
Assessing and Improving the Software
Quality of an iOS App Framework

Bachelor Thesis

Alain Stulz
from

Bern BE, Switzerland

Faculty of Science
University of Bern

07 February 2020

Prof. Dr. Oscar Nierstrasz

Software Composition Group
Institut für Informatik

University of Bern, Switzerland

Abstract

Creating and maintaining high-quality software is an essential topic in Soft-
ware Engineering. While mobile application development is a relatively
young discipline, it has evolved particularly rapidly. The quick pace requires
complex mobile projects to be highly flexible and easily maintainable to
stay relevant over time. In this thesis, we examine a framework designed
to build iOS applications, which was created in the early 2010s and seems
to have fallen behind in some areas. We answer “How can we assess the
quality of our system?” by defining our understanding of software quality
and subsequently collecting and analyzing data from several sources. In a
second step, we address “How to improve the existing system’s quality?”
through setting conventions for developers, performing maintenance, and
refactoring specific areas in the code. In this context, we also explore differ-
ent techniques to increase unit test coverage. Furthermore, we analyze the
question “What would constitute a better software design?” by selectively
rewriting parts of the system’s functionality. Finally, we take a look at the
project’s future and recommend that the company should consider a rewrite
over refactoring to better cope with changed software requirements and
technology.

i

Contents

1 Introduction 1
1.1 Festival App Projects . 2
1.2 Framework . 2
1.3 Problem . 3
1.4 Overview . 4

2 Related Work 5
2.1 Software Quality . 5
2.2 Legacy Software . 6
2.3 Software Refactoring . 7
2.4 Software Rewriting . 7

3 Quality Assessment 8
3.1 Methodology . 10

3.1.1 Developer Interviews . 10
3.1.2 Static Analysis . 10
3.1.3 Dependencies and Usages . 11

3.2 Results . 12
3.2.1 Developer Interviews . 12
3.2.2 Static Analysis . 13
3.2.3 Dependencies and Usages . 14

3.3 Conclusion . 16

4 Software Refactoring 18
4.1 Repository Branching . 18
4.2 Versioning . 19
4.3 Continuous Integration . 19
4.4 Build Status Feedback . 20
4.5 Test Coverage . 21

4.5.1 Focus . 22
4.5.2 Strategies . 22

ii

CONTENTS iii

4.6 Compiler Warnings . 27
4.7 Deprecated Code . 27
4.8 Code Refactoring . 28
4.9 Summary . 29

5 Software Rewriting 31
5.1 Functionality . 32
5.2 Technology . 33
5.3 Architecture . 33

5.3.1 Data Updates . 35
5.3.2 Linking . 35
5.3.3 View Configuration . 36

5.4 Comparison . 37
5.5 Summary . 38

6 Conclusion and Future Work 39
6.1 Recommendation . 40
6.2 Future Work . 41

A Anleitung zu wissenschaftlichen Arbeiten 45
A.1 Linting . 45

A.1.1 Autocorrection . 46
A.2 Dependency Management . 46
A.3 Build Pipelines . 47
A.4 Continuous Integration . 49
A.5 Pipeline Feedback . 50
A.6 Static Analysis . 51
A.7 Continuous Delivery . 51

B Additional Data 53
B.1 Dependency Visualization . 53
B.2 Change Frequency . 54
B.3 Swift Package Manager . 54

C Figures and Tables 56

1
Introduction

Apps with love AG is a digital service agency based in Bern, Switzerland [Ber20]. It
specializes in designing and developing mobile and web applications for a wide variety of
business customers, from small startups to big enterprises. The company was registered
in 2010 by four founders and has since grown to employ over 35 people in locations in
Bern and Basel.

Initially, the founders wanted to focus on developing their own app ideas and market
them directly to end-users. However, they realized that there was a more viable target
market in catering to other businesses that needed expertise in the rather new mobile app
development industry.1

1Oswald, Olivier. Co-Founder, CTO (2019)

1

CHAPTER 1. INTRODUCTION 2

1.1 Festival App Projects

One of the earliest clients of the newly-founded company was the telecommunications
provider Swisscom AG. As a sponsor for various music festivals throughout Switzerland,
they envisioned providing visitors with a customized mobile app to simplify their festival
experience.

Apps with love, and its partner company Moqod,2 subsequently developed their first
version of a “festival buddy app” for Swiss music festivals such as the Bern-based
Gurtenfestival. The app consisted of a program of festival acts, a map of the venue,
sections with news and relevant information, as well as a picture wall [Ber11]. (See
Figure 1.1)

Two significant challenges in this project became apparent: Firstly, the content needed to
be dynamically adjustable after the release of the app, as updating an app bundle would
otherwise take several weeks. Secondly, the app was required to be fully offline-capable,
as access to the internet was at the time often limited, partly due to carrier tariffs, partly
due to network congestion at popular events, and partly due to high energy consumption
of network requests.

The team developed a system consisting of native mobile frontend clients and a backend
with a content management system to overcome these challenges. They would ship
an initial version of the app content along with the app binary as part of a local cache.
The app would then perform periodic network requests to the backend, if possible, and
receive a delta update, bringing the app to the latest content version while minimizing
the amount of network traffic needed.

1.2 Framework

The team applied this solution architecture by releasing a separate app for each festival.
Initially, these were stored in separate folders inside a mono-repo hosted with GitHub.
From there, the shared code diverged into different branches, as the projects needed
customized features. Around 2015, they split this single repository into one repository for
shared code and separate project-specific repositories, where shared code was imported
through Git submodules, and additional customization could be made. Thus, the shared
code was now available as a framework on which developers could build a multitude of
apps rather efficiently.

2Founded in 2008, Moqod is a software development company based in Russia and the Netherlands.

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Screenshot of the first Gurtenfestival Buddy App Version

The framework was continuously expanded and used in a variety of apps over the
following years. It gained a multitude of powerful features such as remote notifications,
geofencing, indoor location using Bluetooth beacons, and live surveys.

1.3 Problem

With the continued growth of the codebase and its number of usages, maintaining
the framework became increasingly difficult. Hard deadlines, as are typical for event
projects, made developers build in “quick fixes,” which reduced the code quality. Also,
new developers joined the company, and know-how exchange between the original
framework creators and the new developers was challenging the organizational structure.

Ultimately, these issues led to fewer usages of the framework in newer projects, with more
code built custom for individual projects. These projects often do not share a common
software architecture. The lack of commonality can lead to a “silo organization,”3

hindering the sharing of knowledge and improvements between projects and developers.

3Organizational structure in which members tend not to share know-how, goals, tools, etc.

CHAPTER 1. INTRODUCTION 4

1.4 Overview

In this project, we focus solely on the iOS implementation of this system, ignoring the
Android and Backend components. We aim to address three research questions:

How can we assess the quality of our system? (Chapter 3)
We first analyze where to focus our attention to get the best view on the existing system’s
quality, finding that we should focus primarily on non-functional quality attributes,
such as maintainability. We then discuss our methodology for gathering quality data
from various sources, including the setup of static code analysis and visualizing the
project’s dependency architecture. Our finding is that the framework exhibits issues
with the evolvability and understandability of the code. We notice code areas with high
complexity and uncontrolled coupling, as well as the absence of unit tests and integration
test infrastructure.

How to improve the existing system’s quality? (Chapter 4)
Using our previous results, we aim to improve on the existing system. We set new devel-
oper processes into place by addressing issues with the current workflow, such as unclear
branching. We also improve the test infrastructure by setting up continuous integration
between the framework and different client projects, providing developers with instant
build feedback. Next, we explore different strategies for increasing test coverage and
performing maintenance on the code-level, followed by exploring opportunities for code
refactoring.

What would constitute a better software design? (Chapter 5)
To answer this question, we reimplement select features of the current system. We specify
an architecture that could better support the software requirements. We then discuss the
benefits and drawbacks of our solution in comparison to the existing implementation and
end on the conclusion that, due to the changed underlying requirements, rewriting the
features that continue to be used would be more efficient.

2
Related Work

Creating high-quality software is universally accepted to be one of the central goals
and challenges of the software engineering field. As such, the concept of quality and
the techniques to develop software with high quality have been the focus of intense
discussion. In the following sections, we want to take a closer look at several topics
related to this project.

2.1 Software Quality

Quality is a product aspect that remains elusive and hard to define. Garvin argued that it
could be described in five different approaches: The transcendent view as something that

5

CHAPTER 2. RELATED WORK 6

can be recognized but not explicitly defined. The product-based view as a measurable
combination of the product’s attributes. The user-based view, using the metric of user
satisfaction, that is, how well the product fulfills its users’ needs. The value-based view,
regarding the relation between value brought to the user and product cost. And finally, the
manufacturer-based view, identifying quality as “conformance to requirements” [Gar84].
For software, this last view explicitly includes non-functional requirements such as
maintainability, which may comprise a significant part of a manufacturer’s understanding
of quality, but have only an indirect impact on a user’s perception thereof.

While Pressman and Maxim rightfully state that “in reality, quality encompasses all of
these views and more” [PM15, p.413f.], we will focus mostly on a manufacturer-based
view from here on, as it is most approachable to us as developers of the subject system.
The consumer’s view of product quality is thereby not neglected, as providing value to
users is ultimately the goal of developing software. Instead, we use an introspective
approach as a means to improve our development of products in the future.

It is noteworthy that while we can apply Garvin’s concept in this context, he did not
develop it with software engineering in mind, but rather as a generalized view of product
quality. Neither can it be neglected that the models created in regards to quality are
countless and multifaceted. In Chapter 3, we attempt to find an interpretation of quality
that can be applied to our specific problem, helping us to understand underlying issues
and to take steps to mitigate these.

2.2 Legacy Software

Legacy systems are often associated with decades-old software that businesses deeply
integrated into their core processes. There is a connotation of concepts, languages, and
even hardware that is no longer at the current state of technology [Som16, p.261f.]. Such
a definition would have partial applicability to our project, as the mobile application
field is young compared to the history of software development. However, despite its
relatively new appearance, the field has seen a particularly rapid evolution in hardware
and software capability and industry adoption, disrupting entire economies with new
possibilities. The problem of legacy software may prove even more important when
faced with the speed of growth and evolvement in the mobile application business.

A connection becomes even more apparent as we take other, more open definitions into
account. Feathers defined legacy software as follows: “To me, legacy code is simply
code without tests. [...] With tests, we can change the behavior of our code quickly and

CHAPTER 2. RELATED WORK 7

verifiably. Without them, we really don’t know if our code is getting better or worse.”
[Fea04]

Taking these definitions into account, we can conclude that the system we are dealing with
is indeed legacy software. There are various recommendations on how to improve such
systems, including refactoring, wrapping, or rewriting system components. Each strategy
entails different opportunities and risks. The book Object-Oriented Reengineering
Patterns goes into more detail about selecting and applying these strategies [DDN03,
p.19ff.].

2.3 Software Refactoring

“Refactoring is the process of changing a software system in such a way that it does not
alter the external behavior of the code yet improves its internal structure [Fow99, p.9].” It
can be used both as a way to improve legacy code and as a tool that any developer should
continuously apply when writing code, to prevent said code from becoming legacy code
in the first place.

Multiple strategies for rewriting have been specified in the past, most notably by Fowler
[Fow99] and Feathers [Fea04]. They rely on the same basic concept that code first needs
to be placed under tests before developers can edit it with the confidence that the system
as a whole continues to work as expected. These works offer guidelines for relatively
specific scenarios, as we will see later in our project.

2.4 Software Rewriting

In contrast to refactoring an existing system, rewriting a system describes the act of
implementing a (part of a) system without reusing its source code, aiming to achieve
the original functionality with a new solution instead. Developers tend to choose this
approach if they feel that it would be more efficient than refactoring, or if the existing
system prevents improvement, for example, due to past technology decisions. Both
approaches come with their benefits and drawbacks, and we will compare them for our
specific case in Section 5.4.

3
Quality Assessment

Developers who join the Apps with love team and first come into contact with the iOS
implementation of our framework, often are under the impression that the code is not
very well structured and is relatively hard to understand. As we learned in the previous
Chapter, this intuitive feeling of quality, or lack thereof, is only one aspect of what defines
quality. Now, we want to obtain a more objective understanding of the system’s current
state.

As developers analyzing our own system, we naturally tend to take a manufacturer’s
perspective, as described in Section 2.1. This point of view allows us to define our
understanding of quality more formally by focussing on software requirements.

We can roughly classify requirements as functional and non-functional: [Som16, p.105-
111]

8

CHAPTER 3. QUALITY ASSESSMENT 9

• Functional requirements describe what a system should (be able to) do

• Non-functional requirements do not directly impact the features of a system but
specify aspects that are significant for the system’s architecture

Non-functional requirements are often described as “ilities” due to the common suffix
present in many of these attributes. Notable examples for this are testability, maintain-
ability, usability. Attributes not following this syntax include performance and security
requirements [CBN13].

This same classification can also be applied to our understanding of quality, allowing us
to differentiate between [Cha13]:

• Functional quality, the ability of given software to match the users’ needs, i.e.,
functional requirements

• Structural quality, the system’s ability to meet non-functional requirements

• Process quality, the methods used to develop the software

At this point, our system has been in use and successful for several years. It follows that
the original functional requirements have been and continue to be fulfilled by the existing
system. Any potential quality problems would have to either stem from unfulfilled
non-functional requirements, or changes in functional requirements.

The latter would only be an issue if the system showed a lack of maintainability and
evolvability, which in turn are aspects of structural quality. By extension, we should also
find corresponding factors in process quality that could be used to reduce or mitigate
issues with structural or functional quality.

We can conclude that we should focus first and foremost on assessing structural quality
and non-functional requirements in order to gain a better picture of our system’s status
and any potential problems. In a later step, we could then try to ascribe those structural
quality issues to their origin in the development process.

CHAPTER 3. QUALITY ASSESSMENT 10

3.1 Methodology

To improve our understanding of the system, we considered multiple data sources:
Through the usage of static analysis tools, we collected objective data on code-level
quality. Through interviews with developers, we gained insights into hinderances to
productivity, both on the code level and in the development organization. By combining
objective metrics with the subjective hindrances to development, we can establish a
cause-and-effect relationship between issues in the development process and the resulting
code quality. We will discuss the results of the collected data points in Section 3.2.

3.1.1 Developer Interviews

To gain insights into developer productivity and needs, we conducted brief interviews
with developers and product managers. We asked them about the benefits and drawbacks
they saw when working with the framework. We then clustered the results and categorized
them into code-level, module-level, and organization-level topics. Next, we prioritized
the topics based on their difficulty to resolve and the timeframe in which we could
achieve an improvement. Finally, we derived possible actions to improve these specific
areas.

We also listed the most critical non-functional quality attributes (“ilities”, as described
earlier), and short subjective assessments of the current state of each area. Then we
matched the previously received feedback with the listed quality attributes and prioritized
the areas based on the apparent potential for quality improvements. The outcome was a
prioritized list of actions for quality improvements and possible objective metrics for the
most critical quality attributes (See Table C.2).

3.1.2 Static Analysis

Static analysis of program code uses software tools to scan the source code of a project
and detect possible issues [Som16, p.359f.]. Often, these tools can also derive metrics
that provide objective data about a program.

We used SonarQube1 as a static analysis tool, which is compatible with the mixed
Objective-C and Swift source code in our framework. During the build process, a

1Available at https://sonarqube.org. More information in Section A.6.

https://sonarqube.org

CHAPTER 3. QUALITY ASSESSMENT 11

code coverage file is generated. SonarQube monitors branches and pull requests in
the framework repository, and generates reports automatically. We used the default
quality profiles, but the rules could be customized if necessary. Code-level analyzers
are somewhat prone to report false-positives, so their results should undergo careful
examination.

In addition to static analysis, we gathered data about the module-level structure in the
framework and the organization-wide usage of framework components.

3.1.3 Dependencies and Usages

Module-Level Currently, we use CocoaPods2 to manage code dependencies. This
tool allows for resolving and importing dependencies to third-party code as well as our
framework code in our various projects. Additionally, the framework uses CocoaPods
internally to integrate different modular components.

Any CocoaPods module can import other modules by specifying them in their Specfile.3

We analyzed these imports and created a visualization of module dependencies, allowing
us to get a high-level picture of the architectural framework structure and its possible
issues. The process and results are shown in Section B.1.

Organization-Level On the organizational level, we were particularly interested in
the total number of projects using the framework, and additional data on which parts of
the framework were most and least often used. To achieve this, we exported a list of all
project repositories in our organization and filtered out projects concerning platforms
other than iOS.

We then prioritized the list of projects using the following factors:

• Past financial value of project to company
• Future expected financial value
• Likelihood and expected impact of future changes

2A dependency manager for Swift and Objective-C projects. Available at https://cocoapods.
org.

3The Specfile contains metadata CocoaPods uses to make a module available to other modules and
projects.

https://cocoapods.org
https://cocoapods.org

CHAPTER 3. QUALITY ASSESSMENT 12

with values from 0 (no future value/changes unlikely) to 2 (high value/major changes
expected). We calculated the total priority by multiplying the individual factors, resulting
in a priority scale from 0 to 8. We selected projects with high priority (≥ 4) for further
analysis and tracking throughout our reengineering process.

We then performed a detailed usage analysis on the selected projects by individually
cloning the repositories, extracting the imports from the Podfile4 references. Ad-
ditionally, we gathered data about the actual usage of the imported classes. We then
mapped this to the modules containing the used classes.

This analysis resulted in a total count of module-level imports and usages of the tracked
projects. We then used this data to derive a strategy for further reengineering work, as
outlined in Chapter 4.

3.2 Results

3.2.1 Developer Interviews

The positive feedback about the framework mostly focussed on the business value that
the framework provides in projects: Developers find it easier to start new projects if
they can work with an existing toolkit instead of starting from scratch. It also ensures
consistency, allowing developers to start working on existing projects quickly, should
they need to. Additionally, bugfixes and improvements to the framework are available to
all projects using the shared source code.

While projects benefit from the existence of shared logic, maintaining the framework
itself was connected to some negative sentiment. There were multiple factors mentioned
here, primarily:

• Code is hard to understand, navigate and change
• (Side-) Effects of changes are not visible
• Updating projects to newer framework versions takes much work

From the responses, we can also identify some concrete problems with structural quality,
as well as factors in process quality that we might consider causes of those structural
issues. We again attributed these to the level where the problem stems from, respectively,
where a solution would most likely need to be applied. See Table C.1 in the Appendix
for a full list of the collected results.

4The Podfile specifies the dependencies CocoaPods should import into a project.

CHAPTER 3. QUALITY ASSESSMENT 13

3.2.2 Static Analysis

With SonarQube we performed an initial analysis of the repository state at the project
start. There were 65’000 source lines of code analyzed.

Bugs In total, there were 66 bugs reported, consisting of 8 major and 58 minor bugs.
Upon closer inspection of the bugs reported as major, we found that the issues were not
as severe, and could also be classified as minor. Note that this is a purely rule-based bug
recognition, as opposed to bugs reported by developers or users.

Code Smells More interestingly, there were almost 3’400 reported code smells, with
one blocker, 142 critical, 2’400 major, 771 minor, and 213 info level severity reports.
The effort to resolve the code smells was estimated at 77 days by SonarQube, based on
the triggered rules and an expected cost of development per source line of code.

The tool reported over 900 code smells due to commented out blocks of source code
with severity level major. From code inspections, it becomes apparent that this was most
often code that was at one point no longer needed, but developers did not feel confident
enough to remove the affected code entirely. From a maintainability perspective, it would
be beneficial to remove this code to reduce cognitive load when reading through classes.
Also, multiple files were commented out entirely, indicating that the affected classes
were no longer needed. These should also be removed to make it clear that the classes
are no longer available.

Around 600 reported major code smells were found in functions that requested unused
parameters. In iOS development, the delegation design pattern is used quite extensively,
both in system APIs and in custom code. This pattern can explain many of these indicated
code smells. The function caller is often passed as a reference, regardless of whether
the callee uses it or not. Another big factor is error handling in asynchronous messages,
where the system may create an error object to pass information back to the caller, which
is in itself not a problem. We conclude that these smells need individual examination,
and we can make no general statement about their validity at this point.

400 code smells with major severity were reported because include-statements were not
placed at the very top of the source file. We can easily explain this because Objective-C
differentiates between file (preprocessor) #import and module @import. If a module
import was located above a preprocessor import, the tool marked this as a rule violation.
These violations can, therefore, be dismissed as false-positives, because they do not
affect the validity or understandability of the code.

CHAPTER 3. QUALITY ASSESSMENT 14

Other notable results include 130 TODO and 18 FIXME statements (info and major
severity), 120 usages of code marked by developers as deprecated (minor severity), and
84 pieces of code marked as deprecated (info). These reports could indicate that the
maintainability of the project is impaired, as TODOs are not getting resolved, and code is
deprecated but rarely removed due to dependencies.

Furthermore, there were indications of code and architecture complexity issues, shown by
41 functions with excessive cognitive complexity (max = 201, avg = 44, allowed = 25)
and 45 classes with more than five ancestors. (max = 11) This report confirms the
developer sentiment that parts of the code are hard to understand. The class ancestry issue
seems to stem from the use of subclassing to extend view controllers with functionality
such as logging. Ideally, this could be solved by using the Swift programming language
to create class extensions.

Test Coverage The amount of code covered with unit tests is meager (≤ 1%), which
makes maintaining, changing, or expanding the business logic difficult due to possible
unintended side effects. Developers cannot tell if any changes they made have effects
on other parts of the framework. Additionally, the code was not originally written with
testability in mind, meaning that adding tests can take much effort, as we also experienced
later in our refactoring work.

Duplications With a reported 2.1% duplicated lines (≈ 2000 lines total), code duplica-
tions – although developers generally should avoid them – are not a quality concern in
this case.

3.2.3 Dependencies and Usages

Module-Level During static analysis on the module-level, we were most interested in
the dependency relations between different modules. We first gathered a broad overview
by visualizing the module dependencies. (See description and figures in Section B.1)

In the dependency visualization, we can see the layered architecture of the system,
with network and persistence (data access) layers at the bottom. Building on that layer
is ABFCoreUI, which is referenced by most of the required modules,5 for example,
ABFInfoModule.

5Modules that are depended on by core parts of the framework and must be included to be able to build
the project

CHAPTER 3. QUALITY ASSESSMENT 15

We can also see some structural problems in this graph. One is the heavy dependency on
the ABFDataAccessLayer module, which works as a sort of god object, a common
architectural anti-pattern. Despite its name, much of the functionality of this module can
be ascribed to the single ABDataAccessLayer class, which combines many different
responsibilities, including directly handling a database from within the class code. This
class would need to be split and separated adequately through interfaces, increasing
flexibility and maintainability of the system.

Also apparent is the odd placement of ABFCoreApp. We consider other modules to
be higher-level concrete implementations built upon the core components, so the core
components should not depend on those concrete implementations. Should we, for
example, choose to use a different implementation of ABFPreCacheManager, we
would also have to change code in ABFCoreApp, which would then have an unwanted
impact on other projects. This structure should be changed, so that core components
and modules both only depend on abstractions, something Sommerville described as
inversion of control in frameworks [Som16, p.445].

The same also applies to dependencies between different modules, which should be
separated by abstractions so that the system is less rigid, and developers could easily
inject their custom implementations if required by a project.

Organization-Level We analyzed 44 repositories from iOS projects in our organization
and found that 24 of them used some version of the framework. During prioritization,
we found that of those 24 projects, six were discontinued, and an additional two use
deprecated frameworks that would require migration to a newer version.

Of the remaining 16 projects, we classified eight as low-priority, three as medium, and six
as high. Projects with medium and high priority were further analyzed, and we tracked
seven projects throughout the changes made in the framework as part of this thesis. One
project with an initially high priority was discontinued during our work, so we stopped
tracking it.

In the projects that were further analyzed, we tracked the imports and actual usages of
framework modules. We then applied rules based on the relation of imports and usages
to decide on strategies for further work with each module.

From a total of 49 modules, we found that 14 had no usages within the medium- to high-
priority projects tracked. We recommended the removal of these modules to facilitate
further maintenance of the framework. We recommended considering six modules with a
high amount of usages (in more than five of the nine tracked projects) for further quality
analysis and improvement.

CHAPTER 3. QUALITY ASSESSMENT 16

Most projects seemed to import a vastly higher number of modules than they used.
In the most extreme case, a project imported 24 modules but referenced only four of
these within the project code. This pattern can be attributed to framework-internal
dependencies on other modules, and in turn, to excessive coupling within the framework.

For 17 of the modules, we found significant differences between imports and actual
usages, indicating that there were issues with dependencies on these modules. We
recommended that the usages of these modules from within the framework core should
be revised and better separated through abstractions. This improved separation would
reduce the need for projects to import these modules without actually using them.

We recognized one more organizational issue, in that no feature or issue backlog exists.
Developers generally track bugs and enhancements in customer projects, which hinders
the exchange between framework developers and reduces the amount of data we could
analyze. For example, we would have been interested in the average time-to-fix for bug
reports, which would represent a good metric for maintainability.

3.3 Conclusion

We found that our framework – while it provides value to our business and our developers
– exhibits issues with code-level quality and software architecture. We also conclude that
these issues mostly affect maintainability, more specifically in the areas of evolvability
and understandability. Factors involved are missing tests and test infrastructure, high
program complexity, and uncontrolled coupling and dependencies between classes and
modules.

A self-enhancing aspect to our quality issues is apparent. A lack of maintainability, if left
uncontrolled over time, can lead to a lack of maintenance, which in turn further decreases
maintainability. This finding is in line with Lehman’s law of increasing complexity,
which states that systems are bound to increase in complexity unless developers work to
maintain or reduce it [Leh80].

Possible solutions to these quality issues include the removal of deprecated code and
refactoring of existing code to increase testability and reduce complexity. We recommend
the setup of testing and quality control infrastructure, and the consideration of archi-
tectural changes to reduce coupling between core components and modules, especially
those with less frequent usage.

CHAPTER 3. QUALITY ASSESSMENT 17

We also recognize the need for adjustments to the organization’s development process,
for example, in the way developers share know-how, track issues, and perform code
reviews. The implementation of these adjustments exceeds the scope of this thesis.

In our further work, we aimed to address some of the code-level and architectural
challenges.

4
Software Refactoring

Following the analysis and categorization of quality issues and their causes, we derived
specific actions that could help improve quality over time.

We prioritized those actions by the estimated effort required and the time frame in which
we could likely implement them. We began with relatively easy fixes that mostly required
one-time actions, such as implementing a repository branching strategy and setting up a
continuous integration system. Later, we focussed on adding unit tests and refactoring
specific parts of the framework.

4.1 Repository Branching

When we initially started work on this thesis, the most recent release version of the
framework was located on a feature branch, while the master branch tracked an older

18

CHAPTER 4. SOFTWARE REFACTORING 19

framework version. This older version is used by some legacy projects that did not
receive updates in the last year. Developers would push their changes directly to these
branches without further review. This system could confuse developers and hindered the
setup of a reliable strategy for continuous integration.

As part of our work, we created a fork of the framework’s repository – so as not to
influence ongoing development activity with our changes – and put a branching system
into place. We removed the legacy framework version and implemented the GitLab flow
branching strategy, which our team had previously evaluated [Git20].

Our new system relies on using three main branches: master, testing, and
production. While developers could push directly to the master branch, the other
two are set up as protected branches, preventing direct pushes. This restriction forces
developers to use merge requests, which in turn serves to improve communication and
code quality. It also allows us to set up continuous integration within the framework and
with different client projects.

4.2 Versioning

In the existing framework implementation, projects would import the framework by
cloning the entire framework repository using Git submodules. This solution meant that
any given project pointed to one single commit in the framework’s versioning history,
causing all projects to use slightly different versions.

After applying a branching strategy, we were able to move the dependency specifications
(Specfiles, see Section 3.1.3) into a separate repository. Using our dependency
management tool, CocoaPods, we can now release and import individual components
using semantic versioning. This new approach allows for more fine-grained control of
project migrations, and, in combination with a release roadmap, could help keep projects
up-to-date with framework changes.

4.3 Continuous Integration

Continuous Integration describes the process of perpetually rebuilding the source code,
after changes in the codebase have been made [Som16, p.742f.].

CHAPTER 4. SOFTWARE REFACTORING 20

In our situation, we use it to ensure that changes in the framework are compatible with
the projects that use the framework.

We chose to set up GitLab CI to build the framework with every merge request to the
testing and production branches and following every completed merge to these
branches. In the CI build process, we leverage fastlane, a popular iOS build pipeline
tool, to build the test project placed within the framework repository. We then run any
provided unit tests and scan the code coverage for further analysis by SonarQube.

If these stages pass successfully, we run integration builds with selected high-priority
client projects. Builds in client projects are triggered using the GitLab API, and always
use the latest version of the framework’s master branch. Continuously building our
projects helps us ensure that changes made in any given pull requests do not impact
compatibility with existing projects. If a developer were to make an incompatible change
in the framework, the build attempt would fail, and they would receive notice quickly.
They can then change their implementation in the framework or perform necessary
migration steps in the affected project. This improved availability of feedback helps
developers make changes within the framework more confidently.

Using this approach, we only get a rough picture of change compatibility. We recommend
the setup of additional project-level sanity checks, such as automated UI tests, which
run as a part of the CI build. This kind of setup could help detect issues with functional
changes that do not impact the binary interface to the framework, but which break project-
level logic. A simple approach would be to leverage UI tests to take screenshots of crucial
app screens. Framework maintainers could then manually review the screenshots before
completing a merge request. More elaborate setups could use project-level UI test logic
to perform certain checks automatically.

4.4 Build Status Feedback

With the approach mentioned above, we cannot get feedback on the status of triggered
builds, meaning that developers would have to check the build results manually. A paid
feature in GitLab would allow developers to see the results of downstream builds in the
framework build pipeline.

Since we are currently not willing to incur the associated expenses, we used another
approach that relies on the open-source code review tool Danger. It is integrated into the
fastlane build pipeline and adds a comment to the merge request that triggered the build.
Developers can see the build status in this comment and directly access more detailed
build information. (See Figure 4.1)

CHAPTER 4. SOFTWARE REFACTORING 21

Figure 4.1: Build pipeline feedback in GitLab provided by Danger

4.5 Test Coverage

During our review of strategies for improving existing software systems, we noticed that
a typical recommendation is adding more automated unit tests. Feathers describes that
developers can make changes to legacy code in two ways: Edit and Pray or Cover and
Modify [Fea04]. The first approach relies on manual testing after making changes, which
is unreliable and time-consuming. The second approach refers to the convention of first
writing unit tests for code that developers need to change, and only then modifying the
source code.

Using this approach, maintainers can make sure that changes they make do not affect the
functionality of the modified code in unforeseen ways. Unfortunately, covering existing
code with tests is usually not trivial, because the authors of the code did not write the
code to be testable. Such code often includes network or database requests and calls to
other code that cannot be controlled by the test environment. Additionally, methods in
such code are often long and relatively complex, meaning that is is harder to write tests
for them.

Because we wanted to change the structure of some code to improve our framework,
we reasoned that we should add more unit tests throughout the project. We found
that impediments to testability, such as excessively long methods involving multiple
dependencies and network calls, are generally prevalent in the code in our framework.
To achieve the best results, we selected specific parts of the code where we identified
opportunities for coverage improvements during our process.

CHAPTER 4. SOFTWARE REFACTORING 22

4.5.1 Focus

We focussed on the three framework core modules: ABFCoreApp, ABFCoreUI, and
ABFDataAccessLayer. The data access layer is responsible for storing, retrieving,
and updating app data. In order to do this, it accesses network and database systems. It
also contains base implementations for customizable framework modules.

The core app module controls the rest of the application throughout its lifecycle. It
contains higher-level logic for accessing data through the data access layer. Also, the
core app module is responsible for routing between different app screens and various
other functions, such as switching between content languages, which need app-wide
coordination.

Finally, the core UI module contains base implementations for UI components, which
can be used and customized by other modules in the framework. It also stores design
configurations.

These three modules captured our interest because they entail logic that is accessed and
used from almost every other framework module. As an additional factor, we considered
the frequency of changes made per file, with developers changing files in these core
modules relatively often. (See Section B.2 in the Appendix)

To prepare for working on these code parts, we first analyzed the existing implementation
to gain a better understanding of its inner workings.

As a preparation step for further work, we ensured that the code was formatted and
commented more consistently. There are useful tools to improve code formatting auto-
matically. For Objective-C code, we used the clang-format utility. For Swift code,
we made use of the autocorrect function in the open-source library Swiftlint.

Also, we added small comments in parts where we saw a need or an opportunity for
refactoring. We changed the order of properties and methods to adhere more closely to
the program flow, because some of the classes we handled had a high complexity, and
their functionality was not immediately apparent.

4.5.2 Strategies

To increase the test coverage as intended, we tried multiple different strategies to over-
come hindrances to testability. We will describe our approaches as case studies of classes
we encountered.

CHAPTER 4. SOFTWARE REFACTORING 23

Mock Classes The ABFModuleFactory class enables part of the framework’s mod-
ularized architecture. Modules always subclass ABFBaseModule and can contain a
separate database and other logic. ABFModuleFactory serves to instantiate and
manage the lifecycle of these custom modules. It works by finding all subclasses of
ABFBaseModule and storing a reference to them. Any module will receive a call to
perform custom logic when the app starts. Also, the module factory notifies modules of
significant events, such as when app content is reset, e.g., due to a change in the user’s
language preference.

This class does not require any other classes to be initialized and performs logic on a
common base class. This structure allowed us to place the class under unit tests relatively
quickly. We accomplished this by creating a mock subclass of ABFBaseModule, which
can be inspected by test code to check that operations are performed as expected.

Preprocessor Macros Contrary to ABFModuleFactory, the
ABBusinessEngine class initializes and uses different objects within and outside of
its module. For example, it also calls a method on ABFModuleFactory during its
initialization process. Since this would typically mean that we could not reliably test the
module factory class, we found a way to change the behavior of ABBusinessEngine
when running tests without affecting the class otherwise.

With the iOS build system, we can leverage C compiler features – in this case, the C
preprocessor macros – to change code behavior during builds. This way we can change
the code that is compiled into the build output for different environments.

In our test target, we can define a preprocessor flag by putting a command #define
UNIT TEST in any of our test source files. In the class where we want to change the
behavior, we can then use #ifdef UNIT TEST to use an alternative implementation.
Consider the initializer we want to change in ABBusinessEngine:

CHAPTER 4. SOFTWARE REFACTORING 24

- (instancetype)init
{

self = [super init];
if (self)
{

#ifdef UNIT_TEST
// altered behavior for tests
return self;

#endif

// normal behavior,
// continue with initialization

}
}

In the unit test environment, the initializer will return before any side effects, such as
calls to our test subjects, could occur. Using this approach, we can create an instance
of ABBusinessEngine and pass it to any objects that would require it. We must
notice, however, that performing any operations within the class could result in undefined
behavior because not all of its properties have been initialized.

Thankfully, if we build our code for production – or any other environment than where
our #define command is placed – we can be sure that the class behavior remains
unchanged because the compiler strips out all of the code we have inserted if our flag is
not present. This is an advantage over directly modifying code to support tests because
we have a clear separation between the test and production environments. Essentially,
the production environment remains unchanged.

Spy Delegates The iOS system classes make extensive use of delegation, a design
pattern in which an object coordinates its logic with another helper object called delegate.
Apple’s Cocoa documentation [App18] describes this as follows:

The delegating object keeps a reference to the other object—the delegate—and
at the appropriate time sends a message to it. The message informs the del-
egate of an event that the delegating object is about to handle or has just
handled. [...] The main value of delegation is that it allows you to easily
customize the behavior of several objects in one central object.

CHAPTER 4. SOFTWARE REFACTORING 25

Figure 4.2: Sequence of Actions in the Test Spy Pattern

Since iOS developers also tend to use this pattern in their custom code, we wanted to
leverage its customizability to facilitate the creation of unit tests. We achieved this by
combining delegation with the Test Spy pattern. We found these two patterns to generally
be neatly compatible with each other.

The test spy construct works by using a mock/double class to capture indirect outputs
made from the tested object to another component [Mes07, p.538]. (See Figure 4.2)

In this instance, FooSpy replaces a FooDelegate object that would normally be used
by Foo as its delegate. The FooSpy object implements the same underlying delegate
interface, meaning that the Foo class can continue to use the methods normally abstracted
through the delegation pattern, visible in the typical fooDidFinishTask(:) method
call.

The test class, FooTests, injects its expectations into the spy class. For example,
we could expect fooDidFinishTask(:) to be called after some time to indicate
that the asynchronous task has successfully completed. The fulfillment or timeout

CHAPTER 4. SOFTWARE REFACTORING 26

of expectations in the FooTests class is handled by the XCTest framework iOS
developers typically use for testing.

In addition to this test functionality, we can benefit from optional protocol (interface)
methods to gain deeper insights into the state of Foo, which would otherwise not be
accessible from delegates. Consider the following extension of our delegate protocol:

-(void)fooDidFinishTask:(Foo *)foo;

@optional
-(BOOL)shouldStartTask;
-(void)fooWillStartTask:(Foo *)foo;

Using this construct, our FooSpy could implement the additional, optional methods to
control the Foo class. For example, it might be desirable to skip the asynchronous task for
some tests, in which case the FooSpy would simply answer the shouldStartTask
call with NO.

Furthermore, we could measure the time needed to complete the asynchronous task by
starting a timer as soon as Foo calls the fooWillStartTask(:) method. Mean-
while, the original implementation of FooDelegate can remain unchanged.

One more benefit of this approach is that we do not have to significantly change the
tested class to implement this. Delegate methods are simple to call at any point in the
code. However, if we want to use the mechanism of optional delegate methods, we do
have to perform an additional safety check before calling delegate methods:

if ([self.delegate respondsToSelector:
@selector(fooWillStartTask:)])

{
[self.delegate fooWillStartTask:self];

}

Unfortunately, in the Swift programming language, optional protocol methods are not
directly available as they are in Objective-C. However, we can make this work by either
using bridging to Objective-C with the @objc keyword or protocol extensions to provide
default implementations for optional methods. For example, a default implementation
for the shouldStartTask() method would simply return true.

In summary, we found that spy delegates can be a useful tool when implementing tests
for classes that use the delegation pattern, as is often the case in iOS development. They
require only minimal modifications on the delegating object, and no modifications in the
delegate object, while providing both insights into the tested object and a mechanism to
change the behavior of the test subject.

CHAPTER 4. SOFTWARE REFACTORING 27

4.6 Compiler Warnings

When we started work on this thesis, performing a complete build of the framework
would generate over 12,000 warnings. This high number is a problem because it obscures
warnings that are generated as a result of ongoing development. Additionally, a high
number of warnings may discourage developers from fixing any warnings at all because
the task can feel daunting.

Missing nullability annotations caused most of these warnings. This feature was intro-
duced in 2015 to improve compatibility between the Objective-C and Swift programming
languages. In Swift, the nullability of properties – that is, whether the property is ever
expected to have a null value – is specified through optionals. This construct makes the
code safer because it prevents crashes due to unexpected null values. It is worth noting
that the compiler generated one warning per usage of such an unmarked variable, not per
definition. This means that one single line could trigger dozens of warnings, inflating the
total number of warnings.

Apple extended Objective-C to support such behavior when headers are bridged to Swift.
For every property specified in a header file, developers should specify whether the code
is designed to accept a nil value passed as a parameter.

We worked on adding such nullability annotations to the core modules in the framework,
in order to reduce the number of warnings generated. At the time of writing, we were
able to reduce it to around 500. While there are still some warnings of this kind present
in different modules, our change has served to reveal warnings about relevant issues like
usages of deprecated system API usages, incompatible types, and unused variables.

If Apps with love choose to continue to develop and support the framework, they should
take further action to reduce the number of warnings. Fewer warnings help developers
keep the code up to date with changes to system behavior, programming languages, and
internal code structures.

4.7 Deprecated Code

Framework maintainers typically mark code as deprecated to discourage its usage,
perhaps because a more efficient or safer implementation replaced it, it contains known
flaws or is otherwise deemed no longer worth supporting. As opposed to directly
removing the affected code, marking it as deprecated serves to keep compatibility with

CHAPTER 4. SOFTWARE REFACTORING 28

existing usages of the affected features. Warnings may be generated by the compiler to
let developers know that they should remove usages of affected interfaces.

The act of marking code as deprecated shows the intention of a developer that code
should ideally be removed after a certain time has passed. This forces other developers
to migrate their usages to replacements provided by the framework, or otherwise adjust
their implementation. Removing code that has previously been marked as deprecated
reduces the overall size of the codebase and makes the rest of the code easier to maintain
because developers can focus their attention on more relevant parts.

During our work, we noticed that multiple classes and methods had been marked as
deprecated several years prior. We removed those code parts which were no longer used
in our tracked high-priority projects. We also removed code parts that were commented
out but not yet deleted. Furthermore, we identified modules which our tracked projects
did not use, and removed them as well.

Our changes helped to reduce the overall system size from over 65’000 source lines of
code to around 47’000. We noticed that this initial removal also made even more parts
of the code redundant because they had only been used in those previously deprecated
parts, which can create a sort of avalanche effect throughout the project.

We noticed that some deprecated code had too many usages from different locations to be
deleted in the timeframe of this thesis. One example of this situation was color handling.
The framework code contains specific hard-coded color values. We would remove these
values need because they are no longer state of the art in color management. The iOS
operating system relies on different color representations to support both light and dark
appearances, as well as different color spaces.

However, because these seemingly trivial color values are used not only within the
framework but also within different dependent projects, their removal was not possible
at this time. Instead, an alternate mechanism for color configuration would need to be
developed and implemented throughout all dependent client projects before deletion.

For further work, we recommend prioritizing the removal of features that are no longer
relevant to the business to reduce the overall codebase size and increase maintainability.

4.8 Code Refactoring

The work outlined in the previous sections was performed partly as preparation for, and
partly in unison with software refactoring. We can broadly ascribe our refactoring work

CHAPTER 4. SOFTWARE REFACTORING 29

to two categories: restructuring of overly complex classes with usages throughout the
framework, and smaller, topical improvements.

The first category mostly revolved around the classes ABDataAccessLayer and
ABBusinessEngine. We described the role, and reason for selection, of these classes
in Section 4.5.1. To reiterate, the classes are exceedingly complex and tie together
significant parts of the app’s functionality.

An important step that we consider part of refactoring was reordering the class headers
and method implementations to represent the program flow more accurately. This
improved structure helped us understand the logic of these classes better. We added
code markings to differentiate between major sections in the classes. We also placed
comments where we identified specific actions that should be taken.

Focussing on ABFDataAccessLayer, we initially struggled with testability. The
problem in this class was the multitude of database calls embedded within the rest of
the class logic. By splitting these calls into a separate class, FestivalStore, we
could then test the data access layer class independently of any database by using a mock
FestivalStore. Future work in this area would consist of finding such opportunities
for refactoring, applying the outlined strategies, and gradually improving test coverage
and architecture.

The second category of smaller improvements involved usages of deprecated system
interfaces. For example, the framework uses a utility class to present an alert popup
view to the user. Since iOS 8, alerts should use UIAlertController, whereas
previous versions used UIAlertView. The utility class used an external library named
RMUniversalAlert to address this. It featured an implementation compatible with
both versions. Since our current projects only support iOS 10 and above, we no longer
need this external dependency. (At the time of writing, the most recent major version is
iOS 13.) We removed the library, which had been last updated in 2016, and used a small
Swift class to implement this behavior. We identified many locations where such smaller
refactorings could benefit the overall code quality.

4.9 Summary

In this chapter, we took action to improve the quality of our existing software system. We
started by setting branching conventions for developers and changing our mechanism for
versioning and importing dependencies. These changes enabled us to set up a continuous

CHAPTER 4. SOFTWARE REFACTORING 30

integration process, as well as a system to automatically provide build feedback, giving
developers the ability to gauge their changes’ impact on client projects quickly.

We then explored different strategies for increasing the test coverage. We learned about
the utility of preprocessor macros to quickly alter the behavior of classes in order to
prevent unintended side effects when testing. Furthermore, we introduced the concept
of Spy Delegates and explored its application in the context of iOS development. We
discussed our steps in maintenance, reducing the number of warnings and the amount
of deprecated code. Finally, we briefly touched the topic of code refactoring, learning
that refactoring in our context typically falls into two classes: small improvements where
code was out of date, and larger sections with centralized logic that should be better
separated.

In the process of applying our changes, we learned that while our improvements to the
development and testing setup can speed up development time, refactoring the framework
to fix most of the apparent quality issues would be an endeavor taking a significant amount
of effort. We will now compare the approach of refactoring the existing framework to
rewriting parts of the codebase, which could be another viable option to provide a better
system in the future.

5
Software Rewriting

We wanted to compare our refactoring strategy to a second approach, which is rewriting
parts of the existing system. Our company’s requirements have changed over time, and
the original framework no longer suits our business needs. Event apps used to be a
central part of our revenue streams, but have become much less important over time.

Consequentially, parts of the framework have become mostly irrelevant, while numerous
desirable new features are currently missing. By cherry-picking existing functionality
and re-implementing it under consideration of these changed requirements, we believe
we might be able to achieve a more flexible solution that we can use in various projects.

To compare both approaches, we implemented a small part of the existing functionality
using a more modern toolchain. If we find evidence that our new solution can achieve
similar or better results than refactoring in a comparable time frame, we might consider
this an alternative to adapting the existing framework. In Section 6.1, we will compare
the outcome of both approaches as a basis for a business decision.

31

CHAPTER 5. SOFTWARE REWRITING 32

Figure 5.1: Linking Logic of Info Items

5.1 Functionality

Let us describe the features we selected for rewriting. We aimed to select a well-defined,
definite subset of the existing system’s functionality.

One central functional element many of our apps share are so-called Info Items, which
are a versatile feature for displaying nested content as a tree structure. The children of
a shared root node commonly represent items in a menu, typically a side menu or tab
bar. When the user taps on a node, the system determines which screen to show next,
most commonly a list of child items or a detail screen presenting HTML content. (See
Figure 5.1 and Figure 5.2)

The info item feature depends on shared functionality from the framework core. This
module handles a one-way synchronization process with a server-hosted content manage-
ment system. It communicates with an API providing delta-updates for the entire app
content. The core module stores and manages the app’s configuration data as received
from the backend, and passes data to all the app modules. The modules are free to decide
which data they need and how they want to store it.

CHAPTER 5. SOFTWARE REWRITING 33

Figure 5.2: Info Items: Root, List and Detail Screen

5.2 Technology

Our existing framework is mostly written in Objective-C. For the new implementation,
we used the Swift programming language that Apple introduced in 2014 and has become
the default language for native iOS projects.

While the existing project used CocoaPods for dependency management, we chose to
use Swift Package Manager, which has been integrated into the Xcode IDE since the
last major version. It simplifies the process of specifying new modules, as well as using
code from local and remote sources. We found it integrates neatly into our workflow, as
it provides an easy way of specifying and importing packages (see Section B.3). One
drawback is that it does not provide the ability to ship assets or other binary files in
packages as of yet. However, the Swift contributors may well implement this in the
future.

5.3 Architecture

Based on the existing implementation, we decided to use a similar approach keeping our
code separated into different modules. For our purposes, we created two packages, Core
and Info.

The Core package does not use any iOS-proprietary libraries and is therefore fully cross-
platform compatible with all Apple-owned platforms and Linux. It contains code to
ensure the compatibility of modules, such as shared protocol definitions and models.
Furthermore, it provides shared services such as linking between modules and retrieving
updates through a shared API.

CHAPTER 5. SOFTWARE REWRITING 34

The Info package depends on the Core package and serves as a reference implementation
of a module. We will describe our solution in detail by building up a picture of the Info
module implementation step-by-step.

Our design for a module bases itself on the Clean Swift architecture [Law15], which is,
in turn, an adaptation of Robert C. Martin’s Clean Architecture [Mar12].

This architecture seemed ideal because it complements a modular structure due to its
strict separation of concerns, allowing project developers to use their custom logic if the
need arises. We also learned that our Android developers successfully used a similar
design in their implementation.

Clean Swift splits the basic structure of an app into scenes. For example, the Info List and
Info Detail screens each represent one scene. At the core of a scene are three different
classes with distinct responsibilities:

• The View Controller handles displaying information to – and receiving inputs from
– the user. It requests data from the Interactor.

• The Interactor receives requests from the View Controller and stores or loads data.

• The Presenter receives data from the Interactor and tells the View Controller how
to display this data.

Together, they form the View-Interactor-Presenter cycle through which the app handles
its business logic. Protocols separate the logic between classes. The View Controller sets
up the scene and is the only class that contains direct references to other classes – the
rest of the classes only know their protocol interfaces. (See Figure 5.3)

The architecture describes two additional concepts: Routers and Workers. View Con-
trollers use Routers to coordinate navigation to another scene in the app. Interactors
offload work such as fetching data to Workers. (See Figure C.1, Page 57)

We combine multiple scenes with shared data structures to form modules. For example,
the Info Module combines the Info List and Info Detail scenes. Classes within a module
can share underlying model classes and workers.

A module also contains a mechanism for storing and updating its underlying data. It
achieves this using the Repository, which acts as a single source of truth for the module.
A Repository is free to decide how to store data. Most typically, it would use a database,
but we have also successfully implemented an in-memory store for debugging purposes.

CHAPTER 5. SOFTWARE REWRITING 35

Figure 5.3: Relation between View Controller, Interactor and Presenter

5.3.1 Data Updates

Repositories use an UpdateMapper to subscribe to an Updater located in the framework
core, which allows them to get notified when the core receives new data. (See Figure C.2,
Page 58)

Since we use one central API for all modules and entities, the core needs to be agnostic
to the content entities it receives. The only pieces of information processed in the core
are related to app configuration and content versioning. The core passes the complete
received data to each subscribed UpdateMapper.

The mapper filters out only the entities relevant to its module and passes it to the
Repository for storage. The Repository also uses the VIP cycle to update any scenes
currently displayed to the user.

5.3.2 Linking

Another addition we needed in order to implement our Info Item feature was centralized
linking. An Info Item can contain a link of the form module/key?query=param.

CHAPTER 5. SOFTWARE REWRITING 36

When a View Controller encounters such a link, it uses its Router to determine how to
link to the next scene. If the link points to a screen within the same module, this works
without any issue. The Router can get access to all the data it needs and performs the
navigation.

However, because we do not want modules to have any knowledge of each other, the
Router does not know how to handle a link to a different module. For this case, we have
added a Linker service to the framework core. (See Figure C.3)

During the app start, the Linker is initialized and configured with a link map, giving it a
reference to all modules and their link strings. If a Router wants to navigate to a different
module, it asks the Linker for an abstract representation of the link target. Using this
construct, the Router can pass the link query data to the target without needing to know
anything about the target screen’s implementation.

5.3.3 View Configuration

A big difference from the existing implementation lies in the way we configure the
appearance of views.

The current framework creates its views programmatically and relies on two mechanisms
to adapt appearance: Firstly, View Settings objects, which client applications can override
to adjust parameters like color schemes. Secondly, the subclassing of views allows for
more in-depth adjustments, for example, creating a custom appearance of a table view
cell.

In our new implementation, the entire logic about view appearance is solely in the client
project, not in the framework itself. Using this approach, we can leverage Storyboards,
which allow us to create our views in a graphical editor within Xcode. One advantage of
this is that client projects can customize their appearance more easily. (See Figure 5.4)
Furthermore, we can benefit from the simplified ability to support auto layout, which
handles sizing for different devices, and easier debugging of light and dark system
appearance styles.

The only knowledge the framework needs to have about its views is a unique string to
identify the view, as well as a reference to any properties of the view (typically subviews)
that the view controller needs to access.

Framework modules run a check during app startup to ensure that no views are missing.
In debug mode, the app terminates to let the developer know instantly that a screen
is missing. Views can only check the presence of required view properties once the
respective screen is opened. We achieve this through assertions placed in the view setup
code.

CHAPTER 5. SOFTWARE REWRITING 37

Figure 5.4: Customization of the Info List Scene in Xcode Storyboard

5.4 Comparison

We see multiple advantages but also drawbacks to our solution. One notable improvement
is the exclusive use of Swift instead of Objective-C. The new programming language is
available since 2014 and introduces many new features, like optionals and improved type-
safety. Another new concept is Swift Package Manager, which simplifies the declaration
and import of dependencies.

A clearly defined and documented architecture helps developers structure their code. It
allows exchanging specific implementations quickly, which enables unit testing through
mocking, as well as easy customization of framework code for specific projects.

The Core module supports cross-platform capability, which was not possible in the
previous framework and can help us develop for different platforms such as macOS or
tvOS. The use of Storyboards enables powerful customization of views while keeping
the framework implementation simple.

Inherently, there are also drawbacks to creating a new version of the framework from
scratch. Perhaps the most significant one is the big upfront time and cost expense required
to create a minimum viable version of the system. Another factor is the risk of repeating
mistakes that had been fixed during the maintenance of the existing framework over
several years. Also, we can expect a significant period where we would have to maintain
both the new and old framework versions – to provide support for projects, and until the
new framework is on feature-parity with the current version.

CHAPTER 5. SOFTWARE REWRITING 38

5.5 Summary

In this chapter, we first selected and described certain existing framework features. Then,
we compared the language and dependency management of the existing implementation
to an approach using newer technology. We outlined the Clean Swift architecture, which
serves to strongly separate classes and components using interfaces. We described
our generic mechanism for updating data and linking between different modules, as
well as for allowing projects to more easily customize their design. Finally, we drew
a comparison between the existing system and our new solution, finding that a new
implementation could potentially benefit the organization, particularly with a more
thoroughly structured architecture, technology more fit for customization, and a smaller
overall system size.

6
Conclusion and Future Work

During this project, we first looked to define quality in the context of our project and
found that we should focus on non-functional requirements such as maintainability and
flexibility.

We then assessed the system’s structural quality by investigating the developer’s needs,
using static analysis, and collecting data on module-level and organization-level frame-
work usage. We found issues with the project’s code-level quality, software architecture,
and the collaboration structure.

Next, we sought to improve the quality of our existing system. We defined a strategy for
branching and versioning in our Git repository. We also set up automatic integration tests
between the framework and the most vital client projects to ensure the compatibility of
changes in either location.

39

CHAPTER 6. CONCLUSION AND FUTURE WORK 40

We worked to increase the test coverage in fundamental framework classes, exploring
different strategies for covering classes that were previously not testable. We reduced the
number of compiler warnings through adding nullability annotations and removing or
replacing deprecated code. We then performed refactoring in significant locations and in
smaller methods that contained deprecated code.

In the last part, we started a new implementation of select features. We analyzed the
existing implementation and specified an architecture that could support our requirements.
We also discussed the benefits and drawbacks of our solution in comparison with the
existing implementation.

6.1 Recommendation

We want to provide a decision basis to select a strategy for further work, especially for
deciding between refactoring the existing system and starting a new implementation. In
our work on this thesis, we have seen that both refactoring and rewriting the framework
entail costs in time and money.

There are good reasons for either approach, and there exist countless stories of developers
struggling with failed rewrites, but also with upgrading legacy systems.

The main benefits of keeping and refactoring the system lie in the years of experience
built on – and improvements applied to – the existing codebase. It seems less precarious
to keep the current implementation because the company knows it works just well enough
for the existing projects. If the developers perform a rewrite, they run into the risk of
repeating mistakes they previously spent time ironing out in the current system.

However, we need to acknowledge that many projects that the company creates nowadays
do not use the framework at all. We think this is mainly the result of a change in the
underlying requirements this system needs to fulfill. Event apps, which were the original
purpose of the framework, are now considered small niche projects. While the company
extended the code to support an ever-increasing number of features, the system lost its
flexibility to the point where it caters well to the event app market, but not to the majority
of projects on which the company is working.

We recognize the continued need for a framework that increases commonality between
different projects. Using a framework simplifies development, both during the start and
maintenance phases of a project. Developers like the ability to expand on an existing

CHAPTER 6. CONCLUSION AND FUTURE WORK 41

system, and having a shared architecture makes collaboration across projects more
efficient.

Meanwhile, a rewrite could serve to improve the overall quality of resulting applications
through the support of newer features where the current framework is falling behind. For
example, we see opportunities for improvement in accessibility, dynamic font sizing,
cross-platform support, and design customization. We would also expect the overall
system size to be significantly smaller than the current implementation, which could
improve performance and maintainability.

A rewrite could also benefit from some of the improvements to the setup we achieved
in our refactoring process, for example, the continuous integration workflow. Also, the
developers could refer to the existing Android version of the framework for architectural
guidance. This implementation seems to be more universally applicable to projects.

We expect that a new implementation could benefit the company in an overall shorter
amount of time than refactoring the existing system. The company is currently starting
most projects from scratch – a small toolkit could start to be used in new projects
relatively quickly, and expanded over time.

Taking all these reasons into account, if the company wants to build a toolkit on which it
can base most of its projects, we would, therefore, recommend rewriting the parts of the
system which the company still considers useful.

However the project team may decide, a considerable reengineering challenge lies ahead.
Seeing as though both approaches come with their risks and opportunities, in the context
of a rapidly developing field of technology, the only wrong option may be to keep
standing still.

6.2 Future Work

For the company maintaining the system, the next steps could be setting the strategic di-
rection by establishing shared priorities and goals, as well as determining responsibilities
for maintaining the existing, and possibly designing a new system [DDN03, p.19ff.].

Further possible actions that we found during our work should also be considered, for
example, setting up a bug tracker for the framework instead of handling bugs on a project
level could provide metrics to improve the analysis of the software quality.

CHAPTER 6. CONCLUSION AND FUTURE WORK 42

Developing a new implementation would open up the possibility of further comparison
between the new and old implementation, possibly revealing learnings about either
system’s traits, benefits, and drawbacks.

Lastly, more research should be made in the area of techniques to improve testability,
such as expanding on delegate testing and finding similar opportunities in other patterns
to facilitate the maintenance of similar systems.

Acknowledgement

I want to thank Prof. Dr. Oscar Nierstrasz for the supervision and guidance throughout
this thesis, and to everyone else who provided their support, insight, and valuable
feedback.

Bibliography

[App18] APPLE INC.: Cocoa Core Competencies.
https://developer.apple.com/library/
archive/documentation/General/Conceptual/
DevPedia-CocoaCore/Delegation.html, April 2018

[Ber11] BERNERZEITUNG.CH/NEWSNETZ: Gurtenfestival Buddy-App: ein Muss für
Openair-Fans.
https://www.bernerzeitung.ch/region/bern/
gurtenfestival-buddyapp-ein-muss-fuer-openairfans/
story/23865190, July 2011

[Ber20] BERN, Canton of: Commercial Register.
https://be.chregister.ch/cr-portal/auszug/auszug.
xhtml?uid=CHE-116.029.116, January 2020

[CBN13] CHEN, L. ; BABAR, M. A. ; NUSEIBEH, B.: Characterizing Architec-
turally Significant Requirements. In: IEEE Software 30 (2013), March, Nr.
2, S. 38–45. http://dx.doi.org/10.1109/MS.2012.174. – DOI
10.1109/MS.2012.174. – ISSN 1937–4194

[Cha13] CHAPPELL, David: The Three Aspects of Software Quality.
http://davidchappell.com/writing/white_papers/The_
Three_Aspects_of_Software_Quality_v1.0-Chappell.pdf,
2013

[DDN03] DEMEYER, S. ; DUCASSE, S. ; NIERSTRASZ, O.: Object-Oriented
Reengineering Patterns. 2003. – available at: http://scg.unibe.ch/
download/oorp/ (Jan. 2020)

43

https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/Delegation.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/Delegation.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/Delegation.html
https://www.bernerzeitung.ch/region/bern/gurtenfestival-buddyapp-ein-muss-fuer-openairfans/story/23865190
https://www.bernerzeitung.ch/region/bern/gurtenfestival-buddyapp-ein-muss-fuer-openairfans/story/23865190
https://www.bernerzeitung.ch/region/bern/gurtenfestival-buddyapp-ein-muss-fuer-openairfans/story/23865190
https://be.chregister.ch/cr-portal/auszug/auszug.xhtml?uid=CHE-116.029.116
https://be.chregister.ch/cr-portal/auszug/auszug.xhtml?uid=CHE-116.029.116
http://dx.doi.org/10.1109/MS.2012.174
http://davidchappell.com/writing/white_papers/The_Three_Aspects_of_Software_Quality_v1.0-Chappell.pdf
http://davidchappell.com/writing/white_papers/The_Three_Aspects_of_Software_Quality_v1.0-Chappell.pdf
http://scg.unibe.ch/download/oorp/
http://scg.unibe.ch/download/oorp/

BIBLIOGRAPHY 44

[Fea04] FEATHERS, Michael C.: Working Effectively with Legacy Code. Prentice Hall,
2004

[Fow99] FOWLER, Martin: Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999

[Gar84] GARVIN, David A.: What Does ”Product Quality” Really Mean? In: Sloan
Management Review (1984)

[Git20] GITLAB INC.: Introduction to GitLab Flow.
https://docs.gitlab.com/ee/topics/gitlab_flow.html,
2020

[Law15] LAW, Raymond: Clean Swift iOS Architecture for Fixing Massive View
Controller.
https://clean-swift.com/clean-swift-ios-architecture/,
2015

[Leh80] LEHMAN, Manny M.: On understanding laws, evolution and conser-
vation in the large-program life cycle. In: Journal of Systems and
Software 1 (1980), S. 213–221. http://dx.doi.org/10.1016/
0164-1212(79)90022-0. – DOI 10.1016/0164–1212(79)90022–0

[Mar12] MARTIN, Robert C.: The Clean Architecture.
https://blog.cleancoder.com/uncle-bob/2012/08/13/
the-clean-architecture.html, August 2012

[Mes07] MESZAROS, Gerard: xUnit Test Patterns. First Edition. Addison-Wesley, 2007.
– see also http://xunitpatterns.com/Test%20Spy.html.

[PM15] PRESSMAN, Roger S. ; MAXIM, Bruce R.: Software Engineering – A Practi-
tioner’s Approach. 8th Edition. McGraw-Hill, 2015

[Som16] SOMMERVILLE, Ian: Software Engineering. 10th Edition. Pearson, 2016

https://docs.gitlab.com/ee/topics/gitlab_flow.html
https://clean-swift.com/clean-swift-ios-architecture/
http://dx.doi.org/10.1016/0164-1212(79)90022-0
http://dx.doi.org/10.1016/0164-1212(79)90022-0
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
http://xunitpatterns.com/Test%20Spy.html

A
Anleitung zu wissenschaftlichen Arbeiten

In this chapter, we want to show how we built a productive toolchain for iOS application
development and deployment. We use various tools to perform tasks such as linting,
dependency management, continuous integration, and more. We will give an overview
of tools that developers can install on their local machines and then go on to server
applications, integrating everything to build a streamlined workflow. A visualization of
the complete workflow can be seen in Figure A.1 on Page 52.

A.1 Linting

Linters analyze source code to provide developers with feedback about code styling issues
and other potential problems that can be diagnosed with rule-based recognition. The

45

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 46

original lint utility was written for the C programming language, but today a multitude
of similar tools exists for different platforms and languages.

For iOS development, such tools exist both for the classic Objective-C as well as the
newer Swift programming language. A well-known tool for Objective-C is OCLint,
which runs on macOS and Linux.1 In Swift development, a commonly used tool is
SwiftLint, which can also be integrated into the Xcode IDE.2

Typically, we customize the default rules for SwiftLint to reduce the number of false
positives and better reflect our workflow. To achieve this, we place a
.swiftlint.yml file in the project root folder. Our most commonly modified rules
are line length, force cast and trailing whitespace. We feel that those
rules can be overly limiting. For example, restricting our line length to 80 characters
does not provide a sufficient benefit to us to justify the added amount of work.

A.1.1 Autocorrection

A significant advantage of using linting tools is the ability to autocorrect both new and
existing files. During our refactoring work, we used the clang-format command to
clean up files where we found the code formatting to be inconsistent. This tool ships along
with the clang LLVM compiler on macOS. We used the command clang-format
-i <file name> to achieve this automatic formatting.

Similarly, we can use the swiftlint autocorrect command to format Swift files
to comply with our styling conventions.

A.2 Dependency Management

For iOS development, the most commonly used tools for dependency management are
CocoaPods, Carthage, and the Swift Package Manager.

While Carthage primarily focusses on resolving and downloading dependencies, with
developers having to add the files to their project manually, CocoaPods uses a more elab-
orate system to import dependencies into an Xcode workspace automatically. Similarly,

1See also http://docs.oclint.org.
2See also https://github.com/realm/SwiftLint.

http://docs.oclint.org
https://github.com/realm/SwiftLint

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 47

Swift Package Manager is integrated directly into Xcode and allows developers to add
dependencies by merely specifying a repository URL and rule for version handling.

In the existing framework version, we use CocoaPods to import code. Client projects
list their dependencies in a Podfile3, while framework modules use a Specfile4 to
make their code importable using CocoaPods.

While a Podspec can be made available publicly through the CocoaPods Spec Repository,
since our framework is closed source, we opted to use a private Spec Repo to publish our
code internally. We host this repository on our private GitLab instance.

Developers can also choose to import a dependency hosted on their local machine by
specifying the source for a Pod using a relative local path. This mechanism is especially
useful for framework development because the dependency’s source code can be edited
directly from the IDE, as opposed to importing the dependency from a remote repository,
in which case only the header files are visible and the code cannot be edited.

A.3 Build Pipelines

We use fastlane to simplify our build process with automated scripts.5 This Ruby tool
can be used for iOS, Android, or cross-platform mobile development. Developers use
a Fastfile in which they specify actions to automate various tasks like installing
dependencies, linting, building, and deploying the project.

Using this approach, we can build multiple workflows, or lanes, for different build
environments. For example, we can distribute a new version to testers, or upload an app –
including metadata and screenshots – to the App Store. This setup is especially useful
because the same script can be used both on the developers’ machines and on build
runners controlled by a Continuous Integration system. There are hundreds of actions
and integrations available; for example, fastlane can directly send notifications to Slack.

An abridged version of the Fastfile in our framework repository looks like this:

3See also https://guides.cocoapods.org/syntax/podfile.html.
4See also https://guides.cocoapods.org/syntax/podspec.html.
5See also https://docs.fastlane.tools.

https://guides.cocoapods.org/syntax/podfile.html
https://guides.cocoapods.org/syntax/podspec.html
https://docs.fastlane.tools

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 48

desc "Run static analysis/linting of framework"
lane :lint do

cocoapods
scan
sh("bash xccov-to-sonarqube-generic.sh

../Build/Logs/Test/*.xcresult > out/cov.xml")
swiftlint(

reporter: "json",
output_file: "./fastlane/out/swiftlint.results.json"

)
sonar

end

desc "Trigger integration build in projects"
lane :trigger_integration do |params|

triggers = YAML.load_file(’triggers.yml’)
triggers.each do |t|
sh("curl -X POST -F token=#{t[:token]} -F ref=#{t[:ref]}

<gitlab-url>/api/v4/projects/#{t[:id]}/trigger/pipeline")
puts "Triggered Build { #{t[:name]}"
end

end

A Fastfile in a project requires different actions than in the framework. Depending
on whether we want to deliver the project to testers, or just run static tests, we run a
different lane.

desc "Build and run integration tests"
lane :integration_build

match(readonly: true)
Load dependencies using latest framework version
cocoapods(podfile: "./IntegrationTests")
Run tests
scan(scheme: "MyProject", build_for_texting: true)

end

desc "Build and deploy to testers"
lane :deploy_updraft do

build
updraft
post_build_notification

end

lane :build do
Load required values from keychain
match(readonly: true)
cocoapods # Import dependencies
gym # Build project

end

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 49

A.4 Continuous Integration

We have set up continuous integration through our version management system, GitLab.
This system interacts directly with the Git repository and is easily set up by adding
a .gitlab-ci.yml file at the project root. This file sets the build actions and the
branches or merge requests for which they are triggered.

An example configuration file looks like this:

stages:
- deploy_to_testers
- run_integration_tests

updraft:
stage: deploy_to_testers
script:

- fastlane deploy_updraft --env updraft-staging
tags:

- ios-dev
only:

- testing
except:

- triggers
- schedules

when: always

integration:
stage: run_integration_tests
script:

- pod deintegrate && pod clean
- fastlane integration_build --env updraft-staging

tags:
- ios-dev

only:
- triggers
- schedules

when: always

We see two build pipelines here. The updraft pipeline would be used to distribute a
new build to testers through our app delivery tool, Updraft, described in Section A.7.
We added the integration pipeline as part of our work on this thesis. This stage is
exclusively run through triggers or schedules. For example, a webhook can trigger a
project build once developers push a new version of the framework to GitLab. A schedule
is used to build the project nightly against whichever is the latest framework version.

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 50

This setup ensures that changes in the framework are tested with client projects quickly
and that developers get notified if a change they made in their project is incompatible
with the latest framework version.

To enable continuous integration for iOS projects, the build runners (machines that
are used for building) must support the Xcode Command Line Tools, for example, the
xcode-build command. This toolset is only available for macOS, restricting us to
using Macs to run these builds. In our setup, we run two Mac Minis as build runners.
Both host the GitLab macOS runner application and are registered in GitLab with the
ios-dev tag so that iOS projects are only assigned to these machines.

A.5 Pipeline Feedback

In paid tiers of GitLab, a feature called multi-project pipelines allows build processes to
trigger builds in other projects. The build status of these downstream pipelines is then
fed back to the original trigger, giving developers feedback about these dependent builds.
This feature would neatly enable our project build integration functionality, as described
in Section 4.3. Unfortunately, since we are using the open-source GitLab Community
Edition, we do not have access to this feature.

As a workaround, we perform an additional action during the framework CI build to
trigger project builds using the GitLab API. This means that project builds will now run
automatically as part of the framework build process. However, developers do not get
any feedback about the build status using this approach.

We extended our implementation with Danger,6 a tool that can interact with merge
requests to perform additional checks and that can add feedback in GitLab as comments.
For each project, GitLab provides static URLs to an SVG file indicating the build status.7

Developers commonly use this in README documents to show CI results in a project
overview.

Using a simple markdown step in Danger, we add a comment with the badges for
triggered projects to the merge request that triggered the build process. This way,
developers can see the build status for any downstream pipelines in their merge request,
as well as jump directly to any involved project by clicking the badge image.

6See also https://danger.systems.
7See also https://docs.gitlab.com/ee/user/project/badges.html.

https://danger.systems
https://docs.gitlab.com/ee/user/project/badges.html

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 51

A.6 Static Analysis

We previously described our usage of SonarQube as static analyzer in Section 3.1.2.
Since Objective-C and Swift projects can only be analyzed using the paid Developer
Edition, we set up a new instance using our existing Docker infrastructure.

Integrating the tool into the build pipeline was a two-step process. A basic integration
needs a sonar-project.properties file placed in the project root directory,
which sets basic properties such as server URL, but also custom settings like excluded
directories. An analysis is triggered through the fastlane sonar action in the build script.
SonarQube should now run an analysis every time the CI pipeline runs.

In a second step, we added code coverage analysis. Since we have a mixed Swift
and Objective-C project, SonarQube relies on an abstracted, generic representation of
coverage. We achieve this by adding a build wrapper to our build steps in the lint
fastlane. This step produces a file that can be interpreted by SonarQube.

A.7 Continuous Delivery

As the last step in our build process, we distribute project builds to our testers via a
custom tool named Updraft.8 This system allows testers to install new app versions
directly using a web link instead of having to go through the App Store review process,
which can take hours or even days. An integration with fastlane9 allows developers to
direct uploads of newly built app binaries.

8See also https://getupdraft.com.
9See also https://github.com/appswithlove/fastlane_tools.

https://getupdraft.com
https://github.com/appswithlove/fastlane_tools

APPENDIX A. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 52

Figure A.1: Complete Framework Build Workflow. Light backgrounds represent frame-
work build steps. Dark backgrounds represent project-level steps.

B
Additional Data

B.1 Dependency Visualization

We used a tool to list and visualize our framework’s dependencies as CocoaPods imported
them. For this, we prepared a test project and added all available framework modules in
the project’s Podfile.

A prerequisite for the following steps is the installation of the Graphviz software.1

We used an open-source tool named cocoapods-dependencies2 to traverse through
the dependency tree and create a DOT3 file, which contains the resolved dependencies.

1Open-source, available at https://graphviz.org.
2Available at https://github.com/segiddins/cocoapods-dependencies.
3See also: https://graphviz.gitlab.io/_pages/doc/info/lang.html.

53

https://graphviz.org
https://github.com/segiddins/cocoapods-dependencies
https://graphviz.gitlab.io/_pages/doc/info/lang.html

APPENDIX B. ADDITIONAL DATA 54

An optional step we performed is reducing the dependency graph to omit transitive
dependencies. This step removed any connections from A → C where A → B and
B → C also applies, reducing the total number of links to make the figure more readable.

Finally, we rendered the DOT file into a PNG image. The commands we used, sequen-
tially, were:

pod dependencies --graphviz

tred Podfile.gv > Podfile_reduced.gv

dot -T png -O Podfile_reduced.gv

Using this approach, we created the image shown in Figure C.4. We also show the graph
with transitive dependencies in Figure C.5.

B.2 Change Frequency

We analyzed the framework’s repository to find the files where developers made changes
most often. To achieve this, we used a method described on StackOverflow.4

By running the command described in the linked answer, we found the files changed most
frequently were ABNetworkEngine (63), ABAppDelegate (51), ABBusinessEngine
(50), ABDataAccessLayer (39), and ABFAttachmentsModule (33).

B.3 Swift Package Manager

This tool for dependency management is closely integrated with the Swift Programming
Language and, therefore, modern iOS development. Developers can import Swift
packages by specifying a repository URL, or a local path, in their Xcode project. SPM
resolves the correct library version, as well as any additional dependencies.

To make a library available for usage with SPM, maintainers simply need to add a
Package.swift file and structure their code into a Sources and a Tests folder.

The following is an example of a Package.swift file from the Info module, which
specifies a dependency on the Core module, which is locally available:

4Available at https://stackoverflow.com/a/18594249 (Jan. 2020).

https://stackoverflow.com/a/18594249

APPENDIX B. ADDITIONAL DATA 55

// swift-tools-version:5.1

import PackageDescription

let package = Package(

name: "Info",

platforms: [.iOS(.v11)],

products: [.library(name: "Info", targets: ["Info"])],

dependencies: [.package(path: "../Core")],

targets: [

.target(

name: "Info",

dependencies: ["Core"]),

.testTarget(

name: "InfoTests",

dependencies: ["Info"]),

]

)

C
Figures and Tables

56

APPENDIX C. FIGURES AND TABLES 57

Figure C.1: VIP cycle with Router and Worker

APPENDIX C. FIGURES AND TABLES 58

Figure C.2: Architecture of a Data Module

APPENDIX C. FIGURES AND TABLES 59

Figure C.3: App architecture with Core and relation between scenes

APPENDIX C. FIGURES AND TABLES 60

Figure C.4: Reduced dependency tree of framework module imports

(Also available at https://raw.githubusercontent.com/ast3150/bt-public/master/images/Podfile_reduced.png)

https://raw.githubusercontent.com/ast3150/bt-public/master/images/Podfile_reduced.png

APPENDIX C. FIGURES AND TABLES 61

Figure C.5: Full dependency tree of framework module imports

(Also available at https://raw.githubusercontent.com/ast3150/bt-public/master/images/Podfile_full.png)

https://raw.githubusercontent.com/ast3150/bt-public/master/images/Podfile_full.png

A
PPE

N
D

IX
C

.
FIG

U
R

E
S

A
N

D
TA

B
L

E
S

62
Table C.1: Problems mentioned by developers and possible solution approaches, ordered by origin and estimated effort to implement.

Origin Problem Possible Solutions

1 Code Many warnings are generated at compile-time because code
needs to be updated to use newer language features (notably,
code annotations regarding nullability need to be added)

Add Nullability Annotations, fix other warnings

2 Code Unintended consequences when making changes Set up a test project and continuous integration, add integra-
tion tests

3 Code Missing class comments and code comments in complex
methods

Refactor complex methods and add comments

4 Code Outdated code which is marked as deprecated but cannot be
removed due to internal dependencies

Remove dependencies and deprecated code

5 Code Customizing screens is hard, changing shared screen imple-
mentations can have unintended side effects

Change architecture and feature scope of framework

6 Framework Missing Documentation of architecture Add documentation; instruct developers and enforce through
quality gates

7 Framework Usage of Objective-C over Swift Migrate or rewrite components

8 Framework Too much project-specific or outdated logic in framework Move some logic to projects, remove code that is no longer
needed

9 Organization No code reviews are conducted during development, impact-
ing code quality

Set up quality tools, enforce the use of merge requests and
reviews

10 Organization No versioned releases, projects reference directly to commits Change tools used for dependency management, establish
development roadmap

11 Organization Multiple versions and branches in production use and need
to be maintained

Define branching conventions, instruct developers, migrate
older projects

12 Organization Too few know-how exchanges between Moqod and Apps
with love

Enforce regular exchange through periodic team meetings

13 Organization Old projects are hard to migrate to newer framework versions Establish versioned releases, set up regular project mainte-
nance schedules in SLAs

A
PPE

N
D

IX
C

.
FIG

U
R

E
S

A
N

D
TA

B
L

E
S

63

Table C.2: Quality attributes (high and medium priority) with subjective assessments, possible metrics and matching developer feedback.

Attribute Assessment Possible Metrics Matching Feedback

Repairability Fixes often involve working in multiple modules and
projects; it’s hard to figure out where a defect comes from
and which consequences a fix has.

Time to fix, Coverage, Coupling, #
Integration Tests, Warnings

2, 8, 10, 11, 13

Evolvability Needs to be improved; the framework is falling behind tech-
nologically because migrations need a lot of work.

Deprecated Usages, Stale Branches 2, 5, 7, 8, 10, 11, 13

Verifiability Automated tests are missing and integration with projects
can’t be tested easily.

Coverage, # Integration Tests 1, 2, 4, 8, 9, 10, 11, 13

Understandability Complex system and missing documentation means the sys-
tem is hard to understand.

Cyclomatic Complexity, Comment
Density, Linting Violations

3, 6, 7, 8, 9, 10, 11

Robustness Unexpected error states are often not handled. Objective-C
is less robust than Swift.

Crash Logs 1, 4, 7

Productivity Creators are more productive than newer developers, but
could be improved for all.

Time Spent 2, 3, 5, 6, 7, 9, 11

	1 Introduction
	1.1 Festival App Projects
	1.2 Framework
	1.3 Problem
	1.4 Overview

	2 Related Work
	2.1 Software Quality
	2.2 Legacy Software
	2.3 Software Refactoring
	2.4 Software Rewriting

	3 Quality Assessment
	3.1 Methodology
	3.1.1 Developer Interviews
	3.1.2 Static Analysis
	3.1.3 Dependencies and Usages

	3.2 Results
	3.2.1 Developer Interviews
	3.2.2 Static Analysis
	3.2.3 Dependencies and Usages

	3.3 Conclusion

	4 Software Refactoring
	4.1 Repository Branching
	4.2 Versioning
	4.3 Continuous Integration
	4.4 Build Status Feedback
	4.5 Test Coverage
	4.5.1 Focus
	4.5.2 Strategies

	4.6 Compiler Warnings
	4.7 Deprecated Code
	4.8 Code Refactoring
	4.9 Summary

	5 Software Rewriting
	5.1 Functionality
	5.2 Technology
	5.3 Architecture
	5.3.1 Data Updates
	5.3.2 Linking
	5.3.3 View Configuration

	5.4 Comparison
	5.5 Summary

	6 Conclusion and Future Work
	6.1 Recommendation
	6.2 Future Work

	A Anleitung zu wissenschaftlichen Arbeiten
	A.1 Linting
	A.1.1 Autocorrection

	A.2 Dependency Management
	A.3 Build Pipelines
	A.4 Continuous Integration
	A.5 Pipeline Feedback
	A.6 Static Analysis
	A.7 Continuous Delivery

	B Additional Data
	B.1 Dependency Visualization
	B.2 Change Frequency
	B.3 Swift Package Manager

	C Figures and Tables

