
Visualising Objects in Pharo

Bachelor Thesis

Eve Mendoza Quiros
from

Zürich ZH

Philosophisch-naturwissenschaftlichen Fakultät
der Universität Bern

June 19, 2018

Prof. Dr. Oscar Nierstrasz
Claudio Corrodi

Software Composition Group
Institut für Informatik

University of Bern, Switzerland

Abstract

Object inspection in the Pharo IDE1 is currently focused on
the individual object. The inspection of inter-object relationships
is possible in a very limited way, making object set inspection
difficult.

Understanding the relationship between objects and sets of
objects is an important debugging aid and facilitates proper code
analysis. In order to efficiently understand code, a visualization
of data structures in an interactive graph helps programmers get
a thorough conceptual overview. This can save time during de-
bugging as well as code analysis and mantainance.

In this thesis a tool is presented that facilitates the visual-
ization of object sets in a graph, in Pharo. The tool highlights
the relationships between objects while also conveying important
information about each individual object. The strengths of this
framework are, first subgraphs persist over different graph render-
ings, making the comparison of similar sets easy and effectively
presenting the set evolution. Second the interactive graph and
ability to customize the visualization makes it more understand-
able and useful to the user.

By using this tool in Pharo interesting visualizations can be
created since Pharo’s mantra is everything is an object, therefore
we can also make graphs containing classes as elements and show
the relationships between different classes. The tool facilitates
node customization, giving the user the possibility to mold the
visualization to fit their needs. For each object an individual node
representation can be created. In this thesis we present a node
customization for linked lists and for abstract syntax trees. Over-
all the tool is very intuitive and supports program understanding
and debugging.

1https://www.pharo.org

i

https://www.pharo.org

Contents

1 Introduction 1

2 Related Work 4

3 Motivation 7

4 Visualization of Objects 12
4.1 Interactive graph interface . 14

4.1.1 Camera Movement . 15
4.1.2 Dragging . 15
4.1.3 Popups . 15
4.1.4 Minimize and Maximize Node 15
4.1.5 Minimized Information 16
4.1.6 Highlights . 16
4.1.7 Removing Objects from the Visualization 16
4.1.8 Directly Adding Objects through the View 16

4.2 Persistent Subgraphs . 17
4.3 Custom Node Visualization 20

4.3.1 Linked List . 22
4.3.2 RB Program Node . 24

5 Implementation 27
5.1 Design Patterns . 27
5.2 Persistent Subgraphs . 30
5.3 Custom Node Creation . 30

6 Validation and Use Cases 32
6.1 General Object Set Inspection 32
6.2 Object Set Comparison . 34

7 Conclusion and Future Work 43

ii

CONTENTS iii

A Anleitung zu wissenschaftlichen Arbeiten 47
A.1 Installation of environment and tools 47
A.2 Basic usage . 48
A.3 Implementing a custom node shape 51

A.3.1 Using pragmas . 52
A.3.2 Heap customization 54
A.3.3 Sorted Heap label . 55
A.3.4 Label with buttons to add/remove objects of the heap 55
A.3.5 Heap preview . 57
A.3.6 Customizing CalendarMorph using pragmas 57

1
Introduction

Programmers spend a lot of time reading code to understand how a program
works. This is a very tedious and time consuming task. Inspecting live ob-
jects and data structures used during run-time is a more feasible approach to
understanding program structure and functionality. This examination and
the modification of the run-time system is called structural reflection [10,
p. 304]. In the Pharo IDE1 there are various tools which support struc-
tural reflection, such as the inspector, the debugger or the system browser.
These tools allow the inspection of individual run-time objects, but only
offer limited capabilities to inspect multiple objects. The possibilities to in-
spect inter-object relationships are also very limited and the relationships
are often presented as lists or tree-structures. This manner of inter-object
relationship representation can quickly become complex and unclear with an
increasing number of objects. Reducing these aspects helps programmers to
use their time more efficiently. One way to make live object inspection more
efficient would be to enable customized object representations. By having
a customized object representation or so called view, the user can display
information most relevant to them.

The Moldable Tools [4] presented by Andrei Chiş offer an approach to
create customized views for individual objects of a class. It is proposed that
for individual objects there can be multiple views so that the process of
finding the right view is optimized [4, p. 54]. This approach addresses one

1https://www.pharo.org

1

https://www.pharo.org

CHAPTER 1. INTRODUCTION 2

limitation of inspecting run-time objects but does not take into consideration
the limited inspection of multiple run-time objects.

To deal with that limitation, we propose an approach that uses graph
visalizations to present objects sets. The justification for using visualiza-
tions is the following. Programmers create a model of their software in their
mind, where objects have a manifestation, as stated in Using visualizations
to Foster Object-Oriented Program Understanding [7]. Therefore the idea of
visualizing object-oriented software follows naturally. As with all visualiza-
tions, their effectiveness comes from the amount of useful information the
user is provided with. Programmers have different approaches to analyzing
and debugging code, so a visualization tool should also be able to provide
different visualizations to fit the programmer’s needs.

The way programmers approach program optimization and understand-
ing indicates that the user might not know in advance what exactly they are
searching for. Therefore most visualization tools fall short, because they only
offer a finite set of visualizations. The option of generating new visualizations
in a easy manner is valuable to the user [9]. This implies that our solution
of visualizing objects sets should be easily customizable and interactive, in
order to generate a useful tool to fit the user’s needs.

In this thesis we propose a visualization tool, that offers a graphical rep-
resentation of object sets in the Pharo IDE2. Our tool uses Roassal3 as a
visualization engine, which provides the user with different visualization op-
tions to represent information valuable to the user. In our tool, object sets
are visualized as graph structures, where the nodes represent the objects
and the edges represent the inter-object relationships. The relationships be-
tween these objects, are either by variable reference or due to equality. By
inspecting sets of objects, rather than individual objects, we offer an addi-
tional tool that can help programmers understand object relationships and
recognize data structures. Instead of showing these relationships as trees or
lists, which is commonly done in IDEs, we visualize them as a graph, which
helps users conceptualize a program’s structure. Since object-oriented lan-
guages are based on principles such as inheritance and polymorphism, there
are various inter-object relationships and object aspects that can be visual-
ized. In our tool we focus on visualizing variable references and visualizing
smaller sets of objects rather than complete systems. We do this in order to
provide a concise visualization of the individual object, while also presenting
the incoming and outgoing inter-object relationships. This, on the one hand,
limits the scope of the tool but also allows for a more detailed overview of

2https://www.pharo.org
3http://agilevisualization.com

https://www.pharo.org
http://agilevisualization.com

CHAPTER 1. INTRODUCTION 3

the run-time objects that are visualized.
To address the previously mentioned customization, the tool enables the

user to create node customizations for different object classes. This allows
our tool to stand apart from existing visualization tools like Heapviz [1] for
example. It allows the user to display individual content or interaction for
different objects, providing the user with their desired information. This way
the user has more freedom to generate new visualualizations, tailored to their
needs and thereby making program understanding more efficient. In the tool
there are two exemplary node customizations for the class LinkedList and
the class RBProgramNode, which is a class that represents an abstract syntax
tree node. These classes serve as examples and can be used as inspiration
for further node customizations.

Another feature that makes this tool more powerful, is that it implements
subgraphs that persist across renderings. The user can interact with and
navigate the visualization more intuitively. It allows the user to perform
interactions such as zooming in on a specific area of the visualization and
then adding new objects to the visualization. When new objects are added
and the visualization is rendered again, the visualization is still zoomed in
on the same area. This way the users do not have to reorientate themselves
in the visualization, but can continue their program exploration seamlessly.

We provide the user with a basic visualization tool to inspect inter-object
relationships and envision the structure of object sets. This should ease code
understanding and maintenance, by offering a structural overview of the
run-time objects while also providing detailed information about individual
objects.

The tool serves as a useful visualization tool, providing intuitive visual-
ization interactions and acting as a foundation to create object set visual-
izations. It can be used to mold visualizations to fit the user needs and to
enhance structural inter-object relationship understanding. The tool can be
used as an additional inspection tool along with the ones already provided
by the Pharo IDE4.

4https://www.pharo.org

https://www.pharo.org

2
Related Work

In this chapter, we give an overview of graph visualization frameworks. In
addition, we present related work on how visualizations help programmers
understand object-oriented programs.

To visualize different software dependencies as a graph, Alexandre Bergel
et al. [3] propose a domain-specific language that associates colors and size
to software metrics. In their approach GRAPH, the authors take packages,
classes, and methods as input and visualize different relationships between
them. Their DSL also visualizes different software metrics of the input, such
as the number of methods of a class. This has the advantage that it allows
users to visualize multiple dependencies in an understandable manner, when
more than one relationship at a time has to be represented. As in our work,
they also use Roassal as the visualization engine, because it provides over 200
classes to implement shapes and layouts. Our tool does not focus on software
dependencies of a larger system, but rather focuses on smaller object sets and
highlights the inspection of the inter-object relationships and the individual
objects.

Edward E. Aftandilian et al. present a tool that allows the visualization
of a heap obtained from a running Java Program [1]. This gives the user a
global overview of the program’s state. Their tool provides various interac-
tive capabilities for navigating the heap graph. Heapviz serves the purpose
of making modern software understandable, by representing it in a graph,
reducing its complexity and thereby making it easier to read. In our work,
we also inspect the actual contents of our given object sets, so we have a

4

CHAPTER 2. RELATED WORK 5

dynamic set analysis. In contrast to Heapviz, our focus is on analyzing the
relationships between a few objects in detail, rather than a complete system.

A similar approach is presented by Thomas Zimmermann et al. [11].
In their work, they present memory graphs, a visual representation of a
program’s state. “A memory graph gives a comprehensive view of all data
structures of a program” [11], helping program comprehension and debugging.
Edges are drawn between value references, to show inter-object relationships,
answering questions such as whether there are multiple pointers to the same
object. Similarly, our tool is also used to inspect data structures and their
inter-object relationships. We can also answer whether an object is referenced
multiple times within a set of objects. Different than with the memory graphs
obtained in that work, the user of our tool chooses the input which is to be
visualized. Our tool can be used to only visualize certain parts of a program.

The paper James et al. [5] focus on supporting the understanding of
data structures, by using a structure identifier to automatically find them
in code. After the identification a visualization is rendered, which is based
on the user’s code. When the user steps through their program, the nodes
appear in the visalization, meaning the visualization follows the sequence of
the user’s code. It is mentioned in their work that the degree of interaction
with a visualization is vital for its effectiveness. Similar to this work, we also
have multiple visualization interactions, thereby enhancing the effectiveness
of the visualizations created with our tool. For our tool we implemented a
node customization of a linked list data structure, as an example that our tool
can also aid the understanding of data structures. But it is not the main focus
of our tool. Our visualization tool does not categorize objects but it does
integrate node customizations for classes with defined node customizations.

In Moldable Tools by Andrei Chiş [4], approaches to moldable inspection
and debugging tools in Pharo are presented. During interviews with software
developers he found that there is a need for object inspectors that support
different high-level mechanisms to explore objects. The moldable object in-
spector that is proposed there focuses mainly on single objects. Our tool can
be seen as an additional way to inspect objects, to explore not only single
objects but object sets. The work also mentions the desire to create custom
views for objects. This is also the inspiration for the possibility to create
node customizations in our view. Following some basic needs found during
exploratory investigation for Moldable Tools, our tool allows the developer to
shape the visualization to fit their own contextual needs. The visualization
created with our tool could even be used as an additional view of objects
that could be integrated into the moldable object inspector.

Jerding and Stasko [7], use visualizations to support object-oriented pro-
gram understanding. They identify ways in which visualizations can increase

CHAPTER 2. RELATED WORK 6

program understanding and present a prototype visualization. Works such
as this one validate our use of visualizations to aid structural program under-
standing. They classify different types of objects, such as classes, functions,
and instances to encode relationships. In the case of Pharo, every entity is
an instance of a class, which allows us to treat things like instances, methods,
and classes in the same way.

3
Motivation

In this chapter, we look at how object sets can be inspected in Pharo and
point out the IDE’s current limitations regarding object set inspection. For
this work, we use Pharo because it is a modern live coding environment
and IDE that allows fast prototyping. Furthermore, we can use Roassal and
build on the Moldable Tools [4] approach. Also the previously mentioned
concept “everything is an object” [10] makes for interesting object set inspec-
tions, since sets can contain different objects, such as classes, methods, and
instances of classes.

As stated in Pharo by Example 5, the Pharo environment provides the
programmer with different tools to inspect and debug code, which are dif-
ferent from many other programming environments [10, p. 128]. We focus
on two main tools for the purpose of this paper, the inspector and the play-
ground. Commonly the playground is used to run snippets of code or running
given examples in classes. When the code is executed, an inspector opens up
within the playground, allowing us to inspect the live object from the code,
as seen in Figure 3.1.

7

CHAPTER 3. MOTIVATION 8

Figure 3.1: A playground containing an OrderedCollection, which after
executing the code also displays an inspector on the OrderedCollection

The inspector provides information such as an object’s variables and their
values. If we want to inspect an object that is related to the currently
inspected one (for example, a variable value), we can click that object in the
inspector and a second inspector pane will be opened. This process can then
be repeated leading to a multitude of inspector panes within the playground,
as illustrated for a linked list in Figure 3.2.

CHAPTER 3. MOTIVATION 9

Figure 3.2: A playground with 7 inspector panes of which two can be seen,
the first pane containing a linked list

This approach might give us a detailed overview for each object, but
quickly leads to a time consuming code inspection. The user might lose track
of all the objects and navigating through the different inspection windows can
be tedious and time consuming. The relationships between the objects are
not clearly shown and the user cannot quickly see whether there are multiple
relationships to one specific object. The user gets a limited overview of inter-
object relationships.

Another approach to inspecting objects is to navigate the instance vari-
able values using the tree view in the Raw tab in an object’s inspector, as
shown in Figure 3.3.

CHAPTER 3. MOTIVATION 10

Figure 3.3: An inspector on a LinkedList, showing additional information
about the LinkedList, displayed as a tree

With a large number of objects or instance variables, this again quickly
leads to a complex and incomprehensible information load. The more a user
goes into the object’s depth, the harder it is to keep an overview of the coarse
object structure, which in Figure 3.3 would be the LinkedList.

Both these ways to inspect objects mainly focus on the inspection of
a single object. The user should be able to get information about multiple
objects, while also having a simple overview of the individual objects and the
relationships between the objects. To provide the user with exactly that, we
created a tool which gives a graphical representation of a set of objects and
the relationships between the objects. The tool should enhance inter-object

CHAPTER 3. MOTIVATION 11

relationship inspection and reduce its complexity, which currently arises when
we try to inspect these inter-object relationships. The tool in no way replaces
the inspector but rather serves as a additional tool that provides an overview
and highlights relationships between objects.

These are the limitations regarding object set inspection in Pharo, which
we will focus on in this work. Our tool aims to improve the current situation
by providing a different manner of object inspection, more precisely object
set inspection, and by making the graph interaction more intuitive.

By using a graphical representation of a set of objects, the user can more
efficiently comprehend different data structures, such as linked lists, heaps
and ordered collections. Within our graph, the user can also interact with
the objects and if desired still inspect them in the inspector by clicking on
them. As the user cannot remove variables from the view in the inspector,
this is a limitation since certain objects have many variables, making their
inspection harder.

4
Visualization of Objects

In this chapter, we present our tool and its functionalities, explaining how
the functionalities provide an approach to overcome the limitations in object
set inspection in Pharo. Also, it will be explained how the user can mold the
visualization through node customization.

Our tool enables the users to inspect sets of objects and the relationships
between them. The complete object set is visualized as a structured graph.
Each object in the set is represented as a node in the visualization. The basic
node in our visualization displays the object name and class, its (inherited)
variables and the values of the variables. In Figure 4.1 we see the node
for the object Color blue. Color blue is the object name, Color is the
object’s class and alpha, cachedBitPattern, cachedDepth, rgb are its
instance variables and along with those we have their values. In addition we
have various icons, which are buttons, for node interactions, which will be
explained in Section 4.1

Figure 4.1: The object Color blue represented as a node in our visualization
tool

12

CHAPTER 4. VISUALIZATION OF OBJECTS 13

This is the same information we get in the raw tab of the inspector as
seen in Figure 4.2.

Figure 4.2: The object Color blue shown in the Pharo inspector

The information displayed about the instance variables and their values
is important to us, because it is also the basis for inter-object relationships
in our graphs.

There are two different situations in which edges are drawn between two
objects in our visualization. The first situation is if there is a variable refer-
ence between two objects, that is, if one of object A’s variables has the value
object B, then we have an edge from object A to object B. The edges are
labeled with the variable which connects the two elements. In Figure 4.3,
we can see a LinkedList, a ValueLink and a SmallInteger. From the
LinkedList to the ValueLink we have a variable reference edge labeled
firstLink. Another variable reference is illustrated from the ValueLink
to the SmallInteger.

CHAPTER 4. VISUALIZATION OF OBJECTS 14

Figure 4.3: A visualization containing a LinkedList, a ValueLink and a
SmallInteger. Both types of edges can be seen between the objects.

The second situation is if we have an equality connection between two
elements. In Figure 4.3, the element preview in the LinkedList node (final
line of the node text) is the same object as the integer node. Therefore, an
equality edge is drawn between the two elements.

Once we have visually represented the objects and their relationships, the
nodes are laid out, so that we have a graph showing our object set. We have
chosen a basic RTSugiyamaLayout, which is provided by Roassal. The chosen
layout assigns nodes to hierarchical layers, therefore nicely representing hi-
erarchical structures and minimizing edge crossing. This is useful to us since
we can use our tool on data structures an object sets with clear hierarchies
and display the objects in an structured manner.

4.1 Interactive graph interface
To provide the user of our tool with intuitive navigation, we offer a variation
of interactions. The first three interactions are provided by the Roassal1
framework and the others have been added to enhance our tool and provide
efficient object set inspection. The interactions listed here are general for
all the visualizations created with our tool. Some additional interactions are
specific to customized nodes; those will be presented in Section 4.3.

1http://agilevisualization.com

http://agilevisualization.com

CHAPTER 4. VISUALIZATION OF OBJECTS 15

4.1.1 Camera Movement
After the initial rendering, the camera is centered, so that the whole object
set graph can be seen. The user can navigate the camera around the graph
and zoom in and out of the visualization, to inspect individual objects in more
detail, in case they are not readable when the complete graph is displayed.
Once the user is done looking at specific graph sections, they can easily
recenter the camera to the initial object set graph presentation. This is a
standard feature of Roassal.

4.1.2 Dragging
If the full graph does not fit into the view, the user can drag around the
complete graph and inspect different graph sections. Individual nodes can
also be moved around the visualization freely. Users can rearrange nodes to
design a layout that fits their needs. The rearranged nodes persist throughout
renderings, so that even after adding new objects to the view, the previously
moved nodes still remain in the same location. This is a standard feature of
Roassal.

4.1.3 Popups
The nodes contain popups, which relay additional information. Some popups
explain the interaction that can be had with the specific button or label. The
popups serve as aids for comprehensive tool navigation. This is a standard
feature of Roassal.

4.1.4 Minimize and Maximize Node
Each node in the graph contains the object name, its class and a toolbar with
buttons, as a header, followed by a list of instance variables and their values.
For objects with a multitude of variables, the nodes in the visualization are
rather large. Whenever that information is not needed, the user can click
the minimize button (). The minimized node only displays the object title
and the button toolbar, making the graphs less complex when there are a lot
of objects. To show all the node information again, the user can maximize
the node by clicking the maximize button (). When there are more than
20 objects in the visualization, all the nodes are automatically minimized.

CHAPTER 4. VISUALIZATION OF OBJECTS 16

4.1.5 Minimized Information
To manage the node sizes, strings that are longer than 70 characters are
automatically cut and dots (.....) are added at the end. If users desire to
view the complete string, they can click the dots and then the whole string
will be displayed.

4.1.6 Highlights
When the user hovers over a node in the visualization, that node and all the
nodes it is connected to are highlighted. The highlighting helps the user to
get a quick overview of connected substructures. This is especially useful
when we have highly connected elements or have a complex visualization.

4.1.7 Removing Objects from the Visualization
To make graph readability simple, nodes can be deleted directly from within
the view. Each node has a remove button () which deletes that node from
the view. If there is a remove button next to the instance variables it indicates
that the variable’s value can be found as a node in the visualization. By
clicking the remove button the instance variable value’s node is removed
from the visualization. In Figure 4.3, we see an example where next to
the instance variables firstLink and lastLink we have a remove button,
because the ValueLink(1) is an object in the visualization. Once the object
is removed from the visualization it cannot be added back directly in the
visualization window, with exceptions described below. To add the object
again, one needs to do so via playground code.

4.1.8 Directly Adding Objects through the View
To allow intuitive inter-object relationship inspection, instance variable val-
ues can be added directly to the visualization, in the visualization window
itself. The user can click the arrow button (), thereby directly adding the
variable value object to the visualization. As with the remove button, the
arrow button only appears if the variable value object is not yet in the visu-
alization. Adding objects through the visualization makes for an interesting
object inspection. Instead of having multiple windows open in the inspector,
we have all the information in one graph. The arrow button next to the
variables allows the user to add a single object with a click. With the node
customizations in Section 4.3 the user will be able to add multiple objects
with one click.

CHAPTER 4. VISUALIZATION OF OBJECTS 17

4.2 Persistent Subgraphs
To enhance graph readability, our tool implements subgraph persistency
throughout renderings. We are not aware of any object graph visualizations
currently in Pharo that persist subgraphs throughout renderings. Graph
changes such as adding or removing an object cause the graph to be rendered
again, thereby producing a new layout. This might be useful for balanced
graph layouts, but to study the graph and object set evolution, it is rather
hindering. When studying a graph’s evolution, the user should be able to
compare the differences between graphs. When subgraphs persist the dif-
ferences can be spotted easily. Spotting changes such as node removals or
additions is very time consuming, if each time a change in the graph occurs
a new layout is rendered.

Persisting subgraphs not only saves time when searching for differences
in graphs, but also during general graph inspection. If we zoom in on a
certain section of our graph and a change to the graph is made, causing it to
render afresh, a new layout would cause our zooming in to be undone. The
whole graph would be displayed again and the position of the nodes would be
changed. It would be more intuitive to remain zoomed in on the same graph
section, so that we could continue our object inspection from that position.
It would cost the user valuable time to re-orientate themselves within the
view.

Implementing persisting subgraphs is important to our tool, because it
aids the object set inspection even throughout changes within the object set.
Other visualization tools such as Mondrian [9] do not implement persisting
subgraphs, since the user has to decide on the objects to be presented in the
visualization, before the visualization is rendered. If only certain parts of an
object set should be displayed, the altered object set needs to be rendered
and a completely new visualization is presented. We want to allow our users
to be agile and decide which aspects of the view they want to focus on after
the initial visualization has been created. The common objects of the initial
visualization and the new visualization remain in their position, and the
graph memorizes its previous layout.

We will now present an example of persisting subgraphs, showing how
they can be used to inspect graph evolution.

We compare the methods of a class at two different points in time. To do
this, we collect all methods of the class OSVAddCustomizationButtonNode
in a LinkedList, which is our object set at time A. The object set is then
added to the visualization and rendered, so that we obtain the visualization
in Figure 4.4.

CHAPTER 4. VISUALIZATION OF OBJECTS 18

Figure 4.4: The methods of the class OSVAddCustomizationButtonNode and
a LinkedList containing those methods at time A

We can see the class OSVAddCustomizationButtonNode has four meth-
ods at time A. We have moved around the nodes representing the methods to
demonstrate that they will persist their position throughout renderings. In a
second LinkedList we collect the methods of the class OSVAddCustomizationButtonNode
at time B. We will now also add this LinkedList to the object set and render
the visualization anew.

CHAPTER 4. VISUALIZATION OF OBJECTS 19

Figure 4.5: The methods of the class OSVAddCustomizationButtonNode at
time A and two LinkedList containing those methods, at time A and time
B. Blue and green node outlines and descriptions were added for emphasis
and are not part of the original graph.

Right away we can see in Figure 4.5 that the nodes that were previously in
the visualization have maintained their layout. The newly added object does
not disturb the layout of the elements previously in the view, making graph
readability more efficient. The class OSVAddCustomizationButtonNode at
time B contains all the methods from time A. The arrow button next to the
label “Click to add/remove all elements of the linked list” indicates there are
more methods in the LinkedList at time B. By clicking the arrow button
we add those methods to the visualization. This can be seen in Figure 4.6.

CHAPTER 4. VISUALIZATION OF OBJECTS 20

Figure 4.6: The methods of the class OSVAddCustomizationButtonNode at
time A and B, and two LinkedList containing those methods, at time A
and time B

We can directly read out of the graph that the two methods getEdges
and onClick were added to the class OSVAddCustomizationButtonNode in
the time span between time A and time B.

The program’s evolution is visualized and the changes can be read out
of the graph. Graph readability is an important factor to relay relevant
information and make information displaying more efficient. Additionally
the camera remaining in the same position makes the interaction with the
visualization more intuitive.

4.3 Custom Node Visualization
Node shapes, sizes and colors can enrich a graph with additional information
about the visualized objects. As described in “Agile Visualization” [2] by

CHAPTER 4. VISUALIZATION OF OBJECTS 21

Alexandre Bergel, the Roassal2 framework allows users to create shapes based
on the visualized object’s metrics. This provides an efficient way of not
only representing inter-object relationships, but also information about each
individual object. Based on this idea, in our tool we took a different approach.
Instead of having customized node shapes based on an object’s metrics, we
implement node customizations based on an objects’s class.

Roassal provides the users with different kind of nodes thus making node
customizations possible. Generally to customize nodes of different classes
the user would have to define the shape for each object before each render-
ing. The basic node shape in our visualization tool is the node described
in Figure 4.1 (Page 12). This node shape already provides the users with
a lot of information, but in order to make our tool more useful, we use a
simple process to create arbitrary node customizations. Our tool offers an
easy way of creating node customizations by using pragmas. The exact im-
plementation will be explained in Section 5.3. All the node customizations
are inserted at the bottom of the basic node shape. An example of a simple
node customization for the Color class can be seen in Figure 4.7.

Figure 4.7: The object Color green, which contains a node customization
at the bottom

The node has a preview of the color green at the bottom of the node,
which is the node customization inserted for objects of the class Color.

Since each object has a different structure and distinct methods, we also
want to allow distinct information display and interaction capabilities for
the object visualizations in our graph. By having customized nodes we first
have additional information about an object, or even offer special interactions
with that object. This is very useful for objects that collect other objects or
have subelements, because we can create interactions that allow us to add
multiple objects to the visualization with one click. Second we can quickly
differentiate objects in the graph, making it more readable.

Together with our tool we implemented two exemplary node customiza-
tions for the classes LinkedList and RBProgramNode. These two node cus-

2http://agilevisualization.com

http://agilevisualization.com

CHAPTER 4. VISUALIZATION OF OBJECTS 22

tomizations will be presented in detail in the subsequent sections. These
customizations can be used as inspiration for other node customizations.
The exact process of node customization is explained in the appendix.

4.3.1 Linked List
In Pharo, a linked list is implemented using value links; the list object points
to the head of the list, which is a value link. Each value link has a successor
(pointing to the next element in the list, if any) and a value (pointing to
the actual element). The class LinkedList is a nice example for our tool,
because first a linked list is a data structure that serves as a container for
other objects. A linked list in Pharo is made up of value links and the
object’s contained in the linked list, therefore we have two distinct object
subgroups. Therefore we can create useful interactions for the linked list in
our visualization.

Second, with our implementation we support two types of edges, the ones
for variable references and the ones for equality. Therefore, for a linked list
there are inter-object relationships between the linked list and the value links,
between the value links themselves and also between the value links and the
values. It would be useful to also display the relationship between the linked
list and its objects. For this we can use the second type of edge, the edge
representing equality.

Third, it is a data structure commonly used for learning and teaching
purposes, but also as an example in other works such as Robust Genra-
tion of Dynamic Data Structure Visualizations with Multiple Interaction Ap-
proaches [5]. A linked list offers multiple methods, such as adding an object
at a certain position or removing an object, which are more comprehensible
through visualization.

The customization of linked list nodes in our tool is illustrated in Fig-
ure 4.8

CHAPTER 4. VISUALIZATION OF OBJECTS 23

Figure 4.8: A linked list node. The node customization shows a preview of
(some of) the elements (in this case, the colors).

The linked list node offers the option to add its value links and the values.
In order to explore the linked list data structure, the user only needs to add
the linked list to the visualization and can add the value links and objects
directly through the visualization. This supports intuitive object inspection,
since if desired all the value links and all the values can also be removed
directly through the linked list node again. For the values we also have a
preview, represented by the morphs of the values, if there are morphs. This is
again to fit the aforementioned need to also have a representation of implicit
object connections between relevant objects. To avoid having huge nodes,
at most five elements are shown in the preview. Even when the preview
is minimized there are still the equality connections from the preview to
the corresponding objects in the view. In case the user prefers to have a
preview of all the elements, they can do so by clicking the dots(....), then
the complete preview will be displayed. In Figure 4.9 we can see an example
of a minimized linked list preview.

Figure 4.9: A linked list, where the preview is minimized, because there
are more than 5 elements in the linked list. One is not displayed in the
visualization

CHAPTER 4. VISUALIZATION OF OBJECTS 24

Apart from adding all the values at once we can also only add a single
value, by clicking on its morph. These different interactions make the object
set inspection extendible and enhance the inspection by having all of the
elements in one visualization. Another speciality is that from the morphic
value preview we have edges to the corresponding objects in the visualization.
These edges represent an equality connection.

Figure 4.10: A linked list with all the value links and all the colors

This customization for linked lists was created to provide an example of
how the framework can be used. Node customizations similar to this one
also work well for other collections.

4.3.2 RB Program Node
The second structure we chose to make a node customization for is the
RBProgramNode class in Pharo. RBProgramNode is a class that represents an
abstract syntax tree node in a Pharo program. Instances of this class may
have children of the same type, making up an abstract syntax tree (AST) of
a compiled method or a program. The abstract syntax tree data structure is
often used for program analysis. Its visualization can be used to check code
correctness and structure.

CHAPTER 4. VISUALIZATION OF OBJECTS 25

Similar to the LinkedList for the RBProgramNode we customize the
node by adding interactions. In Figure 4.11 we can see the customized
RBProgramNode.

Figure 4.11: A RBProgramNode in Pharo which is the root of an abstract
syntax tree

The first interaction (Number of children: 2) enables the user to add
only the direct children of the node. It also shows us how many children the
node has. By having the possibility to add only the direct children we can
build up the tree level by level and visualize the tree structure. The second
interaction (Click to add/remove all the subelements of the AST) allows
the user to add the complete subtree of the node, so in the end we obtain the
complete AST. The third interaction (RBArgumentNode(aReference) RB-
SequenceNode...) is similar to the one of the linked list, where we have a
preview of the children and can add them individually, thereby allowing the
user to only display the objects that are relevant to them.

CHAPTER 4. VISUALIZATION OF OBJECTS 26

Figure 4.12: A complete abstract syntax tree for the compiled method
moveTo: in the class AbstractFileReference

These interactions make the inspection of abstract syntax trees more
efficient, since we can go down the tree layer by layer, making it easier to
understand. A node customization similar to this one would also work well
for trees in general, by making tree traversal easy.

5
Implementation

In this chapter, we will explain the object-oriented design principles and
patterns that were used to implement our tool and present how the persistent
subgraphs and node customizations are implemented.

For our tool, we followed the SOLID (single responsibility, open-closed,
Liskov substitution, interface segregation, dependency inversion) design prin-
ciples. These are a subset of principles presented by Robert C. Martin in Agile
Software Development: Principles, Patterns, and Practices [8]. By follow-
ing these principles we ensure easier code maintenance and make our tool
extensible.

5.1 Design Patterns
We apply different design patterns in our tool to solve different issues or ease
the use and maintenance of our tool.

To instantiate our visualization we apply the Builder design pattern, so
the construction of our visualization is separated from its representation.
When the method render of the class ObjectSetViewer is called, the posi-
tions of the nodes in the current visualization are saved first, and then all the
elements in the current visualization are removed. After that the nodes and
the edges are rendered. This happens in the classes OSVEdge and OSVNode.
We then lay out the nodes and edges and restore the previously saved node
positions. Finally the visualization is returned. The method implementation

27

CHAPTER 5. IMPLEMENTATION 28

looks as follows:
1 render
2 self saveRootNodePositions.
3 self view removeAllEdges; removeAllElements.
4 self renderNodes; renderEdges.
5 self doLayout.
6 self restoreRootNodePositions.
7 ^ view

We have a clear separation of the visualization construction which happens in
multiple classes such as OSVEdge and OSVNode and the representation which
is put together in the method render in the class ObjectSetViewer. The
construction process is always the same no matter what the input is, but the
visualizations that are returned are not always the same.

For the nodes in the visualization we also use the builder design pattern.
When an object is added to the visualization we instantiate a new root node,
which are the main nodes in the view. A root node is composed of multi-
ple other nodes, which are instantiated and collected once the root node is
instantiated. In Figure 5.1 we can see how a root node is put together.

Figure 5.1: A diagram showing how a root node is composed in the visual-
ization of a linked list node

The method refresh of the class OSVRootNode always follows the same
process structure. It creates and collects instances of OSVVariableListNode,
OSVHeaderNode, and OSVMoldableNode. However, the visual composition of
the root nodes can differ. All nodes are constructed by following the same
instruction pattern, but some may have customizations and others might not.
Using the builder design pattern makes for a more complex instantiation but

CHAPTER 5. IMPLEMENTATION 29

also makes it more flexible. We can change our instantiation in only one
single location. This makes code maintenance easier.

The root itself is instantiated when a new object is added to the view,
but the visual elements of the node are instantiated once we call the method
render of the class ObjectSetViewer. The root node always follows the
same process of creating and collecting its children. For the instantiation
of the visual elements the method generateRTElements is called in each of
the root node’s children’s classes. Also for our nodes we at times use the
factory method design pattern, depending on the state of the root node,
subclasses decide which classes to instantiate. One example is the class
OSVToolBarNode, depending on whether the root node is minimized it ei-
ther instantiates the class OSVMinimizeNode or the class OSVMaximizeNode.

Another pattern that is implemented in our tool is the facade pattern It
is a structural pattern which simplifies the access to a complex subsystem.
This pattern is at the top layer of our framework defining the interaction with
the whole visualization. The user of our framework creates a visualization
by using the class ObjectSetViewer, which is the facade class. It offers
a simplified interface to the user and wraps together the node classes, the
edge classes and makes the layout on them. We use the facade pattern, not
because our subsystem is overly complex, but rather to provide the user with
a single point of interaction with the visualization.

The classes creating the nodes in our visualization follow the Composite
pattern. The omposite pattern creates hierarchical tree structures of related
objects. We use the abstract class OSVNode to specify the behaviour of all
primitive and composite subclasses, which are all the node classes in our tool.
Some of these child nodes have child nodes themselves and some are leaves
in the hierarchical structure tree. In our visualization we use the composite
root nodes anatomically, while at the same time we interact with the children
of the composite. For example in our visualizations we also have edges from
the morphs, which are children of the root nodes to root nodes. Additionally
the component classes, such as the morph node class, do not have knowledge
of the composite class (the root node class). Therefore, the component class
is reusable and can be used in a context different from the composites, or for
our tool it can also be used for node customizations.

In our tool we apply the observer pattern, which is when one object
changes its state all dependant objects are changed automatically. If the
state of a root node is changed then the dependant class ObjectsetViewer
is notified automatically. As an example if a root node is minimized or
maximized the ObjectsetViewer is notified and the visualization is newly
rendered.

Once we call the render method of the class ObjectSetViewer the me-

CHAPTER 5. IMPLEMENTATION 30

mento pattern is applied and the object’s internal state is restored; in our
case each node’s children are removed and then added again. Due to the
object’s state change the children might have changed as well. This is done
by having a method refresh in every node class, which is called when the root
node’s state changes. The refresh method then updates elements that should
be represented in the visualization. The observer pattern supports loose cou-
pling between objects and allows for observers to be added or removed at any
time.

5.2 Persistent Subgraphs
We implement persistent subgraphs by caching coordinates of individual
nodes. Before a view is newly rendered the tool saves the coordinates of
each node that is currently in the view. We save the coordinates before a
new rendering and not directly after the laying out to make sure we still get
the correct position coordinates, in case the node was interacted with and
moved around. Then the layout is rendered on all the nodes including the
nodes that have been newly added to the view. After laying out the objects
the ones that were previously in the view are translated to their positions
from the previous rendering. The objects that were newly added to the view,
stay in the position the layout placed them. This can lead to overlapping
elements. To avoid overlaps we check whether one of the new elements is
covering one of the elements that were already in the view.

To deal with element overlap we look for a gap along the x-axis that fits
the new element. If a gap that is big enough is found, then the element is
placed directly to the right of the last element before the gap. If no gap
is found, the element is placed to the right of the rightmost element. This
solution makes sure that there is no element overlap no matter how many
new objects are added at once.

5.3 Custom Node Creation
To make our tool extensible we provide the user with the possibility to create
node customizations. The users can create node customizations for classes
without having to modify any of the existing code in our tool. This is done
by using pragmas. When the users create a node customization they do
this directly in the class for which a node customization is being made. A
method is written which contains the elements for the node customization
and the method is then annotated with a pragma. We have defined two

CHAPTER 5. IMPLEMENTATION 31

different pragmas, one for customizations that are only text and one for
morphs. This is done so that the text customizations come before the morph
customizations in the customized node. In the class OSVMoldableNodes, all
the returned elements of the methods which are annotated with either of the
two pragmas are collected. The collected elements are then added to the
visualization. The use of pragmas provides an easy solution to create node
customizations without investing time to manipulate our tool’s code.

6
Validation and Use Cases

Inspecting the run-time objects of a program helps one to understand how
the program works. It also helps one to discover why a program might not
be working. In this chapter we will present some use cases for which the use
of our tool is helpful and aids problem solving.

6.1 General Object Set Inspection
Currently object set inspection of collections such as ordered collections,
heaps, or linked lists can only be done by navigating through a textual tree
of the objects in the collection. To enhance this experience one can inspect
these collection objects in our tool, but the question is: when is it more
useful to use our tool rather than the inspector? During an exploratory
study [4] it was found that users would like specialized views for certain
object types such as collections, dictionaries, trees and graphical elements.
Users also mentioned that they want navigation which allows tracing back
to previously inspected objects [4]. This problem would be solved by having
all the inspected objects in the visualization. So the answer to this question
is that the visualization provided by our tool can be seen as an additional
view, and can therefore be used alongside the inspector. In Bragdon et al. [6]
present a debugging tool that enables easy exploration of multiple objects. In
user interviews they found that the tool’s advantages are to debug complex
and dynamic paths. It is therefore not a surprise that the tool is not so useful

32

CHAPTER 6. VALIDATION AND USE CASES 33

when the paths do not have those factors [6]. Therefore the implication we
can extract for our tool is that as soon as there are complex inter-object
relationships between the objects in the inspected set, it is useful to use our
tool. As a general rule as soon as one has two or more objects, or objects
that are collections and one wants to inspect the inter-object relationships,
it is useful to create a visualization with our tool.

If we inspect a set of different classes and would like to know the hier-
archical structure of these classes commonly we would have to open up the
inspector on each of those classes and then check whether one is a subclass or
superclass of one of the other objects. Or one could use Roassal and create
a visualization as described in Section 4 on http://agilevisualization.
com/AgileVisualization/Mondrian/0202-Mondrian.html. Our tool en-
hances that visualization by providing additional information about the vari-
ables of the classes. For our example we added five different classes to our
visualization . In Figure 6.1 we can read the hierarchical structure right out
of the graph.

Figure 6.1: A visualization of the classes LinkedList, OrderedCollection, Se-
quenceableCollection, Heap and SortedCollection

We can see that both classes LinkedList and OrderedCollection are
subclasses of the class SequenceableCollection and that there is no rela-
tionship between the class Heap and all the other collections.

By using a visualization to represent the object set and inter-object rela-
tionships, it is easier to quickly grasp the structure of the object set. This

http://agilevisualization.com/AgileVisualization/Mondrian/0202-Mondrian.html
http://agilevisualization.com/AgileVisualization/Mondrian/0202-Mondrian.html

CHAPTER 6. VALIDATION AND USE CASES 34

is an example consisting of a small set of classes, but one could also add all
the classes of a package to inspect the hierarchy of these classes. For exam-
ple the hierarchy of the package SUnit-Core in Pharo looks as illustrated in
Figure 6.2.

Figure 6.2: A visualization of 16 classes of the package SUnit-Core in Pharo,
with all nodes minimized except for PrototypeTester

Like Bergel et al. [3], we show the dependencies between the different
classes. Our tool allows the users to display additional information for desired
nodes and hide information for other nodes.

6.2 Object Set Comparison
To compare object sets Pharo offers a limited amount of methods. We can
check whether a set contains the same elements through equality, and with
the method Collection>>#intersection: we can find the common ele-
ments of two collections. With our tool it is simpler to find objects, which
the object sets do not have in common and we can do multiple assertions si-
multaneously. In addition you get a visual representation of the object sets.
The answers to these different object set comparisons can help in debugging
or creating test cases. With our visualization tool the software developer can
make multiple object set comparisons simultaneously and inspect whether
their given output is as expected. Aftandilian et al. [1] use a linked list as

CHAPTER 6. VALIDATION AND USE CASES 35

a use case so we will also use linked lists to compare the evolution of two
linked lists.

We compare the linked lists both in the inspector and in our tool, answer-
ing questions about the lists commonalities, disparities, and the ease of set
comparison. The linked list colorsOne, at time A contains the objects:
Color yellow, Color red, Color orange, Color purple, Color black,
(Color r: 0.658 g: 0.532 b: 0.424 alpha: 1.0), Color white. The
second linked list colorsTwo, at time A, contains the objects: Color green,
Color white, Color red, Color yellow, Color purple, Color black, Color
orange, (Color r: 0.433 g: 0.147 b: 0.07 alpha: 1.0). First we com-
pare these two lists with the inspector. Since in the inspector we can only
inspect one object we will need two inspectors to compare the two linked
lists, as is displayed in Figure 6.3.

Figure 6.3: Two inspectors displaying the items of two distinct linked lists

To answer whether these two lists have objects in common the user has to

CHAPTER 6. VALIDATION AND USE CASES 36

scan through each object of colorsOne and then check if is also in colorsTwo.
Therefore the user basically has to do a linear search for each object in
colorsOne, since the two lists are not sorted. This is a very tedious and
inefficient process. The other option is to use the method intersection:,
but this does not help us with the next question. To check which are the
elements that the two lists do not have in common, the user has to search
both lists and eliminate the previously found common objects. To answer
the question, one would again need to write code to extract the elements
that are not shared.

With our tool we can spot right away which objects the lists have in
common and which not. We added both linked lists, their value links and
the objects contained in the list to the visualization in our tool. In Figure 6.4
we can see the obtained visualization.

CHAPTER 6. VALIDATION AND USE CASES 37

Fi
gu

re
6.

4:
A

vi
su

al
iz

at
io

n
cr

ea
te

d
w

ith
ou

r
to

ol
,d

isp
la

yi
ng

th
e

tw
o

lin
ke

d
lis

ts
co
lo
rs
On
e

an
d
co
lo
rs
Tw
o

CHAPTER 6. VALIDATION AND USE CASES 38

The user can spot the common objects and see which objects are only
contained in one list, to enhance the inspection in this case we can remove
the value links of both list, so there are less edges in the visualization. We
then get the following visualization in Figure 6.5.

Figure 6.5: A visualization created with our tool, displaying the two linked
lists colorsOne and colorsTwo, same as Figure 6.4 but without value links

The questions about common objects and objects only contained in one
list can both be answered by using only one visualization. Now we would like
to compare these same linked lists at a later point in time. At time B the list
colorsOne contains the objects: Color yellow, Color red, Color orange,
Color green, Color purple, Color black, Color white. We added the
Color green in the middle of the list and removed (Color r: 0.658 g:
0.532 b: 0.424 alpha: 1.0). The list colorsTwo at time B contains
the objects: Color green, Color white, Color red, Color yellow, Color
black, Color orange, (Color r: 0.433 g: 0.147 b: 0.07 alpha: 1.0),
Color blue. The colors Color purple and (Color r: 0.433 g: 0.147
b: 0.07 alpha: 1.0) were removed and the color blue was added at the
end of the list. So now we want to answer the question: Which changes were
made to the lists colorsOne and colorsTwo.

With the inspector we would again have to use two inspectors, this time
for each linked list. In Figure 6.6 we have an inspector open on colorsOne
at time A and time B.

CHAPTER 6. VALIDATION AND USE CASES 39

Figure 6.6: The linked list colorsOne at time A in the left inspector and at
time B in the right inspector

As before the user would have to tediously compare all the objects to spot
if any object were added or removed. The other approach would be to again
use intersection: and then remove these objects from the list at time A to
see which objects were removed and then remove them from the list at time
B, to find the objects that were added. The same process has to be done
for colorsTwo. Now if the users wants to compare the list again they would
have to again open two inspectors and compare them. We can see that this
process with the inspector is very tedious and the user has to do multiple
steps and open multiple windows.

With our tool the user can do all the steps in the inspector using just

CHAPTER 6. VALIDATION AND USE CASES 40

one visualization. With our visualization tool we can continue using the
visualization in Figure 6.5. We keep the objects contained in the lists but
remove both linked lists. Then to first inspect colorsOne we add it back to
the visualization. We can see in Figure 6.7, that the linked list colorsOne
does not have an edge to (Color r: 0.658 g: 0.532 b: 0.424 alpha:
1.0) but has one to Color green.

Figure 6.7: The linked list colorsOne and the objects from the visualization
in Figure 6.5

We now also add colorsTwo to inspect the changes. We can easily spot in
Figure 6.8 that the colors Color purple and (Color r: 0.433 g: 0.147
b: 0.07 alpha: 1.0) are not connected anymore to colorsTwo, therefore
not in colorsTwo at time B.

CHAPTER 6. VALIDATION AND USE CASES 41

Figure 6.8: The linked lists colorsOne, colorsTwo and the objects from the
visualization in Figure 6.5

In addition in the arrow button next to the label “Click to add/remove
all elements of the linked list” of colorsTwo indicates there are objects in
list colorsTwo that are not in the visualization yet. We click the button and
can see in Figure 6.9 that the Color blue was added to the visualization,
this color was added to colorsTwo between time A and time B.

Figure 6.9: The linked lists colorsOne, colorsTwo and the objects from the
visualization in Figure 6.5 and the Color blue

This example demonstrates a case for which it is more efficient to use our
visualization tool instead of the object inspector. Our tool offers multiple

CHAPTER 6. VALIDATION AND USE CASES 42

interactions that allow the users to answer multiple set comparison questions
at once.

7
Conclusion and Future Work

In this thesis, we have presented a tool for visualizing sets of objects as graph
structures as an alternative to traditional object inspectors. The visualiza-
tion of object sets in our tool provides an alternative manner of object set
comparison, which is otherwise not provided in the Pharo IDE. Inter-object
relationships are easily detectable and object set structures are displayed in
the graph. In addition to the base implementation, we provide two exemplary
node customizations for two core classes. This library can be extended for
any desired objects in Pharo by using pragmas and following the instructions
in the appendix.

The following features would be interesting and useful for future work:

• Add custom nodes for set and data structure classes, such as the sub-
classes of the class Collection.

• Class specific layouts. The user should be able to chose a custom layout
for an object and the related objects, allowing for individual layouts
for substructures. As an example a visualization containing a linked
list and a tree could have a circular layout for the linked list and its
objects, and the tree could have a tree layout for its objects. Having
a single layout on a set containing multiple different data structures,
limits the graphs readability.

• Proper inspector integration, so that when an object is selected in the
inspector it would also be selected in the graph and vice versa. It

43

CHAPTER 7. CONCLUSION AND FUTURE WORK 44

would be a useful feature to make object modification possible directly
through the graph.

• The current node representation could be replaced by displaying the
inspector window of an object as a node in the graph. Then objects
could already contain customizations by having multiple views in the
inspector node in the graph.

These limitations show that the tool is not to be used as a stand alone
inspection tool, but rather as an additional help. The tool provides a more
thorough overview of object structures.

Bibliography

[1] Edward E. Aftandilian, Sean Kelley, Connor Gramazio, Nathan Ricci,
Sara L. Su, and Samuel Z. Guyer. “Heapviz: interactive heap visualiza-
tion for program understanding and debugging.” In: Proceedings of the
5th international symposium on Software visualization. SOFTVIS ’10.
Salt Lake City, Utah, USA: ACM, 2010, pp. 53–62. isbn: 978-1-4503-
0028-5. doi: 10.1145/1879211.1879222. url: http://doi.acm.org/
10.1145/1879211.1879222.

[2] Alexandre Bergel. Agile Visualization. LULU Press, 2016. isbn: 9781365314094.
url: http://AgileVisualization.com.

[3] Alexandre Bergel, Sergio Maass, Stéphane Ducasse, and Tudor Gîrba.
“A Domain-Specific Language For Visualizing Software Dependencies
as a Graph.” In: Proceedings of 2nd IEEE Working Conference on
Software Visualization (VISSOFT NIER). 2014. url: https://dl.
dropboxusercontent.com/u/31543901/MyPapers/Berg14c-Graph.
pdf.

[4] Andrei Chiş. “Moldable Tools.” PhD thesis. University of Bern, Sept.
2016. url: http://scg.unibe.ch/archive/phd/chis-phd.pdf.

[5] James H. Cross II, T. Dean Hendrix, David A. Umphress, Larry A.
Barowski, Jhilmil Jain, and Lacey N. Montgomery. “Robust Generation
of Dynamic Data Structure Visualizations with Multiple Interaction
Approaches.” In: Trans. Comput. Educ. 9.2 (June 2009), 13:1–13:32.
issn: 1946-6226. doi: 10.1145/1538234.1538240. url: http://doi.
acm.org/10.1145/1538234.1538240.

[6] Robert DeLine, Andrew Bragdon, Kael Rowan, Jens Jacobsen, and
Steven P. Reiss. “Debugger Canvas: Industrial experience with the code
bubbles paradigm.” In: 2012 34th International Conference on Software
Engineering (ICSE) (2012), pp. 1064–1073.

[7] Dean Frederick Jerding and John Stasko. “Using Visualization to Foster
Object-Oriented Program Understanding.” In: (Jan. 1994).

45

https://doi.org/10.1145/1879211.1879222
http://doi.acm.org/10.1145/1879211.1879222
http://doi.acm.org/10.1145/1879211.1879222
http://AgileVisualization.com
https://dl.dropboxusercontent.com/u/31543901/MyPapers/Berg14c-Graph.pdf
https://dl.dropboxusercontent.com/u/31543901/MyPapers/Berg14c-Graph.pdf
https://dl.dropboxusercontent.com/u/31543901/MyPapers/Berg14c-Graph.pdf
http://scg.unibe.ch/archive/phd/chis-phd.pdf
https://doi.org/10.1145/1538234.1538240
http://doi.acm.org/10.1145/1538234.1538240
http://doi.acm.org/10.1145/1538234.1538240

BIBLIOGRAPHY 46

[8] Robert Cecil Martin. Agile Software Development: Principles, Patterns,
and Practices. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2003.
isbn: 0135974445.

[9] Michael Meyer, Tudor Gı̂rba, and Mircea Lungu. “Mondrian.” In: Pro-
ceedings of the 2006 ACM symposium on Software visualization - Soft-
Vis ’06. ACM Press, 2006. doi: 10.1145/1148493.1148513.

[10] Nicolai Hess Stéphane Ducasse Dimitris Chloupis and Dmitri Zagidulin.
Pharo by example 5. Second. 2017.

[11] Thomas Zimmermann and Andreas Zeller. “Visualizing Memory Graphs.”
In: Revised Lectures on Software Visualization, International Seminar.
London, UK, UK: Springer-Verlag, 2002, pp. 191–204. isbn: 3-540-
43323-6. url: http://dl.acm.org/citation.cfm?id=647382.
724787.

https://doi.org/10.1145/1148493.1148513
http://dl.acm.org/citation.cfm?id=647382.724787
http://dl.acm.org/citation.cfm?id=647382.724787

A
Anleitung zu wissenschaftlichen

Arbeiten

This chapter provides a tutorial for using the presented tool. We explain how
to obtain it, use the basic features, and create a simple custom visualization.
For this tutorial, we assume that the reader has basic knowledge of Pharo
and Moose. For an introduction to Pharo, we refer the interested reader to
Pharo by example 5 [10].

A.1 Installation of environment and tools
• Obtain a fresh Moose 6.1 image (and VM if necessary) and open it.

• In the World Menu open an Iceberg Browser

1. Click +Clone repository
2. Enter the remote URL from github: https://github.com/ccorrodi/

bachelorarbeit-eve.git
3. Go to the packages tab for bachelorarbeit-eve
4. Right click and load the Thesis Eve package

47

https://github.com/ccorrodi/bachelorarbeit-eve.git
https://github.com/ccorrodi/bachelorarbeit-eve.git

APPENDIX A. 48

A.2 Basic usage
Using the visualization tool is straightforward. After obtaining the target
objects, all a user has to do is add them to a new visualization, which is
represented by an instance of ObjectSetViewer. Here, we illustrate this
using a linked list. We will explain how to visualize and interact with an
object such as a LinkedList. For the class LinkedList we have a node
customization. Therefore we have two ways of adding the ValueLinks and
elements to the visualization.

To start, we open up a Playground in Pharo. In order to obtain a visual-
ization with our tool we instantiate a new object of the class ObjectSetViewer.
In our example we will use a LinkedList containing the colors yellow, blue,
red and green. In order to add our given LinkedList to the instantiated
visualization we send the message addObject: to the visualization. The pa-
rameter we give to the method is the LinkedList itself. Lastly we send the
message render to the ObjectSetViewer. We then have the following code
in the playground:

1 view := ObjectSetViewer new.
2
3 list := LinkedList new.
4 list
5 add: Color yellow;
6 add: Color blue;
7 add: Color red;
8 add: Color green.
9 view

10 add: list;
11 render.

After running the code we obtain the visualization in Figure A.1

APPENDIX A. 49

Figure A.1: A visualization of a linked list, containing four colors, in our tool

Now to enhance the visualization we will add the ValueLinks and colors
of the LinkedList. We can do so by directly interacting from within the
visualization. In Figure A.2, we can see the different interactions that are
possible for our LinkedList. These different interactions enable the users to
create an individual visualization that only represents information relevant
to the user.

APPENDIX A. 50

Figure A.2: The interactions of the LinkedList containing the colors yellow,
blue, red and green

There are two buttons which can be found under number 5 and 6 in the
legend in Figure A.2. With these we can once add all the ValueLinks and
with the other add all the colors of our LinkedList. We can then inspect the
single elements while also inspecting the structure and relationships between
them. All the elements in the visualization can be moved around individually
and removed if desired.

Adding the elements to the visualization directly through the visualiza-
tion is one option. The other option is to add elements through the play-
ground. Going back to the initial playground we can then for our LinkedList
add the set of ValueLink objects and the set of colors through the code. The
code for that looks as follows:

1 view := ObjectSetViewer new.
2
3 list := LinkedList new.
4 list
5 add: Color yellow;
6 add: Color blue;
7 add: Color red;
8 add: Color green.
9

APPENDIX A. 51

10 links := OrderedCollection new.
11 list linksDo: [:each | links add: each].
12
13 view
14 addObject: list;
15 addObjects: list, links;
16 render.

After adding the ValueLinks and the elements, by using any of the two
described options, we obtain a visualization as the one shown in Figure A.3.

Figure A.3: Visualization of a LinkedList and its ValueLinks and colors

All the important interactions such as removing an element or removing
a set of elements can also be done with the following functions:

• ObjectSetViewer>> removeObject: function to remove one single
object from the visualization

• ObjectSetViewer>> removeObjects: function to remove a set of ob-
jects from the visualization

A.3 Implementing a custom node shape
In order to customize individual object nodes, pragmas are used. Pragmas
are method annotations. The annotated methods are then collected dur-

APPENDIX A. 52

ing run time and we can then interact with their outputs. This allows for
class independant customizations. The class OSVMoldableNode and its sub-
classes provide methods which collect these pragmas and allow interaction
with them. Basic node shapes in the *ThesisEve package can be used to
compose more complex shapes. For example, a OSVPrintStringNode is typi-
cally used to display an arbitrary string, whereas a OSVVariableNode is used
for instance variables that automatically link to the targets if they are in the
view. This is useful to highlight equality between objects, even if there is no
direct reference.

In this section, we show how nodes can be customized, using the class
Heap as an example.

A.3.1 Using pragmas
We have defined two pragmas for two different return types. Methods with
the pragma <OSVAsLabel> must return a Roassal label. While methods an-
notated with the pragma <OSVAsMorph> must return a morph. The internal
process when an object is added to the visualization is the following: 1. Our
visualization tool looks for methods with the <…> annotation in the target’s
class hierarchy; 2. a generic root node is created; 3. for each method found
in step 1, a custom subvisualization is rendered using that methods output;
4. the whole visualization is returned and displayed.

There are two main ways the user can insert the pragma annotation into
the methods used for node customization.

First, the user can directly go to the class for which a customization
should be made, then create a method with the desired output and annotate
the method with the correct pragma.

Second, the user can have a visualization (ObjectSetViewer) containing
an instance of the class to be customized. In the node representation of that
object we have a button, which allows us to directly make a node customiza-
tion. The button directly takes the user into the class to be customized. The
user can then again create a method there and add the correct pragma to
the method.

As mentioned earlier we will make a customization for the class Heap. The
basic default node visualization for the class Heap can be seen in Figure A.4

APPENDIX A. 53

Figure A.4: An ObjectSetViewer containing a heap object

The code in the playground is the following:
1 heap := Heap new.
2 heap add: 5;
3 add: 2;
4 add: 6;
5 add: 3;
6 add: 1.
7
8 view := ObjectSetViewer new.
9 view addObject: heap.

10 view render.

The highlighted pencil button at the top right of the node only appears
when there is currently no node customization for the object class. When
the button is clicked, the protocol *ThesisEve is added to the object class
and a browser is opened on the object class.

APPENDIX A. 54

Figure A.5: Protocol *ThesisEve is added to the class Heap and a browser
is opened on the Heap class

Within this protocol we can then write our methods which contain a
pragma. Currently, the following two pragmas can be used to define custom
node shapes:

• <OSVAsLabel >: this pragma expects the method to give back a Roassal
label.

• <OSVAsMorph >: this pragma expects a Pharo morph to be returned

A.3.2 Heap customization
For our example of a node customization for the class Heap, we would like to
first add a label containing some text, such as “Sorted Heap:”. Followed by a
label containing the sorted Heap. Second we would like to add another label
containing the text, “Click here to add/remove the elements of the heap”,
followed by buttons which allow the addition and removal of those elements.
The add button should only be displayed when not all of the elements are in
the view. Similarly, the remove button is shown only if at least one of the
elements is in the view. Third, we would like to have a preview of the objects
in the heap in the main heap node itself.

We will now create the methods used for our node customization.

APPENDIX A. 55

A.3.3 Sorted Heap label
For our label we will use the pragma <OSVAsLabel >. We write a new method
called asOSVSortedLabelNode in the class Heap.

Now since this method will only be displaying a string, we can use the
class OSVPrintStringNode to obtain a node that will print the given input.
Our code in the method asOSVSortedLabelNode will look as follows:

1 asOSVSortedLabelNode
2 <OSVAsSubelementsLabel >
3 ^ OSVPrintStringNode new
4 target: 'Sorted␣Heap:', (self deepCopy fullySort

) asString

We make a deepCopy of our heap because we do not want to sort our
original heap, to highlight the difference between our heap and the sorted
one. For our OSVPrintStringNode we set the desired label text as target.

We now render our original heap node again and our heap node will now
look as illustrated in Figure A.6.

Figure A.6: A heap node after adding a label with the sorted heap. The
highlighted section is the added node customization.

A.3.4 Label with buttons to add/remove objects of the
heap

As with the previously created label, we extend the class Heap with a new
method asOSVObjectsLabelNode. For this label we will also use the pragma
<OSVAsSubelementsLabel >, because we will be returning a text. Fortunately,
there is already a class implementing displaying sub elements (which was used
in the LinkedList customization), namely OSVSubelementsLabelNode.

The implemented method asOSVObjectsLabelNode then looks as follows:
1 asOSVObjectsLabelNode
2 <OSVAsSubelementsLabel >
3 ^ OSVSubelementsLabelNode new
4 target: self;

APPENDIX A. 56

5 label: 'Click␣to␣add/remove␣the␣objects␣of␣the␣
heap'

Here we can see that for the class OSVSubelementsLabelNode we do not
set the output string as the target, but we set it as the variable label.
The target we give is the set of objects we want to be able to add or re-
move from the visualization, in our case the objects in the heap. The class
OSVSubelementsLabelNode automatically adds buttons to the label. It also
provides the logic for adding and removing the subelements (i.e., all elements
in the given collection) when buttons are pressed. If we render the node again
we receive the customized node displayed in Figure A.7

Figure A.7: The heap node after adding two node customizations, again the
highlighted area is the newly added node customization.

When the user clicks the arrow button the objects of the heap will be
added to this visualization as nodes, as illustrated in Figure A.8.

Figure A.8: A visualization displaying the customized heap node and its
objects

This visualization is lacking the edges for equality. For that purpose we
will add a heap preview which will also show the equality edges to the heap
elements.

APPENDIX A. 57

A.3.5 Heap preview
We follow the same procedure as before. In the class Heap, we create a new
method asOSVMorphNode. For the LinkedList customization we also have a
preview, so we can again use the same node to obtain a preview of our heap.
The code in the method asOSVPreviewNode is the following:

1 asOSVMorphNode
2 <OSVAsLabel >
3 ^ OSVLinkedListNode new
4 target: self

As a target we set the objects of which we want a preview. In Fig-
ure A.9we can see our final heap node after adding three different node
customizations.

Figure A.9: A visualization displaying the customized heap node and the
elements of the node, so to highlight the equality edges.

A.3.6 Customizing CalendarMorph using pragmas
To present the use of <asOSVMorphNode> pragma we will create a node cus-
tomization for the class CalendarMorp, with our code looking as follows in
the playground:

1 view := ObjectSetViewer new.
2 view addObject: (CalendarMorph on: Date today).
3 view render

We obtain the default node visualization in Figure A.10

APPENDIX A. 58

Figure A.10: A visualization displaying an object of the class CalendarMorp
with the date of today.

We will now create a method asOSVMorphNode in the class CalendarMorp
and annotate it with the pragma <asOSVMorphNode>. It returns a OSVMor-
phNode with the calendar as a target. The code look as follows:

1 asOSVMorphNode
2 <OSVAsMorph >
3 ^ OSVMorphNode new
4 target: self

The visualization can be seen in Figure A.11

APPENDIX A. 59

Figure A.11: A visualization displaying an object of the class CalendarMorph
with the date of today. The node shows the morph of this class as a node
customization.

This step by step instruction has guided the user through the creation of
a node customization for the classes Heap and CalendarMorph. This is just
one example of the use of the methods containing pragmas. The user can
create other pragma methods to collect objects for node customization.

	Introduction
	Related Work
	Motivation
	Visualization of Objects
	Interactive graph interface
	Camera Movement
	Dragging
	Popups
	Minimize and Maximize Node
	Minimized Information
	Highlights
	Removing Objects from the Visualization
	Directly Adding Objects through the View

	Persistent Subgraphs
	Custom Node Visualization
	Linked List
	RB Program Node

	Implementation
	Design Patterns
	Persistent Subgraphs
	Custom Node Creation

	Validation and Use Cases
	General Object Set Inspection
	Object Set Comparison

	Conclusion and Future Work
	Anleitung zu wissenschaftlichen Arbeiten
	Installation of environment and tools
	Basic usage
	Implementing a custom node shape
	Using pragmas
	Heap customization
	Sorted Heap label
	Label with buttons to add/remove objects of the heap
	Heap preview
	Customizing CalendarMorph using pragmas

