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Abstract

How well do you know the dependencies within your system? Dependencies
between methods, classes, interfaces, libraries and even different projects
play an important role in today’s Java projects.

Our solution, called How I KnOw My SYStem (HIKOMSYS), is essen-
tially a platform for developers to improve their knowledge. HIKOMSYS
provides a way to learn more about a project. With the help of gamification,
HIKOMSYS engages developers to learn about their projects, in particular
about its dependencies, while having fun.

After uploading a project hosted on Github, users are able to select the
modules within this project and draw the dependencies between those. As
soon as they complete a quiz, HIKOMSYS gives the users helpful feedback,
by showing them the dependencies they ignored, those wrongly assumed
and of course those they knew about. Furthermore, users working on the
same projects are able to compare their knowledge about their system with
the help of a ranking board, displaying the best results for each user and
each project.

Two different case studies, one quantitative with 23 students of the Uni-
versity of Bern and one qualitative, showed that users are very interested in
learning about their projects with the help of our tool. Thanks to the gami-
fication aspect of HIKOMSYS, some of the 23 students started comparing
their results to see who did better and who knew more.

Adding new levels with different difficulties would increase the fun
users have in solving quizzes and competing against each other, as well
as increasing their insight into their systems. Additional levels could also
help improving the quality of a project, for example by suggesting possible
refactorings, recommending improvements to a user’s project and letting
them re-upload their project for re-evaluation. Furthermore, letting users
guess which dependency is wrong in a given selection of modules or even
asking multiple choice questions about properties and relationships existing
among classes, methods and dependencies, would be a possibility.
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1
Introduction

In today’s larger Java projects, code organization becomes more and more important.
It improves the code’s quality and maintainability. There are many ways to keep track
of all information within a project. Developers write Java documentation, draw UML
diagrams and refactor their code to keep the project in a clean and accessible state.

Before going into more detail, let us have a look at the ‘SampleServiceImpl1’ class
of the Java project we used for our case study (see Page 6). On lines 4 and 5, we can see
that the SampleServiceImpl class depends on ‘UserDao’ and ‘AddDao’ and therefore
on the ‘Dao’ module itself. Furthermore, we can tell that the ‘saveForm’ functions (line
8) throws an ‘InvalidUserException’ and last but not least, on line 18 we create a new
User, coupling this function to the user model. The next step would be to document our
findings to let the next developer know what the different dependencies of this class are
without looking through it again.

Java documentation may be helpful for describing what a specific class is responsible
for, what the different functions do and on what other classes it depends on. Unfortunately
there are is a problem with this and the other previously mentioned methods. UML
diagrams and documentations become outdated, which means they need to be maintained
or they are not read at all. Knowing that, we created a platform, called HIKOMSYS,
where one can upload Java projects and test their knowledge about a system, while
competing against other users collaborating on the same project.

1https://Github.com/ese-unibe-ch/ese2014-wiki/blob/master/Skeleton/
src/main/java/org/sample/controller/service/SampleServiceImpl.java
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1 @Service
2 public class SampleServiceImpl implements SampleService {
3

4 @Autowired UserDao userDao;
5 @Autowired AddressDao addDao;
6

7 @Transactional
8 public SignupForm saveForm(SignupForm signupForm) throws InvalidUserException{
9

10 String firstName = signupForm.getFirstName();
11

12 if(!StringUtils.isEmpty(firstName) && ”ESE”.equalsIgnoreCase(firstName))
13 throw new InvalidUserException(”Sorry, ESE is not a valid name”);
14

15 Address address = new Address();
16 address.setStreet(”TestStreet−foo”);
17

18 User user = new User();
19 user.setFirstName(signupForm.getFirstName());
20 user.setEmail(signupForm.getEmail());
21 user.setLastName(signupForm.getLastName());
22 user.setAddress(address);
23

24 user = userDao.save(user); // save object to DB
25

26 // Iterable<Address> addresses = addDao.findAll(); // find all
27 // Address anAddress = addDao.findOne((long)3); // find by ID
28

29 signupForm.setId(user.getId());
30

31 return signupForm;
32 }
33 }

HIKOMSYS provides a platform for Java developers and teams to improve their
knowledge in a fun and competitive way. This is achieved by letting users take quizzes
about the dependencies between their selected modules in their project. As soon as a
user finishes a quiz, HIKOMSYS tells him how he did and what dependencies he missed
or assumed wrong. Additionally, users are able to compare themselves to other users,
who took a quiz on the same project, on the ranking board.

With the help of gamification, HIKOMSYS enhances the user’s knowledge by sup-
porting the exploration of all the dependencies contained within a given system (possibly
also highlighting refactoring opportunities and anomalies, such as tight coupling). As a
result, users are able to improve the re-usability of the system’s modules.

Our goal was not only to improve our user’s knowledge, we also wanted to collect
data. HIKOMSYS collects various data across any quiz taken, from saving the position of
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multiple elements inside a canvas up to which modules are commonly selected and even
what mistakes are regularly made. This may help one to identify common behavioral
patterns and implicit assumptions that might help one to understand how developers
perceive their software.



2
Related Work

In the words of Gabe Zichermann and Christopher Cunningham: “What do Foursquare,
Zynga, Nike+, and Groupon have in common? These and many other brands use
gamification to deliver a sticky, viral, and engaging experience to their customers.”[4].
We wanted to achieve the same effect using gamification to create a platform, where
software developers can improve their knowledge.

But learning something new can be a time consuming and sometimes even boring
process. Gabe Zichermann and Christopher Cunningham claim that “The process of
game-thinking and game mechanics to engage users and solve problems”[4] is one reason
why “games have begun to influence our lives every day.”[4]. Going even one step further
“simulation and digital-based learning are considered to have great potential to extend
the learning experience”[1] of its users. But gamification does not only improve the
user’s experience, according to Xie Tao, Tillmann Nikolai and de Halleux Jonathan, it
provides “automatic grading, intelligent tutoring, problem generation, and plagiarism
detection”[3]. We are not only able to grade a single user, as Jonathan Bell said, we are
able to “measure the performance of the whole team”[1], for example, with the help of
leaderboards.

On one hand, tutors can reach a bigger audience with less effort and time. They can
even automate most of the steps as we will see on an example later on. On the other
hand, a student can enjoy the “benefits of automated grading of exercises assigned to”[1]
him, therefore getting faster feedback on his progress. Also “playful experimentation
becomes part of the learning process”[1]. This was not possible with previous learning
systems due to user’s lack of time or motivation. They had to wait for feedback or just
wanted to be done with an exercise as soon as possible. All this “motivates learners to
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take responsibility for their own learning, which leads to intrinsic motivation”[1].
In summary, the following points are considered to improve the learning experience

and success of a learning application:

• automated grading and instant feedback

• measuring the performance

• status (experience or reputation)

• responsibility for their own learning

• bigger audience

There are two examples I would like to talk about considering the points made above to
show how different approaches can lead to a solid and easy way of learning and helping
others:

1. Stack Overflow1 is one of the best online sources for Q&A related to computer
science. Posting questions or answers rewards users with reputation points and
badges. Those “badges have been used to provide incentives for Stack Overflow
users to ask or answer questions”[3], as well as pointing out to the author how much
experience users have, answering his question. Furthermore, there are additional
features which are only unlocked after collecting a certain amount of reputation
points. Commenting on a question or answer is only possible after gaining 50
reputation points. This makes sure that only users with certain experience comment
on possible answers and also motivates other users to earn the needed reputation
quickly by posting questions and answers.

2. The other example is “Shaping up with AngularJS”2 created by Google and
Codeschool3. Codeschool successfully enhances its courses by adding interactive
programming tasks or quizzes in between lectures. For example, AngularJS4 can
be learned through video lectures. In between those, the user either has to answer
some multiple choice questions or solve a problem in the “Flatlander store”, a
sample project created for the user, by implementing or improving AngularJS code.
They both are instantly corrected, the user earns points for correct answers and
receives immediate feedback. Those points can be spent for tips on a given task or
kept for the leaderboard at the end of the lecture.

1http://stackoverflow.com/
2https://www.codeschool.com/courses/shaping-up-with-angular-js
3https://www.codeschool.com
4https://angularjs.org/

http://stackoverflow.com/
https://www.codeschool.com/courses/shaping-up-with-angular-js
https://www.codeschool.com
https://angularjs.org/


CHAPTER 2. RELATED WORK 10

As seen above, “gaming, social dynamics, educational usage and software engineering
technologies”[3] are “four common aspects of a typical project on educational software
engineering”[3] in “the coming age of Massive Open Online Courses (MOOCs)”[3].

The other thing we have to consider is a way to compare an engineer’s high-level
model with an actual implementation of a software system. Murphy,Notkin and Sullivan
claim that their reflexion model “helps an engineer use a high-level model of the structure
of an existing software system as a lens through which to see a model of that system’s
source code”[2].

This is exactly what HIKOMSYS does, we built a tool where a developer “first
specified a model he believed, based on his experience, to be characteristic”[2] for the
system on hand. Afterwards “a tool then computes a software reflexion model that shows
where the engineers high-level model agrees with and where it differs from a model
of the source”[2] revealing divergences between the developers point of view and the
actual implementation. HIKOMSYS provides a tool for developers “to easily explore
structural aspects of a larger software system”[2], focused on its dependencies, while
also producing “at low-cost, high-level models that are good enough”[2].



3
The Solution

3.1 Architecture
This chapter focuses on the general architecture of HIKOMSYS and provides a brief
overview of the project. Each individual part will be discussed in more detail later in
Section 3.3.

Like most web applications, HIKOMSYS consists of a back end and a front end, as
shown in Figure 3.1.

HIKOMSYS

Front end Back endUser

github.com

Figure 3.1: General HIKOMSYS overview

11
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Users, having Java projects hosted on Github, interact with the front end by uploading
projects, managing their profile or solving quizzes. The back end evaluates user input,
manages uploads, displays results and more. As shown in Figure 3.2, the back end relies
on a Model-View-Controller (MVC) framework (Laravel) which provides a UMS. The
system relies on two databases (MySQL used for user management and MongoDB to
store the projects). The front end depends on a number of Javascript and Cascading
Style Sheets 3 (CSS3) frameworks & libraries, which are used to support HIKOMSYS
multiple functionalities, ranging from drawing on a canvas to populating user input.
Additionally, the front end loads some data asynchronously from the databases. We will
have an in-depth look at all these features in the next two sections.

User 
Management 

System

Frontend

Web 
Technologies Databases

MongoDB MySQL

Backend

HIKOMSYS

Figure 3.2: The individual parts of HIKOMSYS
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3.2 User Experience
Within this section we talk about the user interaction and experience with HIKOMSYS.
We describe a typical user scenario, from sign up to starting and solving a quiz.

3.2.1 Dashboard
As soon as a user is registered or signed up, the dashboard is presented to him. If he
is a new user, no project is shown and he is asked to upload his own (See Figure 3.3).
Otherwise the user sees all projects he uploaded previously and can choose between a
number of actions for each of those (e.g. Start new quiz, inspect ranking and solutions),
as shown in Figure 3.4.

Figure 3.3: Dashboard: Upload

Figure 3.4: Dashboard: Projects overview
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As in other UMS, users can manage their profile or inspect profiles of other users.
They can also inspect other players’ solutions for any completed quiz. Administrators
have some additional rights and are capable of deleting users. More user-specific features
and rights could be added in the future.

3.2.2 Package Selection
After starting a new quiz, the player has to select the main packages or modules of
his system. To do so, HIKOMSYS provides an interactive tree view created out of
HyperText Markup Language 5 (HTML 5) lists using the JStree1 library (See Figure
3.5).

Figure 3.5: Select modules in the tree view

The user can simply click on the node corresponding to the considered module to
see the children of a package. Selecting a package for the quiz is done by checking the
corresponding checkbox. With a right click on a tree node a custom menu is displayed,
see Figure 3.6

1http://www.jstree.com/

http://www.jstree.com/
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Figure 3.6: modified JSTree menu

The first option fully expands the selected package and all containing subpackages,
whereas the second option closes and deselects all children. The modified menu should
help the user select or deselect modules and navigate through the project’s structure more
easily. If the user is satisfied with his selection he can start the quiz by clicking on the
“Start Quiz” button.
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3.2.3 The Quiz
All the previously selected packages appear on the canvas in the middle of the screen
(Figure 3.7). Their starting position is randomly set. The user can either move them
around or draw dependencies between them. Modes are switched by interacting with the
toggle button positioned at the top of the canvas.

Figure 3.7: Starting the quiz displays the previously selected main modules of the system

After switching out of the moving mode, the user can start drawing a dependency by
clicking and dragging an arrow from one package to another. As soon as he starts
dragging, the arrow attaches itself to the mouse cursor and follows it along the canvas
until the mouse is released. Releasing the mouse over another package attaches the arrow
to it. If the cursor is released on the same package or not on a package at all, the arrow
disappears and the user has to start over again.
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After drawing all the dependencies (see Figure 3.8), the user can submit his solution
and see the results.

Figure 3.8: Some dependencies

3.2.4 Result View
The results are presented in multiple views. After submitting a solution, the exact same
canvas with all the packages selected by the user is rendered on the screen. The first
view presented to the user shows the dependencies drawn correctly by him (green arrows
in Figure 3.9). The color of each individual package show that either all outgoing
dependencies are correct, wrong or missing. If at least one outgoing dependency is
missing the package’s color is yellow. Analogue the package is colored red if one or
more outgoing dependencies are wrong.
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Figure 3.9: Result View 1 - Correct dependencies

Clicking on the “Continue” button leads to the second view, where the user sees the
missing dependencies as yellow arrows (See Figure 3.10).

Figure 3.10: Result View 2 - Missing dependencies

Next, the user sees all incorrect dependencies as red arrows (Figure 3.11).
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Figure 3.11: Result View 3 - Wrong dependencies

Clicking on the “Continue” button once more presents the user with all the previous
information as well as a summary on the right side of the page (Figure 3.12).

Figure 3.12: Result View - Summary

Furthermore, the user can once more drag around the packages and he can now also
enable “Additional Information”. By doing so he can see detailed information about a
package’s children, classes and even dependencies by hovering over it.
For example, when expanding the dependency list (Figure 3.13) all outgoing dependen-
cies of the hovered package are shown. Clicking on the “Finish” button leads the player
to the ranking board.
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Figure 3.13: Additional Information - Dependencies

3.2.5 Ranking Board
Each project uploaded to HIKOMSYS has a ranking board listing the best players that
took the quiz on that project. The individual score is represented by a green bar (Figure
3.14 - green bar) and the scores of all other participants by a blue bar. The list is ordered
from the highest achieved score to the lowest. Each submitted solution can be inspected
by every user.

Figure 3.14: Ranking Table

Users can also inspect all their previously completed quizzes to review their mistakes
or check the existing dependencies. This functionality is available through the dashboard
or the navigation menu.
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3.3 Technical Implementation
As we saw in section 3.1, HIKOMSYS can be split into front- & back end. Let us go
into more details about those two individual parts.

3.3.1 Back end
The interaction with the back end is illustrated in the following sequence diagram (see
Figure 3.15).

User Laravel MySQL MongoDB Bash SmalltalkVerveineJ

submit Form

new project

update userprojects

start bash

clone github 
repository

start VerveineJ

.MSE file

clean up 
directory

start Smalltalk (Datagatherer)

generate HiGraph 
from .MSE

data saved

project ready

start quiz

get packages

display tree view

submit selection

compare submission with solution

save points

display result

save data

Figure 3.15: back end sequence diagram
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As soon as the user submits a project, the user data (id) and the actual input (Github
URL and project name) is passed to Laravel, i.e. the project controller. There are
two possible options. If the project has already been uploaded and the user already has
this project within his project table, nothing happens. If the user does not have the current
project yet, his user ID is added to the table. A project exists if and only if the URL and
the hash value2 of the current master branch are equal to one of the projects within the
Database. Although the hash value is not a perfect unique value, it is highly unlikely to
have the same hash value within the same project twice. As a result, the same project
can be uploaded to HIKOMSYS as long as the hash value of the projects is not the same.
To be more precise, different stages (branches or versions) of a project are treated as
individual projects. The path to create a new project, is far more complex, therefore it is
split up into its individual components, which are:

• Bash

• VerveineJ

• Datagatherer

• Databases

– MongoDB

– MySQL

3.3.1.1 Individual Components

A bash script is responsible for orchestrating all the different tools used to download,
parse and import the project data as well as cloning the git repository into the gitRepos
directory.

Parsing The Code

VerveineJ3 and inFamix4 are two parsers for creating model representations of Java
projects which can be imported into Moose. Those model files contain all the important
data about a Java project (like all the class, method, package and variable names, all
the dependencies and many more). Although inFamix does a better job at parsing
Java Code than VerveineJ, HIKOMSYS uses VerveineJ due to limited Random-access
memory (RAM) availability on the server it runs on. In fact, inFamix did typically not
manage to completely parse larger Java projects and therefore we decided to opt for the
other parser. Either of those two parsers can be easily invoked from the command line:

2Git creates a unique SHA-1 hash value for each branch and commit.
3https://gforge.inria.fr/projects/verveinej
4http://www.intooitus.com/products/infamix

https://gforge.inria.fr/projects/verveinej
http://www.intooitus.com/products/infamix
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./verveinej.sh -Xmx2000m gitRepos/$name/src

Only two arguments are needed for VerveineJ to run on the server. The first one tells it to
use 2 gigabytes of RAM for parsing the project and the second argument is the path to
the gitRepos directory where the project is currently being uploaded.

As soon as VerveineJ is finished parsing the Java code and the model file is created,
the directory is cleaned up by deleting everything besides the needed file.

Creating the Database Entries

After creating the model file, Pharo is called with the runDataGatherer command and
the current project folder as argument. This will start the data gatherer tool, implemented
in Pharo, which will collect all the required data and save it to the Mongo database.
Pharo5 is a pure open source implementation of Smalltalk6. It is not only a programming
language but also a powerful environment. Moose7 is a platform for software analysis
based on Pharo.

Quicksilver8, is a library for Moose capable of creating a HiGraph of a given project.
HiGraphs are graphs made of nodes, each representing a package. This tree contains
all information about classes, packages and the dependencies existing among them. By
recursively traversing a HiGraph, starting with all the nodes without parent element
(the root packages of a project), HIKOMSYS collects all the important information it
needs. This includes package names, parent packages, classes and outgoing and incoming
dependencies.

As soon as the DataGatherer is finished with its task, all obtained information is
stored to the HIKOMSYS Mongo database together with the current project ID as the
name of the document9. HIKOMSYS uses MongoDB because other alternative Database
management systems (DBMS) only benefit from limited support in Pharo.

3.3.1.2 Laravel and UMS

Laravel 10 is a PHP framework that provides an UMS for users to sign up/register, manage
their profile and inspect other users. Laravel simplifies the creation of a lightweight
web applications by binding models and their database tables. As a result no queries

5http://pharo.org/
6http://www.smalltalk.org/main/
7http://www.moosetechnology.org/g/
8http://scg.unibe.ch/research/quicksilver
9MongoDB stores all data in documents, which are JSON-style data structures composed of field-and-

value pairs: { ”item”: ”pencil”, ”qty”: 500, ”type”: ”no.2” }
10http://laravel.com/

http://pharo.org/
http://www.smalltalk.org/main/
http://www.moosetechnology.org/g/
http://scg.unibe.ch/research/quicksilver
http://laravel.com/
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are needed. Furthermore with the help of RESTful11 services Laravel provides, it is
possible to inhibit access to specific URLs (routes) from people which are not signed
in. Additionally, different user roles can be created (for example an administrator can
change the user profiles of all the users and he can delete users). All the tables currently
used for HIKOMSYS are listed in Figure 3.16. There is another table (i.e. “Migrations”)
which was not represented because it is always present in Laravel projects. Migrations
are used to set up the database and, later on, even extend or change tables.

Figure 3.16: Database schema

11Representational state transfer: http://en.wikipedia.org/wiki/Representational_
state_transfer

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
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3.3.1.3 Result

As soon as the user/player submits his solution for the quiz, the result is created. For this
purpose three tables are used:

• User Submission12

• Solution13

• Result14

Each project has its own solution table which is created only once, at the time the
project is uploaded to HIKOMSYS. As we will see later, the solution table is copied
every time a user takes a quiz. Therefore we would need to either query the table for the
current quiz and only copy the result or copy the full table. Although it would be possible
to have all the projects in one table, we chose to have an individual table for each project,
containing all packages and dependencies. As soon as a quiz is completed, user defined
dependencies are compared to the actual model extracted from the source code which is
saved in the solution table. The outcome of the comparison is stored in the result table.

1.

2.

4.

3. & 5.

Figure 3.17: Steps to create the result table for a quiz.
12US quizID
13S quizID
14RES quizID
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All the steps needed to create the results table are shown in Figure 3.17 and explained
in more detail in the following.

In the first step (Figure 3.17 number 1), all submitted packages with their name and
position on the screen are added to the result table (e.g name: util, position: [x,y])

Secondly, the dependencies need to be checked. Hypertext Preprocessor (PHP)
iterates over every dependency in the submission table and checks if that dependency is
also contained in the solution table. If a dependency matches another, it is added to the
result table with the color green, otherwise with the color red. (e.g test - util is in both,
therefore add it to results with the color green, see number 2). Each matching dependency
is removed from the solution table because it cannot be a missing dependency (Figure
3.17 number 3). This is the reason why a copy of the solution table is required.

Next, all the dependencies that the user forgot to specify are added to the result table
(see number 4). This is done easily because all the matching dependencies were deleted
in the previous step and the dependencies left within the solution table are either those
missed before or those from different packages.

Finally, the solution table is deleted and replaced by its previously created copy (step
number 5). This is a safe process because each individual quiz has its own copy of the
solution table and therefore even if two different users are taking the same quiz and reach
this point of the calculation at the same time, different tables are deleted.

3.3.2 Point Calculation
HIKOMSYS’ main goal is to let users know how well they know their system. For each
submitted quiz, HIKOMSYS calculates how well the user did ranging from 0% to 100%.
Any given quiz can be in one of four of the following distinguishable states:

1. If the user only draws dependencies which are not in his system, he should get 0%
on the quiz.

2. If the user draws all the dependencies which really are within his system without
mistakes, his quiz is 100% correct.

3. If the user draws nothing at all, he should receive a better score compared to other
users drawing almost only wrong dependencies. In fact, knowing nothing about
your system should be considered better than having incorrect assumptions.

4. If the user draws every possible dependency, he has, as a logical conclusion, all the
correct (100%) and all the wrong dependencies (0%). We figured it would make
sense to award this case with 50%.
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Taking those four states into consideration we need to figure out a way to rate a quiz
based on the number of correct and wrong dependencies. First of all, we start by defining
some variables:

• depcorrect is the number of correct dependencies

• Let P be the packages selected by the user, then |P | is the number of selected
packages.

• t = |P|*(|P|-1) the number of all possible dependencies

• t - depcorrect the number of all wrong dependencies

• |userdepcorrect|, |userdepmissing| and |userdepwrong| are the number of cor-
rect, missing or wrong dependencies submitted by the user.

Moving forward, we will think about percentages as points ranging from 0 to 100,
therefore pcorrect are the points awarded for a correct dependency. Similarly, pwrong are
the points for a wrong dependency. I would like to specially point out not to confuse
pwrong with |userdepwrong|. The former being the points for each wrong dependency and
the latter being the number of the submitted dependencies which are wrong (the same is
said for |userdepcorrect|). With all this in mind, we are able to formulate the following
equations to find out how to rank a quiz.

depcorrect = |userdepmissing|+ |userdepcorrect| (3.1)

100 = depcorrect ∗ pcorrect ⇒ pcorrect = 100/depcorrect (3.2)

− 100 = (t− depcorrect) ∗ pwrong ⇒ pwrong = −100/(t− depcorrect) (3.3)

In words: A user receives 100% if he has all the correct dependencies, meaning that
the number of correct dependencies is equal to the number of submitted dependencies.
Therefore one correct dependency should be worth a fraction of 100%, to be more precise,
100% divided by the number of actual dependencies within the system (depcorrect). As
a result, the more dependencies are within a system the less one correctly submitted
dependency is worth and vice versa.

Furthermore, the user is awarded with -100% if he submitted all wrong dependencies,
which as declared above, are all possible dependencies minus all the correct dependencies.
By calculating pcorrect and pwrong for each individual quiz, based on the number of
selected packages and therefore based on the number of correct and the number of
possible dependencies, we are now able to calculate the points a user receives for the
correctly (pointscorrect) and wrongly (pointswrong) drawn dependencies:

pointswrong = pwrong ∗ |userdepwrong| >= −100 (3.4)
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pointscorrect = pcorrect ∗ |userdepcorrect| <= 100 (3.5)

As a result, the total number of points for a quiz is pointswrong added together with
pointscorrect:

pointstotal = pointswrong + pointscorrect (3.6)

Looking back at our four distinguishable states (section 3.3.2), especially number
4, submitting all possible dependencies should award 50%. But using the formulas just
created, we can see that it would be awarded with 0%:

pointstotal = −100 + 100 = 0 (3.7)

Therefore the formula had to be changed to match this condition as well:

pointswrong = (pwrong ∗ |userdepwrong|+ 50)/2 (3.8)

pointscorrect = (pcorrect ∗ |userdepcorrect|+ 50)/2 (3.9)

As a result, we have the following two cases:

• If there are no wrong dependencies, 25% of the quiz is correct

pointswrong = (0 + 50)/2 = 25 (3.10)

• If there are all correct dependencies, 75% of the quiz is correct

pointscorrect = (100 + 50)/2 = 75 (3.11)
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Let us have a look at a concrete case using the example shown in Section 3.2
(Figure 3.12). If there are 3 correct (|userdepcorrect|) and 3 wrong (|userdepwrong|)
dependencies, a total of 6 packages (|P |) and a total of 8 dependencies between those 6
packages (depcorrect = 8) the calculation would look like this:

t = 6 ∗ (6− 1) = 30 (3.12)

pcorrect = 100/8 = 12.5 (3.13)

− 100 = (30− 8) ∗ pwrong ⇒ pwrong = −100/22 = −4.54 (3.14)

pointsred = (−4.54 ∗ 3 + 50)/2 = 18.18 (3.15)

pointsgreen = (12.5 ∗ 3 + 50)/2 = 43.75 (3.16)

pointstotal = 18.18 + 43.75 = 61.9318 (3.17)

As we could see, this user would receive 61.93% for his quiz.
The point distribution is one part which may benefit from rework and rethinking. But

our main goal was to leave people with a positive feeling about their quiz and this is why
we opted to mainly have results above 50%.

3.3.3 Front end
Only the latest web technologies were used to build HIKOMSYS: HTML 5, CSS3 and
JavaScript. HIKOMSYS heavily utilizes the mobile first CSS3 web framework Founda-
tion15. Foundation makes it very easy to create fully styled and responsive navigation
menus and forms16. Foundation made the development of an HTML 5 compatible web-
site fast and easy. As seen in the previous section 3.3.1, Laravel and its blade templating
made it simple to create page templates and inject only the changing parts. Together with
the help of Foundation we created a basic layout all the different pages use, containing a
header, a navigation and some basic HTML 5 structure.

JavaScript is the most important front end technology used to build HIKOMSYS .
JavaScript and three of its libraries (e.g. jQuery, JStree and KineticJS), was used to build
the treeview of the modules, the dependency drawing tool and some AJAX requests.

JQuery17 was used to simplify the access to Document Object Model (DOM) Objects.
Furthermore, HIKOMSYS needs to interact with the database as seen in Figure 3.13.
This is done with the assistance of asynchronous requests (AJAX), which are used to
retrieve the points for the current quiz or the information about selected packages and
drawn dependencies.

15http://foundation.zurb.com/
16On a side note:HIKOMSYS is accessible on all devices although users are not able to take quizzes

on mobile devices because drag and drop is not supported on touch devices yet. Users are still able to
checkout previous results, the ranking board or user profiles.

17http://jquery.com/

http://foundation.zurb.com/
http://jquery.com/
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Drawing Packages and Edges

KineticJS18 makes it really easy to draw anything on an HTML 5 canvas. Packages
are rendered as rectangles; Arrows, representing dependencies, are visualized as a
combination of a line and a triangle.

In KineticJS a triangle always is inserted with one of its corners pointing upwards.
As we can see in Figure 3.18, the green arrowhead on the right side needs to be rotated
according to the corresponding vector’s direction (green line). This is achieved by
calculating β with the help of the scalar product.

Package 1

Package 2

Origin

x1
y1

x2
y2

x2-x1
y2-y1

 �

Figure 3.18: Drawing a dependency arrow with vectors

Anchor Points and the Shortest Path Between Packages

It is not enough to just point from the center of a package to the center of the other
package. This would quickly lead to a lot of arrows and lines pointing to or starting from
the center of a package, making the name of the package unreadable.

To draw dependencies and minimize cluttering, each package has eight anchor points,
as shown in the following figure 3.19, to which a dependency arrow can be attached.

18https://Github.com/ericdrowell/KineticJS

https://Github.com/ericdrowell/KineticJS
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Figure 3.19: Anchor points

For each dependency arrow, the shortest path between two given packages and their
eight anchor points is calculated. To do so, both centers as well as the height and width of
one package are needed. We are able to calculate the y offset of one package to another,
distinguishing the corner to which the dependency is connected to with the help of the
following functions:

function yOffset(center1, center2, center1_height) {
if (isBellow(center1, center2, center1_height)) {

return center1_height / 2;
}
if (isAbove(center1, center2, center1_height)) {

return -center1_height / 2;
}
return 0;

}

function isAbove(center1, center2, center1_height) {
return center2.y < (center1.y - center1_height / 2);

}

function isBellow(center1, center2, center1_height) {
return center2.y > (center1.y + center1_height / 2);

}

The y offset, depends on the package being above or below the other package. If it is,
we know that the offset is either 1 or -1 times half the height of the packages, meaning
it is either one of the two top or the two bottom outer anchors. Otherwise, it is either
the top or bottom center anchor. We are able to determine the x offset with the help of
analogous functions used in a similar way.

As a result, we can think about the position of a package, relatively to another
package, as of the eight sections shown in Figure 3.20.
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Figure 3.20: Sections

For example, in Figure 3.20, package 2 is in the top left section of package 1. Therefore,
the shortest path from one package to the other is from the bottom right corner of package
2 to the top left corner of the other package.

KineticJS allows every object to be draggable and whenever a package is dragged
around, the shortest path of each of its outgoing and incoming dependencies has to be
recalculated. This is done by deleting and redrawing each dependency arrow as long as
it is dragged around, always repeating the steps mentioned above.

Figures 3.21(a) and 3.21(b) show two different situations for the positioning of a
package and how the shortest path would change from one section to another.

(a) Center moves above Package 1 (b) Center moves to the left of Package 1

Figure 3.21: Additional shortest path examples
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Drawing and Saving with KinetiJS IDs

KineticJS uses classes and IDs to identify objects on the canvas. This allows HIKOMSYS,
with the help of Javascript, to select all the dependencies by their ID and save these
connections within the Mongo database.

As we saw in Section 3.2, the user is able to change between two different modes:
moving and drawing. As soon as the user switches into the drawing mode, he is no longer
able to drag and move packages around. Instead, if he starts dragging a package, an
arrow connects to the mouse pointer and the package, following it as long as the mouse
button is pressed. If the mouse is released over another package the arrow is detached
from the mouse and attached to the given package.

Figure 3.22: Start drawing with drag and drop

This feature is implemented with the same logic used for the moving packages. As long
as the mouse button is pressed, the mouse basically acts as a package that is dragged
around. After releasing the mouse over another package, KineticJS hands us the ID
(name) of the package and an arrow from the starting to the ending package is drawn.
The arrow gets an ID as well19. This identifies the dependencies to store them in the
database later.

19Package1.name Package2.name



4
The Validation

Within this chapter we discuss two case studies. One study was done with a single
person and the other with a group of 23 students and the help of multiple facilitators.
The main focus of those case studies was to analyze how users react to the gamification
of dependencies within their system. We also wanted to see how users interact with
HIKOMSYS and to determine if there are any major usability issues.

4.1 Quantitative Case Study
A case study has been done with 23 software engineering students at the University
of Bern. Most of them were in the third semester of their bachelor’s degree at that
time. They were all taking part in the same lecture, during which they were asked to
develop a Java application within smaller groups. All the projects are derived from the
same skeleton project (ESE-Skeleton on Github1). For the quiz, we decided to test all
the students on the skeleton rather than on their current implementation of the project.
The skeleton consists of a basic implementation of a web application using the Java
framework Spring MVC2. It contains several classes (sample controller, model, service,
exception, pojos and a data access object), implemented by Andrea Caracciolo3, to help
the students speed up their learning process. As a result, the students only had to identify

1https://Github.com/ese-unibe-ch/ese2014-wiki/tree/master/Skeleton
2http://projects.spring.io/spring-framework/
3PhD Student at the SCG Group, University of Bern http://scg.unibe.ch/staff/

Caracciolo
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the dependencies between six packages defined by the author before the experiment.
Before the actual experiment, we gave a brief introduction to the general concept of

dependencies between modules. Then each student was asked to take an actual quiz. We
decided to not let them choose the packages they are interested in but rather tell them
which packages they had to select. Our goal was to have a number of quizzes we could
compare based on the knowledge about the dependencies rather than focusing on the
selection of packages by the users. The experimenters tried not to interfere with the
process after this point. They only answered quiz related questions, like how to delete a
dependency or how to draw one, when those were asked by the quiz takers. Afterwards
the experimenters discussed what they noticed during the study.

Observations During the experiment, we made the following observations:

• Overall, most of the students really liked how they got to see their system and even
wondered if they could do this for other projects.

• The thinking process of some students was accurate and some of them even
explained in detail how the different classes interact with each other.

• One of the students drew every single dependency in the wrong direction. As a con-
clusion, it would be helpful to provide more information about how dependencies
are represented within HIKOMSYS.

• Some students wondered about the points they received. We plan to add an
explanation about the ranking system used in HIKOMSYS.

• We could clearly see which students had worked with their system and which had
not. This conclusion was reached based on the number of points those students
earned and how they interacted with the system and the experimenters. The students
even tried to explain some of the dependencies while drawing them because we
required them to think out loud. Some students went as far as remembering the
exact method call from one package to another.

4.1.1 Collected Data
In this Section, we present the data collected during those 23 experiments. Out of a
total of 8 correct and 22 wrong dependencies, the students had 50% correct and only
14% wrong dependencies on average. The accumulated points ranged from 40.34% to
95.45%.

Figure 4.1 shows the quizzes of the 23 students, ordered by their result (rounded
down). We see that the more a student knew about his system, meaning the more
correct dependencies he drew, the fewer dependencies he assumed wrong. Because most
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students only had between 1 and 3 wrong dependencies, we think that they had a general
understanding about how dependencies work. As we saw in Section 3.3.2 the amount of
missing dependencies does not influence the final score, this is clearly reflected in the
diagram. The more a student knew (correct dependencies), the less he forgot.

In Figure 4.1 the first bar presents a student that reached 40%, he told us after the
quiz, that he assumed the arrows to work the other way around. Considering that, he
would have had 1 wrong and 7 correct dependencies, scoring 91%, which would be
above average.

Figure 4.1: Chart: 23 quizzes ordered by their points (ascending)

The following two diagrams (Figure 4.2 and 4.3) show the distribution of correct or
wrong dependencies between the 23 quizzes. In the first chart (Figure 4.2) we can see
that only one person had 100% of the correct dependencies and nobody had 0% correct
dependencies. Furthermore, the graph displays a typical Gaussian distribution, with most
people having around 50% - 62.50% and fewer people having extremely good or bad
scores. There is only one exception to that: five people had only 12.50% of the correct
dependencies. That could either be due to the usability flaws stated above or because
they did not invest much time into the group project.
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Figure 4.2: Chart: Distribution of correct dependencies among the quizzes

Looking at the second chart (Figure 4.3) we can see that every student made at least
one mistake. Luckily most people only had between 4.55% and 18.18% wrong. Because
nobody had more than 31.82% wrong, we can assume that nobody randomly guessed all
the dependencies.

Figure 4.3: Chart: Distribution of wrong dependencies among the quizzes
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As a conclusion, even though we only tested HIKOMSYS on a relatively small group,
we still got a bell curve. Moving on, it would be interesting to see how those points are
spread out for larger groups, for example a development team in a big company. The
main challenge is to find a sufficiently large number of developers working on the same
project, willing to participate in a similar experiment.

4.2 Qualitative Case Study
Michael Single, a master student at the University of Bern, tested HIKOMSYS using his
bachelors thesis project4 as input. In each individual task he tried to explain what he did
and why. Selecting the important packages of his system went smoothly and Michael
clearly knew how his system was organized and what the important parts were. Only
the project hierarchy was a bit confusing because he expected it to be less flat. This
problem did not originate from the way VerveineJ parses a Java project as he realized
later. The current version on Github was built with Maven which changes the project
structure while building. In the quiz itself, Michael first asked how the arrows have to be
interpreted. It was not clear in which way they should point. After a brief explanation he
quickly drew some dependencies while always explaining precisely how the dependency
is implemented within his system. At some point Michael tried to delete a dependency
he had already drawn but could not figure out how to do so without help. After going
through each package twice he moved on and submitted his results, scoring 72%. At
the end, while looking at the results, he was wondering about each missing dependency
and wanted to check if those were correct. After explaining the “Additional Information”
feature, Michael saw how those packages are connected and even verified it within his
Github repository.

As a conclusion, Michael is a very good example of a developer with a good know-
ledge of his system. On one hand, each and every dependency he drew (with one
exception) was correct and he even explained them perfectly. This makes sense given
the fact that this was his own project, which he built single-handedly from scratch. On
the other hand, he did forget almost as many dependencies as he knew (5). As a result,
we can assume that if a developer is testing his own system, it is easier to forget some
dependencies than to draw wrong ones.

Most detected design and usability flaws have already been reported by the partici-
pants of the first case study. More information needs to be provided to the user for him
to understand how to delete dependencies. Possibly some examples of dependencies
existing within a system could also help to eliminate initial doubts.

4Diffraction Shaders: https://Github.com/simplay/Bachelor-Thesis

https://Github.com/simplay/Bachelor-Thesis
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Future Work

We built a platform for users to learn about dependencies, with the help of gamification,
while having fun and competing against others. HIKOMSYS is a good starting point for
a platform which might change how we learn about code in general and there are many
more things we could add to improve it:

Gamification

First of all, the gamification aspect of HIKOMSYS could be improved. For example, the
selection of the modules is only based on the current user’s point of view at that time. A
user could take two different quizzes, one based on the selection he made and another
based on the packages most commonly selected by the users who took the quiz before
him. This would lead to a better understanding of what exactly the core modules of a
system are. Furthermore, new levels could be added, where for example HIKOMSYS
tells the user how to improve his system, letting him re-upload it at a later point. If the
user did improve the system in the given way or in another way, which he would have to
explain, he would get points. Letting the user remove dependency cycles, for example,
would be a good start for this new level.

Social Aspects

Not only new levels could be added to HIKOMSYS, but also the UMS could be linked
to Github or other social media accounts. The former would make it possible to link to
Github and provide even more information about the individual packages, for example
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with a link to the actual implementation. This would allow users to click on a given
dependency or package and gain direct access to the source code on Github. The latter
lets the user share his success on different social medias and inspire other people to try
out HIKOMSYS as well.

Another major improvement for HIKOMSYS would be some kind of status and
leveling system where users can earn experience points, levels and badges and as a result
unlock additional features or permissions. As we saw in Chapter 2, a good example for
this system is StackOverflow, where only experienced users can comment on answers
and where one gains medals for answering questions within a given topic. StackOverflow
clearly shows that “status drives much of our actions, and it forms a critical part of how
we understand ourselves in a context and relation to others”[4]

Back end

As observed during the case studies, the current point system HIKOMSYS uses, could
be improved to be more transparent. Users should at least have some hints about how the
points are computed.

Furthermore, there might be a better way to calculate the points a player receives and
alternative scoring strategies should be explored in the future.

Getting rid of one of the two different databases has always been something desirable
for the project. This is due to the fact that some data is duplicated. A project, for example,
exists within both systems. On one hand, it contains all dependencies, packages and more
in the Mongo databases. On the other hand, a project containing project-ID, user-ID,
SHA etc. is saved in MySQL. At the beginning, opting for a Mongo Database was a
reasonable choice because the MySQL library for Pharo has not been updated for almost
a year whereas the library for Mongo was up to date. Later on MySQL was needed
because of Laravel and the UMS. We think it would be possible to get rid of MongoDB
and only use MySQL. As a result, a part of the Smalltalk and the Laravel implementation
would have to be changed.

User-Interaction

Last but certainly not least, some of the usability flaws shown within the case studies
would have to be fixed. On one hand, a small tutorial could be added in which the basic
idea of dependencies is explained. Therefore the user would be guided through a sample
quiz to learn what dependencies are and how to take a quiz. As a result the user could
earn some free experience points. On the other hand, more help could be provided within
a quiz by explaining the different user actions and his task.

As we saw, HIKOMSYS is only the first milestone. Adding levels and experience as
well as linking projects to their Github implementation, are a few features which could
and should be added to improve the platform. Furthermore, HIKOMSYS could be used
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as a solid foundation for future bachelor projects or master theses and of course for any
gamification or e-learning project.



6
Conclusion

Within this Chapter, I would like to talk about what we learned working on this project
and also summarize the main goal of HIKOMSYS and our results.

6.1 Lessons Learned
I learned a lot while working on my biggest project so far. Starting from scratch, I had
to think about different technologies and their interaction with each other. Not only
based on a single point of view but on two aspects: Front end (design, functionality and
usability) and back end. For example: How was it possible to let a user fill out a form
and pass that data from the front end to Pharo. As a result, it has been challenging and
interesting to figure out all the different interactions, while sometimes taking a step back
or starting all over again with a different approach.

On the subject of technologies, I also realized that it can be difficult from time to time
to work with Open Source projects if you do not intend to fix their bugs yourself. Getting
in contact with the people responsible for VerveineJ was not possible. We had to add
some dependencies for our case study manually because VerveineJ had some difficulties
recognizing exceptions and some other dependencies like Enums.

One of the most important things I learned, was keeping track of a project’s backlog.
We started working on HIKOMSYS with some ideas and those became more concrete
over time. Furthermore, every time somebody had an idea or some sort of improvement,
it was added to the backlog. Although I worked iteratively and with the help of a backlog,
which both are useful development techniques, having set a clear goal would have been
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helpful and motivating. Moreover, it has been very satisfactory increasing my experience
by having a look at new frameworks like Laravel and KineticJS, as well as at other
programming languages like Pharo.

All in all, I really liked working on this project and with my supervisors and I hope
this project is picked up by someone and will be taken good care of.

6.2 Final Words
In summary, we saw how the HIKOMSYS back end handles project uploads with the
help of different tools like Moose and VerveineJ. Moreover, we had a look at how the
front end is responsible for the actual user interaction: From displaying packages within
a treeview to drawing on a canvas with the help of KineticJS and vector operations.

Chapter 5 shows that this project is far more than just quizzes about dependencies.
HIKOMSYS is only the first step to build a web platform where users are able to improve
their knowledge about their systems while also gathering a lot of useful data for further
research. We have also shown that our users liked the gamification aspect of HIKOMSYS
and that they were interested in their systems’ dependencies.
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Abstract

Within this documentation we have a look at the implementation of
the DataGatherer used for How I KnOw My SYStem (HIKOMSYS). The
DataGatherer is written in Pharo and is used to import a model file as well
as to parse and to save all necessary model data into a Mongo database.

We will see how Pharo can be called with additional arguments from the
terminal or a bash script. A brief introduction into Quicksilver1 is given and
it is shown how the data from a model file is prepared to be used by a quiz
in HIKOMSYS.

1http://scg.unibe.ch/research/quicksilver
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1
Accessing and Executing Pharo’s

DataGatherer

In this chapter, we will explain how Pharo can be used from the terminal and how it is
possible to pass along arguments, all this using HIKOMSYS as example.

1.1 Idea
HIKOMSYS utilizes the DataGatherer to create a Mongo database document for any
uploaded project. Therefore, we need a way to start Pharo and the DataGatherer after
creating the model file with VerveineJ. Additionally, the DataGatherer is told which file
should be used to create the necessary data.

There is a more detailed description about this specific topic called “Zero Configura-
tion Scripts and Command-Line Handlers”1 in the “Pharo by Example II” book. With
the help of this tutorial, we were able to build a CommandLineHandler for HIKOMSYS.

1http://pharobooks.gforge.inria.fr/PharoByExampleTwo-Eng/latest/
ZeroConf.pdf
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1.2 Implementation
According to the “PharoByExample” book, we have to create a new class
(DataGathererCommandLineHandler) with CommandLineHandler as its superclass:

1 CommandLineHandler subclass: #DataGathererCommandLineHandler

In the next step, we have to define a method called activate. The activate method
will be executed, as soon as we call DataGatherer from Bash or the command line.

1 activate
2 self evaluateArguments.
3 (self hasOption: 'save')
4 ifTrue: [Smalltalk snapshot: true andQuit: true]
5 ifFalse: [self quit]

As we can see on the third line, self hasOption is how we access the arguments passed
along, in this case –save. The other arguments are handled in the evaluateArguments
method:

1 evaluateArguments
2 | t1 |
3 t1 := DataGatherer new.
4 self stdout nextPutAll: 'starting DataGatherer'.
5 t1
6 systemName: (self optionAt: 'projectName').
7 t1 run

In this step, we create a new instance of the DataGatherer (line 3) and print a
comment on the terminal (line 4). Furthermore, we set the systemName to be equal to
the –projectName argument. Last but not least, we call run on our DataGatherer to start
processing the model data as we will see in Chapter 2.
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1.2.1 Using DataGatherer from the Command Line
Now, HIKOMSYS can run Pharo and the CommandLineHandler with the help of the
following three tools:

1. Virtual Machine2

2. Pharo Image

3. Command Line Handler

With those three tools, a bash script with name as its argument is executed to start
Pharo in so called headless-mode:

1 cog="pharo-vm-nox"
2 headless=""
3

4 moose="pathToPharoImage"
5

6 smalltalk="runDataGatherer --projectName="$name
7

8 $cog $headless $moose $smalltalk

2Download at http://pharo.org/download



2
DataGatherer

In this chapter, we will introduce the DataGatherer implemented in Pharo and Moose.
To do so, we will have a brief look at Quicksilver.

2.1 Implementation of DataGatherer
As seen in 1.2, the CommandLineHandler will call the DataGatherer run method:

1 run
2 self assert: systemName ˜= ''.
3 self createModel.
4 self createHG.
5 packages := Dictionary new.
6 (hg level: 0)
7 do: [:t3 | self createPackages: t3].
8 self propagate.
9 self createNamespace.

10 self createMongoDB

Listing 1: The backbone of the DataGatherer

This is the backbone of the DataGatherer and before we go into more detail we will
have a brief overlook at what this method does. First, we make sure that the system name
provided earlier is not an empty string. The second step is to load the model file into
Moose and create a new hash map named packages to store our data in. Afterwards, we
are able to use Quicksilver and create a “HighGraph” from the imported model. The

6
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next step is to create and then propagate the packages. Then we create the so called
“Namespaces” and in the last step the data is saved into a new Mongo database document.

Model
The first step is to load a new model into Moose, to do so we need to provide a file stream
to read the model file created with VerveineJ and a name:

1 createModel
2 | t1 t2 |
3 ˆ (MooseModel root entityNamed: systemName)
4 ifNil: [t1 := MooseModel new.
5 t2 := MultiByteFileStream
6 newFrom: (FileStream readOnlyFileNamed:
7 pathToModelFile).
8 t1 importFromMSEStream: t2.
9 t1 name: systemName.

10 t1 size > 0
11 ifTrue: [ˆ t1 install]]

For this example, the path for the FileStream (line 6 and 7) was replaced with
“pathToModelFile”. This path is specific for the server HIKOMSYS runs on. The model
files and the directory it is saved in are named systemName and the path would look
something like this:

1 hikomsys/public/gitRepos/', systemName , '/' , systemName , '.mse'

HIKOMSYS uses Quicksilver’s “HighGraphs” to prepare the data of a model file.

2.1.1 Quicksilver & HighGraphs
Quicksilver is a tool to explore large data sets. Quicksilver uses hierarchical graphs1,
also called “HighGraphs”, to store data in nodes and leafs. Those nodes and leafs are
connected with relationships which are propagated up in the hierarchy.

For HIKOMSYS we need to know the dependencies between Java packages (may be
nested). As a result, we use Quicksilver’s “HighGraphs” to build a hierarchical graph
from which we can get the data we are interested in later. The following code example
shows how a “HighGraphs” is created within Pharo:

1http://scg.unibe.ch/research/quicksilver/HierarchicalGraph?_s=
ph4kS4W_mdgNAnv9&_k=42iOctPV&_n&17
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1 createHG
2 | t1 |
3 t1 := MooseModel root entityStorage at: systemName.
4 hg := MalHierarchicalGraph with: t1
5 allMethods asOrderedCollection name: systemName.
6 hg bottomUp: {FAMIXNamedEntity -> #belongsTo}.
7 hg
8 edges: t1 allSureInvocations
9 from: #from

10 to: [:t2 | t2 to first].
11 hg propagateEdges.
12 ˆ hg

The graph contains all methods and is created from the bottom up. This means we
start at a leaf and from there on we search for all its parents until we reach the root. As
we can see in line 8, the edges are the relations between nodes. They are a collection of
all the dependencies from and to the current node found by Moose. With sureInvocations
we make sure that we only get those dependencies which have only one candidate. One
candidate means there is only one possible class it belongs to.

In the next step, we iterate through the “HighGraph” we received previously. With
the data stored within the graph we create packages. A package is a dictionary or hash
map with the following keys:

• a name

• a parent package

• a list of classes

• a list of dependencies
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This is done with the following recursive method createPackages:

1 createPackages: aMalHgNode
2 | t1 |
3 t1 := helper stripNamespace: aMalHgNode model asString.
4 (t1 = '' or: t1 = '<Default Package>')
5 ifFalse: [packages
6 at: t1
7 ifAbsent: [| t4 |
8 t4 := DGPackage new.
9 t4 name: t1;

10 parentPackage:
11 (helper stripNamespace:
12 aMalHgNode model parent asString);
13 classes: aMalHgNode classes;
14 addDependency: aMalHgNode outgoing.
15 packages at: t1 put: t4]].
16 aMalHgNode children
17 do: [:t3 | t3 model class = FAMIXNamespace
18 ifTrue: [self createPackages: t3]]

First, we check if it is empty or a so called “<Default Package>”. The latter is the
default name Moose gives to packages which cannot be matched to any given package
due to a parsing error or something else. A quiz from HIKOMSYS does not take those
packages into account because we would have to explain to the user why some packages
are named this way. Secondly, we add all the parameters to the collection and in line
15 we save the package in the collection (packages) created earlier. The last step is
to check if the current node has any children and if it has we send them the message
createPackages.
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2.1.2 Propagating Dependencies
If we think of a Java project we have a nested directory hierarchy and to provide some
more feedback on the results page in HIKOMSYS we wanted to provide a way to inspect
the classes within any given package, not just the leaf packages. To do so, we had to
add the children of a subpackage to all its parent packages as you can see in the code
example 2:

1 propagateChildren
2 packages
3 do: [:t1 | packages
4 at: t1 parentPackage
5 ifPresent: [:this | this children: t1 name]]

Listing 2: Adding child classes to each parent package

Besides that, in HIKOMSYS any dependency of a package is automatically also a
dependency of all its parent packages. For example: let core::util have a dependency to
java, as a result core also has a dependency to java. This makes sense because if a user
selects core as one of the packages he is interested in, he should also know that one of its
subpackages has a dependency to java.

This is achieved with the help of an recursive method (see Listing 3). Starting
with the root packages (any package without a parent package) we check if it has any
children. If there are, we call propagateDependencies on all of the children. If no
child packages are present, we return the current packages dependencies adding it to the
caller’s dependencies.

1 propagateDependencies: package
2 Transcript show: package name;
3 cr.
4 package children isEmpty
5 ifTrue: [ˆ package outgoingDependencies]
6 ifFalse: [package children
7 do: [:t1 | package outgoingDependencies
8 addAll: (self
9 propagateDependencies: (packages at: t1))].

10 ˆ package outgoingDependencies]

Listing 3: Propagating outgoing dependencies
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As we can see in the run method (see 1) the following method is called from there.
The propagate method calls the two previously discussed methods.

1 propagate
2 self propagateChildren.
3 packages
4 do: [:t1 | packages
5 at: t1 parentPackage
6 ifAbsent: [self propagateDependencies: t1]]

2.1.3 Namespaces
We figured out that there are some cases where we are interested only in the dependencies
from the classes directly within a package and not in all the dependencies of its sub-
packages. Therefore, we had to search for packages containing classes and subpackages,
duplicate those and give them a new, distinguishable name. We gave them the same
name the Eclipse IDE2 uses, which is a * sign at the end of the name, for example
“org::model::*”. In the following method you can see how this is done. We iterate over
all the packages found in line 4, copy those without the children and then only add
the dependencies from those classes without propagating the dependencies from the
subpackages. As a result, we have a package containing only the dependencies of the
classes directly inside this package without taking its subpackages into account.

1 createNamespace
2 | t1 t2 |
3 t1 := MooseModel root entityNamed: systemName.
4 t2 := t1 allNamespaces
5 select: [:ns | ns children size > 0
6 and: [ns classes size > 0]].
7 t2
8 do: [:namespace |
9 | name classes classNames package |

10 package := DGPackage new.
11 classNames := Set new.
12 name := helper stripNamespace: namespace asString.
13 package name: name , '::*';
14 parentPackage: name.
15 classes := namespace classes.
16 classes
17 do: [:class |
18 | invocations dependencies |
19 dependencies := OrderedCollection new.
20 classNames add: class name.

2https://eclipse.org/
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21 invocations := class queryAllOutgoingInvocations.
22 invocations
23 do: [:invocation |
24 | dep |
25 dep := self createDependencyFrom: name to: invocation.
26 dep class = DGDependency
27 ifTrue: [dependencies add: dep]].
28 package outgoingDependencies: dependencies].
29 package classes: classNames.
30 packages at: name , '::*' put: package.
31 (packages at: name)
32 children: name , '::*']

The figure 2.1 shows the controller package of the ESE-Skeleton on Github3. As you
can see, there are three subpackages and one class IndexController.java. Therefore,
HIKOMSYS would create a new package called controller::* which would contain only
the IndexController class and its dependencies.

Figure 2.1: ESE-Skeleton org::controller with subpackages and class

3https://Github.com/ese-unibe-ch/ese2014-wiki/tree/master/Skeleton
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2.2 Mongo Database
The next step, after parsing and preparing the data, is to export it into a Mongo database
document. This is done with the help of the “Mongo class” provided by Pharo. As we
will see in the following code snippet, Mongo needs to listen to a server and a port, here
“localost” and port 27017. Then we create a new collection with the name of our project
as its name (see line 7). The last step is to iterate over every package created previously.
In this process we convert each package into a dictionary and add those to the Mongo
database collection. A Mongo document is nothing else then a binary JSON file with key
and value pairs.

1 createMongoDB
2 | t1 t2 t3 |
3 mongoDB := Mongo host: 'localhost' port: 27017.
4 mongoDB isOpen
5 ifFalse: [mongoDB open].
6 t1 := mongoDB databaseNamed: 'hikomsys'.
7 t1 addCollection: systemName.
8 t2 := t1 collectionAt: systemName.
9 packages

10 do: [:t5 |
11 t3 := t5 asDictionary.
12 t2 add: t3].
13 mongoDB close.
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Final words

We saw how Pharo can be accessed from the terminal and how the DataGatherer receives,
prepares and stores data from a model file.

I would like to point out, that we started to write test for the DataGatherer but had
to stop because we had to focus on the other parts of HIKOMSYS. So this would be
something which could be done in the future. Furthermore, as pointed out in the thesis
itself it would be good to switch from using a Mongo database to using MySQL.
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