computer science project 98/99

“Information Mural‘
visualisation of Duploc

Pietro Malorgio

Software Composition Group, University of Berne
malorgio@iam.unibe.ch

Wednesday, 14. July 1999

Display Windows

0.0015919 Lines 309
lite_lex.c Dot size

Line# 629
msqld.c

dizplay view

region size:
w: 100

h: 100
origin :

H: 1

w 1

bin size :

K 243

W 243

display RawMatriz
& Al
" zelected

C++ 242782242748

“Information Mural” visualisation of Duploc - 16. August 1999 page 1 of 64

Contents

1

2

3

4

5

6

7

PROJECT SUMMARY ..ttt e et e e e e e e e e e et s e s s e b e s s s —— 1111 s s s e et e s e 3

AN INTRODUCTION TO DUPLOC ... e nnnneen e 6

2.1 DOTPLOT- A TECHNIQUE FOR REPRESENTING DUPLICATED LINES OF CODE.....ctvuturueiiaiaeaeeeeeeerereeeeeennnnnnnnnnnnnns 6
2.2 THE DATAFLOW CONCEPT INSIDEDUPLOC.ceeititttitiiis e e e e e e e et ee ettt e e e e e e e e eee st s s e e e e e e e e e e e e nnrnbnnan e aeeeeas 8
2.3 USING DUPLOC IN THE ORIGINALINTERACTIVE IMODE ...ttt eeteieeeeitiiiiis et e et e e e e e e e e e e n e e e e 9

2.3.1 Starting the origiNal VEISION...........uuiiiii e s e e e e e e e e e e e e s meeeeemnmmmmm s eeeeeaeeeeees 9
2.3.2 Selecting the SoUrce Code LANGQUAGEcoiuveiiiieeiiiiiiee ettt e e e ee e s s s enreeeeeeeas 9
2.3.3 REATING SOUICE COUEoiiiiiiiiiiie ettt ettt e et e e e et bt e e eeeeeennneeeaeeeeananrneas 9
234 Viewing the compariSON MALMIX(ES)uueeiiieiiiiiiiiie ittt ee e e e e e esnnee s 10
2.35 Exploring the selected compariSON MAtriX(ES)veeeeiierieereeeeeeeiieiieieieieereeeie e e e e e e e e e e e mmmmmmmnees 11

THE PROJECT GOAL ..ttt ettt e e e e e e et e e e e et r e b emmmnmmmme e e e e e e e e e e e e e s 13

3.1 THE PROBLEM— A LIMITED DISPLAY CAPABILITY ..eetuuuietttttuaaetetuaaeetastaeetestasaesestanaaesessaaaeseessnaeeeesnnnaaeeessnnsnns 13
3.2 THE SOLUTION- OVERCOMING THIS LIMITATION WITH THE INFORMATION MURAL TECHNIQUE.........cccvvvrunnnnnn. 13
3.3 THE PROJECT GOAL- INTEGRATING THE INFORMATION MURAL TECHNIQUE INTODUPLOCoiiiiieeeieiiieiennns 14

THE NEW GRAPHICAL USER INTERFACE.......oii s 15

4.1 NEWLY INTRODUCED CONCEPTS. ...t ttteeeeteteeessnsetssa s s s eeeeeseteeessssasaa s e e e e e e e eeeeeeese s s ae e a e s e e e eeeeeeeeesnrnrnnnaaeeeeeeas

411 THE FAW MALIX SEL....uuiiiiiiiiiiiieiii et e e e e e e e e e
4.1.2 Representing a large raw MatriX.........c.uuvuuiiinieieeee e e

4.2 USING DUPLOC IN THE NEWINFORMATION MURAL INTERACTIVE MODEccuiiiitiiiiiiieiiine e eeeie e e e aineeeane e

421 Starting the NEW VEISIONeiiii ittt e e e e s sab e e e s s abbeeeeee e
422 Unchanged loading features from the previous VEISIONcoooiiiiireiiiiiiiece e

4.2.3 SeleCting the FAW MEALIIXeeee e e e e e e e e e et e e s s e s s e e e——— e e e e e e e es
424 EXPIOrNG the FAW MALIIXeeeeiieiiiiee ettt ettt e
4.2.5 The bin value colouring FUNCLION.............uiiii e emm e e e eenens e es

DESIGN .ttt e et e st e e e e et e e e e e e e e 33

51 INTRODUGCTION ... ttttettttttii s e e e e e ettt eeee e te e s e e e e e e et e et eeeeee s o e s e e e e e e e et ee e seEe bR e s e e e e e e et e e e e e st s & o £ 55108 33
5.2 SYSTEM OUTLINE ..ttt ettt ettt e e ettt et et s s e e e e e e e et et e e e e e e e s e oo e e e et et e e e e s e e eE e s e e e e e e e e s ¢ i 33
53 SYSTEM DETAILS

531 RePresenting @ FaW MALIIXccoiiiieiiiiiiiis s s e e ee e e e eee s s e s e e e eeeeeeeeaestaaa s e eeeeeennnnannneeeeeees
53.1.1 a1 0o [8ox 1T o P PR RSO UPEPRTRN
5.3.1.2 Defined abbreviatioNSvuiiiiii e
5.3.1.3 Two level / three level view representation selection criteria
5.3.1.4 Attribute value defiNItIONScoiuiiiiiiiie e e et bt e b eeeaan
5.3.1.5 Three level view repreSentation CONCEPL.......uuiiii ittt iiiiiiiiee e e e s eeee e e e e s ee e e e e e e e s e eesanraeeeeaaeeeseassnsrnees

5.3.2 RawMatrix class update protocol to its dependants...........ccccociiiiiiiiiiiiiiiieeeee e

5.3.3 AbstractRawSubMatrix class behaviour to RawMatrix class changes...........ccccceeeviiiiiiiiveiiiciiis e, 56
5.3.3.1 Adaptation BENAVIOUN CONCEPLuviiiiiiee it e e e e e e s—— 111121 s 111 n e 56
5.3.3.2 Received update and sent changed ProtoColcciuiriiiiiiie i e e e e e 57

5.34 The AbstractinformationMuralMatrix class extends the AbstractRawSubMatrix class behaviour........... 58
5.3.4.1 Received update and sent changed ProtOCOleeiiiiiiiiiiiiiiee e et eeeeeesmmmmmmnen e e e e e as 58

5.35 The DuplocPresentationModelProtocolTransformer Class..... ... 58.........

5.3.6 The ‘bin value colouring MOUEIcooii e e e e s mmmmmmmeeneeseeeees 58

5.3.7 Duploc source code iINfOrMAtIONcooiiiiiiiiic e e e e e e e e emmmmmmmanen e 60
5.3.7.1 Where is the source code of this project l0Cated?ueiiiiiiiiiiiiiiie e eeereeecmmeeee e 60
5.3.7.2 What are the specific classes of this Project?.......c..cccovviiiiiiieiiiiiiee e

5.3.8 IMPIEMENTALION CONCEPLS ...ttt e e e st e e e e e s et e s— 111
LR R 7% A [11 (o To [0 1o 1 o RO RRPTI
5.3.8.2 The concept of ‘self neighborIinstance’..............cccooiiiiiiiiiiiie s
5.3.8.3 The concept Of ‘SEIf tOPOIOGYeeeiiiiiriiiiiiiiie ettt e e e e s e e e e e e e e e

5.3.9 Used graphical NOTALIONcoiiiiiiiii et rmnr e e e e e eeene e e e

CONCLUSIONSttt ettt et et e e e e e e e e e e et e e e e et s £ ettt e e e e e e e e e e e e e s 63

AP PENDIX L e oo e e e e e e s — 1111 n e e e e e e e neee 64

7.1 [=] = N[=T 64

“Information Mural” visualisation of Duploc - 16. August 1999 page 2 of 64

1 Project summary
Duplocis a tool written in Smalltalk (VisualWorks 2.5/3.0), which is currently under continuous development inside the

Software Composition Grouat theUniversity of Berh It is designed for representing graphically the comparison
results of found duplicatednes d code (duplo¥ out of a set of loaded source code filBsiploc supports different
programming languages (C++, C, Java, Smalltalk etc.). The loaded files are compared line-by-line using a simple
string-match comparison function — the comparison results are stored in a two dimetmiopatisonmatrix. The
previousGraphical User Interfac€GUI) represents the obtainedmparison matribxas adotplot diagram — in this two
dimensional grid of black painted dots, each dot stands for two identical found lines of code in two different files.
Figure 1 shows aotplot diagram of acomparison matrixwith 229x229 elements. (Theomparison matrixsize is

shown with the formathieight@widthin the bottom information line of theUl.)

> I ..
File Configuration Display Wwindows
i | 4
Lined: 205 Hide Botders i | E
match
auth.c
Lined: 212 H
auth.c
Display
< all i £acae i
Al s .I“i '
Cos 2293229 | o

Figure 1: The previous implemented GUL

! http://www.iam.unibe.ch/~rieger/duploc/index.html

“Information Mural” visualisation of Duploc - 16. August 1999 page 3 of 64

This GUI uses a scrollbar to provide some navigation facility ovectimparison matrixit is therefore only suitable

for visualisingcomparison matrixeap to some hundred elements per matrix side (e.g. 800x800). The project goal was
to integrate into th®uploc application a technique namatdormation Muralin order to visualise a larggmparison

matrix. Figure 2 shows thinformation Mural overview image of @omparison matrixvith 24278x24278 elements.

This image was produced with the new developéd. Each dot stands for the ‘match density’ inside a correspondent
region in the underlyingomparison matrix Darker dots indicates a region of themparison matrixwith more
matches then lighter dots. This new develo@d is typically capable to visualisecamparison matrixvith up to two

million elements per side. It also provides navigation facilities for exploring parts cbmmgarison matrixn adotplot

like display mode. This display mode appears like the prewitlis- see Figure 1.

I #% Duploc =l

‘File Configuration Display - Windows

0.0015919 Lines 309 . ; T 1
i lite_lex.c Dot size [| | } i
Line# 629

msqld.c

bl R T T e T T T

BREE B BN

dizplay view
| @

| & cerview

region size:
- w100

: h: 100

. origin :

Lo 1
w1

| bin size :

L ow 243
w243

| display RawMatrix
= al
™ zelected

Figure 2: The new developed GUI.

“Information Mural” visualisation of Duploc - 16. August 1999 page 4 of 64

Project context
This project was formulated as the mandatory project in the computer science RmirseMalorgiq the author,
wrote it under the supervision bfatthias RiegerandDr. Stephane Ducasse

Structure of this document

This document is divided in 6 main chapters. Chapter 2 gives from an user point of view an introduction to some
comparison aspects and to the previbuplocapplication. Chapter 3 presents théormation Muraltechnique, which

was used in the new develop@daphical User Interfac@resented in Chapter 4. The internal application design is the
subject of Chapter 5. The last chapter discusses the conclusions drawn from the project.

Acknowledgement
| would like the express my thanks first to Stéphane for having introduced me to this project, then to Matthias, with
which | spent some many hours talking about the project and who implemented the discussed changes to his previous
work in order to implement these achieved extensions. My thanks goes also to Prof. Nierstrasz for having set early the
guidelines of this project, to Serge Demeyer who helped to keep the project on track and again to Stéphane, who gave
me some early introductions to the Smalltalk environment. For the received feedback about the user interface | can not
forget to express my thanks to Sander Tichelaar and Robb Nebbe.

Pietro Malorgio

“Information Mural” visualisation of Duploc - 16. August 1999 page 5 of 64

2 Anintroduction to Duploc

2.1 Dotplot - a technique for representing duplicated lines of code

The purpose obuplocis to identify duplicated lines of code. This document will not describe the actual implemented
comparison process for finding duplicated lines of code — instead it describes, how duplicated lines of code are
representedDotplofl] is a technique for visualising patterns of string matches in millions of lines of digital
information. Figure 3 shows an illustrative example of this technique by comparing words in a sentence. A sequence is
tokenised and plotted from left to right and top to bottom with a dot where the tokens match. Dots off the main diagonal
indicate similarities. Thislotplotis symmetrical, because the two compared sentences are identical.

to be or not to be
to| ® [
be [[
or)
not [
to| @ [
be o [

Figure 3: Six words of Shakespeare.

The information in alotplotcan be represented as a matrix of Boolean like data type — this type of matrix is referenced
in this document as @mparison matrix A dotplotis a graphical representation ofc@mparison matrixThe example
above is extended in Figure 4 by adding another sentence, probably appropriate for our computer science time period:
'to copy or not to copy’.
to be or not to be to copy or not to copy
to | @ o o o
be o o
or [] [)
AA AB
not [) o
to | @ o [o

be [) o

to | @ o o o

copy ([o

or ® o

BA BB
not o o

to | @ o ® [

copy o [

Figure 4: Comparing two sentences.

“Information Mural” visualisation of Duploc - 16. August 1999 page 6 of 64

There are foucomparison matrixefor these two sentences. Let’s reference them in the following way. ‘A’ stands for
the first sentence: “to be or not to be”. ‘B’ stands for the second introduced sentence: “to copy or not to copy’.
Therefore the upper leftomparison matrixs referenced with ‘AA’ (= ‘A’ vs. ‘A’) and the bottom rigltomparison

matrix is referenced with ‘BB’. The bottom leftomparison matrixis referenced with ‘BA’ and the top right
comparison matrixs referenced with ‘AB’. ‘AA’ and ‘BB’ are always symmetrical. They show the duplicated words in
each respective sentence. In this example ‘AB’ and ‘BA’ are symmetrical, but by choosing the sentence ‘B’ with more
or less words then the sentence ‘A’ they would be asymmetrical. Further, each one is the traespoagson matrix

of the other one (‘AB’ = ‘BA").

Comparing two source code files supposes to define, what has to be corbpgrled.compares two files line-by-line

using a simple string-match comparison function. Previously, comments and white spaces are removed, so that each line
is in some kind ofhormal form Empty lines or lines containing only a ‘}' (in C++) are dismissed. Table. 1 shows the
text of two simple C programs. The text underlined with a wave line indicates the actual text, which would be used in
the comparison process Diiploc Figure 5 shows the correspondomgmparison matrix

For a extensive interpretation of thak&plot patterns see paper of the Helfman [1].

UINT.C UINT32.C
#include <stdio.h> #include <stdio.h>
#include <sys/types.h > #include <sys/types.h>
#include <unistd.h>
main()._
{
{
foo=1; u_int32_t foo;
}
foo=1;
}

Table 1. contents of file UINT.C and UINT32.C

A
<]
(7] A
2 :
. o]
(o] + +$
1 < 0
o] 0 - s
P > g 0
0 0] 0
v \" \" W
(] Q [} +
ol o] o] | N
3 3 3 — N —
— — — - ™
3] 0 0 <] » I
[=} =] <} Bl [=]
- - -] --cl 8
+* 3* ** g8 o o
#include <stdio.h> [)
#include <sys/types.h> .

main () ‘

u_int foo;

foo = 1; .

Figure 5: Comparison matrix of file "UINT.C' vs. 'UINT32.C'.

“Information Mural” visualisation of Duploc - 16. August 1999 page 7 of 64

2.2 The dataflow concept inside Duploc
The following Figure 6 illustrates the data-flow concept in§lddelocaround the two main repositories.

file system

luser requests Duploc to read in source code

source code object of first read file

= g source code object of last read file

correspondin
alignment

Duploc file repository

Duploc accesses its file repository
for producing comparison matrixes

1y Mgy (]

A comparison matrix

between source code object .m

N and. g

In this example it plays the role of
the current selected one.

[N
T
@H

O) A A

T

all produced
comparison matrixes
in the repository

[§ Luju. N

Duploc comparison matrix repository

user selects a view on the current

Selected comparison matrix user selects a view on all

comparison matrixes

e i e WuH|
Mie [Depls 'Syl
L | : | —_—
wrill e - g L :I |
k] [- []
N e i
-I. *I-.. *. -I F
O .
e
[" [®w .l‘ [»
=i . . - llr.-.]
F weacas i ¥ ™ | w | [] | ..
- Lt Dllp'r' ‘ |
& a8
M esigosz i] ﬂd
- [w1 [=

Figure 6: Data flow concept inside Duploc

“Information Mural” visualisation of Duploc - 16. August 1999 page 8 of 64

The user requesBuplocto read in source code files from the underlying file system. Each read in file is transformed in
a normal fornf and stored in the internéile repository After the transformation, the file is calledSmurce Code
object Based on the curreffite repositorycontents all possible combinations afmparison matrixebetween two
Source Code objextare stored in the internemparison matrix repositoryrigure 6 shows a representative image of
this comparison matrix repositonAll comparison matrixeform a sort of table — the alignment of t8eurce Code
objecs in thefile repositoryinfluences the structure of this table, so that new read in files make the table grow in the
direction of the lower right corner. The user can select two available views omtantiparison matrix repository

e all: Displays all theeomparison matrixeat once. The rectangular lines delimit eaomparison matrix

¢ selected This mode displays theomparison matrixedor two selected files. The two files are selected in a
auxiliary window, which lists upthe available files in thile repository

In both views aotplot of the selectedomparison matrifeg is displayed: Each match is depicted as a black painted
dot with separation lines between neighbouricgmparison matrixes The Graphical User Interfaceprovides
functionality’s to the user to examine in a point-and-click concept the displaymgarison matrigey. The next
section presents these available functionality’s.

2.3 Using Duploc in the original Interactive Mode
The following sections present the original Interactive Modeugiloc

2.3.1 Starting the original version
Consult the Duploc Tutorial document [2] for a proper installation of the tool. The origiDaploc version is started
by evaluating

DuplocApplication open

in a VisuaLWoRrks workspace or by selecting théndowSpec resource oDuplocApplication in aResource
Finder and pressin@TART.

2.3.2 Selecting the Source Code Language

Duplocis able to read source code of a number of different languages. The code reader is set initially to the language
specified in théni -File®. The language can be changed interactively wittSglect Source Language... menu item

in the Configuration menu. Changing the source language takes effect immediately. This means that the next file that
is read in after a language switch is assumed to be written in the newly selected language. The files already loaded will
not change their language and the comparison process is language independent. (This means that you can-compare C
files with SMALLTALK files, for a lark.)

2.3.3 Reading Source Code
Files can be read into tfi&e repositoryusing the normal MuALWORKsFileBrowser, which is invoked from th&ile
menu (see Figure 7).

4% File List on F-Awork3\Ww3ktst_code\: [E[=] B3

Dptiohs

[fawork Twwtst_codett

fwrark3wIntst_codew3-auth.c e
f\\WDrRS\VWB\\tST_CDdE\WS'qulC ..

copy name

= : [EFAME 35, .
#nclude <stdio b=

Fpawh

#include <sysitypes.h=
rnaing
{

u_int foo;

fon =1;

Figure 7: The Duploc file browser with the operate pop-up over the file list.

% see section above
% see following section
4 consult the Duploc Tutorial document [2]

“Information Mural” visualisation of Duploc - 16. August 1999 page 9 of 64

The directory path and file pattern must be entered in the top input field. The pop-up menu, appearing when the operate
buttor? is pressed on the file list in the middle of the window, offers two items whidbuptecspecific:

1. read in Reads in the selected file and puts it intofilleerepository

2. read in alt Reads all the files that are currently displayed in the file list and puts them ifite tepository

The files that are currently loaded into the tool are displayed in the window that is open&dinvdtws >> File List
(see Figure 8)The operate pop-up menu for this list allows to remove individual files from fiteerepository The
same window is also used for determining the currently defgsdelcted’comparison matriXsee next section).

47 Files in the Repository - O] %]
Vertical Sequence Horizontal Sequence
of Files: 4 # of Files: 4
o uint.c |]
uint32.c
SYSEIT.C
tlirnit. ¢ ﬂ_
A =
of Source Lines: 11 # of Source Lines: 11
of internal Lines: b # of internal Lines: B
Remove All I

Figure 8: The Duploc file repository contents.

2.3.4 Viewing the comparison matrix(es)

Once files are present in tlide repositorytwo views are available onto tleemparison matrix repositorywhich

contains allcomparison matrixesThe selection occurs with the radio button group on the lower left side of the main

window labelled with Display’ — see Figure 9.:

e all: Displays all thecomparison matrixeat once (see right window in Figure 9). The rectangular lines delimit
eachcomparison matrix

¢ selected This mode displays theomparison matriXor two selected files (see left window in Figure 9). The two
files are selected in the auxiliary window, which lists up the available files irfiltheepository
(see Figure 8. — currently theomparison matrixbetween file uint32.c ' and ‘rlimit.c s
displayed.)

i Conkpasior Drper @rdos

Facie Esarcdar | I [T

Lireieit: 1
——h rlmid e
T B fia Conbgpauon Dagey Wi
wnlF i - Facie Eiardan | | |.'
E- F T F
. | . - | .
Fl-. .“ *- =]
L] L] L] L]
L]
e
Dasplay ‘t . - '«i -
™ mi | .I'
|| — w]
i baciad al | I.
L] L L J L]
| S ELE | haplay :*
& mill
O smiced g | o
| | 12 | %

Figure 9: The two available views: 'all’ vs. 'selected".

® The operate is the middle mouse button

“Information Mural” visualisation of Duploc - 16. August 1999 page 10 of 64

The bottom information line in the main window displays following information:

e First field: The current selected source language.

« Second fieldThe total vertical and horizontal size of all currently display@tiparison matrixes
(see right window in Figure 9 — it indicates, that the size afomtiparison matrixes currently 23x23.)

e Third field This field shows during the comparison process, wbizhparison matrixs currently built.

« Fourth field This field shows the percentage progression of a comparison process in progress (N.B. Figure 9 shows
‘0%, because no comparison process is in progress) .

2.3.5 Exploring the selected comparison matrix(es)
Once a view is selected, following functions allow the user to examiremthparison matrix(es)

button for hiding comparison matrix delimiting lines dot size

dot size slider
comparison matrix delimiting line

File: Configuration: - Display: © Windows

Line#: 6
match uint32.c
Line#: & =
SYSErr.c

0%

mouse pointer information opened mouse menu

the dotplot diagram on all comparison matrixes

the size of all comparison matrixes - height@width
Figure 10: The main window with the opened mouse menu.

Dot size slider
The size of the dots can be selected between 1 and 10 screen pixels with the slider in the upper right corner of the main
window — see Figure 10.

Hiding Borders

The delimiting lines between neighbourioomparison matrixesan be hidden by pressing the butttide Borders or
by deselecting the menu itehow Borders in the Display window menu — see Figure 10. The reverse of this
function can be obtained by pressing on the same button respectively by selecting the same menu item.

Zooming

A zoom facility allows to enlarge interesting zones ofdb#plot By pressing the left mouse button over diagplot

diagram while dragging the mouse, a rubber band rectangle defines the zone which should be enlarged. By selecting
Zoom Back on the mouse menu, the zooming can be undone — see disabled menu item below the menu item
NewViewer in the opened mouse menu in Figure 10.

Source Code Examination

By using the mouse cursor on tthetplot the user can explore the compared files. The co-ordinates of the mouse cursor
translated to a position in the source code is displayed in the upper left corner of the main diagram — in Figure 10 the
mouse cursor is not visible, but its current position is over the dot, which stands for the found match between line 5 of

“Information Mural” visualisation of Duploc - 16. August 1999 page 11 of 64

file ‘syserr.c ’and line 6 of file uint32.c . By clicking with the left mouse button on a dot the user opens a

‘Files compared’ window which displays the source code of the two compared files. The lines that matched are
emphasised in red (see Figure 11). By opening the mouse menu with the operate button on the same dot and selecting
the menu itenDisplay Files, the equivalent action is achieved.

Filtering

When looking at matched source code lines, the user may decide that specific lines are not interesting. By clicking on
the Delete Line button of theFiles compared’ window, the emphasised line is marked as 'deleted’. All the matches
that are generated by these lines are no longer displayed. The user can look at all the lines that are currently 'deleted’
using the window that is opened in the main window uMdgrdow >> Deleted Lines. Individual lines can be

‘undeleted’ through theperate mouse button pop-up menu.

matching lines emphasised in red

Yk T s cosd i [y e Ts_codalsyaar.c
Line Mumber: Line Mumber §
#irc it <etdin b (SN #ncide <sitinh> e
N lude coysypeshie iclud e <anme. he
Pincheds < myntypee e
i)
1 s
u_m ki [
char *tp;
Bo=1;
| cp = mys_anke{1];
|
— £
4 a Al ol

Figure 11: A opened 'Files compared' window.

“Information Mural” visualisation of Duploc - 16. August 1999 page 12 of 64

3 The project goal

3.1 The problem — a limited display capability

The visual representation of large quantitiescomparison matrix(esis subject to a 'natural’ barrier, which is the
number of pixels on the screen. The previous implementatibuploc makes it possible to displaydatplotdown to a

maximal reduction of one pixel per dot. This limits the quantitgarhparison matrix(eg)resented with dotplotin a
reasonable way onto the screen. Depending on the normalised file singsoawith some hundred rows respectively
columns can be displayed. e.gd@tplotwith 800x800 elements needs at least 800x800 screen pixels. This screen pixel
number increases to 8000x8000, if the maximal dot size of 10 pixels per dot is selectedd@ptdt avhich can cover
between 800x800 and 8000x8000 pixels, can still be explored with two scrollbdosplatwith several thousand rows
respectively columns can not be explored in a reasonable way anymore. Even by providing a scrollbar the overall
context will be lost.

3.2 The solution - overcoming this limitation with the Information Mural technique

The technique of thinformation Muralenables to visualise several data elements per pixel [JS96]nfbinmation

Mural is a two-dimensional, reduced representation of an entire information space that fits entirely within a display
window or screen. The mural creates a miniature version of the information space using visual attributes such as
greyscale shading, intensity, colour, and pixel size, along with anti-aliased compression technique. The original
information space is partitioned in equal sized regions — ndmmeckegions Eachinformation Muralelement, named

bin, represents some characteristics of the correspohiterggion Consult the paper [JS96] for the different presented
applications.

In the context of this project, the information space that must be represented is ahBmiolean like data type — see
in Figure 12 the upper lettotplot representing this matrix. This matrix is partitioned in equal sized 2x2 rectangles,
referenced as than regions— see in Figure 12 the bottom Idfitplot

a matrix represented as a dotplot

the Information Mural binplot
represents the matrix
the chosen
representation
R
' bin value colouring function:
10 ® |
1) partitioning matrix| in bin regions of 2x2 3) computing | a binplot by i 075 e
using a 'bin value | coloring function' 8-25 > ©®
00 O
e (o0 (0
. . : : 05:0.25: 05 0.5
.. . . “12) computing bin densities |, ; 05 025 05
: : : —> R
. P LAl J ‘§ § 0.75{0.25. 0.5 [0.75
oo o L 1.0 0.75.0.25: 0.0
oo o006
0000 5 an Information Mural matrix

) . i containing the bin densities
the matrix partitioned in equal

sized 2x2 bin regions

Figure 12: The Information Mural concept.

The chosen representation of the observed matrix is its match densityfoAnation Mural matrixs computed, where
each matrix element represents the match densitydgnsity) inside the corresponddsh region — see the bottom

® N.B. no reference to @mparison matriis made here. See further down the introduced tawrmatrix

“Information Mural” visualisation of Duploc - 16. August 1999 page 13 of 64

right matrix of floats in Figure 12. Thieaformation Muralis the graphical representation of thi$ormation Mural
matrix. By using abin value colouring functioreach Information Mural matrix element is represented in the
Information Muralas a grey shaded dot. The obtained plot is referenced bmhet — see the top right plot in Figure
12. In thebinplot of Figure 12 a darker dot stands for a denser and a lighter dot for a ¢pardensity inside the
correspondentin region.

3.3 The project goal — integrating the Information Mural technique into Duploc

The project goal was to integrate théormation Muraltechnique into th&raphical User Interfacef Duplocby:
e providing aninformation Muraloverview binplobf the current selectetbmparison matrix(es)
e providing navigation means, in order to explore sections afdh®parison matrix(esyith a conventionadlotplot

“Information Mural” visualisation of Duploc - 16. August 1999 page 14 of 64

4 The new Graphical User Interface

4.1 Newly introduced concepts

4.1.1 The raw matrix set

The first dataflow concept (see Figure 6) was extended byatematrix set— see Figure 13. The reason for the

introduction the concept of theaw matrix sets, that each definehw matrix groups the contents of a specified set of

comparison matrixeand presents them as a single large matrix:

« Definition: A raw matrix secontains some defingdw matrixes

e Definition: A raw matrix groups the contents of a defined set@fhparison matrixedt has a co-ordinate system,
where the top left element has co-ordinates (1,1).

Currently tworaw matrixesare defined; they correspond with tladi“and ‘selectetviews described above:

e ‘all raw matrix: Groups the contents of @lbmparison matrixesontained in theomparison matrix
repository

e ‘selected’ raw matrixGroups only the contents of the seleatethparison matrix

In Figure 13 the two window snapshots of the previBuephical User Interfacare identical with the ones shown in
Figure 6. This is to illustrate, that each view isdbéplotof the correspondenaw matrix

Y "My 10

The current selected
comparison matrix.

F
s

Duploc comparison matrix repository

Duploc has currently two raw matrixes
representing the compatrison matrix repository

The selected raw matrix on P p— The ‘all tris
the current selected j . *le . . o 0 n allio?n ;ar\g;]ang;xtﬁ;es
comparison matrix.] P 2
(. y 0 9] o
C] @]]
N\ X o .. O
. o . o
l) [® .0 ... o]
y o @ ..

Duploc raw matrix set

user selects the 'selected’ raw matrix
user selects the ‘all' raw matrix
L R
Il 1 i | | r_]

Ll 1 F
i« . -u [e———
g LT | |
—mab !
—
sl & - - - [E
= i "
P W
.~ lr'-l.' I
]) ow " 3
Divpla a % w
*
= |Ta | ™ ®
R 4 LN
T - m - |
|
1 - - - ‘l-.
e y
"
ilpiiell g 1 N
| -

Figure 13: Accessing the comparison matrix repository through
a set of defined raw matrixes stored in the raw matrix set.

“Information Mural” visualisation of Duploc - 16. August 1999 page 15 of 64

4.1.2 Representing a large raw matrix

The problem of representing a langav matrix is equivalent with the project goal stated above. A laage matrix
must be represented by:

e providing aninformation Muraloverview binplat

e providing navigation means, in order to explore sections aftivamatrixwith a conventionatiotplot

The new implemente@raphical User Interfaceepresents a selectedw matrix depending on its size with two
techniques: Awo level view representatiaand athree level view representation

A two level view representation
Up to a certaimaw matrixsize theGraphical User Interfaceffers two views onto the current selectad matrix— see

Figure 14:

2 level exploring concept ' Graphical User Interface appearance

raw matrix represented with
this 'overview

‘overview Information Mural binplot’
with size 100x100

‘all' raw matrix Information Mural binplot’
with size 1857x1857 ' =y =
' R ad” - &
: SR,
user selection region'- == —
represented i
in thé 'overview ==
binplot’ e
AN T T |~ ;
N X
\ L]
N : /
N O /
section of the raw matrix, N /
referenced as 'user selection region', ™\ :
with size 200x200 selected by the user ! N | [re— / -
N\ / dotplot section has
. . 7, N I/ this position in the
user selection region’ explored / ‘overview binplot’
with this dotplot ~
: - mw] : =
: R VR I T T P |
. e —¥ T |
: o H
: | e | |

'user selection dotplot’
with size 200x200

Figure 14: The two level view representation.

“Information Mural” visualisation of Duploc - 16. August 1999 page 16 of 64

e user selection viewA 200x200 element section of taw matrix referenced as thaeser selection regignis
displayed as a conventiorddtplot referenced as theser selection dotplet see bottom right window. Depending
on the selected dot size, thistplot varies between 200x200 and 2000x2000 screen pixelsu3dreselection
dotplotshown in Figure 14 uses 400x400 screen pixels, because the selected dot sizeus&. §¢iection region
has an origin position (top left corner) on tlagv matrix The user can explore sections of tae/ matrix through
this dotplotby modifying theuser selection origin position see next section.

e overview view The completeraw matrix is represented as a densltfformation Mural matrixof 100x100
elements. The graphical representation islrdormation Mural binplotof 100x100bin dots. Thisbinplot is
referenced as theverview binplot— see top right window. Inside thidnplot an orange rectangle indicates the
current position of theiser selection regionDepending on the selected dot size for drawingbihedots, this
binplot varies between 100x100 and 1000x1000 screen pixels.odéiew binplotshown in Figure 14 uses
500x500 screen pixels, because the selected dot size is 5. The sizéiof ringionsdepends on theaw matrix
size: Theraw matrix is partitioned in 100x100 regions; therefore the width respectively the height obigach
regionis the 1/100 of theaw matrix width respectively height — consult chapter 4, the design chapter, for further
explanations about the calculations. Here drchepresents a region of 19x19 elements irrdaematrix

The ‘displaying barrier’ of the two level view representation

In theoverview binplotheuser selection regiomust be represented as an orange rectangle with the right proportions.
Above, it is mentioned, that theser selection dotpldtas a size of 200x200 dots and thataherview binplohas a

size of 100x10®in dots. Let us consider one moment for both plots a higher limit: e.g. 400x400 dots. With this
reasonable size of 400x400 dots for dverview binplotaind theuser selection dotplpaibin dot in theoverview binplot
represents max. 400x400 dots in tiser selection dotploTherefore aaw matrixwith more than 400x400 = 160’000
lines per side can not be represented with this two level strategy; in the correspoadéatv binplotheuser

selection regiorwould be represented as an orange rectangle around a fraction of &isinigie With a 200x200 dots
limit, this ‘displaying barrier’ would occur already aboveaaw matrixsize of 200x200 = 40'000 lines per side.

A three level view representation

The solution to this ‘displaying barrier’ problem is to introduce a third level — see Figure 15:

» user selection viewT his corresponds with theser selection viewn thetwo level view representaticnsee bottom
left window.

» overview viewThis corresponds with theverview viewin thetwo level view representationith a modification:
Only a section of theaw matrixis represented by thiaformation Mural binplotof 100x100bin dots. Thisbinplot
is again referenced as theerview binplot- see bottom right window. As in theo level view representaticen
orange rectangle indicates the current position ofuder selection regiqnf the overview regioncovers it — see
rectangle in the bottom right window. As for thger selection regiothe overview regiorhas an origin point (top
left region corner) in theaw matrix The user can explore thaw matrix by modifying this origin position — see
next section.

* super overview viewr his view corresponds with tleerview viewn thetwo level view representation see top
right window. The completeaw matrixis represented as a denditjormation Mural matrixof 100x100 elements.
The graphical representation is again@ormation Mural binplotof 100x100 bin dots. Thisinplot is referenced
as thesuper overview binplot see top right window. Inside thinplot the orange rectangle indicates the current
position of theuser selection regioand the blue rectangle indicates the current position afvieiew region

For understanding the criteria, when a switch betweerlevel view representaticandthree level view representation
occurs, consult the calculations explained in the design chapter — see chapter 5.

With the current settings of 200x200 dots for tiser selection dotplaind 100x10®in dots for thesuper overvievand
overview binplat the limit of this currenthree level view representatias a raw matrix with a size of 2'000'000
(=100x100x200) lines per side. By choosing higheinplot sizes this limit can be pushed further:
e.g. 200x200 dots for theser selection dotplp200x200bin dots for thesuper overview binplaindoverview binplat
the limit of thisthree level view representatiGmaraw matrixof 8'000'000 lines per side.

“Information Mural” visualisation of Duploc - 16. August 1999 page 17 of 64

3 level exploring concept Graphical User Interface appearance

raw matrix represented as
this 'super overview
Information Mural binplot’

. . ‘overview region' represented
section of the raw matrix, in the ‘super overview binplot’
referenced as "'over view region

with size selected by Duploc 'super overview Information Mural binplot’

with size 100x100

‘all' raw matrix
with size 3759x3759

v

__\—:"“"".—:—--— >h]
‘user selection region’ _‘
répresented - \ 3
'+ in the r———
'super overview s |
N ! binplot’ \
N ‘ _
SN W
N\ N |
1 Y '
section of the raw matrix, N N > | -uZ'
referenced as 'user selection region’, NN | | =
with size 200x200 selected by the user . D . . ion' |
.............. Aoccm et T\ Overviewregion binplot section has
N explored |/ ; PP
N\ ith this binol this position in the
'user selection \ / \ With this binplot |'Super overview binplot’
region’ \ ‘user selection region’ " =\ _ .
explored represented in the T
j j ‘overview binplot’ ‘ T
with this dotplot \ P __\: = L‘_ — T
- !
N 4
T e N
- | pe— = |\
. = 78
=] 5N
- _ = -I|--|-\.I-l.I &
=" TR o
. o- dotplot section = -
has this position
| in the
| | ‘overview
i binplot’
||,|'|
| |]
T | | = : 'overview Information Mural binplot'

- with size 100x100
'user selection dotplot'
with size 200x200

Figure 15: The three level view representation.

“Information Mural” visualisation of Duploc - 16. August 1999 page 18 of 64

4.2 Using Duploc in the new Information Mural Interactive Mode

4.2.1 Starting the new version
Consult the Duploc Tutorial document [2] for a proper installation of the tool. The ri&uplocversion is started by
evaluating

DuplocinformationMural open

in a VisuaLWorks workspace or by selecting théendowSpec resource oDuplocinformationMural ina
Resource Finder and pressinTART.

4.2.2 Unchanged loading features from the previous version

The following loading features are invoked by the user like in the previous Version
¢ Selecting the Source Code Language

¢ Reading Source Code

4.2.3 Selecting the raw matrix

The raw matrix selection occurs with the radio button group on the lower left side of the main window labelled with
‘display RawMatrix’ — see Figure 16.:

e all Displays thell raw matrix

« selected: Displays theelected raw matrix

4.2.4 Exploring the raw matrix

Depending on theaw matrixsize, which is indicated in the second field of the status bar on the bottonToffiloe
window (see Figure 16),tavo levelor three level view representatimautomatically chosen liyuploc (Consult the
design chapter, chapter 5)

Let's begin with aaw matrix which has a size of 1983x1983 elements and which is exploratvinlavel view
representation- see Figure 16.

User selection (view) display mode °

Each new selectadw matrixstarts in this display mode. This is indicated in the radio button glispfay view,
whereuser selectionis set. Thaiser selectiorlabel and the diagram border are both coloured in orange — the colour
attributed to this display mode. The absolute co-ordinate of the upper left corneusétiselection regiois shown

on the left side of the main window under the ladrédin: (N.B. the top left position of theaw matrixhas co-ordinates
(1,1)).The size of thaser selection regiois indicated under the labedgion size:. Red borders around the diagram
border indicate that the outer border of thee matrixhas been reached, green borders indicate thas#reselection
region can be displaced/moved in that direction.

Common features with the previous version

The following features available in the previous version are also available in this displdy mode
e setting the dot size slider

¢ hiding the delimiting lines between the neighbouriognparison matrixes

e zooming

e examining the source code

Selecting theuser selection regiosize
Theuser selection regiosize can be selected over the following mouse menu items — see Figure 17:
size 200x200, size 400x400, size 600x600 andsize 800x800.

" see sectiof.3 Using Duploc in the original Interactive Mode
8 theuser selection view display moereferenced as theser selection display modt®m here on.
® see sectioR.3.5 Exploring the selected comparison matrix(es)

“Information Mural” visualisation of Duploc - 16. August 1999 page 19 of 64

position of user selection region indicated by green/red coloured borders
red borders - raw matrix border reached

diagram border

e

Line#: 369
acl.c

no match

Dot size

Line# 259
acl.c

display view
| ¥ user selection
7 overview

i region size:
e
 h: 400
origin :
I |
I

' display RawMatrix

& all;

C++

198321983

green borders - further moving in this direction allowed

Figure 16: The ‘all' raw matrix in user selection display mode.

Figure 17: Opened mouse menu in user selection display mode.

“Information Mural” visualisation of Duploc - 16. August 1999 page 20 of 64

Modify/Position the user selection region

The user selection regionan be moved inside the boundaries ofrdve matrixby selecting thélove user selection

region mode in the mouse menu (see Figure 17): In the situation of Figure 16, for exploniag timatrixarea further

to the right, move the cursor (which turns into a hand icon oveldtptod near the rightlotplot border, click the left

mouse button and drag the mouse cursor towards theldgftot border. Theuser selection regiorcan also be
positioned by selecting theosition user selection region mode: Theauser selection regionentre will be aligned with

the clicked position.— this mode results in a sort of two-dimensional scrolling. To De-select either of the two modes,
click on Stop Moving/Positioning in the mouse menu.

Switching view level
Selecting the menu itemp in the mouse menu corresponds with the selection afbrriew display modia the radio
button group on the left hand side of the window.

Resetting
By selecting the mouse menu itddeset theuser selection regiois resized to 400x400 elements and repositioned at
(1,1).

Overview (view) display mode *°in a two level view representation

In the two level view representatipthe completéall’ raw matrix introduced in Figure 16 is represented with this
overview Information Mural binplot see Figure 18. The radio button gralipplay view indicatesoverview. This
overview label and the diagram border are both coloured in blue — the colour attributed to this display mode. The
overview Information Mural binplatepresents the completd!’ raw matrix. Therefore the absolute co-ordinate of the
upper left corner is set at (1,1) — see under the taigih: . The size of theverview regions computed by multiplying
the number of dots in theformation Muralbinplot indicated under the labetgion size** and thebin size indicated
under the labébin size: In Figure 18 the representederview regiorhas 100x20 = 2000 elements per side — this is a
larger region as theaw matrix regionwith 1983 elements per side. The curneser selection regiors represented by
an orange rectandfein thebinplot As in theuser selection display modiee same colour coding with the red/green
borders is appli€d, but here the red/green lines are drawn inside the orange rectangle.

Common features with theuser selection display mode

The following features available in tiger selection display mo@ee also available in this display mode:
e setting the dot size slider

e zooming

e resetting

Mouse pointer information
Thebin density under the current mouse cursor position is indicated in the upper left window corner.

Move/Position theuser selection region

Theuser selection regionan be moved inside the boundaries ofrtve matrix by selecting thdlove user selection
region mode in the mouse menu (see Figure 19): In the situation of Figure 18, for movingethgelection region
towards the right, move the mouse cursor (which turns into a hand icon owénpla) over the binplot area, click the
left mouse button and drag the mouse cursor towards thebiighlbt border. Theuser selection regiogan also be
positioned by selecting thBosition user selection region mode: Theuser selection regiorentre will be aligned
with the clicked position. To De-select either of the two modes, clicRtop Moving/Positioning in the mouse menu.

Enable/Disable showing objects
In order to appreciate tHaformation Mural binplot the drawing of the orange rectangle, which representastie
selection regioncan be omitted.

Spying bins
By selecting the mouse menu it&npy bin region and by clicking on anin dot, the contents of the correspondaint
regionis displayed next to thgin dot in a red painted rectangle — see Figure 20.

Switching view level
Selecting the menu itehown in the mouse menu corresponds with the selection afdteselection display mode
the radio button group on the left hand side of the window.

% theoverview view display mode referenced as ttwerview display modeom here on.
" the labekegion size:should be renamaulot size:.

2 remember, that the colour orange was attributed tagbeselection display mode

13 see sectionser selection display mode page 19

“Information Mural” visualisation of Duploc - 16. August 1999 page 21 of 64

orange rectangle representing the user selection region

red borders - raw matrix border reached

green borders - further moving in this direction allowed

0.00751875 Line# 139

auth.c Dot size
Line®& 178
auth.c

\ i /
display view

{7 Lser selection
LT overview

i region size:
w100
i h: 100
origin :
i1
P
bin size : P
fw 20
w2

e
LT3
FR

| display RawMatrix
™ selected

s

C++ 1983021943

Figure 18: ‘all' raw matrix in overview display mode in a two level view representation.

Figure 19: Opened mouse menu in overview display mode in a two level view representation.

“Information Mural” visualisation of Duploc - 16. August 1999 page 22 of 64

mouse pointer is over this bin (density is 17%) in the overview binplot

the contents of the clicked bin is displayed in this red frame

File Confguration: Bisplay \ Sfindaws
017 Line#: b5] E
aclc Dot size E
Line#: 505
acl.c
\ / =
L]
display view
{7 uzer selection
H - - - - -
L] - L] - L]
l- - -
L] -i [] L] L]
L] -- - -- -
region size: fa, Me e, e
w100 . L --- .
h: 100 o, et ate
e 3 - - --
origin :
L H 1 "%
w 1
bin =size : L
X: 20 H
W 20
display RawMatrix
@ 3l
© zelected
e
ITTTI T
-
11 ']
1]
-ﬂ-
A .*IJ
C++ 198321983 ! 0%

Figure 20: Spying a bin in the overview display mode in a two level view representation.

“Information Mural” visualisation of Duploc - 16. August 1999

page 23 of 64

Let’s continue with aaw matrix which has a size of 10703x10703 elements and which is exploretreedevel view
representation- see Figure 21.

Super overview (view) display mode *in a three level view representation

In thethree level view representatipthe completéall’ raw matrix is represented with th&iper overvieWnformation
Mural binplot— see Figure 21. The radio button gralipplay view indicates2. overview— this label text was chosen
because of the restricted space. Thisverviewlabel and the diagram border are both coloured in black — the colour
attributed to this display mode. Thaper overview Information Mural binplegpresents the completd’ raw matrix.
Therefore the absolute co-ordinate of the upper left corner is set at (1,1) — see under triglabelhe size of the
super overview regiois computed by multiplying the number loih dots in thelnformation Muralbinplot indicated
under the labetegion size:and thebin size indicated under the labgih size. In Figure 21 the representsdper
overview regiorhas 100x108 = 10800 elements per side. The cunssmtselection regiois represented by an orange
rectangle and the curreatverview regions represented by a blue rectangle inkihmplot Theoverview regiorcan be
moved or positioned in this display mode. The red respectively green lines on the inside of the blue rectangle indicate if
a side did respectively did not reach the outer border afthenatrix Theuser selection regionan not be moved in
this display mode, because the moved distance would correspond with a multiplebof tegionsize. If thisbin
regionsize is much bigger then the actuakr selection regigrthen you would loose the precision in positioning it.
Therefore the inside of the orange rectangle ostiper overview binpldas drawn with red lines on four sides. Moving

or positioning thaiser selection regiohas to occur in theverview display mode see further down.

Common features with theoverview display modi the two level view representation
The following features available in th@erview display modare also available in this display mode:

e setting the dot size slider e mouse pointer information
e zooming e enable/disable showing objects
e resetting e spying bins

Move/Position theoverview region

The overview regioncan be moved inside the boundaries ofrdng matrix by selecting théMove overview region
mode in the mouse menu (see Figure 22): In the situation of Figure 21, for moviogethiew regiontowards the
right, move the mouse cursor (which turns into a hand icon ovduirtptot) over the binplot area, click the left mouse
button and drag the mouse cursor towards the bgiylot border. Theoverview regioncan also be positioned by
selecting théPosition overview region mode: Theoverview regiorcentre will be aligned with the clicked position. To
De-select either of the two modes, click 8top Moving/Positioning in the mouse menu.

Switching view level
Selecting the menu itewown in the mouse menu corresponds with the selection afubeview display modia the
radio button group on the left hand side of the window.

Overview (view) display mode in a three level view representation

Figure 23 shows theverview display modfr theraw matrixintroduced in Figure 22. This display mode corresponds
with the overview display mod®r atwo level view representationith some modifications discussed above: Because
this overview regiorcovers only a part of theaw matrix (in the example of Figure 23 it is 1500x1500 elements), the
absolute co-ordinate of the upper left corner is displayed under theotégial . If the currentuser selection regiors
covered by thigverview regionthen it is represented by an orange rectangle.

Common features with theoverview display modmm a two level view representation
This display mode supports all features presented iovbeview display modia athree level view representation

Move/Position theoverview region
The Move overview region mode andPosition overview region mode allow to move and position theerview
region in the same way as the two equivalent modes inuttez selection display modslow to do with theuser
selection regior(see Figure 24). The menu itdracus on user selection aligns the overview regiorcentrewith the
currentuser selection regiooentre.

Switching view level
Selecting the menu itelown/up in the mouse menu corresponds with the selection afsbieselectior super
overviewdisplay moden the radio button group on the left hand side of the window.

4 thesuper overview view display moisareferenced as ttsiper overview display moéi®m here on.

“Information Mural” visualisation of Duploc - 16. August 1999 page 24 of 64

blue rectangle representing the overview region

orange rectangle representing the user selection region

File - Configuration: - Display - findows
0.0649863 Eines = At . | | E""'"'E
code-gen.c Dot size |
Line® 184
code-gen.c
| J =l
L]
-
dizplay view E
{7 Lzer selection s
7 overview
] [1 [1
region size:
w100
h: 100
origin : o
X: 1
e 1
bin size : H HH HE : H
x 108 1 i
w 108
dizplay RawMatrix H
LR H H-H HHEH 2 H
7 zelected @ L
I]
L]
[l & -
i1
L]
-
x.
[1 ‘11 -
A .*JJ
C++ 10703@10703 0%

Figure 21: ‘all' raw matrix in super overview display mode in a three level view representation.

dizable zhowing objects

T3

datn

Mnwe overview regian
Pozitiot: overyien iegion

Heset

5 i bir region

Figure 22: Opened mouse menu in super overview display mode in a three level view representation.

“Information Mural” visualisation of Duploc - 16. August 1999 page 25 of 64

orange rectangle representing the user selection region

0.0977778 Line# 675

code-gen.c

Dot size
Line® G666

code-gen.c

Ll “ L] L LT

i display view
7 uzer zelection

2. overview
region size:
w100

h: 100

origin :

fowm 1190

w 1108
bin size :
w15
w15

CEC
i
(1]
Fid
FER
R
BER
R

i display RawMatrix B
Lo | fa
" zelected i

C++ 10703@10703 0%

Figure 23: ‘all' raw matrix in overview display mode in a three level view representation.

Figure 24: Opened mouse menu in overview display mode in a three level view representation.

“Information Mural” visualisation of Duploc - 16. August 1999 page 26 of 64

4.2.,5 The bin value colouring function

A binplot is the graphical representation of a densitfiprmation Mural matrix The bin dot shading occurs with a
definedbin value colouring functiofsee Figure 12). Ain-value, in the range from 0.0 to 1.0 is mapped to a grey level
between white and black. By modifying the function, differeimplots can be obtained, which can help to identify
some interesting regions of tihaw matrix Duploc binds to thesuper overviewand theoverviewlnformation Mural

binplot two independenbin value colouring functionsThe bin value colouring functiorsettings of the current
Information Mural binplotvisible in the current display mode are presented in an auxiliary windowbintleelouring

tool. This tool can be started in teaper overvievandoverview display modigom the mouse menu undapen <bin

value colorer> tool, if it is not open yet — see Figure 25b. Figure 26 shows the starting appearance of the tool, which
displays the settings of tHan value colouring functiorused for generating th&uper overview Information Mural
binplot displayed in Figure 25.

#% Duploc

File

Configuration

Display

Line#

Windows

350

0.0321502

Line& 184
code-gen.c

code-gen.c Dot size

P] B3

dizplay view
0 uzer selection e
O overview
& i
region size:
w100
h: 100
origin : -
H: 1
w 1
bin gize: H an
X 108
w 108

display RawMatriz H
@ all : 182

= selected a

|

C++ 10703@10703

Figure 25: 'Super Overview' Information Mural binplot.

“Information Mural” visualisation of Duploc - 16. August 1999

0%

page 27 of 64

enable showing objects

Hezet

Spy bin region

open <hin value colarer: toal

Figure 25b: Opened mouse menu in super overview display mode -
‘open <bin value colourer> tool' mouse menu item visible.

The available input ranges the range from the smalldsin value (which is bigger than zero) to the lardastvalue
that occur in the bounithformation Mural matrix Theavailable input rangef thissuper overview Information Mural
matrix displayed in Figure 26 has a minimum of 8.57339e-5 and a maximum of 0.06635&iE&elue colouring
function defines arinput range which is equal or smaller then the actaghilable input rangeBy clicking on the
buttonAvailable Range, theinput rangeis set on thevailable input rangeTheinformation boxon the bottom right
part of the window in Figure 26 displays always the currerihpet range

3 4

v

#% bin coloring FEE=
. . display fitere use grey level val
mapping function \ 1 ! play grey

values betwer between:
min: max min: max:

0.oo0 o 1.00 0.00 0.90

relative available range

* 1
_

w

'] e L L I invered mapping

absolute available range Set as the input :
9 function degree nt.0 i i e P

Available Fange! Visible Range

lineat |
2 / 1 ‘ ‘ input range: visible:

select only input values .
between % of input range: min: 8573395 8.57339e-5

; min: 000 [0 | max: 0.066358 0.06635%8

—

ma: 100 | i

I sutomatic update

Figure 26: bin coloring tool - starting appearance.

“Information Mural” visualisation of Duploc - 16. August 1999 page 28 of 64

The available input rangds not displayed numerically; only a graphical representation is available. Three horizontal
axis below the mapping function show the relationship between the maximal range (from 0.0 to av@j|ahke input
rangeand theinput range All three axis have a vertical mark, so that the length between the left vertical axis and this
mark before the arrow head represents one horizontal unit. On the middle and bottom axis two types of coloured
rectangle appear: A rectangle coloured in orange with the smaller height, referencedaldbée input range
rectangle represents thavailable input rangerelatively to the horizontal unit. A rectangle coloured in red with the
higher height, referenced as thgput rangerectangle represents thanput rangerelatively to the horizontal unit.

(Figure 29 shows this different rectangle heights better then Figure 26.) The bottom horizontal axis represents the
maximal range (from 0.0 to 1.0). Therefore the position and width afthiéable input rangeectanglerepresents the
available input rangein reference to the maximal range and the position and width ofhthe rangerectangle
represents thimput rangein reference to the maximal range. The middle horizontal axis representsilable input

range Therefore theavailable input rangeectanglecovers the middle horizontal axis. The position and width of the
input rangerectanglerepresents thieput rangein reference to thavailable input range

The upper horizontal axis represents the curirgnit range The mapping function, which is displayed in red, maps a
percentage of thenput rangeto the vertical grey scale. This percentage can be set with the two sliders indicated by
arrow #1. The function degree can be set with the slider indicated by arrow #2. Currently the function degree in Figure
26 is one; therefore a linear mapping is selected. The two sliders indicated by arrow #3 delimit the function output
range, which is effectively mapped linearly onto the grey level range selected with the two sliders indicated by arrow
#4.

Figure 27 shows some selected linear restrictions on the cumperitrange(which in this example still corresponds

with theavailable input rangg

#7% bin coloring =]

display filtere use grey level val
values betwe: between:
min: max: min: max:

A

020 073 0.00 0.40

¥
EA

] i il L I irverted mapping

Set the i t :
function degree nt.0 ittt bl

Available Bange| Visible Bange

linear

input range: visible:

e lomaEpee min: 8.5733%e-5 0.0252692

between % of input range:
min: 030 | [| max: 0066358 0.0391364

max: 070 | T |

I automatic update

Figure 27: bin coloring tool - linear restrictions selected

The mapping function is only applied between the 30th% and the 70th% ofpilierange The function degree
remains on one for achieving a linear mapping. Only the values lying between the 20th% and the 73th% of the output
range are effectively mapped linearly onto the grey level range between 0.0 (white) and 0.9 (dark) — see filled rectangle
on the right of the mapping function. Once thplate button is pressed thaiper overview Information Mural binplot

will appear like in Figure 28. Onlyins between 0.0252692 and 0.0391864 are visible viilde rangds indicated in

the information box By pressing the buttoWisible Range the input rangecan be restricted on this currensible

range— see Figure 29. Repeating the updating will only reprodudeainipéot shown in Figure 28.

“Information Mural” visualisation of Duploc - 16. August 1999 page 29 of 64

#% Duploc I]

File " ‘Configuration” Display Windows

8.5733%e.5 L'::i L Dotsize | | RE

Line& 219
http.c

dizplay view
0 uzer selection &
O overview
o
region size:
w100
h: 100
origin : "
H: 1
w 1
bin size : 2:_ R
X 108
w 108

display RawMatriz
& al g - -
' selected

4 of”

C++ 10703@10703 ! 0%

Figure 28: Resulting super overview Information Mural binplot from the applied linear restrictions.

“Information Mural” visualisation of Duploc - 16. August 1999 page 30 of 64

#7% bin coloring =]

display filtere use grey level val
A

K values betwe: between:
min: max: min: max:

o.oo 1.00 0.00 0.40

w
'
£

= . L] I irverted mapping

Set the i t :
enchon e 10 Ll
Available Fange| Misible Bange:

linear 1

input range: visible:
select only input values .
between % of input range: min: 0.0252692 0.0252692
min: 0.00 [0 | max: 0.0391864 0.0391864

1.0 —
e | I automatic update update i

Figure 29: bin coloring tool - visible range set as input

#7% bin coloring =]

display filtere use grey level val
A

i values betwe: between:
min: max: min: max:

o.oo 1.00 0.00 0.40

] = . L] I irverted mapping

Set the i t :
function degree nk.o A R
Available Bange| Visible Bange

lineat
input range: visible:
select only input values .
between % of input range: min: §.57339e-5 857339e-5
min: 000 [| max: 0.066358 0.066358
-1.00 |
T | I automatic update

Figure 30: bin coloring tool - available range selected & function degree 6.8 selected.

“Information Mural” visualisation of Duploc - 16. August 1999

page 31 of 64

In order to demonstrate the usefulness of this tooinihe rangeis restored on thavailable input rangeBy choosing
a high function degree of 6.8 like shown in Figure 30 only dénmsewill appear darker — see Figure 31. With this
simple settings the dense region in any currerinpet rangewill also appear darker.

#% Duploc I]

File " ‘Configuration” Display Windows

0.066358 L‘:::*_: i Dot size | | | &

Line® 401
lexer.c

dizplay view
0 uzer selection -
O overview
& i
region size:
w100
h: 100
origin :

H: 1
w 1
bin size: - 3
X 108
w 108

display RawMatriz
&l
' selected

4 o

C++ 10703@10703 ! 0%

Figure 31: Resulting super overview Information Mural binplot
from the applied non linear mapping - function degree 6.8

“Information Mural” visualisation of Duploc - 16. August 1999 page 32 of 64

5 Design

5.1 Introduction

The design of the application extension is explained in two sections:
e ‘System outline
e ‘System details

The system is implemented in Smalltalk — therefore this chapter makes references to Smalltalk expressions: e.g. ‘self'.

System outline

A sequence of diagrams explains the outline of the system. The system is designed according to an implementation
concept, which is described in the sectoB.8 Implementation concepi®hese diagrams are based on a defined
graphical notation, which reflects the used implementation concept. This graphical notation is described in section
5.3.9 Used graphical notation

System details
This section contains next to the mentioned implementation concept and graphical notation the details about the used
models, the behaviour of certain classes and update protocols between classes and its dependants.

5.2 System outline

A serie of 15 diagrams are presented in four parts for describing the implemented design:

e part | (Diagram 1) presents the main application structure around two ‘clouds’ of classes: One cloud, referenced as
thegraphical cloud groups classes used for the MVC pattern and one cloud, referencedresléieloud groups
classes used for representing the cunr@wt matrix

e part Il (Diagram 2a, 2b) presents the class hierarchy, which modelseheelectionoverviewandsuper overview
regionsintroduced above.

e part lll (Diagram 3a — 3h) presents the details ofgifgohical cloud

e part IV (Diagram 4a — 4d) presents the details ofitibelel cloud

The diagrams are inserted after the following text, which describes them. N.B. all mentioned sections are subsections of
the sectiorb.3 System details

Diagram 1. Classes around the application model class DuplocinformationMural

The Diagram 1 shows the application structure around the Blgsi®cinformationMural(highlighted by a shadow),

which is a subclass @uplocApplication the application model of the old implementation. HedectionInListlass
references the set of definechw matrixes A raw matrix is modelled with theRawMatrix class. The
DuplocPresentationModehstance has a methodiagramModel’, which returns a reference on the current selected
RawMatrix instance. The bottom cloud on the diagram is riedel cloud It represents the classes used by the
DuplocPresentationModeinstance for representing a currddawMatrix instance. Depending on the curreawv

matrix size, atwo level or three level view representatiai the currentraw matrix is realised. The MVC model is
formed by the DuplocPresentationModelView class, DuplocPresentationModelController class and
DuplocPresentationModetlass. TheDuplocPresentationModelViewstance is signalled by the window system to
(re)draw the GUI view area and tBeiplocPresentationModelControllénstance is signalled to respond to the mouse
events - see event symbols. Both classes can assume different statBsipldufresentationModelViewlass must

display different diagrams and tiiplocPresentationModelControllerlass must support different mouse functions.
These states are implemented with the ‘state’ design pattern, where the incoming events are forwarded to the state
classes. The top cloud on the diagram isgitamhical cloud which groups the ‘view’ and ‘controller’ state classes. It

also contains a class for displaying via h&uilder class theaw matrixinformation below the current mouse cursor
position. It is important to remember the two different types of lines used for the two clouds - they are used throughout
the diagrams as an orientation help. The selection of the ctawemhatrix by the user through the corresponding radio
button will send an event to tiselectioninLisinstance.

The selection of the current display mode by the user through the corresponding radio button will send an event to the
ValueHolder instance, which is accessed by thaplocPresentationModelViewnstance with the viewSelectof

method.

“Information Mural” visualisation of Duploc - 16. August 1999 page 33 of 64

Diagram 1. Classes around the application model class

DuplocinformationMural

g i
3g 33
] S‘ @ & 5‘_ c
535 585
o @ o
S 8z,
Q> Qo
Q= [Sl=1
2 2
| |
1 1
| |
| |
| |
| |
| |
\L dependant ‘ CO‘{‘}/O”ETO Lol view() \i/
. . ’
'display view' R R .
radio button >---------------- === ValueHolder DuplocPresentationModelView (2 . Y _.->) DuplocPresentationModelController
event viewSelector() | | TTtssell. various classes modeling the. ____--===""
7= " cursor, view sate and | &-=""
model() controller state model()
h '| . /' -
.. \\\‘
\
\
choiceOfView() | comparisonMatrixView()
builder() model()
DuplocinformationMural >
#presentationModel .
. DuplocPresentationModel |G
#rawMatrixAdaptor .
#rawMatrixSiL AN
\\
‘\
‘I
diagramModel() \
display raw matrix’ selectionHolder()
play SelectionInList ValueHolder
radio button event

dependant

\
\
\
\
\
\
\
|
\
i
\
\
value() H
i
\
cufrent raw matrix E
) - i
defined raw matrixes ‘all' and 'selected" \
:
2 !
sym bols: i
i
RawMatrix
n
\
cloud of classes

~
N
/'\
\

various classes for <____,'
_________ ?/represeming a raw matrix

\.\ F 4
referencing

“Information Mural” visualisation of

Duploc - 16. August 1999

page 34 of 64

Diagram 2a.RawMatrix and AbstractRawSubMatrixlases

The RawMatrixclass represents tih@w matrixmodel. (see sectiohl.1 The raw matrix set
¢ Features of the RawMatrix class

. It has a height and widthm.
. The upper left corner has co-ordinatégl).
. and the bottom right corner has co-ordingtasm)

* Methods summary of the RawMatrix class

* The class provides a set of methods for accessing the comparison resulias#élgtchAt:aPoint’ returns a
Boolean for indicating the comparison result at the co-ordirsRest —true for a match andalsefor no
match.

» It also provides so called enumerating methods: fgsubMatrix:aRectangle do:aBlock' evaluates for
each found match lying in the specified regadRectanglethe blockaBlock. There are further enumerating
methods ¢columnBordersin:aRectangle do:aBlockand ‘rowBordersin:aRectangle do:aBlock, which
return within the bounds of the specified regadtectangleall first columns respectively first rows belonging
to the next file in theaw matrix

Theuser selectionoverviewandsuper overview regionstroduced above are each realised as an own class - this is
described below. All three regions are a sora@f sub matrix

Definition: A raw sub matrixrepresents a region of an observea matrix It has an origin position inside theaw
matrix and a certain size.

There is an important consistency condition:

Consistency conditions A raw sub matrixmust always represent a sub-region of an obseawednatrix It must be
contained in theaw matrixarea.

The AbstractRawSubMatriglassmodels aaw sub matrix
e Features of the AbstractRawSubMatridass
e The attributeregionstores an instance of tRectangleclass: This rectangle represents the coveredmatrix
area. The upper left corner, referenced a®tiggn point, is expressed in the co-ordinate system ofalae
matrix.
e The region has a height and widthm’.
e It has a local co-ordinate system in its covered region:
e The upper left corner has co-ordinaeg)
e and the bottom right corner has co-ordingtes- 1, m’ - 1)
¢ Methods summary of the AbstractRawSubMatiGlass
e The class provides a set of methods equivalent to them availableRawhéatrixclass, which uses the local
co-ordinate system.
« The origin position of the region can be moved to a new position with the metbeddTo:aPositior. A
position, which would move thraw sub matrixegionoutside theaw matrix,is refused. Instead a linear
approximation is made. The ‘Consistency condition’ is guaranteed.

The AbstractRawSubMatriglass is designed using the ‘self topology’ implementation concept — see §381&8 The
concept of ‘self topologyTherefore this class and all its subclasses are independent from the application topology. The
reference to thRawMatrixinstance is returned by sending the message ‘self topology rawMatrix’.

Each class, which is a subclass of MiistractRawSubMatriglass, is a dependant of the curi@atvMatrixclass. How
this dependency is realised is explained in the fourth part.

“Information Mural” visualisation of Duploc - 16. August 1999 page 35 of 64

“Information Mural” visualisation of

Diagram 2a. RawMatrix and AbstractRawSubMatrix classes

RawMatrix

+hasMatchAt: aPoint
+columnFilename: aPoint
+columnLineNumber: aPoint
+rowFilename: aPoint
+rowLineNumber: aPoint

+columnBordersin: aRectangle do: aBlock
+countMatcheslin: aRectangle
+forSubMatrix: aRectangle do: aBlock
+rowBordersin: aRectangle do: aBlock

+height
+width
+empty

dependants

AbstractRawSubMatrix

#region :Rectangle

Duploc - 16. August 1999

topology().rawMatrix()

+abstractinitializeAt:aRectangle

+hasMatchAt: aPoint
+columnFilename: aPoint
+columnLineNumber: aPoint
+rowFilename: aPoint
+rowLineNumber: aPoint

+rowBordersDo:aBlock

+columnBordersDo: aBlock
+forRawSubMatrixDo: aBlock
+forRawSubMatrixRegion: aRectangle Do: aBlock
+countMatchesin: aRectangle

+height
+width

+moveRegionsOriginTo:aPoint

+translateAbs:aPoint
+translateRel:aPoint

+topology

page 36 of 64

Diagram 2b. Subclasses of the AbstractRawSubMatdbass

The AbstractUserSelectiorlassis a subclass of thAbstractRawSubMatrixlass. It represents theser selection
region The AbstractOverViewclass andAbstractSuperOverViewlass represent theverview respectivelysuper
overviewregion They are subclasses of tidstractinformationMuralMatrixclass, which is a subclass of the
AbstractRawSubMatriglass.
* Features of the AbstractinformationMuralMatrix class
» AbstractinformationMuralMatrixclass stores in the attributeMatrix the Information Mural matrix which
represents the match densitidgshe own raw sub matrix region
* Thelnformation Mural matrixhas heighh” and widthm”.
* The upper left corner has co-ordinafed)
(This definition results from the usage of the@oDListclass)
e and the bottom right corner has co-ordingtes, m”).
» The size of eachin regionis stored in théinLenattribute.
» Methods summary of the AbstractinformationMuralMatrix class
* The methodbuildimMatrixReportingProgressionTo:aValueHolder PercentageStep:aValuébuilds the
Information Mural matrixfor the covered region.
» The class provides a set of methods for mapping co-ordinates betwesw e matrixegionand the
Information Mural matrix
» It also provides an enumerating methddrihformationMuralMatrixDo:aBlock ' evaluates for eachin
valuethe blockaBlock.

The currentraw matrix is presented by thBuplocPresentationModehstance with &wo levelor three level view
representation The DuplocPresentationModelinstance holds three instances: The first is a sort of
AbstractUserSelectigrihe second is a sort AbstractOverVievand the third is a sort éfbstractSuperOverView the

details are described in the third part. The seciiél Representing a raw matrexplains the formulas, how the
parameters about thH@nLen and the region sizes for each three classes are selected. The class methods and class
attributes, which are underlined in the Diagram 2b, implement these described formulas.

Theraw matrixsize changes, according to the loading of new files or deleting of present files, and the contents changes,
if lines are ‘deleted’ in the ‘Files compared’ window — see se@i8nUsing Duploc in the original Interactive Made
Therefore an update protocol between fRawMatrix instance and its dependants, which are subclasses of the
AbstractRawSubMatrixlass, is used — see sectibr3.2 RawMatrix class update protocol to its dependahitese
dependants have a defined behaviour to changes — see se&i8nAbstractRawSubMatrix class behaviour to
RawMatrix class change#f a dependant is a subclass of AisstractinformationMuralMatrixclass, then the behaviour

must also be extended — see sectiGn3.4 The AbstractinformationMuralMatrix class extends the
AbstractRawSubMatrix class behaviour

“Information Mural” visualisation of Duploc - 16. August 1999 page 37 of 64

Diagram 2b. Subclasses of the AbstractRawSubMatrix class

AbstractRawSubMatrix

£

AbstractUserSelection AbstractInformatinMuralMatrix
- #binLen : Integer
#RSMmin . .)
#imMatrix : TwoDList
#RSMmax
+abstractlnitializeAt:aRectangle +abstractinitializeAt:aRegion WithBinLen:aLen FilteringContents:aBoolean
+abstractInitializeMaxSizeAt:aPoint
+abstractReinitializeMaxSize +buildimMatrixReportingProgressionTo: aValueHolder PercentageStep:aValue
+binValueAt: aPoint
+binValueAt: aPoint put:aValue
+forInformationMuralMatrixDo: aBlock
+imHeight
+imWidth
+imMatrix
+correspondentBin: aPoint
+correspondentBinindex: aPoint
+correspondentBinOrigin:aPoint
AbstractOverView
#IMMmin
#IMMmax AbstractSu perOverView
#0bjUSmin
o " - #IMMmin
+abstractlnitializeAsNthOV:alntegerPosition OutOf:alntegerSize #IMMmax
FilteringContents:aBoolean —
+abstractlnitializeAsNthOV:alnteger At:aPoint FilteringContents:aBoolean +abstractlnitializeWithFilteredContents:aBoolean
+forTwolevel:aRawMatrix +RSMsize:aRawMatrix
+RSMsize:aRawMatrix +RSMbinSize:aRawMatrix
+RSMbinSize:aRawMatrix +RSMmin:aRawMatrix
I+MMsize:aRawMatrix +RSMmax:aRawMatrix
+RSMmin:aRawMatrix +IMMsize:aRawMatrix
+RSMmax:aRawMatrix

+OperatorWindowSize:aPoint On:aRawMatrix
+OVdistributionPolicy:aRawMatrix AsNthOV:alntegerPosition QutOf:alntegerSize

“Information Mural” visualisation of Duploc - 16. August 1999 page 38 of 64

Diagram 3a. Classes, which model the view state, the controller state and the cursor information. They interact with classes,

BinValueColorerView

model()

bvem()

which implement the

|

DuplocPresentationModelView

viewState()
o

cursorPosition()

RawSubMatrix class type, and with classes, which store cached data.

controllerState()

DuplocPresentationModelController
<>)
view()
cachedObservationData()
binValueColorerinterface() K ' <<type>> <<type>> '
_ view(), PresentationModelViewState PresentationModelControllerState .
diagramView() controiler()
model() model() cachedOb_ser\;ationData()
BinValueColorerinterface °
. . <<Iype>>
#mainModelBuilder MatrixCursorPosition
UlBuilder &¥—4mm™M8@8 ™ " Tt-eey #matrixModel
— ——
—
/ ~
— ’ ——
e - - \ ~
- \
/ CachedObservationData K> CachedIimage
\ cachedimage() 0.1 / /
- — binValueColoringModel() -
/ 0.1 <
| del \ <<type>> ~
DuplocPresentationMode 4 RawSubMatrix
userSelection(), overview(), superOverview() 3 .
\ - BinValueColoringModel
\ rawMatrix() ~ _—
~—_ - \ _ /\ - - _——
RawMatrix

“Information Mural” visualisation of

Duploc - 16. August 1999

page 39 of 64

Diagram 3a. Classes, which model the view state, the controller state and the cursor information. They interact with
classes, which implement the RawSubMatrix class type, and with classes, which store cached data.

This third part describes the role of the classes insidgrigghical and model cloudintroduced in Diagram 1. This
Diagram 3a describes the topology of tp@phical cloud meaning all the classes and relationships forming the
graphical cloud and the concept of thrrodel cloud

As mentioned in the first part, tl@uplocPresentationModelViealass anduplocPresentationModelControllelass

have several states: These states are implemented according to the ‘state’ design pattern. The role of the classes inside
the graphical cloudis to represent these different states. PhesentationModelViewStatgpe class stands for the set

of all classes, inside which each class implements DaplocPresentationModelView state. The
PresentationModelControllerStatype class stands for the set of all classes, inside which each class implements a
DuplocPresentationModelControllerstate. The MatrixCursorPosition type class represents the different
implementation classes used to display viaWhBuilder class theraw matrix information below the current mouse
cursor position.

In each application state, the three instances of the implementation classes ingrdpliteal cloudinteract with the
instances of the classes drawn in mhedel cloud The model cloudconsist of a more complex topology than the one
sketched in Diagram 3a. The complete topology oftbeel clouds described in the fourth part.

The role of the classes inside thmdel cloudis to guarantee the different display modes of the application. The
application has up to three different display modes:

» user selection display mode

* overview display mode

* super overview display mode

The two display modesverviewandsuper overvieweed:

» to store their displayedinplotas a cached image, because the creation timebinipéot is quite time consuming:
At (almost) every position in thbinplot a grey shaded dot is drawn. Each used grey value is returned by the
associated ‘bin value colouring function’. Therefore it needs ...

* to store the associated ‘bin value colouring function’ used for creating the latest cached image.

A ‘bin value colouring function’ is realised with tiBinValueColoringModetlass — see sectidn3.6 The ‘bin value
colouring model’

All three display modes need also to store:

» the current dot size

» the current scrollbar positions

e the previous dot size

e the previous scrollbar positions

This allows the zoom back functionality in each display mode.

Therefore thenodel cloudcontains for each display mode:

« Aninstance of th€achedObservationDataass storing all data described above.

« Aninstance of the implementation class for RevSubMatrixclass type. This implementation class is a subclass
of AbstractUserSelectigi\bstractOverVievor AbstractSuperOverViewlass. It is specific to this application
topology — see further down explanations about Diagram 3b.

The instances in the upper cloud interact with the instances imaldel cloud In order to understand the type of
interactions, which occur, the following update scenario irteeview display mods presented:

Scenario: view area must be redrawn

The window system notifies to tliuplocPresentationModelVieimstance to redraw the window view area.

This request is forwarded by tBriplocPresentationModelVieimstance to the current view state instance. Each view
state class (see Diagram 3f below) has the role to display inside the window view area the latest imayewidhe
binplotand the orange rectangle representinguer selection regian

First the view state instance verifies, if tBachedObservationDaténstance, returned by the referencing method
‘cachedObservationDatg has still a cached image. If ‘nil" is returned the image was not created yet (lazy
instantiation) or it was invalidated — see part four. If the image is not present the view state instance accesses by
computing ‘self model overview’ the instance, which is a subclass dlbkegactOverViewclass, in order to create the
overview binplotas a new instance of th€achedimageclass. This image is created with the cached
BinValueColoringModelnstance stored in tHeachedObservationDatmstance. The newly created image is stored in
the same&CachedObservationDatastance.

“Information Mural” visualisation of Duploc - 16. August 1999 page 40 of 64

Once a valid cached image is available, it is displayed on the window view area.

Finally, in order to display the current position of the orange rectangle the view state instance must access by sending
the message ‘self model userSelection’ the instance, which is a subckizstraictUserSelectigrin order to request

the currentuser selection regiono-ordinates.

In the super overview display modlee view state instance also cachesiitger overview binplan its correspondent
CachedObservationDatmstance. But, in theser selection display mod® cached image is currently created; the
drawing occurs directly to the screen.

The role of each referencing method in gliaphical cloud(e.g. cachedObservationData() on Diagram 3a) is to return a
reference of the appropriate instance inrttadel cloud It is obvious, that these referencing methods must know the
exact application topology.

The BinValueColorerinterfacelass is the application model of the ‘bin colouring tool’ window. It always shows the
BinValueColoringModel instance of the current display mode. After each display mode change the
BinValueColorerinterfacanstance is linked with the cach&inValueColoringModeinstance: It sets the labels and
controls the sliders in the window according to the settings in the current referBimdéalueColoringModeinstance.

The BinValueColorerViewinstance draws the resulting mapping function - see sedtihb The bin value colouring
function

Diagram 3b. Classes implementing the RawSubMatrix type class —
they are topology dependant subclasses of the AbstractRawSubMaA#ss

The classes implementing tReawSubMatrixype class are:

» UserSelection

* Overview

e SuperOverview

All three classes are subclasses of the corresponding abstract classes. They bear the knowledge about the applicatior
topology by implementing the methopology, which returns ‘self’ and the methodawMatrix ’, which returns the

instance variable on tRawMatrixinstance. As explained in part four, these classes are not directly dependant of the
RawMatrixinstance. (This is the application topology aspect separated from the corresponding abstract classes.)

Diagram 3c. Classes implementing the MatrixCursorPosition type class

The classes implementing tatrixCursorPositiontype class are:

* InformationMuralMatrixCursorPositior- it is used in theverviewandsuper overview display mode

» RawSubMatrixCursorPosition it is used in theser selection display mode

As shown on Diagram 3a, these classes accesse8Bhbdder class of the application model (see also Diagram 1) for
displaying on the GUI labels the information about the current cursor position

“Information Mural” visualisation of Duploc - 16. August 1999 page 41 of 64

Diagram 3b. Classes implementing the RawSubMatrix type class -
they are topology dependant subclasses of the AbstractRawSubMatrix class

AbstractUserSelection AbstractOverview AbstractSuperOverview

UserSelection Overview SuperOverview

+topology +topology +topology

rawMatrix() rawMatrix() rawMatrix()

<<type>>
RawSubMatrix

L

RawMatrix

Diagram 3c. Classes implementing the MatrixCursorPosition type class

AbstractMatrixCursorPosition

?

InformationMuralMatrixCursorPosition RawSubMatrixCursorPosition

<<type>>
7777777777777777777777777777777777 > MatrixCursorPosition

“Information Mural” visualisation of Duploc - 16. August 1999 page 42 of 64

Diagram 3d. Classes implementing the PresentationModelViewState type class
Diagram 3e. Classes implementing the PresentationModelControllerState type class

These two class diagrams show the view state classes implementifRyegentationModelViewStatiype class
respectively the controller state classes implementingPtiesentationModelControllerStateype class. (N.B. in
Diagram 3e the classes with the round corners represent the implementation classes).

Diagram 3f. State diagram of the DuplocPresentationModelView class

This diagram shows the state diagram of EhelocPresentationModelViewlass. Each state corresponds with an
implementing class in Diagram 3d; only the leading ‘PMVS’ is omitted from the classname.

(N.B. The events written in normal font are from the mouse menu selection. The events written in italic font are of
another nature — the appropriate explanations appear on the drawing.)

Diagram 3g. State diagram of the DuplocPresentationModelController class

This diagram shows the state diagram ofDiuplocPresentationModelControlledass. Each state corresponds with an
implementing class in Diagram 3e; only the leading ‘PMCS’ is omitted.
The events are written with the same notation as in Diagram 3f.

Diagram 3h. Object instance diagram of the class diagram presented in Diagram 3a showing following situation:
The user selected the overview display mode in a three level view raw matrix representation and he
wants to reposition the overview region.

This instance diagram is an example of the class diagram shown in the Diagram 3a. It shows the following application

state: The user selected tbeerview display modi a three level view representatioible wants to reposition the
overview regioron theraw matrixarea.

“Information Mural” visualisation of Duploc - 16. August 1999 page 43 of 64

Diagram 3d. Classes implementing the

PresentationModelViewState type class

AbstractPresentationModelViewState

b

PMVSInformationMuralMode

PMVSUserSelectionMode

L

PMVSOverViewNormalMode

|

f——— PMVSOverView3LNormalMode

A

PMVSOverViewSpyingMode

PMVSOverView3LMovingMode

PMVSOverView3LSpyingMode

“Information Mural” visualisation of Duploc - 16. August 1999

PMVSSuperOverViewSpyingMode

PMVSSuperOverViewNormalMode +————————————

<<type>>
PresentationModelViewState

page 44 of 64

Diagram 3e. Classes implementing the

Symbol:

class name % -

“Information Mural” visualisation of

PMCSdummyMode

AbstractPresentationModelControllerState

I

PMCS

PresentationModelControllerState type class

PMCSnormalMode

1

PMCSOverViewNormalMode }

PMCSOverView3LNormalMode]

PMCSSuperOverViewNormalMode J

L

PMCSUserSelectionNormalMode j

PMCSmovingMode

PMCSOverView3LMovingMode }

1L

PMCSOverView3LMovingSelfMode J

PMCSOverViewMovingMode }

PMCSUserSelectionMovingMode

SRR

PMCSSuperOverViewMovingMode j

PMCSspyingMode

PMCSOverView3LSpyingMode J

PMCSOverViewSpyingMode J

I

PMCSSuperOverViewSpyingMode j

<<type>>
PresentationModelControllerState

Duploc - 16. August 1999

PMCSpositioningMode

—[PMCSOverViewPositioningMode]

—[PMCSSuperOverViewPositioningMode J
—[PMCSOverView3LPosi1ioningMode }

PMCSOverView3LPositioningSelfMode j

—[PMCSUserSeIectionPositioningMode J

page 45 of 64

Diagram 3f. State diagram of the DuplocPresentationModelView class

radio button changed

/ set radio button on
user selection

raw matrix changed
/ set radio button on
user selection

[user selection
radio button
selected]

UserSelectionMode

up

[three level view representation |
up

[two level view
representation]

stop spying

spy bin region
stop spying

OverView OverView OverView3L
NormalMode SpyingMode [overview NormalMode
i spy bin region
[;‘velr)wew Py 9 radio button
radio button selected
selected AND mouse button pressed
o \:ye[l)view three level view
representation]

representation]

mouse button released

stop spying

SuperOverView
NormalMode

SuperOverView
SpyingMode

[2. overview
radio button

selected]

spy bin region

OverView3L

MovingMode

OverView3L
SpyingMode

Symbol:

mouse menu label selected —p»

————another type of event——p»

“Information Mural” visualisation of Duploc - 16. August 1999

page 46 of 64

Diagram 3g. State diagram of the

Symbol:

-

I set radio button on
user selection

DuplocPresentationModelController

class

radio button changed

raw matrix

/ set radio button on
user selection

changed

up
[two level view representation |

OverView

SpyingMode
spy bin region

OverView

MovingMode

stop spying

stop moving

move
user selection region

OverView
NormalMode

[overview
radio button ‘
selected position
AND user selection region

two level view

representation | stop positioning

OverView
PositioningMode

[raw matrix empty]

UserSelection
DummyMode

[raw matrix not empty
AND
user selection
radio button
selected]

use

UserSelection
NormalMode

up
[three level view representation |

move
r selection region

UserSelection
MovingMode

stop moving
position

user selection region UserSelection
PositioningMode

stop positioning

OverView3L
SpyingMode

spy bin region

stop spying

OverView3L
MovingMode

stop moving
down move
user selection region
stop moving
OverView3L _ OverView3L
NormalMode move MovingSelfMode
L overview overview region
radio button
selected .
AND up position
three level view user selection region
representation . / i
’ : position stop positionin p Oyng|ewhA3,Ld
down overview region pe 9 ositioningMode
stop positioning
OverView3L
SuperOverView PositioningSelfMode
stop spying SpyingMode

SuperOverView
[2. overview NormalMode

radio button
selected |

spy bin region

stop moving

move
overview region

_/SuperOverView
MovingMode

position

overview region

stop positioning

SuperOverView
PositioningMode

v

mouse menu label selected —p»

—————another type of event ———p»

“Information Mural” visualisation of

Duploc - 16. August 1999

page 47 of 64

Diagram 3h. Object instance diagram of the class diagram presented in Diagram 3a showing following situation:

The user selected the overview display mode

reposition the overview region

:DuplocPresentationModelView

viewState()
S

cursorPosition()

>——

:UlBuilder

view():

:PMVSOverView3LNormalMode

cachedObservationData()

in a three level view raw matrix representation

view()

controllerState()

model()

:PMCSOverView3LPositioningSelfMode

contrptler()

#mainModelBuilder

::InformationMuralMatrixCursorPosition

#matrixModel

model()

— - —

::CachedObservationData

cachedimage()
o>

:DuplocPresentationModel

“Information Mural” visualisation of

overview()

Duploc - 16. August 1999

:Overview

rawMatrix()

\——\

::RawMatrix

binvalueColoringModel()

::BinValueColoringModel

S — . —

cachedOb§er’v€1tionData()

;:Cachedimage

—

and he wants to

:DuplocPresentationModelController

page 48 of 64

Diagram 4a. Classes used by the DuplocPresentationModel class for presenting the current raw matrix

This diagram describes the topology of mhedel cloud

¢ TheDuplocPresentationModehstance references up t@®servationOnRawSubMatrmstances. The
UserSelectionOverviewandSuperOvervievinstances are each attached t@aservationOnRawSubMatrix
instance.

¢ TheObservationOnRawSubMatrimstance is capable to reference a s€afhedObservationDatastances, but
currently only up to one is referenced: The numbélaservationOnRawSubMatrimstances corresponds with the
number of possible display modes (representation levels). If the application supports several view areas or windows
simultaneously, the case would occur, where two view areas show simultaneously the same display mode, but with
a different dot size. Therefore the numbeCafchedObservationDaiastances corresponds with the number of
GUI view areas managed by the application — the cuDaptocapplication manages one such view area.
Therefore eacl®bservationOnRawSubMatrimstance references maximal ddachedObservationDatastance.
The ObservationOnRawSubMatrirstance controls the validity of the stoil@dchedObservationDatastance(s).

« TheDuplocPresentationModéhstance is dependant of each thtdsservationOnRawSubMatrirstances.

The topology is explained with the update propagation in two different scenarios:

Scenario 1: The user selection region is moved or (re)positioned

If the UserSelectiorinstance receives from the controller state instance the message to move or (re)podisen the
selection regiorthen the instance informs its dependant -QheervationOnRawSubMatrirstance.

The ObservationOnRawSubMatrixstance informs eacBachedObservationDatastance to invalidate the cached
image, and updates its dependant -ObplocPresentationModéhstance.

TheDuplocPresentationModehstance informs its dependant — tigplocPresentationModelVieinstance.

The DuplocPresentationModelVieinstance invalidated the GUI view area, which causes the window system to notify
to the saméuplocPresentationModelViewmstance to redraw the view area — see the described scenario in the third
part.

Scenario 2: Changes to the raw matrix

If the RawMatrix instance broadcasts the update protocol (discussed in the se@&i@anRawMatrix class update
protocol to its dependant# is important, that the following sequence is guaranteed:

1. allinstances implementing tfRawSubMatrixype class are updated

2. theDuplocPresentationModéhstance is updated.

This is the reason, why tHdserSelectionOverviewand SuperOverviewnstances are not directly dependant of the
RawMatrix instance. TheDuplocPresentationModelProtocolTransformarstance is dependant of thiRawMatrix
instance: It is responsible to forward each update message fradaudatrixinstance to its dependants, the instances
implementing the RawSubMatrix type class. Once each dependant is updated, it sends to the
‘transformedProtocolReceiver’, thé®uplocPresentationModelinstance, the update messages to adapt the
representation modetvo or three level view representatipand to update the view area.

Therefore in this update sequence scenario &fdervationOnRawSubMatrirstance will not update its dependant,
the DuplocPresentationModehstance, after invalidating the referencgachedObservationDatestance. If it would
update théuplocPresentationModéhstance the GUI would be unnecessarily updated several times.

“Information Mural” visualisation of Duploc - 16. August 1999 page 49 of 64

Diagram 4a. Classes used by the

DuplocPresentationModel

class for presenting the current

raw matrix

DuplocPresentationModelView

dependant

protocolTransformer()

superOverviewSelection()

dependant overviewSelection()
DuplocPresentationModel
userSelection()
userSelectionObservation() | overviewObservation() superOverviewObservation() —_
—_ T ~
- \
N
~
- - !
— - = 07" \
£ ObservationOnRawSubMatrix <>———— CachedObservationData
0..n
dependant matrix()
\
AN
/ jmmm s ~{ UserSelection
/ dependant |
, <<type>> <'%
RawSubMatrix
-
transformedProtocolReceiver() Overview
rawMatrix()
\
A #protocolTransformer ’7
N~ SuperOverview
DuplocPresentationModelProtocolTransformer -~
protocolSender() \\
~ A -
dependant ~— _ P - _ ———
~— - - /

“Information Mural” visualisation of Duploc - 16. August 1999

RawMatrix

page 50 of 64

Diagram 4b. Object instance diagram of the class diagram presented in Diagram 4a showing the objects
presenting the current RawMatrix instance in a three level view representation.

This instance diagram is an example of the class diagram shown in Diagram 4a. It stives kevel view
representatiorof the currenRawMatrixinstance.

Diagram 4c. A collection of cached objects for each 'view' on the same RawSubMatrix type class

This class diagram shows some details ofQbservationOnRawSubMatrandCachedObservationDatelasses. Each
CachedObservationData instance has an assigned id - see the attribite With the method
‘cachedObjectWithld:aNumber’ the ObservationOnRawSubMatrixinstance returns a reference on the
CachedObservationDatiastance with the id ‘aNumber’.

Diagram 4d. ForwardingObject, ProtocolTransformer & DuplocPresentationModelProtocolTransformer classes

This class diagram shows the super class of EhglocPresentationModelProtocolTransformeasiass: The
ForwardingObjectclass forwards each received update message to its dependaniroidwmlTransformerclass

extends this behaviour by giving the possibility to its subclasses to intervene on an update protocol: The update protocol
sent by theprotocol senderis forwarded, unless the correspondingpdate:anAspectSymbol ... method is
overwritten. Like this, théransformed protocol receiveinstance can be notified. TReotocolTransformeclass holds

these two references. TBeiplocPresentationModelProtocolTransformaass implements the role discussed above by
using these two references — see section about Diagram 4a.

“Information Mural” visualisation of Duploc - 16. August 1999 page 51 of 64

Diagram 4b. Object instance diagram of the class diagram presented in Diagram 4a showing the objects
RawMatrix instance in a three level view representation

transformedProtocolReceiver()

symbols:

dependant

“Information Mural” visualisation of

=

presenting the current

protocolTransformer()

:DuplocPresentationModelView

::DuplocPresentationModel

/

I'd

userSelectionObservation()

— - —

-

— BN

ObservationOnRawSubMatrix

/ - matrix() ?L

anlnstance::
UserSelection

rawMatrix()

#protocolTransformer

overviewObservation()

aninstance::
ObservationOnRawSubMatrix

matrix() j

anlnstance::
Overview

rawMatrix()

#protocolTransformer

superOvervie

anlnstance::

ObservationOnRawSubMatrix

matrix() ﬁ/

anlnstance::
SuperOverview

#protocolTransformer

Duploc - 16. August 1999

~
\ -—
v |
\\ P
7
~ A -
\/ \ _ / \ ——
= \ / S —_———
aninstance:: protocolSender() ~ _
aninstance:: -
DuplocPresentationModelProtocolTransformer \ - —,— - —
allRawMatrix::
RawMatrix

-

Opservation()

rawMatrix() \

e

/

page 52 of 64

Diagram 4c. A collection of cached objects for each 'view' on the same

CachedObservationData

ObservationOnRawSubMatrix

#id :Number

+cachedObjectWithld:aNumber

clmage :CachedImage
clmageStepSize :Number

dependant matrix()

"zoom data"
bvem :BinValueColoringModel

<<type>>
RawSubMatrix

Diagram 4d. ForwardingObject , ProtocolTransformer

Object

ForwardingObject

dependant

#parameter
#aspectSymbol
#firstEntrance
#sender

RawSubMatrix type class

& DuplocPresentationModelProtocolTransformer

+update:anAspectSymbol with:aParameter from:aSender
+update:anAspectSymbol with:aParameter
+update:anAspectSymbol

+entranceReset

ProtocolTransfomer

protocolSender()

transformedProtocolReceiver() +initializeOn:aSender With:aReceiver

Object

1

DuplocPresentationModelProtocolTransfomer

“Information Mural” visualisation of Duploc - 16. August 1999

dependant

Object

classes

page 53 of 64

5.3 System details

5.3.1 Representing a raw matrix
5.3.1.1 Introduction

This section describes, how thser selectiopoverviewandsuper overviewegionsizes are related, in order to achieve the
best possibleaw matrixrepresentation — see sectbi.2 Representing a large raw matrix

5.3.1.2 Defined abbreviations

The important data-structures are referenced with the following abbreviations:
e rm —raw matrix

e us-—user selection

e Ov-—overview

* SOvV—super overview

The us, ov and sov are considered a sort of:
¢ rsm —raw sub matrix

An Information Mural Matrixhas this abbreviation:
¢ imm —information mural matrix

Theraw matrixhas the following attributes

Abbreviations

Description

Const/Variable

rm.rsm.size

size of thew matrix

variable

The us, ov and sov have the following attributes:

us:

Abbreviations Description Const/Variable

us.rsm.min minimal size of thew sub matrixepresenting thaser selectiomegion const

us.rsm.default default size of thew sub matrixepresenting thaser selectiomegion const

us.rsm.max maximal size of thaw sub matrixepresenting thaser selectiomegion const

us.rsm.size size of theaw sub matrixepresenting thaser selectiomegion variable

ov:

Abbreviations Description Const/Variable

ov.rsm.min minimal size of theaw sub matrixepresenting theverviewregion variable

ov.rsm.max maximal size of thhiaw sub matrixepresenting theverviewregion variable

ov.rsm.size size of thew sub matrixepresenting a section or the complaterview | variable
region

ov.rsm.bin.size size of eatdin region— all bin regionspartition a section or the complete | variable
overview region

ov.imm.min minimal size of thmformation mural matrixepresenting the match const
densities in theverviewregion

ov.imm.max maximal size of thaformation mural matrixepresenting the match const
densities in theverviewregion

ov.imm.size size of thmmformation mural matrixepresenting the match densities in thevariable
overviewregion

ov.obj-us.size size of the orange rectangle in dots invibeviewbinplotrepresenting the | variable
user selectiomegion

ov.obj-us.min minimal size in dots of the orange rectangle intkeviewbinplot const
representing thaser selectiomegion, which is allowed in &wvo level view
representation

sov:

Abbreviations Description Const/Variable
sov.rsm.min minimal size of thew sub matrixepresenting theuper overviewegion variable
Sov.rsm.max maximal size of thaw sub matrixepresenting theuper overviewegion | variable
sov.rsm.size size of theaw sub matrixepresenting theuper overviewegion variable
sov.rsm.bin.size size of eabm region— all bin regionspartition thesuper overview region | variable
sov.imm.min minimal size of theformation mural matrixepresenting the match const

“Information Mural” visualisation of

Duploc - 16. August 1999

page 54 of 64

densities in theuper overviewegion

sov.imm.max maximal size of theformation mural matrixepresenting the match const
densities in theuper overviewegion

sov.imm.size size of theformation mural matrixepresenting the match densities in thevariable
super overviewegion

sov.obj-us.size size of the orange rectangle in dots isuper overvievbinplot representing variable
theuser selectiomegion

sov.obj-ov.size size of the blue rectangle in dots irsthmEer overvievbinplot representing | variable
theoverview region

5.3.1.3 Two level / three level view representation selection criteria

As discussed above, once tleav matrix grows too big, the orange rectangle representingiglee selectiorregion in the
overview binplotwould have to be drawn around a fraction of a sibigfledot. This was the reason for introducing theee
level view representation

The attributeov.obj-us.min defines the minimal number of dots, above which the size of the orange rectanglevarthiew
binplotin atwo level view representatios acceptable — below this thresholtheee level view representatiomust be used:

(ov.obj-us.size < ov.obj-us.min)
True: usethree level view representation

False usetwo level view representation

5.3.1.4 Attribute value definitions
This section describes, how the us, ov and sov are related in their attribute values to achieve the best possible |

representation. The next section describes the used concept for defining the size of thbreelewve! view representation

remark: The two used italic expressiorta/b levelsand ‘threelevels refer to thetwo leveland three level view
representation

Auxillary functions:

. XO:=trunc(x + 1)
« maxey((xy)) = max(xy) of point (xy).
¢ us
. us.rsm.min := 200x200 , unless rm is smaller.
. us.rsm.default := 400x400
. us.rsm.max := 800x800
. us.rsm.size := selectable by the user inside the allowed range.
. ov:
. ov.imm.min := 5x5
. ov.rsm.min := ov.imm.mimbv.rsm.bin.size
. ov.imm.max ;= 100x100
. ov.rsm.max := ov.imm.makbv.rsm.bin.size
. ov.imm.size ;=
two levels [bv.rsm.size / ov.rsm.bin.size
three levels ov.imm.max
. ov.rsm.size =
two levels rm.rsm.size
three levels ov.imm.sizelbv.rsm.bin.size
. ov.rsm.bin.size :=
two levels max(2, may.y)([ov.rsm.size / ov.imm.ma3))
three levels Osqgrt((us.rsm.min / ov.imm.sizé3ov.rsm.bin.size [}
. ov.obj-us.size :Flus.rsm.size / ov.rsm.bin.sizée
. ov.obj-us.min := 10x10
[ﬂ
. sov.imm.min := 5x5
. sov.rsm.min := sov.imm.mibsov.rsm.bin.size

“Information Mural” visualisation of Duploc - 16. August 1999 page 55 of 64

. sov.imm.max := 100x100

. sov.rsm.max ;= sov.imm.malksov.rsm.bin.size

. sov.imm.size :Z£$ov.rsm.size / sov.rsm.bin.size

. sov.rsm.size := rm.rsm.size

. sov.rsm.bin.size := max(2, may([$ov.rsm.size / sov.imm.mék)
. sov.obj-us.size :Elus.rsm.size / sov.rsm.bin.size

. sov.obj-ov.size :£lov.rsm.size / sov.rsm.bin.siZe

5.3.1.5 Three level view representation concept

In a three level view representation the question to solve is, how must ieetireewregion selected? The chosen concept is

to select the largest possibitgormation mural matrixsize (ov.imm.size := ov.imm.max) and choose an appropbiatsize.

What is an appropriate ov.rsm.bin.sib¥drview binsize) ? If the ov.rsm.bin.size is too big, then the sov.obj-ov.size (the size

of the ‘blue rectangle’) appears bigger, but the ov.obj-us.size (the size of the ‘orange rectangle’) would appear too small ar
vice versa.

The chosen solution is to have a blue rectangle osuper overvievbinplot, which has an equivalent size to the smallest

allowed red rectangle on tlerviewbinplot :

(D) rli=r2 , With
rl := sov.obj-ov.sizg, := (ov.imm.sizelbv.rsm.bin.size) / sov.rsm.bin.size
(n.b. ov.imm.size := ov.imm.max)
r2 := ov.obj-us.sizg,:= us.rsm.min / ov.rsm.bin.size

The equation (1) can be rewritten in (1), so that the variable x appears on both sides — x stands for the variablesizersm.bin.
) kiIk=k2/x ,with
k1 := ov.imm.size / sov.rsm.bin.size
k2 := us.rsm.min
X := ov.rsm.bin.size

By solving the equation (1’) we obtain:

am ov.rsm.bin.size:= x = sqrt(k2/k1) =sqrt((us.rsm.min/ov.imm.size)sov.rsm.bin.size)

5.3.2 RawMatrix class update protocol to its dependants

The size of the curremmaw matrix represented by the correspond®awMatrix instance varies depending on the current
compared files. For any dependants to this model this means, thratMmeatrix size varies by adding or removing ‘strips’.
Each ‘strip’ has the height respectively the width of the cum@ntmatrix These changes are sent to the dependants of the
correspondindgRawMatrixinstance according to a defined protocol: Following messages are sent:

* 1l.repairStart

* 2. Sequence dhsertArea and/orremoveArea

* 3.repairNow

The first and last message (see 1. and 3.) have the purpose of synchronisation. The sequence of messages in-between (se
has the purpose to notify the inserted or removed areas (‘strips’). Each message sends therefore caparctanegdewhich
specifies the concerned area.

The contents of the currergw matrixcan also vary. e.g. The user might ‘delete’ a line in files comparetdwindow — see
section2.3 Using Duploc in the original Interactive Madeollowing message is sent by tRewMatrixinstance:

» filteredContents

It was also defined as a future extension, that any client of this class must specify, if it wants to access to the dbetents of
raw matrix by taking or not by taking in account the ‘deleted lines’ — currently this feature is not supportedRkbyviiatrix

class.

5.3.3 AbstractRawSubMatrix class behaviour to RawMatrix class changes

5.3.3.1 Adaptation behaviour concept

EachAbstractRawSubMatriinstance is a dependant oRawMatrix instance. Depending on the changes ofréive matrix

eachraw sub matrixnust have a defined behaviour.

Defined behaviour concept A raw sub matrixkeeps covering the region previous to the matrixchanges, by clipping its
region and moving its origin point depending onréms matrixchanges. Therefore newly added
areas are not covered by tlagv sub matrix

“Information Mural” visualisation of Duploc - 16. August 1999 page 56 of 64

Here is the list of cases, for whichAastractRawSubMatriglass must have in implemented reaction, in order to fulfil the
defined behaviour concept:

¢ Some abbreviations:

V/H - ... Vertical/Horizontal strip ...

I - ... having an Intersection with curreraw sub matrix..
L/R - ... to the Left/Right of the currenaw sub matrix

T/B - ... to the Top/Bottom of the curreraw sub matrix

S - ... which splits curreraw sub matrix

A/D - Added/Deleted ...
e Vertical strips:
e Vertical strips, which have no intersection with thes sub matrix
e AVL - meansAddedVertical strip to the eft of the currentaw sub matrix
e DVL - meansDeletedVertical strip to theeft of the currentaw sub matrix

+ AVR
« DVR
e Vertical strips, which have an intersection with tae sub matrix
« DVIL
¢« DVIR
¢« AVS
« DVS

e There are 8 equivalent cases for horizontal strips: AHT, DHT, AHB, DHB, DHIT, DHIB, AHS and DHS.

Each of these 16 cases must have a defined reaction. Here a summary, AbstrdetRawSubMatriglass reacts to each
case:

L]

AVR, DVR, AHB, DHB

This will neither affect the origin nor the size of tlagv sub matrix

AVL, DVL, AHT, AHB

This will only affect the origin of theaw sub matrix The origin x respectively y position will ‘increase’, if a strip is

added, and ‘decrease’, if a strip is deleted.

DVIL, DHIT

This will affect the origin and size of tmaw sub matrix The behaviour can be described in two steps:

1.) First we create an intermediassv sub matrix regionThe originakaw sub matrix regiotis clipped with the affected

‘strip’, so that the non intersecting area of the region is kept. This means, that the origin x respectively y position will
‘increase’, but the corner point (bottom right point) is not changed. The obtained intermediate region has no intersection
with the strip.

2.) Because the new obtained region has no intersection with the strip, the effective deletion corresponds with the cases
DVL and DHT mentioned above applied on the new intermediate region.

DVIR, DHIB

This will affect only the size of theaw sub matrix The originalraw sub matrix regioris clipped with the affected ‘strip’,

so that the non intersecting area of the region is kept. This means, that the corner x respectively y position will ‘decrease
but the origin point is not changed.

AVS, DVS, AHS, DHS

These four cases need an extended definition of behaviour. The simplest definitiorrdsy that matrix regions split in

two raw sub matrix regionand that only the left respectively the tapv sub matrix regioris kept.

5.3.3.2 Received update and sent changed protocol

Implementation remarks about the update/changed method%

e Any change in thdbstractRawSubMatriinstance invokes first a method nansthspectSymbolnhich itself
invokes the methodhangeDanAspectSymbg@ichangeD’ followed by ‘anAspectSymbol’).

e A subclass must overwrite the metha@AspectSymbahnd if necessary invoke itself the method
changeDanAspectSymbal invoke the method in the super class.

¢ Aninterested dependant must implementupdate: method, which could react with a correspondent method
updatEanAspectSymbol

Behaviour of the AbstractRawSubMatrixnstanceo the followingupdateD... messagefom theRawMatrixinstance:

« During aRawMatrixchangé®:

e ...repairStart: The currentegion is stored in the attributgreviousRegion
e ...insertArea: It applies described behaviour in the secBdh3.1 Adaptation behaviour concept
e ...deleteArea It applies described behaviour in the sectidh3.1 Adaptation behaviour concept

® see in the source code
6 see sectioB.3.2 RawMatrix class update protocol to its dependants

“Information Mural” visualisation of Duploc - 16. August 1999 page 57 of 64

e ...repairNow: Depending on the differences between the curegibn compared to thpreviousRegion
following messages are sent
e observedContentsHasNewLocationThe origin was moved.
« regionClipped: The region size changed.
« destroyed The region is not valid anymdre see further dowdestroyed
« repairFinished: All the changes were broadcasted.
¢ n.b.observedContentsHasNewLocatiomandregionClipped can both be sent.
« If the user has modified the contents of the ‘deleted lines container’:
« ..filteredContents: The message is ‘forwarded’ to the subclass and/or to the dependant classes.
« Invoked methods which trigger a corresponderhangeD... messagsf ... :
e if the region has been released then all references to this instance must be cdsteyed
« if the observed region has changed, but the size remains thersginaMoved
« if a complete new region was specifiedgionRedefined

5.3.4 The AbstractinformationMuralMatrix class extends the AbstractRawSubMatrix class behaviour

5.3.4.1 Received update and sent changed protocol
« Behaviour of theAbstractinformationMuralMatrixinstanceo the followingupdateD... messagefom theRawMatrix

instance:
« During aRawMatrixinstance chang&
e ...repairStart: nothing to do.
e ...insertArea: nothing to do.
e ...deleteArea nothing to do.
e ...repairNow: nothing to do.
« |f the user has modified the contents of the ‘deleted lines container’:
« .. filteredContents: If the matrix has interest in a filtered contents, then the instance vanarix is
destroyed.

« Behaviour of theAbstractinformationMuralMatrixnstanceo the followingupdateD... messagegom the
AbstractRawSubMatrix

e ...observedContentsHasNewLocatian.

« ..regionClipped The instance variabienMatrix is destroyed.

e ..destroyed The instance variabieMatrix is destroyed.

e ..repairFinished: nothing to do.

e ..regionMoved The instance variablenMatrix is destroyed.

e ..regionRedefined The instance variabienMatrix is destroyed.

« Invoked methods which trigger a correspondertthangeD... messagef ..
e if the instance variablenMatrix is computednewValidIMM

5.3.5 The DuplocPresentationModelProtocolTransformer class
TheDuplocPresentationModelProtocolTransformeass extends tHieawMatrixclass update protocol in following way:
If updatErepairNow is received, then
1. changeDrepairNowis notified to its dependants.
2. the messagepdatEadaptModel is sent to théransformedProtocolReceivarstance variable
This message must force theiplocPresentationModéhstance to adapt toRawMatrixinstance change.
3. the messagepdatEcorrectViewsis sent to théransformedProtocolReceivérstance variable.
This message must force theiplocPresentationModeéhstance to force thBuplocPresentationModelVieimstance to
update its state and the state ofBhglocPresentationModelControllénstance.

5.3.6 The ‘bin value colouring model’

The ‘bin value colouring model’ defines the grey value used for paintiiigdot in thebinplot, which represents an

Information Mural matrixelementv (namedbin valug. Eachinformation Mural matrixelement is of type float and has a

value in the range [0.0, 1.0]. The most simple method to grey shadbieait is to have an affine functidgyouing, Which

maps thebin valuelinear on a grey level range between 0.0 and 1.0. In the case of a RGB colouring scheme the three colours
are set with the same value:

fcolouring : [00, 10]—> [00, 10]

7 e.g. see the attributes.rsm.mirin sectior5.3.1.4 Attribute value definitions
18 see sectioB.3.2 RawMatrix class update protocol to its dependants

“Information Mural” visualisation of Duploc - 16. August 1999 page 58 of 64

feotouring(X) :=alX + b

feolouring(0.0) := 1.0 = R = G = B= “white colour”
feolouring(1.0) := 0.0 = R = G = B= “black colour”

Some preliminary calculation showed the necessity to control this mapping more precisely: The range of match density will
normally be below 0.1. This will especially be the case for leagematrix— e.g. a size above 40'000 x 40'000 would mean

(as mentioneld above) to have kin of 200x200 with a maximal number of 40'000 matches. So, obviously this will be rarely
the case. So, the limit of 0.1 described above is already very high (4000 matches).

A more important reason is also to have a possibility to display a fraction of the available range and so to isolatg interestin
sections of theaw matrix

Therefore a model of a mapping function was defined, which permits to select an interval of the range [0.0, 1.0] :

The ‘bin value colouring model has following elements:
1) The availabléin valuesare defined in the range:
[minAvailablelnput, maxAvailablelnput] O [0.0, 1.0]

2) The model has as the definition range:
[minlnput, maxinput] O [minAvailablelnput, maxAvailablelnput]
with:
minAvailablelnput < mininput < maxinput < maxAvailablelnput
|maxInput - mininput| = SmallestMaxMinDifference

3) The input affine function’ i maps values in the range:
i : [mininput, maxinput] - [0.0,1.0]
ixX):=alk+b
so that:

i(minlnput) = 0.0
i(maxinput) = 1.0.

4) The ‘selected input affine functionn g maps values in the range:
g : [minSelectedInput, maxSelectedinput]- [0.0,1.0]
gx):=alk+b
with [minSelectedInput, maxSelectedinputd [0.0, 1.0]
so that:

g(minSelectedinput) = 0.0
g(maxSelectedinput) = 1.0.

5) The ‘monom function’ m maps values in the range:
m : [0.0, 1.0] - [0.0,1.0]
m(x) := 1.0 X"
with n O [1/maximalMonomDegree, maximalMonomDegrele

6) The selected output affine function h maps values in the range:
h: [minSelectedOutput, maxSelectedOutput]» [minGreyLevel, maxGreyLevel]
h(x):=alk+b
with [minSelectedOutput, maxSelectedOutput[d [0.0, 1.0]
and [minGreyLevel, maxGreyLevel 10 [0.0, 1.0]
so that:
if ‘inverted grey level mapping selected
then h(minSelectedOutput) = maxGreyLevel, h(maxSelectedOutput) = minGreyLevel
else h(minSelectedOutput) = minGreyLevel, h(maxSelectedOutput) = maxGreyLevel

The new functioficeiouing has following definition:
feolouring : [0.0, 1.0] = [0.0, 1.0]

feolouring(X) := 0.0 , XO [minlnput, maxinput]
feotouring(X) == (hemegoi) (X) O [minGreyLevel, maxGreyLevel]
, X O [minInput, maxinput]

9 see sectioB.3.1 Representing a raw matrix

“Information Mural” visualisation of Duploc - 16. August 1999 page 59 of 64

The depiction of atnformationMural matrixwith the RGB colouring scheme, means that for any matrix elentbst
correspondent dot in the diagram is coloured with:
R := G := B := feoiouring(V)

5.3.7 Duploc source code information

5.3.7.1 Where is the source code of this project located?

The source code of this project is placed in the cate@uptoc_InformationMural.

The source code about tRawMatrixclass is placed in the categoBuploc_RawMatrix

5.3.7.2 What are the specific classes of this project?
This is the alphabetically sorted list of the 59 classes specific to the project placed in the EatplgaryinformationMural:

AbstractinformationMuralMatrix
AbstractMatrixCursorPosition
AbstractOverView
AbstractPresentationModelControllerState
AbstractPresentationModelViewState

PMVSUserSelectionMode
ProtocolTransformer
RawSubMatrixCursorPosition
SuperOverView
UserSelection

e AbstractRawSubMatrix

e AbstractSuperOverView

« AbstractUserSelection

« AffineFunction

« BinValueColorerinterface

¢ BinValueColorerView

¢ BinValueColoringModel

e CachedObservationData

e DuplocPresentationModel

¢ DuplocPresentationModelController

¢ DuplocPresentationModelProtocolTransformer
¢ DuplocPresentationModelView

¢ ForwardingObject

¢ ldentityFunction

e InformationMuralMatrixCursorPosition
¢ MonomFunction

¢ ObservationOnRawSubMatrix

¢ OverView

« PMCS

¢ PMCSdummyMode

¢ PMCSmovingMode

¢ PMCSnormalMode

¢ PMCSOverView3LMovingMode

¢ PMCSOverView3LMovingSelfMode

e PMCSOverView3LNormalMode

¢ PMCSOverView3LPositioningMode

¢ PMCSOverView3LPositioningSelfMode
¢ PMCSOverView3LSpyingMode

¢ PMCSOverViewMovingMode

¢ PMCSOverViewNormalMode

¢ PMCSOverViewPositioningMode

* PMCSOverViewSpyingMode

* PMCSpositioningMode

¢ PMCSspyingMode

¢ PMCSSuperOverViewMovingMode

¢ PMCSSuperOverViewNormalMode

¢ PMCSSuperOverViewPositioningMode
* PMCSSuperOverViewSpyingMode

¢ PMCSUserSelectionMovingMode

¢ PMCSUserSelectionNormalMode

¢ PMCSUserSelectionPositioningMode
¢ PMVSInformationMuralMode

¢ PMVSOverView3LMovingMode

¢ PMVSOverView3LNormalMode

¢ PMVSOverView3LSpyingMode

¢ PMVSOverViewNormalMode

¢ PMVSOverViewSpyingMode

¢ PMVSSuperOverViewNormalMode

¢ PMVSSuperOverViewSpyingMode

“Information Mural” visualisation of Duploc - 16. August 1999 page 60 of 64

5.3.8 Implementation concepts

5.3.8.1 Introduction
This section discusses some simple implementation strategies, which were used to keep the source code flexible.

5.3.8.2 The concept of ‘self neighborinstance’

One of the problem during the development of an application is the uncertainty of the application topology — this means
how the object instances are connected together.

If an instanceA sends a messagesg,; to an instancd3, then this instancé& might have an instance variakieB,

which references this instanBe So, in the source code Afeach time a message is senBtahere will be something

like ‘... toB msgy ...".

If this instanceA should not reference directly the instaBgdecause there is an intermediate inst&)eehich selects

a current instancB; out of a set, then all messages sent ffoto B should be modified like follows: ‘. t0S currentB
msgy... "

Instead of using an instance variati® to reference a specific neighbouring instaB¢ét is better that the instanée
sends to itself a message self neighbouringB ..., which returns a reference to the requested neighbouring instance
B. So, if a change occurs in the topology, then only this metigighbouringB’ must be adapted.

This concept was used throughout all defined classes in this project.

5.3.8.3 The concept of ‘self topology’

The conceptself neighborinstance can be pushed further: It might be useful to separate object knowledge with
application topology knowledge. Therefore if an instaAiceust send a messageg,; to an instancd, then it can

send to itself a message Self topology...", which returns the instance having the topology knowledge, and then send
to this instance the messagrirrentB’: The complete sequence to send a messagmg; from an instancé to an
instanceB would be: ‘ ...self topology currentB msg;

5.3.9 Used graphical notation

Diagram 5 shows the Diagram A, B and C. The aimed notation for a class diagram was UML. But, difficulties to
express theself neighborinstance concept forced me, to introduce some modifications:

The class diagrams drawn in Diagram A and Diagram B are equivalent. Diagram B is probably more UML conform,
but Diagram A expresses better the needs — if a class ‘sees’ another class instance tefetgicengmethod, then

this referencing methods denoted on the correspondent relation by adding the opening and closing brackets. An
instance variable, which references a neighboring instance, is also denoted on the correspondent relation. The visibility
symbols of UML were used, but because each method in a Smalltalk class has public visibility and each instance
variable has protected visibility some simplifications were made (see Diagram C) — an omitted visibility symbol for a
method or aeferencing methodneans public visibility; an omitted visibility symbol for an instance variable means
protected visibility.

The underlined instances and methods belong to the correspondent class.

“Information Mural” visualisation of Duploc - 16. August 1999 page 61 of 64

Diagram 5. The used class diagram notation

-private_instanceVariable_referencing_B

+public_instanceVariable_referencing_B

role of A'

Diagram

A) The defined notation

‘association name 1'

Class_A

#protected_method_returning_reference_on_A()

-private_method_returning_reference_on_A()

+public_attribute: type
#protected_attribute: type
-private_attribute: type

‘association name 2'

#protected_instanceVariable_referencing_B

Class_B

+public_method_returning_reference_on_A()

role of B'

‘association name 3'

Diagram B) The equivalent notation in UML (?)

Class_A

+public_instanceVariable_referencing_B: Class_B

-private_instanceVariable_referencing_B: Class_B

#protected_instanceVariable_referencing_B: Class_B

Class_B

‘association name 1'

'role of A'

‘association name 3"

Diagram C) A simplification of Diagram A -

omitted visibility symbol means per default ...

Class_A

protected_attribute: type

public_instanceVariable_referencing_B

“Information Mural” visualisation of Duploc - 16. August 1999

'role of B'

+public_method_returning_reference_on_A():Class_A
#protected_method_returning_reference_on_A():Class_A
-private_method_returning_reference_on_A():Class_A

Class_B

public_method_returning_reference_on_A()

‘association name 3"

page 62 of 64

6 Conclusions

This chapter summaries the conclusions drawn by the author after the project end. During the development of the new
Graphical User Interfaceseveral difficulties emerged, which induced to formulate following vague development
guideline for similar projects. The development of any application should contain two steps. The first step is the
description of an appropriateghplication conceptwhich is based on the original requirement paper. The second step is

the description of thapplication design

Application concept

The definition of arapplication conceptan be part of the requirements refinement phase or can be part of the analysis
phase. In both case application concepshould be verified with the implementation of some (rough) prototype. An
application concepshould consist of three parts: ¢stem concepgart, aGUI conceptpart and aopology concept

part.

System concept part

Any implemented solution is embedded in a running environment. In the case @fughec application, this
environment is the VisualWorks 2.5/3.0 framework. $iistem conceptart should describe a solution for fulfilling the
original requirements without taking in account the running environment. How this description has to occur is difficult
to say, but the contents of chapter 2.1, 2.2, 3.2 and 4.1.1 in this document could have been Estefrtrmnce uif

this project.

In this project, it was first necessary to sketch the origipstem conceptvhich represents the originduploc version.

The chapter 2.1 and 2.2 summaries the essence of the found ajgiteah concepfhe next step was to extend this
concept. The introduction of tmaw matrix sehad two consequences:

It provides the newsraphical User Interfacevith an interface to the existing application part.

It separates the nevraphical User Interfacefrom the access management to the intemmhparison matrix
repository A newDuplocversion might provide to the user the functionality’s to composeathenatrixesavailable in
theraw matrix sety specifying the list of files, which form eacdw matrix

The next problem was to define data-structures suitable for being graphical displayed. This problem resulted in the
introduction of thewo levelandthree level view representatiah a largeraw matrix— see section 3.2 and 4.1.1.

Thesystem conceptart should also describe, what sort of functionality’s the application should provide to the user. e.g.
moving theuser selection regiomside the currenaw matrix

The system conceppart can contain class or instance diagrams as long as they are not dependant on the running
environment.

GUI concept part

The GUI conceptpart should describe the appearance of the application and how the user interacts with the new
application. This part is dependant on the chosen running environment. Therefore it involves to implement several small
test applications for understanding the possibilities of the environment.

The newDuploc application has a simpl@UI concept A single view area must present tieo levelandthree level

view representationT his resulted in the introduction in chapter 4.2.4 of the three display modes.

Topology concept part

The topology conceppart integrates theystem concegtart with theGUI conceptpart by sketching the application
topology. e.g. The Diagram 1 shows theploctopology concept, where tlggaphical cloud which contains théview’
and ‘controller’ state classeinteract via theDuplocPresentationModeadlass with thenodel cloud which contains the
classes representing trev matrix

Application design

The application design provides an object oriented solution for the formulated application concept.

A flexible development is aimed, so that important source code is written once and once only.

This is achieved by breaking the application in different components, each one composed by two parts: A part, which is
preserved from the actual application topology, and a part specific to the application topoloBypldeexample is

the AbstractRawSubMatriglass hierarchy. e.g. ThéserSelectiortlass, which is a subclass AlbstractUserSelectign

is specific to this application topology, but tiAdstractUserSelectioglass is not. This topology independence is
achieved through the used implementation concept.

“Information Mural” visualisation of Duploc - 16. August 1999 page 63 of 64

7 Appendix

7.1 References

[1] Jonathan Helfman. Dotplot Patterns — A Literal Look at Pattern Languages.
AT&T Research, Murray Hill, NJ 07974, jon@research.att.com

[2] Matthias Rieger: Duploc Tutorial, Version 2.0 Release 1.
Software Composition Group, University of Bern, March 1999.

[JS96] Dean F. Jerding and John T. Stasko. The Information Mural: Increasing Information Bandwidth in
Visualizations. Technical Report GIT-GVU-96-25, Georgia Institute of Technology, October 1996.

“Information Mural” visualisation of Duploc - 16. August 1999 page 64 of 64

