
Exporting MOOSE Models to
Rational Rose UML

A Computer Science Project
of the faculty of Natural Science

at the University of Berne

submitted by

Daniel Schweizer

led by

Prof. Dr. Oscar Nierstrasz
Dr. St́ephane Ducasse

Software Composition Group
Institute of Computer Science and Applied Mathematics

April 2000

Further information about this work, the used tools and anonlineversion of this docu-
ment can be found at:
http://www.iam.unibe.ch/ ∼scg/

The address of the author:

Daniel Schweizer
Effingerstrasse 9
CH-3011 Berne

or

Software Composition Group
University of Berne
Institute of Computer Science and Applied Mathematics
Neubr̈uckstrasse 10
CH-3012 Berne
dschwzr@iam.unibe.ch
http://www.iam.unibe.ch/ ∼dschwzr/

Abstract

In software re-engineering projects very often you have the source code of an appli-
cation but you miss its programmer, the design and the documentation. In order to
understand these systems you need reverse engineering tools.

UMLDesignExtractoris the prototype of a reverse engineering tool generating
UML class diagrams from object-oriented code.UMLDesignExtractoris built on top
of MOOSE and is written in SMALLTALK . For the graphical output it uses the API of
Rational Rose, a professional UML modeler.

In the following chapters you find a survey on the involved technologies and ar-
chitectures as well as a detailed description of the applicationUMLDesignExtractor,
illustrated with four case studies.

i

ii ABSTRACT

Contents

Abstract i

1 Introduction 1
1.1 Problem Description . 1
1.2 Requirements . 1
1.3 Environment . 2
1.4 Solution . 3
1.5 Contributors . 4

2 Context 5
2.1 Software Engineering . 5

2.1.1 Waterfall . 5
2.1.2 Re-engineering . 6
2.1.3 Reverse Engineering . 6
2.1.4 Object-Oriented Software Engineering 6

2.2 MOOSE and theFAMOOS Project 8
2.2.1 TheFAMOOS Project . 8
2.2.2 FAMIX . 8
2.2.3 MOOSE . 9

2.3 COM - The Component Object Model 11
2.3.1 VisualWorks COM Connect 11
2.3.2 Microsoft’s COM Architecture 11
2.3.3 Distributed COM . 12
2.3.4 COM Automation . 12
2.3.5 COM Data Types . 15
2.3.6 Links . 15

2.4 UML - The Unified Modeling Language 16
2.4.1 The Initiators . 16
2.4.2 Unification . 16
2.4.3 Specification . 17
2.4.4 Terminology . 18
2.4.5 Rational Rose . 19
2.4.6 Classification . 20

iii

iv CONTENTS

3 Design 21
3.1 Components and Classes . 21
3.2 Filter Mechanisms . 23
3.3 Core Application . 24
3.4 Graphical User Interface . 24
3.5 Summary . 26

4 Case Studies 29
4.1 ColoredPoint . 29
4.2 LanApp . 29
4.3 DesignExtractor . 30
4.4 MOOSE . 30

5 Project Experience 33
5.1 What Have I Learned ? . 33
5.2 What Have I Not Learned ? . 34
5.3 What Has Been Good ? . 34
5.4 What Could Have Been Better ? . 34
5.5 Considerations to Future Projects . 35

A File Formats 37
A.1 Configuration File . 37
A.2 Filter Library . 37
A.3 Filter Project . 38

List of Figures

1.1 Conception ofUMLDesignExtractor. 3

2.1 Software Engineering Lifecycle . 5
2.2 Conception of the FAMIX Model . 8
2.3 FAMIX Core Model . 8
2.4 MOOSE Complete Model . 9

3.1 UMLDesignExtractorFramework 21
3.2 UMLDesignExtractorClasses . 21
3.3 Screenshot of Main Window . 24
3.4 Screenshot of Model Loader (provided by MOOSE) 24
3.5 Screenshot of Model Editor (provided by MOOSE) 24
3.6 Screenshot of the Project Editor . 25
3.7 Screenshot of the Filter Editor . 26

4.1 Class Diagram of ColoredPoint . 29
4.2 Class Diagram of LanApp . 29
4.3 Filtered Class Diagram of DesignExtractor (Classes only) 30
4.4 Unfiltered Class Diagram of DesignExtractor 30
4.5 Filtered Class Diagram of DesignExtractor (MSEAbstractRoot) . . . 30
4.6 Filtered Class Diagram of DesignExtractor (ApplicationModel) 31
4.7 Unfiltered Class Diagram of MOOSE 31

v

vi LIST OF FIGURES

List of Tables

2.1 Microsoft Excel Application as ActiveX Object 13
2.2 Microsoft Excel Document as ActiveX Object 13
2.3 Matching COM Data Types to Smalltalk Classes 15
2.4 UML Techniques and their Uses . 18
2.5 UML Class Diagram Terminology 18
2.6 UML Techiques supported by Rational Rose 19

3.1 Main Window Explained . 25
3.2 Project Editor Explained . 26
3.3 Filter Editor Explained . 27

vii

viii LIST OF TABLES

Chapter 1

Introduction

First of all I would like to introduce the environment of this project. I describe the given
problem, and I give also a overall picture of the solution and the project’s contributors.

1.1 Problem Description

In the past few years, the Software Composition Group (SCG) at the University of
Berne researched a lot in software engineering - , and especially re-engineering tech-
niques. As one practical result of theFAMOOS project1, the SCG developed MOOSE -
the implementation of a language independent meta model for object-oriented systems.
Several integrated tools for problem detection and analysis helped MOOSE to grow to
a powerful re-engineering framework.

In order to understand an object-oriented legacy system, it is necessary to capture
its design and architecture. So far, MOOSE was lacking a tool for graphically illus-
trating its models. The classical reverse-engineering capabilities should be added to
MOOSE, also but not only to document the architecture of MOOSE itself.

Since the Unified Modeling Language (UML) seems to be the future standard nota-
tion for object-oriented design, a graphical UML generator could fulfill all the require-
ments.

1.2 Requirements

• The application should be written in the same environment as MOOSE. It should
be an independent and optional add-on.

• Generally there is a need for a platform and language independent solution. The
idea was to use existing technologies.

1See chapter 2.2 for further information about theFAMOOS project

1

2 CHAPTER 1. INTRODUCTION

• The product should provide full UML compatibility.

• Additionally, there is a need for a flexible mechanism that enables filtering en-
tities (classes, methods, properties, inheritance definitions). This enables the
generation of diagrams containing relevant information only (In the sense of un-
derstanding the system in its external behaviour).

• The architecture of the application is considered to be strongly object-oriented,
and thus flexible, dynamic, and extensible.

An informal evaluation demonstrated the accessibility of Rational Rose via its API
through COM.

1.3 Environment

Here is an summary of the environment, in which the future application should be
integrated:

• VisualWorks 3.0. The SMALLTALK environment from ObjectShare is installed
as commercial version on the Sun Solaris workstations at the university, and as
non-commercial version on the PCs at the university and at home.

• MOOSE. The implementation of the object meta model FAMIX is written in
VisualWorks 3.0 SMALLTALK .

• COM Connect. The libraries from ObjectShare that enable an interaction with
Active-X objects through Microsoft’s Component Object Model (COM) are avail-
able for Windows family operating systems only.

• Rational Rose 98. This commercial and professional UML modeler is installed
on the PC at the university and as non-commercial version on my PC at home.

Documentation and Application were written on the following platforms:

• UNIX . Sun Solaris (SCG)

• PC. Microsoft Windows NT 4.0 (SCG / at home)

All functionalities related to COM can only be run on platforms which allow the in-
stallation of VisualWorks 3.0and the COM Connect libraries, such as:

• Microsoft Windows NT 4.0

• Microsoft Windows 95

• Microsoft Windows 98

• Microsoft Windows 2000

This documentation is written inLATEX.

1.4. SOLUTION 3

1.4 Solution

The result of this work isUMLDesignExtractor. A reverse engineering tool written in
SMALLTALK . Figure 1.1 shows the general concept ofUMLDesignExtractor.

Figure 1.1: Conception ofUMLDesignExtractor

MOOSE. The MOOSE meta model acts as base to our application.

Project. UMLDesignExtractorsupports the definition of projects providing support
for re-use and iteration when generating graphical representations of permanently chang-
ing models or changing focuses on the same model. These projects consist of informa-
tion on the included models (or parts of models) and associated filters. Projects can be
stored in project files, explained in Appendix A.

Filters. UMLDesignExtractorprovides filter mechanisms to hide non-relevant enti-
ties. Possible filters are:

1. Attributes

2. Methods

3. Protected Methods

4. Private Entities

5. Inheritance Definitions

Any combination of the above or self defined filters is appropriate. Filters can either
have global or local (class) scope. Potential filters are stored in a filter library. The file
format of filter libraries is introduced in Appendix A.

4 CHAPTER 1. INTRODUCTION

Generator. A model can be generated and even stored without launching a Rose
Application Window. Currently the following entities can be generated in a Rational
Rose class diagram:

1. Classes

2. Attributes

3. Methods

4. Inheritance Definitions

Properties. UMLDesignExtractorprovides several enhanced parameters for entity
details, such as:

• Access control qualifiers (private, protected, public) for methods and attributes.

• Return types for methods

• Init values and types for attributes

COM. UMLDesignExtractormay communicate with the API of Rational Rose via
COM. Rational Rose is launched as ActiveX object in a backgroud process.

VB Script. UMLDesignExtractorcan alternatively generate a VisualBasic (VB) script
and physically store them in a file. Theses scripts then can be imported and run from
the Rational Rose Application itself.

Download anonline version of this document, as well asUMLDesignExtractoras
SMALLTALK code file (.st) on:

http://www.iam.unibe.ch/ ∼dschwzr/

1.5 Contributors

This project was led by, and would not have been possible without, the continuous
and spontaneous help of Prof. Dr. Oscar Nierstrasz, Dr. Stéphane Ducasse and Dr.
Serge Demeyer. Spiritual father of this project is Dr. Stéphane Ducasse. He guided me
through the crucial decisions, and powered me with plenty of ingenious ideas and a lot
of know-how. Thanks also to rest of theFAMOOS team who prepared the base of my
work, the SSUG and its protagonists to ameliorate my knowledge of Smalltalk, Cincom
(former ObjectShare) and Rational Software Corporation to allow me to work at home
on my PC thanks to their free non-commercial versions of the software. Special thanks
to the whole SCG team to support me with all its experience and feed-backs.

Chapter 2

Context

Before I present my own work I would like to introduce all the involved techniques and
architecture. I begin with a survey on software engineering, go ahead with MOOSE and
theFAMOOSproject and end up with an introduction to Microsoft’s Component Object
Model (COM) and a section dedicated to the Unified Modeling Language (UML).

2.1 Software Engineering

After repeating the classical view to software engineering I try to classify the termsRe-
engineeringandReverse Engineering. The sections are followed by the history from
procedural to object-oriented software development.

Figure 2.1: Software Engineering Lifecycle

5

6 CHAPTER 2. CONTEXT

2.1.1 Waterfall

The classical process of software development may be split in the following subpro-
cesses:

1. Detection of requirements

2. Analysis of environment

3. High-level abstractions

4. Logical, implementation-independent design

5. Physical implementation of the system

6. Error testing

7. Documentation.

This traditional process is also called “forward engineering” and in depth described by
Waterfall.

2.1.2 Re-engineering

In the real world whenever a piece of software is said to be complete its out of date.
Changing environments and requirements ask for a continuous adaption. Software re-
engineering includes:

1. Detection of changed environments

2. Analysis of concerned subsets of the software

3. Redesign and test case specification

4. Implementation of the design

5. Error and compatibility testing

6. Redocumentation.

Software re-engineering may involve refactoring and restructuring.

2.1.3 Reverse Engineering

In most re-engineering projects there is a need of reverse engineering, the process of
analysing a subject system

1. to identify the system’s components and their interrelationships, and

2. to create representations of the system in another form or at a higher level of
abstraction (e.g. metrics or visualizations).

It’s important to understand that without reverse engineering, the re-engineering of a
system is unthinkable: changing a large and complex system without sufficient knowl-
edge of its inner structure, will almost certainly trigger unwanted side effects which
could make the system inoperable.

2.1. SOFTWARE ENGINEERING 7

2.1.4 Object-Oriented Software Engineering

Object-oriented programming emphasizes the concept of an object. An object is an
identified unit which has state and behavior. The state is stored in instance variables.
The behavior of an object is effected through operations. When an operation of an ob-
ject is called, the code to be executed is a procedure called a method. The class defines
the instance variables, and the methods which are to be executed for each of the opera-
tions on instances of the class. The prime features that give object-oriented languages
their power are called polymorphism, encapsulation, and inheritance.

Since procedural languages could not ease coping with permanently changing, and
therefore in complexity growing systems, in the last two decades object-oriented lan-
guages have become the main force in software development. Object-oriented engi-
neering includes the effort to support:

1. Higher-level programming languages (C++, Java, SMALLTALK)

2. Reusability of structure and behaviour

3. Tools for re- and reverse engineering

4. Round-trip engineering

5. Standardized notation to represent object architecture (UML)

Thus object-oriented systems are easier to re-engineer, which implies better maintain-
ability, higher quality, lower costs and faster development.

8 CHAPTER 2. CONTEXT

2.2 MOOSE and theFAMOOS Project

2.2.1 TheFAMOOS Project

The need for object-oriented re-engineering technology has been recognised by two
of the leading European companies, namely Daimler-Benz and Nokia. Together with
the University of Berne, Forschungszentrum Informatik, SEMA Spain and Take5 they
started a research project namedFAMOOS1 to investigate tools and techniques for deal-
ing with object-oriented legacy systems.

FAMOOS is a name referring to the ESPRIT Project 21975.FAMOOS is an acronym
for Framework-basedApproach forMasteringObject-OrientedSoftware Evolution.

The “FAMOOS Object-Oriented Re-engineering Handbook”2 is one of the main re-
sults of theFAMOOS project. It collects techniques and knowledge on the problem of
software evolution with a special emphasis on object-oriented software. Most of the
subject matter is not “new” in the sense that it represents new discoveries. Rather the
handbook regroups much of the knowledge about redesign, metrics and heuristics into
a single work that is focused on object-oriented reengineering.

2.2.2 FAMIX

FAMIX (FAM oosInformation EXchange model, see [DEME 99]).

Figure 2.2: Conception of the FAMIX Model

The FAMIX model provides a language-independent representation of object-oriented
source code and is used by theFAMOOS tool prototypes as a basis for exchanging in-
formation about object-oriented software systems.

1If you want to read more about theFAMOOS project and its results, I suggest to
browse the web-sites offered by the respective project partners: http://dis.sema.es/projects/famoos/;
http://www.iam.unibe.ch/∼famoos/; http://www.fzi.de/prost/

2[FAMO 99]

2.2. MOOSE AND THE FAMOOSPROJECT 9

Figure 2.3: FAMIX Core Model

CDIF Transfer Format. CDIF was adopted as the basis for the information ex-
change of information in theFAMOOS exchange model. CDIF is an industrial standard
for transferring models created with different tools. The main reasons for adopting
CDIF are, that firstly it is an industry standard, and secondly it has a standard plain text
encoding which tackles the requirements of convenient querying and human readabil-
ity. Next to that the CDIF framework supports the extensibility needed to define the
model and language plug-ins. More information concerning the CDIF standard can be
found at http://www.eigroup.org/cdif/index.html.

A possible alternative for CDIF is XMI. However, XMI was considered too pre-
mature at the beginning of theFAMOOS project in 1996. Still, XMI is considered as a
promising way to exchange FAMIX-based information.

Why not UML? The unified Modeling Language (UML) is rapidly becoming the
standard modeling language for object-oriented software, even in industry. So, UML
is a viable candidate for serving as the data model behind the exchange format. Never-
theless, UML does not include internal dependencies such as method invocations and
variable accesses. Those dependencies are necessary in the problem detection and reor-
ganisation phases of the re-engineering life cycle. Thus, choosing UML would violate
the requirement of being a sufficient basis for re-engineering operations.

However, the terminology in FAMIX relies heavily on UML in the terminology and
naming conventions applied in the model to become independent of the implementation
language. For example, FAMIX has attributes instead of members (C++) or instance
variables (SMALLTALK) and classes instead of types (Ada).

Why not CORBA/IDL? CORBA is receiving widespread attention as interoperabil-
ity standard between different object-oriented implementation languages. CORBA’s
Interface Description Language (IDL) is used to specify the external interface of a
software component and there are tools that extract IDL from source code. As such,
CORBA/IDL is a viable candidate to serve as exchange format.

10 CHAPTER 2. CONTEXT

However, CORBA/IDL only describes the interface of a software component, and,
like UML, not the internal dependencies such as method invocations and variable ac-
cesses. Thus, also CORBA/IDL would violate the requirement of being a sufficient
basis for reengineering operations.

2.2.3 MOOSE

MasteringObject-OrientedSoftware Evolution (MOOSE) is the implementation of
FAMIX, written in SMALLTALK .

Figure 2.4: MOOSE Complete Model

The architecture of MOOSE, as an environment to aid in the program understand-
ing and problem detection, corresponds to the basic re-engineering tool architecture:
an information base is generated using parsers and semantic analysers and this infor-
mation base is used to extract new views of the code using queries, graph viewers,
etc. The MOOSE information base explicitly represents the concepts that are present
in the code, e.g. classes, methods, instances, method invocation, etc. This explicit
representation allows manipulating the code at a higher level than textual editing and
allows to formulate hypotheses based on queries about the concepts present in the code.

MOOSE is an attempt to integrate third-party tools into a coherent whole. As
an example, MOOSE imports information from the symbol tables maintained in the
Sniff+2.2.1 and Concerto/Audit-CC++ environments and exports to public domain
graph lay-out tools (XVCG). It allows also experimenting with a wide range of analysis
tools perl-scripts, spreadsheets, query languages, prolog inference engines, graphical
displayers to test their applicability in re-engineering.

2.3. COM - THE COMPONENT OBJECT MODEL 11

2.3 COM - The Component Object Model

The following section contains information obtained from Microsoft’s Developer Net-
work Library Visual Studio 98. For more information about COM see their website:

http://www.microsoft.com/

To learn more about the use of COM with VisualWorks read“COM Connect - User’s
Guide”3 or visit the VisualWorks Cookbook online:

http://www.objectshare.com/doc/

2.3.1 VisualWorks COM Connect

VisualWorks “COM Connect” provides support in SMALLTALK for COM and related
fundamental technologies based on COM such as:

• Call-out and call-in of interface functions

• Distributed COM (DCOM)

• COM Object Server

• COM structured storage

• COM clipboard data transfer

• COM Automation (former OLE Automation)

• COM events

2.3.2 Microsoft’s COM Architecture

COM is a system object model that enables modular system construction and reli-
able application integration. COM is increasingly used as the basis of new features in
the Windows family of operating systems and is the foundation of a number of tech-
nologies. Microsoft is also working to make the COM architecture an open industry
standard, with implementations on platforms other than Windows.

COM provides functions that enable you to build components that are distributed,
and reusable. COM also enables cross-platform support, programming language in-
dependence and transparent remoting. COM objects (clients and servers) can be de-
veloped and written in different programming languages (Visual Basic, Visual C++,
SMALLTALK).

Automation is built on top of COM to enable scripting tools and applications to
manipulate objects that are exposed on Web pages or in other applications. Other tech-
nologies derived from COM include ActiveDirectory, OLE Messaging, Active Con-
trols, Active Data Objects, ActiveX Scripting, Web Browsing.

3[OBJE 98a]

12 CHAPTER 2. CONTEXT

Objects and Interfaces. In COM, an object supports one or more interfaces. Each
interface is a collection of functions that provide a related set of services to clients of
the object. An interface is a collection of typed function signatures, representing a
contract between a client and a server.

A number of standard interfaces are defined for common services and COM object
implementors are encouraged to support existing interfaces where appropriate. COM
object implementors can also define new interfaces as needed to publish the services of
their server objects.
An interface is uniquely identified by an interface ID, or IID, which clients use to
obtain an interface from a COM object. Interfaces are also referred to by a common
name, which by convention is prefixed by the uppercase ”I” to denote an interface. For
example, the QueryInterface function in the standard IUnknown interface is referred to
by the IUnknown::QueryInterface notation.

COM objects can only be manipulated by clients by referencing its available inter-
faces. Clients only obtain interfaces, never direct references to an object, so a COM
object is entirely encapsulated. In COM only interfaces are real.

Publishing COM Objects. A COM object is published by registring information
about its object class with COM. Published COM objects are identified by a class ID,
commonly referred to as the CLSID. A COM object class can also be identified by its
program ID, or PROGID, which is a short string name that identifies the application in
the registry.

A published COM object class is supported by a class factory. A class factory is an
object used by COM or the client to create new instances of the published object class.
The IClassFactory interface contains a CreateInstance function, which allows clients to
manufacture new objects.

Clients use COM objects by obtaining interfaces and invoking functions, then re-
leasing interfaces when they are done using their services.

COM Applications. COM Applications are either clients or servers of COM objects,
or both. COM server applications create and maintain objects. COM client applications
are consumers of these objects. Many COM applications have both roles, in that they
both use COM objects provided by other applications and implement COM objects
themselves.

2.3.3 Distributed COM

DCOM extends the existing architecture by providing network communication capa-
bilities from the existing model to enabled distributed object applications. DCOM is a
direct competitor to the Common Object Request Broker Architecture (CORBA).

2.3.4 COM Automation

Automation (formerly called OLE Automation) is a technology that allows software
packages to expose their unique features to scripting tools and other applications. Au-

2.3. COM - THE COMPONENT OBJECT MODEL 13

ActiveX object Methods Properties
Application Help ActiveDocument

Quit Application
Save Caption

Repeat DefaultFilePath
Undo Documents

... Height
...

Table 2.1: Microsoft Excel Application as ActiveX Object

ActiveX object Methods Properties
Document Activate Application

Close Author
NewWindow Comments

Print FullName
PrintPreview Keywords

RevertToSaved Name
Save Name

SaveAs Parent
... Path

ReadOnly
...

Table 2.2: Microsoft Excel Document as ActiveX Object

tomation uses COM, but can be implemented independently of other COM-based tech-
nologies, such as the OLE container architecture or ActiveX controls. The objects an
application or programming tool exposes are called COM or ActiveX objects. Applica-
tions that access those objects are called COM or ActiveX clients. COM and ActiveX
components are physical files (for example .exe and .dll files) that contain classes,
which are definitions of objects. Type information describes the exposed objects, and
can be used by COM and ActiveX components at either compile or runtime.

ActiveX object example. An ActiveX object is an instance of a class that exposes
properties, methods, and events to ActiveX clients. For example, Microsoft Excel
exposes many objects that you can use to create new applications and programming
tools. See Table 2.2 and Table 2.2 for examples of ActiveX objects and a selection of
their exposed methods and properties.

Accessing ActiveX objects. An Automation interface is a group of related functions
that provide a service. All ActiveX objects must implement the IUnknown interface
because it manages all of the other interfaces that are supported by the object. The
IDispatch interface, which derives from the IUnknow interface, consists of functions
that allow access to the methods and properties of ActiveX objects. The client must
first create the object, and then query the object’s IUnknown interface for a pointer to
its IDispatch interface.

Although programmers might know objects, methods, and properties by name,
IDispatch keeps track of them internally with a number called the dipatch identifier

14 CHAPTER 2. CONTEXT

(DISPID). Before an ActiveX client can access a property or method, it must have the
DISPID that maps to the name of the member.

With the DISPID, a client can call the member IDispatch::Invoke to access the
property or invoke the method, and then package the parameters for the property or
method into one of the IDispatch::Invoke parameters. DISPIDs are available at runtime
(late binding).

Basic Automation Invocations: (illustrated with examples fromUMLDesignExtrac-
tor)

Creating an ActiveX Object. How to create a Rational Rose ActiveX object:

aDispatchDriver := COMDispatchDriver createObject: ‘Rose.Application’.

Alternatively one can get an ActiveX object referring to its path or program id:

aDispatchDriver := COMDispatchDriver pathName:aFileName.
aDispatchDriver := COMDispatchDriver onActiveObject:aProgID.

Setting a Property of an ActiveX Object. I set an Attributes AccessControlQualifier
to ‘Private’.

aExportControlProperty setProperty: ‘Name’ value: ‘Private’.

When there is more than one value to give as argument, you can provide the invocation
with an array of values:

aDispatchDriver setProperty:namevalue: #(value1 value2).

Getting a Property of an ActiveX Object. I assign an Attribute’s AccessControlQual-
ifier to a local variableaExportControlProperty.

aExportControlProperty := aRoseAttribute getProperty: ‘ExportControl’.

Calling a method of an ActiveX Object. The last invocation during a session is
always:

aDispatchDriver invokeMethod: ‘Quit’.

Methods may also be called parameterized with an array of values, either explicitly
named or not:

2.3. COM - THE COMPONENT OBJECT MODEL 15

arguments := Array with: ‘Gary’ with: #(‘Los Angeles’ ‘33’).
aDispatchDriver invokeMethod: ‘SubmitAdress’

withArguments: arguments.

namedArguments := Dictionary new
at: ‘Name’ put: ‘Gary’;
at: ‘City’ put: ‘Los Angeles’;
yourself.

aDispatchDriver invokeMethod: ‘SubmitAdress’ withNamedArguments:
namedArguments.

For a more detailed view on some code fragments fromUMLDesignExtractorsee
Chapter 3 (Design).

2.3.5 COM Data Types

Automation Data Type Smalltalk Class
VT 14 Integer
VT UI1 Integer
VT I2 Integer
VT R4 Float
VT R8 Double

VT BOOL Boolean
VT ERROR Integer

VT CY FixedPoint with a scale of 4
VT DATE Timestamp
VT BSTR String

VT UNKNOWN IUnknown
VT DISPATCH COMDispatchDriver

VT ARRAY Array (of Smalltalk objects)

Table 2.3: Matching COM Data Types to Smalltalk Classes

2.3.6 Links

COM Specification:

http://msdn.microsoft.com/

ActiveX Working Group:

http://www.activex.org/

Comparing DCOM and CORBA/IDL:

http://www.bell-labs.com/ ∼emerald/dcom corba/Paper.html

16 CHAPTER 2. CONTEXT

2.4 UML - The Unified Modeling Language

Although object-oriented anlaysis and design (OOA&D) was known since the late
1980s, there was a need of standardization to help demystify the process of software
system modeling. A really recommendable introduction into UML and its history is
”UML Distilled” written by Martin Fowler [FOWL 97].

2.4.1 The Initiators

There were a few key methodologists and their techniques between 1988 and 1992:

• Sally Shlaer and Steve Mellor. Wrote a pair of books [SHLA 89], [SHLA 91]
on analysis and design; the material in these books evolved into their Recursive
Design approach [SHLA 97].

• Peter Coad and Ed Yourdon. Wrote books that developed Coad’s lightweight
and prototype-oriented approach to methods. See [COAD 91a], [COAD 91b],
[COAD 93], [COAD 95].

• The SMALLTALK community in Portland, Oregon. Came up with Responsability-
Driven Design [WIRF 90] and Class-Responsability-Collaboration (CRC) cards
[BECK 89].

• Jim Odell. Based his books (written with James Martin) on his long experience
with business information systems and Information Engineering. The result was
the most conceptual of these books [MART 94], [MART 96].

And of course there were the legendary Three Amigos:

• Grady Booch. Worked for Rational Software Corporation developing Ada sys-
tems. His books featured several examples and were famous for its great car-
toons. Booch focused most on analysis and design methods [BOOC 94], [BOOC 95].
Key question: How to abstract a real situation?

• Ivar Jacobson. Worked for Ericsson programming telephone switches. Jacobson
was the first to introduce the concept of use cases. His field of interest was in
notation and semantics [JACO 94], [JACO 95].
Key question: How to represent an abstract situation?

• Jim Rumbaugh. Led a team at the research labs at General Electrics. Rumbaugh
came out with a book about a method called OMT (Object Modeling Technique).
His research was more process-oriented [RUMB 91], [RUMB 96].
Key question: How to use a modeling language?

2.4.2 Unification

After a period of competition between the different notations that caused a lot of con-
fusion several efforts for standardization were made with no success. Finally in 1994,
Jim Rumbaugh left General Electrics to join Grady Booch at Rational Software, with

2.4. UML - THE UNIFIED MODELING LANGUAGE 17

the intention of merging their methods. Grady and Jim proclaimedthe methods war is
over - we won”.

In 1995 they presented version 0.8 of theUnified Methodand announced that Ivar
Jacobson would join the Unified Team.

During 1996 Rational Rose and its Three Amigos worked on their method, under
its new name: The Unified Modeling Language (UML). In the meanwhile the Object
Management Group (OMG) formed a (from Rational Software) independent task force
to do standardization in the methods area.

In 1997, UML was added to the list of OMG adopted technologies, and has become
the industry standard for modeling objects and components.

The UML Revision Task Force (RTF) is responsible for generating minor revisions
to the UML specification. The first UML RTF completed its revision work in June
1999, when it recommended its final draft of the UML 1.3 specification for adoption
and submitted its final report. The members of the second UML RTF are now working
on the next minor revision (UML 1.4).

The next major revision to UML, will be UML 2.0. The UML 2.0 Workgroup is
responsible for drafting the UML 2.0 Request for Information (RFI) and the UML 2.0
Request for Proposals (RFP)4.

2.4.3 Specification

UML in its current state, defines a notation and a meta-model. Thenotation is the
graphical stuff you can see in models; it is the syntax of the modeling language. The
meta-modelis a diagram that defines the notation.

The syntax in UML is pretty intuitive and it’s not the intention of this documen-
tation to give a full enumeration of the elements in a diagram. However the most
important components are:

1. Class (Object, Instance)

2. Attribute (Property)

3. Operation (Method)

4. Genaralization

Of course there are also some advanced concepts integrated in UML as:

• Stereotypes

• Multiple and Dynamic Classification

• Aggregation and Composition

• Derived Associations and Attributes

• Interfaces and Abstract Classes
4For the definitive UML reference visit: http://www.omg.org

18 CHAPTER 2. CONTEXT

• Immutability

• Visibility

Table 2.4 gives an view on the techniques and diagrams supported by UML.

Technique Purpose
Activity Diagram Shows behavior with control structure. Can show many objects over

many uses, many objects in single use case, or implementation of
method. Encourages parallel behavior.

Class Diagram Shows static structure of concepts, types, and classes. Concepts show
how users think about the world; types show interfaces of software com-
ponents; classes show implementation of software components.

CRC Cards Help getting the essence of class’s purpose. Good for exploring how
to implement use cases. Use if getting bogged down with details or if
learning object approach to design.

Deployment Diagram Shows physical layout of components on hardware nodes.
Design by Contract Provides rigorous definition of operation’s purpose and class’s legal

state. Encode these in class to enhance debugging.
Interaction Diagram Shows how several objects collaborate in single use case.
Package Diagram Offers useful bits of analysis, design, and coding techniques. Good

examples to learn from; starting point for designs.
Refactoring Helps in making changes to working program to improve structure. Use

when code is getting in the way of good design.
State Diagram Shows how single object behaves across many use cases.
Use Case Elicits requirements from users in meaningful chunks. Construction

planning is built around delivering some use cases in each iteration.
Basis for system testing.

Table 2.4: UML Techniques and their Uses

The definitive specification guide on UML is:“The UML Reference”by the Three
Amigos [RUMB 99].

2.4.4 Terminology

Still there is a big confusion about different terms meaning the same or people using
the same term in a different sense. Table 2.5 shows the components of a standard UML
class diagram and all its acronyms in comparison.

UML (verbose) Class Association Generalization Aggregation
UML (graphical) 2 2− 2 2→ 2 2� → 2

Booch Class Uses Inherits Containing
Coad Class & Object Instance Connec-

tion
Gen-Spec Part-Whole

Jacobson Object Acquaintance
Association

Inherits Consists of

Odell Object Type Relationship Subtype Composition
Rumbaugh Class Association Generalization Aggregation
Shlaer / Mellor Object Relationship Subtype N/A

Table 2.5: UML Class Diagram Terminology

2.4. UML - THE UNIFIED MODELING LANGUAGE 19

2.4.5 Rational Rose

Why Rational Rose? Rational Rose was chosen for the following reasons:

1. Its popularity (as market leader)

2. The availability of the API

3. The accessiblility of this API via the COM interface

Consider that there are many other UML modeling tools in industry like MagicDrawUML,
COOL:Jex, GDPro, Visual Modeler (from Microsoft), Objecteering (with graet sup-
port for repositories), Together (round trip engineering), Argo/UML (public domain)
etc. matching or even exceeding the requirements. Because of the modular architecture
of UMLDesignExtractor, the necessary extensions for being able to communicate with
another modeler, if ever desired, should be easy (assumed, that the modeler exposes its
functionality as ActiveX object via COM).

Techique Rational Rose
Activity Diagram ?
Class Diagram Class Diagram
CRC Cards ?
Deployment Diagram Deployment / Component Diagram
Interaction Diagrams (Sequence & Collabora-
tion)

Interaction / Scenario Diagrams (Sequence &
Collaboration)

Pachage Diagram Component - & Class Package Diagram
Patterns (Repository) ?
State Diagram State Diagram
Use Case Use Case Diagram

Table 2.6: UML Techiques supported by Rational Rose

Rose models could be stored in a platform independent ASCII representation known
as“Petal” (.ptl). The specification of petal is Rational Software Corporation propri-
etary and not publically available. Therefore I did not pay any further attention to
Petal.

Rational Rose Extensibility. The concept of Rational Rose provides several ways to
customize its capabilities. You can:

1. Customize menus

2. Automate manual functions with Rose Scripts

3. Execute functions from within another application by using the Rose Automation
object (RoseApp)

4. Access classes, properties and methods right within your software development
environment by including the Rose Extensibility Type Library in your environ-
ment

5. Activate add-ins using the add-in manager

20 CHAPTER 2. CONTEXT

The Rose Application is itself component-based, and is defined in the Rose Extensi-
bility Interface (REI) Model. The REI Model is essentially a meta-model of a Rose
model, exposing the packages, classes, properties and methods that define and control
the Rose application and all of its functions. For a detailed description of the REI calls
see the“Rose Extensibility Reference Manual”5.

Important in our context are the two capabilities Scripting and Automation.UMLDe-
signExtractorsupports both interaction types - that means that we can generateRose
Scripts and run them later on a destination machine, that is not connected to the source
machine. On the other hand we are able to communicate directly to Rose within its
Automation (COM) interface. If Rose is not installed on the same computer (but the
two computers are connected) we can communicate via the DCOM interface.

Compatibility; UML vs. MOOSE. Although the terminology between the UML
implemented in Rational Rose differ sometimes from the terminology used in the
meta-model of MOOSE, the concept and the components as well as its roles in the
two models match very well. One nonsignificant example of an exception: Rational
Rose supports the C++ specific“implementation visibility” property for attributes and
methods which is not known to MOOSE.

2.4.6 Classification

The availability of a standard modeling language will encourage more developers to
model their software systems before building them. The benefits of doing so are well-
known to the developer community. While before the key question was to build right
the system today’s focus is set on building the right system.

The need of a standardized modeling language is out of question. Nevertheless one
should be aware that this mostly is not more than a common way of representation
for exchanging object models or to gain a very general view on a system’s classes
and its relationships. UML defines a notation and its semantics but not the process of
modeling. There is a book about the process of using UML on object-oriented projects:
[JACO 99].

5[RATI 98a]

Chapter 3

Design

Figure 3.1:UMLDesignExtractorFramework

Figure 3.1 shows the overall deployment. Object-oriented source code, represented
in the CDIF format, or directly taken out of the VisualWorks SMALLTALK system, is
the input ofUMLDesignExtractor. MOOSE, the implementation of the meta-model
FAMIX, produces a SMALLTALK representation of this model, that then can be read
by UMLDesignExtractor; thereby all desired entities of the model can be generated on
a Rational Rose UML class diagram. Rational Rose is represented by a ActiveX object
available to the system via COM.

21

22 CHAPTER 3. DESIGN

3.1 Components and Classes

Figure 3.2:UMLDesignExtractorClasses

DesignExtractor. The core application class, implemented as Singleton1. Responsi-
bility: This class acts as control board for all the provided functionality such as loading
and editing a model, modifying and storing the application’s configuration, editing a
project and the filter library, starting the UML generator, quiting the application. De-
signExtractor inherits fromApplicationModel.

DEFilter. A Filter is an object that disallows some entities to be generated. Respon-
sibility: A filter contains a block, which, applied to a entity, is evaluated to true or
false. DEFilter inherits from MSEAbstractRoot; (for more specific information about
the filter mechanisms refer to the next section).

DEFilterEditor. An editor for filters. A filter has a name, a block, and a type. The
type represents the specific entity type (class, method, attribute, entity) to which a filter
is applicable.

DEProject. A project includes the configuration of filters and can be stored in a file
(.dep). For a detailed description of the file formats see Appendix A.

DEProjectEditor. An editor for a project (for detailed information see tutorial in
section Graphical User Interface)

DEUMLGenerator. This class effectively produces the UML model. Communicat-
ing with the API of Rational Rose via the COM interface, DEUMLGenerator acts as

1For more about the Singleton design pattern refer to [ALPE 98]

3.1. COMPONENTS AND CLASSES 23

remote control for Rational Rose. To understand what exactly happens the follow-
ing fragments of code, that generate all (not filtered) attributes of one class, might be
helpful:

DEUMLGenerator>> prepareGeneration
aDispatchDriver := COMDispatchDriver

createObject: ’Rose.Application’
serverName: destinationServer.

roseModel := aDispatchDriver invokeMethod: ’NewModel’
roseCategory := roseModel invokeMethod: ’RootCategory’.

DEUMLGenerator>> generateAttributesFrom: aMooseClass in: aRose-
Class

aMooseClass attributesDo:
[:attr |
showAttribute := project filter: attr.
showAttribute ifTrue:

[self DEUMLGenerator>> generateAttribute: attr in: aRose-
Class]]

DEUMLGenerator>> generateAttribute: aMooseAttribute in: aClass
arguments := Array

with: (aMooseAttribute name)
with: (self attrType: aMooseAttribute)
with: (self attrInitValue: aMooseAttribute).

aRoseAttribute := aClass
invokeMethod: ’AddAttribute’ withArguments: arguments.

aExportControlProperty := aRoseAttribute
getProperty: ’ExportControl’.

aExportControlProperty setProperty: ’Name’
value: (self attrAccessControlQualifier: aMooseAttribute).

aRoseAttribute setProperty: ’Static’
value: (self attrStatic: aMooseAttribute).

aRoseAttribute setProperty: ’Derived’
value: (self attrDerived: aMooseAttribute).

DEUMLGenerator>> finalizeGeneration
roseClassDiagram := roseCategory

invokeMethod: ’AddClassDiagram’ with: ’DesignExtractor’.
allClasses := self getAllClasses: roseCategory.
numberOfClasses := self getNumberOfClasses: allClasses.
1 to: numberOfClasses do:

[:indexOfClass|
aClass := self getClassAtPos: indexOfClass from: allClasses.
self addClass: aClass to: aClassDiagram]

24 CHAPTER 3. DESIGN

arguments := Array with: destinationModel with: true.
globalStream invokeMethod: ’SaveAs’ withArguments: arguments.

3.2 Filter Mechanisms

What is a filter? There are plenty of filters that make sense:

1. hide all private entities

2. hide all public methods

3. hide all protected entities with a name like “my*”...

Finally there are many combinations that may be very interesting in some cases and
totally unnecessary in other situations. Therefore “Filter Libraries” may be defined.
One single filter is a piece of SMALLTALK code (a block like e.g. of the form):

[:each| each isPrivate]

With this implementation I achieve a maximum of flexibility and scalability. Any valid
combination of SMALLTALK blocks can be a filter. The application then prevents the
generation of the entities that match one of the selected filters in a so called “Filter
Project”. You can find the definition of the file formats (“Filter Libraries” and “Filter
Project”) in Appendix A.
Attention! Consider you want to define a composed filter that hides abstract classes
like this:

(each isAbstract) & (each isClass)

You may run into problems because not every entity knows the message “isAbstract”.
So avoid these problems defining filters as follows:

(each isClass) and: [each isAbstract]

Where filters are applied? Filters are evaluated in one single place in the system.
Take a look at the following code fragments to understand where exactly the filters are
applied.

DEUMLGenerator>> model allClassesDo:
[:aClass|
aClass allMethodsDo: [:anEntity| filter: anEntity]
aClass allAttributesDo: [:anEntity| filter: anEntity]]

model allInheritanceDefinitionsDo: [:anEntity| filter: anEntity]

DEUMLGenerator>> filter: anEntity
project allFiltersDo detect:

[:aFilter | aFilter isTrueFor: anEntity]
ifNone: [generate: anEntity].

3.3. CORE APPLICATION 25

3.3 Core Application

You can startUMLDesignExtractorwith the following command in the transcript win-
dow of SMALLTALK :

DesignExtractor openWith: ’[Projectname].dec’.

(Where ’[Projectname]’ is to be replaced with the name and path of an existing project).

For a more convenient interaction there is a Graphical User Interface (GUI), ex-
plained and illustrated with screenshots in the following section.

3.4 Graphical User Interface

In this section I describe the graphical user interface ofUMLDesignExtractor. You can
read the section like a step-by-step tutorial:

The main window (Figure 3.3) shows the complete configuration (as saved in [Pro-
jectname].dec). From here you start all other functions (Table 3.1):

Figure 3.3: Screenshot of Main Window

The Project Editor (Figure 3.6) allows the definition of“Filter Projects” . (Ta-
ble 3.2) shows its components.

26 CHAPTER 3. DESIGN

Source:
Button“Load...” Loading a MOOSE model (reads classes or whole categories from the

SMALLTALK image itself or imports a .cdif file). The Model Loader is
shown in (Figure 3.4).

Button“Edit...” Editing model, deselection of entities that you don’t need (that are not
relevant, therefore should not be generated). The Model Editor is shown
in (Figure 3.5).

Inputfield “Rose Script
Header”

Path and filename of a Rose Script Source File (.ebs). This VB script
contains the definition of the methods to generate entities in a Rational
Rose model. If I can not connect to Rose and communicate with its API,
I still have the possibility to generate a script and run that later. The
script first generated byUMLDesignExtractorcontains a list of calls of
methods of the“Rose Script Header”. So this header is automatically
inserted at the very beginning of the final Rational Rose script.

Inputfield“Filter Library” Path and filename of the project’s Filter Library (.del).
Inputfield“Filter Project” Path and filename of the project’s specification called. The Filter Project

is a file with extension (.dep).
Button“Edit...” Editing the specified Filter Project and the specified Filter Library.

Destination:
Inputfield“Rose Server” This is the computername or IP address of the machine running Rational

Rose.
Inputfield“Rose Script” This is the target file (path and filename) to store the script, that alterna-

tively to a direct communication to Rose, there could be imported and
run.

Inputfield“Rose Model” Path and filename under which the generated Rational Rose Model
(.mdl) is stored.

Application:
Checkbox “Connect to
Rose”

Select whether you want communicate directly with Rational Rose, or
just generate a script, that can be run later, importing it into Rational
Rose.

Button“Start” Starts the generation of the entities of the previously loaded model, fil-
tered with the specified Filter Project.

Button“Quit” Quit the application.
Configuration:

Button“Save” Stores the configuration (the content of all the above inputfields) to the
Configuration File (.dec).

Table 3.1: Main Window Explained

The Filter Editor shown in Figure 3.7 provides editing a filter from the“Filter Li-
brary” :

The resulting model (.mdl) in Rational Rose might look like illustrated with one of
the screenshots in the next chapter “Case Studies”.

3.5 Summary

What I have done: UMLDesignExtractoris a prototype of a tool to extract the design
of a system having only its source code. The implementation includes classes, meta-
classes, its attributes and methods as well as the entities properties such as visibility

3.5. SUMMARY 27

Figure 3.4: Screenshot of Model Loader (provided by MOOSE)

(private, protected, public). The only relation is the generalization (inheritance defini-
tion). The application extracts the static architecture (class diagram) only, and makes
no statements about the behavior and sequence of interactions between the classes.

What I have not done: An advanced reverse engineering tool could support other
nice features like: Showing selected attributes as related classes, more association (in-
vocations), aggregation, other diagrams (activity, state), dynamic object structure and
interaction (sequence and collaboration diagrams). DCOM was never tested out due to
the circumstances that in the group there is one PC only.

One big disadvantage not to use Petal but CDIF as textual model representation is
that we loose layout information. Especially when generating models in a iterative way
it is very annoying everytime having to rearrange the classes on the class diagrams in
Rational Rose.

The introduced functionality to filter a model, in fact, should in a next step be
integrated into the kernel of MOOSE. The Model Editor would greatly profit from this
extension. After this refactoring also other reengineering tools could easily be applied
to any appropriate model subset.

28 CHAPTER 3. DESIGN

Figure 3.5: Screenshot of Model Editor (provided by MOOSE)

Figure 3.6: Screenshot of the Project Editor

3.5. SUMMARY 29

Radiobutton“Global Fil-
ters”

The filters in the “Hide” list have global scope.

Radiobutton “Filters for
Class”

The scope of the filters in the “Hide” list is limited to the selected class.

Listbox “Classes” Shows all classes in the current model. Select one class to see its own
filters in the “Hide” list.

Checkbox “hideAt-
tributeRelated”

Hide all filters from the library that are applicable to Attributes only.

Checkbox “hideMethod-
Related”

Hide all filters from the library that are applicable to Methods only.

Listbox “Show” Filters in the library.
Button“Add” Create new filter in library.
Button“Edit Filter...” Open filter editor
Button“Delete” Delete selected filter from library
Button“>” Add a filter to current project
Button“<” Remove a filter from current project
Listbox “Hide” Selected filters in this project.
Inputfield “Project File
Name”

Path and filename of the Filter Project (.dep).

Inputfield “Library File
Name”

Path and filename of the Filter Library (.del).

Button“Load” Load Filter Project and Filter Library.
Button“Save” Save settings Filter Project and Filter Library.
Button“Quit” Quit Project Editor.

Table 3.2: Project Editor Explained

Figure 3.7: Screenshot of the Filter Editor

Inputfield“Name” Name of the filter.
Inputfield“Body” Specification of the filter.
Combobox“Type” This filter is applicable to the selected entitytype only.
Button“Save” Save this filter in the library.
Button“Quit” Quit Filter Editor.

Table 3.3: Filter Editor Explained

30 CHAPTER 3. DESIGN

Chapter 4

Case Studies

In the following chapter four case studies are presented. The examples include re-
spectable up to good results but show also the limits ofUMLDesignExtractor’s practi-
cability. Enjoy it!

4.1 ColoredPoint

I have chosen this tiny model to provide you with a good example in the sense, that
this complete model with all its indepth information can be nicely shown on one class
diagram. ColoredPoint was imported from a .cdif file, and originally consisted of two
Java classes.

Figure 4.1: Class Diagram of ColoredPoint

31

32 CHAPTER 4. CASE STUDIES

4.2 LanApp

LanApp was selected to illustrate another model, that can be displayed with all its
information just like it is. In this example we just do not exceed the magic limit of
approximately 25 classes, where a diagram looses its clearness because of the vast
quantity of information and because of the physical limits of readability, when the
fonts just get too small. Maybe a developer team will produce a similar diagram with
far more classes. But then it needs to be printed out in poster size, e.g. as a constuction
plan for a whole system to hang on the wall. With such a plan you can get an view on
a complete system within seconds. It shows the classes, its methods and relations.

Figure 4.2: Class Diagram of LanApp

4.3 DesignExtractor

Figure 4.3 gives a view on all the classes ofUMLDesignExtractoritself. Applied filters
are 1) “Methods”, and 2) “Attributes”.

The model shown in Figure 4.4 contains the complete information of theUMLDe-
signExtractorapplication. Obviously there is too much information to be displayed in
a window of this size. I know that there are plenty of methods and attributes that are
not really relevant to the design of the system. What if we could get rid of them?

A reasonable filter allows us a representative view on a system’s design. To get
Figure 4.5 and Figure 4.6’s models, first of all the complete model is loaded. After that
we might remove noisy methods and attributes with the Model Editor. Candidate enti-
ties conceptually seem to come from protocols like “private”, “accessing”, “utilities” or

4.4. MOOSE 33

Figure 4.3: Filtered Class Diagram of DesignExtractor (Classes only)

“initialize”. To this reduced model further I apply the filter “Meta Classes”. Now I may
apply “Children of ApplicationModel” and I get only the children of MSEAbstractRoot
and in analogy vice versa.

4.4 MOOSE

MOOSE was selected to give a bad and ugly example. In this model I have imported
all MOOSE categories with all its entities. I believe that any further comment is super-
fluous!

34 CHAPTER 4. CASE STUDIES

Figure 4.4: Unfiltered Class Diagram of DesignExtractor

Figure 4.5: Filtered Class Diagram of DesignExtractor (MSEAbstractRoot)

4.4. MOOSE 35

Figure 4.6: Filtered Class Diagram of DesignExtractor (ApplicationModel)

Figure 4.7: Unfiltered Class Diagram of MOOSE

36 CHAPTER 4. CASE STUDIES

Chapter 5

Project Experience

In this final chapter I tried to reflect my personal experience made during this work. I
hope, hereby to be able to give some input to the planning of future computer science
projects.

5.1 What Have I Learned ?

With this project I encountered many new technologies and architecture. At the very
beginning I had to learn SMALLTALK . I was introduced in the development environ-
ment of VisualWorks and in the basic syntax of the language. In a next step I learnt
how to build GUI’s and I/O functions. With this basic understanding I was ready to be
introduced to MOOSE.

By reading the Re-engineering Handbook and other articles in the periphery of the
FAMOOS project, slowly I got a very broad view on software engineering. Especially
my knowlegde about re-engineering, reverse engineering and the concept of object-
orientation grew continuously. After that I begun to read books about UML. I had to
understand the techniques, the corresponding specification and use.

In the next period I consulted the website and documentation of Microsoft’s Com-
ponent Object Model (COM). At the end I integrated all this knowledge in a reverse
engineering tool prototype calledUMLDesignExtractor. To finish the work I learnt
how to work with LATEX, a prerequisite to the existence of this document.

In many hours of pair programming with the group’s assistants, I could greatly
profit from decades of experience in the field of object-oriented development. That in-
cludes proper modeling, programming techniques and styles as well as design patterns.

Before this project I did not know that one could do anything else with a book than
begin reading the first line and then go on line per line until the end. Now I hope to be
able to pick the essentials of a book in a few minutes, just jumping through the contents
and key sections.

Last but not least I improved my English in word (communicating with the SCG
people) and writing (doing this report). Reading a lot of books as well as searching

37

38 CHAPTER 5. PROJECT EXPERIENCE

through many websites for valuable information was an effort in better understanding
the English language with a big return of investment.

5.2 What Have I Not Learned ?

I could not really discover the secrets of Rational Rose. From what I have seen, Ra-
tional Rose is not a tool that I would work with in the design phase. It is just not
fast, handy and intuitive enough. So maybe I learnt to keep on working with good
old-fashioned handwritten sketches or some kind of CRC’s.

Definitively I did not learn how to work effectively from an economical point of
view. This is the price you pay 1.) for the liberty to do what you are interested in,
and 2.) for the luxury (but after my experience in practice ‘unreal’) circumstance that
you may re-engineer an application not only until it works, but also until it fulfills all
academic requirements like good design, styles and patterns.

Requirement specification, or time and cost estimation were subjects out of ques-
tion in this project.

5.3 What Has Been Good ?

The subject of this work was chosen in a way that I was ‘learning’ far more than
‘working’. That means: The final application consists of a couple of lines of code
only. The main responsibility for me was to know all the involved techniques and
architecture, and then integrate them.

The liberty to read a couple of books about design patterns, aspect-orientation, or
also read about eXtreme programming gave me the ability to discover fields of interest,
some of them without any direct coupling to the project’s subject.

The group offered me pair programming whenever I needed it. This is a very effec-
tive way to learn from others. Generally the group members supported me whenever I
stocked.

5.4 What Could Have Been Better ?

The project took me eight months - this is too much. I stopped working with my former
company with the intention to be able to finish project and diploma during the next 9
month working 100% on it. This plan fatally failed. I consider this work to be far, far
more than the expected 6E from the faculty’s regimentation. (The diploma is postulated
with 45E - will that take me 60 months or 5 years ?)

The coordination between the authors of MOOSE and its enhanced tools could
have been better. I was programming new features only to throw them away some short
time later, realizing that this was already implemented by someone else. This problem
should now be solved with the just announced ‘MOOSE coordination meetings’.

5.5. CONSIDERATIONS TO FUTURE PROJECTS 39

5.5 Considerations to Future Projects

As starter to object-oriented software engineering projects like this are great. I believe
that the content of the work could have beed defined a little bit more precise from the
beginning. A project plan could have been set up.

Especially if somebody will do a project in the field of MOOSE I propose him to
switch immediately to ENVY. I did not do so - and therefore was never aware where
exactly MOOSE was. Generally I consider ENVY to be a worthwhile experience as
preparation to future teamwork, anywhere.

My experience was that even when I stopped working commercially, I was not able
to go on faster with my project, than I would have, working 50% beside. One reason
for that was myself: I just had too many other interests and the liberty to follow them.
Another reason was the missing project plan: I only iteratively, by showing what I
made, got the next task. Then, finally and in association with the previous reason, the
coordination with the university blocked me many times, because I could not go on
working before meeting people who were absent for a conference this week, for illness
the next week, or for holidays that week. In fact, I was told so before - I just did not
believe it. Knowing this I would have begun earlier with the project, not only when
having finished all lectures.

40 CHAPTER 5. PROJECT EXPERIENCE

Appendix A

File Formats

A.1 Configuration File

(*.dec← DesignExtractorConfiguration File)

Entries:

Path to header file for Rose VB Scripts
Path to filter project
Path to filter library
Path to Rose VB script file
Path to Rose UML model
Computername or IP-Address

Example:

/home/dschwzr/project/rose/VBMethods.ebs
/home/dschwzr/project/st/cfg/Pixel.dep
/home/dschwzr/project/st/cfg/Pixel.del
/home/dschwzr/project/st/rose/Pixel.ebs
/home/dschwzr/project/st/rose/Pixel.mdl
euler

A.2 Filter Library

(*.del← DesignExtractor FilterL ibrary)

Entries: Filter [tab] Body [tab] ApplicableToEntityType [tab] Scope

41

42 APPENDIX A. FILE FORMATS

Example:

Private Attributes each isPrivate & each isAttribute Attribute $Global
Methods each isMethod Entity $Global
Public Attributes each isPublic & each isAttribute Attribute $Global
Public Methods each isPublic & each isMethod Method $Global

The scope can either be global, or the name of a existing class. “$Global” is a con-
stant expression representing the global scope. Because no classname ever begins with
a special character like “$”, we guarantee that there is no conflict between potential
classnames and the expression representing the global scope. This constant is a (con-
stant) message of the class “DEUMLGenerator” and could be changed anytime.

A.3 Filter Project

(*.dep← DesignExtractor FilterProject)

Entries: Scope [tab] Filter

Example:

$Global Methods
$Global Class: ColoredPoint
Point Attribute: Point.x
ColoredPoint Protected Attributes
ColoredPoint Private Entities

Bibliography

[A LPE 98] S. R. Alpert, K. Brown, and B. Woolf. Design Patterns in Smalltalk.
Addison-Wesley, 1998. (p 21)

[BECK 89] K. Beck and W. Cunningham.A Laboratory for Object-Oriented Think-
ing. In Proceedings of OOPSLA ’89, volume 24, pages 1–6. SIGPLAN
NOTICES, 1989. (p 16)

[BECK 97] K. Beck. Smalltalk Best Practice Patterns. Prentice-Hall, 1997.

[BOOC 94] G. Booch. Object-Oriented Analysis and Design with Applications. Ben-
jamin/Cummings, 1994. (p 16)

[BOOC 95] G. Booch. Object Solutions: Managing the Object-Oriented Project.
Addison-Wesley, 1995. (p 16)

[COAD 91a] P. Coad and E. Yourdon. Object-Oriented Analysis. Yourdon, 1991.
(p 16)

[COAD 91b] P. Coad and E. Yourdon. Object-Oriented Design. Yourdon, 1991.
(p 16)

[COAD 93] P. Coad and J. Nicola. Object-Oriented Programming. Yourdon, 1993.
(p 16)

[COAD 95] P. Coad, D. North, and M. Mayfield. Object Models: Strategies, Patterns
and Applications. Prentice Hall, 1995.(p 16)

[DEME 99] S. Demeyer, S. Tichelaar, and P. Steyaert. FAMIX 2.0 - The FAMOOS
Information Exchange Model. 10 1999.(p 8)

[DUCA 99] S. Ducasse. Smalltalk - a Pure Object-Oriented Language and its Envi-
ronment. 1999.

[FAMO 99] FAMOOS. The FAMOOS Object-Oriented Reengineering Handbook.
University of Berne, 1999. (p 8)

[FOWL 97] M. Fowler and K. Scott. UML Distilled. Addison-Wesley, 1997.(p 16)

[HOPK 95] T. Hopkins and B. Horan. Smalltalk: An Introduction to Application
Development using Visualworks. Prentice-Hall, 1995.

43

44 BIBLIOGRAPHY

[JACO 94] I. Jacobson. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley, 1994.(p 16)

[JACO 95] I. Jacobson, M. Ericsson, and A. Jacobson. The Object Advantage:
Business Process Engineering with Object Technology. Addison-Wesley,
1995. (p 16)

[JACO 99] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Devel-
opment Process. Addison-Wesley, 1999.(p 20)

[M ART 94] J. Martin and J. Odell. Object-Oriented Methods: a Foundation. Prentice
Hall, 1994. (p 16)

[M ART 96] J. Martin and J. Odell. Object-Oriented Methods: Pragmatic Considera-
tions. Prentice Hall, 1996. (p 16)

[OBJE 98a] Object. COM Connect - User’s Guide. Object Share, 1997-1998.(p 11)

[OBJE 98b] Object. VisualWorks - Application Developer’s Guide. Object Share,
1993-1998.

[RATI 98a] Rational. Rose Extensibility Reference Manual. Rational Software Cor-
poration, 1998. (p 20)

[RATI 98b] Rational. Rose Extensibility User’s Guide. Rational Software Corpora-
tion, 1998.

[RUMB 91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorenzen.
Object-Oriented Modeling and Design. Prentice Hall, 1991.(p 16)

[RUMB 96] J. Rumbaugh. OMT Insights. SIGS Books, 1996.(p 16)

[RUMB 99] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Lan-
guage Reference. Addison-Wesley, 1999.(p 18)

[SHLA 89] S. Shlaer and S. J. Mellor. Object Lifecycles: Modeling the World in
States. Yourdon, 1989. (p 16)

[SHLA 91] S. Shlaer and S. J. Mellor. Object-Oriented Analysis: Modeling the World
in Data. Yourdon, 1991. (p 16)

[SHLA 97] S. Shlaer and S. J. Mellor.Recursive Design of an Application Indepen-
dent Architecture. IEEE Software, vol. 24, no. 5, 1997.(p 16)

[W IRF 90] R. Wirf-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented
Software. Prentice Hall, 1990.(p 16)

