
Archie
A Statistics Framework For Elexis

Technical Report

Dennis Schenk
Peter Siska

March 2009

Supervised by
Prof. Dr. Oscar Nierstrasz

David Röthlisberger

University of Bern, Switzerland
Software Composition Group

Abstract

Archie is a statistics framework for the electronic medial records system
Elexis. Archie empowers Elexis to generically create anything from sim-
ple overviews to complex statistical reports about any data found within the
Elexis system. Depending on which plug-ins are installed, an Elexis instal-
lation contains data about patient demographics and history, consultations,
drug administration, practice management and inventory, finances and ac-
counting, laboratory, etc. Archie provides a platform for Elexis and for all
installed plug-ins to easily and rapidly create statistical reports without hav-
ing to be concerned with recurring aspects such as data input and output,
form validation, result presentation, or the user interface in general. Data
visualization is handled entirely by Archie, it just requires the raw data to
adhere to a defined standard.

Contents

1 Introduction 3
1.1 Problem Statement . 3
1.2 Goals and Challenges . 4
1.3 EMR Systems and Elexis . 5
1.4 Archie . 6
1.5 Structure of this Document 6

2 Domain 7
2.1 Terminology . 8
2.2 Status Quo . 10
2.3 Elexis . 12

3 Design and Evolution 13
3.1 Building A Prototype . 13
3.2 Ideas for Architecture . 14
3.3 Architectural and Design Decisions 16
3.4 Evolution . 18
3.5 Visualization and Export . 20

4 Implementation 21
4.1 Architecture . 21

4.1.1 Structure of an Eclipse Plug-in 21
4.1.2 Archie Plug-in Definition 21
4.1.3 Extension Point Definition 22
4.1.4 Initial Extension Schema 23
4.1.5 Improving Usability . 23
4.1.6 Extension Point Implementation 25

4.2 Data Providers and Datasets 26
4.2.1 Content and Label Providers 29
4.2.2 Parameterization through Annotations 29
4.2.3 Provider Implementations 32

4.3 Controllers . 32
4.3.1 “New Statistics” Action 34
4.3.2 Additional Actions . 36

1

4.4 Managing Classes . 36
4.5 Factories . 37
4.6 Charts . 39

4.6.1 Pie Charts . 39
4.6.2 Bar and Line Charts 40
4.6.3 The Chart Model . 40

4.7 Helper Classes . 42
4.8 User Interface . 43
4.9 Elexis User Interface Contribution 46
4.10 Dashboard Charts . 47
4.11 Limitations . 49

4.11.1 Internal . 49
4.11.2 External . 50

5 Team Organization 52

6 Requirements Engineering and Validation 54

7 Conclusions 56
7.1 Lessons Learned . 56
7.2 Future Work . 57

A Licensing of Archie 59

B User Manual 60
B.1 Quick Start . 60
B.2 Usage . 61

B.2.1 Dashboard View . 61
B.2.2 The Sidebar View . 63
B.2.3 The Output View . 63

C Developer Manual 68
C.1 Extending AbstractDataProvider 68

C.1.1 Constructor . 69
C.1.2 getDescription . 69
C.1.3 createHeadings . 69
C.1.4 createContent . 70

C.2 Adding Additional Parameters 71
C.3 Registering with the Archie Extension Point 73
C.4 Where to Get Additional Help 74

List of Figures 75

Bibliography 77

2

Chapter 1

Introduction

1.1 Problem Statement

Elexis is an open source Electronic Medical Records system (detailed infor-
mation about Elexis and its history is provided in Chapter 2). It has grown
into a complex software solution with about 850 classes, around 100k lines
of code, and many features. There are aspects that are yet not very mature
though. Despite a large and broad functionality and some crude and not
very accessible statistical functions, Elexis does not include the possibility
for users to generate system-wide and customizable statistical reports about
patients, drugs, consultations, or any similar aspect of recorded data. Im-
portant analyses about state and development of the practice using Elexis
are missing. There is, for example, no easy way for doctors to see how many
consultations they have given over a certain time frame or how this correlates
with the practice’s income and spending.

What Elexis misses is the ability to inform its users about the state a practice
is in and also to visualize this data. It should help in making predictions
about future developments and to tell what services were provided. Elexis
needs the ability to inspect flow of money and inventory, provide key facts
about patients in the system. Also it needs to be able to compare different
aspects of such data.

This lack of basic overview and data correlation motivates the idea to de-
velop a statistics framework for Elexis — a platform that helps to gather,
compose and also visualize overviews of any data in the system rapidly and
easily.

3

Another aspect requiring improvement is usability and screen design. We
also contributed in this area to the project (see Section 4.9)

1.2 Goals and Challenges

Goals. First of all, we want to create a framework for developers allow-
ing them to quickly and easily assemble their own statistics. Programmers
still have to write Java code, but besides getting the data of interest out of
the system, the underlying framework takes care of the rest: handling user
interaction and preparation of data and its presentation.

Second, we want to give users the possibility to quickly generate and export
textual and graphical reports about any data in Elexis. An example of a user
requirement is to answer the question “How much money have I earned over
the last six months and what were my expenses over that time period”. The
generated reports will provide answers to such questions.

Third, we want to create a framework and accompanying statistics that are
widely used by both Elexis developers and its users. To accomplish this we
work as close as possible with both sides. We gather requirements, feature
requests, ideas and also critique from the people who are using Elexis in
practices.

Besides these three goals, the framework has to be intuitive, easy-to-use and
understand, and come with a nice looking user interface.

Challenges. One challenge to achieve these proposed goals is the structure
of the Elexis application. It has grown into a large system with a lot of
interdependent classes and methods. The source code is often hard to read
and understand because of bad formatting and naming, mixing of German
and English vocabulary, just a few JavaDoc and other comments, etc. For
these reasons, it is difficult to find ones way through the program code and
to find the right starting points.

Another challenge is to find a solution to enable plug-ins that use the frame-
work to be generically parametrizable. This means a plug-in can have an
unknown number of attributes — with unknown types and names — and
the framework must be able to present these attributes as editable param-
eters in the correct form to the user. It also must know how to get the
information from the user interface back to the plug-in.

4

Each plug-in needs to be able to programmatically define validation pro-
cedures for its parameters without having to concern itself with the user
interface.

Moreover, the user interface has to be able to show all available statistics to
the user and help him in finding what he is looking for.

1.3 EMR Systems and Elexis

In the following paragraphs we shortly explain the context in which Elexis
and thus also Archie is situated.

Most physicians still use paper and file based systems to manage their pa-
tients. Adoption of Electronic Medical Record Systems (EMR) is slow.
Switzerland is still one of the least advanced countries when it comes to distri-
bution of EMR. There are various reasons for the slow adoption at which we
take a closer look in Chapter 2. Nevertheless, the number of deployed EMR
systems is slowly rising, and there are various efforts being made to speed
up the process. Most notable is Switzerland’s ambitious ”eHealth” strategy1

which wants to break ground for a wide deployment of EMR: its goals are to
define standards, looking at financial feasibility, law foundations, basic ed-
ucation and online service possibilities. It also wants to start pilot projects
and in general speed up deployment of EMR dramatically on a pretty tight
schedule.

There is not much diversity in currently available EMR systems in Switzer-
land: there are a few and most of these software solutions available are either
expensive or require the physicians to have their own large information sys-
tem which most physicians don’t consider an option as they don’t have the
necessary knowledge about deployment and/or maintenance. Also the costs
that such systems impose are high

Elexis is an alternative to proprietary EMR solutions: it is based on the open
source Eclipse Platform2 and can be used with various open source database
systems, such as MySQL3 or PostgreSQL4.

1http://www.ehealth.admin.ch
2http://www.eclipse.org
3http://www.mysql.com
4http://www.postgresql.org

5

http://www.ehealth.admin.ch
http://www.eclipse.org
http://www.mysql.com
http://www.postgresql.org

1.4 Archie

At the beginning we were searching for a name for our project. We settled on
Archie — after Professor Archie Cochrane (1908-1988) [Coch89]. He was a
British general practitioner and originator of evidence-based medicine, which
is every form of medical treatment where patient oriented decisions are made
specifically on grounds of proven effectiveness which in turn is given through
the means of statistical data.

1.5 Structure of this Document

In Chapter 2 we give a short overview of the problem domain, clarify terms
and definitions and report about the status quo of EMR. In Chapter 3 we
describe how we were going on about the tasks at hand, how we designed the
architecture of our plug-in, what technical challenges we faced, and how we
resolved them. In Chapter 4 we present our final implementation and explain
the main technical solutions as well as the architecture. Chapter 5 shortly
describes how we were organized as a team and how we split up work. In
Chapter 6 we present how we communicated with the users and developers
of Elexis, and how we incorporated their feedback into our work. Chapter 7
provides information on what we learned from the project and delivers a
short outlook on future activities. In Appendix A we explain under which
license Archie will be released and why. In Appendix B and Appendix C we
provide manuals for Archie users and for developers, respectively, on how to
write new statistics on top of the framework.

6

Chapter 2

Domain

In this chapter we take a closer look at the domain Elexis and Archie belong
to: the domain of electronical medical records. Besides the technological
aspects there are numerous other aspects, mostly political, that we find are
important and worth a short analysis.

As mentioned in the introduction most physicians in Switzerland still use
paper-based patient records. EMR adoption is slow but gaining ground. In
the following we study the disadvantages of paper-based systems and the
advantages of EMR .

With paper-based systems patient information and health records are dis-
tributed over many locations and are usually not readily available. This
leads to multiple records about the same aspect of patient health being kept
at different facilities, like hospitals, doctors practices etc. Redundant med-
ical tests have to be made for which results are probably already stored
somewhere else. Another factor is that patients most of the times can’t pro-
vide full medical history about themselves. Most people don’t remember or
don’t know all their medical details. If they think they do they maybe re-
member them wrong. All this can lead to loss of time and money through
inefficiency, unnecessary administrative costs, false diagnosis, and errors in
treatment.

Patient records should be available quickly and from all locations, particu-
larly for chronic patients or in case of emergencies. This leads to less spending
of valuable time on tests and clarifications about a patients condition and
medical history.

7

Systems which meet such requirements lead to better treatments, less errors,
instantly transferable records, complete information, better reactivity, and
less administrative costs.

The numbers of doctors with own practices using EMR vary between 8% and
10% in Switzerland. In the mentioned e-Health Strategy of Switzerland, it
is discussed, that by the year 2010 about 50% of doctors with own practice
should deploy EMR systems and in 2015 every citizen should have his own
patient record [Gesu07]. How this goal should be accomplished is not drawn
out clearly yet, but the example of Australia shows that it is feasible: There
the percentage of doctors using EMR ascended from 8% in 2000 to over 50%
in 2006 [Bhen06].

About 90% of practices in the Netherlands, Great Britain and Scandinavia
use EMR. The quality of these systems varies strongly though. Some nations
advance implementation of EMR through subsidies and/or regulations. The
USA are currently in a similar situation as Switzerland, with a distribution
of EMR of about 15% [Bhen06].

2.1 Terminology

If one starts to engage himself with the domain of EMR he faces confusion
and finds no general consensus on key aspects. There are many abbreviations
for different concepts in the world of electronic patient records and many have
disputed, conflicting or overlapping definitions. Some of these problems occur
when businesses try to sell their products to customers and their marketing
departments create new buzzwords to stress uniqueness. Another reason
is that standardization efforts in the field are still in an early phase and
sometimes uncoordinated, which is reflected in the jungle of different words
with different meanings. In the following paragraphs we try to flesh out some
of the core concepts we already used so far to make them clearer.

An Electronical Medical Record (EMR) is a repository of demographic
and health data of a patient. It offers clinical decision support, controlled
medical vocabulary, computerized provider order entry, pharmacy, and clin-
ical documentation applications. It supports the patients electronic medical
record across inpatient and outpatient environments, and is used by health-
care practitioners to document, monitor, and manage health care delivery
within a care delivery organization (CDO). The data in the EMR is the legal

8

record of what happened to the patient during his encounter at the CDO
and is owned by the CDO. A Schematic concept of a sample EMR can be
seen in Figure 2.1.

Figure 2.1: Schematic concept of a sample EMR.

An Electronic Health Record (EHR) is a longitudinal record of a pa-
tients health over time and can be seen as a subset of each care delivery
organizations EMR. It provides clinician and also consumer access to clinical
details captured from one or more encounters, from different facilities. It
mostly spans over a full lifetime from birth to death. An EHR itself requires
the presence of EMRs, because the EMRs are the actual data providers for
EHRs, in the form of EMR summaries. EHR data is owned by the patient.
EHR contains data from episodes of care across multiple CDOs within a
community, region, or in some instances the entire country.

A Clinical Information System (CIS) is a clinical repository of patient
data. CIS is a form of EMR but it is more specialized to the environment
of clinics. Sometimes the term is used interchangeably with EMR. A CIS
typically covers: pathology and radiology order entry and results reporting,

9

medication prescription and administration, clinical work lists, decision sup-
port, etc.

Figure 2.2 shows a sample relation between these concepts. Different EMRs
respectively CIS’ are plugged into an EHR which accompanies a patient over
his whole life.

Figure 2.2: EMR, EHR, CIS in sample relation.

2.2 Status Quo

The domain of electronic medical records is still pretty young and because
of this standards, one of the most important aspects of any such domain,
are still underdeveloped. There are only a few accepted and implemented
standards. Also internationally and nationally acknowledged institutions,
managing and asserting such standards are sparse. There are, however, some
standards which are already well established, like HL7 (Health Level 7)1, a
group of standards concerning the exchange of data between medical insti-
tutions and their information systems. However, there are also competing
standards such as IHE (Integrating the Healthcare Enterprise)2, a European
initiative with similar goals. There are numerous other examples of conflict-
ing standards.

1http://www.hl7.org
2http://www.ihe.net

10

However, these issues are being worked on and awareness for the issues is
growing. Solutions are actively worked on internationally and nationally. In
Switzerland, as noted above, the government started its ”eHealth” initiative
of which one major subproject is to find and specify standards.

The current lack of standards, many times also the non-compliance to avail-
able standards and the resulting lack of interoperability between existing
software systems, are some of the reasons for the slow Adoption of EMR and
other health information technology.

In spite of studies showing revenue gains after implementation of EMR, the
healthcare industry spends much less of its budget on IT than other infor-
mation intensive industries. Aside from the immaturity of standards there
are several industry specific issues responsible for this.

One reason is the difficulty to incorporate older records of patient data into
the new systems. The process is time consuming and expensive and should be
done following precise standards to ensure that all information concerning the
patient is available in the new system. Information on a patient may exist
in any number of formats, sizes, media types and qualities, which further
complicates accurate conversion. If a practice has used paper-based patient
management for many years or even decades, the costs of a switch to EMR
are very high.

Another major issue is privacy. Individual electronic records have to be
managed confidentially and secured from unauthorized access. Because of
crosslinking of digital media over networks such as the Internet, multiple
access points are present, facilitating interception of patient data. Skepticism
about the security of electronic patient records is high, on both the patients
and the medical institutions side.

Another problem is preservation of patient data and the mandatory ability
of patients to be able to have access to all their medical data at all time.
Data has to be kept for long periods of time without data degradation. This
too creates new challenges for electronic systems and their acceptance.

11

2.3 Elexis

Elexis was first conceived in 2006 by Gerry Weirich3, a general practitioner
and internist. Before he decided to start from scratch with an open source
Eclipse-based project, he was involved in several other small EMR projects.
Elexis was first developed by Weirich alone and was deployed in his own
practice. Requirements and feature requests were created out of his own
needs. Soon other people started to get aware of Elexis and more physicians
became interested in the project.

One aspect which sets Elexis apart from other EMR systems is that it is
mainly developed by actual practitioners, not by software engineers. Also
requirements, bug fixing request etc. come directly from facilities where it is
in productional use. This gives Elexis credibility and closeness with and to
its users.

Elexis got noticed in medical journalism and was sponsored to be presented
at some conferences. Medical equipment manufacturers started sponsoring
development of equipment specific data importers.

Today Elexis is deployed in around 50 practices [Weir09b]. It offers medical
record functionality, inventory management, billing functionality and debtor
control. There are many plug-ins available which offer functionalities ranging
from laboratory equipment data import to several other import and export
possibilities, from financial extensions to general EMR extensions. It provides
interfaces to numerous medical portals and supports standards like HL7,
SGAM eXchange, and XML Invoice 4.0.

From January 2008 to January 2009 Elexis was at the center of argoLEAD4:
a project which was in its core a field test with numerous involved physicians
to answer questions like: how high are the costs of a switch from paper-
based patient management to an EMR, where are the main difficulties, how
are the changes managed by facility employees and how practical is Elexis as
a solution.

The project was a success and was evaluated. As a result Argomed5, an
organisation of medical practitioners with around 1000 members, decided to
contribute to a company that wants to assist with the distribution of Elexis
and provide support to the current user base.

3http://www.weirich.ch
4http://www.rgw.ch/elexis/dox/argoLEAD.pdf
5http://www.argomed.ch

12

http://www.weirich.ch
http://www.rgw.ch/elexis/dox/argoLEAD.pdf
http://www.argomed.ch

Chapter 3

Design and Evolution

We want to create a piece of software that will have an active userbase after
releasing it. Based on the points mentioned in the previous chapter, EMR
systems will most likely become more and more popular which is why we
decided to create an application that is part of such an EMR system. The
following sections describe our initial idea for this project and its evolution,
as well as some important design desicions.

3.1 Building A Prototype

Before we started working on Archie, in order to improve our knowledge of
the fairly extensive Eclipse RCP framework, we decided to create a simple
prototype of a basic Eclipse application — Sanclipse. The functionality of
Sanclipse as seen in Figure 3.1 is very limited. Its purpose is to simulate a
rudimentary EMR system using the Eclipse RCP framework.

The main window is divided into two parts — the left hand side containing
a list of fictive users or patients in the system, the right hand side displaying
details of selected users such as both names and the gender. A user of the
system can add new patients or remove existing ones from the list by using
actions residing in the toolbar on the top.

Although the functions of Sanclipse are rather scarce, we learned about im-
portant methods and core concepts of the Eclipse API. Not only through
the entire prototyping process, but also by developing Sanclipse according
to the tutorial of creating a chat application called Hyperbola as described
throughout the book [McAf07]. This process was crucial for making some of

13

Figure 3.1: Sanclipse Prototype Overview

the architectural decisions described in the following sections and developing
Archie.

3.2 Ideas for Architecture

The Sanclipse prototype described in the previous section is a stand-alone
Eclipse RCP application. It is packaged and deployed on its own thus not
depending on any other Eclipse program or framework. Because Elexis itself
already is a stand-alone Eclipse RCP application, we hope to find the ap-
propriate method of packaging and deploying Archie as part of Elexis. This
is one important criteria, another one is that users should be able to easily
install or uninstall Archie with all its functionality.

Fortunately, every Eclipse application is modular, composed out of small
functional parts into one application. Everything in Eclipse is a plug-in
[Gall02]. The term plug-in in Eclipse refers to the unit of modularity. Except

14

Figure 3.2: Eclipse Plug-in Architecture

for two indispensable core plug-ins, the Workspace and the Workbench, an
Eclipse based application can be completely stripped down and built up from
the ground by using custom plug-ins that extend the core functionality.

Plug-ins in Eclipse provide extension points that can be used by other plug-
ins to add or change functionality of the providing plug-ins. The Workspace
plug-in allows other plug-ins to extend the Eclipse user interface, to con-
tribute menu items or entire menus, and to create new views and add ad-
ditional buttons to the toolbars. The Eclipse framework of course provides
plug-ins that already extend the core but can also further be extended by
other plug-ins. An illustration showing the Eclipse plug-in architecture is
depicted in Figure 3.2.

Elexis is an Eclipse RCP based application, which means it extends Eclipse
by implementing the extension points defined in the framework, but also
offers custom defined extension and provides interfaces for other plug-ins to
extend Elexis itself.

Figure 3.3 illustrates the architectural situation with regard to Elexis and
the Eclipse framework. Elexis consists of a main plug-in encapsulating core
functionality that enables it to run. The main plug-in also defines the exten-
sion points for other plug-ins, contains definitions about how Elexis is to be
deployed on different operating system and holds all the image resources used
throughout the UI. Moreover, the main plug-in provides ant build scripts for
automated building as well as Latex and JavaDoc documentation of Elexis
for both users and developers.

15

Figure 3.3: Elexis Architecture

The extending plug-ins are dependent on the main plug-in and cannot be run
without it, only extending or adding new functions to the main plug-in.

Based on the architecture of Eclipse and Elexis, one of our main goals, provid-
ing an application that is easily deployable into existing Elexis installations,
can be easily accomplished by creating a plug-in of our own.

3.3 Architectural and Design Decisions

We decided that Archie is an Eclipse plug-in and provides some sort of an
extension point, allowing other developers to easily hook into Archie and
provide statistical data about Elexis. The next step is to define an application
design that allows us to meet the goals set in Section 1.2:

1. Create a framework for developers allowing them to quickly and easily
assemble their own statistics.

2. Give users the possibility to quickly generate and export textual and
graphical reports about any data in Elexis.

3. Create accompanying statistics about important Elexis data.

16

First, we define an abstract class AbstractDataSource that provides a first
entry-point for other plug-ins to extend and write their own statistics. This
AbstractDataSource extends the Elexis class BackgroundJob which is a sub-
class of Eclipse API class Job.

In Eclipse Jobs are tasks that can be scheduled and executed. During their
execution the API provides methods for monitoring, locking resources, or
cancelling currently running jobs. Eclipse Jobs also provide user feedback
during execution [Vale04]. These properties are perfectly suited for our data
providers. Data providers are gathering statistical data about Elexis. During
this process a visual feedback about the current progress is shown to the
user. This is the the same concept Elexis already uses to retrieve data from
the database – most parts of Elexis itself where data retrieval takes place,
particularly if the retrieval may take some time, use a BackgroundJob and
therefore the Eclipse Job API.

Figure 3.4: First, Conceptual UML Draft

Furthermore, we need two controllers for creating tables and charts. Tables
are used in the user interface (UI) to display the gathered data to the user.
Charts are used to build visualizations of data already displayed in the UI.
For this, we define two controller classes — a TableFactory for generating
tables and a ChartFactory for creating pie, line, or bar charts based on the
data in AbstractDataSource.

17

Tables in Eclipse can be wrapped in a TableViewer object. Content of a
table in Eclipse can only be built using strings, whereas viewers can have a
content and label provider. These providers define whether and how elements
in table rows are being displayed. Tables wrapped in a TableViewer can
thus be populated with any type of objects the content provider of a viewer
understands.

In order to allow our TableFactory to generate results and create tables
from any kind of data, an AbstractDataSource has a DataContentProvider
and a DataLabelProvider associated with it. Both providers are subclasses of
provider objects from the Eclipse API. This also allows different data sources
to declare their own providers and control how the data is being displayed to
the user. Figure 3.4 shows these architectural and design decisions in more
detail.

In addition to these model based decisions, we decided to create a dual-pane
user interface for Archie. This means to have a settings pane on the right
hand side where users can chose what statistics they want to create and
adjust their parameters and show the results from these statistics in a pane
on the left side.

During the development of Archie the architectural and design decisions de-
scribed in previous section were constantly refined. The main idea of having
some sort of central data provider, modelled as an Eclipse Job, remains. Also
the integration into the Eclipse API via Content- and LabelProvider is still
the same in the final version. Some implementation details are missing in
the initial design in Figure 3.4, especially questions such as ”How exactly do
the data providers store raw data from the database for further processing?”,
”How does do the chart and table factories work?”, and ”How is the UI to
model interaction handled?”. The following section described how the initial
design evolved during the implementation process.

3.4 Evolution

At first we create a DataSet class which holds any data in a matrix-like form
and simplifies conversion to textual, table-, and chart based output. As we
progress, the fact that the dataset can contain any data leads to problems
in the UI when trying to sort results tables. Because of this, we continue
refactoring Datasets by adding another constraint. Datasets should only be
able to contain objects that implement the Comparable interface. This means

18

that for some classes that do not implement said interface, developers have
to create a wrapper class. We did this for example for the Elexis class Person
with the PersonWrapper class in the samples project, to enable alphabetical
ordering. See Section 4.2 for more details on the final implementation of
DataSet.

One of the bigger refinements is the introduction of actions as user input and
controlling mechanism. Read more about our final implementation in Sec-
tion 4.3. Following this introduction the concepts of Table- and ChartFactory
lost their initial meaning of controlling entities. The concepts of these two
classes are converted to less dominant roles, namely as data creation factories
described in Section 4.5.

Most refactoring efforts and changes happen in the UI part though. The
reason for this is probably that we didn’t have a fleshed out concept for the
UI and made it up as the project progressed. One of the most important
aspects is the introduction of annotated DataProvider methods. Using Java
annotations we are able to programm the UI generically as described in
Section 4.2.2. This means that we have an UI that sets itself up with the
right input fields, just by looking at how the corresponding methods are
annotated.

Another important aspect in the UI is the creation of generic input field
classes for specific input types, which are able to validate themselves and
provide general user assistance as described in Section 4.8. Another aspect
of the UI we had not thought about in detail was how the charts were being
created from statistic results. First we wanted to create chart generation
somehow generically. However, we noticed very quickly that this went beyond
the scope of our project and decided to create a chart creation wizard. With
such a wizard a user can choose what parts of the results he wants to use to
generate a chart. Moreover, the chart wizard determines the type and look
of the generated chart. This is explained in more detail in Section 3.5 with
implementation details in Section 4.6.

Another thing that changed from our initial design was that AbstractDataProvider
inherits directly from the abstract class Job of the Eclipse API instead of the
Elexis BackgroundJob class. In Eclipse 3.3 new Job API classes were intro-
ducted which maked the Elexis wrapper class BackgroundJob obsolete.

19

3.5 Visualization and Export

At the beginning of the project we decided that we wanted to provide some
sort of graphical output for statistic results. Since creating such functionality
from scratch was not in the scope of our project we searched for open source
solutions and found JFreeChart1. JFreeChart is a chart building library
licenced under the GNU Lesser General Public Licence (LGPL)2.

We quickly discovered that the best way to use JFreeChart within our frame-
work was, as previously mentioned, to provide some sort of wizard where a
user can specify what exactly he wants to plot, and how. To create an com-
pletely generic solution where charts are generated automatically based on
the result sets is, although interesting to accomplish, beyond the scope of
our project. This is why we decided to limit chart drawing functionalities to
three basic but commonly used chart types: Pie, Bar and Line Charts.

A user should nevertheless be able to create more elaborate charts with
statistical results — thus why we decided that our framework also needed
to have export functionalities, namely to Comma Separated Value (CSV)
files, as they can be read by most spreadsheet software solutions such as
OpenOffice Calc3 or Microsoft Excel4. With such software users can refine
the presentation of statistical results and further processing the data.

1http://www.jfree.org/jfreechart/
2http://www.gnu.org/licenses/lgpl.html
3http://www.openoffice.org/product/calc.html
4http://office.microsoft.com/excel

20

http://www.jfree.org/jfreechart/
http://www.gnu.org/licenses/lgpl.html
http://www.openoffice.org/product/calc.html
http://office.microsoft.com/excel

Chapter 4

Implementation

4.1 Architecture

4.1.1 Structure of an Eclipse Plug-in

As described in Section 3.2 we decided to create Archie as an extension of
Eclipse and Elexis. A plug-in, the basic building block of Eclipse, contains
a collection of files and a manifest file MANIFEST.MF describing the rela-
tion of the plug-in to other programs, packages, and libraries. The collection
of files can include program source code, read-only content such as images,
translation message files used for internationalization, documentation or oth-
ers.

In addition to the manifest file, plug-ins also have a plugin.xml file. In former
Eclipse versions, particularly 3.0 and older, the plugin.xml used to contain
execution-related information but since Eclipse version 3.1, this has been
moved to the MANIFEST.MF file. The plugin.xml however still contains im-
portant information, namely the definitions of extension points the plug-in
either uses to extend other parts of an application, and/or extension points
it defines for other plug-ins to extend [McAf07].

4.1.2 Archie Plug-in Definition

Archie consists of two parts — a main plug-in and a plug-in fragment. A
plug-in fragment is considered as an optional part of a plug-in. The main
difference between a plug-in and a plug-in fragment is that a fragment needs

21

to define a Fragment−Host in their manifest file thus belongs to a plug-in
without which it cannot exist. Moreover, the extension point definitions are
stored in a fragment.xml file instead of plugin.xml[Arth08].

Archie defines the following plug-in structure in Eclipse:

ch.unibe.iam.scg.archie. This is the main plug-in, containing the entire
object model, views and controllers, definitions and implementations
of Eclipse extension points, and all read-only data such as images and
documentation.

ch.unibe.iam.scg.archie.samples. The samples plug-in fragment contains
sample statistics implementations to show how the main plug-in and
its framework can be used.

4.1.3 Extension Point Definition

The core of the entire Archie framework structure is the extension point
defined in the main plug-in. This extension point allows other, 3rd party
plug-ins or plug-in fragments to interact with Archie. Without other plug-ins
implementing this extension point, Archie only has a very limited use.

Listing 4.1: Extension Point Definition in plugin.xml

<?xml version=”1.0” encoding=”UTF−8”?>
<?eclipse version=”3.2”?>
<plugin>

<extension−point
id=”ch.unibe.iam.scg.archie.dataprovider”
name=”Archie Data Provider”
schema=”schema/ch.unibe.iam.scg.archie.dataprovider.exsd”

/>
</plugin>

An extension point in Eclipse is a definition of a plug-in interface and de-
scribes the configuration point using an XML schema. Plug-ins can publish
these extension points and thus specify what an implementation needs to
fulfill in order to be usable by the plug-in.

Archie only defines one extension point. The definition contains an unique
identifier ch.unibe.iam.scg.archie.dataprovider, a human readable name, and a
reference to a extension point definition schema as shown in Listing 4.1. As

22

indicated by its name, this extension point allows other plug-ins to contribute
their (statistical) data to Archie.

4.1.4 Initial Extension Schema

The other part needed for an extension point in Eclipse to work, is an ex-
tension schema as referenced by the extension point definition in plugin.xml
from the previous Section 4.1.3. Basically, an extension schema contains an
XML formed definition of elements and attributes that extensions to that
extension point (implementors) must declare. Furthermore, the extension
schema can contain implementation examples, API descriptions, and addi-
tional documentation or licensing information.

Figure 4.1: Extension Schema Definition Screenshot

Initially, our extension schema defines that an extension point can contain
one or more elements of the type DataProvider whereas each DataProvider
element needs to have a name and a class specified. Furthermore, the class
definition in an element provides a constraint that asserts classes used in those
definitions are subclasses of AbstractDataProvider as illustrated in Figure 4.1.
Although the extension point schema definitions are written in XML, the
use of the graphical editor is encouraged [Laff06] that is why the file syntax
won’t be explained further.

4.1.5 Improving Usability

The initial extension schema implementation does not allow for grouping of
data provider names. The name of each provider is listed in the user interface
in a combo box. Our samples plug-in consists of seven different plug-ins, each
with a different name. Towards the end of the project, Gerry Weirich, lead

23

developer of Elexis, contributed his own set of data providers in a custom
plug-in for Archie. The list of data providers as presented to the user got
confusing and messy which eventually lead to a lower usability.

Although we had an autocompletion mechanism defined and in place to fa-
cilitate the searching of available providers in the list, we decided to add the
possibility to group certain data providers that belong to the same plug-in
or to the same family of tasks. The simplest and in terms of usability yet
effective solution is to prefix every data provider name in the list with a
defined term.

There are two possibilities for the definition of that prefix. One of which is
by using a term based on the fairly cryptic ID of each plug-in contributing
to the data provider extension point, such as ch.unibe.iam.scg.archie.samples.
The first part of the plug-in ID would be obsolete in the UI, so we need to
manipulate the IDs to only retrieve the latest portion of it in order to get
a nice human readable prefix, such as Samples. The other variant imple-
mented in the end is to give developers the possibility to define an optional
prefix in a handy way by using the same extension schema as for their data
providers.

Figure 4.2: List of Providers Before and After the Extension Point Changes

We extend the initial extension schema by adding a new, optional element
called category. A category consists two attributes: a unique identifier id
and a name. Every ch.unibe.iam.scg.archie.dataprovider extension point im-
plementation can now define one or more categories and assign them to the
DataProvider elements in the definition. The name of a category is then ren-
dered as a prefix to each data provider in the list. As an example shown

24

in Figure 4.2: all our data providers in the samples plug-in are in the Sam-
ples category so that they show up as Samples: Some Provider Name in the
list. Grouping of other core Eclipse plug-ins such as views or perspectives is
defined equally.

Another advantage of this approach is that defined categories are available
across plug-ins allowing developers to create provider “families” and group
together providers across different plug-ins (only if plug-ins that need to
share categories are both included in Eclipse run configurations or application
distributions).

4.1.6 Extension Point Implementation

Any plug-in can now implement the defined extension point. We do this
in our Eclipse fragment ch.unibe.iam.scg.archie.samples for every class that
provides statistical data to the main plug-in.

Listing 4.2: User Overview Extension Point Implementation

<?xml version=”1.0” encoding=”UTF−8”?>
<?eclipse version=”3.2”?>
<fragment>

<extension point=”ch.unibe.iam.scg.archie.dataprovider”>
<DataProvider

class=”ch.unibe.iam.scg.archie.samples.UserOverview”
name=”System User Overview”>

</DataProvider>
<category

id=”ch.unibe.iam.scg.archie.dataprovider.ProviderCategory”
name=”Samples”

</category>
</fragment>

A simple example of the user statistics is shown in Listing 4.2, where UserOverview
needs to be a subclass of AbstractDataProvider described in the following sec-
tions. The definition can optionally include a category element as described
in Section 4.1.5.

25

4.2 Data Providers and Datasets

The heart of Archie is the abstract class AbstractDataProvider. Plug-ins that
hook into Archie have to extend this class in order to provide the data they
collect. Furthermore an AbstractDataProvider extends the Eclipse API class
Job, contains a Dataset object as well as label- and content-providers for
Eclipse viewers whose details are described in Section 4.2.1

Figure 4.3: An Example Dataset

Datasets are tables modeled as Java objects. A dataset consists of a list of
headings, the top most row of a table, and a content being the rest of the
rows in that table. In addition to this, a dataset implements the Iterable<
Comparable<?>[]> and Cloneable interfaces which, on the one hand allows
us to retrieve an Iterator for a datasets content, on the other hand to create
duplicates of datasets for further processing. The headings are modeled as a
list of strings (where each element is a heading of one column in the table).
The content is a list of Comparable<?>[] arrays. Datasets provide methods
for accessing and updating headings, entire rows and/or individual cells. An
example of a dataset is depicted in Figure 4.3

The dataset class was called AbstractDataSource in our initial design de-
scribed in Section 3.3. We renamed it during the project. Moreover, when
we first modeled the datasets, their content was composed out of Object
arrays. However we later discovered that this was not ideal when used in
combination with sorting Eclipse tables that were composed out of datasets
— this is why we decided that every object in a dataset needs to implement
Comparable interface.

26

Listing 4.3: Abstract Data Provider Methods

public abstract class AbstractDataProvider extends Job {

/∗∗
∗ Returns the description for this data provider.
∗ @return Returns the description for this data provider.
∗/

public abstract String getDescription();

/∗∗
∗ Creates headings for each column in the dataset object of this provider.
∗ @return A list of strings (List<String>) containing the headings.
∗/

protected abstract List<String> createHeadings();

/∗∗
∗ This method should do all the work necessary to populate the dataset’s
∗ content. It’s called in the job’s execute method after some
∗ initializations have been done.
∗
∗ @return The status of the current job.
∗ @see org.eclipse.core.runtime.IStatus
∗/

protected abstract IStatus createContent(IProgressMonitor monitor);
}

In addition to access methods for providers and dataset, the AbstractDataProvider
class contracts its subclasses to implement the abstractly defined methods

shown in Listing 4.3.

Because a data provider extends an Eclipse job, it can be scheduled for
execution. Upon the start of a provider its inherited run(IProgressMonitor
monitor) method then populates the datasets headings with the result from
the createHeadings() method and triggers the createContent(IProgressMonitor
monitor) method where subclasses need to initialize the datasets content and

return a status of the execution signalizing its outcome. The monitor passed
to the creation method allows for propagation of the progress of a running
job to the UI. However, it’s the responsibility of each subclass to implement
the monitoring of a data provider properly.

An UML overview of the discussed classes can be seen in Figure 4.4.

27

Figure 4.4: AbstractDataProvider class and surroundings

28

4.2.1 Content and Label Providers

Our initial definition of the entire application design already contained label
and content providers as described in Section 3.3, what merely has changed
during the development process are the names of those providers — namely
from DataContentProvider to QueryContentProvider for content providers and
from DataLabelProvider to QueryLabelProvider for label providers.

These providers are the connection between the data in the model and its
representation in the user interface as they control how the data from a data
provider’s DataSet is being rendered in the table in the result view.

Content providers need to implement the IContentProvider interface from the
Eclipse API, whereas label providers need to implement one of the appropri-
ate interfaces from the Eclipse API, such as ILabelProvider, ITableLabelProvider
, or CellLabelProvider. In our implementation, the default content provider in
our data providers is a IStructuredContentProvider, whereas the label provider
is a simple implementation of an ITableLabelProvider.

Our content provider merely returns the stored dataset’s content as an ar-
ray in the interface method getElements(Object inputElement), ignoring the
inputElement passed to this function. The label provider uses the interface
method getColumnText(Object element, int columnIndex) to return the corre-
sponding cell in the dataset.

In contrast to the content provider which ignores the inputElement parame-
ter, the label provider takes the element parameter as a row in the dataset
and returns the string representation of the element at the given columnIndex.
Label providers can also provide images for their elements. Our default label
provider implementation does not deliver any images for dataset elements,
this is why the method getColumnImage returns null.

Subclasses of AbstractDataProvider can easily override these default provider
implementations by setting their own content and label providers and thus
controlling how the data they return will look like when presented to the
user.

4.2.2 Parameterization through Annotations

An important question that came up during the refinement of our initial de-
sign was how parameters for data providers whose implementation we not
necessarily know as Archie can and should be extended by anyone, could

29

be set in our framework. We solved this particular problem by annotating
getter and setter methods for data provider parameters with custom anno-
tations.

Particularly, Archie provides two kinds of method annotations to use in data
providers: GetProperty for annotating getter methods and SetProperty for
annotating setters. Each get- and set-property pair is associated by a name,
and they both have an index variable that can be set. Index controls the
order in which the getters and setters are called by the controller or UI.

Listing 4.4: GetProperty Annotation Definition

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface GetProperty {

/∗∗
∗ Property name. There has to be a setter method annotated with a
∗ SetProperty method with the same value to have any effect on the data
∗ provider. This name will also be the title of the corresponding widget
∗ shown in the UI.
∗/

public String name();

/∗∗
∗ A brief description about the getter method.
∗ This is used for toolips of the UI elements.
∗/

public String description() default ””;

/∗∗
∗ Property index. Defines the order in which this property is
∗ displayed and processed.
∗/

public int index() default −1;

/∗∗ Widget type. What kind of widget? ∗/
public WidgetTypes widgetType() default WidgetTypes.TEXT;

/∗∗
∗ A regular expression pattern string to be performed as validations on the
∗ given method.
∗/

public String validationRegex() default ””;

30

/∗∗
∗ A validation error message that will be displayed upon unsuccessful
∗ validation of the input for the method containing this annotation.
∗/

public String validationMessage() default ””;
}

In addition to the index and name variables, the GetProperty annotation is
composed by couple of options. Each of these options is described in more
detail in Listing 4.4.

Not only can the annotations for getter methods contain a description used
in the UI to provide a more detailed feedback about a provider parameter,
but getter annotations also take care of a proper validation expression and
message as well as the widget type with which they should be presented to
the user.

Figure 4.5: Three different UI widgets.

Archie provides four different widget types that can be used together with
annotations: a simple text widget, a numeric widget, a date widget, and a
checkbox. A screenshot showing all widgets is depicted on Figure 4.5. Each
of these UI widgets provides default validation and quick fix methods. A
date widget for example is rendered together with a date picker pop-up for
users to be able to chose a date quickly and easily. Moreover, additional val-

31

idations using regular expression patterns1 can be set by each data provider
implementation using annotations.

4.2.3 Provider Implementations

Implementing a custom data provider is a two step process. First the im-
plementing plug-in needs to hook into the data provider extension point as
described in Section 4.1.3. As stated in the extension point definition, a plug-
in must have at least one, but can have as many as wanted, implementation
of the AbstractDataProvider class.

The second step consists of defining an implementation of a data provider.
This is where the plug-ins do the statistical computations and wrap them in
the appropriate model classes in order for Archie to use it. A more detailed
description on how to implement your own data providers can be found in
Section C.1.

4.3 Controllers

Most of the controller part of Archie is implemented by using actions. The
term action in Eclipse refers to a visible element that allows users to initiate
a unit of work [McAf07]. Given this definition, actions in Eclipse are tightly
integrated into the UI.

Eclipse defines several different extension points for several kinds of actions
— meaning that actions can be contributed to the UI either by definition,
using extension points, but also programmatically using code. In our case
the actions always belongs to a view, a part of the user interface, thus are
being defined programmatically.

Archie defines a couple of actions, some of them for starting a new statistical
query, opening the chart wizard, starting the chart creation in the dashboard
or exporting results of a data provider. An overview of these classes can be
seen in Figure 4.6. We describe them further in the following sections.

1http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

32

Figure 4.6: UML overview of the action classes

33

4.3.1 “New Statistics” Action

This action is the main controller, defined in the class NewStatisticsAction,
which is why it is probably the most important one. It not only controls
when a provider is scheduled and tells it to start gathering the data, but also
acts as a mediator between the result view (main view) and the sidebar view.
The sidebar view contains custom widgets necessary for setting parameters
for a currently selected provider. Widgets are described in Section 4.8 in
more detail.

Each action object needs to extend the Eclipse API class Action. The heart
of each action is the run() method. This method is called when the user
triggers the action from the UI — in our case by clicking the Start Query
button in the sidebar. The run method in NewStatisticsAction performs a
series of actions related to the currently selected data provider. First, it
takes care of checking the validity of provider parameters and sets them on
the provider if the parameters are valid. Then the action registers itself as a
job listener on the data provider and updates and populates the main view
with information about the currently selected provider and its parameters.
Finally the “new statistics” action tells the data provider to run.

In this action, we use the Observer Pattern as well as the IJobChangeListener
interface of the Eclipse API. On the one hand, the action observes the

ProviderManager which propagates an update event every time the currently
managed provider changes. By default the “new statistics” action is disabled.
As soon as the provider manager has set a valid provider, the action enables
itself and users can start statistical queries. Additionally if at any time
during the runtime of the application the provider changes and/or is not
valid anymore, the action disables itself.

Thanks to the IJobChangeListener interface, the action can react on different
states of a job — which in our case is the data provider. We namely use
the done(final IJobChangeEvent event) method which is called after a job has
terminated (successfully or unsuccessfully). The action populates the result
view with results from the data provider. This can either be a table contain-
ing the data from a dataset of a provider or, an appropriate message for the
user, if the query did not return any results.

The sequence diagram shown in Figure 4.7 demonstrates how the action
interacts with the data provider as well as important controller objects and
result panel [Bell04].

34

Figure 4.7: Data Provider – Controller Interaction

35

4.3.2 Additional Actions

As previously mentioned in Section 4.3, there are a few additional actions
we use in Archie other than the “new statistics” action. The following list
shows and describes these actions used as controllers in Archie.

ChartWizardAction. This action is defined in the main view where the
results of a statistics are shown. It opens a new chart creation wizard
where users can build graphical charts based on the data in the results
table.

ExportAction. This action triggers an export dialog where the contents
of the currently shown results table can be exported into a Comma
Separated Values (CSV) file.

CreateChartsAction. This action is used in the dashboard view to start
the dashboard chart generation. We implemented this action so that
the chart creation could be triggered by the user instead of being started
automatically as soon as the view is displayed. This is particularly
important for users with slower computers where the creation of these
charts can take a while.

RefreshChartsAction. This action refreshes the already created charts
which is mostly needed when a user has been working some time since
he generated the dashboard charts and needs to refresh them with up-
dated data.

4.4 Managing Classes

During the application runtime, there are situations when we want to have
only one instance of a certain object in order to either reuse it or its attributes,
or to be able to access it from different parts of the program while ensuring
that the instance we access is the right one for all accessors. This is why we
implemented three manager classes. An UML representation of all manager
classes can be seen in Figure 4.8.

Every manager class is an implementation of the Singleton Pattern and stores
exactly one instance of a specific type of object. By providing accessor meth-
ods for the stored instance, it can be accessed by different classes (mostly
controllers) at different times while ensuring that the instance of the object

36

Figure 4.8: UML overview of the manager classes

remains the same. We differentiate between the following three manager
objects in Archie:

ProviderManager. This class manages the currently active data provider
instance. When a user selects and runs a particular statistic from the
list, the data provider for that statistic is set in the ProviderManager.
It is reused in some controller classes such as in NewStatisticsAction
, in ProviderInformationPanel, a user interface class, or in the chart
generation wizard.

TableManager. This is a manager class for the Eclipse SWT table dis-
played as a result in the main view. We use it to store the current
table instance in order to be able to reuse its sorting attributes in the
chart creation wizard.

ChartModelManager. This class manages the last used chart model. We
implemented it in order to properly encapsulate and reuse the model
and its attributes when a new chart wizard is started. This way a user
does not have to (but of course can) enter all chart parameters again
when creating new charts, especially when only a few parameters need
to be changed.

4.5 Factories

There are two different situations where we have to create certain types of
objects based on a specific object or its properties. Particularly in Archie,

37

we create either tables or charts. In order to group these repetitive tasks we
created two factory classes as can be seen in Figure 4.9.

Figure 4.9: UML overview of the factory classes

TableFactory. Creates an Eclipse JFace TableViewer containing a Table ob-
ject based on the data from a given dataset. The factory method
createTableFromData(Composite parent, DataSet dataset, ILabelProvider
labelProvider, IContentProvider contentProvider) also takes two providers
(label and content) as parameters, as well as the Composite object the
table gets displayed in.

Context menus and other enhancements can only be added to viewer-
(contain tables) rather than table-objects, which is why we decided to
return the TableViewer rather than the Table object during the devel-
opment of the project as opposed to our initial implementation.

ProviderChartFactory. This class creates ChartComposites based on a given
ChartModel object as described in Section 4.6.3. This also means taking
care of mapping the definition of our dataset into a particular definition
of a JFreeChart dataset as described in Section 4.6.

Both factories are implemented as Singleton although they could also be
implemented as classes containing only static methods thus not have an in-
stance.

38

4.6 Charts

We want to give users a means to evaluate the result of a data provider
not only by consulting the result table in the UI but also by providing a
convenient means to generate graphical charts. In order to achieve this in a
general way, one that is in line with displaying data not known upfront, we
created a chart model and a chart wizard.

The data displayed in the results table can be exported into a graphical chart
by using the chart wizard in the result view. There are three chart types that
can be created using this wizard — pie-, bar - and line-charts.

All of our charts are rendered using the free and feature-rich Java chart library
JFreeChart described in Section 3.5. JFreeChart provides a well documented
API and supports a wide range of chart types out of which we only use the
three types mentioned before.

A chart object in JFreeChart is based on a dataset (this is a different dataset
object than ours, but the term dataset in JFreeChart refers to something
very similar — a collection of data, keys and values). This chart object
can be used to create a ChartComposite, which is a subclass of an ordinary
SWT Composite and thus can be used and displayed in other composites and
containers in the UI.

For each chart type, we need to create a factory method which maps the
values in our dataset into an particular dataset definition in JFreeChart in
order to be used to create a chart.

4.6.1 Pie Charts

Pie charts in JFreeChart are based on datasets that implement the PieDataset
interface. JFreeChart provides a default implementation of this interface in
a class called DefaultPieDataset. This dataset is a mapping of keys to values.
As each row in the JFreeChart DefaultPieDataset is a row in our dataset
definition, we only had to create the mapping between these two datasets by
defining the keys and values, which in our case corresponds to picking one
column from our dataset for each — a keys column and a values column.

39

4.6.2 Bar and Line Charts

The implementation of bar and line charts in JFreeChart is slightly different
to that of pie charts as the underlying dataset needs to implement a different
interface — namely the CategoryDataset interface. A default implementation
of this interface is provided in JFreeChart by the class DefaultCategoryDataset
. The difference between a bar and a pie chart lies in the possibility to plot
more than one category (column) in a bar chart.

Figure 4.10: Dataset Mapping in Bar Charts

We created the mapping by defining a variable rowTitleColumnIndex that
holds the index of the column in our dataset which provides the title for each
row and each category (column) in the category dataset, as well as, similarly
to the pie chart mapping, an index of all rows and columns (categories) that
should be plotted. The row titles based on the rowTitleColumnIndex variable
are the labels on the x-axis in a bar chart. Line charts in JFreeChart are
based on the same dataset as bar charts, which is why the same definitions
and mappings apply for line charts. An example of the dataset mapping in
bar charts is shown in Figure 4.10.

4.6.3 The Chart Model

The underlying object in a chart wizard is the chart model. The chart model
is a simple class that contains definitions and settings about how a chart
based on this model should be rendered, what kind of chart it is and what
data from a dataset the chart contains.

40

Listing 4.5: Chart Model Object Variables

public class ChartModel {

/∗∗
∗ Constant for pie chart types, 1.
∗/

public static final int CHART PIE = 1;

/∗∗
∗ Constant for bar chart types, 2. Bar charts can also be handled as line
∗ charts as they both are created from a category dataset. There’s a switch
∗ in the bar chart type that can be activated for line charts.
∗/

public static final int CHART BAR = 2;

/∗∗
∗ This switch can be activated for bar charts which makes them render as
∗ line charts.
∗/

private boolean isLineChart;

private String chartName;
private DataSet dataSet;

private int[] rows;
private int[] columns;

private int keysIndex;
private int valuesIndex;
private int categoryColumnIndex; // used in bar & line charts
private int chartType;

private boolean isThreeDimensional;
}

Listing 4.5 shows the object variables in a chart model. These variables
are set in the chart wizard steps, the chart model method isValid() returns
whether a chart model is valid and can be used for chart creation. Each chart
model has a chartType which is either ChartModel.CHART PIE or ChartModel
.CHART BAR. Although there are three types of charts, we only define two
chart types and add the variable isLineChart for that case, as a line chart
is a special case of a bar chart both depending on the same dataset type
(JFreeChart dataset as described in Section 4.6.2).

41

In addition to this, a chart model also specifies which columns and rows from
a dataset, also stored in the model, will be used for categories, keys and/or
values in the chart’s dataset. JFreeChart also provides methods for creating
three dimensional charts. However, the underlying datasets are independent
of this setting which is why we only specify a boolean isThreeDimensional for
switching to a 3D chart.

4.7 Helper Classes

Several places in our program source code make use of small and almost
identical pieces of code. Because of this we define certain utility or helper
classes. These classes help us to keep the code clean and structured and
allow us to reuse common, shared functionalities and methods in different
places. All helper classes contain only static methods. We also expose the
helper classes in Archie to other plug-ins by defining entries for each helper
class in the plugin.xml file.

Figure 4.11: Valid Filename Proposal During CSV Export

One example application of such a helper class can be found in the CSV
export functionality. In the popup dialog presented to the user where he
can type in the filename used to save the data, a filename proposal is al-
ready present. An illustration of this is shown in Figure 4.11. This filename
is a cleaned-up string composed by the name of the data provider and the
current date, containing only valid filename characters. Moreover, all whites-
pace characters are replaced by underscores. This string is generated by the

42

StringHelper class. In addition to this StringHelper class, the following list
shows all other helper classes available in Archie.

ArrayUtils. Provides convenience methods for printing out as well as check-
ing the existence of certain elements in arrays.

DatabaseHelper. This class is used in the dashboard overview composite
in the UI and provides methods for easy access to certain data in the
database.

DatasetHelper. Provides methods to sort datasets, to type check dataset
columns, and to retrieve column indexes based on the column title.

ProviderHelper. This class offers methods to retrieve all annotated meth-
ods (and thus parameters) for a data provider as well as to retrieve and
set values for these methods. Furthermore, it takes care of sorting and
storing these methods in a map for further processing.

SWTUtils. Offers convenience methods for user interface classes to easily
create commonly used Java Standard Widget Toolkit (SWT) elements
such as labels and separators.

4.8 User Interface

The entire user interface is built on top of the Standard Widget Toolkit
(SWT) used throughout the Eclipse API. Although most of the components
used are standard SWT containers and widgets, in order to provide a nice
user feedback upon parameter setting in the parameters panel, we created
custom widgets that handle the user input. An example can be seen in
Figure 4.12.

The superclass for every such widget is the AbstractWidget class, an abstract
class extending an SWT composite which makes it usable in other SWT
components throughout the UI. Each AbstractWidget consists of a label and
a control (controls such as simple text fields, combo boxes or similar are parts
of SWT). Concrete implementations of abstract widgets provide methods for
setting and retrieving the value of a widget as well as (in certain implementing
classes) validation and quick fix methods.

These widget types as well as the validation parameters can be set in the data
providers (implementing plug-ins) by using annotations and regex patterns,
Annotations are described in Section 4.2.2, regex patterns in Section C.2.

43

Figure 4.12: Widgets in the UI

This gives each plug-in total control over how the corresponding UI widgets
to set parameters get rendered and validated.

We provide implementations for most common widget types. A list of avail-
able widgets is shown below, a more detailed view of the entire class hierarchy
is depicted in Figure 4.13.

TextWidget. Is an implementation of an abstract widget containing a sim-
ple text input field. In contrast to the abstract widget, a TextWidget
contains a SmartField object, a wrapper class for a widget’s control that
provides label decorations for signalising the validity of a widget’s value
to the user.

NumericTextWidget. Is a subclass of the TextWidget providing an im-
plementation of text widgets which may only contain numeric charac-
ters. A numeric text widget also has a custom implementation of the
SmartField class, a SmartNumericField, in order to provide proper vali-
dation methods for numbers. This class also takes care of parsing the
content of the text widget in order to return an int value.

DateTextWidget. A widget based on the TextWidget which additionally
provides a date picker popup displaying a calendar to the user in order
to simplify the input of dates.

CheckboxWidget. A simple checkbox widget implementation. The control
in this widget is a SWT Button, the value returned is either true or false,
depending on the selected state of the button.

44

Figure 4.13: Class hierarchy diagramm of UI Widgets.

45

4.9 Elexis User Interface Contribution

As previously stated one of our goals is to create a modern, good-looking and
functional user interface. Elexis itself, in our opinion, needs some overhauls
in this area. This is why we also contributed to Elexis itself and its user
interface. Figure 4.14 shows an example screen of Elexis in version 1.3 —
prior to our contribution. There are many different styles of icons used
throughout the application. There is an additional inconsistency in the way
forms look. Some form elements have bad looking additional backgrounds.
Frames and borders are used in strange ways, etc.

Figure 4.14: Elexis 1.3 User Interface (German)

We think with some small but important changes the look-and-feel of Elexis
can be optimized. Figure 4.15 shows some of the changes we applied: We
provided consistent looking icons, changed background colors, and adjusted
the way forms are displayed (an example of this is the patient list on the
left).

46

Figure 4.15: Elexis 1.4 User Interface (German)

4.10 Dashboard Charts

In addition to the previously mentioned widgets for user input, other user
interface components with a custom implementation in Archie are the dash-
board charts.

Dashboard charts are customized SWT composites that consist of two im-
portant parts — a ChartComposite being a JFreeChart class containing the
actual chart that is displayed to the user, and a AbstractDatasetCreator that
is responsible for creating the dataset for each chart in our chart composite.
Again it is important to note that the dataset created by this creator is not
the same dataset object as we use in our providers, but that JFreeChart
merely uses the same naming for their chart object’s data.

The AbstractDatasetCreator object is very similar to our AbstractDataProvider.
Every dataset creator is a job so that the creation of each dataset can be moni-
tored outside of the creator — more specifically by the AbstractChartComposite
class being the job listener. As soon as the dataset creator’s job is done, it

47

Figure 4.16: Dashboard Charts Class Diagram

removes the initially displayed working message and shows the created chart
based on the creator’s dataset.

Every implementing class of a chart composite needs to provide its own par-
ticular dataset creator based on the type of the chart the composite should
display. A detailed illustration about the class dashboard charts class hier-
archy is depicted in Figure 4.16.

The big advantage of this approach is not only the ability to monitor the
creation of the charts along with their datasets, which depending on the
size of the dataset can be time consuming, but also the ability to make
use of the Eclipse Jobs API and control the state of every chart creation.
Most important for us was to provide the ability to start a chart creation
on demand. Running the chart creators contained in the four dashboard
charts on slower computers takes a lot of time. Additionally these creators
block the entire UI when Archie launches. Implementing the chart creators
as Eclipse jobs allows us to start the chart generation on demand as well

48

as cancel already running chart creators. This also solves the UI blocking
problem.

4.11 Limitations

Although we were able to realize most of the features we or the Elexis users
wanted to have, there are a few limitations to Archie. These limitations can
be divided into two groups — internal and external. Internal limitations
result from our implementation approach, external limitations are caused
either by the implementation of Elexis or the Eclipse API. Some of these
limitations are described in the following sections.

4.11.1 Internal

Limited Widget Types The list of available widget types is modelled as
an enum. Enums in Java are a special type (instead of being a class) that
represent a fixed set of constants. This means the number of widget types in
Archie is limited to the types described in Section 4.8. Although a plug-in
for Archie theoretically could implement its own widgets by extending the
AbstractWidget class, enums cannot be subclassed so a plug-in cannot add
its own type to the list of available widget types.

Totals in Results Table The result table in Archie is a visual representation
of a dataset. A dataset is modelled as a table as described in Section 4.2 and
shown in Figure 4.3. Despite that there are several situations where a user
is interested in the totals of columns, currently there is no option to display
the totals of the columns or rows of such a dataset in the results table. A
feature request based on this limitation is also listed among the list of issues
on the Google Code project website2.

Interaction with Results Table The results table in Archie shows different
types of objects. The dataset displayed in the table can hold simple types
such as numbers or strings, but also more complex and Elexis-specific types
like persons, invoices, or similar. Currently there is no built-in mechanism
in Archie to allow contributing plug-ins to show context-specific information

2http://code.google.com/p/archie/issues/list

49

http://code.google.com/p/archie/issues/list

based on an object type in the results table cell. When a user for example
double-clicks a cell showing the value of an invoice in Elexis, a contributing
plug-in might want to react to this event and show the details of the invoice
in a separate window. This limitation is also noted in the form of a feature
request on the Google Code project website.

4.11.2 External

Internationalization Archie can be completely translated into different lan-
guages, as well as almost every part of each Eclipse plug-in— but unfortu-
nately not every part. There are limitations of the Eclipse international-
ization mechanism, namely when it comes to translating VM retained an-
notations, that are being read at run-time. In Archie this is the case for
parameters of a data provider.

Listing 4.6: Example Annotation

/∗∗
∗ @param currentMandatorOnly
∗/

@SetProperty(name = ”Active Mandator Only”)
public void setCurrentMandatorOnly(final boolean currentMandatorOnly) {

this.currentMandatorOnly = currentMandatorOnly;
}

Each parameter of these annotations, such as for example name in Listing 4.6
must have a value. Translations in Eclipse work by defining constants in a
Messages.java file and associating these constants with their language specific
values in a separate text file such as messages.properties or in a dedicated
language file such as messages de.properties for German.

The values of these constants of translatable strings are associated by Eclipse
at runtime, depending on the language set in the running application. Anno-
tation parameter values need either to be concrete values or constants with
defined values at compile time, which is why we cannot use translations in
annotation parameters.

Access Control Lists Archie uses the access control list (ACL) extension
point definition ch.elexis.ACLContribution provided by Elexis for restricting
access to certain users to the entire Archie application. This is particularly

50

important in medical practices where not only the physician might have ac-
cess to Elexis. As Archie provides access to sensitive statistics about patients,
access to this data needs to be restricted in certain cases.

Unfortunately, the entire access control protection only works when Elexis is
started with the de CH language parameter and thus localized in German.
This problem is known to the Elexis core developers but at the point of this
writing, there is no working solution, which is why the ACL restrictions do
not work in Elexis language setting other than German.

This is a limitation of the currently stable Elexis 1.4 release and has been
fixed in the latest 2.0 beta version.

51

Chapter 5

Team Organization

Because of the uncommon situation of doing this project as well as writing
this report in a team, we needed to divide the tasks in each phase of the
project. The phases of the project included creation of the initial project
presentation, implementation of the prototype, making architectural desi-
cions for the programming part, programming Archie along with the sample
statistics plug-in, and at last, writing this thesis.

Throughout the project, we tried to work in each phase in pair when it was
efficient and divide the tasks when it was not. We made the initial project
decisions and discussed the entire architectural process together. During the
programming part, although working side-by-side in the same room each on
his own computer, we had to separate the coding areas. This way not both
of us were working on the same task simultaneously and thus could advance
faster, while still having the possibility to discuss problem areas as well as
possible solutions together. This process proved to be very effective.

Before we started working on the report, we defined the initial table of con-
tents together based on which we assigned specific chapters to each of us.
We wrote the chapters individually and apart from each other before we cor-
rected and combined them as a pair to one entire document in an iterative
process. Dennis wrote initial versions of Chapter 2, Appendix B, Appendix C,
and Chapter 6. Peter wrote initial versions of Chapter 1, Chapter 3, Chap-
ter 4, and Chapter 5. We did not assign the chapters according to a specific
scheme.

For the task management process, we made heavy use of activeCollab1, a

1http://www.activecollab.com/

52

http://www.activecollab.com/

project management and collaboration tool, as well as Subversion2 for ver-
sioning source code and text files. Near the end of the project, we defined a
Google Code project website3 for Archie in order to maintain official releases
and downloads as well as provide a public interface for reporting issues and
enhancement requests.

2http://subversion.tigris.org/
3http://code.google.com/p/archie/

53

http://subversion.tigris.org/
http://code.google.com/p/archie/

Chapter 6

Requirements Engineering and
Validation

At the beginning of our project we visited various doctors and practices.
They showed us what system they had in place to manage their patients,
what their workflow was and what the advantages and disadvantages of these
were. We asked what they would expect from an EMR system and how they
would go on about migrating. This way we got an insight into the difficulties
of migrating paper based systems, but we also saw that human factors are ac-
tually more important. Radically changing workflow for example can be very
hard, especially for doctors and employees of long existing practices. With
this and other input that was given we got a feeling for what was important
and what challenges, but also chances, lie in the domain of EMR.

Later, the idea of Archie was already born, we visited a practice where Elexis
was used. We talked to the doctors using the system and got more informa-
tion on it in general and insight into how it changed workflow and practice
management. We also met Gerry Weirich, the main developer of Elexis, and
talked with him about our ideas.

The next step was to contact more developers of Elexis and its user base,
which, interestingly, are mostly the same people: the main developers all use
Elexis in their own practices. We registered ourselves on the Elexis mailing
list and on the forum, where we proposed our idea for Archie. We got various
feedback, e.g. for what kind of statistics they would wish the most for. From
these ideas and wishes we started to draw out what capabilities our statistic
framework should have. Slowly but surely the requirements for our projects
became clearer.

54

After the initial exchange of ideas and requirement proposals we started to
write Archie. From time to time we presented our advancements and got
feedback on them. This was also a good way to see if we were still on track
with the project. The feedback we got was mostly very good and we were
glad to find that the Elexis community is, albeit a small one, very active and
constructive.

At the last stages of development we started working closer with Gerry
Weirich, which was very fruitful. He started to use and test Elexis which
gave us more important feedback. Also we were able to ask questions about
the Elexis code base directly to its creator and could thus improve and opti-
mize Archie to work better and closer with Elexis.

Subsequently the Archie framework was used by Gerry to create an account-
ing tool [Weir09a]. It contains multiple analyses like an open bills statistic, a
payment journal statistic etc. We were glad that our framework was already
being used as a base for other projects and that we were told that it had
been pretty easy to do so, which was one of our goals with Archie.

Reception of the framework has been very good up until writing of this
paper. We feel that there is great interest from users and developers alike.
The plugin gets many feature requests and it will become part of the next
major Elexis release.

55

Chapter 7

Conclusions

In Chapter 1 we stated the goals of this project. Then we showed how to
the data provider can be used for retrieving data about Elexis and how the
data provider stores this data in a dataset modelled as a table for further
processing. We have shown how other Eclipse plug-ins can hook into the
Archie framework in order to provide their own statistics. Moreover, Archie
provides a chart wizard that allows users to visualize statistical, textual data
by using pie, bar, or line charts, as well as export this data in a standardized
format for further processing.

Archie is written as an Eclipse plugin which allows the users to easily deploy
as well as maintain it. Furthermore, we worked closely together with an
active Elexis userbase as well as its main developer to ensure that the final
product will be used on a day-to-day base by Elexis users.

7.1 Lessons Learned

We learned that contributing to an already existing project can often be
difficult and time consuming. Not only do you have to familiarize yourself
with the available program code, but with the programming style of the
project owners as well. The latter can have a great impact on how fast this
familiarization process progresses.

Moreover, we learned that Eclipse is a great Java framework. It provides
a very extensive set of API classes and methods that allow you to develop
complex applications. On one hand, this great amount of already available
building blocks can save you a lot of time. However, on the other hand it is

56

this very amount of blocks that makes it difficult to use. The documentation
on some parts of Eclipse is very scarce, often your best source is a good web
search engine or the Eclipse newsgroups.

Another lesson was that working in a team often requires adapting the team
organization to the current task. As an example, for us when writing code
it was most efficient to do it in pair as described in Chapter 5, albeit when
writing the thesis it was best to work individually on separate chapters or
sections.

7.2 Future Work

In this section we outline future work and possible additional functionalities
of Archie. Some of the following paragraphs are related to the limitations
described in Section 4.11.

Flexible Widget Types Archie currently supports only a fixed set of UI
widgets used for user input. The widget types could be implemented as a
class instead of an enum. With this an implementing plug-in can extend the
available widgets by adding its own widget types such as radio, drop-down, or
other custom widgets. Another approach would be to define a new extension
point in the Archie plug-in definition file and let implementing classes use
this hook to provide custom widget types.

Totals in Result Table For several statistics users might be interested in
a computed total of each column. This could be implemented by extending
the dataset model and adding a special row. Each cell of this additional row
contains the totalised value of all corresponding cells in a numeric column
(column that contains numeric values only as totalising make most sense for
numeric values). Such a row needs to be excluded from the sorting of a
dataset which is why it is marked as special in the dataset model. Figure 7.1
shows how a possible solution for showing totals in the results table could
look like.

User Interaction in Result Table The misssing user interaction could be
implemented by allowing plug-ins to provide (custom) selection listeners.
Currently, every plug-in (data provider) can define a custom content and

57

Figure 7.1: Possible solution for showing totals in the results table.

label provider. These providers are respected when the results table is ren-
dered in the UI. Using the same system, a data provider could define selection
listeners that would react to double-blick events on a table row or cell ac-
cordingly.

Adding More Statistics The samples part of Archie contains seven dif-
ferent implementations of the framework, providing seven different statis-
tics. Although statistics developed for Archie by other parties [Weir09a]
already exist, additional statistics implementations could be provided in the
future.

58

Appendix A

Licensing of Archie

From the very beginning our stated goal has been to distribute Archie as
part of the official Elexis release. To accomplish this goal we release Archie
under the Eclipse Public License (EPL), the same license that Elexis uses.
1.01. The EPL has lower restrictions than other licences such as the GNU
General Public License (GPL)2. For instance, every software building upon
or using software licenced under the GPL has to be released with the same
licence while this is not necessary under EPL.

Archie will become part of the Elexis core with the next major release.

1http://www.eclipse.org/legal/epl-v10.html
2http://www.gnu.org/licenses/gpl-3.0.txt

59

http://www.eclipse.org/legal/epl-v10.html
http://www.gnu.org/licenses/gpl-3.0.txt

Appendix B

User Manual

B.1 Quick Start

To install Elexis and Archie follow these steps:

1. Download an Elexis 1.4 installation package for your platform from
http://www.elexis.ch/jp/index.php?option=content&task=view&id=

57 and install it on your computer.

2. Download Archie from archie.designchuchi.ch or directly from http:

//code.google.com/p/archie/downloads/list

3. Unpack the contents of the archive file into the plug-ins directory inside
your Elexis installation directory.

Note: The archive should contain two .jar files, they should end up in
the plug-ins directory along with the files already present.

4. Download the demo database from http://www.elexis.ch/files/

demoDB.zip and extract it to your Elexis installation folder.

Note: the current demo database only contains entries for one month,
namely August 2008. Statistics queries which use date ranges outside
of this month return no results.

5. Start Elexis with the −nl de CH parameter. On Mac OS X systems
issue the following command in a terminal window <path to your elexis
folder>/elexis.app/Contents/MacOS/elexis −nl de CH. On other oper-

ating systems add the −nl de CH parameter to the elexis executable
when running it. Login with user name test and password test.

60

http://www.elexis.ch/jp/index.php?option=content&task=view&id=57
http://www.elexis.ch/jp/index.php?option=content&task=view&id=57
archie.designchuchi.ch
http://code.google.com/p/archie/downloads/list
http://code.google.com/p/archie/downloads/list
http://www.elexis.ch/files/demoDB.zip
http://www.elexis.ch/files/demoDB.zip

Note: In order to be able to set access privileges for Archie in Elexis,
either the system locale has to be set to de CH or Elexis needs to be
started with the −nl de CH parameter. This is a known limitation of
the Elexis 1.4 version as described in Section 4.11. This bug will be
fixed in Elexis version 2.0.

6. To use Archie you have to give the test user admin privileges. To do so
open the preferences, select “groups and rights” and “access control”,
click on “Archie access”, select the test user, and click on “apply”.

B.2 Usage

To use Archie, open up the Archie perspective by either clicking on the button
in the main button tool bar or by clicking on Window → Open Perspective
→ Other → Archie Perspective in the menu bar.

In the perspective you see two views: the Dashboard and the Sidebar.

B.2.1 Dashboard View

The Dashboard gives a quick overview of your Elexis system. It shows some
key data like number of patients and number of consultations. With a click
on the “Create Charts” action button on the upper right side of the view,
the dashboard draws four charts:

Number Of Consultations. Shows number of consultations during the
last six months.

Consultation Money. Shows how much profit, income and costs we had
for consultations during the last six months.

Costs of Consultations. Shows costs of all consultations in a histogram,
grouped by age-group and gender.

Age Histogram. Shows all patients in the system grouped by age-group
and gender.

The size of the age-groups of the last two charts can be altered in the Archie
preferences. To open them click on File → Settings → Archie .

61

Figure B.1: Dashboard View

62

B.2.2 The Sidebar View

Figure B.2: The Sidebar View

In the Sidebar View you can find all the available statistics in your Elexis
system in a drop down list. If there are too many statistics to scroll through
you can also type in the name of a statistic and an auto-completion helps you
find it. If you chose a statistic, additional options and settings are shown in
the sidebar. When you have made your choices, click on “Start Query” and
a background job will be started to assemble the data.

B.2.3 The Output View

When a statistics creation job is finished, the results will be shown in the
Output View. Here you can sort the results by clicking on any table heading.
If you want to export the data to a Comma Separated Values (CSV) file,
you can do so by clicking on the “Export Action” button in the upper right
corner of the view. After exporting the data, you can then open it for further
processing in Microsoft Excel, Open Office Calc, or any other software which
supports CSV files.

If you want to draw the results as a graphical chart click on the “Chart
Wizard” action button, on the upper right corner of the Output View.

63

Figure B.3: The Output View

The Chart Wizard The Chart Wizard allows you to create charts from
any result table. To explain the Chart Wizard we show an example creation
of a chart from a result set. When you click on the action button, you are
presented two options: Creating a pie chart or creating a bar chart (which
can also create line charts) as seen in Figure B.4.

The next dialog asks you to specify what exactly you want to plot and how,
as can be seen in Figure B.5.

When all parameters are set you can choose which rows of the dataset you
want to use in your chart. For bar charts for example you might want to
sort the rows and only take the top ten to plot. In our example we choose
all rows, as there are only five anyway. See Figure B.6.

When we click on Finished our chart will be created – as the example chart
in Figure B.7 shows.

You can further investigate the chart by zooming in or out on certain parts.
When you move your mouse around, tool tips get displayed, explaining what
you see. You are also able to change certain aspects of the chart (such as
colors, captions etc.) by right-clicking on it. You can also save the image to
your hard drive by clicking on “Save As. . . ”.

64

Figure B.4: Chart Wizard: Choose Chart Type

65

Figure B.5: Chart Wizard: Bar Chart Page

Figure B.6: Chart Wizard: Choose Rows

66

Figure B.7: Example chart created with Chart Wizard

67

Appendix C

Developer Manual

Writing a statistic which uses the Archie framework is pretty easy. There
are two main steps involved: Extending the AbstractDataProvider class and
Registering the statistic with the Archie Extension Point. We will look into
these steps in detail in the next sections.

For examples on how to write statistics please consult the source code of
the Archie samples project. You can find information on how to check out
the source files via SVN from the Archie project website at http://code.

google.com/p/archie/. If you want to get information on how to develop
for Elexis in general, please consult the developer section on the Elexis web-
site at http://www.elexis.ch.

This manual assumes that you have basic knowledge in Java, Eclipse, and
Elexis development.

C.1 Extending AbstractDataProvider

The first step is to create a class in your project which extends

ch.unibe.iam.scg.archie.model.AbstractDataProvider.

If your statistics needs to constrain itself to a timespan, you can also directly
extend

ch.unibe.iam.scg.archie.model.AbstractTimeSeries

which extends AbstractDataProvider and is already set up for the task of
handling time spans. It has instance variables startDate and endDate which

68

http://code.google.com/p/archie/
http://code.google.com/p/archie/
http://www.elexis.ch

you can use. How to use these two variables in your code is up to you,
AbstractTimeSeries just sets up the UI in the right way and provides the two
dates the user entered.

In any case you will have to override the following methods:

Listing C.1: Methods to override

/∗∗
∗ Return an appropriate description
∗/

public String getDescription()

/∗∗
∗ Create dataset headings in this method.
∗/

protected List<String> createHeadings()

/∗∗
∗ Compose the contents of a dataset here
∗/

protected IStatus createContent(IProgressMonitor monitor)

C.1.1 Constructor

In the constructor you set the name of your statistics job and you can carry
out any additional initialization you might need.

C.1.2 getDescription

This method returns a short description of your statistic. This description
gets displayed in the Archie sidebar when your statistic is selected. It should
convey what your statistic is about in general and what kind of results it will
return.

C.1.3 createHeadings

This method returns a list with strings. The list will be used to populate the
table headings in the result view. For example:

69

Listing C.2: createHeadings() Example

/∗∗
∗ @see ch.unibe.iam.scg.archie.model.AbstractDataProvider#createHeadings()
∗/

@Override
protected List<String> createHeadings() {

final ArrayList<String> headings = new ArrayList<String>(2);
headings.add(”Heading 1”);
headings.add(”Heading 2”);
return headings;

}

Pay attention to the number of headings you return, it has to correspond to
the number of columns you create in createContent()

C.1.4 createContent

This is the method that does the actual work of the statistic. Let us look at
an example:

Listing C.3: createContent() Example

/∗∗ {@inheritDoc} ∗/
@Override
public IStatus createContent(IProgressMonitor monitor) {

// Initialize result list
final List<Comparable<?>[]> result = new ArrayList<Comparable<?>[]>();

// Set job size and begin task
int size = allPatients.size();
monitor.beginTask(”Working on patients\ldots”, size);

for (Patient patient : allPatients) {
// Check for Cancellation.
if(monitor.isCanceled()) {

return Status.CANCEL STATUS;
}

// Do actual work...
// Fill result array

70

monitor.worked(1);
}

// set content
this.dataSet.setContent(result);

// job finished successfully
monitor.done();
return Status.OK STATUS;

}

Listing C.3 shows a skeleton of an actual createContent method. The first
thing you might notice is that the method does not return the actual data,
but the status of the job. If the job is finished the method should return an
OK status. It is also important to check for cancel request inside loops, if
the method doesn’t check for that, the cancel button in the sidebar will not
work. You should also set the size of your job, and work with the monitor, so
users get feedback on how your job is progressing. When the job is finished,
be sure to set the content of the dataset with this.dataSet.setContent(result),
else it will not work.

The most important part is that you put the right data into the dataset.
As you can see in the example you should fill a list which contains arrays of
objects that implement the comparable interface. If the objects you want to
put into the dataset don’t implement said interface, you might have to write
a wrapper class for them. The reason is that we have to make sure that the
results are sortable in the result view.

The arrays in the list will end up as rows in the result table, they have a
determined size which has to be the same as the headings size. The list holds
all these rows and is of variable size.

C.2 Adding Additional Parameters

To present the user with additional parameters that you want to use in the
creation of your statistical data you can write getter and setter methods for
these parameters and annotate them in the right way. What follows is an
example of such a method pair which is responsible of providing the user with
a checkbox in the UI asking whether he wants to create the statistic only for
the active mandator (involving only his consultations) or for all mandators

71

(involving all consultations in the system). Providing users with such an
option has been established as good practice during development.

Listing C.4: Annotated method pair for additional statistic parameters

/∗∗
∗ @return True if statistic should be created for current mandator only, false else.
∗/

@GetProperty(
name = ”Active Mandator Only”,
index = 1,
widgetType = WidgetTypes.BUTTON CHECKBOX,
description = ”Compute statistics only for the current mandator.

If unchecked, the statistic will be computed for all mandators.”
)
public boolean getCurrentMandatorOnly() {

return this.currentMandatorOnly;
}

/∗∗
∗ @param currentMandatorOnly
∗/

@SetProperty(name = ”Active Mandator Only”)
public void setCurrentMandatorOnly(final boolean currentMandatorOnly) {

this.currentMandatorOnly = currentMandatorOnly;
}

You are now able to use this.currentMandatorOnly in your code, the UI has
been set up automatically. A good practice is also to initialize the member
variable with a value. If you default it to true for example, the checkbox is
selected in the UI from the beginning, otherwise it is not. Now let us take a
closer look at the annotations.

The name is an identifier for your method pairs, it is important that they
are the same in both methods. It also gets used as label displayed in front
of the control in the UI.

The index parameter controls in which order your properties will be displayed
in the UI as well as processed when they are set. If you have several properties
they get sorted in descending order based on the index.

With widgetType you can specify what kind of widget will be displayed in
the UI. For available widget types please consult: ch.unibe.iam.scg.archie.ui.
WidgetTypes. The most important are:

72

TEXT. A vanilla text widget which can validate itself.

TEXT NUMERIC. A text widget only for digits.

TEXT DATE. A date widget which has a inline datepicker for easy date
setting.

BUTTON CHECKBOX. A simple checkbox, is either selected or not.

TEXT NUMERIC makes sure that only numbers are entered, TEXT DATE
does the same for dates. If you want different, more specific validations for
text widgets, you can also specify a regular expression for it.

With validationRegex you can specify a regular expression pattern. If the
pattern will match the contents of a text widget a green tick will be shown
– symbolising that the widget has been filled in correctly. Else a warning or
error symbol will be shown. Here is an example:

validationRegex = ”ˆ([1−9]){1}\\d{0,2}”.

If you provide a custom regex pattern, you also have to provide a description
of it using validationMessage. This message will be displayed if the widget
does not validate. Here is an example, corresponding to the one above:

validationMessage = ”This field has to consist of at least one, at most three numbers
.”)

C.3 Registering with the Archie Extension Point

After you have written your statistic you have to register it with the Archie
Extension Point. To do this you have to edit the plugin.xml or fragment.xml
file of the Elexis plug-in your statistic class resides in. Just add and edit the
following lines:

Listing C.5: Registering a statistic with the Archie Extension Point

<extension point=”ch.unibe.iam.scg.archie.dataprovider”>
<DataProvider

category=”name.of.your.statistics.category”
class=”name.of.your.statistics.class”
name=”Name of your Statistic”>

</DataProvider>
<category

id=”name.of.your.statistics.category”

73

name=”someCategory”>
</category>

</extension>

The category is used to group similar statistics together. For example all
statistics dealing with some monetary aspect could be grouped in one cate-
gory.

After you recompile and restart Elexis, your newly created statistic should
now be in the drop down list of available statistics in the Archie perspective,
prefixed with the name of the category they are in.

C.4 Where to Get Additional Help

You can find help for Elexis development in general at the Elexis forum at
http://www.elexis-forum.ch. For help with Archie development you can
go to the official project website at http://archie.designchuchi.ch or
the already mentioned Google code website at http://code.google.com/

p/archie.

74

http://www.elexis-forum.ch
http://archie.designchuchi.ch
http://code.google.com/p/archie
http://code.google.com/p/archie

List of Figures

2.1 Schematic concept of a sample EMR. 9
2.2 EMR, EHR, CIS in sample relation. 10

3.1 Sanclipse Prototype Overview 14
3.2 Eclipse Plug-in Architecture 15
3.3 Elexis Architecture . 16
3.4 First, Conceptual UML Draft 17

4.1 Extension Schema Definition Screenshot 23
4.2 List of Providers Before and After the Extension Point Changes 24
4.3 An Example Dataset . 26
4.4 AbstractDataProvider class and surroundings 28
4.5 Three different UI widgets. 31
4.6 UML overview of the action classes 33
4.7 Data Provider – Controller Interaction 35
4.8 UML overview of the manager classes 37
4.9 UML overview of the factory classes 38
4.10 Dataset Mapping in Bar Charts 40
4.11 Valid Filename Proposal During CSV Export 42
4.12 Widgets in the UI . 44
4.13 Class hierarchy diagramm of UI Widgets. 45
4.14 Elexis 1.3 User Interface (German) 46
4.15 Elexis 1.4 User Interface (German) 47
4.16 Dashboard Charts Class Diagram 48

7.1 Possible solution for showing totals in the results table. 58

B.1 Dashboard View . 62
B.2 The Sidebar View . 63
B.3 The Output View . 64
B.4 Chart Wizard: Choose Chart Type 65
B.5 Chart Wizard: Bar Chart Page 66
B.6 Chart Wizard: Choose Rows 66
B.7 Example chart created with Chart Wizard 67

75

Listings

4.1 Extension Point Definition in plugin.xml 22
4.2 User Overview Extension Point Implementation 25
4.3 Abstract Data Provider Methods 27
4.4 GetProperty Annotation Definition 30
4.5 Chart Model Object Variables 41
4.6 Example Annotation . 50
C.1 Methods to override . 69
C.2 createHeadings() Example . 70
C.3 createContent() Example . 70
C.4 Annotated method pair for additional statistic parameters . . 72
C.5 Registering a statistic with the Archie Extension Point 73

76

Bibliography

[Arth08] John Arthorne, Chris Laffra, and Gary Johnston. “What is a
plug-in fragment?”. http://wiki.eclipse.org/FAQ_What_is_

a_plug-in_fragment%3F, February 2008.

[Bell04] Donald Bell. “UML’s Sequence Diagram”. http://www.ibm.com/
developerworks/rational/library/3101.html, February 2004.

[Bhen06] Heinz Bhend. “TEXTDOKUMENT der CD-ROM ”Die elektro-
nische Krankengeschichte in der Arztpraxis””. DOCUMENT to
CD-ROM, October 2006.

[Coch89] A L Cochrane and Max Blythe. One man’s medicine. Memoir
Club, 1989.

[Gall02] David Gallardo. “Developing Eclipse plug-ins”. http://www.

ibm.com/developerworks/opensource/library/os-ecplug/,
December 2002.

[Gesu07] Bundesamt für Gesundheit. “Strategie ”eHealth” Schweiz”. http:
//www.ehealth.admin.ch/, June 2007.

[Laff06] Chris Laffra and Nick Veys. “What is an extension
point schema?”. http://wiki.eclipse.org/FAQ_What_is_an_

extension_point_schema%3F, June 2006.

[McAf07] Jeff McAffer and Jean-Michel Lemieux. Eclipse Richt Client Plat-
form. Addison Wesley, 2007.

[Vale04] Michael Valenta. “On the Job: The Eclipse 3.0 Jobs API”.
http://www.eclipse.org/articles/Article-Concurrency/

jobs-api.html, September 2004.

[Weir09a] Gerry Weirich. “elexis-buchhaltung-basis”. http://www.elexis.
ch/jp/content/view/236/75/, January 2009.

[Weir09b] Gerry Weirich. “Verbreitung von Elexis”. http://www.elexis.

ch/jp/content/view/245/87/, February 2009.

77

http://wiki.eclipse.org/FAQ_What_is_a_plug-in_fragment%3F
http://wiki.eclipse.org/FAQ_What_is_a_plug-in_fragment%3F
http://www.ibm.com/developerworks/rational/library/3101.html
http://www.ibm.com/developerworks/rational/library/3101.html
http://www.ibm.com/developerworks/opensource/library/os-ecplug/
http://www.ibm.com/developerworks/opensource/library/os-ecplug/
http://www.ehealth.admin.ch/
http://www.ehealth.admin.ch/
http://wiki.eclipse.org/FAQ_What_is_an_extension_point_schema%3F
http://wiki.eclipse.org/FAQ_What_is_an_extension_point_schema%3F
http://www.eclipse.org/articles/Article-Concurrency/jobs-api.html
http://www.eclipse.org/articles/Article-Concurrency/jobs-api.html
http://www.elexis.ch/jp/content/view/236/75/
http://www.elexis.ch/jp/content/view/236/75/
http://www.elexis.ch/jp/content/view/245/87/
http://www.elexis.ch/jp/content/view/245/87/

	Introduction
	Problem Statement
	Goals and Challenges
	EMR Systems and Elexis
	Archie
	Structure of this Document

	Domain
	Terminology
	Status Quo
	Elexis

	Design and Evolution
	Building A Prototype
	Ideas for Architecture
	Architectural and Design Decisions
	Evolution
	Visualization and Export

	Implementation
	Architecture
	Structure of an Eclipse Plug-in
	Archie Plug-in Definition
	Extension Point Definition
	Initial Extension Schema
	Improving Usability
	Extension Point Implementation

	Data Providers and Datasets
	Content and Label Providers
	Parameterization through Annotations
	Provider Implementations

	Controllers
	``New Statistics'' Action
	Additional Actions

	Managing Classes
	Factories
	Charts
	Pie Charts
	Bar and Line Charts
	The Chart Model

	Helper Classes
	User Interface
	Elexis User Interface Contribution
	Dashboard Charts
	Limitations
	Internal
	External

	Team Organization
	Requirements Engineering and Validation
	Conclusions
	Lessons Learned
	Future Work

	Licensing of Archie
	User Manual
	Quick Start
	Usage
	Dashboard View
	The Sidebar View
	The Output View

	Developer Manual
	Extending AbstractDataProvider
	Constructor
	getDescription
	createHeadings
	createContent

	Adding Additional Parameters
	Registering with the Archie Extension Point
	Where to Get Additional Help

	List of Figures
	Bibliography

