
Traits in CSharp

Stefan Reichhart?

Software Composition Group, University of Bern, Switzerland

Abstract. Traits are a well-known simple, but powerful compositional
model for reuse. Although traits already implemented in dynamically
typed languages, they’re not yet practically realized in statically typed
languages. Typing traits and adapting the model to these languages is
more complex to achieve. We report on our experience and practical re-
search implementing traits in CSharp 2.0, concerning generics. We show
the difficulties and possible solutions of typing and parameterizing traits
in generally, possible enhancements for statically typed languages as well
as adapting traits to CSharp regarding features like overriding and hid-
ing.

? thanks to Nathanael Schaerli for support on traits and Smalltalk, and Hans Beck
for help on CSharp parsers

2 Stefan Reichhart

1 Introduction

The main focus of this work is on identifying interesting and important aspects
of introducing traits to CSharp. We also identify required and optional features
for statically typed languages as well as conflict situations. The implementation
presented in this paper is a simple prototype (a preprocessor) based on the trait
flattening property [9]. It is meant to be a study case for a clean implementation.

The main problem concerning traits and statically typed languages like CSharp
is about typing traits and to keep the ability to share code easily. Many ap-
proaches already exist in theory. This practical work contributes to the research
about traits by presenting a simple prototype, showing the possibilities and dif-
ficulties in integrating traits in statically typed languages.

Although the focus of this work is on CSharp most of the results are directly
applicable to other typed object-oriented languages. The implemented “trait
flattening framework”, kept mostly language independent, would also work for
most other c-like languages (with only slight modification).

Section 2 shortly introduces traits. The following sections cover the basics
about CSharp, give a short overview about a first dirty-prototype done in CSharp
itself and contain some more extensive descriptions, results and practical research
by doing the final implementation using Smalltalk.

2 Traits in a Nutshell

The following paragraphs are extracted and shortened from [11]. More about
traits might be found in [12, 14, 13, 11, 5, 1]. [10, 8] cover the implementation in
Squeak/Smalltalk.

Traits are essentially sets of methods (i.e. mappings from method names to
method bodies) that serve as the behavioral building block of classes and the
primitive units of code reuse. Classes (and composite traits) are composed from
a set of traits by specifying glue code that connects the traits together and
accesses the necessary state. With this approach, classes retain their primary
role as generators of instances, while traits are purely units of behavior and
reuse.

Traits contain methods, but no state, so state conflicts are avoided, but
method conflicts may exist. A class is specified by composing a superclass with
a set of traits and some glue methods. Glue methods are defined in the class
and they connect the traits together; i.e., they implement required trait meth-
ods (possibly by accessing state), they adapt provided trait methods, and they
resolve method conflicts.

Trait composition respects the following three rules:

Traits in CSharp 3

– Methods defined in the class take precedence over trait methods. This allows
the glue methods defined in a class to override methods with the same name
provided by the used traits.

– Flattening property. A non-overridden method in a trait has the same se-
mantics as if it were implemented directly in the class using the trait.

– Composition order is irrelevant. All the traits have the same precedence, and
hence conflicting trait methods must be explicitly disambiguated.

A conflict arises if we combine two or more traits that provide identically
named methods that do not originate from the same trait. Conflicts are resolved
by implementing a glue method at the level of the class that overrides the con-
flicting methods, or by excluding a method from all but one trait. In addition
traits allow method aliasing; this makes it possible for the programmer to in-
troduce an additional name for a method provided by a trait. The new name is
used to obtain access to a method that would otherwise be unreachable because
it has been overridden.

Traits bear comparison to mixins [4, 3, 6], but we do not discuss them in this
report.

3 Exploring CSharp...

At the first glance, CSharp seems to be very similar to other statically typed
languages with a slightly different syntax only. But when we have a closer look
we discover that it is — simply said — much “bigger” than others. CSharp is
actually a composition/mixture of multiple languages, providing many features
of C, C++ and VisualBasic (.Net in general). This makes it part-wise more
expressive than other statically typed languages but also more complicated.

An example for this is the “syntactical inflation” caused by the huge amount
of keywords and various kinds of modifiers. The “explicitly” of CSharp, con-
taining the overriding/hiding mechanism as well as the memory allocation, also
contribute to its complexity.

3.1 Generics

Despite other attempts to introduce generics (Java 1.5) where generics are built
on top of the existing language, not touching the VM, CSharp does have a native
support in IL and CLR1. Therefore not only classes support generics, but also
structs and other type-like structures and even other CLR-compliant languages
of .Net, e.g. VisualBasic .Net.

Note: CSharp does provide generics at the type-level as well as at method-
level. Both “scopes” are independent of each other. Therefore you might define a

1 read more about IL/CLR and generics in .Net on http://msdn.microsoft.com/library

4 Stefan Reichhart

generic method void foo<T>(T arg) in a non-generic class or in a generic class
with a different (or the same) generic type. 2

4 CSharpT

As this project focused on CSharp it was only obvious to develop the traits
extension in CSharp itself. The environment we were using was Mono3 , the
only freely available cross platform for the .Net frameworks.

This first developed prototype in CSharp, simply called CSharpT, is based
on a very simple and heuristic low-level parser, extracting only the most basic
information (but including generics) and representing the code as a simplified
DOM tree. That allows to treat the code on a higher lever. The flattening logic
respectively the preprocessor supports Aliasing -> as the only feature.

The syntax for trait declarations are taken over by Smalltalk but adapted to
fit CSharp. The trait declaration for using traits is defined as a preprocessor di-
rective, but encapsulated in comments to keep the code permanently compilable.
The following example shows this possible kind of declaration for traits.

class MyShape {
// # trait TColor : color
// # trait TCircle : color->colorCircle

}

This first prototype suffers many problems like relevant order of traits —
which shouldn’t be by the theory of traits. However it was mainly done to get a
rough overview for a representative prototype as well as to develop a good and
easy syntax for traits in statically typed languages – this one is quite different
and more complex due types (Section 7).

5 Prerequisites: a good parser

The most important insight resulting from the CSharpT prototype is the need
to have a good parser that allows code-snippets to be treated at a higher re-
spectively object level. Without this prerequisite neither dynamic-linking nor
flattening of traits would be reasonable or safe.

Therefore, the parser for the final implementation of traits in CSharp is based
on a simplified version of CSharp’s language grammar using the parser generator
SmaCC 4. The grammar rules, taken over by the provided Java parser example,
have been adapted to CSharp and simplified to a minimum.

2 CSharp Generics Indroduction at http://msdn.microsoft.com/library
3 http://www.go-mono.com
4 http://www.refactory.com/Software/SmaCC

Traits in CSharp 5

This parser is able to identify all header information about structured ob-
jects like namespaces, types and type-members, but ignores the body of type-
members. That means, all other code elements are identified either as simple
statements or structured code and simply accepted without being checked. This
behavior is similar to tolerant parsers as described in “Island Grammars” [7].
The following figure shows a sample block of parser rules based on that behavior,
describing the method body’s elements.

chunkSequence : <a sequence of tokens>
statement : chunkSequence ";"
structuredChunk : chunkSequence "{" codeElements? "}"
codeElement : statement | structuredChunk | ...

The advantages of this parser are that it is quite short and able to parse
many other C-like languages as well. The drawback of this solution is that the
parser might also accept invalid code as it does not parse method bodies and
other elements on that level.

Section 8.3 shows that such a parser is not suitable to enable the full power
of traits in CSharp or statically typed object oriented languages. Furthermore it
is shown a complete grammar parser is required.

6 Introducing traits

6.1 Basics

The first step in introducing traits to CSharp or another statically typed object
oriented language is to define a code-container for the trait elements. The sim-
plest solution is to put each trait into a single file, declaring it similar to types,
shown in the code example below.

traitCompilationUnit : "trait" "{" traitElements? "}"
traitElements : traitElement | traitElements traitElement

where a traitElement is a simple method (everything else is not allowed, e.g.
constructors, properties).

As traits and similar solutions are already well known it isn’t reasonable to
introduce a completely new syntax for using traits as it would cause some extra
effort to developers already familiar with traits, for example in Squeak/Smalltalk
[13]. However slight adaptations have to be done to fit the syntax of the target
language and because the syntax taken over by dynamically typed languages is
not expressive enough due to missing types.

Traits could then be used defining a use-structure similar to the following
one somewhere in the type-code, yet without any concern about conflicts and
their resolution.

6 Stefan Reichhart

class MyCircle {
uses {

TColor; TCircle;
}

}

6.2 Aliasing and Exclusion

As proposed in the traits theory aliasing and exclusion have to be introduced
to grant access to conflicting methods and avoid conflicts.

As the “@” symbol used in the Smalltalk prototype [10, 13] for aliasing is
not common in statically typed languages, an other more appropriate solution
should be developed to fit the language. The same holds for the “#” symbol
which is already and often used for preprocessor directives in c-like languages.
The example below shows a possible syntax, yet without introduced types for
simplicity.

uses {
TColor { foo -> fooAliased; };
TCircle { ^fooExcluded; };

}

Each aliasing -> and exclusion ^ is separated by a mandatory semicolon.
Spaces are ignored. The aliasing is to be interpreted differently than in Smalltalk.
So the arrow means “is-aliased-to”.

6.3 Requirements

As traits not only provide, but also require a set of methods they need or depend
on, it is necessary to enable this by introducing a declaration for requirements.

A syntax similar to the trait use-declaration might be chosen. That could
look like in the following code example — again without types and omitted
braces on methods.

trait TCircle {
requires {

resize;
}

}

7 Typing traits

7.1 Basics

As CSharp and most other statically typed object oriented languages offer over-
loading, it is required to type Aliases, Exclusions to distinguish overloaded meth-
ods. The following example shows how the trait declaration of Section 6.2 could
be extended with types.

Traits in CSharp 7

uses {
TColor { foo(int,double)->fooAliased; };
TCircle { ^fooExcluded(ICollection); };

}

Certainly, the type-declarations are case-sensitive and types have to be declared
in the right order. If no arguments are used the “empty” braces might be omitted
to reduce the effort of maintaining the declaration.

Return-types aren’t required to be introduced as they’re not relevant to dis-
tinguish overloaded methods. Therefore neither aliasing nor exclusion should
define them.

A similar syntax strategy might be chosen for trait requirements. Although
return-types aren’t necessary for requirements either, it might make sense and
be useful to declare them. This would allow a trait to more precisely specify
its requirements towards a class or another trait using it. That helps preventing
late compile-time errors on invalid/incompatible return types. The following code
example shows a requirement on the method radius() using the simple return
type double.

trait TCircle {
requires {

void resize(double);
}

}

Another reasonable syntax for requirements would be the declaration of ab-
stract methods, shown in the following code example.

trait TCircle {
public abstract void resize(double);

}

7.2 Type Parameters

Although typed traits as introduced in Section 7.1 are already quite useful,
their ability to share code and reduce code duplication is still limited. This
disadvantage of reusability can be solved by introducing type parameters to
traits. The syntax for this might be taken over by generics in CSharp or Java
1.5, shown in the following code example.

trait TSequenceable <S> { ... }

The consequence of using parameterized traits is that code can be shared more
flexible and easier. Two approaches of parameterized traits exist and are shortly
mentioned.

8 Stefan Reichhart

Template-like traits look similar to templates in C++ but rather behave like
generic traits and share their properties and implementation. They might be
regarded as a lightweight approach to increase code sharing. Template-like traits
aren’t further discussed in this paper and not implemented either. However,
to give an example, they might be enabled by simply substituting the type
parameter in the use-declaration of the class (non-generic or generic), shown in
the code below.

class MyNumberCollection {
uses { TSequenceable<INumber>; }

}

(Full) Generic traits Instead of simply parameterizing the trait, it would be
reasonable to directly apply generics to traits and use the advantages of generics.
However, this is only possible in languages providing generics, as for example
CSharp or Java 1.5. Generic traits are discussed in detail in Section 8.3.

class MyCollection <T> {
uses { TSequenceable <T>; }

}

As CSharp provides generics on the class and method level (scope), both have
been implemented in the prototype.

7.3 Return-types

When typing traits comes to return types, interesting questions and discussion
topics like the following ones arise.

– What types should trait methods return?
– How much generic should or can return types be to guarantee code sharing?
– How can the type of a class be returned by a trait method without interfering

the previous questions ?

Although these and others have not been deeply researched in this work —
neither implemented — possible existing approaches are quickly shown and de-
scribed.

Interfaces Trait methods returning interfaces (see code example below) might
help sharing code with some additional work for the developer defining interfaces.
Still the return type might not be the appropriate one in any cases as it would
only allow a common subset of methods in the referenced classes to be called on
the return type. Besides, interfaces alone don’t solve the problem of returning
the type of the class.

Traits in CSharp 9

class MyCollection {
uses { TList; }

}
trait TList : IList {

IList reverse() { ... }
void concat(IList a, IList b) { ... }

}

Implicit return types A simple approach in returning the type of the class
is either by introducing a type keyword ThisType or by returning the “type” of
the trait TList (not really a type!), shown in the following code example.

trait TList {
ThisType reverse() { ... } // keyword
void concat(TList a, TList b) { ... } // trait ’type’

}

When the trait is used or referenced by the class the keyword ThisType or the
type TList will by substituted by the type of the class MyCollection. However
this approach lacks control of the type and might not be appropriate in any case
either.

Explicit type parameter Using an explicit type parameter[11] for the trait
enables traits to be shared easily among many classes due to flexible substitution
of the parameter by any other one.

class MyCollection {
uses { TList<ICollection>; }

}
trait TList<S> {

S reverse() { ... }
void concat(S a, S b) { ... }

}

However this definition might serve two situations/problems. So the developer
has to know if the type parameter either refers to the return type as above or
another type used by the trait/class.

This fact becomes obvious when the language supports generics using generic
traits (discussed in Section 8.3) as shown in the following example.

class MyCollection<T> {
uses { TList<T>; }

}

In this case the trait TList<S> from above couldn’t be used in MyCollection<T>,
as the type parameter in TList<S> addresses the return type and not the generic
type of the class. The same could apply to template-like traits in (non-)generic

10 Stefan Reichhart

classes. Therefore an explicit solution like the one from above doesn’t go well
with generics and causes inconsistency.

Although many approaches to this problem exist, a simple and consistent
solution has still to be worked out and thoroughly tested.

8 Enhancements for Statically Typed Languages

8.1 Libraries

Many languages, including CSharp provide the mechanism to include libraries
into the code, so for traits in statically typed languages. Certain definitions of a
trait might depend on functionality provided by external components.

using System.Graphics;
trait TShape { ... }

The language enabling traits should automatically propagate all library state-
ments of a trait to the class using the trait (duplicates removed). This way the
programmer does not need to know about any dependencies of used traits.

The inclusion of libraries is not a required feature to enable traits in statically
typed languages but seems to be reasonable and convenient. This feature has
been included in the prototype implementation and proved very useful in code
examples.

8.2 Trait Interfaces

Interfaces are a good programming tool in typed languages, for example to cap-
ture similarities among classes without class relationships or to reveal the pro-
gramming interface without revealing its class.

Traits might also implement interfaces, like classes do.

trait TCircle : IShape { ... }

Meaning, trait TCircle implements IShape. When a class uses such a trait, the
declared interface in the trait will be propagated to the class, declaring the class
to implement that interface, shown in Figure 1. This supports the developer by
saving time and code.

Trait Interfaces can also be regarded as a convenient addition for statically
typed languages - they’re not mandatory to fulfill the trait properties.

Besides trait interface propagation might cause some irritation or concep-
tional conflict when they are used together with exclusion. This fact is shown in
the code example below.

Traits in CSharp 11

class Box

trait TShape :

IShape

IShape

class Circle

<< use >>

IShape

Fig. 1. interface propagation from the trait to the class

class MyCircle {
uses { TCircle { ^draw; }

}
trait TCircle : IShape { ... }
interface IShape {

public void draw();
}

However the example shows a situation in which traits are “abused” for a
selective code exclusion as only one class and trait is used. The trait exclusion
mechanism is originally meant to prevent conflicts that may arise when two or
more traits, used by a class, define the same method (explicit conflict resolution).
Therefore the exclusion will normally not break the interface as at least one trait
will provide the method excluded by the other traits. However this situation
should be covered by implementing additional test routines.

The prototype implementation proposed in this paper supports trait inter-
faces for non-generic as well as for generic code. However, the combination of
exclusions and interfaces is not handled and there aren’t any tests implemented
to check the correct use or existence of the interfaces.

8.3 Generic Traits

When introducing generics to traits as already mentioned in Section 7.2 it is also
important to take care about the generic types and their parameters. Depending
on the strategy of using traits, flattening or dynamic/run-time, an appropriate
variable binding mechanism and variable replacement/substitution has to be
implemented to make the use of generic traits reasonable, shown in the following
example.

class MyColor<T> {
uses { TColor<T>; }

}

trait TColor<S> { ... }

12 Stefan Reichhart

The following relation has to be fulfilled in any case to assure that referenced
traits do not change the “state” of the class:

genericTypeParameters(C) >= genericTypeParameters(
n∑

i=1

(Ti)) (1)

with C a class using traits Ti; meaning, the used traits cannot have more or
different generic type parameters (Section 9.4) than the class itself. In particular,
a non generic class cannot use generic traits. The opposite does not violate the
trait properties. The following example visualizes the relation above.

class MyCircle<T> {
uses { TCircle<T,S>; }

}

trait TCircle<A,B> { ... }

If the relation above is ignored the class would become MyCircle<T,S> as we
cannot drop the parameter B. This probably breaks any interface in the system,
but moreover contradicts the properties of traits.

So, concerning variable bindings there are no free variables when using generic
traits and all generic type parameters of used traits have to be boxed.

As the parser used in this prototype does not parse the method-level it was
neither reasonable nor useful to test or implement a variable renaming respec-
tively binding feature as this would not be very accurate, but rather heuristic
and leading to many errors. So, the implementation of this paper only accepts
“strict-matchings” of trait declaration (including generic type parameters) and
therefore does not violate the trait properties. Certainly, this solution is ex-
tremely restrictive and is unsuitable for practical application of traits in a lan-
guage providing generics as the developer has to care about each identifier or
character representing a generic type parameter.

According to the examples above and the prototype implementation, no trait
would be flattened to the class as the definition of TColor<T> is not found. You
would need to explicitly change S to T in the trait declaration and in the code
of the trait TColor. TCircle<T,S> is invalid and would cause an exception as it
violates the relation above.

9 Enhancements for CSharp only

CSharp provides a bunch of different or “new” features - compared to other
statically typed languages like Java. Therefore it makes sense to have a look
at and treat these specially when introducing traits. The following subsections
cover the most obvious and important ones.

Traits in CSharp 13

9.1 Hierarchy modifiers / Polymorphism

Trait methods may want or need to override or hide methods of “higher” lev-
els. This include methods of other traits or classes. A conceptional example for
overriding traits is shown in Figure 2.

As CSharp has an explicit5 overriding and hiding mechanism using the mod-
ifiers virtual, override and new, trait methods must be declared with the
correct modifiers as otherwise the code would not be usable or compilable.

B

DC T2

T1A

F

G T1T2

E

Fig. 2. Classes: A-G; Traits: T1, T2. Overriding is visualized by dashed lines. Trait T1
overrides behavior of Class F while it is not overriding anything when used by Class A.
Many hierarchy modifier conflicts might exist in this constellation of classes and traits

Despite the advantage of this explicitly, it does also have a negative effect
on traits. It prevents sharing trait methods easily among other classes or class
hierarchies. This will lead either to code duplication or to fragile code as the
developer has to know about all methods and their modifiers within the classes
and traits.

There was no satisfying and simple solution found in the practical research
using the prototype addressing this problem. However the following can be de-
termined by experience:

Simply forbidding traits to hide or override would solve this problem quickly.
However it has been proved in the refactoring [2, 11] of the Smalltalk collection
hierarchy (using traits) that overriding trait methods are extremely powerful
and help sharing code as well as avoiding and even eliminating code duplication.
This is the same for traits in CSharp or other statically typed object oriented
languages.

Enhancing the trait’s use and requirement declaration with an explicit mech-
anism to override/hide the implemented modifier in the trait method isn’t really
useful either. This would blow up the declaration, making it hard to read and
understand. Besides, the overriding and hiding problems might still exist, espe-
cially when introducing new subclasses and traits. This would lead to a very
5 “CSharp Programmers Reference” at http://msdn.microsoft.com/library

14 Stefan Reichhart

complex maintenance of the declarations.

There is nothing concret implemented in the prototype to address this prob-
lem in CSharp. However, as the flattening process in this prototype is done before
the actual compilation (preprocessor) it is useful to catch most errors/exceptions
as soon as possible. Therefore simple pre-compiler tests have been developed on
the modifiers mentioned above. These tests check if modifiers are correctly ap-
plied on classes and traits. Furthermore they check if there are any conflicts
between a trait used by multiple classes requiring different overriding or hiding
modifiers from the trait methods (shown in Figure 2). This way the prototype
is much more convenient to use.

9.2 Accessibility modifiers

The modifiers public, private, protected and internal do not actually cause
any conflicts, but in addition to polymorphism in statically typed object oriented
languages or hierarchy modifiers in CSharp it is useful to introduce tests to check
if these modifiers are correctly applied when using overriding or hiding.

9.3 Other modifiers and keywords

Beside hierarchy and accessibility modifiers, CSharp comes with a heap of other
modifiers and keywords. These have not been further considered in this practical
research and implementation, but might be of interest and importance for a
future implementation.

9.4 Generic bounds

In contrast to other statically typed languages having generics, CSharp provides
a mechanism to bind the generic type (introduced for type safety), called a
constraint 6.

It seems reasonable to support constraints for generic traits in CSharp, too.
The applied syntax is identical to the one used for generic type definitions.

trait TNumberCollection<T> where T : INumber { ... }

As a trait is a composable unit of behavior it is not allowed to change the
“state” of the object respectively the class. Therefore the following relation must
hold to preserve the trait/flattening property:

constraints(C) >= constraints(
n∑

i=1

(Ti)) (2)

6 “CSharp Generics Indroduction” at http://msdn.microsoft.com/library

Traits in CSharp 15

with C a class using traits Ti; meaning, the used traits cannot have different,
more or more restrictive constraints on the generic type parameter than the
class itself. The opposite does not violate the trait property. The following figure
shows a code example with contradicting constraints.

class MyMath<T> where T : INaturalNumber {
uses { TNumber<T>; }

}

trait TNumber<A> where T : IFloatingPoint { ... }

Generic constraints for traits are not really necessary for having traits in
CSharp, but they might help developing code using traits. Many compile- and
run-time errors can already be caught during the flattening or generally pro-
cessing of traits. On the other hand constraints might conflict with the idea
of traits preventing the ability to share behavior among classes because traits
would become too specialized as a consequence of constraints.

10 Summary

Implementing traits in a typed object oriented language is reasonable and not dif-
ficult to achieve as shown with this simple flattening-based prototype in CSharp.
Especially traits based on the flattening property using a preprocessor are easy
and fast to realize as neither the language nor any compiler has to be changed.
An iterative development/prototyping suits well for integrating traits into the
target language as some of its properties and features appear only during imple-
mentation and testing. Moreover, not all trait features/extensions suit well for
all typed object oriented languages.

Independent of doing a flattening or other approach to traits is chosen it is
recommended to have mostly-complete and powerful high-level parser tools that
allow to handle code in a rather object oriented manner. This way traits and
most of the trait extensions for typed object oriented languages can be handled
more easily and reliably. Moreover some extensions as shown in Section 8.3 may
even require a complete parser.

Before implementing traits it is necessary to choose respectively adapt a
good syntax (Section 6) to handle traits in the target language. This should be
as “small” as possible, easy and quickly understandable. That means you should
avoid introducing many new keywords or special syntax rules, keeping every-
thing “self-explaining”. Moreover the syntax should fit the language regarding
single tokens as well as structures. All this helps other developers using traits
immediately without reading papers or going through many tutorials. Still the
syntax should be flexible and extendable as later extensions/adaptions might
follow.

The core of traits in typed object oriented languages using overloading is
mostly formed by types (Section 7). They determine the key part of the trait

16 Stefan Reichhart

syntax. Aliases and exclusions must enable argument types to distinguish over-
loaded methods. Requirement-declarations have to include them as well as they
tighten the requirement and thus help preventing late run-time errors. Return
types might also be required or just convenient to be included. They can also
tighten the requirement and prevent compile-time errors.

If generic types are available in the target language, it is obviously to realize
generic traits. However the generic parameters must be carefully treated as they
require a well-designed variable binding mechanism (Section 8.3). Besides, other
features like constraints in CSharp (Section 9.4) may exist and be integrated
into traits.

As typed object oriented languages often use keywords and modifiers, it is
also important to analyze them — in particular keywords for inheritance, hiding
and accessibility. As shown in CSharp (explicitly of polymorphism) some may
negatively affectSection 9.1 the use of traits, especially in more complex code or
class hierarchies which are sensitive to conflicts and errors. Reasonably complex
solutions to the modifier problem have to be worked out to use the full power
of traits. Furthermore it is necessary to implement additional test routines on
keywords and modifiers considering traits.

Beside syntax, types, generics and keywords there are many possible and
more or less reasonable extensions for traits in typed object oriented languages.
One could be the introduction of interfaces in trait definitions (Section 8.2) - if
the language supports interfaces. Another one could be the automated inclusion
of referenced libraries or modules (Section 8.1), e.t.c. Depending on the target
language similar or other extensions might be necessary or only convenient for
the developer.

Finally traits offer many possibilities of “features” and extensions for stati-
cally typed object oriented languages . However types do introduce an additional
complexity in syntax and usage, and must be handled very carefully.

Traits in CSharp 17

APPENDIX

A Implemented Prototype (summarized)

A.1 Basics

– A modular/extendable CSharp-parser framework (simplified CodeDom) un-
derstanding generics and other c-like languages with very slight adaptations
necessary

– Detailed object extraction by the parser (attributes, parameters, etc)
– Convenient/easy use of preprocessor (automatic read/writeback to image/disc,

detailed error report, etc)

A.2 Trait features

– Extendable and mostly language-independant trait logic, based on the flat-
tening property

– Any CSharp-type provides support for traits
– Generic and non-generic traits
– Automatic library propagation
– Pre-compiler checks for common modifiers (simplified)
– Tests for generic constraints (strict matching only)
– Tests for generic types/parameters (strict matching only)
– Trait Interfaces

A.3 Missing features

– Return-type problem not handled
– Parsing of method-body (required for generic type binding/renaming)
– Template-like traits
– No existence check for trait interfaces (user responsibility)
– CSharp specific element-lookup respecting namespaces

A.4 Enhancements for the future

– Full-language-featured parser(-framework), accepting only valid code.
– Variable binding/Renaming for generic types for a more flexible usage of

traits
– Implementing/evaluating various approaches to the return-type, keyword

and modifier problem
– Combination of template-like and generic traits
– Constraints for requirement definitions (being even more restrictive)
– Dynamic/Runtime traits (no preprocessor) and/or clean implementation in

the CSharp-language (or even in Rotor/CLI) itself

18 Stefan Reichhart

B Using the prototype

B.1 Download and installation

All sources are available in a pre-installed image on the SCG’s Traits research
pages or as a bundle (“CSharp”) for VisualWorks 7.x at the SCG-Store.

db.iam.unibe.ch:5432_scgStore / CSharp

Before loading the bundle you have to make sure all of the following prereq-
uisites are completely loaded.

– Smacc Tools
– SUnit, RBExtensions

The bundle contains several packages, each’s name starting with “CSharp”.
Besides each package has a sibling package containing tests. All packages have
an entry in “comments” that describes the content and how to use them. It is
not recommended to load the packages separately!

– CSharpNamespace, CSharpFileTools : preprocessor and filetools for external
appliance

– CSharpParser, CSharpCodeElements, CodeObjects : parser framework
– CSharpTraits, CSharpTraitsConflicts : trait logic
– CSharpTestCode : CSharp code-snippets/examples for testing

In some cases it might be necessary to recompile the parsers. To test if this
is necessary simple run the tests within the parser package. If all tests fail,
recompile one or all of the following parser/scanner definitions:

– SimplifiedStructure
– TypeSignature, ClassMemberSignature
– TraitDeclaration, TraitRequirement

Before you can use the prototype to flatten anything or run the trait tests you
should execute the following line to setup the (image-internal) code-environment.

Environment uniqueInstance reinitialize.

B.2 Basic flattening

The package “CSharpTraitsTests” provides a class named “TestTraitsDemo”
containing several simple examples (like the following one) showing the basic
functionality of the prototype.

cu:=CSharpCompilationUnit from: (TestDemo readwritestream).
cu flattened inspect

This parses some code, creates, flattens and inspects a compilation-unit. “Test-
Demo” is a class placed in the package/code-container “CSharpTestCode”.

Traits in CSharp 19

B.3 Trait processing / flattening

The package “CSharpNamespace” provides a class “CSharpTraitsPreprocessor”
that allows to transparently process an “environment” or “directory”. This pro-
cess includes the tasks reading, parsing, updating the environment (linking com-
pilation units), flattening, writing and error report.

CSharpTraitsPreprocessor >>>
flattenDirectory: aDirectory
flattenEnvironment: anEnvironment

A directory might contain one or more files and directories. The preprocessor
recursively processes the given directory and ignores all non-Charp code files.
If no errors occur during the process, you will find the flattened CSharp code
in the directory given to the preprocessor as well as a copy of the originals
(unmodified). You can process multiple directories at once.

Directory >>>
usingDialog
onFilename: aString

An environment is either internal (code stored in the image and accessible via
class and selectors) or external (based on directories on the disk). When loading
the image you already have a default global environment named “Environment”
that contains all code of the package “CSharpTestCode”.

Environment >>>
uniqueInstance
reinitialize

More help is available in the bundle.

20 Stefan Reichhart

References

1. A. P. Black and N. Schärli. Traits: Tools and methodology. In Proceedings ICSE
2004, pages 676–686, May 2004.

2. A. P. Black, N. Schärli, and S. Ducasse. Applying traits to the Smalltalk collection
hierarchy. Technical Report IAM-02-007, Institut für Informatik, Universität Bern,
Switzerland, Nov. 2002. Also available as Technical Report CSE-02-014, OGI
School of Science & Engineering, Beaverton, Oregon, USA.

3. G. Bracha. The Programming Language Jigsaw: Mixins, Modularity and Multiple
Inheritance. PhD thesis, Dept. of Computer Science, University of Utah, Mar.
1992.

4. G. Bracha and W. Cook. Mixin-based inheritance. In N. Meyrowitz, editor, Pro-
ceedings of the Conference on Object-Oriented Programming: Systems, Languages,
and Applications / Proceedings of the European Conference on Object-Oriented
Programming, pages 303–311, Ottawa, Canada, 1990. ACM Press.

5. S. Ducasse, N. Schärli, O. Nierstrasz, R. Wuyts, and A. Black. Traits: A mechanism
for fine-grained reuse. Transactions on Programming Languages and Systems, 2005.
under revision.

6. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In Conference
Record of POPL 98: The 25TH ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, San Diego, California, pages 171–183, New York,
NY, 1998.

7. M. Kobel. Parsing by example. Diploma thesis, University of Bern, Apr. 2005.
8. A. Lienhard. Bootstrapping Traits. Master’s thesis, University of Bern, Nov. 2004.
9. O. Nierstrasz, S. Ducasse, and N. Schärli. Flattening traits. Journal of Object

Technology, 5(3):0–0, May 2006. To appear.
10. N. Schärli. Traits—composable units of behavior, Sept. 2003.

http://www.iam.unibe.ch/∼scg/Research/Traits.
11. N. Schärli. Traits — Composing Classes from Behavioral Building Blocks. PhD

thesis, University of Berne, Feb. 2005.
12. N. Schärli, S. Ducasse, and O. Nierstrasz. Classes = traits + states + glue (beyond

mixins and multiple inheritance). In Proceedings of the International Workshop on
Inheritance, 2002.

13. N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units of
behavior. In Proceedings ECOOP 2003 (European Conference on Object-Oriented
Programming), volume 2743 of LNCS, pages 248–274. Springer Verlag, July 2003.

14. N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits: Composable units
of behavior. Technical Report IAM-02-005, Institut für Informatik, Universität
Bern, Switzerland, Nov. 2002. Also available as Technical Report CSE-02-014,
OGI School of Science & Engineering, Beaverton, Oregon, USA.

