inside the model cloud is to guarantee the different display modes of the application. The
application has up to three different display modes:
• user selection display mode
• overview display mode
• super overview display mode

The two display modes overview and super overview need:
• to store their displayed binplot as a cached image, because the creation time of a binplot is quite time consuming:

At (almost) every position in the binplot a grey shaded dot is drawn. Each used grey value is returned by the
associated ‘bin value colouring function’. Therefore it needs …

• to store the associated ‘bin value colouring function’ used for creating the latest cached image.

A ‘bin value colouring function’ is realised with the BinValueColoringModel class – see section 5.3.6 The ‘bin value
colouring model’.

All three display modes need also to store:
• the current dot size
• the current scrollbar positions
• the previous dot size
• the previous scrollbar positions
This allows the zoom back functionality in each display mode.

Therefore the model cloud contains for each display mode:
• An instance of the CachedObservationData class storing all data described above.
• An instance of the implementation class for the RawSubMatrix class type. This implementation class is a subclass

of AbstractUserSelection, AbstractOverView or AbstractSuperOverView class. It is specific to this application
topology – see further down explanations about Diagram 3b.

The instances in the upper cloud interact with the instances in the model cloud: In order to understand the type of
interactions, which occur, the following update scenario in the overview display mode is presented:

Scenario: view area must be redrawn
The window system notifies to the DuplocPresentationModelView instance to redraw the window view area.
This request is forwarded by the DuplocPresentationModelView instance to the current view state instance. Each view
state class (see Diagram 3f below) has the role to display inside the window view area the latest image of the overview
binplot and the orange rectangle representing the user selection region.
First the view state instance verifies, if the CachedObservationData instance, returned by the referencing method
‘cachedObservationData’, has still a cached image. If ‘nil’ is returned the image was not created yet (lazy
instantiation) or it was invalidated – see part four. If the image is not present the view state instance accesses by
computing ‘self model overview’ the instance, which is a subclass of the AbstractOverView class, in order to create the
overview binplot as a new instance of the CachedImage class. This image is created with the cached
BinValueColoringModel instance stored in the CachedObservationData instance. The newly created image is stored in
the same CachedObservationData instance.

“Information Mural” visualisation of Duploc - 16. August 1999 page 41 of 64

Once a valid cached image is available, it is displayed on the window view area.
Finally, in order to display the current position of the orange rectangle the view state instance must access by sending
the message ‘self model userSelection’ the instance, which is a subclass of AbstractUserSelection, in order to request
the current user selection region co-ordinates.

In the super overview display mode the view state instance also caches its super overview binplot in its correspondent
CachedObservationData instance. But, in the user selection display mode no cached image is currently created; the
drawing occurs directly to the screen.

The role of each referencing method in the graphical cloud (e.g. cachedObservationData() on Diagram 3a) is to return a
reference of the appropriate instance in the model cloud. It is obvious, that these referencing methods must know the
exact application topology.

The BinValueColorerInterface class is the application model of the ‘bin colouring tool’ window. It always shows the
BinValueColoringModel instance of the current display mode. After each display mode change the
BinValueColorerInterface instance is linked with the cached BinValueColoringModel instance: It sets the labels and
controls the sliders in the window according to the settings in the current referenced BinValueColoringModel instance.
The BinValueColorerView instance draws the resulting mapping function - see section 4.2.5 The bin value colouring
function.

Diagram 3b. Classes implementing the RawSubMatrix type class –
they are topology dependant subclasses of the AbstractRawSubMatrix class

The classes implementing the RawSubMatrix type class are:
• UserSelection
• Overview
• SuperOverview
All three classes are subclasses of the corresponding abstract classes. They bear the knowledge about the application
topology by implementing the method ‘topology’, which returns ‘self’ and the method ‘rawMatrix ’, which returns the
instance variable on the RawMatrix instance. As explained in part four, these classes are not directly dependant of the
RawMatrix instance. (This is the application topology aspect separated from the corresponding abstract classes.)

Diagram 3c. Classes implementing the MatrixCursorPosition type class

The classes implementing the MatrixCursorPosition type class are:
• InformationMuralMatrixCursorPosition – it is used in the overview and super overview display mode
• RawSubMatrixCursorPosition – it is used in the user selection display mode
As shown on Diagram 3a, these classes accesses the UIBuilder class of the application model (see also Diagram 1) for
displaying on the GUI labels the information about the current cursor position

“Information Mural” visualisation of Duploc - 16. August 1999 page 42 of 64

+topology

UserSelection

rawMatr ix() rawMatr ix() rawMatr ix()

+topology

Overview

+topology

SuperOverview

AbstractUserSelection AbstractOverview AbstractSuperOverview

RawMatrix

Diagram 3b. Classes implementing the RawSubMatr ix type class -
 they are topology dependant subclasses of the AbstractRawSubMatrix class

<<type>>
RawSubMatrix

AbstractMatrixCursorPosit ion

InformationMuralMatrixCursorPosition RawSubMatrixCursorPosit ion

Diagram 3c. Classes implementing the MatrixCursorPosit ion type class

<<type>>
MatrixCursorPosition

“Information Mural” visualisation of Duploc - 16. August 1999 page 43 of 64

Diagram 3d. Classes implementing the PresentationModelViewState type class

Diagram 3e. Classes implementing the PresentationModelControllerState type class

These two class diagrams show the view state classes implementing the PresentationModelViewState type class
respectively the controller state classes implementing the PresentationModelControllerState type class. (N.B. in
Diagram 3e the classes with the round corners represent the implementation classes).

Diagram 3f. State diagram of the DuplocPresentationModelView class

This diagram shows the state diagram of the DuplocPresentationModelView class. Each state corresponds with an
implementing class in Diagram 3d; only the leading ‘PMVS’ is omitted from the classname.
(N.B. The events written in normal font are from the mouse menu selection. The events written in italic font are of
another nature – the appropriate explanations appear on the drawing.)

Diagram 3g. State diagram of the DuplocPresentationModelController class

This diagram shows the state diagram of the DuplocPresentationModelController class. Each state corresponds with an
implementing class in Diagram 3e; only the leading ‘PMCS’ is omitted.
The events are written with the same notation as in Diagram 3f.

Diagram 3h. Object instance diagram of the class diagram presented in Diagram 3a showing following situation:
The user selected the overview display mode in a three level view raw matrix representation and he
wants to reposition the overview region.

This instance diagram is an example of the class diagram shown in the Diagram 3a. It shows the following application
state: The user selected the overview display mode in a three level view representation. He wants to reposition the
overview region on the raw matrix area.

“Information Mural” visualisation of Duploc - 16. August 1999 page 44 of 64

AbstractPresentationModelViewState

PMVSInformationMuralMode PMVSUserSelect ionMode

PMVSOverViewNormalMode

PMVSOverView3LNormalMode PMVSOverViewSpyingMode PMVSSuperOverViewNormalMode

<<type>>
PresentationModelViewState

PMVSSuperOverViewSpyingModePMVSOverView3LMovingMode PMVSOverView3LSpyingMode

Diagram 3d. Classes implementing the PresentationModelViewState type class

“Information Mural” visualisation of Duploc - 16. August 1999 page 45 of 64

AbstractPresentationModelControllerState

PMCS

PMCSdummyMode PMCSmovingMode

PMCSOverView3LMovingMode

PMCSOverView3LMovingSelfMode

PMCSOverViewMovingMode

PMCSSuperOverViewMovingMode

PMCSUserSelect ionMovingMode

PMCSnormalMode

PMCSOverViewNormalMode

PMCSOverView3LNormalMode

PMCSSuperOverViewNormalMode

PMCSUserSelect ionNormalMode

PMCSposit ioningMode

PMCSOverView3LPosit ioningMode

PMCSOverView3LPosit ioningSelfMode

PMCSOverViewPosit ioningMode

PMCSSuperOverViewPosit ioningMode

PMCSUserSelectionPosit ioningMode

PMCSspyingMode

PMCSOverView3LSpyingMode

PMCSOverViewSpyingMode

PMCSSuperOverViewSpyingMode

<<type>>
PresentationModelControllerStateclass name

Diagram 3e. Classes implementing the PresentationModelControllerState type class

Symbol:

“Information Mural” visualisation of Duploc - 16. August 1999 page 46 of 64

UserSe lec t ionMode

OverV iew
Norma lMode

OverV iew3L
Norma lMode

OverV iew
Spy ingMode

SuperOverV iew
Spy ingMode

SuperOverV iew
Norma lMode

OverV iew3L
Mov ingMode

OverV iew3L
Spy ingMode

[user select ion
radio but ton

selected]

[overv iew
radio but ton

selected
A N D

two level v iew
representat ion]

[overv iew
radio but ton

selected
A N D

three level v iew
representat ion]

[2. overview
radio but ton

selected]

stop spying

spy bin region

stop spying

stop spying

spy bin region

spy bin region

mouse but ton re leased

mouse but ton pressed

up
[two level view
representat ion]

down down

up
[three level v iew representat ion]

down

up

/ set radio button on
user select ion

raw matr ix changed
/ set radio button on

user select ion

Diagram 3f. State diagram of the DuplocPresentationModelView class
rad io but ton changed

Symbol:

mouse menu labe l se lected

another type of event

“Information Mural” visualisation of Duploc - 16. August 1999 page 47 of 64

UserSe lec t ion
N o r m a l M o d e

O v e r V i e w
N o r m a l M o d e

O v e r V i e w 3 L
N o r m a l M o d eO v e r V i e w

M o v i n g M o d e

[raw matr ix not empty
A N D

user se lect ion
radio but ton

selected]

[overv iew
radio but ton

se lected
A N D

two leve l v iew
representat ion]

[overv iew
radio but ton

se lected
A N D

three leve l v iew
representat ion]

s top mov ing

m o v e
user se lect ion region

u p
[two level v iew representat ion] d o w n

d o w n

u p
[three level v iew representat ion]

d o w n

u p

/ set radio but ton on
user se lect ion

raw mat r ix changed
/ set radio but ton on

user se lect ion

Diagram 3g. State diagram of the DuplocPresentationModelController class

UserSe lec t ion
D u m m y M o d e

[raw matr ix empty]

O v e r V i e w
S p y i n g M o d e

stop spy ing

spy b in reg ion

O v e r V i e w
Pos i t ion ingMode

stop pos i t ion ing

posi t ion
user se lect ion region

UserSe lec t ion
M o v i n g M o d e

s top mov ing

m o v e
user se lect ion region

UserSe lec t ion
Pos i t ion ingMode

stop pos i t ion ing

posi t ion
user se lect ion region

S u p e r O v e r V i e w
N o r m a l M o d e

S u p e r O v e r V i e w
M o v i n g M o d e[2 . overv iew

radio but ton
selected]

s top mov ing

m o v e
overv iew reg ion

S u p e r O v e r V i e w
S p y i n g M o d estop spy ing

spy b in reg ion

S u p e r O v e r V i e w
Pos i t ion ingModestop pos i t ion ing

posi t ion
overv iew reg ion

O v e r V i e w 3 L
S p y i n g M o d e

stop spy ing spy b in reg ion

O v e r V i e w 3 L
M o v i n g M o d e

s top mov ing

m o v e
user se lect ion region

O v e r V i e w 3 L
Mov ingSe l fMode

s top mov ing

m o v e
overv iew reg ion

O v e r V i e w 3 L
Pos i t ion ingSe l fMode

stop pos i t ion ing

posi t ion
overv iew reg ion

O v e r V i e w 3 L
Pos i t ion ingModestop pos i t ion ing

posi t ion
user se lect ion region

Symbol:

mouse menu labe l se lec ted

another type of event

rad io but ton changed

“Information Mural” visualisation of Duploc - 16. August 1999 page 48 of 64

Diagram 3h. Object instance diagram of the class diagram presented in Diagram 3a showing following situation:
 The user selected the overview display mode in a three level view raw matrix representation and he wants to
 reposition the overview region .

cursorPosition()

cachedImage()

view()

viewState()

controller()

controllerState()

::DuplocPresentationModelView

::PMVSOverView3LNormalMode ::PMCSOverView3LPosit ioningSelfMode

::InformationMuralMatrixCursorPosit ion

::DuplocPresentationModelControl ler

::UIBuilder

#mainModelBui lder

::CachedObservationData ::CachedImage

::Overview

#matr ixModel

cachedObservationData()

cachedObservationData()

view()

model()

::DuplocPresentationModel
overview()

model()

::BinValueColoringModel

binValueColoringModel()

: :RawMatr ix

rawMatrix()

“Information Mural” visualisation of Duploc - 16. August 1999 page 49 of 64

Diagram 4a. Classes used by the DuplocPresentationModel class for presenting the current raw matrix

This diagram describes the topology of the model cloud:
• The DuplocPresentationModel instance references up to 3 ObservationOnRawSubMatrix instances. The

UserSelection, Overview and SuperOverview instances are each attached to an ObservationOnRawSubMatrix
instance.

• The ObservationOnRawSubMatrix instance is capable to reference a set of CachedObservationData instances, but
currently only up to one is referenced: The number of ObservationOnRawSubMatrix instances corresponds with the
number of possible display modes (representation levels). If the application supports several view areas or windows
simultaneously, the case would occur, where two view areas show simultaneously the same display mode, but with
a different dot size. Therefore the number of CachedObservationData instances corresponds with the number of
GUI view areas managed by the application – the current Duploc application manages one such view area.
Therefore each ObservationOnRawSubMatrix instance references maximal one CachedObservationData instance.
The ObservationOnRawSubMatrix instance controls the validity of the stored CachedObservationData instance(s).

• The DuplocPresentationModel instance is dependant of each three ObservationOnRawSubMatrix instances.

The topology is explained with the update propagation in two different scenarios:

Scenario 1: The user selection region is moved or (re)positioned
If the UserSelection instance receives from the controller state instance the message to move or (re)position the user
selection region then the instance informs its dependant – the ObservationOnRawSubMatrix instance.
The ObservationOnRawSubMatrix instance informs each CachedObservationData instance to invalidate the cached
image, and updates its dependant – the DuplocPresentationModel instance.
The DuplocPresentationModel instance informs its dependant – the DuplocPresentationModelView instance.
The DuplocPresentationModelView instance invalidated the GUI view area, which causes the window system to notify
to the same DuplocPresentationModelView instance to redraw the view area – see the described scenario in the third
part.

Scenario 2: Changes to the raw matrix
If the RawMatrix instance broadcasts the update protocol (discussed in the section 5.3.2 RawMatrix class update
protocol to its dependants) it is important, that the following sequence is guaranteed:
1. all instances implementing the RawSubMatrix type class are updated
2. the DuplocPresentationModel instance is updated.

This is the reason, why the UserSelection, Overview and SuperOverview instances are not directly dependant of the
RawMatrix instance. The DuplocPresentationModelProtocolTransformer instance is dependant of the RawMatrix
instance: It is responsible to forward each update message from the RawMatrix instance to its dependants, the instances
implementing the RawSubMatrix type class. Once each dependant is updated, it sends to the
‘transformedProtocolReceiver’, the DuplocPresentationModel instance, the update messages to adapt the
representation model (two or three level view representation) and to update the view area.
Therefore in this update sequence scenario each ObservationOnRawSubMatrix instance will not update its dependant,
the DuplocPresentationModel instance, after invalidating the referenced CachedObservationData instance. If it would
update the DuplocPresentationModel instance the GUI would be unnecessarily updated several times.

“Information Mural” visualisation of Duploc - 16. August 1999 page 50 of 64

Diagram 4a. Classes used by the DuplocPresentationModel class for presenting the current raw matrix

DuplocPresentat ionModelProtocolTransformer

DuplocPresentat ionModel

Observat ionOnRawSubMatr ix

RawMatr ix

<<type>>
RawSubMatr ix

UserSelect ion

SuperOverv iew

Overv iew

dependant matr ix()

userSelect ionObservat ion() overv iewObservat ion()

0..1

superOverv iewObservat ion()

dependant

rawMatr ix()

userSelect ion()

overv iewSelect ion()

superOverv iewSelect ion()

protocolSender()

protocolTransformer()

t ransformedProtocolReceiver()

dependant

dependant

#protocolTransformer

CachedObserva t ionData
0..n

DuplocPresentat ionModelV iew

dependant

“Information Mural” visualisation of Duploc - 16. August 1999 page 51 of 64

Diagram 4b. Object instance diagram of the class diagram presented in Diagram 4a showing the objects
presenting the current RawMatrix instance in a three level view representation.

This instance diagram is an example of the class diagram shown in Diagram 4a. It shows a three level view
representation of the current RawMatrix instance.

Diagram 4c. A collection of cached objects for each 'view' on the same RawSubMatrix type class

This class diagram shows some details of the ObservationOnRawSubMatrix and CachedObservationData classes. Each
CachedObservationData instance has an assigned id – see the attribute id. With the method
‘cachedObjectWithId:aNumber’ the ObservationOnRawSubMatrix instance returns a reference on the
CachedObservationData instance with the id ‘aNumber’.

Diagram 4d. ForwardingObject, ProtocolTransformer & DuplocPresentationModelProtocolTransformer classes

This class diagram shows the super class of the DuplocPresentationModelProtocolTransformer class: The
ForwardingObject class forwards each received update message to its dependants. The ProtocolTransformer class
extends this behaviour by giving the possibility to its subclasses to intervene on an update protocol: The update protocol
sent by the protocol sender is forwarded, unless the corresponding ‘update:anAspectSymbol …’ method is
overwritten. Like this, the transformed protocol receiver instance can be notified. The ProtocolTransformer class holds
these two references. The DuplocPresentationModelProtocolTransformer class implements the role discussed above by
using these two references – see section about Diagram 4a.

“Information Mural” visualisation of Duploc - 16. August 1999 page 52 of 64

Diagram 4b. Object instance diagram of the class diagram presented in Diagram 4a showing the objects
 presenting the current RawMatr ix instance in a three level view representation .

anInstance::
Observat ionOnRawSubMatr ix

::DuplocPresentat ionModel

allRawMatrix::
RawMatr ix

anInstance::
UserSelect ion

anInstance::
Overview

anInstance::
SuperOverview

anInstance::
DuplocPresentat ionModelProtocolTransformer

anInstance::
Observat ionOnRawSubMatr ix

anInstance::
Observat ionOnRawSubMatr ix

rawMatrix() rawMatrix() rawMatrix()

matrix() matrix() matrix()

transformedProtocolReceiver()

protocolTransformer()

userSelectionObservation() overviewObservation() superOverviewObservation()

protocolSender()

symbols:

dependant

#protocolTransformer#protocolTransformer #protocolTransformer

::DuplocPresentat ionModelView

“Information Mural” visualisation of Duploc - 16. August 1999 page 53 of 64

Diagram 4c. A collection of cached objects for each 'view' on the same RawSubMatr ix type class

+cachedObjec tWi th Id :aNumber

ObservationOnRawSubMatrix

id :Number
c Image :CachedImage
c ImageStepSize :Number
"zoom data"
bvcm :B inValueColor ingModel

CachedObservationData

<<type>>
RawSubMatrix

matrix()

0..n
id

dependant

Diagram 4d. ForwardingObject , ProtocolTransformer & DuplocPresentationModelProtocolTransformer classes

#parameter
#aspectSymbol
#f i rstEntrance
#sender

+update:anAspectSymbol wi th :aParameter f rom:aSender
+update:anAspectSymbol wi th :aParameter
+update :anAspectSymbol
+ent ranceReset

ForwardingObject

+in i t ia l izeOn:aSender Wi th:aReceiver

ProtocolTransfomer

ObjectObject

Object
DuplocPresentationModelProtocolTransfomer

protocolSender()

t ransformedProtocolReceiver()

dependant dependant

“Information Mural” visualisation of Duploc - 16. August 1999 page 54 of 64

5.3 System details

5.3.1 Representing a raw matrix
5.3.1.1 Introduction
This section describes, how the user selection, overview and super overview region sizes are related, in order to achieve the
best possible raw matrix representation – see section 4.1.2 Representing a large raw matrix.

5.3.1.2 Defined abbreviations
The important data-structures are referenced with the following abbreviations:
• rm – raw matrix
• us – user selection
• ov – overview
• sov – super overview

The us, ov and sov are considered a sort of:
• rsm – raw sub matrix

An Information Mural Matrix has this abbreviation:
• imm – information mural matrix

The raw matrix has the following attributes
Abbreviations Description Const/Variable
rm.rsm.size size of the raw matrix variable

The us, ov and sov have the following attributes:
us:
Abbreviations Description Const/Variable
us.rsm.min minimal size of the raw sub matrix representing the user selection region const
us.rsm.default default size of the raw sub matrix representing the user selection region const
us.rsm.max maximal size of the raw sub matrix representing the user selection region const
us.rsm.size size of the raw sub matrix representing the user selection region variable

ov:
Abbreviations Description Const/Variable
ov.rsm.min minimal size of the raw sub matrix representing the overview region variable
ov.rsm.max maximal size of the raw sub matrix representing the overview region variable
ov.rsm.size size of the raw sub matrix representing a section or the complete overview

region
variable

ov.rsm.bin.size size of each bin region – all bin regions partition a section or the complete
overview region

variable

ov.imm.min minimal size of the information mural matrix representing the match
densities in the overview region

const

ov.imm.max maximal size of the information mural matrix representing the match
densities in the overview region

const

ov.imm.size size of the information mural matrix representing the match densities in the
overview region

variable

ov.obj-us.size size of the orange rectangle in dots in the overview binplot representing the
user selection region

variable

ov.obj-us.min minimal size in dots of the orange rectangle in the overview binplot
representing the user selection region, which is allowed in a two level view
representation

const

sov:
Abbreviations Description Const/Variable
sov.rsm.min minimal size of the raw sub matrix representing the super overview region variable
sov.rsm.max maximal size of the raw sub matrix representing the super overview region variable
sov.rsm.size size of the raw sub matrix representing the super overview region variable
sov.rsm.bin.size size of each bin region – all bin regions partition the super overview region variable
sov.imm.min minimal size of the information mural matrix representing the match const

“Information Mural” visualisation of Duploc - 16. August 1999 page 55 of 64

densities in the super overview region
sov.imm.max maximal size of the information mural matrix representing the match

densities in the super overview region
const

sov.imm.size size of the information mural matrix representing the match densities in the
super overview region

variable

sov.obj-us.size size of the orange rectangle in dots in the super overview binplot representing
the user selection region

variable

sov.obj-ov.size size of the blue rectangle in dots in the super overview binplot representing
the overview region

variable

5.3.1.3 Two level / three level view representation selection criteria
As discussed above, once the raw matrix grows too big, the orange rectangle representing the user selection region in the
overview binplot would have to be drawn around a fraction of a single bin dot. This was the reason for introducing the three
level view representation.
The attribute ov.obj-us.min defines the minimal number of dots, above which the size of the orange rectangle in the overview
binplot in a two level view representation is acceptable – below this threshold a three level view representation must be used:

(ov.obj-us.size < ov.obj-us.min)

True: use three level view representation

False: use two level view representation

5.3.1.4 Attribute value definitions
This section describes, how the us, ov and sov are related in their attribute values to achieve the best possible rm
representation. The next section describes the used concept for defining the size of the ov in a three level view representation :

• remark: The two used italic expressions ‘two levels’ and ‘three levels’ refer to the two level and three level view
representation.

• Auxillary functions:
• x := trunc(x + 1)
• max(x,y)((x,y)) := max(x,y) of point (x,y).

• us:
• us.rsm.min := 200x200 , unless rm is smaller.
• us.rsm.default := 400x400
• us.rsm.max := 800x800
• us.rsm.size := selectable by the user inside the allowed range.

• ov:
• ov.imm.min := 5x5
• ov.rsm.min := ov.imm.min ⋅ ov.rsm.bin.size
• ov.imm.max := 100x100
• ov.rsm.max := ov.imm.max ⋅ ov.rsm.bin.size
• ov.imm.size :=

two levels: ov.rsm.size / ov.rsm.bin.size
three levels: ov.imm.max

• ov.rsm.size :=
two levels: rm.rsm.size
three levels: ov.imm.size ⋅ ov.rsm.bin.size

• ov.rsm.bin.size :=
two levels: max(2, max(x,y)(ov.rsm.size / ov.imm.max))
three levels: sqrt((us.rsm.min / ov.imm.size) ⋅ sov.rsm.bin.size)

• ov.obj-us.size := us.rsm.size / ov.rsm.bin.size
• ov.obj-us.min := 10x10

• sov:
• sov.imm.min := 5x5
• sov.rsm.min := sov.imm.min ⋅ sov.rsm.bin.size

“Information Mural” visualisation of Duploc - 16. August 1999 page 56 of 64

• sov.imm.max := 100x100
• sov.rsm.max := sov.imm.max ⋅ sov.rsm.bin.size
• sov.imm.size := sov.rsm.size / sov.rsm.bin.size
• sov.rsm.size := rm.rsm.size
• sov.rsm.bin.size := max(2, max(x,y)(sov.rsm.size / sov.imm.max))
• sov.obj-us.size := us.rsm.size / sov.rsm.bin.size
• sov.obj-ov.size := ov.rsm.size / sov.rsm.bin.size

5.3.1.5 Three level view representation concept
In a three level view representation the question to solve is, how must be the overview region selected? The chosen concept is
to select the largest possible information mural matrix size (ov.imm.size := ov.imm.max) and choose an appropriate bin size.
What is an appropriate ov.rsm.bin.size (overview bin size) ? If the ov.rsm.bin.size is too big, then the sov.obj-ov.size (the size
of the ‘blue rectangle’) appears bigger, but the ov.obj-us.size (the size of the ‘orange rectangle’) would appear too small and
vice versa.
The chosen solution is to have a blue rectangle on the super overview binplot, which has an equivalent size to the smallest
allowed red rectangle on the overview binplot :

(1) r1 = r2 , with
r1 := sov.obj-ov.sizemin := (ov.imm.size ⋅ ov.rsm.bin.size) / sov.rsm.bin.size
(n.b. ov.imm.size := ov.imm.max)
r2 := ov.obj-us.sizemin := us.rsm.min / ov.rsm.bin.size

The equation (1) can be rewritten in (1’), so that the variable x appears on both sides – x stands for the variable ov.rsm.bin.size:

(1’) k1 ⋅ x = k2 / x , with
k1 := ov.imm.size / sov.rsm.bin.size
k2 := us.rsm.min
x := ov.rsm.bin.size

By solving the equation (1’) we obtain:

(1’’) ov.rsm.bin.size := x = sqrt(k2/k1) = sqrt((us.rsm.min/ov.imm.size) ⋅ sov.rsm.bin.size)

5.3.2 RawMatrix class update protocol to its dependants
The size of the current raw matrix represented by the correspondent RawMatrix instance varies depending on the current
compared files. For any dependants to this model this means, that the raw matrix size varies by adding or removing ‘strips’.
Each ‘strip’ has the height respectively the width of the current raw matrix. These changes are sent to the dependants of the
corresponding RawMatrix instance according to a defined protocol: Following messages are sent:
• 1. repairStart
• 2. Sequence of insertArea and/or removeArea
• 3. repairNow
The first and last message (see 1. and 3.) have the purpose of synchronisation. The sequence of messages in-between (see 2.)
has the purpose to notify the inserted or removed areas (‘strips’). Each message sends therefore a parameter aRectangle, which
specifies the concerned area.
The contents of the current raw matrix can also vary. e.g. The user might ‘delete’ a line in the ‘Files compared’ window – see
section 2.3 Using Duploc in the original Interactive Mode. Following message is sent by the RawMatrix instance:
• filteredContents
It was also defined as a future extension, that any client of this class must specify, if it wants to access to the contents of the
raw matrix by taking or not by taking in account the ‘deleted lines’ – currently this feature is not supported by the RawMatrix
class.

5.3.3 AbstractRawSubMatrix class behaviour to RawMatrix class changes
5.3.3.1 Adaptation behaviour concept
Each AbstractRawSubMatrix instance is a dependant of a RawMatrix instance. Depending on the changes of the raw matrix
each raw sub matrix must have a defined behaviour.
Defined behaviour concept: A raw sub matrix keeps covering the region previous to the raw matrix changes, by clipping its

region and moving its origin point depending on the raw matrix changes. Therefore newly added
areas are not covered by the raw sub matrix.

“Information Mural” visualisation of Duploc - 16. August 1999 page 57 of 64

Here is the list of cases, for which a AbstractRawSubMatrix class must have in implemented reaction, in order to fulfil the
defined behaviour concept:

• Some abbreviations:
V/H - … Vertical/Horizontal strip …
I - … having an Intersection with current raw sub matrix …
L/R - … to the Left/Right of the current raw sub matrix.
T/B - … to the Top/Bottom of the current raw sub matrix.
S - … which splits current raw sub matrix
A/D - Added/Deleted …

• Vertical strips:
• Vertical strips, which have no intersection with the raw sub matrix:

• AVL - means Added Vertical strip to the Left of the current raw sub matrix.
• DVL - means Deleted Vertical strip to the Left of the current raw sub matrix.
• AVR
• DVR

• Vertical strips, which have an intersection with the raw sub matrix:
• DVIL
• DVIR
• AVS
• DVS

• There are 8 equivalent cases for horizontal strips: AHT, DHT, AHB, DHB, DHIT, DHIB, AHS and DHS.
Each of these 16 cases must have a defined reaction. Here a summary, how the AbstractRawSubMatrix class reacts to each
case:
• AVR, DVR, AHB, DHB

This will neither affect the origin nor the size of the raw sub matrix.
• AVL, DVL, AHT, AHB

This will only affect the origin of the raw sub matrix. The origin x respectively y position will ‘increase’, if a strip is
added, and ‘decrease’, if a strip is deleted.

• DVIL, DHIT
This will affect the origin and size of the raw sub matrix. The behaviour can be described in two steps:
1.) First we create an intermediate raw sub matrix region. The original raw sub matrix region is clipped with the affected
‘strip’, so that the non intersecting area of the region is kept. This means, that the origin x respectively y position will
‘increase’, but the corner point (bottom right point) is not changed. The obtained intermediate region has no intersection
with the strip.
2.) Because the new obtained region has no intersection with the strip, the effective deletion corresponds with the cases
DVL and DHT mentioned above applied on the new intermediate region.

• DVIR, DHIB
This will affect only the size of the raw sub matrix. The original raw sub matrix region is clipped with the affected ‘strip’,
so that the non intersecting area of the region is kept. This means, that the corner x respectively y position will ‘decrease’,
but the origin point is not changed.

• AVS, DVS, AHS, DHS
These four cases need an extended definition of behaviour. The simplest definition is, that raw sub matrix region is split in
two raw sub matrix regions and that only the left respectively the top raw sub matrix region is kept.

5.3.3.2 Received update and sent changed protocol
• Implementation remarks about the update/changed methods15:

• Any change in the AbstractRawSubMatrix instance invokes first a method named anAspectSymbol, which itself
invokes the method changeDanAspectSymbol (‘changeD’ followed by ‘anAspectSymbol’).

• A subclass must overwrite the method anAspectSymbol and if necessary invoke itself the method
changeDanAspectSymbol or invoke the method in the super class.

• An interested dependant must implement the update: method, which could react with a correspondent method
updatEanAspectSymbol.

• Behaviour of the AbstractRawSubMatrix instance to the following updateD… messages from the RawMatrix instance:
• During a RawMatrix change16:

• …repairStart : The current region is stored in the attribute previousRegion.
• …insertArea: It applies described behaviour in the section 5.3.3.1 Adaptation behaviour concept.
• …deleteArea: It applies described behaviour in the section 5.3.3.1 Adaptation behaviour concept.

15 see in the source code
16 see section 5.3.2 RawMatrix class update protocol to its dependants

“Information Mural” visualisation of Duploc - 16. August 1999 page 58 of 64

• …repairNow: Depending on the differences between the current region compared to the previousRegion
following messages are sent
• observedContentsHasNewLocation: The origin was moved.
• regionClipped: The region size changed.
• destroyed: The region is not valid anymore17 - see further down destroyed.
• repairFinished: All the changes were broadcasted.
• n.b. observedContentsHasNewLocation and regionClipped can both be sent.

• If the user has modified the contents of the ‘deleted lines container’:
• …filteredContents: The message is ‘forwarded’ to the subclass and/or to the dependant classes.

• Invoked methods, which trigger a correspondent changeD… message, if … :
• if the region has been released then all references to this instance must be released: destroyed
• if the observed region has changed, but the size remains the same: regionMoved
• if a complete new region was specified: regionRedefined

5.3.4 The AbstractInformationMuralMatrix class extends the AbstractRawSubMatrix class behaviour
5.3.4.1 Received update and sent changed protocol
• Behaviour of the AbstractInformationMuralMatrix instance to the following updateD… messages from the RawMatrix

instance:
• During a RawMatrix instance change18:

• …repairStart : nothing to do.
• …insertArea: nothing to do.
• …deleteArea: nothing to do.
• …repairNow: nothing to do.

• If the user has modified the contents of the ‘deleted lines container’:
• …filteredContents: If the matrix has interest in a filtered contents, then the instance variable imMatrix is

destroyed.
• Behaviour of the AbstractInformationMuralMatrix instance to the following updateD… messages from the

AbstractRawSubMatrix:
• ...observedContentsHasNewLocation: -.
• ...regionClipped: The instance variable imMatrix is destroyed.
• ...destroyed: The instance variable imMatrix is destroyed.
• ...repairFinished: nothing to do.
• ...regionMoved: The instance variable imMatrix is destroyed.
• ...regionRedefined: The instance variable imMatrix is destroyed.

• Invoked methods, which trigger a correspondent changeD… message, if … :
• if the instance variable imMatrix is computed: newValidIMM

5.3.5 The DuplocPresentationModelProtocolTransformer class
The DuplocPresentationModelProtocolTransformer class extends the RawMatrix class update protocol in following way:
If updatErepairNow is received, then
1. changeDrepairNow is notified to its dependants.
2. the message updatEadaptModel is sent to the transformedProtocolReceiver instance variable.

This message must force the DuplocPresentationModel instance to adapt to a RawMatrix instance change.
3. the message updatEcorrectViews is sent to the transformedProtocolReceiver instance variable.

This message must force the DuplocPresentationModel instance to force the DuplocPresentationModelView instance to
update its state and the state of the DuplocPresentationModelController instance.

5.3.6 The ‘bin value colouring model’
The ‘bin value colouring model’ defines the grey value used for painting a bin dot in the binplot, which represents an
Information Mural matrix element v (named bin value). Each Information Mural matrix element is of type float and has a
value in the range [0.0, 1.0]. The most simple method to grey shade each bin dot is to have an affine function fcolouring, which
maps the bin value linear on a grey level range between 0.0 and 1.0. In the case of a RGB colouring scheme the three colours
are set with the same value:

fcolouring : [0.0, 1.0] → [0.0, 1.0]

17 e.g. see the attribute us.rsm.min in section 5.3.1.4 Attribute value definitions
18 see section 5.3.2 RawMatrix class update protocol to its dependants

“Information Mural” visualisation of Duploc - 16. August 1999 page 59 of 64

fcolouring(x) := a ⋅ x + b

fcolouring(0.0) := 1.0 = R = G = B ≡ “white colour”
fcolouring(1.0) := 0.0 = R = G = B ≡ “black colour”

Some preliminary calculation showed the necessity to control this mapping more precisely: The range of match density will
normally be below 0.1. This will especially be the case for large raw matrix – e.g. a size above 40'000 x 40'000 would mean
(as mentioned19 above) to have a bin of 200x200 with a maximal number of 40'000 matches. So, obviously this will be rarely
the case. So, the limit of 0.1 described above is already very high (4000 matches).
A more important reason is also to have a possibility to display a fraction of the available range and so to isolate interesting
sections of the raw matrix.
Therefore a model of a mapping function was defined, which permits to select an interval of the range [0.0, 1.0] :

The ‘bin value colouring model’ has following elements:
1) The available bin values are defined in the range:

[minAvailableInput, maxAvailableInput] ⊆ [0.0, 1.0]

2) The model has as the definition range:
[minInput, maxInput] ⊆ [minAvailableInput, maxAvailableInput]
with:
minAvailableInput ≤ minInput < maxInput ≤ maxAvailableInput
|maxInput - minInput| ≥ SmallestMaxMinDifference

3) The ‘input affine function ’ i maps values in the range:
i : [minInput, maxInput] → [0.0,1.0]
i(x) := a ⋅ x + b
so that:
 i(minInput) = 0.0

i(maxInput) = 1.0.

4) The ‘selected input affine function’ g maps values in the range:
g : [minSelectedInput, maxSelectedInput] → [0.0,1.0]
g(x) := a ⋅ x + b
with [minSelectedInput, maxSelectedInput] ⊆ [0.0, 1.0]
so that:
 g(minSelectedInput) = 0.0

g(maxSelectedInput) = 1.0.

5) The ‘monom function’ m maps values in the range:
m : [0.0, 1.0] → [0.0,1.0]
m(x) := 1.0 ⋅ xn

with n ∈ [1/maximalMonomDegree, maximalMonomDegree]

6) The ‘selected output affine function’ h maps values in the range:
h: [minSelectedOutput, maxSelectedOutput] → [minGreyLevel, maxGreyLevel]
h(x) := a ⋅ x + b
with [minSelectedOutput, maxSelectedOutput] ⊆ [0.0, 1.0]
and [minGreyLevel, maxGreyLevel] ⊆ [0.0, 1.0]
so that:
if ‘ inverted grey level mapping’ selected
then h(minSelectedOutput) = maxGreyLevel, h(maxSelectedOutput) = minGreyLevel
else h(minSelectedOutput) = minGreyLevel, h(maxSelectedOutput) = maxGreyLevel

The new function fcolouring has following definition:
fcolouring : [0.0, 1.0] → [0.0, 1.0]

fcolouring(x) := 0.0 , x ∉ [minInput, maxInput]
fcolouring(x) := (h ³³ m ³³ g ³³ i) (x) ∈ [minGreyLevel, maxGreyLevel]

, x ∈ [minInput, maxInput]

19 see section 5.3.1 Representing a raw matrix

“Information Mural” visualisation of Duploc - 16. August 1999 page 60 of 64

The depiction of an InformationMural matrix with the RGB colouring scheme, means that for any matrix element v the
correspondent dot in the diagram is coloured with:

R := G := B := fcolouring(v)

5.3.7 Duploc source code information
5.3.7.1 Where is the source code of this project located?
The source code of this project is placed in the category: Duploc_InformationMural.
The source code about the RawMatrix class is placed in the category: Duploc_RawMatrix
5.3.7.2 What are the specific classes of this project?
This is the alphabetically sorted list of the 59 classes specific to the project placed in the category Duploc_InformationMural:
• AbstractInformationMuralMatrix
• AbstractMatrixCursorPosition
• AbstractOverView
• AbstractPresentationModelControllerState
• AbstractPresentationModelViewState
• AbstractRawSubMatrix
• AbstractSuperOverView
• AbstractUserSelection
• AffineFunction
• BinValueColorerInterface
• BinValueColorerView
• BinValueColoringModel
• CachedObservationData
• DuplocPresentationModel
• DuplocPresentationModelController
• DuplocPresentationModelProtocolTransformer
• DuplocPresentationModelView
• ForwardingObject
• IdentityFunction
• InformationMuralMatrixCursorPosition
• MonomFunction
• ObservationOnRawSubMatrix
• OverView
• PMCS
• PMCSdummyMode
• PMCSmovingMode
• PMCSnormalMode
• PMCSOverView3LMovingMode
• PMCSOverView3LMovingSelfMode
• PMCSOverView3LNormalMode
• PMCSOverView3LPositioningMode
• PMCSOverView3LPositioningSelfMode
• PMCSOverView3LSpyingMode
• PMCSOverViewMovingMode
• PMCSOverViewNormalMode
• PMCSOverViewPositioningMode
• PMCSOverViewSpyingMode
• PMCSpositioningMode
• PMCSspyingMode
• PMCSSuperOverViewMovingMode
• PMCSSuperOverViewNormalMode
• PMCSSuperOverViewPositioningMode
• PMCSSuperOverViewSpyingMode
• PMCSUserSelectionMovingMode
• PMCSUserSelectionNormalMode
• PMCSUserSelectionPositioningMode
• PMVSInformationMuralMode
• PMVSOverView3LMovingMode
• PMVSOverView3LNormalMode
• PMVSOverView3LSpyingMode
• PMVSOverViewNormalMode
• PMVSOverViewSpyingMode
• PMVSSuperOverViewNormalMode
• PMVSSuperOverViewSpyingMode

• PMVSUserSelectionMode
• ProtocolTransformer
• RawSubMatrixCursorPosition
• SuperOverView
• UserSelection

“Information Mural” visualisation of Duploc - 16. August 1999 page 61 of 64

5.3.8 Implementation concepts
5.3.8.1 Introduction
This section discusses some simple implementation strategies, which were used to keep the source code flexible.

5.3.8.2 The concept of ‘self neighborInstance’
One of the problem during the development of an application is the uncertainty of the application topology – this means
how the object instances are connected together.
If an instance A sends a message msgb1 to an instance B, then this instance A might have an instance variable toB,
which references this instance B. So, in the source code of A each time a message is sent to B, there will be something
like ‘… toB msgb1 …’.
If this instance A should not reference directly the instance B, because there is an intermediate instance S, which selects
a current instance Bi out of a set, then all messages sent from A to B should be modified like follows: ‘… toS currentB
msgb1… ‘.
Instead of using an instance variable toB to reference a specific neighbouring instance B, it is better that the instance A
sends to itself a message ‘…self neighbouringB …’, which returns a reference to the requested neighbouring instance
B. So, if a change occurs in the topology, then only this method ‘neighbouringB’ must be adapted.
This concept was used throughout all defined classes in this project.
5.3.8.3 The concept of ‘self topology’
The concept ‘self neighborInstance’ can be pushed further: It might be useful to separate object knowledge with
application topology knowledge. Therefore if an instance A must send a message msgb1 to an instance B, then it can
send to itself a message ‘…self topology…’, which returns the instance having the topology knowledge, and then send
to this instance the message ‘currentB ’: The complete sequence to send a message msgb1 from an instance A to an
instance B would be: ‘ … self topology currentB msgb1 … ’.

5.3.9 Used graphical notation
Diagram 5 shows the Diagram A, B and C. The aimed notation for a class diagram was UML. But, difficulties to
express the ‘self neighborInstance’ concept forced me, to introduce some modifications:
The class diagrams drawn in Diagram A and Diagram B are equivalent. Diagram B is probably more UML conform,
but Diagram A expresses better the needs – if a class ‘sees’ another class instance through a referencing method, then
this referencing method is denoted on the correspondent relation by adding the opening and closing brackets. An
instance variable, which references a neighboring instance, is also denoted on the correspondent relation. The visibility
symbols of UML were used, but because each method in a Smalltalk class has public visibility and each instance
variable has protected visibility some simplifications were made (see Diagram C) – an omitted visibility symbol for a
method or a referencing method means public visibility; an omitted visibility symbol for an instance variable means
protected visibility.
The underlined instances and methods belong to the correspondent class.

“Information Mural” visualisation of Duploc - 16. August 1999 page 62 of 64

Class_B
+public_attr ibute: type
#protected_attr ibute: type
-private_attr ibute: type

Class_A

'associat ion name 1'

-pr ivate_method_returning_reference_on_A()-pr ivate_instanceVariable_referencing_B

'associat ion name 2'

#protected_method_returning_reference_on_A()

#protected_instanceVariable_referencing_B

'associat ion name 3'

+publ ic_method_returning_reference_on_A()

'role of B'

+publ ic_instanceVariable_referencing_B

'role of A'

+publ ic_method_returning_reference_on_A():Class_A
#protected_method_returning_reference_on_A():Class_A
-pr ivate_method_returning_reference_on_A():Class_A

Class_B

+publ ic_instanceVariable_referencing_B: Class_B
#protected_instanceVariable_referencing_B: Class_B
-private_instanceVariable_referencing_B: Class_B

Class_A

Class_B

protected_attr ibute: type

Class_A

'associat ion name 3'

publ ic_method_returning_reference_on_A()publ ic_instanceVariable_referencing_B

'associat ion name 3'

'role of A'

'role of B'

'associat ion name 1'

Diagram 5. The used class diagram notation

Diagram A) The defined notation

Diagram B) The equivalent notation in UML (?)

Diagram C) A simplification of Diagram A -
 omitted visibility symbol means per default ...

“Information Mural” visualisation of Duploc - 16. August 1999 page 63 of 64

6 Conclusions
This chapter summaries the conclusions drawn by the author after the project end. During the development of the new
Graphical User Interface several difficulties emerged, which induced to formulate following vague development
guideline for similar projects. The development of any application should contain two steps. The first step is the
description of an appropriated application concept, which is based on the original requirement paper. The second step is
the description of the application design.

Application concept
The definition of an application concept can be part of the requirements refinement phase or can be part of the analysis
phase. In both case an application concept should be verified with the implementation of some (rough) prototype. An
application concept should consist of three parts: A system concept part, a GUI concept part and a topology concept
part.

System concept part
Any implemented solution is embedded in a running environment. In the case of the Duploc application, this
environment is the VisualWorks 2.5/3.0 framework. The system concept part should describe a solution for fulfilling the
original requirements without taking in account the running environment. How this description has to occur is difficult
to say, but the contents of chapter 2.1, 2.2, 3.2 and 4.1.1 in this document could have been part of the system concept of
this project.
In this project, it was first necessary to sketch the original system concept, which represents the original Duploc version.
The chapter 2.1 and 2.2 summaries the essence of the found original system concept. The next step was to extend this
concept. The introduction of the raw matrix set had two consequences:
It provides the new Graphical User Interface with an interface to the existing application part.
It separates the new Graphical User Interface from the access management to the internal comparison matrix
repository. A new Duploc version might provide to the user the functionality’s to compose the raw matrixes available in
the raw matrix set by specifying the list of files, which form each raw matrix.
The next problem was to define data-structures suitable for being graphical displayed. This problem resulted in the
introduction of the two level and three level view representation of a large raw matrix – see section 3.2 and 4.1.1.

The system concept part should also describe, what sort of functionality’s the application should provide to the user. e.g.
moving the user selection region inside the current raw matrix.

The system concept part can contain class or instance diagrams as long as they are not dependant on the running
environment.

GUI concept part
The GUI concept part should describe the appearance of the application and how the user interacts with the new
application. This part is dependant on the chosen running environment. Therefore it involves to implement several small
test applications for understanding the possibilities of the environment.
The new Duploc application has a simple GUI concept: A single view area must present the two level and three level
view representation. This resulted in the introduction in chapter 4.2.4 of the three display modes.

Topology concept part
The topology concept part integrates the system concept part with the GUI concept part by sketching the application
topology. e.g. The Diagram 1 shows the Duploc topology concept, where the graphical cloud, which contains the ‘view’
and ‘controller’ state classes, interact via the DuplocPresentationModel class with the model cloud, which contains the
classes representing the raw matrix.

Application design
The application design provides an object oriented solution for the formulated application concept.
A flexible development is aimed, so that important source code is written once and once only.
This is achieved by breaking the application in different components, each one composed by two parts: A part, which is
preserved from the actual application topology, and a part specific to the application topology. The Duploc example is
the AbstractRawSubMatrix class hierarchy. e.g. The UserSelection class, which is a subclass of AbstractUserSelection,
is specific to this application topology, but the AbstractUserSelection class is not. This topology independence is
achieved through the used implementation concept.

“Information Mural” visualisation of Duploc - 16. August 1999 page 64 of 64

7 Appendix

7.1 References

[1] Jonathan Helfman. Dotplot Patterns – A Literal Look at Pattern Languages.
AT&T Research, Murray Hill, NJ 07974, jon@research.att.com

[2] Matthias Rieger: Duploc Tutorial, Version 2.0 Release 1.
Software Composition Group, University of Bern, March 1999.

[JS96] Dean F. Jerding and John T. Stasko. The Information Mural: Increasing Information Bandwidth in
Visualizations. Technical Report GIT-GVU-96-25, Georgia Institute of Technology, October 1996.

