
Enabling the Analysis of PHP Metadata
Parsing and analyzing Annotations in PHP Code

Bachelor’s thesis
Software Composition Group

University of Bern, Switzerland
http://scg.unibe.ch/

handed in by
Michael Rüfenacht

August, 2013

supervised by
Prof. Dr. Oscar Nierstrasz

Fabrizio Perin

Acknowledgements

I especially thank Fabrizio Perin for his efforts and patience during the development of
this thesis. Thank you Prof. Dr. Nierstrasz for giving me the opportunity to work at the SCG
and the given inputs which helped me to finally finish my work. Further, I would like to thank
Jan Kurš, Marc Wiedmer and Mircea Lungu for their reviews and questioning feedbacks.
Thank you guys for taking your time.

i

Abstract

Quality assurance tools and metaprogramming are trending topics in PHP application
development. Whilst not supported natively by the language itself, PHP applications and
frameworks increasingly make use of annotations. The lack of native annotation support
requires programmers to embed metadata in multi-line comments - so called doc blocks - and
extract them in an additional parsing step. The separation of the actual program code and meta
data into different domains and the absence of specifications in terms of syntax complicate
the reasoning about annotations and corresponding behavior.

To enable the analysis of PHP source code and annotation meta data in particular, this
thesis presents a modular extension to the Moose suite. The implemented components enable
the Moose suite to parse and import PHP sources directly from the file system. The generated
unified meta model includes types, their properties and annotations (extracted from the doc
comments) and can be processed and analyzed by the Moose panel. Therefore Moose is
enhanced by the ability to integrate previously separated meta information with the PHP
source code and exploit their analysis.

Title: Enabling the Analysis of PHP Metadata

Author: Michael Rüfenacht

University: University of Bern, Switzerland

Department: Software Compositing Group

Supervisor: Prof. Dr. Oscar Nierstrasz

ii

Contents

1 Introduction 1
1.1 Preface . 2
1.2 Context . 2
1.3 Problem . 3
1.4 Solution . 3

2 Background 5
2.1 The Tools . 6

2.1.1 PetitParser . 6
2.1.2 Moose . 6

2.2 The Language . 7
2.2.1 Grammar . 7
2.2.2 Namespaces . 8

2.3 Annotations & Doctrine . 10
2.4 Related Work . 11

3 Architecture 13
3.1 Overview . 14
3.2 Parsing . 14

3.2.1 Shared . 15
3.2.2 Grammar . 15
3.2.3 Core Parser . 16
3.2.4 Annotation Parser . 17

3.3 Visiting Intermediate Representations . 18
3.4 The Importer and Famix . 18
3.5 The MoosePHPModel . 20
3.6 The Import Command - Wrap up . 20
3.7 Discussion . 20

4 Achievements 21
4.1 Parsing . 22
4.2 Analysis Capabilities . 22
4.3 Discussion . 22

5 Conclusions and Lessons Learned 28

Appendices
A Installation and Quick Start . 32
B Doctrine Annotation Grammar . 34

iii

1
Introduction

1

CHAPTER 1. INTRODUCTION 2

1.1 Preface

The permanently evolving nature of programming languages and their ecosystems require corresponding
tools to be flexible and adaptive. With a growing focus on quality assurance and testability, software
analysis tasks gain importance in software development and maintenance.

Originating as a set of of Perl and C scripts, Rasmus Lerdorf in 1994 [Sev12] invented PHP1. PHP is a
dynamic server-side scripting language designed to fit the characteristics of the internet and especially
the HTTP protocol for server-side application development. The language is the most used server-
side programming language for websites2 and has a growing and active community according to the
TIOBE programming community index3. Despite its popularity, especially the design of the language is
controversially discussed e.g. in Alex Munroe’s “PHP: a fractal of bad design” [Mun12]. Taking a closer
look at the PHP ecosystem nevertheless unveils a pretty mature and advanced understanding and treatment
of software engineering. Projects like Facebook’s HipHop for PHP [ZPY+12] environment (which has
static analysis capabilities) or the fact that Google recently added PHP support to their AppEngine4 indicate
the relevance of the language for bigger applications.

The increasing interest in PHP application development unavoidably leads to increasing requirements
concerning the quality of the code based on a variety of metrics and hence tools capable to perform
adequate analyses. Testing, debugging, profiling and static code analysis became indispensable tools of
quality assurance.

1.2 Context

Popular frameworks written in PHP such as Symfony5, the Zend Framework6, the Doctrine Project7

or PHPUnit8 to name a few, enable the programmer to exploit the benefits of metaprogramming using
annotations. The application framework Flow9 even models aspect-oriented behavior [EFB01] using
annotations. Since PHP does not provide native support for annotations, frameworks and tools started
nesting meta data in comments called doc blocks. The application areas of annotations are similar to
other languages e.g. Routing, Object-Relational-Mapping (ORM) or Dependency Injection (DI). Listing 1
presents how annotations in a doc block which belongs to an instance variable mark the property for
dependency injection in the aforementioned Flow framework.

1http://www.php.net
2http://w3techs.com/
3http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
4https://developers.google.com/appengine/
5http://symfony.com/
6http://framework.zend.com/
7http://www.doctrine-project.org/
8https://github.com/sebastianbergmann/phpunit/
9http://flow.typo3.org/

http://www.php.net
http://w3techs.com/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://developers.google.com/appengine/
http://symfony.com/
http://framework.zend.com/
http://www.doctrine-project.org/
https://github.com/sebastianbergmann/phpunit/
http://flow.typo3.org/

CHAPTER 1. INTRODUCTION 3

1 /**
2 * @Flow\Inject
3 * @var \Examples\Forum\Logger\ApplicationLoggerInterface
4 */
5 protected $applicationLogger;

Listing 1: Annotations in a comment for dependency injection in the Flow framework

1.3 Problem

The PHP implementation evolved significantly in the last years. While the releases of the language mostly
preserve backward compatibility10, faster release cycles and the ongoing change in terms of syntax require
potential analysis tools to be as flexible and extensible as possible.

Moreover, the missing capability of the language core to expose meta data, led to some sort of a
subsystem embedded in the doc blocks. While proponents emphasize the enhanced context of meta
information stored directly in the source code (i.e. compared to configuration files), the distribution over
PHP files makes it hard to track correlations between annotations and the corresponding logic. The absence
of validation as well as normalization capabilities and the lack of specification can make systems prone to
errors and side effects. Even though documentation tools allow to extract and expose annotation data to
the user, they are restricted to documentation without any analysis or reasoning capabilities. The work of
this thesis aims at a seamless integration of meta data analysis into a reverse engineering environment able
to process PHP source code.

1.4 Solution

Enabling the analysis of PHP source code and the exposure of annotation meta data in a extensible and
sustainable way requires a flexible and modular system. As there is no official annotation syntax, our
solution focuses on the grammar implemented by the annotation parser of the Doctrine annotation engine11

which is well documented and and widely used. Further, this grammar applies to all systems e.g. relying
on the Doctrine ORM (such as the aforementioned Symfony and Flow frameworks and all applications
based on them).

To build a parser which provides the desired characteristics in terms of flexibility and reasoning
capabilities, we resorted to the PetitParser12 framework which is also recommended in the Moose doc-
umentation. To process the generated syntax trees we made use of intermediate representations (IR)
and node transformations in combination with visitors to build a unified meta model processable by the
Moose13 suite. The Moose suite is able to analyze, query and visualize the resulting IR depending on
predefined or custom metrics. Moose is able to apply full featured reverse- and re-engineering and analysis

10code of older versions is valid for newer versions of the interpreter
11https://github.com/doctrine/common
12http://scg.unibe.ch/research/helvetia/petitparser
13http://www.moosetechnology.org

https://github.com/doctrine/common
http://scg.unibe.ch/research/helvetia/petitparser
http://www.moosetechnology.org

CHAPTER 1. INTRODUCTION 4

techniques to any suitable source code meta representation.

The remainder of this thesis is organized as follows: Chapter 2 briefly introduces the the tools used and
describes important characteristics of PHP and the state of annotations. Chapter 3 explains the different
components of the implementations and illustrates their interplay. Chapter 4 provides insights to the
achievements and proposed solution’s analysis capabilities and Chapter 5 concludes.

2
Background

5

CHAPTER 2. BACKGROUND 6

2.1 The Tools

To achieve seamless integration of parsing, transformation and analysis, we propose the combination
of PetitParser and Moose, both written in Pharo Smalltalk. More generic information on how to create
and integrate analysis using PetitParser and Moose can be found in work done supplementary to this
thesis [Rü13].

2.1.1 PetitParser

The PetitParser [RDGN10] framework is a framework for programmatic parser and grammar composition.
PetitParser creates top down recursive parsers and exploits the benefits of four parsing techniques presented
in Table 2.1.

Scannerless Parsing [Vis97] avoids lexical
analysis step and simplifies the syntax in a single
formalism

Parser Combinators [Hut92] creates a graph
of primitive parsers to establish combinatory
parsing

Parsing Expression Grammars
(PEG) [For04] provides ordered choice
and additional predicates to enable the
recognition of non-context free languages

Packrat Parsing [For02] guarantees linear
parse time through memoization and infinite
lookahead

Table 2.1: Parsing techniques adopted by PetitParser

PetitParser provides a concise internal domain specific langauge [Fow10] (DSL). The creation of
parsers with PetitParser is modular, reusable and flexible which enables extension, reification and reasoning
on the modelled languages. In contrast to parser generators which produce static systems, parsers built
with PetitParser can be composed, changed and inspected dynamically which enables them to parse
heterogeneous systems. PetitParser allows flexible composition of parsers and node transformations to
prepare the parsing result for further processing which makes it a good choice for the integration into
Moose.

2.1.2 Moose

Moose [DLT00, DLT01] is a software and data analysis platform. Moose provides a language-independent
environment for reverse- and re-engineering purposes, offering a variety of analysis capabilities on
dedicated unified meta models of structured data. Besides the ability to establish custom reasoning on
structural representations, the platform provides a number of generic metrics, queries, mining algorithms,
browsers and visualizations. In contrast to similar tools, Moose is not restricted to a specific functionality
such as specific metrics or visualizations and enables flexible creation of views and reports. Also, analysis
can be done using a convenient user interface called MoosePanel. The possibility to attach custom importers

CHAPTER 2. BACKGROUND 7

and the integration of a unified meta model called FAMIX [Tic01] make Moose inherently extensible and
open to any kind of source code analysis or analysis of structured data in general.

2.2 The Language

PHP1 lacks a formal specification and is therefore defined through its (open source) reference implementa-
tion at http://php.net. To sum it up, PHP is an imperative, dynamic scripting language designed
for server-side application development, by default interpreted by the ZendEngine2 (consisting of an
interpreter and a virtual machine). The syntax of PHP consists of numerous elements adopted from C or
Perl syntax. Next to a number of interfaces for servers accessing PHP (Server-API, SAPI), it is also used
for command line scripting via the command line SAPI.

Programs written in PHP are usually organized in files with the .php extension which can be dynamically
included and executed at run-time. PHP source code needs to be enclosed in dedicated delimiters <?php
and ?> and can directly be embedded in HTML markup generating valid XML syntax. Embedded HTML
is ignored by the interpreter but makes PHP a heterogeneous language by design. In parallel to the initial
procedural design, version 3 introduced an object model for full object-oriented programming support.
At the time of writing, PHP supports - besides the procedural elements - class based constructs such as
interfaces, classes and traits with a single inheritance hierarchy. The type system is dynamically and
weakly typed relying on duck typing3 and name equivalence. As pointed out by Zhao et al. [ZPY+12] or
Hills et al. [HKV13], the dynamic nature and flexibility of the language complicates static analysis. Even
the internal Reflection API, which provides reflective behavior enabling introspection or the object model’s
basic intercession capabilities, have reduced access to the dynamic language features such as variadic4

functions and methods or dynamic invocations.
Listing 2 presents a contrived method which resolves a controller i.e. in a model view controller (MVC)

based application. The snippet demonstrates the difference between a default instantiation and invocation
in and the usage of a variadic method and dynamic invocation. This may look tedious, but allows dynamic
method invocation without reflection or restrictions of the signature. Static analysis is not able to track the
method parameters or the dynamic invocation without further effort. Especially if types and procedures
are resolved at run-time, based on information that resides outside the domain of the analysis e.g. user
input or additional configuration.

2.2.1 Grammar

The official PHP documentation is a collection of examples on how to use the language, is partially
incomplete and does not give any grammar specification. PHP provides an internal tokenizer function5

1initially standing for Personal Home Page, renamed to the recursive acronym PHP: Hypertext Preprocessor
2Zend http://www.zend.com January, 2013
3Valid semantics depend on the actual set of methods and properties of an object.
4Methods and functions can take an arbitrary number of parameters without defining them in the declaration.
5PHP: token_get_all - Manual http://www.php.net/manual/en/function.token-get-all.php June, 2013

http://php.net
http://www.zend.com
http://www.php.net/manual/en/function.token-get-all.php

CHAPTER 2. BACKGROUND 8

1 public function executeController($id, $title){
2 $controller = new BaseController();
3 return $controller->execute($id, $title);
4 }
5

6 public function executeController(){
7 $arguments = func_get_args();
8 $controllerClass = 'BaseController';
9 $controller = new $controllerClass;

10 $executorMethod = 'execute';
11 return \call_user_func_array(array($controller, $executorMethod), $arguments);
12 }

Listing 2: Two equal methods instantiating a controller and invoking a method (methods are marked with
the function keyword) to demonstrate dynamic features of PHP

token_get_all(string) — which performs lexical analysis on any arbitrary string — to tools written in
the language itself.

The official Github repository6 of PHP hosts the source code of the ZendEngine containing two
particular files of interest: zend_language_parser.y and zend_language_scanner.l. To be more precisely,
these files contain a syntax specification and lexer definition for parser generators such as Yacc [Joh75]
which generate LALR [Der69] parsers. Solutions such as PHP-Parser7 use implementations similar to
YACC or derivates, like PHP itself which internally uses GNUBison8.

While these contents provide the necessary specifications to derive a reliable grammar and build a
robust parser upon, they imply some characteristics of the grammar such as (indirect) left-recursiveness
and ambiguity. Both are hard to handle in recursive top-down [RS70] PEG parsers as generated by the
PetitParser framework and usually require extensive rewriting of the grammar (in contrast to bottom-up
parsers produced by the mentioned generators). As a consequence rewritten or adapted grammars are
almost impossible to validate in terms of the accepted language.

2.2.2 Namespaces

Introduced in PHP 5.3, namespaces were quickly adopted by projects following an object-oriented approach.
Replacing tedious class naming conventions, namespaces enabled cleaner organization of source code,
simplified the avoidance of name collisions and improved dynamic class-loading mechanisms. In absence
of a dedicated annotation-type, annotations in PHP are defined as classes. To enable the desired analysis
capabilities and extraction of the corresponding logic, namespaces have to be properly resolved. The
corresponding chapter of the manual defines the terms listed in Table 2.2 used in the following subsections.

6zend-src https://github.com/php/php-src/tree/master/ January, 2013
7https://github.com/nikic/PHP-Parser
8http://www.gnu.org/software/bison/

https://github.com/php/php-src/tree/master/
https://github.com/nikic/PHP-Parser
http://www.gnu.org/software/bison/

CHAPTER 2. BACKGROUND 9

Term Description PEG
segment/identifier a part of the namespace (subspace) [a-zA-Z‘_’][a-zA-Z0-9‘_’]*
separator \ separating the segments of a namespace ‘\’
unqualified name the class name (a single identifier) identifier
qualified name identifiers divided by at least one separator

ending with the unqualified name
(segment separator)+ identifier

fully qualified name qualified or unqualified name prepended
with a separator (absolute namespace)

separator (segment separator)*
identifier

Table 2.2: Namespace term definitions and derived PEG equivalents

2.2.2.1 Namespace Declaration & Aliasing

Namespaces affect four structural elements of the code: classes, interfaces, functions and constants but do
not constrain the file or folder structure of a PHP application. Namespaces are declared in two ways:

Initial namespace statements The initial namespace must be declared in the initial top level statement
of a file and applies to all code up to the next namespace statement or the end of the file. Listing 3
gives a short overview over the syntax.

1 namespace Framework\Collections;

2 class Iterator {

3 }

Listing 3: Definition of a class in a namespace

Namespaced blocks Declared namespaces apply to a statement block as shown in Listing 4. Files
structured in that manner are not allowed to have any statements outside containing namespaced
blocks.

1 namespace Framework\Collections {

2 class Iterator {

3 }

4 }

Listing 4: Definition of a class in a namespace block

To avoid redundant and tedious writing of fully qualified names for the affected language constructs, PHP
allows namespace aliasing. It is possible to alias parts of the namespacing using the use nspath as alias

construct, usually referred to as import-rules. Listing 5 shows how the previously (Listing 3 and 4) declared
classes can be aliased and referenced.

1 namespace Framework\Application;

2 use Framework\Collections as Collections;

3 use Framework\Sets\Set; //as Set;

4

5 $it = new Collections\Iterator();

CHAPTER 2. BACKGROUND 10

6 $st = new Set();

Listing 5: Instantiation of namespaced types

2.2.2.2 Namespace Resolution

The ZendEngine resolves namespaced identifiers at run or compile-time, depending on the existence of
import-rules concerning the accessed type. Table 2.3 lists the rules that apply during the resolution of
namespaced types.

Resolution of named types with or without (marked with −) affecting import rules.

Name Import-Rule Example Comment
fully-qualified − \A\B→\A\B access without resolution (abso-

lute), independent of the current
namespace

un-/qualified use A\B\C as C C\D→A\B\C\D
C→A\B\C

resolved at compile-time, inde-
pendent of the current names-
pace

un-/qualified − namespace A\B
C\D→A\B\C\D

the current namespace is
prepended at run-time

Table 2.3: Overview over namespace resolution rules

2.3 Annotations & Doctrine

The application domain of meta data residing in PHP doc block comments is not only documentation
anymore. They provide a way to expose program context without any influence on the semantics of the
code. A plethora of frameworks and libraries started to exploit the benefits of an additional meta layer at
run-time. Initialized by the capability of PHP’s Reflection API (since version 5.1) to access doc block
comments, a number of libraries came up targeting the ability to extract annotations comparable to JAVA
before JSR-1759. Listing 6 shows the difference between ordinary comments and a doc block which is
accessible using reflection. The PHP interpreter therefore creates different lexical tokens and while the
comments are ignored by potential opcode caches, the doc blocks are preserved.

1 // single line comment

2 /* multi line comment */

3 /**
4 * a doc block

5 */

Listing 6: PHP comments (T_COMMENT token) compared to a doc block starting with /**

(T_DOC_COMMENT token)

9http://jcp.org/en/jsr/detail?id=175

http://jcp.org/en/jsr/detail?id=175

CHAPTER 2. BACKGROUND 11

Despite the growing usage, requests for built-in annotation support were declined10 or are still in
discussion11. The demand for metaprogramming capabilities led to several different syntactical approaches
on exposing and handling data. One particular approach grew to a de-facto standard: the Doctrine 212

annotation engine. Figure 2.1 briefly depicts the impacts on PHP annotation support of the last decade.

Do c trine 2

Annotat ion

Engine

2 0 0 82 0 0 8

RFC: C lass Metadata

2 0 1 02 0 1 0

PHPDo cumentor

2 0 0 02 0 0 0

Re!ec tion API

I mprovements

2 0 0 52 0 0 5

RFC: Annotat ions in

DocBlocks

2 0 1 12 0 1 1

Figure 2.1: Impacts on annotation support

The Doctrine Project is a set of libraries mainly designated for persistence purposes. Especially its
object relational mapper is integrated in numerous frameworks, also resorting to the included annotation
engine. PHP’s annotations are comparable to the JAVA version (in contrast to attributes in C#, or pragmas in
Smalltalk) as exposed by the grammar of Doctrine’s internal parser (Appendix B). The grammar indicates
two types of annotations, deconstructed in Figure 2.2, namely marker annotations and parameterized

annotations. The annotation name is a qualified name and gets resolved to a class name (as described in
2.2.2.2). All defined annotations are themselves annotated as @Annotation. Their constructor takes an
associative array of arguments which means that the corresponding constructor does not explicitly specify
which parameters are valid, hence possible values are derived from their instances and may be incomplete.

@ (a n n o t a t i o n N a m e (p a r a m e t e r s

Marker Annotat ion

Parameter ized Annotat ion

Figure 2.2: Types of annotations deconstructed

2.4 Related Work

A list of static analysis tools for PHP can be found on http://phpqatools.org/. Most of these
tools provide analysis concerning a limited set of metrics or a dedicated ruleset. As already mentioned,
HipHop for PHP13 also has static analysis capabilities. According to their documentation HipHop for

10Request for Comments: Class Metadata https://wiki.php.net/rfc/annotations, January, 2013
11Request for Comments: Annotations in DocBlock https://wiki.php.net/rfc/annotations-in-docblock

June, 2013
12Doctrine, the doctrine project http://www.doctrine-project.org/, January, 2013
13https://github.com/facebook/hiphop-php/

http://phpqatools.org/
https://wiki.php.net/rfc/annotations
https://wiki.php.net/rfc/annotations-in-docblock
http://www.doctrine-project.org/

CHAPTER 2. BACKGROUND 12

PHP is restricted to PHP version 5.2, which is significantly different in terms of features compared to 5.3
(which e.g. introduced namespaces, closures, late static binding). In general, these tools neither provide
interactive analysis capabilities like Moose does, nor do they support the analysis of annotations.

3
Architecture

13

CHAPTER 3. ARCHITECTURE 14

3.1 Overview

The chosen approach to enable the analysis of source code written in PHP mainly depends on 3 stages:
The parsing, the generation of an AST and transformation into the unified FAMIX model followed by the
import into Moose. Figure 3.1 depicts an overview of correlations between the different stages, their result
and the responsible actor.

P A R S E T R E EP A R S E T R E E
Concrete Syntax Tree

T R E E N O D E S (I R)T R E E N O D E S (I R)
Abstrac t Syntax Tree (PPPHPNodes)

F A M I X M O D E L (I R)F A M I X M O D E L (I R)
Uni!ed Meta Model

M O O S E M O D E LM O O S E M O D E L
Container for a concrete FAMIX model

P A R S I N GP A R S I N G T R A N S F O R M A T I O NT R A N S F O R M A T I O N I M P O R TI M P O R T

C o r e P a r s e r I m p o r t e r

Figure 3.1: Overview over the stages the application runs through, the generated entities and the respective
main actors.

As a consequence to the previous elaborations in Chapter 2, the example implementation is subject to
some restrictions.

1. The implemented parser adopts the features and syntax of PHP 5.3.X which is the minimum
requirement for the Doctrine annotation engine.

2. Due to the left-recursiveness, ambiguity and complexity of the grammar sources discovered in
Section 2.2.1, the concrete implementation does not directly correspond to the reference implemen-
tation.

3. The implemented solution focuses on an abstract system view, sufficient to enable annotation analysis.
Hence, it extracts structural elements such as types and does not explicitly analyze statements and
expressions after the parsing. Nevertheless the core parser is able to parse them and can be extended
to support analysis of procedural elements e.g. to compute metrics like cyclomatic complexity.

4. Dynamic class aliases not done using the mentioned import-rules cannot be resolved and have to be
inspected manually in the browser.

3.2 Parsing

Parsers for large grammars based on the PetitParser framework can be established following a simple
inheritance pattern. Figure 3.2 illustrates the general way to derive a parser and the concrete implementa-
tion containing an additional layer. The PPPHPCoreShared parser was introduced to have a lightweight
superclass for the annotation parsers further explained in Section 3.2.1.

Every parser along the hierarchy performs further transformations and refinements on the structural
representations generated by its superclass. The grammar parser specifies a classical set of symbols
and productions, while the core parser reifies the results by converting the concrete syntax tree into an
initial IR which consists of dedicated entities. The PetitParser framework provides a base class for the

CHAPTER 3. ARCHITECTURE 15

G r a m m a r

P a r s e r

P P C o m p o s i t e P a r s e r

P P P H P C o r e S h a r e d

P H P C o r e G r a m m a r

P P C o m p o s i t e P a r s e r

P H P C o r e P a r s e r P H P D o c t r i n e A n n o t a t i o n P a r s e r

P H P D o c t r i n e A n n o t a t i o n G r a m m a r

Figure 3.2: Pattern to create a parser and the approach token in the concrete implementation.

implementation of grammars in the form of a PEG parser, the PPCompositeParser. A PPCompositeParser

hosts primitive parser combinations which are composed to productions stored in an accordingly named
instance variable. Every instance variable represents a parsing rule and holds the corresponding parser
(instantiated on initialization by equally named accessors). Early initialization allows to exploit caching,
enables mutual recursive rule definitions and makes the code expressive and readable.

3.2.1 Shared

The PPPHPCoreShared parser was introduced to have a lightweight superclass for the annotation parser.
Besides a number of helper methods for syntactic sugaring, it hosts parsing rules for scalar data types and
basic namespace parsing mechanisms to ensure consistent behavior across the core parsers and modules
hooked in the parsing process. We preferred inheritance over horizontal because the PetitParser framework
and especially its testing environment provides limited support for dependencies between composite
parsers.

3.2.2 Grammar

The PPPHPCoreGrammar is the basic parser of the application and implements the fundamental literals and
productions of the grammar not covered by the shared parser. The construction of such a parser benefits
from a reliable grammar specification. Unfortunately, PHP and the corresponding documentation do not
provide a suitable specification, hence the written grammar of the example implementation is a deriva-
tion from real-world examples. Transformations towards PHP’s internal parser generator specifications
would require further investigations. Especially the expression syntax is utterly complex in its standard
implementation, modelling specific rules for different contexts. The corresponding documentation1 states:

“PHP takes expressions much further, in the same way many other languages do. PHP is an

expression-oriented language, in the sense that almost everything is an expression.”

1http://www.php.net/manual/en/language.expressions.php

http://www.php.net/manual/en/language.expressions.php

CHAPTER 3. ARCHITECTURE 16

The grammar defines numerous special cases for expressions, using different expression terms de-
pending on the specific operator and the position of the term i.e. if it stands on the right or left side of the
operator.

We created a subclass of the PPCompositeParser - the PPPHPCoreGrammar - which models the base
grammar and creates an initial AST consisting of collections of literal parsing results. To handle the
complex expressions we made use of the PPExpressionParser, able to overcome difficulties occurring in
expressions e.g. operator precedence. In contrast to PHP’s expression rules the PPExpressionParser only
supports the definition of a single expression term which makes it hard to eliminate possible ambiguities in
expressions.

Listing 7 presents how a class declaration is modelled. Instance variables such as comment or the
classKeyword are literal parsers or parser combinations created using the asParser method and returned
by the corresponding accessor e.g. the classKeyword method. Comments before the class are directly
taken into account in the classDeclaration production, to preserve the context for further processing and
annotation parsing.

1 PPPHPCoreGrammar >> classKeyword

2 ↑ 'class' asParser trim

3

4 PPPHPCoreGrammar >> classDeclaration

5 ↑ comment optional,

6 classModifiers optional,

7 classKeyword,

8 className,

9 (extends, fullyQualifiedClassName) optional,

10 (implements, (fullyQualifiedClassName separatedBy: comma) withoutSeparators)

optional,

11 classBody

Listing 7: The classDeclaration production of the grammar

3.2.3 Core Parser

The PPPHPCoreParser enhances the parsing rules (i.e. composed primitive parsers) created by the grammar
to PPActionParsers. Action parsers apply a block closure on any successful parse result (i.e. collections
of literals). The executed blocks transform the parsing results to according tree node objects. The resulting
IR is a tree structure consisting of dedicated nodes which serve two core purposes: convenient access to
the properties of the code’s structural elements and the exposure of entry points for visitors (elaborated
further in Section 3.3). In our case the PPPHPCoreParser has additional responsibilities (besides its core
functionality of AST transformation and IR generation).

1. Resolution of namespaces
The parser implements the ZendEngine’s namespace resolution policy introduced in Table 2.3 by
hooking into the parsing of the corresponding productions. The parser builds up a dictionary of
import-rules i.e. an alias table and resolves affected type names during the parsing to its fully

CHAPTER 3. ARCHITECTURE 17

qualified namespace name. This makes the parser stateful. To preserve its idempotence2 we flush
the stored aliases at the according productions e.g. the end of a file.

2. Application of the annotation parser
To make the annotation resolution as pluggable as possible, the core parser different annotation
parsers to be hooked in by extending the annotation rule and add additional choices. At the
moment, the implementation only supports the elaborated doctrine annotation syntax using an
PPPHPDoctrineAnnotation parser (Section 3.2.4) as #doctrineAnnotation production.

Listing 8 presents how the parser generates an element of the IR i.e. a PPPHPClassNode. The parser
transforms the initial parser created by its superclass to an action parser using ==> aBlock. The applied
block first resolves the namespaces and creates a class node. Then properties of the class are unwired:
the modifiers (i.e. ‘abstract’ or ‘final’), annotations in the doc block, super types and members, namely
methods variables and constants, are added using a double dispatch. Partial rules such as the class members
are already resolved due to the recursive top down parsing (depth first algorithms). After processing all
elements the block returns the generated class node.

1 PPPHPCoreParser >> classDeclaration

2 ↑ super classDeclaration

3 ==> [:token |

4 | classNode localNamespace |

5 localNamespace := self currentNamespaceResolve: token fourth.

6 classNode := PPPHPClassNode createFromNamespaceStack: localNamespace.

7 classNode addModifier: token second.

8 self setupDocBlockAndAnnotationsOn: classNode fromToken: token first.

9 self setupSuperTypesOn: classNode fromToken: token fifth.

10 self setupInterfacesOn: classNode fromToken: token sixth.

11 token seventh do: [:member | member addToParent: classNode].

12 classNode]

Listing 8: Transformation of a classDeclaration to its intermediate representation i.e. a PPPHPClassNode

3.2.4 Annotation Parser

The PPPHPDoctrineAnnotationGrammar and the derived PPPHPDoctrineAnnotationParser are subclasses
of the PPPHPCoreShared and embrace the same strategy as the core grammar and parser do. The annotation
parser implements the grammar listed in Appendix B and generates dedicated PPHPAnnotationNodes. To
prevent the annotation grammar from consuming documentation tags, a blacklist is maintained for standard
documentation tags3. To ignore more than these tags could cause the parsing to exclude expected results.

2freedom of side effects if executed repeatedly [DKSJ12]
3http://www.phpdoc.org/docs/latest/for-users/phpdoc-reference.html

http://www.phpdoc.org/docs/latest/for-users/phpdoc-reference.html

CHAPTER 3. ARCHITECTURE 18

3.3 Visiting Intermediate Representations

The core and the annotation parser both wrap the literal parsing results into entities suitable for further
processing. The generated AST nodes are value objects arranged into a traversable tree and provide an
accept: aVisitor method (according to the visitor pattern). The usage of visitors in combination with
double dispatches allows us to process arbitrarily complex data structures without type checks. Due to the
dynamic typing of Pharo, the visitor needs to implement concrete methods for each tree node type. The
visitor connects the parsing step to the importing process by delegating transformations of the tree nodes
to an importer which generates the final IR, an unified FAMIX model. Listing 9 presents the usage of the
visitor pattern in a PPPHPClassNode and how the PPHPConcreteVisitor delegates the node transformation
to its dedicated importer. A more in depth description of the workflow is depicted by Figure 3.3.

1 PPPHPClassNode >> accept: aVisitor

2 ↑ aVisitor visitAPPPHPClassNode: self
3

4 PPPHPConcreteVisitor >> visitAPPPHPClassNode: node

5 ↑ self importer ensureAClass: node

6

Listing 9: Usage of the visitor pattern to traverse the IR. The double dispatch performed between the
visitor and the node enables the necessary context in terms of type for the importer.

3.4 The Importer and Famix

The extension of Moose is based on importers. Importers are handling the generation and transformation
of data into a suitable representation. For the particular case of source code, the Moose suite provides the
FAMIX meta model, a language agnostic structural representation of object-oriented programs. Besides the
creation of structural representations, the importer maintains types defined in a system (comparable to a
symbol table) and creates appropriate relations amongst them.

Listing 10 presents the process of ensuring a class, called by the visitor in Listing 9. The importer
creates a type for the passed class node i.e. a FAMIXClass. While creating the class node the importer
consults a dictionary which contains all types already explored to prevent duplications and ensure consis-
tency amongst all types in the system. The ensureAType selector collects methods and fields of the type by
reassigning the visitor to child nodes, analogous to the handling of the interfaces at the end of the listing
before returning the FAMIXClass object.

As explained in Section 3.3 the importer and the visitor are members of each other. The importer
designates the traversal strategy, maintains the context of ensured4 nodes and reassigns the visitor to
branches of the tree. The visitor guarantees a type independent treatment of the nodes by performing a
double dispatch. Figure 3.3 illustrates the process of importing, especially the interplay of visitor and
importer.

4the process of transforming the nodes into their respective FAMIX representation and collecting information about the existence
of structural elements e.g. defined classes

CHAPTER 3. ARCHITECTURE 19

i m p o r t e r : P P P H P I m p o r t e r c l a s s : P P P H P C l a s s N o d e m e t h o d : P P P H P M e t h o d N o d e

v i s i t o r : P H P V i s i t o r

a c c e p t : v i s i t o r

v i s i t C l a s s : c l a s s

e n s u r e A C l a s s : c l a s s

t h e F A M I X C l a s s

a d d M e t h o d

t h e F A M I X C l a s s

t h e F A M I X C l a s s

m e t h o d

g e t M e t h o d

a c c e p t : v i s i t o r

v i s i t M e t h o d : m e t h o d

e n s u r e A M e t h o d : m e t h o d

t h e F A M I X M e t h o d

t h e F A M I X M e t h o d

t h e F A M I X M e t h o d

Figure 3.3: Excerpt of the importer workflow.

To achieve a convenient access, the importer provides an import method taking a folder reference as
an argument. After recursively indexing the folder and filtering .php and .inc files, the importer uses the
core parser to parse the code and attaches the visitor to the result (which refers back to the importer as
already elaborated). After finishing the importing process, the importer populates a MoosePHPModel with
all tracked entities and returns it.

1 MJPHPImporter >> ensureAClass: aPPPHPClassNode

2 | classNode inheritance node |

3 classNode := self createType: aPPPHPClassNode.

4 self ensureAType: classNode from: aPPPHPClassNode.

5 aPPPHPClassNode interfaces

6 do: [:interface |

7 inheritance := FAMIXInheritance new.

8 inheritance superclass: (interface accept: self phpVisitor).

9 inheritance subclass: classNode].

10 ↑ classNode

Listing 10: The process of ensuring a class, consisting of type creation and population with its members.

CHAPTER 3. ARCHITECTURE 20

3.5 The MoosePHPModel

The MooseModel is a Moose internal container or grouping entity that allows Moose to manipulate and
manage entire models. After adding all FAMIX entities to the moose model, it provides an installing
mechanism5 which makes the meta representation available in the MoosePanel. As soon as the model is
installed it is ready to be queried, visualized and measured. We derived a MoosePHPModel which is able
to integrate PHP specific entities into the MoosePanel by exposing accessors e.g. for all classes or methods
in the system. In our case the MoosePHPModel mainly handles the integration of annotations and classes
without loosing the default analysis capabilities of Moose since we use slightly changed FAMIX nodes.
Listing 11 presents an example of one of these accessors which filters interfaces and makes them available
in the top level navigation of the MoosePanel. The enabled analysis capabilities are elaborated further in
Section 4.2.

1 allInterfaces

2 <navigation:'All interfaces'>

3 ↑ self allClasses select: [:item | item isInterface]

Listing 11: Example of an accessor in the MoosePHPModel which selects interfaces and is annotated to
be included in the MoosePanel’s navigation

3.6 The Import Command - Wrap up

Our implementation provides an import command which is integrated in the UI of the MoosePanel. The
import command allows a convenient access to the established functionalities and aggregates the mentioned
components. The import command mainly triggers the file picker of the environment and passes the
selected directory reference to the dedicated importer method before it installs the returned model.

3.7 Discussion

The most important characteristics of the chosen approach is its modularity and extensibility. All stages
of the processing can be extended and provide entry points for enhancements. If implemented properly,
the usage of visitors allows the importing mechanism to work independent from the complexity of the
traversed IR. Since PHP is backwards compatible, parsers for newer versions can be derived from the core
parser only implementing new features.
Whilst the solution follows an architectural approach similar to the implementations for Smalltalk or Java
it still has its weaknesses in terms of coupling or separation of concerns. A good example to consider is
the missing separation between the core parsing and the namespace resolution which makes the parser
stateful and could therefore be prone to side effects. Also, the concrete population of the model happens
iteratively instead of relying on a visitor.

5Which adds the model to the Moose cache and makes it available in the interface

4
Achievements

21

CHAPTER 4. ACHIEVEMENTS 22

4.1 Parsing

As stated, the core parser is not based on a suitable specification and therefore almost impossible to be
validated. To get an overall impression of the quality of the parser, we did evaluate a number of software
systems written in PHP and analyzed possible errors and their sources. Table 4.1 presents an overview
of a number of parsed systems and error ratio of the parser. The failures column lists the number of files
the parser was unable to process in comparison to the number of files with the dedicated .php and .inc

extensions. The table also lists the source lines of code (SLOC1, not including empty lines and comments)
to illustrate the size of the projects. There are three main reasons the parser failed listed below and depicted
in Figure 4.1.

1. Files that do not contain PHP code result in a parse error. Whilst perfectly fine for the ZendEngine,
the parser expects the files to contain any PHP statement, to avoid false positives when parsing PHP
nested in HTML.

2. Even though all system specifications state a minimum requirement of PHP version 5.3.* or earlier,
some files contain code written in PHP 5.4.*. These components mostly make use of the new traits
construct and are included at run-time depending on the system’s PHP version.

3. The grammar suffers from not being fully accurate in comparison to the reference implementation
of the ZendEngine. Unexpected placement of comments (they can be literally everywhere) and
collision of reserved names and identifiers can lead to errors during the parsing of expressions (e.g.
static method calls with a literal identifier self::NULL()). Up to now we were not able to rewrite
the expression engine such as it is fully able to parse these cases without causing others to fail.

4.2 Analysis Capabilities

The integration into Moose allows us to browse and visualize the structural representation of the source
code and apply metrics. We are able to load and parse PHP source directly from the file system and create a
structural representation including annotations for doctrine based systems. The following figures illustrate
some of the core functionalities of Moose analyzing PHP code. We are able to analyze PHP systems in
terms of system complexity (Figure 4.2), perform queries e.g. track occurrences of PHP’s magic methods2

(Figure 4.3), visualize and browse namespace constellations (Figure 4.4 and 4.5) and analyze annotation
constellations and relationships (Figure 4.6 and 4.7), to name a few examples.

4.3 Discussion

We did create a problem oriented implementation to enable basic PHP source code and annotation meta
data analysis. Whereas we achieved the desired requirements to the system such as extensiblitiy and

1calculated using the CLOC tool http://cloc.sourceforge.net/
2interceptor methods

http://cloc.sourceforge.net/

CHAPTER 4. ACHIEVEMENTS 23

System Description Version Files SLOC Failures
Wordpress Blog Platform 3.6 495 131’075 0
PHPUnit Testing framework 3.7.24 374 29’338 0
Drupal Web CMS 7.22 274 83’460 1
phpMyAdmin Mysql database management soft-

ware
4.0.5 410 133’980 0

Zend Framework Application framework 2.2.2 2202 150’477 13
CodeIgniter Application framework 2.1.4 147 24’382 1
Symfony Application framework, (standard

distribution with vendors)
2.3.3 2510 155’020 10

Doctrine Persistence & Component frame-
work

2.3 575 45’189 0

Monolog Logging framework 1.6 52 2’523 0
Assetic Asset management framework 1.1.2 97 5’239 0
Swiftmailer Mailer library 5.0.1 166 8’633 0
Twig Templating engine 1.13.2 185 8’299 0
Joomla WebCMS (full package) 3.1.5 1850 188’894 0
TYPO3 Web CMS 6.1.3 3557 305’590 19

Total: 12’894 1’272’099 44

Table 4.1: Parsing results on a corpus of PHP systems, resulting in an error ratio of ~0.003

Figure 4.1: Error distribution in the tested frameworks.

CHAPTER 4. ACHIEVEMENTS 24

flexibility, the implementation leaves room for improvements.
The processing steps after the initial parsing ignore procedural code constructs and only track structural

entities such as classes and interfaces including their members, functions and all containing namespaces.
To fully exploit Moose’s analysis capabilities, further investigations in a more fine grained analysis of
statements and expressions are necessary. Also, it is nearly impossible to reason on the quality of the
parsing results and expressiveness of the grammar. There are no dedicated specifications or validation
possibilities than to collect empirical data which also is true for the annotation handling. To prevent the
annotation analysis from suffering from possible interferences with documentation tags we added filters
to the system that prevent it from including annotations not defined in the system possibly excluding
elements of interest (its possible to overcome these limitations by manually querying the system in Moose

or generating custom reports).

Figure 4.2: Excerpt of an interactive system complexity view.

CHAPTER 4. ACHIEVEMENTS 25

Figure 4.3: Perfoming queries is possible directly in the browser e.q. querying magic methods (interceptor
methods) in all methods of the system by executing Smalltalk code

#('__call' '__set' '__get' '__invoke' '__isset') includes: self name

Figure 4.4: Hierarchical and interactive view of namespaces.

CHAPTER 4. ACHIEVEMENTS 26

Figure 4.5: Namespace and member visualization view, allows to browse and analyze type in the context
of their respective namespace.

Figure 4.6: Browsing of annotation types which lists all annotation defined in the systems and exposes
their corresponding classes and annotated entities.

CHAPTER 4. ACHIEVEMENTS 27

Figure 4.7: Interactive annotation constellation visualization which allows direct browsing of annotations
and annotated entities.

5
Conclusions and Lessons Learned

28

CHAPTER 5. CONCLUSIONS AND LESSONS LEARNED 29

The proposed solution enables static analysis of PHP source codes and especially nested meta data
in a reusable, dynamic and extensible way. Even though our implementation suffers from inaccuracies
concerning PHP’s expression grammar, the PetitParser framework provides flexibility in terms of the
implemented grammar and enables the parser to be adapted dynamically to syntax changes e.g. caused
by updates of the PHP core. Furthermore, the integration into the Moose suite allows to perform static
analysis tasks that go beyond the focus of this work. The user interface of Moose enables an interactive,
reusable and flexible analysis approach for parsed sources of any kind without the need for tedious external
configuration such as rulesets.

As a critical point it should be mentioned that the PetitParser framework is not necessarily the most
suitable tool to parse grammars similar to PHP’s. The missing possibility to directly transform the PHP
reference implementation’s parser specification into a PetitParser requires further analysis of the grammar’s
characteristics or tools that generate LR parsers suitable for the usage with Moose. As a consequence the
achieved results cannot be directly verified and reasoned upon. Our implementation is mostly derived from
real-world examples and hence may suffer from inaccuracies, especially concerning the utterly complex
expression grammar of PHP. Moreover we left out most of the procedural parts subsequent to the parsing
since they do not influence the model required for the targeted analysis.

Nevertheless, the implemented solution covers a variety of entry points for future work and enhance-
ments. PHP’s backwards compatibility equals the principle of inheritance and parsers for newer versions
can easily be derived from the core parser as soon as the remaining procedural elements are implemented.
The work on the parsing and importing components exposed several points worth considering for future
work on the topic and treatment of similar work in general.

1. Research: To do enough research upfront avoids recurring work and fundamental design flaws. We
took up work without any theoretical knowledge of parser theory and only the most basic awareness
of grammar classifications. The identification of possible difficulties or misfits between the chosen
tools, the approach and the targeted goals are essential for the success of such a project. Once
more, a constant reevaluation of assets and requirements in the sense of an agile workflow would
have prevented the implementation from being stagnant. In our case an early evaluation of the
sources mentioned in Section 2.2.1 would indicate possibly critical parts of the grammar concerning
top-down recursive parsing as in PetitParser and LALR parsers.

2. Requirements: A clearly and precisely specified goal enables us to validate our work. Enabling
PHP meta data analysis is an interesting topic but lacks a reference point to validate against. Neither
the parsing, nor the established analysis can be properly verified and tested.

3. Implementation: “Make it work, make it right, make it fast.” may not be the best approach for
our implementation. Some refactorings are still pending due to dirty implementations which are
non-trivial to be rewritten e.g. the model population or the namespace resolution which both could
be solved more elegantly using visitors.

4. Testing: To test the components in systems as interleaved as the proposed solution is indispensable
especially when not being able to rely on a specification. The grammar we implemented is a complex

CHAPTER 5. CONCLUSIONS AND LESSONS LEARNED 30

and fragile construct. During the parsing of bigger systems to identify potential weaknesses we
iteratively made subtle changes. Without an according testing suite we are not able to guarantee
that allegedly fixes do not break other parts of the implementation. While we used Pharo and
PetitParser’s internal testing suites future work would probably benefit from a continuous integration
server parsing a large codebase on a regular basis.

Appendices

31

32

A Installation and Quick Start

The installation of the importer also installs the parsing components. The easiest way to install is to
load the components into a Moose image downloadable on from their website1. The code in Listing 12
installs the importer and the parser. To install the parser as a standalone component, consider the code
of Listing 13.

1 Gofer new

2 url: 'http://smalltalkhub.com/mc/FabrizioPerin/MooseEE/main';

3 package: #ConfigurationOfMooseJEEPHP;

4 load.

5 (Smalltalk at: #ConfigurationOfMooseJEEPHP) perform: #loadWithoutPetit

Listing 12: Installing the importer and the parser (requires Moose to be installed).

1 Gofer new

2 url: 'http://smalltalkhub.com/mc/Moose/PetitPHPParser/main';

3 package: #ConfigurationOfPetitPHPParser;

4 load.

5 (Smalltalk at: #ConfigurationOfPetitPHPParser) perform: #loadDefault

Listing 13: Load the PHPParser

After the installation, opening the MoosePanel can be done directly using the dedicated world menu
World→Moose→MoosePanel or by simply evaluating MoosePanel open. The interface is mostly self
explanatory and provides context menus for all its elements. To import PHP source code, the menu in the
upper right corner of the panel includes a command labeled “Import PHP sources from the file system.”
which opens a file system browser which allows you to select a directory including your sources2 Below
one can find an entry named “Import PHP sources from the file system and debug on error.” which allows
you to inspect the system state after the importing process if there were errors. Figure 1 presents the panel
and the menu containing the dedicated import commands.

1http://www.moosetechnology.org/download
2Potential parsing errors will be alerted after the importing.

33

Figure 1: The moose panel and its import commands listed in the menu in the upper right corner.

34

B Doctrine Annotation Grammar

1 Annotations ← Annotation ('*'* Annotation?)*
2 Annotation ← '@' AnnotationName ('(' Values? ')')?

3 AnnotationName ← QualifiedName / SimpleName

4 QualifiedName ← NameSpacePart '\\' (NameSpacePart '\\')* SimpleName

5 NameSpacePart ← identifier / null / false / true

6 SimpleName ← identifier / null / false / true

7 Values ← Array / Value (',' Value)*
8 Value ← PlainValue / FieldAssignment

9 Constant ← integer / string / float / boolean

10 identifier ← T_STRING

11 PlainValue ← float / integer / string / boolean / array / Annotation

12 FieldAssignment ← FieldName '=' PlainValue

13 FieldName ← identifier

14 Array ← '{' ArrayEntry (',' ArrayEntry)* ','? '}'

15 ArrayEntry ← Value / KeyValuePair

16 KeyValuePair ← Key ('=' / ':') PlainValue

17 Key ← integer / string

Listing 14: Doctrine Annotation grammar in terms of PEG

List of Figures

2.1 Impacts on annotation support . 11
2.2 Types of annotations deconstructed . 11

3.1 Overview over the stages the application runs through, the generated entities and the
respective main actors. 14

3.2 Pattern to create a parser and the approach token in the concrete implementation. 15
3.3 Excerpt of the importer workflow. 19

4.1 Error distribution in the tested frameworks. 23
4.2 Excerpt of an interactive system complexity view. 24
4.3 Perfoming queries is possible directly in the browser e.q. querying magic methods

(interceptor methods) in all methods of the system by executing Smalltalk code #('__call

' '__set' '__get' '__invoke' '__isset') includes: self name 25
4.4 Hierarchical and interactive view of namespaces. 25
4.5 Namespace and member visualization view, allows to browse and analyze type in the

context of their respective namespace. 26
4.6 Browsing of annotation types which lists all annotation defined in the systems and exposes

their corresponding classes and annotated entities. 26
4.7 Interactive annotation constellation visualization which allows direct browsing of annota-

tions and annotated entities. 27

1 The moose panel and its import commands listed in the menu in the upper right corner. . 33

35

List of Tables

2.1 Parsing techniques adopted by PetitParser . 6
2.2 Namespace term definitions and derived PEG equivalents 9
2.3 Overview over namespace resolution rules . 10

4.1 Parsing results on a corpus of PHP systems, resulting in an error ratio of ~0.003 23

36

Bibliography

[Der69] Franklin Lewis Deremer. PRACTICAL TRANSLATORS FOR LR(K) LANGUAGES. Tech-
nical report, 1969. URL: http://publications.csail.mit.edu/lcs/pubs/
ps/MIT-LCS-TR-65.ps.

[DKSJ12] Marc A. De Kruijf, Karthikeyan Sankaralingam, and Somesh Jha. Static Analy-
sis and Compiler Design for Idempotent Processing. SIGPLAN Not., 47(6):475–486,
June 2012. URL: http://doi.acm.org/10.1145/2345156.2254120, doi:10.
1145/2345156.2254120.

[DLT00] Stéphane Ducasse, Michele Lanza, and Sander Tichelaar. Moose: an Extensible Language-
Independent Environment for Reengineering Object-Oriented Systems. In Proceedings of

CoSET ’00 (2nd International Symposium on Constructing Software Engineering Tools), June
2000. URL: http://scg.unibe.ch/archive/papers/Duca00bMooseCoset.
pdf.

[DLT01] Stéphane Ducasse, Michele Lanza, and Sander Tichelaar. The Moose reengineering
environment. Smalltalk Chronicles, August 2001. URL: http://scg.unibe.ch/
archive/papers/Duca01bMoose.pdfhttp://www.smalltalkchronicles.

net/edition3-2/Pages/moose.htm.

[EFB01] Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-oriented programming: Introduction.
Commun. ACM, 44(10):29–32, October 2001. URL: http://doi.acm.org/10.1145/
383845.383853, doi:10.1145/383845.383853.

[For02] Bryan Ford. Packrat parsing: simple, powerful, lazy, linear time, functional pearl.
In ICFP 02: Proceedings of the seventh ACM SIGPLAN international conference

on Functional programming, volume 37/9, pages 36–47, New York, NY, USA,
2002. ACM. URL: http://pdos.csail.mit.edu/~baford/packrat/icfp02/
packrat-icfp02.pdf, doi:10.1145/583852.581483.

[For04] Bryan Ford. Parsing expression grammars: A recognition-based syntactic foundation. In
Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, POPL ’04, pages 111–122, New York, NY, USA, 2004. ACM. URL: http:
//doi.acm.org/10.1145/964001.964011, doi:10.1145/964001.964011.

II

http://publications.csail.mit.edu/lcs/pubs/ps/MIT-LCS-TR-65.ps
http://publications.csail.mit.edu/lcs/pubs/ps/MIT-LCS-TR-65.ps
http://doi.acm.org/10.1145/2345156.2254120
http://dx.doi.org/10.1145/2345156.2254120
http://dx.doi.org/10.1145/2345156.2254120
http://scg.unibe.ch/archive/papers/Duca00bMooseCoset.pdf
http://scg.unibe.ch/archive/papers/Duca00bMooseCoset.pdf
http://scg.unibe.ch/archive/papers/Duca01bMoose.pdf http://www.smalltalkchronicles.net/edition3-2/Pages/moose.htm
http://scg.unibe.ch/archive/papers/Duca01bMoose.pdf http://www.smalltalkchronicles.net/edition3-2/Pages/moose.htm
http://scg.unibe.ch/archive/papers/Duca01bMoose.pdf http://www.smalltalkchronicles.net/edition3-2/Pages/moose.htm
http://doi.acm.org/10.1145/383845.383853
http://doi.acm.org/10.1145/383845.383853
http://dx.doi.org/10.1145/383845.383853
http://pdos.csail.mit.edu/~baford/packrat/icfp02/packrat-icfp02.pdf
http://pdos.csail.mit.edu/~baford/packrat/icfp02/packrat-icfp02.pdf
http://dx.doi.org/10.1145/583852.581483
http://doi.acm.org/10.1145/964001.964011
http://doi.acm.org/10.1145/964001.964011
http://dx.doi.org/10.1145/964001.964011

BIBLIOGRAPHY III

[Fow10] Martin Fowler. Domain Specific Languages. Addison-Wesley Professional, 1st edition, 2010.

[HKV13] Mark Hills, Paul Klint, and Jurgen Vinju. An Empirical Study of PHP Feature Us-
age: A Static Analysis Perspective. In Proceedings of the 2013 International Sympo-

sium on Software Testing and Analysis, ISSTA 2013, pages 325–335, New York, NY,
USA, 2013. ACM. URL: http://doi.acm.org/10.1145/2483760.2483786,
doi:10.1145/2483760.2483786.

[Hut92] Graham Hutton. Higher-order functions for parsing. Journal of Functional Programming,
2(3):323–343, 1992.

[Joh75] S.C. Johnson. Yacc: Yet another compiler compiler. Computer Science Technical Report #32,
Bell Laboratories, Murray Hill, NJ, 1975.

[Mun12] Alex Munroe. PHP: a fractal of bad design. http://me.veekun.com/blog/2012/
04/09/php-a-fractal-of-bad-design/, April 2012.

[RDGN10] Lukas Renggli, Stéphane Ducasse, Tudor Gîrba, and Oscar Nierstrasz. Practical dynamic
grammars for dynamic languages. In 4th Workshop on Dynamic Languages and Applications

(DYLA 2010), Malaga, Spain, June 2010. URL: http://scg.unibe.ch/archive/
papers/Reng10cDynamicGrammars.pdf.

[RS70] D.J. Rosenkrantz and R.E. Stearns. Properties of deterministic top-down
grammars. Information and Control, 17(3):226 – 256, 1970. URL: http:

//www.sciencedirect.com/science/article/pii/S0019995870904468,
doi:http://dx.doi.org/10.1016/S0019-9958(70)90446-8.

[Rü13] Michael Rüfenacht. Enabling software analysis using petitparser and moose, August 2013.

[Sev12] Charles Severance. Inventing PHP: Rasmus Lerdorf. Computer, 45(11):6–7, 2012. doi:
10.1109/MC.2012.379.

[Tic01] Sander Tichelaar. Modeling Object-Oriented Software for Reverse Engineering and Refac-

toring. PhD thesis, University of Bern, December 2001. URL: http://scg.unibe.ch/
archive/phd/tichelaar-phd.pdf.

[Vis97] Eelco Visser. Scannerless generalized-LR parsing. Technical Report P9707, Programming
Research Group, University of Amsterdam, July 1997. URL: http://www.cs.uu.nl/
people/visser/ftp/P9707.ps.gz.

[ZPY+12] Haiping Zhao, Iain Proctor, Minghui Yang, Xin Qi, Mark Williams, Qi Gao, Guilherme Ottoni,
Andrew Paroski, Scott MacVicar, Jason Evans, and Stephen Tu. The HipHop Compiler for
PHP. SIGPLAN Not., 47(10):575–586, October 2012. URL: http://doi.acm.org/10.
1145/2398857.2384658, doi:10.1145/2398857.2384658.

http://doi.acm.org/10.1145/2483760.2483786
http://dx.doi.org/10.1145/2483760.2483786
http://me.veekun.com/blog/2012/04/09/php-a-fractal-of-bad-design/
http://me.veekun.com/blog/2012/04/09/php-a-fractal-of-bad-design/
http://scg.unibe.ch/archive/papers/Reng10cDynamicGrammars.pdf
http://scg.unibe.ch/archive/papers/Reng10cDynamicGrammars.pdf
http://www.sciencedirect.com/science/article/pii/S0019995870904468
http://www.sciencedirect.com/science/article/pii/S0019995870904468
http://dx.doi.org/http://dx.doi.org/10.1016/S0019-9958(70)90446-8
http://dx.doi.org/10.1109/MC.2012.379
http://dx.doi.org/10.1109/MC.2012.379
http://scg.unibe.ch/archive/phd/tichelaar-phd.pdf
http://scg.unibe.ch/archive/phd/tichelaar-phd.pdf
http://www.cs.uu.nl/people/visser/ftp/P9707.ps.gz
http://www.cs.uu.nl/people/visser/ftp/P9707.ps.gz
http://doi.acm.org/10.1145/2398857.2384658
http://doi.acm.org/10.1145/2398857.2384658
http://dx.doi.org/10.1145/2398857.2384658

	1 Introduction
	1.1 Preface
	1.2 Context
	1.3 Problem
	1.4 Solution

	2 Background
	2.1 The Tools
	2.1.1 PetitParser
	2.1.2 Moose

	2.2 The Language
	2.2.1 Grammar
	2.2.2 Namespaces

	2.3 Annotations & Doctrine
	2.4 Related Work

	3 Architecture
	3.1 Overview
	3.2 Parsing
	3.2.1 Shared
	3.2.2 Grammar
	3.2.3 Core Parser
	3.2.4 Annotation Parser

	3.3 Visiting Intermediate Representations
	3.4 The Importer and Famix
	3.5 The MoosePHPModel
	3.6 The Import Command - Wrap up
	3.7 Discussion

	4 Achievements
	4.1 Parsing
	4.2 Analysis Capabilities
	4.3 Discussion

	5 Conclusions and Lessons Learned
	A Installation and Quick Start
	B Doctrine Annotation Grammar

