
Jenny in Wonderland
Exploring the Difficulties of Symmetric Encryption

Bachelor Thesis

Sophie Gabriela Pfister
from

Bern, Switzerland

Philosophisch-naturwissenschaftlichen Fakultät
der Universität Bern

21 December 2021

Prof. Dr. Oscar Nierstrasz

Dr. Mohammad Ghafari, Mohammadreza Hazhirpasand

Software Composition Group
Institut für Informatik

University of Bern, Switzerland

Abstract

Recent research revealed that a wide range of cryptography libraries lacked
usability. Developers therefore misused them and produced insecure applica-
tions. A commonly observed source of obstacles was lack of documentation
quality. Programmers consult other resources (i.e., Stack Overflow) if they
do not find the required information or code examples in the official docu-
mentation.

In this context, we aimed for an investigation on the API level to further
clarify developers’ obstacles. We focused on symmetric-encryption-related
APIs from the Java Cryptography Architecture (JCA) library, in particular the
Cipher class. We analyzed the content of 150 threads from Stack Overflow
to identify the issues programmers faced when working with these APIs as
well as common forms of API misuse causing security risks. We also sought
links between these problems and JCA’s documentation by formulating
questions for each issue and seeking the answers in the documentation.

We observed that most of the identified issues related to the generation
of parameters (e.g., keys) or instantiating a Cipher object (e.g., specifying
encryption mode). About 20% of all issues were discussed regarding security.
However, only 24 threads did not contain any potential security risks. The
identified risks mainly related to the use of unsafe encryption modes and
constant/static values as a key or initialization vector. We were able to reduce
the issues and security risks to 64 questions. Most of them (∼84%) were at
least partly covered by the documentation. We concluded that most issues
and cases of misuse could have been prevented if the original poster had read
and understood the documentation. However, JCA’s documentation is spread
over several documents, and locating the required piece of information might
therefore be difficult. Additionally, programmers may lack the required
domain knowledge and find documentation hard to understand. As this study
revealed several JCA-specific obstacles relating to its documentation or the
library design, we recommend that future research continues evaluating
cryptography libraries on the API level.

i

Contents

1 Introduction 1

2 Related Work 5
2.1 API Usability . 5
2.2 Usability Criteria for Documentation 6
2.3 Usability of Cryptography Libraries 7
2.4 Misuse of Cryptography APIs . 11

3 Methodology 15
3.1 Sampling . 16
3.2 Analysis of Issues . 17

3.2.1 Summarizing . 17
3.2.2 Classification . 18

3.3 Analysis of Security Risks . 21
3.3.1 Security Rules . 21
3.3.2 Tracking Security Rule Violations 21

3.4 Analysis of Documentation . 23
3.4.1 Deriving Questions . 23
3.4.2 Consulting Documentation . 24

3.5 Evaluation . 24

4 Results and Interpretations 25
4.1 Implementation Issues . 25
4.2 Security Risks . 30
4.3 Documentation . 32

4.3.1 Questions . 32
4.3.2 Missing and Unclear Answers 34

5 Conclusions and Future Work 36
5.1 Limitations and Future Work . 38
5.2 Implications . 39

ii

CONTENTS iii

6 Anleitung zu wissenschaftlichem Arbeiten 40
6.1 Subroutines . 42
6.2 Encryption . 44
6.3 Decryption . 48
6.4 Remarks on Parameter Transmission 50

1
Introduction

Cryptography is a fundamental part of the digital world. It provides techniques to ensure
confidentiality, authenticity, and integrity of information. Nonetheless, Buchanan de-
scribed the internet as an unsafe place [3], citing that too little security was implemented
in the services and protocols used. He argued that “the next generation of the Internet
[...] must be built in a trustworthy way” (Buchanan, 2017, [3], p. 1).

In practice, there are numerous vulnerabilities found in software and protocols each
year.1 One of the most potentially disastrous weakness types concerns cryptography. Al-
though there are a large number of cryptography libraries for building secure applications
by providing services such as hashing, message authentication, as well as symmetric and
asymmetric encryption, a series of recent studies indicated that software developers had
difficulty correctly using cryptography. Hazhirpasand et al. analyzed 489 open-source
Java projects and found that only two were completely secure [7].

One of the leading issues is that cryptography libraries lack usability, a problem
which has been studied in various well-known cryptography libraries. The results showed
that libraries often do not support auxiliary tasks (e.g., Mindermann et al. [12]), that they
are not abstract enough (e.g., Nadi et al. [14]), and that they lack documentation quality
(e.g., Mindermann et al. [12], Nadi et al. [14], Patnaik et al. [19]). Similarly, Acar et
al. indicated that unusable cryptography libraries not only prevented developers from
writing functional code but also lead to the emergence of security vulnerabilities since
developers were more likely to misuse the APIs [1]. Moreover, good documentation

1https://www.exploit-db.com

1

https://www.exploit-db.com

CHAPTER 1. INTRODUCTION 2

was a strong predictor for both functional and secure code. Acar et al. emphasized the
importance of having official documentation that contains secure examples “to keep
developers from searching for unvetted, potentially insecure alternatives” (2017, [1], p.
167).

We believe that still some areas, such as the context of API usability, documentation
usability, API misuse, and unsafe code require closer investigation. Therefore, the
following research questions address these areas:

1. Which issues do programmers face when implementing symmetric encryption
using Java Cryptography Architecture (JCA)?

2. What security risks can be found in code and advice shared on Stack Overflow
referring to the implementation of symmetric encryption scenarios using JCA?

3. To what extent are these issues due to missing or inadequate documentation?

Since different cryptography libraries have different API designs, studying more
than one cryptography library on Stack Overflow may have revealed a multitude of
issues. Thus, we focused on one library (i.e., JCA) and one use case (i.e., symmetric
encryption) to gain a deeper understanding of the issues, which provides us with more
details compared to previous research that focused on a more general level. JCA is
the default cryptography API for Java developers, and it acquired FIPS-140 standards
issued by the National Institute of Standards and Technology (NIST) specifying the
requirements for cryptography libraries and modules.2

To answer the research questions, we analyzed 150 threads from Stack Overflow,
where at least one issue related to the study’s scope was discussed. To address the first
research question, we identified the issues the original poster3 was facing and categorized
them regarding technical aspects that had been incorrectly implemented or requirements
that had not been met. To answer the second research question, we checked the same
sample for rule violations based on a predefined set of security rules for symmetric
encryption scenarios. For the third research question, we derived a set of prioritized
questions from the previous findings and sought answers in the documentation of the
JCA library. We also took notes regarding documentation quality in general.

2FIPS-140-3
3author of the question post in a thread

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf

CHAPTER 1. INTRODUCTION 3

Regarding the first research question, we observed that most of the issues discussed
referred to generating algorithm parameters (i.e., key, initialization vector) (24.2%), and
the Cipher.getInstance(...) method (22.8%). Many errors (27%) were caused by
developers failing to correctly configure the dependencies between different properties
involved in encryption (e.g., encryption mode–padding, algorithm–key size). Some
programmers even used different properties or parameters for encryption and decryption.
This was the reason for 15% of all issues. We concluded that these developers lacked the
domain knowledge to properly use a low-level cryptography library such as JCA. Other
developers also struggled with the API design of JCA, especially the dependency from
providers (i.e., default behavior) and the high prevalence of overloaded methods.

Concerning the second research question, we found that programmers frequently
used unsafe encryption modes (ECB, CBC). Indeed, 75.3% of all original posters used
one of these modes. They also utilized static values for keys (28.7%) and initialization
vectors (16.0%). Other original posters did not implement password-based key derivation
in a secure way (7.3%). They used a weak password (6.7%), static salt (4.7%), too few
iterations for key derivation,4 (4%) short salt,5 (2%) and reused passwords (2%). The
answer posts contained much fewer security risks: only 27% of all accepted answers had
security risks in their code snippets, and most of these were inherited from the original
post as the person answering the question focused on producing functional code without
thinking of security.

In relation to the third research question, we observed that most of the derived
questions were covered by the documentation (84.4%), especially those with higher
priorities. We concluded that most of the issues could have been prevented if the original
poster had thoroughly read and understood the documentation. However, an answer
might be difficult to find since the documentation is spread over several documents (i.e.,
API documentation [16], Reference Guide [17], Standard Algorithm Name Specification
[18]). Additionally, the results from the first and second research questions imply that
some programmers lack domain knowledge. Thus, the documentation might be difficult
for them to understand. We considered 27.8% of the answers as unclear or incomplete.

Among the unanswered questions, 70% targeted cryptography or software security
in general. We observed that JCA documentation did not provide links to resources
for comprehensible information about these topics. While it links the specifications for
most algorithms, the most popular symmetric encryption algorithm, the AES, is missing.
Additionally, specifications might be difficult to read for a reader who does not have a
mathematical/technical background.

4< 1, 000
5< 64 bits

CHAPTER 1. INTRODUCTION 4

This thesis presents the state of research in chapter 2. Chapter 3 describes the
methodical approaches of the study. We explain and interpret our results in chapter
4. Chapter 5 includes the conclusion, limitations, and conductive thoughts. Lastly, in
the “Anleitung zum Wissenschaftlichen Arbeiten” (chapter 6), we provide and explain a
best-practice example for password-based encryption using the AES-GCM.

2
Related Work

2.1 API Usability
One of the most popular definitions of usability is from ISO 92411-11:1998: “the extent
to which a product can be used by specified users to achieve specified goals with effec-
tiveness, efficiency and satisfaction in a specified context of use” (ISO 9241-11, [4], p.
2). Although the definition is precise, it does not explain how to measure the usability of
a product.

Past research on (API) usability approached the topic in different ways, and the
literature is therefore heterogeneous. Some researchers focused on programmers’ needs
and defined guidelines and heuristics to describe what a usable API should look like. As
an example, Zibran conducted a meta-analysis on API usability literature and described
a set of 22 specific guidelines [25]. He considered an API usable if it was “(1) easy to
learn, (2) easy to remember, (3) easy [to] write client code, (4) easy to interpret client
code, and (5) difficult to misuse” (2008, [25], p. 256).

Other researchers approached the problem from the perspective of software metrics.
For instance, Rama and Kak proposed eight metrics for API usability referring to
method overloading and name confusion, method grouping, parameter list complexity
and consistency, thread safety, and documentation [21]. Scheller and Kühn even defined
an extensible framework to measure interface complexity automatically [23].

5

CHAPTER 2. RELATED WORK 6

Another approach was to focus on the concept of usability and redefine it more
precisely. Alonso-Rı́os et al. developed a detailed taxonomy [2]. Starting from usability,
they organized a wide range of attributes in a hierarchy.

Furthermore, Mosquiera-Rey et al. combined several approaches [13]. They extended
the usability model by Alonso-Rı̀os et al. with the context of use and mapped existing
guidelines for API usability to the model’s attributes. The first level attributes of these
taxonomies are shown in figure 2.1. They also identified and described a total of 45
heuristics for API usability.

Figure 2.1: First Level Attributes of Usability and Context of Use Taxonomies
(Mosquiera-Rey et al., 2018, [13], p. 49 ff.)

2.2 Usability Criteria for Documentation
Mosquiera-Rey et al. located documentation quality within the knowability attribute of
API usability [13]. They defined this property as the extent to which a programmer can
“understand, learn, and remember how to use the system” (Mosquiera-Rey et al., 2018,
[13], p. 48). They further described three documentation-related heuristics:

• Documentation should not contain irrelevant information such as meta-data or
obsolete and redundant comments.

• Documentation should contain code samples for key scenarios.

• Documentation should identify deprecated methods, explain why these are depre-
cated, and propose alternatives.

Robillard asked developers what they struggled with most when they had to learn
a new API [22]. Their answers identified missing or unclear documentation as a major
obstacle. Robillard concluded that API documentation must be complete and provide
example code. Additionally, it should support a wide range of usage scenarios, include
relevant design elements, and be organized in a convenient way.

CHAPTER 2. RELATED WORK 7

Mindermann et al., who evaluated the usability of Rust cryptography libraries, also
made recommendations on how to improve the usability of such libraries [12]. They also
asserted that good documentation for a cryptography API should

• link to comprehensible resources that explain cryptographic concepts,

• mention closely related keywords (i.e., block cipher mode of operation, cipher
mode, encryption mode),

• describe in which scenarios an algorithm should be used.

• warn against weaknesses and vulnerabilities (i.e., unsafe algorithms that are sup-
ported for legacy),

• explain all parameters,

• give advice when there are multiple options and explain the differences among
them.

2.3 Usability of Cryptography Libraries
Green and Smith defined 10 principles regarding the usability and security of cryptog-
raphy libraries [5] . Their main idea was that security-related functionalities should be
integrated into non-cryptographic APIs so that regular programmers1 do not have to deal
with cryptographic APIs at all. The entire set of principles is shown in figure 2.2.

Patnaik et al. extended these principles by defining usability smells [19]. They were
looking for “telltale signs that one of the ten usability principles is being violated” (2019,
[19], p. 245). To do so, they examined a wide range of popular cryptography APIs:
OpenSSL, NaCl, libsodium, Bouncy Castle, SJCL, Crypto-JS, and PyCrypto. They
manually reviewed almost 2,500 posts on Stack Overflow and identified the issues the
programmers were facing. They categorized 16 thematic issues, of which two related to
the programmers’ lack of knowledge:

• Passing the buck: Questions that are answered in the documentation

• Lack of knowledge: Questions implying that “the developer does not have founda-
tion level cryptography knowledge” (Patnaik et al., 2019, [19], p. 250).

1without cryptography expertise

CHAPTER 2. RELATED WORK 8

Figure 2.2: 10 Design Principles for Cryptography APIs (Green & Smith, 2016, [5], p.
42)

They subsequently mapped the remaining issues to four usability smells:

• “need a super-sleuth” (i.e., missing, incomplete or unclear documentation)

• “confusion reigns” (i.e., should I use this? how should I use this? abstraction
issues, borrowed mental models)

• “needs a post-mortem” (i.e., unclear error messages, unsupported features, API
misuse, deprecated feature)

• “doesn’t play well with others” (i.e., build issues, compatibility issues, performance
issues)

Similarly, Hazhirpasand et al. selected 20 popular cryptography libraries and evalu-
ated 25 Stack Overflow posts for each, assigning a topic to every post (figure 2.3) [8].
They found that the prevalence of topics differed among the libraries. For example,

CHAPTER 2. RELATED WORK 9

Figure 2.3: Topics Discussed on Stack Overflow Regarding Cryptography Libraries
(Hazhirpasand et al., 2019, [8], p. 4)

users of pyOpenSSL mainly struggled with certificates (17), mcrypt users had difficulties
installing the library (16), and more than half of the posts referring to the CryptoJS
library involved library interoperability (13). Nevertheless, many cryptography libraries
share the same problems.

CHAPTER 2. RELATED WORK 10

In another study, Acar et al. evaluated and compared five cryptography libraries
for Python [1].2 Their aim was to understand the reasons for failure (or success) when
implementing cryptography scenarios and to define a blueprint for new, more usable
cryptography libraries. They conducted a between-subjects online study where Python
programmers implemented a symmetric or asymmetric encryption task using an assigned
library. Both task and library were assigned randomly. The programmers also completed
an exit survey where they were asked about their backgrounds as well as their opinions
regarding the assigned task and library. Acar et al. then examined the submitted code
regarding functionality and security and controlled their findings for the participant’s
background.

They found that the strongest predictors for working code was the documentation
quality and the availability of working code examples. Concerning security, the pro-
grammers’ background was most important. Developers with a security background
were more likely to produce secure code. Although “simpler” APIs (i.e., more abstract,
secure default values) seemed to promote better security results, they did not completely
solve security problems. The key issues regarding security were that libraries did not
support auxiliary tasks (i.e., key storage) and lacked documentation quality. Acar et al.
also observed that a complex API with good documentation (i.e., PyCrypto) was rated as
more usable by the participants than a simple API with bad documentation (i.e., Keyczar).

Mindermann et al. evaluated the usability of Rust cryptography libraries [12]. After
determining the most popular libraries, they conducted an exploratory study where one of
the authors completed a set of cryptography-related tasks several times using a different
library for each round. Afterward, they compared two popular libraries, rust-crypto and
ring, in a controlled experiment. For this, students had to complete a code skeleton by
adding symmetric encryption logic.

They found that the older “low-level” but more powerful libraries (i.e., rust-openssl,
rust-crypto) lacked usability whereas others made a great effort to provide it (i.e., rust-
sodium, sodiumoxide). As an example, high-level libraries use authenticated encryption
by default. Default values were often avoided, but if present, they were secure. Nonethe-
less, Mindermann et al. identified several security risks: some libraries did not warn about
broken algorithms or when a nonce was accidentally reused. Furthermore, documentation
quality varied among and within the libraries.

Mindermann et al. also issued 12 recommendations to remedy present usability
issues. These are more specific than the ones suggested by Green and Smith as they only
applied to Rust libraries.

With a different focus, Nadi et al. investigated the usability of Java cryptography
libraries to understand the underlying causes for misuse of the related APIs. They also

2cryptography.io, Keyczar, PyNaCl, M2Crypto, and PyCrypto

CHAPTER 2. RELATED WORK 11

aimed to identify the most common cryptography tasks and possible support tools.
To do so, the researchers followed several approaches: they manually reviewed

100 posts on Stack Overflow, examined 100 GitHub repositories, and conducted two
surveys. Regarding the usability of Java cryptography libraries, they found that the
biggest obstacles were the lack of documentation (i.e., code examples), the APIs’ design
(i.e., error messages, method overloading, insecure default values), and lack of domain
knowledge among programmers. The survey participants explicitly asked for more
abstract APIs and better documentation.

2.4 Misuse of Cryptography APIs
Krüger et al. proposed CrySL, a definition language that allows the specification of rules
for secure usage of cryptographic APIs [9]. It enables specifying rule sets class-wise in
separate files. Krüger et al. also implemented CogniCrypt, a compiler that translates
CrySL rules into a static analysis that automatically checks a given Java application for
rule violations [9]. To evaluate it, Krüger et al. defined a rule set for the JCA library and
analyzed 10,001 Android apps. They also reviewed 50 apps manually for comparison.

CogniCrypt detected the use of JCA in 4,071 apps. In 96% of them, CogniCrypt
identified at least one issue. In total, CogniCrypt discovered 19,756 rule violations,
most of which referred to broken constraints (i.e., illegal values), especially for the
MessageDigest class. In the manual analysis, Krüger et al. found that some program-
mers still used MD-5 and SHA-1 hash functions, although these are considered broken.
CogniCrypt also identified a large number of misuses of the Cipher class, especially the
use of broken algorithms (i.e., DES) and unsafe encryption modes (i.e., ECB). Another
common misuse was that programmers forgot to clear the password at the end of the
lifetime of a PBEKeySpec object.

CHAPTER 2. RELATED WORK 12

Hazhirpasand et al. also used CogniCrypt to analyze 489 open-source Java projects
that utilized the JCA library [7]. Only two of them were considered completely secure.
Figure 2.4 shows the ratio of correct and incorrect usage for each of the investigated APIs.

Figure 2.4: Correct API use vs. API Misuse (Hazhirpasand et al., 2020, [7], p. 3)

Although a few records were mistakenly marked as misuse according to the authors’
manual review, their findings showed that programmers especially struggled to correctly
use the classes AlgorithmParmeters, SecretKeySpec, Signature, Cipher, KeyStore,
MessageDigest, and IVParameterSpec correctly. These classes support (symmetric)
encryption, hashing, and digital signatures.

In addition, Hazhirpasand et al. contacted 216 maintainers of the repositories to
understand the reasons for API misuse. Their answers implied that developers often
underestimated the impact of cryptography misuse in publicly accessible code. They
were not aware that their publicly accessible code could influence other programmers
who were looking for examples. Some maintainers also lacked security knowledge: they
did not know how to correctly use the API and blindly accepted security-related pull
requests. Another identified issue was that there were not enough security concerns in the
official documentation. Programmers also argued that although they use a cryptographic
API, the code was not security-related.

CHAPTER 2. RELATED WORK 13

Piccolboni et al. further developed a tool, CRYLOGGER, to check security-related
code for API misuse [20]. It conducts a dynamic analysis by logging the parameters that
are passed to the cryptography APIs during the execution. It later checks their legitimacy
using a list of security-related rules (figure 2.5). Piccolboni et al. used CRYLOGGER to

Figure 2.5: CRYLOGGER’s Security Rules (Piccolboni et al., 2020, [20], p. 5)

analyze 1,780 Android apps. They found that rules 01 and 18 were violated very often
(> 90%), indicating that broken hash functions and unsafe sources for random number
generation were frequently used. They also found a rather high prevalence of violations
for rules 04, 05, 06, 07, 09, and 22 (> 30%), which refer to unsafe keys and initialization
vectors (IVs), the reuse of key-IV pairs and the use of HTTP.

Figure 2.6: Rule Violations Detected by CRYLOGGER (Piccolboni et al., 2020, [20], p.
12)

CHAPTER 2. RELATED WORK 14

Finally, Hazhirpasand and Ghafari [6] followed a different approach and analyzed 173
vulnerability reports on the HackerOne bug bounty platform to understand the existing
types of cryptography vulnerabilities. Most (33.5%) referred to the use of insecure SSL
versions. Other common topics were the use of weak cryptography parameters (i.e.,
broken hashing algorithms, short keys; 14.5%), OpenSSL bugs (14.5%), and mixing
HTTP/HTTPS content (12.7%). In rarer cases, the reports involved miscellaneous attacks
(6.9%), timing attacks (6.3%), the use of static keys or passwords (6,3%), or issues
related to HTTP (5.2%).

3
Methodology

To answer the first research question,1 we identified the issues that programmers face
when implementing symmetric encryption using JCA. We derived a list of issues by
analyzing 150 threads on Stack Overflow, one of the most popular Q&A forums for
programmers. To address the second research question,2 we also scanned these threads
regarding security risks. Based on the elicited issues, we then defined a set of questions
in order to observe the extent to which the the official documentation provided relevant
answers. This helped to answer the third research question.3

As we required several methodological approaches, this chapter is divided into
five sections. The first section describes the sampling process. The second refers to
identifying issues from Stack Overflow posts. The third section explains how we checked
the threads for security risks. The fourth describes the procedures for deriving questions
from the previous findings and analyzing the library’s documentation. The fifth section
illustrates the evaluation processes.

1What issues do programmers face when implementing symmetric encryption using Java Cryptography
Architecture?

2What are common security risks in code and advice shared on Stack Overflow referring to the
implementation of symmetric encryption scenarios using the JCA library?

3To what extent are these issues due to missing or inadequate documentation?

15

CHAPTER 3. METHODOLOGY 16

3.1 Sampling
In Java, developers should use the Cipher class to accomplish a symmetric encryption
task. The class supports a wide range of symmetric and asymmetric encryption algo-
rithms. To search for suitable threads on Stack Overflow, we first defined a set of queries.
We use the [java] tag combined with a minimal Cipher.getInstance() statement for
each symmetric algorithm. This statement must be executed in all encryption scenarios
using the Cipher class.

As some of the symmetric algorithms supported by JCA are not very popular, the
corresponding queries returned only a small number of posts. We decided to exclude
these algorithms, such as RC2, and focused instead on the three most popular symmetric
encryption algorithms: AES, 3DES,4 and DES. We therefore used three queries, which
are shown in the left column of table 3.1.

Next, we calculated the sampling size using the sample size calculator by Survey-
Monkey. To ensure a confidence level of 95% and a margin of error below 8%, we
needed to study 150 posts. Then we computed sample size per each query proportionally
to the number of posts it returned. The results can be found in table 3.1.

Table 3.1: Computation of Sample Sizes

Finally, to select the threads from Stack Overflow, we chose 50% of the sample
size from the newest threads and the other half from the most popular ones. Using this
approach, we attempted to balance the inclination of our sample size since the majority
of developers first look for answers on Stack Overflow before posting a question.

As the aim of the analysis was to reveal issues referring to the implementation of
symmetric encryption using the JCA library, we excluded all posts that did not refer
to this scope. A complete list of reasons for exclusion and some example threads are
found in the appendix. However, a thread commonly consists of more than one issue.
Therefore, we included the threads in which at least one issue, question, or piece of
advice referred to the study’s scope. As we also did not include any posts lacking quality,
we excluded 296 threads.

4also TripleDES, DESede

https://www.surveymonkey.com/mp/sample-size-calculator/
https://www.surveymonkey.com/mp/sample-size-calculator/

CHAPTER 3. METHODOLOGY 17

3.2 Analysis of Issues
The goal of the first analysis was to answer the first research question: What issues do
programmers face when implementing symmetric encryption using JCA? We conducted
a manual qualitative content analysis following the guidelines presented by Mayring [11].
As the sample was large, we needed an approach that allowed us to efficiently evaluate
the data. We also needed it to support method-integrative approaches that combine
qualitative and quantitative elements. These requirements are all key characteristics of
Mayring’s guidelines.

We conducted the analysis in three rounds. We first applied summarizing to extract
the relevant information (issues and questions) from the threads. Then we classified the
issues in two rounds.

3.2.1 Summarizing
In this step, the goal was to extract and record all relevant information so that we did not
have to reread the entire threads during the further evaluation steps.

There were two coders involved in summarizing, who first summarized independently
and then discussed the results together to create a consistent and more objective list of
records. In particular, we eliminated records that did not refer to our scope. For example,
we excluded all issues that referred to the conversion of plain text or cipher text (i.e.,
character-encoding).

For each thread, we recorded the set of issues and questions that the original poster
was facing. We sometimes also identified issues based on comments (e.g., security hints).
Then we tried to identify the reasons and solutions from the accepted answer post. If no
answer was accepted, we derived it from the discussion (i.e., based on a remark by the
original poster indicating that a comment was helpful). However, we were not always
able to find a possible explanation for the original poster’s issues.

As a result, we aimed for one record per issue that must consist of a short description
(e.g., an error message, a shortened form of a question) and might include more precise
explanations for the reason or solution.

CHAPTER 3. METHODOLOGY 18

3.2.2 Classification
All records that resulted from summarization were classified in two rounds: We first
categorized all records regarding technical aspects and then regarding requirements the
original poster was not able to meet. Per round, we assigned at most one category to
each record. A list of examples for each category is provided in the appendix.

Technical Aspects

In the first round of classification, we focused on the technical aspects of implementing
symmetric encryption, e.g., mistakes in the original poster’s code that lead to errors. We
started with a set of predefined main categories that we inductively refined during the
classification. Each time we defined a new category, we restarted the classification.

The main categories referred to the set of tasks that programmers must consider when
implementing symmetric encryption using JCA: Cipher Object Instantiation, Generating
Algorithm Parameters, Cipher Object Initialization, Transformation, and Transmitting
Algorithm Parameters. We defined subcategories to obtain deeper insights (i.e., if an
issue targeted only one aspect of a main task), or to allow unambiguous classification
(i.e., dependencies between two properties). We also added one more main category
resulting in the following main and subcategories:

• Cipher Object Instantiation: We assigned this category to all issues and ques-
tions referring to an inappropriate Cipher.getInstance(...) statement. As a
parameter, programmers must pass a transformation string consisting of:

– Algorithm (mandatory)

– Encryption Mode (optional)

– Padding (optional)

Additionally, we defined the following subcategories:

– Dependency Encryption Mode–Padding: The encryption mode determines
whether padding is required or not. We assigned this category to all issues
caused by an inappropriate specification of these two properties.

– Cipher Object Instantiation–Other for issues and questions related to
Cipher object instantiation but none of the aforementioned aspects.

• Generating Algorithm Parameters: Depending on the specification of the Cipher

object, different kinds of parameters are required. For encryption, the programmer
might need to perform the following tasks:

– Key Derivation for issues and questions referring to random key generation,
password-based key derivation, or key exchange protocols.

CHAPTER 3. METHODOLOGY 19

– Initialization Vector / Nonce Generation for issues and questions referring
to the generation of the IV or nonce used for the transformation.

– Generation of Other Algorithm Parameters (e.g., a GCMParameterSpec).

• Cipher Object Initialization: We assigned this category to all issues caused by the
misuse of the init(...) statement, (e.g., not passing all required parameters).
For this, we defined the following subcategories:

– Dependency Algorithm–Key: The algorithm determines which data type
the key must be stored in. It also defines the allowed key sizes. We as-
signed this category to issues caused by passing an inappropriate key to the
init(...) method or questions about this dependency.

– Dependency Algorithm/Encryption Mode - IV: The encryption mode de-
termines whether an IV is required or not. For some encryption modes (e.g.,
CBC), the IV must be the same size as the algorithm’s block size.

– Cipher Object Initialization–Other

• Transformation: This category was assigned to all issues and questions targeting
the actual transformation methods update(...) and doFinal(...) (e.g., passing
the wrong input parameters or questions about the output).

• Transmission of Parameters: As all parameters from encryption must be reused for
decryption, they must either be stored or transmitted. This category was assigned
to all issues and questions referring to storing, restoring, or transmitting parameters.
We further defined the following subcategories:

– Key Transmission: The key must be kept secret.

– Transmission of Other Parameters such as the IV. They can be transmitted
along the cipher text as they do not have to remain secret.

• Dependency Encryptor–Decryptor: The Cipher objects used for encryption and
decryption must be specified and initiated in the exact same way except for the
parameter specifying the operation in the init(...) statement. We assigned this
category to all issues caused by differing configurations.

CHAPTER 3. METHODOLOGY 20

Figure 3.1: Hierarchy of Technical Aspect Categories

If all tasks are correctly implemented, the code compiles and runs without raising
any errors. Therefore, if programmers ask questions on Stack Overflow about a technical
aspect, they either implemented a task incorrectly, or they have a question regarding one
of these tasks. During this first classification round, we asked “What implementation
step was performed incorrectly causing the error?” or “What implementation step is
targeted by the question?”

Requirements

As not all issues related to technical aspects, we defined a second set of categories
regarding the design of an application. We identified different kinds of functional and
non-functional requirements as categories, consulting Sommerville [24] as a theoretical
basis. During the analysis, we asked, “Which requirements are the original posters not
able to meet?” Not all requirements defined by Sommerville occurred in our analysis,
and therefore we only assigned the following categories:

• Use Case (functional requirements)

• Performance

• Space

• Reliability

• Portability

• Interoperability

• Security

CHAPTER 3. METHODOLOGY 21

As we analyzed the discussion, we only assigned a category if either the original
poster complained about not being able to meet a certain requirement or someone warned
that the shared code might cause issues regarding one of the requirements (i.e., a security
hint).

3.3 Analysis of Security Risks
The goal of the second analysis was to answer the second research question: What
are common security risks in code and advice shared on Stack Overflow referring to
the implementation of symmetric encryption scenarios using the JCA library? We first
defined a set of security rules regarding the implementation of symmetric encryption.
Then we manually checked the threads from our sample for violations of these rules.

3.3.1 Security Rules
We derived our rules from the sets used for CRYLOGGER (Piccolboni et al. [20]) and
CogniCrypt (Krüger et al. [10]). We only considered the rules that were applicable to
symmetric encryption and structured them using the categories from the technical aspect
classification (section 3.2). We also generalized them to simplify the evaluation. For
example, R-04 of CRYLOGGER says “Don’t use the operation mode CBC (client/server
scenarios)” (Piccolboni et al., 2020, [20], p. 5). As we often did not know in what
context the original poster wanted to use the code, we inferred that CBC should not be
used at all. The resulting rules can be found in table 3.2.

3.3.2 Tracking Security Rule Violations
We manually checked the original sample to observe any security rule violations. For
this, we only considered the question post, the accepted answer post, and comments on
one of these. We also distinguished between “question” and “answer” as well as “code”
and “text”. We analyzed the four aspects independently and made a list for each:

• Question–Code

• Question–Text

• Answer–Code

• Answer–Text

While analyzing the code snippets, we focused on the parts where encryption, de-
cryption, key derivation, IV generation, and key storage were implemented. For instance,
if someone defined a key-String in the main method and passed it to the encryption

CHAPTER 3. METHODOLOGY 22

Table 3.2: Security Rules

section as a parameter, we did not consider this a security risk. The encryption section
can still be safe if an appropriately derived, non-static key is passed.

CHAPTER 3. METHODOLOGY 23

3.4 Analysis of Documentation
The results from the preceding analyses formed the basis on which to evaluate the
documentation for JCA. As it is spread over several documents and sources, we only
examined the most basic ones: JCA Reference Guide [17], the Java Security Standard
Algorithm Name Specification [18], and the API documentation for the javax.crypto

package [16]. These three documents are valid for all providers and therefore apply to a
wide range of platforms.

To analyze the documentation, we first defined a set of questions to be answered.
Afterward, we sought the answers in the documentation. Our aim was to answer the
third research question: To what extent are these issues due to missing or inadequate
documentation? The questions additionally gave us more insight into issues with which
programmers are struggling (first research question).

3.4.1 Deriving Questions
In general, the official documentation should support the usage of the API and not
educate developers or address their basic questions regarding cryptography. However,
the documentation of a cryptography library should link reliable and comprehensible
resources that explain basic cryptographic concepts (Mindermann et al. [12]). We
therefore created two lists of prioritized questions: one with questions for documentation
and one containing general questions.

We derived the questions from the results of the first analysis. To do so, we repro-
cessed the records and formulated questions for each one. If a question was new, we
wrote it down and set its priority to one. If there was already a similar question, we
increased its priority by one and sometimes reformulated the question.

Then we adapted the priorities of the questions referring to security based on the
results of the second analysis. We set the priority to the actual number of posts targeted
by it.

CHAPTER 3. METHODOLOGY 24

3.4.2 Consulting Documentation
For each question on the list, we then tried to find an answer in the documentation.
Depending on the question, we checked the resources in another order. In this manner,
we aimed to find answers as time efficiently as possible. For questions for documentation,
we typically started with the reference guide to find general explanations and then
consulted the related parts of the API documentation. For general questions, we started
in the standard algorithm name specification. As a benefit, we knew the documentation
better after answering a set of questions and therefore optimized our search strategies.

Once we found an answer to the question, we recorded its source as well as some
remarks regarding documentation quality (section 2.2).

3.5 Evaluation
After the first analysis (section 3.2), we applied several forms of frequency analysis to
identify the tasks and requirements with which most programmers were struggling. We
similarly evaluated the results from the second analysis (section 3.3) to identify the most
common security risks.

After the third analysis (section 3.4), we interpreted the results in several ways. To
begin, we more closely reviewed the questions’ content as well as their priorities. We
also determined how many and which questions were not answered in the documentation.
We tried to identify possible relationships between issues and security risks on one side
and documentation (and API design) on the other. Finally, we made recommendations
on how the documentation of JCA could be improved.

4
Results and Interpretations

In this chapter, we discuss the results of the three analyses and their interpretations, with
a section for each. The first section presents the issues programmers faced during the
implementation of a symmetric encryption scenario using the JCA library. The second
section explains the security risks found in the sample data. The third section discusses
how the previous findings may be linked to the documentation.

4.1 Implementation Issues
In the first analysis, we identified all issues the original posters were facing and recorded
them separately. Depending on what the original poster was struggling with, we classified
the issues as relating to a technical aspect and/or a requirement.

In total, we recorded 219 issues, 197 (90%) of which we recorded as relating to
technical aspects and 76 (35%) regarding requirements; 62 records were classified twice.
We could not classify only one thread (and its relating record) due to the lack of adequate
information.

As shown in figure 4.1, the most common categories in the first round of categoriza-
tion were Generation of Algorithm Parameters (53) and Cipher Object Instantiation (50).
Both of these categories refer to specifying and generating the properties used during
encryption and decryption. During the generation of algorithm parameters, programmers
might derive a key, an IV, and other algorithm parameters such as advanced authentication
data. The original posters especially struggled with key derivation (36 records). This was

25

CHAPTER 4. RESULTS AND INTERPRETATIONS 26

Figure 4.1: Number of Issues Assigned to a Technical Aspect Main Category (N = 219)

not surprising as previous work has revealed that programmers often had difficulty with
key handling. The set of problems relating to the key1 comprised more than one-fifth of
all issues.

During the instantiation of a Cipher object, programmers specify algorithm, encryp-
tion mode, and padding. In this context, the original posters were especially struggling
with the latter two aspects. Eighteen records referred to the encryption mode, 11 to
padding, and another 11 to the dependency of these properties.

The third most common category was Cipher Object Initialization (36). In this
implementation step, the generated parameters (e.g., key, IV) are passed to the cipher
object. Most issues were assigned to the other subcategory and often referred to the
original posters not passing all required parameters of the init(...).

The fourth most common category was Dependency Encryptor–Decryptor (33).
More than 27% of all issues referred to a dependency-related subcategory. The high
prevalence of issues in this category implies that many programmers lack knowledge
about (symmetric) encryption in general. The fact that the Cipher objects for encryption
and decryption must use the exact same algorithms and parameters is the basic principle
of symmetric encryption.

The other main categories and subcategories were not assigned very often. Some
original posters were confused that there were two methods that perform transformation:
update(...) and doFinal(...). They did not know which one must be called in their
scenario.

Among issues referring to the transmission of algorithm parameters (7), most referred

1derivation, transmission, dependency from algorithm

CHAPTER 4. RESULTS AND INTERPRETATIONS 27

to the key (5). The remaining records were related to the IV (1) and the salt used for
password-based key derivation (1).

Table 4.1 shows the complete list of subcategories and their frequencies of assign-
ment.

Table 4.1: Number of Issues Assigned to a Technical Aspect Subcategory (N = 219)

Within the categories referring to requirements, security was the predominant cate-
gory (46 records). This seems logical as this is what cryptography is about. However,
only three original posters asked about the security of their implementation: one asked
whether the IV generated by default was safe, another whether it was secure to reuse
algorithm parameters (e.g., key, IV) for several transformations, and the third person
wanted to know whether encryption became safer if some kind of salt was added to the
plain text. A more common security issue was that programmers were not able to run
AES-256 due to missing security policy files (5 threads). However, most security records
were identified based on security hints from people commenting on or answering the
questions. However, there is massive underreporting as the results from the security-
related analysis show (section 4.2).

As seen in figure 4.2, the other requirement categories occurred less often. There
were 12 issues related to the portability of an application, and they often referred to
original posters not specifying all values themselves. For example, several programmers
only passed “AES” to the Cipher.getInstance(...) method. In that case, default
values are used for encryption mode and padding. These values, however, differ among
different providers and therefore among different platforms.

Another seven records were assigned to the interoperability category. These issues

CHAPTER 4. RESULTS AND INTERPRETATIONS 28

Figure 4.2: Number of Issues Assigned to a Requirement Category (N = 219)

often occurred if original posters implemented one task in different ways in both source
codes. Sometimes, the other library was more abstract and used default values (e.g., for
padding) that were therefore not visible in the source code. As a result, the original
posters incorrectly instantiated or initialized the Java Cipher objects. Some of these
default values were also not supported by JCA (e.g., ZeroPadding). One programmer also
used a non-standardized function (i.e., SHA1PRNG) for random number generation).

The five issues referring to use case category related to the misuse of encryption for
an inappropriate use case (2), to a use case that was not supported by JCA library (2) and
a use case that is just not possible to implement (1).2

Most of the issues assigned to the reliability category were caused by the original
poster declaring Cipher objects statically in global space. The application crashed
frequently because Cipher objects are not thread-safe.

Moreover, some programmers complained that the execution of the getInstance(...)
method was taking too long (lacking performance). One original poster also observed
that the encryption of a large file was time-consuming. Other developers reported that
an OutOfMemoryException occurred when they tried to encrypt a large file all at once
(lacking space efficiency).

As previously mentioned, some records were classified twice, regarding technical
aspects and requirements. The heat map (figure 4.3) shows the relative overlapping of
categories. We observed the highest overlapping for Generation of Algorithm Parameters
and Security; 21% of all records assigned to each category were also assigned to both.
Most of them referred to static values being used for key or initialization vectors. The
second-highest overlap was between Cipher Object Instantiation and Security categories

2mapping 16 B of data bijectively to a 12 digit number

CHAPTER 4. RESULTS AND INTERPRETATIONS 29

(16%). Almost all of these referred to the use of an unsafe encryption mode.
As we had less data for the other requirements categories, it is not surprising that

we found much less overlapping for them. The issues assigned to the Portability or
Interoperability category and some other technical aspects category were mostly due
to default values that vary among platforms and libraries. The overlap with Reliability
category indicated where the applications crashed: during Cipher Object Initialization or
Transformation. The bi-classification of Cipher Object Instantiation and Performance
implied that the execution of getInstance(...) is particularly time-consuming.

Figure 4.3: Relative Overlapping of Technical Aspects and Requirements Categories

CHAPTER 4. RESULTS AND INTERPRETATIONS 30

4.2 Security Risks
We manually checked 150 questions, 84 answer posts, and related comments to find any
violations of the determined rule set and found a total of 331 security risks. Most (249,
75%) stem from code snippets in question posts. The text of question posts included only
38 security risks. However, we observed that the questions commonly did not contain
much text.

We also found 35 rule violations in answers’ code snippets and nine in answers’ text.
Some answers just fixed the functionality of a question-related code section without
improving its security. The resulting code therefore inherited the security risks from the
question. Another common observation was that people correctly gave the advice that
ECB was not considered safe. However, they suggested using CBC instead, which must
not be employed in client-server scenarios. Such advice is therefore not safe, especially
if we do not know in what kind of application the code is used.

Table 4.2: Rule Violations per Checklist

The further analysis focused on the code snippets in the body of the questions as we
did not find any additional security risks in the text or answers that were not present in or
related to the question code. However, some original posters only shared the code section
where the issue occurred (e.g., an error was thrown) and did not show how auxiliary tasks
(e.g., key derivation) were implemented. We therefore must be aware that there might be
even more vulnerabilities in their code.

On average, each question post contained 1.66 security risks in its code snippets. We
noted that the average for the most popular (and older) posts (1.91) is slightly higher
than for the newest posts (1.43). In total, 24 question posts did not contain any security
risks in their code snippets.

CHAPTER 4. RESULTS AND INTERPRETATIONS 31

The most often violated rule was R-02: Do not use ECB or CBC encryption mode.
In more than 75% of question posts, the original poster used one of these unsafe block
cipher modes. This is also due to ECB being the default encryption mode for most
providers.

The second and third most violated rules were R-03-a: Do not use a static (=
constant) key, R-04-a: Do not use a static (= constant) IV, and R-01: Use AES or
Blowfish algorithm. The number of posts using an unsafe algorithm is due to the sample:
we included 24 posts where DES or 3DES was used. Some original posters stated that
they used static values only for Stack Overflow to simplify their code. Nevertheless, this
is a potential security risk if a programmer naı̈vely copied and pasted the code snippet. If
an original poster used both static key and IV, this led to the reuse of key-IV pairs (R-05),
which is the fifth most often violated rule.

The remaining rules were rarely violated. However, the total number of rule violations
referring to password-based key derivation R-03-b to R-03-f was 29. Fourteen posts used
an unsafe key derivation procedure. They often just hashed the password and used the
first n bits3 instead of using a safe key derivation function such as PBKDF2.

The least violated rules were R-04-c: Use SecureRandom for IV generation, R-04-b:
Do not use a static seed for IV generation, and R-06: Do not use a static (=constant)
password for store. As most original posters used ECB, which does not require an IV,
and many used a static IV otherwise, there were not many code sections showing IV
generation. There were also hardly any question posts that showed or explained how the
key was stored.

3n = key size

CHAPTER 4. RESULTS AND INTERPRETATIONS 32

4.3 Documentation
We were able to reduce the issues and security risks from the previous findings to
64 questions: 43 for documentation and 21 more general ones. After checking the
documentation, 10 questions remained unanswered, and for 15 questions, we considered
the answer incomplete, unclear, or even misleading.

4.3.1 Questions
The first observation regarding the questions was that there were twice as many JCA-
specific questions as general ones. Still, the total priority of all general questions was
much higher than the total priority of the specific ones, even before correcting the pri-
ority for the security-relevant ones. This strongly indicates that programmers asking
questions on Stack Overflow not only lack knowledge about the JCA library but also
about cryptography in general.

The results from the first analysis provided insight into the tasks and requirements
with which programmers were struggling. The JCA-specific questions helped us to detect
API-related issues.

Several questions targeted a specific platform or were related to providers; two of
them were even among the three most prioritized questions for documentation. For
example, the default values and behavior of a Cipher object depend on the provider.
However, whether a provider is available or not and which provider is used by default
depends on the platform. This decreases the portability of an application, particularly if
the code relies on default behavior.

An additional five questions were related to overloaded methods. Two methods per-
form data transformation, and both of them are overloaded. The methods for instantiation
and initialization are overloaded as well.

The questions also revealed that programmers particularly had difficulty with password-
based key derivation.

The general questions helped us to understand which knowledge the original posters
were missing. As we only knew the accurate number for questions / issues referring to
the security of code, most of the higher-prioritized questions also referred to that topic.
As shown in table 4.4, the remaining higher-prioritized questions targeted the various
dependencies. From this, we concluded that some original posters were not aware of
cryptography at all.

CHAPTER 4. RESULTS AND INTERPRETATIONS 33

Table 4.3: Top Nine Questions to Documentation

Table 4.4: Top Nine General Questions

Among the questions that did not relate to security or to the dependencies, we found
the following topics:

• AES algorithm (four questions, total priority = 9)

• initialization vector (one, 4)

• use cases that symmetric encryption should be used for (one, 3)

• cipher text input for decryption (one, 2)

• padding (two, 2)

• message authentication (two, 2)

CHAPTER 4. RESULTS AND INTERPRETATIONS 34

4.3.2 Missing and Unclear Answers
We were not able to find answers to three JCA-specific and seven general questions, most
of which had a rather low priority (< 4). However, the higher prevalence of unanswered
general questions implies that JCA documentation does not provide (sufficient) links to
comprehensible resources for general information about cryptography. We observed that
there were some explanations within the documentation, but they were not detailed.

The following three unanswered questions represented further documentation-related
issues that violate the principles and recommendations described in section 2.2:

• Which symmetric encryption algorithms are safe to use? Firstly, this was the only
higher-prioritized question (24) that was left unanswered. It can be seen as an
example of JCA documentation not providing enough hints regarding security.
The reference guide mentions that ECB is not safe. However, it does not give
any advice on which encryption mode should be used. Moreover, there are not
further security warnings for other aspects (e.g., algorithm, password-based key
derivation).

• How to specify PKCS#7 padding in Java? PKCS#7 is a standardized padding
for arbitrary block sizes that is supported by many cryptography libraries. JCA
internally interprets PKCS#5 padding as PKCS#7 if it is required. However, this
is not mentioned in the Standard Algorithm Name Specification nor in any other
document that we examined. Thus, this might complicate the implementation of
interoperability scenarios.

• What properties does AES-256 require? We found a link to the official specifica-
tions for most algorithms in the Standard Algorithm Name Specification. However,
for AES, there was no link. This is problematic since AES is one of only two sym-
metric encryption algorithms that are recommended. Furthermore, specifications
are rather hard to understand.

For 13 JCA-specific and two more general questions, we considered the answers not
to be clear enough. They often referred to overloaded methods. The documentation did
not distinguish the differences clearly enough and they were copied and pasted.

CHAPTER 4. RESULTS AND INTERPRETATIONS 35

Another prevalent issue was that there were no code example for some common or
important scenarios (e.g., using a KeyStore or password-based key derivation utilizing
PBKDF2). The available ones often did not work due to some missing parts. For instance,
the example code for Cipher class did not show how the algorithm parameters were
generated and only demonstrated how the Cipher class was used. There were other
code sections that depicted how a key was randomly generated or how password-based
encryption could be implemented. However, there were hardly any examples that worked
all by themselves.

Figure 4.4: Extract From Example 2-2 Sample Code for Using an AES Cipher with GCM
Mode [17]

5
Conclusions and Future Work

In this chapter, we first aim to answer the research questions based on the findings from
the previous chapter. We then discuss possible limitations of our study and suggest
further research topics.

RQ 1: What issues do programmers face when implementing symmetric encryption
using JCA? Our study provided answers to this question from different perspectives:
Considering tasks with which programmers are struggling, most involved generating
algorithm parameters, especially deriving the key from a password. The second most
problematic task was instantiating a Cipher object. The original posters particularly
failed to correctly specify encryption mode and padding. The third most problematic task
was initializing the Cipher object. Most issues and questions related to this task referred
to the programmer not passing all required parameters to the init(...) method.

Another aspect related to this question was the design of the JCA library. One of the
major issues in this context was that default behavior and values depended on the provider.
The platform, however, determines which providers are available and which provider
is chosen by default. This decreases the portability of applications. An additional
issue was the high number of overloaded methods, particularly getInstance(...)

and init(...). Moreover, two methods perform transformation, update(...) and
doFinal(...), which are both overloaded as well, and some original posters failed to
choose the correct one.

This could also be related to the documentation: the overloaded methods are doc-
umented too similarly, and there is no advice about which overload should be used in
which scenario. Finally, there are not enough working code examples, and the docu-

36

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 37

mentation does not link comprehensible resources for more general information about
cryptography.

On the other hand, regarding the programmers, our study added more evidence to the
existing literature confirming the assumption that they lack sufficient knowledge about
cryptography.

RQ 2: What are common security risks in code and advice shared on Stack Overflow
referring to the implementation of symmetric encryption scenarios using the JCA library?
We found that security risks were particularly present in code snippets from question
posts. Several answers gave advice regarding or even improved security, whereas others
only focused on the functionality of the code. We also observed a slight improvement
when we compared the older posted questions with the newer ones.

The most common security risk was the use of an unsafe encryption mode. This is
also related to the most common providers using ECB as the default block cipher mode
of operation. However, some answers suggested to use CBC instead of ECB, which is
not safe either.

Other common security risks were the use of static values for either the key or IV, or
both. Although some original posters explicitly stated that they only used them in their
post to simplify the code section, it would become a security risk if another programmer
just copied and pasted the code.

The procedures used for password-based key derivation also contained security risks.
JCA supports PBKDF2 as a safe procedure for password-based key derivation. However,
it was rarely used.

RQ 3: To what extent are these issues due to missing or inadequate documentation?
This research question is perhaps the most difficult one to answer. We considered most of
the derived questions (> 60%) being clearly answered by the documentation, especially
the higher-prioritized ones. We also found related information for almost 85% of the
questions. We therefore cannot blame insufficient documentation for the struggles of
developers.

There are several explanations. It is possible that some original posters did not consult
the documentation at all. However, JCA’s documentation is spread over several docu-
ments, and finding a required piece of information might be time-consuming. Another
explanation is that some programmers lacked the domain knowledge to understand the
documentation. For example, if someone must derive a key from a password, they must
know what salt and iteration count are and which requirements these parameters must
meet to be safe.

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 38

Based on our findings, we suggest the following improvements:

• Link comprehensible resources for more information about cryptography.

• Provide working code examples that cover all important scenarios, in particular
state-of-the-art scenarios (e.g., authenticated encryption). These examples should
be found in one place.

• Provide advice regarding security. Warn against unsafe values.

• Document overloaded methods more specifically (e.g., describe in what scenarios
which overload should be used).

5.1 Limitations and Future Work
As this project followed a qualitative approach and performed an in-depth analysis, it is
reasonable to have a limited scope. However, we found new issues that were specific to
the JCA library. Future work should extend it by examining more use cases and libraries.

Regarding the methodical approach, a major threat to validity is that we did not verify
the intercoder reliability of our issue classification or our security check. This requires a
certain expertise in cryptography and software security as well as experience with the
JCA library. We therefore did not succeed in finding a suitable reviewer. Nonetheless,
our data is published on GitHub,1 and reanalysis is welcome.

Another limitation is that the population of Stack Overflow threads matching our
scope cannot be described exactly. There is no guarantee that the used queries returned
all posts referring to our scope. Additionally, we had to exclude almost two-thirds of all
threads as they did not fit into our scope. The sample therefore cannot be considered as
representative for the threads referring to our scope nor for the threads returned by the
queries. This implies that the results must be verified with further investigations.

This might also indicate that programmers do not only struggle with cryptographic
APIs when they implement a cryptography scenario. Thus, an important research query
could be to investigate the various backgrounds of programmers and develop tools that
support them in acquiring knowledge about computer science in general as well as more
specific topics such as cryptography.

1data directory

https://github.com/pfisteso/BSc_Thesis_Repository/tree/main/data

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 39

5.2 Implications
Software security requires expertise, especially while working with a low-level library
such as JCA. Our results imply that programmers who lack the required domain knowl-
edge fail to implement symmetric encryption. Cryptography and software security should
therefore be an essential part in the education of future developers. In addition, the IT
industry must also be aware of the importance of security and how difficult it is to
implement. Researchers must find ways to put their findings and tools into practice.

6
Anleitung zu wissenschaftlichem

Arbeiten

One obstacle we observed during the thesis project was that JCA documentation did not
contain enough working code examples. We therefore decided to provide a best-practice
example for password-based encryption (PBE) which is a common use case. Unlike the
PBE example in the JCA Reference Guide [17], our example does not rely on the default
behavior. This allows us to use the GCM encryption mode, which is the recommended
block cipher mode of operation (e.g., Nakov [15]).

The example is also available on GitHub.1 It illustrates the encryption of String
objects and files and can be used as a service class for educational purposes. A
guide on how to use it can be found in the corresponding ReadMe file. The code
should work if any providers are available that support the Cipher-transformation
“AES/GCM/NOPADDING” and the key derivation function “PBKDF2WithHmacSHA256.”
We built and tested the implementation on Java 15.0.1 using the default SunJCE Provider
(version 15) for both Cipher and SecretKeyFactory class.

1code directory

40

https://github.com/pfisteso/BSc_Thesis_Repository/blob/main/code/README.md
https://github.com/pfisteso/BSc_Thesis_Repository/tree/main/code

CHAPTER 6. ANLEITUNG ZU WISSENSCHAFTLICHEM ARBEITEN 41

Figure 6.1: UML of the Example Service Class Showing the Most Important Class
Variables and Methods

The aim of this chapter is to explain our example code. It describes and justifies each
implementation step and also provides the most important security hints. We sometimes
make use of class variables, namely the lengths of various algorithm parameters as well
as the number of iterations performed during key derivation. Depending on the kind of
application, they could all be constants (such as ITERATIONS). We kept them modifiable
because we wanted to support a wider range of use cases. Figure 6.2 shows the class
variables used in our example. The comments indicate which values are acceptable to
have both a functional and a secure application.

Figure 6.2: Class Variables and Their Constraints

CHAPTER 6. ANLEITUNG ZU WISSENSCHAFTLICHEM ARBEITEN 42

6.1 Subroutines

deriveKey(String password, byte[] salt)

Figure 6.3: Algorithm for Key Derivation

This is probably the most crucial task of the implementation. As we want to derive the
key from a password, we must instantiate a SecretKeyFactory object using a password-
based key derivation function as algorithm. We selected “PBKDF2WithHmacSHA256”
as it is both secure and standardized. It is therefore also suitable for scenarios where
different platforms are involved. PBKDF2 can also be used with another pseudo random
function (i.e., HmacSHA1), depending on the specification of the other platform.

We then must instantiate a PBEKeySpec that holds the password, the salt, the number
of iterations, and the length of the key. We can use the keyFactory to generate a
SecretKeyfrom the PBEKeySpec.

However, the factory transmits its algorithm to the generated key, but to use it with an
“AES”-Cipher object, the key must hold “AES” as algorithm as well. We worked around
this issue by fetching the key material from the generated key (getEncoded()) and
instantiating a new one holding “AES” as algorithm. Since SecretKey is an interface,
we instantiated a SecretKeySpec instead.

In addition to the statements shown in figure 6.3, the method includes some minimal
error handling. For a safe application it is important to

• use a safe password

• use a safe key derivation function

• use random salt of at least 64 bits (eight bytes)

• clear the password from the PBEKeySpec after generating the (first) key

CHAPTER 6. ANLEITUNG ZU WISSENSCHAFTLICHEM ARBEITEN 43

concatenateSaltIvAndCipherText(byte[] salt, byte[] iv, byte[] cipherText)

Figure 6.4: Subroutine to Concatenate Salt, IV, and Cipher Text

Since encryption and decryption must use the same salt and IV, we must transmit
these values from the encryptor to the decryptor. However, they must not remain secret.
We therefore decided to prepend these values to the cipher text when encrypting a String.
As a Cipher object returns the cipher text as a byte array, we must create a larger array
and correctly copy the values.

concatenateSaltAndIvA(byte[] salt, byte[] iv)

Similarly to the previous subroutine, this method joins two byte arrays. Since we are
not returning any cipher text when encrypting a file, we only want to return the salt and
the IV.

CHAPTER 6. ANLEITUNG ZU WISSENSCHAFTLICHEM ARBEITEN 44

6.2 Encryption

Configuring the Cipher Object
Whether we are encrypting a String or a file, we must instantiate and initialize a Cipher
object. The following lines of code are therefore part of both encryption methods,
encrypt(...) and encryptFile(...).

The first step is creating the required algorithm parameters. After generating some
random byte values for salt using a SecureRandom object, we can call the previously
described subroutine to derive a key from our password. Since we are using GCM
encryption mode, we also require a GCMParameterSpec object. It holds the length of the
authentication tag (tagLength) and a randomly generated IV.

Figure 6.5: Generating a SecretKey and GCMParameterSpec

Then we can instantiate the Cipher object and pass the parameters using the init(...)
method.

Figure 6.6: Instantiating and Initializing a Cipher Object for Encryption

CHAPTER 6. ANLEITUNG ZU WISSENSCHAFTLICHEM ARBEITEN 45

Encrypting a String
encrypt(String plaintext, String password)

Since encryption is performed on bytes, we must convert the plain text into a byte array.
This can be done using String’s getBytes() method. To ensure interoperability and
portability, we recommend specifying the character set (e.g., UTF-8) that should be used
for decoding.

Figure 6.7: Converting Plain Text to byte[]: Character Decoding

The resulting byte array is passed to Cipher’s doFinal(...) method that performs
encryption.

Figure 6.8: Encrypting Plain Text

As previously mentioned, we want to transmit the salt and the IV along the cipher
text. To do so, we prepend them to the encryption result. After joining the three arrays,
we want to convert it back into a String. Each of the concatenated values potentially
contains any bit sequence, and also sequences that are not included in a standard character
set. We must therefore use base64 encoding as we might lose data otherwise.

Figure 6.9: Encrypting Plain Text

CHAPTER 6. ANLEITUNG ZU WISSENSCHAFTLICHEM ARBEITEN 46

Encrypting a File
encryptFile(String inputPath, String outputPath, String password)

The first step is to open a set of streams:

• a FileInputStream to read from the file specified by inputPath

• a CipherInputStream that encrypts anything read by the FileInputStream using
the previously initialized Cipher object

• a FileOutputStream that writes the encryption results to the outputPath

Figure 6.10: Initializing Streams for File Encryption

The streams can now be used to read and encrypt the file block-wise. To do so, the
CipherInputStream must read (and encrypt) the next block of bytes and store it to an
int variable. The value is then written to the output file by the FileOutputStream.

Figure 6.11: Using Streams to Encrypt the Content of a File Block-Wise

When the streams are done, we must close them.

Figure 6.12: Closing All Streams

Similarly to the encryption result from encrypting a String, we are returning the salt
and the IV concatenated and base64-encoded.

CHAPTER 6. ANLEITUNG ZU WISSENSCHAFTLICHEM ARBEITEN 47

Figure 6.13: Returning Base64-Encoded Salt and IV

Security Requirements for Encryption
• Use a safe algorithm (AES or Blowfish).

• Use a safe block cipher mode of operation (preferably CTR or GCM).

• Use a safely derived, secret key.

• Use a random IV that was generated using a secure source of randomness (e.g.,
SecureRandom).

• Use a new key-IV pair each time performing encryption.

CHAPTER 6. ANLEITUNG ZU WISSENSCHAFTLICHEM ARBEITEN 48

6.3 Decryption

Decrypting a String
decrypt(String saltIvAndCipherText, String password)

As we base64-encoded the encryption result, we first must decode it using the same
format.

Figure 6.14: Base64 Decoding

Next, we must restore the parameters. As we prepended the salt and the IV to
the cipher text, they can easily be restored using saltLength and ivLength class
variables. We can then derive the key using the password parameter and the retrieved salt
and instantiate another GCMParameterSpec using the tagLength class variable and the
retrieved IV.

Figure 6.15: Restoring Algorithm Parameters

Finally, we can instantiate and initialize another Cipher object and ask it to decrypt
the cipher text.

Figure 6.16: Instantiating and Initializing a Cipher Object and Asking It for Decryption

In the end, we must just convert the byte array holding the plain text back to a
String using the same character set that was used for decoding it before encryption
(UTF-8).

CHAPTER 6. ANLEITUNG ZU WISSENSCHAFTLICHEM ARBEITEN 49

Figure 6.17: Character-Encoding the Plain Text

Decrypting a File
decryptFile(String inputPath, String outputPath, String saltAndIv,

String password)

Similarly to String decryption, we first must restore the parameters. To do so, we
base64-decode the saltAndIv parameter and separate the values using the saltLength

and ivLength class variables. The salt is used with the password to derive the key. The
IV is passed to a new GCMParameterSpec object along the tagLength class variable.
Then we can instantiate and initialize a Cipher object.

Figure 6.18: Restoring the Algorithm Parameters for File Decryption and Creating a
Cipher Object

The rest of the decryption is implemented in exactly the same way as encryption:

1. Open a FileInputStream, a CipherInputStream,2 and a FileOutputStream

(see figure 6.10).

2. Block-wise, read (and decrypt) the input file using the CipherInputStream and
write the result to the output file using the FileOutputStream (see figure 6.11).

3. Close the streams (see figure 6.12).

As the plain text has already been written to the output file, this method does not have a
return value.

2use the prepared decryptor instead of an encrypting Cipher object

CHAPTER 6. ANLEITUNG ZU WISSENSCHAFTLICHEM ARBEITEN 50

6.4 Remarks on Parameter Transmission
We did not include any form of parameter transmission or storage in our example because
this aspect strictly depends on the kind of application. In client-server scenarios, we
might need to transmit the parameters via HTTPS. In some scenarios, it is sufficient to
store them locally.

However, we want to emphasize the importance of keeping the password a secret. It
is the only value not known by a potential intruder. If one needs to store or transmit it, it
should be wrapped using (public key) encryption.

In case of customized algorithm parameter lengths (class variables), these must
also be stored to ensure that all parameters can be restored at decryption. Our exam-
ple class provides a simple, static getInstance() method to create a valid default
PasswordBasedAesGcm object. However, there are setter methods to customize the class
variables. They can be retrieved by calling the corresponding getter methods. The values
may be transmitted as separate POST variables or stored in a database alongside the
encryption result.

Figure 6.19: Draft of a Database Entity

Bibliography

[1] Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel, Dowoon Kim,
Michelle L. Mazurek, and Christian Stransky. Comparing the usability of crypto-
graphic apis. In 2017 IEEE Symposium on Security and Privacy, pages 154–171.
IEEE, 2017.

[2] David Alonso-Rı́os, Ana Vázquez-Garcı́a, Eduardo Mosqueira-Rey, and Vicente
Moret-Bonillo. Usability: a critical analysis and a taxonomy. International journal
of human-computer interaction, 26(1):53–74, 2010.

[3] William J. Buchanan. Cryptography. River Publishers, 2017.

[4] International Organization for Standardization. ISO 9241-11: Ergonomic require-
ments for office work with visual display terminals (VDTs): Part 11: Guidance on
usability. 1998.

[5] Matthew Green and Matthew Smith. Developers are not the enemy! the need for
usable security apis. IEEE security & privacy, 14(5):40–46, 2016.

[6] Mohammadreza Hazhirpasand and Mohammad Ghafari. Cryptography vulnerabili-
ties on hackerone. arXiv e-prints, pages arXiv–2111, 2021.

[7] Mohammadreza Hazhirpasand, Mohammad Ghafari, and Oscar Nierstrasz. Java
cryptography uses in the wild. In Proceedings of the 14th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), pages
1–6. ACM/IEEE, 2020.

[8] Mohammadreza Hazhirpasand, Oscar Nierstrasz, and Mohammad Ghafari. Dazed
and confused: What’s wrong with crypto libraries? arXiv e-prints, pages arXiv–
2111, 2021.

[9] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira Mezini. Crysl:
Validating correct usage of cryptographic apis. CoRR, 2017.

51

BIBLIOGRAPHY 52

[10] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira Mezini. Crysl:
An extensible approach to validating the correct usage of cryptographic apis. IEEE
transactions on software engineering, pages 1–1, 2019.

[11] Philipp Mayring. Qualitative Inhaltsanalyse : Grundlagen und Techniken. Beltz,
Weinheim, 12. edition, 2015.

[12] Kai Mindermann, Philipp Keck, and Stefan Wagner. How usable are rust cryptogra-
phy apis? In 2018 IEEE International Conference on Software Quality, Reliability
and Security (QRS), pages 143–154. IEEE, 2018.

[13] Eduardo Mosqueira-Rey, David Alonso-Rı́os, Vicente Moret-Bonillo, Isaac
Fernández-Varela, and Diego Álvarez Estévez. A systematic approach to api
usability: Taxonomy-derived criteria and a case study. Information and Software
Technology, 97:46–63, 2018.

[14] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. Jumping through hoops:
Why do java developers struggle with cryptography apis? In Proceedings of the
38th International Conference on Software Engineering, pages 935–946, 2016.

[15] Svetlin Nakov. Practical Cryptography for Developers. GitBook, 2018.

[16] Oracle. Class cipher, 2021.

[17] Oracle. Java cryptography architecture (jca) reference guide, 2021.

[18] Oracle. Java security standard algorithm names specification, 2021.

[19] Nikhil Patnaik, Joseph Hallett, and Awais Rashid. Usability smells: An analysis
of developers’ struggle with crypto libraries. In Fifteenth Symposium on Usable
Privacy and Security, pages 245–257. usenix, 2019.

[20] Luca Piccolboni, Giuseppe Di Guglielmo, Luca P Carloni, and Simha Sethumadha-
van. Crylogger: Detecting crypto misuses dynamically. 2020.

[21] Girish Maskeri Rama and Avinash Kak. Some structural measures of api usability.
Software: Practice and Experience, 45(1):75–110, 2015.

[22] Martin P Robillard. What makes apis hard to learn? answers from developers.
IEEE software, 26(6):27–34, 2009.

[23] Thomas Scheller and Eva Kühn. Automated measurement of api usability: The api
concepts framework. Information and Software Technology, 61:145–162, 2015.

[24] Ian Sommerville. Software Engineering. Pearson, 9th edition, 2011.

BIBLIOGRAPHY 53

[25] Minhaz Zibran. What makes apis difficult to use? International Journal of
Computer Science and Network Security (IJCSNS), 8(4):255–261, 2008.

Appendix

A Sample and Analysis-Related Data
All data related to sampling, issues classification, security risk tracking, and evaluating
the documentation is available in the data directory of the thesis’ GitHub repository.

54

https://github.com/pfisteso/BSc_Thesis_Repository/tree/main/data

BIBLIOGRAPHY 55

B Reasons for Excluding Threads During Sampling
• too general: posts referring to cryptographic concepts or cyber security in general

rather than the targeted API
Example: How to check if a string is encrypted or not?

• does not refer to cryptography: issues occurring in a non-cryptographic context,
i.e. establishing a network connection or file access
Example: Syntax error

• does not refer to symmetric encryption: posts referring to other cryptographic
concepts such as asymmetric encryption or hashing
Example: RSA decryption (fails)

• does not refer to JCA: issues occurring during a symmetric encryption scenario
but which are not due to Java Cryptography Architecture. Such issues can refer
to another library (e.g. BouncyCastle) or to some other aspect such as character
encoding.
Example: 256bit AES/CBC/PKCS5Padding with Bouncy Castle

• does not refer to targeted algorithm: posts referring to other algorithms than the
targeted ones
Example: Decryption using blowfish failing

• looking for an equivalent or interoperability issue: looking for equivalents /
counterparts in different programming languages
Example: Encrypt in node and decrypt in java

• negative votes or closed: posts of poor quality

• academic: posts with a different focus than obstacles when using the API

• duplicate: Duplicates are often left unanswered (or only answered with the refer-
ence to a similar post). For posts belonging to the “most popular” category, we
included a duplicate if it had more views than the original.

https://stackoverflow.com/questions/21732018/how-to-check-if-a-string-is-encrypted-or-not
https://stackoverflow.com/questions/1755259/syntax-error-on-token-expected-after-this-token
https://stackoverflow.com/questions/66941359/rsa-decryption-fails
https://stackoverflow.com/questions/5641326/256bit-aes-cbc-pkcs5padding-with-bouncy-castle
https://stackoverflow.com/questions/62721499/decryption-using-blowfish-failing
https://stackoverflow.com/questions/19698721/encrypt-in-node-and-decrypt-in-java

BIBLIOGRAPHY 56

C Example Records For Issue Classification

Technical Aspects
Category Issue Reason Solution

Algorithm TripleDES vs. DESede - what is
the difference? - They are equivalent. TripleDES is

the name for SunJCE Provider

Encryption Mode Convert AES-128-CBC PHP to
Java

different encryption modes
(CBC vs. Java default =
ECB)

Use “AES/CBC/PKCS5PADDING”

Padding
Why does doFinal() add extra
bytes to my cipher text? How
can I remove them?

-
doFinal() adds padding for block ci-
phers. It is removed automatically if
the same padding is specified for en-
and decryption

Dependency
Encryption Mode -
Padding

IllegalBlockSizeException :
Input length must be multiple of
16 when decrypting with padded
cipher

Transformation “AES”
might be interpreted as
“AES/ECB/NoPadding”.
ECB is a block cipher and
requires padding in most
cases

add padding or switch encryption
mode

Cipher Object
Instantiation -
Other

NoSuchAlghoritmExeption for
“AES/ECB/PKCS5Padding” on
Android

- -

Key Derivation InvalidKeyException: Invalid
AES key length: 128 bytes

Key retrieved through Diffie-
Hellman is 128 Bytes instead
of bits

Generate key of correct size

IV / Nonce
Generation invalid IV length IV = [00000000000000000]

→ length = 1
IV = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
→ length = 16

Generation of
Other Algorithm
Parameters

AES-GCM: different output for
AuthenticationTag for Java and
JS

Using Timestamp as AAD -

Dependency
Algorithm - Key

Is this code AES-256 encryp-
tion? - Yes, key is of size 256b

Dependency Algo-
rithm/Encryption
Mode - IV

InvalidKeyException: Parame-
ters missing (IV) CBC requires IV add IV or switch encryption mode

Cipher Object Ini-
tialization - Other

How is the IV generated (if it is
not passed to Cipher.init())? - default values depend on provider

Transformation BadPaddingException: pad
block corrupted

you shouldn’t call doFinal()
on every block, because do-
Final() expects any padding
at the end, which obviously
won’t be there in intermedi-
ate blocks

Either (a) call update() on intermedi-
ate data, then doFinal() at the end, or
(b) just arrange to have all your data
in one buffer or byte array, and call
doFinal() once on the whole job lot.

Key Transmission

Stored tat DES Secretkey into
database converting it into String.
Now i want to Convert that
String to Secretkey.

-

You are seeing the object class and
the hashcodes of 2 different in-
stances sharing the same reference.
If you want to confirm whether
your key is getting decoded correctly,
print the encoded version of the de-
coded key.

Transmission of
Other Algorithm
Parameters

how to decrypt cipher text en-
crypted with salt - pass salt along cipher text

Dependency
Encryptor -
Decryptor

BadPaddingException: Given fi-
nal block not properly padded

OP generates new key for de-
cryption

pass encryption key to decryption
section as parameter

BIBLIOGRAPHY 57

Requirements
Category Issue Reason Solution

Use Case inappropriate use case OP want to store password
encrypted store hash instead

Performance Encryption of large file is very
slow (AES) - -

Space OutOfMemoryException for
large files

This appears to be an issue
with the implementation of
the GCM mode. I’m not sure
that you can work-around it.

-

Reliability Cryptograhy Service crashes
about 1x/day

Cipher objects in global
scope –¿ Cipher is not thread
safe

-

Portability
Same code produces different ci-
pher text on “native java” and an-
droid platform

default values depend on
platform fully specify transformation

Interoperability Same key generation procedure
results in different keys

SHA1PRNG is not standard-
ized use standardized RNG

Security unsafe encryption mode (ECB) default value fully specify transformation

	1 Introduction
	2 Related Work
	2.1 API Usability
	2.2 Usability Criteria for Documentation
	2.3 Usability of Cryptography Libraries
	2.4 Misuse of Cryptography APIs

	3 Methodology
	3.1 Sampling
	3.2 Analysis of Issues
	3.2.1 Summarizing
	3.2.2 Classification

	3.3 Analysis of Security Risks
	3.3.1 Security Rules
	3.3.2 Tracking Security Rule Violations

	3.4 Analysis of Documentation
	3.4.1 Deriving Questions
	3.4.2 Consulting Documentation

	3.5 Evaluation

	4 Results and Interpretations
	4.1 Implementation Issues
	4.2 Security Risks
	4.3 Documentation
	4.3.1 Questions
	4.3.2 Missing and Unclear Answers

	5 Conclusions and Future Work
	5.1 Limitations and Future Work
	5.2 Implications

	6 Anleitung zu wissenschaftlichem Arbeiten
	6.1 Subroutines
	6.2 Encryption
	6.3 Decryption
	6.4 Remarks on Parameter Transmission

