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Abstract

A previous study found that null pointer exceptions are the most frequently
occurring exceptions in Java projects. Also, it is difficult to debug because a
developer is only provided with a stack trace to the line of code where the
exception was thrown. This only gives insight into the effect of the fault but
not into its cause.

The aim of the project is to provide the developer with an additional
stack trace. It shows the location where the variable that caused the null
pointer exception was initially assigned to null. We attempt to achieve this
goal by instrumenting Java source code while striving for minimal execution
overhead.

By tracking the null assignments through static analysis and bytecode
instrumentation we can achieve a more efficient debugging process after an
occurrence of a null pointer exception.
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1
Introduction

Null pointer exceptions are a commonly occurring run-time exception in object-
oriented programming (OOP) languages. In most OOP languages there is a special null
value that is assigned to references in order to indicate that the reference does not refer to
an object. A null pointer exception is caused by invoking a method or accessing a field
through a null value reference, i.e., a reference with the null value.

Previous research has found that 35% of conditional checks in Java projects are
null checks. This reduces the readability of source code and has a negative impact
on performance [6]. It is also considered the number one error Java programmers
make1.

In order to understand the origin of null pointer exceptions we present two situations
in which they may occur.

Assume that in the example shown in Code 1.12 the variable ff at line 5
is assigned the null value as the result of assigning the return value of the method
DNDHelper.processReceivedData(...) to the variable. This means that
the same variable ff is null at line 7 and when a method is invoked on this object
a null pointer exception is thrown. Because the null pointer exception is raised in the

1http://www.webcitation.org/6lNPzbIyy
2The code snippet is a modified version of code taken from JHotDraw project: http://www.

jhotdraw.org/
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1 public void drop(...) {
2 ..
3 try {
4 ..
5 DNDFigures ff = DNDHelper.processReceivedData(...);
6 ..
7 Point theO = ff.getOrigin();
8 ..
9 }

10 catch (NullPointerException npe) {
11 npe.printStackTrace();
12 ..
13 }
14 ..
15 }

Code 1.1: Null pointer exception example (I). The null assignment happens in line 5 and
the null pointer exception is thrown in line 7.

try-block the following catch-block will handle the exception by printing the stack trace.
The stack trace takes the developer to line 7 where the exception was thrown but not to
the real culprit which is the assignment at line 5.

A more complicated way a null pointer exception can be triggered is when it in-
volves variables with larger scopes such as class members. Code 1.23 shows such a
situation. This code snippet defines the class named DrawApplication which
has the field fManager (declared at line 3). This class contains four relevant meth-
ods: open(...) , createIconkit() , getIconkitManager() and
setTool(...) .

The open(...) method invokes the methods createIconkit() at line
7 and setTool(...) at line 9. By calling createIconkit() at line 7
the field fManager is assigned null. The field is assigned null by performing the
method getIconkitManager() at line 14, which just returns the null value at
line 19.

Afterwards, when the method open(...) calls setTool() , the attempt to
call the method getComponent() on field fManager at line 24 causes the null
pointer exception. The resulting null pointer exception stack trace is shown in Stack
trace 1.1:

3The code snippet is a modified version of code taken from JHotDraw project: http://www.
jhotdraw.org/

http://www.jhotdraw.org/
http://www.jhotdraw.org/
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1 public class DrawApplication {
2 ..
3 private IconkitManager fManager;
4

5 protected void open(...) {
6 ..
7 createIconkit();
8 ..
9 setTool(...);

10 ..
11 }
12

13 protected Iconkit createIconkit() {
14 fManager = getIconkitManager();
15 ..
16 }
17

18 protected getIconkitManager() {
19 return null;
20 }
21

22 public void setTool(...) {
23 ..
24 fManager.getComponent();
25 ..
26 }
27 ..
28 }

Code 1.2: Null pointer exception example (II). The null assignment happens in line 14
and the null pointer exception is thrown in line 24.
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Exception in thread "main" java.lang.NullPointerException
at org.jhotdraw.application.DrawApplication.setTool(DrawApplication.java:24)
at org.jhotdraw.application.DrawApplication.open(DrawApplication.java:9)
...

Stack trace 1.1: Common stack trace of a null pointer exception.

In Stack trace 1.1 we can see that the stack trace points only to the line 24, where
null pointer exception occured, and it does not track to the location where the variable is
assigned the null value [7]. We call this location the root of an exception. The execution
stack holds basically no information about the cause of the exception [3]. That means
the Java developer has to debug their way to the exception root.

At this point we introduce our project named NullSpy which supports the developers
in situations discussed previously. The main goal of NullSpy is to take a step towards
minimizing the time spent debugging null pointer exceptions. NullSpy presents the
developer the exact location of the null assignment after an unhandled null pointer
exception has occurred. Stack trace 1.2 shows an example of the output.

Field this.fManager at line 14 is null: (DrawApplication.java: 14)
Exception in thread "main" java.lang.NullPointerException

at org.jhotdraw.application.DrawApplication.setTool(DrawApplication.java:24)
at org.jhotdraw.application.DrawApplication.open(DrawApplication.java:9)
...

Stack trace 1.2: Stack trace of a null pointer exception with NullSpy.

There are other tools which can help developers debug and find the root cause of
a bug. Most notably the Back-in-time debuggers [5]. The main differences between
NullSpy and Back-in-time debuggers are:

1. NullSpy targets a particular problem, namely the null pointer exception, while
back-in-time debugging is more general.

2. Back-in-time debugging might require the developer to step back many times
before finding the root of the exception while NullSpy finds it directly.

Another approach to which could help find the root cause of a null pointer exception
is the Object Flow Analysis i.e., tracking the object flow [4]. The main difference here to
NullSpy is that NullSpy tracks the null assignments instead of the object flow.

This thesis explains how NullSpy traces the root of a null pointer exception. It also
discusses the challenges, limitations and performance impact of this approach.



2
Technical Background

This chapter provides a short overview of technologies used in the implementation of
NullSpy.

2.1 Bytecode

The backbone of NullSpy is analysis and modification of Java bytecode. Java
bytecode is an abstract machine language that the stack-based Java virtual machine
(JVM) can understand and execute. A JVM keeps an operand stack which is modified
every time the JVM executes an instruction. The instruction is represented by an operation
code (opcode) which also has a string representation.

Since Java bytecode plays an important role in our project, a short introduction to the
basics follows. We will also explain some terms that are often used in this thesis.

We start with an easy HelloWorld source code example (Code 2.1). The code snippet
contains the definition of the class HelloWorld with an instance field named
hello and method say() which prints the value of the field. The bytecode of the

method say() is represented in Bytecode 2.2. We omit the bytecode of the class and
field definition since it is not relevant for our example.

The green words in Bytecode 2.2 are the string representations of Java bytecode

5
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1 public class HelloWorld {
2 private String hello = "Hello World!";
3

4 public void say() {
5 String result = hello;
6 System.out.println(result);
7 }
8 }

Code 2.1: The use of the Hello World example to explain bytecode.

1 public void say();
2 0 aload_0 [this]
3 1 getfield HelloWorld.hello : java.lang.String [14]
4 4 astore_1 [result]
5 5 getstatic java.lang.System.out : java.io.PrintStream [21]
6 8 aload_1 [result]
7 9 invokevirtual java.io.PrintStream.println(java.lang.String) :

void [27]
8 12 return
9 Line numbers:

10 [pc: 0, line: 5]
11 [pc: 5, line: 6]
12 [pc: 12, line: 7]
13 Local variable table:
14 [pc: 0, pc: 13] local: this index: 0 type: HelloWorld
15 [pc: 5, pc: 13] local: result index: 1 type: java.lang.

String

Bytecode 2.2: Bytecode from method say() in Code 2.1.
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instructions. We will also use the term opcode when referring to individual instructions.
Multiple opcode instructions are referred to as bytecode.

On the left-side of these instructions we see the program counter (pc) which is a
processor register that contains the address (location) of the instruction being executed at
the current time. It is also called an instruction pointer.

The instructions from pc 0 to pc 4 (lines 2-4 in Bytecode 2.2) represent the source
code at line 5 in Code 2.1. Therefore, we use the term pc-interval to describe a set of
instructions that represents a single Java expression. This term will play an important
role in later sections. We use the syntax “<x,y>” to represent an pc-interval, e.g., the
mentioned pc-interval <0,4> represents the source code at line 5 in Code 2.1. The first
number indicates where the pc-interval starts, thus we name it start-pc and the latter one
where it ends, hence the name end-pc, both inclusive.

If the opcode represents a variable, on its right side we can see the information about
the name and type of the variable as shown in line 3. In case of an invocation opcode, it
shows the behavior/method name, the parameter types and the return type as seen in line
7.

Each method bytecode representation holds a line number table and a local vari-
able table which are listed underneath the instructions of the method (lines 9-15 in
Bytecode 2.2).

The line number table maps the source code line of the method to the pc that indicates
the beginning of the bytecode to the corresponding source code line. The line number
table in Bytecode 2.2 is represented between the lines 9 and 12: source code line 5 starts
with the pc 0 (as shown on line 10), source code line 6 starts with the pc 5 (in line 11)
etc. This mapping does not apply to cases where a statement is separated into multiple
lines.

If we look back to the Stack trace 1.1, we see that the stack trace provides us with a
part of the call-chain that led to the null pointer exception. This includes the line numbers
in the source code where the invocations happened. The information the line number
table holds can be used to recover the information about the actual point in the code
where the null was assigned to a reference.

As mentioned before, the bytecode of each method also holds a local variable table
which is a list of information about local variables (lines 13-15 in Bytecode 2.2). This
table has the information about the this reference (if the method is an instance method or
a constructor), about method parameters and method local variables, respectively. An
example of the this reference representation can be seen in the line 14. Each line of this
table represents one variable and contains the following:
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1 private void loadDrawing(String filename) {
2 try {
3 URL url = new URL(getCodeBase(), filename);
4 InputStream stream = url.openStream();
5 StorableInput reader = new StorableInput(stream);
6 fDrawing = (Drawing)reader.readStorable();
7 }
8 catch (IOException e) {
9 fDrawing = createDrawing();

10 System.err.println("Error when Loading: " + e);
11 showStatus("Error when Loading: " + e);
12 }
13 }

Code 2.3: The source code for which the local variable table of its bytecode contains two
entries , url and e , that share the same slot.

1 private void loadDrawing(java.lang.String filename);
2 0 new java.net.URL [98]
3 ...
4 12 astore_2 [url]
5 ...
6 40 goto 94
7 ...
8 94 return
9 Local variable table:

10 [pc: 0, pc: 95] local: this index: 0 type: org.jhotdraw.samples.
javadraw.JavaDrawViewer

11 [pc: 0, pc: 95] local: filename index: 1 type: java.lang.String
12 [pc: 13, pc: 40] local: url index: 2 type: java.net.URL
13 [pc: 18, pc: 40] local: stream index: 3 type: java.io.InputStream
14 [pc: 28, pc: 40] local: reader index: 4 type: org.jhotdraw.util.

StorableInput
15 [pc: 44, pc: 94] local: e index: 2 type: java.io.IOException

Bytecode 2.4: Bytecode of Code 2.3.
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1. the pc-s which represent the lexical scope of the variable, i.e., the pc-s in between
the square brackets

2. the name of the variable

3. the index/slot at which the variable is stored (starting at index 0) and

4. the type of the variable.

In our example, this reference has the lexical scope of the whole method, thus pc
starts at 0 and ends with 13. This reference is the first one in the table, hence it is indexed
with 0, and its type is the HelloWorld class. The variable result has the lexical
scope [pc: 5, pc: 13] because it is created from pc 0 to pc 4 and is accessible after it is
created, so from pc 5 onwards until the method ends at pc 13.The indexes of the local
variable table are important because we use them to get the right local variable we are
interested in.

Let us now look at a more complicated example of the local variable ta-
ble. Consider the source code example Code 2.3 which contains a method
void loadDrawing(String filename) . The bytecode of this example is
shown in the Bytecode 2.4. This method consists of a try-catch-block. We see that the
variable url (declared at line 3 in Code 2.3, stored at line 4 in Bytecode 2.4 and
contained in the local variable table entry at line 12 within the same bytecode) is only
accessible within the try-block. The try-block starts with pc 0 and ends with pc 40 and
the variable url is accessible from pc 13 onwards until pc 40 ([pc: 13, pc: 40]), as it
can be seen in the local variable table in Bytecode 2.4.

The local variable url is stored at the index 2 in the local variable table in
Bytecode 2.4, since the first two indexes occupy this reference and the method parameter.
As soon as the lifespan of a local variable ends, the slot can be reused by the next
instantiated local variable. So, after pc 40, slot 2 is free again. The freed slot can be
immediately used by the next declared variable, which is the variable e in our example.
Looking at line 15 in Bytecode 2.4 we see that the variable e also has the slot number
2. This is why we can find local variable tables that contain multiple entries with the
same local variable slot.

2.2 Javassist

Javassist or Java Programming Assistant1 [1] [2], a subproject of JBoss, is a library
which enables manipulation of the Java bytecode. Since 1999 it is used as an engineering

1http://jboss-javassist.github.io/javassist/

http://jboss-javassist.github.io/javassist/
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1 ClassPool pool = ClassPool.getDefault();
2 CtClass cc = pool.get("test.Rectangle");
3 cc.setSuperclass(pool.get("test.Point"));
4 cc.writeFile();

Code 2.5: A code snippet that alternates the super class of a class by using the Javassist
library.

toolkit in a broad domain, and is still being extended by Shigeru Chiba. It enables devel-
opers to manipulate Java bytecode in a simplified way. Examples of this manipulation
include defining a new class at runtime or modifying a class file when it is loaded by the
JVM. All manipulations are performed at load-time through a provided class loader. A
tutorial for using Javassist2 is available online and was used as a starting point for this
work.

Unlike many other bytecode manipulation libraries, Javassist offers two levels of
API: source-level and bytecode-level. Using the source-level API, the user can edit a
class file without any familiarity with the specifications of the Java bytecode. Knowledge
of the Java language is enough since the API is designed only with the vocabulary of
Java. On this level the programmer has to write Java source code and Javassist compiles
it automatically. The bytecode-level allows the user modify classes by modifying the
bytecode directly.

Let us look at the small example shown in Code 2.53 of how the bytecode manipula-
tion with Javassist works. We go through the example line by line.

1. First a ClassPool object that controls bytecode modification is obtained. With the
ClassPool object a class file (“.class”) can be read on demand for constructing a
CtClass object.

2. The class CtClass (compile-time class) represents the class file. This means that
all manipulations are performed on the CtClass object. We obtain a reference to
the CtClass object representing the test.Rectangle class by invoking the
get() method on the ClassPool instance.

3. In this example the only bytecode modification done is changing the superclass of
test.Rectangle to test.Point . This change serves only as illustra-

tion.

4. Once the bytecode modification is done, the method call writeFile() on

2http://jboss-javassist.github.io/javassist/tutorial/tutorial.html
3Example taken from Javassist tutorial.

http://jboss-javassist.github.io/javassist/tutorial/tutorial.html
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1 public static void main(String[] args) {
2 System.out.println("This is an example class.");
3 }

Code 2.6: Initial code.

the instance of CtClass is necessary to make sure that the changes are reflected
on the original class file. The method writeFile() converts the modified
CtClass object into a class file and stores it on a local disk.

ClassPool
…
...

CtClass
…
…

CtField
…
…

CtConst
…
…CtMethod

…
+ catchEx
+ insertAfter
+ insertAt
+ insertBefore

* *

*
*

Figure 2.1: Javassist modules.

Figure 2.1 gives an overview of how the main part of bytecode manipulation with
Javassist is built up. The ClassPool is simply a container of multiple CtClasses. As
described before CtClass represents a class file on which modifications are done. Like
typical classes, it can hold compile-time fields, constants or methods. Javassist is capable
of adding or modifying classes, behaviors/methods, fields, method invocations, local
variables etc. But in our case we mainly address the manipulation of behaviors. It is
possible to insert additional source code at the beginning of a method body, at the end or
at a specific line.

The next example (Code 2.8) shows how to add code by using Javassist. We want to
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1 public static void main(java.lang.String[]);
2 0: getstatic #16 // Field java/lang/System.out:Ljava/io/

PrintStream;
3 3: ldc #22 // String This is an example class.
4 5: invokevirtual #24 // Method java/io/PrintStream.println:(Ljava/

lang/String;)V
5 8: return

Bytecode 2.7: Initial bytecode.

1 public class BytecodeModifier {
2 public static void main(String[] args) ... {
3 ClassPool pool = ClassPool.getDefault();
4 CtClass cc = pool.get("insertJavaCodeExample.ExampleClass");
5

6 CtBehavior behavior = cc.getDeclaredMethod("main");
7 behavior.insertBefore("System.out.println(\"This is the

inserted code.\");");
8

9 cc.writeFile();
10 ...
11 }
12 }

Code 2.8: Bytecode modifier.

add one line of code at the beginning of the main() method in Code 2.6. Bytecode 2.7
is the corresponding bytecode of Code 2.6.

We first obtain a CtClass object cc (Code 2.8 line 4) which rep-
resents the class to be modified. At line 6 we get the CtMethod object
behavior which represents the method we want to modify (in our case,
method main() ). We modify the method by adding the source code
System.out.println(“This is the inserted code.”); at the be-

ginning of the method. Because we want to insert code at the beginning of the method we
invoke the method insertBefore() at line 7. If we wanted to enter extra code at
the end of the method we could have called the analogue method insertAfter() .
Both methods insertBefore() and insertAfter() expect an argument of
type String, which Javassist then compiles, and adds into the bytecode at the specified
location (in our situation at the beginning of the main() method).

If the modified bytecode (Bytecode 2.9) were to be decompiled, its source code
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1 public static void main(java.lang.String[]);
2 0: getstatic #16 // Field java/lang/System.out:Ljava/io/

PrintStream;
3 3: ldc #35 // String This is the inserted code.
4 5: invokevirtual #24 // Method java/io/PrintStream.println:(Ljava/

lang/String;)V
5 8: getstatic #16 // Field java/lang/System.out:Ljava/io/

PrintStream;
6 11: ldc #22 // String This is an example class.
7 13: invokevirtual #24 // Method java/io/PrintStream.println:(Ljava/

lang/String;)V
8 16: return

Bytecode 2.9: Modified bytecode. The modification is visible from line 2 to 4.

1 public static void main(String args[]) {
2 System.out.println("This is the inserted code.");
3 System.out.println("This is an example class.");
4 }

Code 2.10: Modified code: Decompiled with JAD (Section 2.3)

representation would be as Code 2.10. At line 2 of this code, we can see the changes, i.e.,
the inserted line of code. However, the actual result is the inserted bytecode represented
by the pc-interval <0,5> in the modified bytecode (Bytecode 2.9).

2.3 JAD

Java Decompier (JAD)4 is a decompiler and an Eclipse plugin for the Java program-
ming language. A decompiler is a program that takes an executable file as input, and
attempts to create a high level, compatible source file. If the source file is compiled again,
it will produce an executable program that behaves the same way as the original one. It
is often used for software reverse engineering.

As a JAD illustration we decompile the bytecode shown in Bytecode 2.7 of the
source code example Code 2.6 and indicate the differences between the decompiled and
the original version of the source code. The result of the decompilation is shown in
Code 2.11.

4https://sourceforge.net/projects/jadclipse/

https://sourceforge.net/projects/jadclipse/


CHAPTER 2. TECHNICAL BACKGROUND 14

1 import java.io.PrintStream;
2

3 public class HelloWorld {
4

5 public HelloWorld() { }
6

7 public static void main(String args[]) {
8 System.out.println("This is an example class.");
9 }

10 }

Code 2.11: The result of the decompiled bytecode shown in Bytecode 2.7.

JAD imported the class java.io.PrintStream at line 1 and generated a
default constructor at line 5. As already mentioned, we see that the decompiled version
of the class HelloWorld behaves the same way as the original version, even the
decompiled source code does not look identically as the original one.

JAD is in no way a dependency of NullSpy but it was a big help during the implemen-
tation phase. After running NullSpy on a project only the modified bytecode is available.
Thus, JAD was used to check whether the modification NullSpy made with Javassist was
successful. Without JAD one would have to manually look through and compare the
resulting byte code. This would have required a lot more effort and time.



3
NullSpy: The Null Pointer Tracking Tool

This project is about providing the user with an additional piece of information next
to the common stack trace containing the location of a null assignment to the variable
that caused the null pointer exception. We use the term link to describe the additional
stack trace line which points to the source code line where the variable that caused the
null pointer exception was assigned null.

In this chapter we give an overview of how we implemented NullSpy. We will also
address the challenges (Section 3.3) we encountered during the implementation, as well
as the limitations of NullSpy (Section 3.4).

3.1 High Level Overview

The general approach of NullSpy is to statically analyze a project in which a null
pointer exception occurs and instrument the bytecode. NullSpy statically analyzes the
project to extract data from bytecode about variables, i.e., the name of the variable, the
source code line number where it is located etc. We instrument the code to get the value
stored in those variables at run time.

NullSpy is a console application that takes two arguments. The first argument to
NullSpy is the local path to the folder containing the compiled class files of the original

15
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project and the second one is the path to the folder in which the user wants to store the
modified class files.

We provide the option to choose the destination in case the developer does not want
to overwrite the original project with the modified one. This means that the updated
bytecode can be stored in another location, keeping the original class files intact. Of
course, the original project can also be replaced by the modified one. To remove the
instrumented bytecode, the developer just has to recompile the source code and get the
original class files when needed.

Figure 3.1: High level overview.

NullSpy contains three basic steps which we can see in Figure 3.1: load, modify,
store. Those three steps of NullSpy carry out the following actions:

1. Load compiled class files of the project into NullSpy.

2. The modification part deals with the bytecode instrumentation and adding modules
to the project that support the inserted code.

3. Store modified class files to the chosen output folder.

Loading is done by traversing through all the subfolders of the folder whose local
path was given as a first parameter, and extracting all the .class files. NullSpy modifies
the class file directly when it is loaded. As soon as the modification is done, the class file
is stored at the destination folder i.e., the folder whose path is the second parameter of
NullSpy. The structure of the source folder is preserved at the destination folder.
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3.2 Low Level Overview

In this section we will focus on the bytecode modification. Figure 3.2 shows that
the modification part of NullSpy contains three different modules. Each class file of the
loaded project will be run through the first two modules. After the instrumentation process
(module one and two) is done, we add the last module to the modified project.

The module “Bytecode data extractor” extracts data from bytecode. The second
module “Instrumentation” inserts bytecode into the original code. Lastly, the module

“Run-time supporter” adds the package that implements the functionality to which the
previously inserted bytecode refers to.

Figure 3.2: NullSpy modification modules.

We will look at these modules in more detail.

3.2.1 NullSpy Process Overview

In this overview of the entire process we explain the reason why we have to extract
data from bytecode and what it is used for. Details are discussed in the following
subsections.

From the stack trace of a null pointer exception, we can obtain three kinds of
information: the class name, method name and the line number of where the null
pointer exception happened. The aim of NullSpy is to reveal the location of the null
assignment to the variable which caused the null pointer exception. To achieve this
goal we need to extract information from the bytecode about target variables and null
assignments.
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The first step in the modification part is to statically gather information about the
target variables and the variable assignments. We use the term target variable to refer to
variables on which methods are invoked, or whose fields are accessed. These variables
are candidates for triggering a null pointer exception. For each target variable we extract
the information needed to create its unique identifier (details about this are explained
in Subsection 3.2.2). These identifiers are used later on to track the assignments to the
aforementioned variable, and to find the null assignment entry for this variable, if any.
For every non-primitive variable assignment we also perform static analysis to collect
information about the variable. The information again is needed to create its unique
identifier.

The second step is to instrument the assignments. After the assignment we insert
code which represents a call to the run-time supporter package with the variable’s
identifier. The run-time supporter package checks at run-time whether the variable is
assigned null. If this is the case we store the information about this variable.

At the end of the bytecode modification part we wrap the main() method into
a try-catch-block. The catch-block extracts from the null pointer exception stack trace
the information about the location where the exception happened (class name, method
name, line number). This is the only information we can get from the stack trace. This
information is passed on to the run-time supporter package which compares it with
the stored identifiers about the target variables. If there is a match, NullSpy uses this
identifier to reveal the information stored about the assignments to this variable. If
there is an entry about the null assignment of that variable, we extract from it the line
number of the assignment and create the additional link that reveals the location of the
null assignment. This link is then added to the common null pointer exception stack
trace.

The following sections describe the process of extracting and storing this data.

3.2.2 Target Variable Data Collection

In this section we explain how to get information about the target variable needed
to construct a unique identifier. Target variables in the example Code 3.1 are the
variables fToolButton at line 7, fToolButton.myIcon at line 8 and
activePanel at line 11.

We use the library Javassist to partially extract this data from bytecode. Unfortunately,
Javassist does not provide the functionality to directly get all the information we need
about the target variable, thus we need to do it manually.



CHAPTER 3. NULLSPY: THE NULL POINTER TRACKING TOOL 19

1 public class DrawApplication {
2

3 private ToolButton fToolButton;
4

5 protected void open(final DrawingView newDrawingView) {
6 ...
7 fToolButton.tool(); // field access
8 fToolButton.myIcon.toString(); // field access
9

10 JPanel activePanel = new JPanel();
11 activePanel.add((Component)getDesktop(),BorderLayout.CENTER);

// local variable as a target variable
12 ...
13 }
14 }

Code 3.1: Code snippet to demonstrate the target variable extracting algorithm.

1 144 aload_3 [activePanel]
2 145 aload_0 [this]
3 146 invokevirtual org.jhotdraw.application.DrawApplication.

getDesktop() : org.jhotdraw.contrib.Desktop [271]
4 149 checkcast java.awt.Component [274]
5 152 ldc_w <String "Center"> [276]
6 155 invokevirtual javax.swing.JPanel.add(java.awt.Component, java.

lang.Object) : void [254]

Bytecode 3.2: Bytecode of line 11 from Code 3.1.
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Line numbers:
...
[pc: 136, line: 10]
[pc: 144, line: 11]
[pc: 158, line: 12]
...

Bytecode 3.3: Part of the line number table of the example bytecode shown in
Bytecode 3.2.

3.2.2.1 Finding the Invocation Opcode/End-pc

Let us suppose that we are interested in the target variable activePanel of the
method invocation add(...) at line 11 in the example Code 3.1. Its bytecode is
presented in Bytecode 3.2.

To get data about target variables we iterate through the bytecode looking for the
instructions that represent a method invocation. To do this, NullSpy looks for the opcodes
that match the regex “invoke.*”. Each of these opcodes represents one method invoca-
tion. There are four invocation bytecode instructions in Java bytecode: invokeinterface,
invokespecial, invokestatic, invokevirtual.

For each invocation we want to find the target variable. In our example the bytecode
instruction that matches the invocation of the method add(...) is at line 6 in
Bytecode 3.2. Since the bytecode lists the target variable and all the method parameters
before the “invoke.*" instruction, the pc of this “invoke.*” opcode will represent the
end-pc of the method invocation pc-interval. In our example, the end-pc of the method
invocation add(...) is 155.

3.2.2.2 Finding the Start-pc

The start-pc of the method invocation pc-interval is the pc at which the bytecode
representing the source code line containing the invocation begins. The start-pc is found
by using the line number table of the method. We compare the end-pc with the entries of
the line number table and take the last entry that has a smaller pc than the end-pc. The
line number table of the example bytecode is shown in Bytecode 3.3. The start-pc in
our example is 144.

We define the outermost pc-interval as the interval starting with the start-pc and
ending with the end-pc. We know that the target variable is located in this interval. In
our example, this is <144,155>.
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3.2.2.3 Extracting Candidate Target Variable Pc-intervals

The outermost pc-interval <144,155> could contain other invocations, which
could have target variables of their own. This is visible in our example, where the
getDesktop() invocation (pc 146) is embedded in our outermost pc-interval. For
this reason, we explored all possible bytecode combinations of instructions that can
represent target variables and developed a system for identifying such embedded call
sites. More about this system can be found in the Appendix (B.1). This system allows
us to split the outermost pc-interval into candidate target variable pc-intervals. In our
example, the outermost pc-interval is divided into {<144,144>,<145,149>,<152,152>}.
The candidate pc-intervals represent:

1. <144,144>: variable activePanel

2. <145,149>: first parameter (Component) getDesktop()

3. <152,152>: second parameter BorderLayout.CENTER

3.2.2.4 Finding the Actual Target Variable

The set of candidate pc-intervals ends with the arguments of the method. Javassist
allows us to obtain the number of parameters of a method invocation by analyzing the
method signature. Thus, if the method expects N arguments, we can ignore the last N
candidate pc-intervals. The one before them is the actual target variable pc-interval. In
our example, since the method takes two arguments, the actual target variable pc-interval
is <144,144>.

If the target variable is actually the return value from another method invocation, it is
not apparent where exactly the target variable is situated in bytecode. More about the
challenges we encountered and why we cannot directly assume that the first target variable
candidate is the one we are actually looking for can be found in Subsection 3.3.1.

In case of the simple stand-alone invokestatic instruction we do have a target variable
but NullSpy ignores these instructions because static method invocations are called on
classes which can never be null. But if the static method call is a parameter of another
method call, NullSpy still treats it as a target variable candidate. As for the other invoke
instructions, they are treated normally as explained.

With the target variable pc-interval we extract the information needed to create a
unique target variable identifier from the bytecode by using Javassist API. We get the
index of the target variable by using Javassist (in our example the index is 3), and with
this index and pc information of the target variable, we can obtain the needed information
from the local variable table shown in Bytecode 3.4.
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Local variable table:
...
[pc: 100, pc: 340] local: activePanel index: 3 type: javax.swing.

JPanel
...

Bytecode 3.4: Part of the local variable table of the example bytecode shown in
Bytecode 3.2.

The following shows a part of the extracted information needed to create the unique
identifier for a target variable:

• source code line number of the target variable

• name of the class and signature of the method containing the method invocation

• full variable name

• statically declared variable type

The exact information we need can be found in the Appendix B.2.

3.2.3 Assignments Collection

To find the assignments in the bytecode we search for the instructions matching
regexes “astore.*” and “put.*”. The former refers to local variable assignments and the
latter to field assignments.

In the next two subsections we will look at how the information about the assigned
variables is extracted. Due to different variable types and the limitation of Javassist,
the ways of gathering information about the local variables and fields are performed
differently.

3.2.3.1 Local Variable

Unfortunately, Javassist does not provide any support for gaining information about
local variables, thus we needed to do it manually.

Every time we encounter the opcode “astore.*” (which represents an assignment to
a local variable) we get the index of the variable and the pc of the assignment instruction.
A local variable has a scope. As we have already seen in Section 2.1, multiple entries
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1 Local variable table:
2 [pc: 0, pc: 95] local: this index: 0 type: org.jhotdraw.samples.

javadraw.JavaDrawViewer
3 [pc: 0, pc: 95] local: filename index: 1 type: java.lang.String
4 [pc: 13, pc: 40] local: url index: 2 type: java.net.URL
5 [pc: 18, pc: 40] local: stream index: 3 type: java.io.InputStream
6 [pc: 28, pc: 40] local: reader index: 4 type: org.jhotdraw.util.

StorableInput
7 [pc: 44, pc: 94] local: newTool index: 2 type:

org.jhotdraw.framework.Tool

Bytecode 3.5: Local variable table entries with same slot 2 (lines 4 and 7).

1 Local variable table:
2 ...
3 37 aload_0 [this]
4 38 invokevirtual org.jhotdraw.samples.javadraw.JavaDrawViewer.

getCodeBase() : java.net.URL [100]
5 41 aload_1 [filename]
6 42 invokespecial java.net.URL(java.net.URL, java.lang.String)

[104]
7 45 astore_2 [url]
8 ...

Bytecode 3.6: Local variable assignment at pc 45.

can have the same local variable slot (one variable takes the index of the other whose
lifespan has expired).

We solve the problem of reused slots by looking at the lifespan in the variable table.
Let us assume that we have a local variable assignment where its “astore_2” opcode is
located at pc 45 (Bytecode 3.6). In this example we can extract slot 2 from the opcode
astore_2. After extracting the slot (index: 2) we iterate through the local variable table
and find the first entry that contains that slot (line 4 in Bytecode 3.5). If the pc of the
assignment is not included in the local variable lifespan of the entry (pc 45 /∈ [pc: 13,
pc: 40], line 4), the next entry with the same slot (pc 45 ∈ [pc: 44, pc: 94], line 7) will
be examined. Checking the entries with the same slot goes on until both the slot and
pc criteria fit. Once those criteria are met we can be positive about having the right
local variable table entry. We now extract from local variable table the information we
need to create a unique identifier for a variable. The unique identifiers are used for the
comparisons explained in Subsection 3.2.1. A part of the extracted information is listed
below:
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1 Line numbers:
2 [pc: 0, line: 58]
3 [pc: 13, line: 59]
4 [pc: 18, line: 60]
5 [pc: 28, line: 61]
6 [pc: 40, line: 62]
7 [pc: 43, line: 63]
8 [pc: 44, line: 64]
9 [pc: 52, line: 65]

10 [pc: 74, line: 66]
11 [pc: 94, line: 68]

Bytecode 3.7: Line number table.

• source code line number of the assignment

• name of the class and method signature containing the local variable

• local variable name

• statically declared local variable type

The exact list of the information we extract can be found in the Appendix B.3.

Using the pc of the assignment (45) and line number table (shown in Bytecode 3.7)
we obtain the source code line number of the assignment. As we can see in the line
number table, the local variable assignment starts at source code line 64.

3.2.3.2 Instance and Class/Static Variable (Field)

Although Javassist does not support the access to information about lo-
cal variables it provides a way to access information about fields. Javas-
sist allows us to modify an expression in a method body by using the class
Javassist.expt.ExprEditor . It scans the bytecode for instructions like “put-

field” for instance fields or “putstatic” for static fields, and allows us to directly get the
information we need to create a unique identifier for the field. Next we list a part of the
information we are interested in:

• source code line number of the assignment

• name of the class and method signature containing the field assignment

• full field name

• statically declared field type
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The full list of the information we extract can be found in the Appendix B.4.

During the data collection of the fields we encountered some difficulties which we
will discuss in Subsection 3.3.2.

As already mentioned earlier, every time it encounters an assignment either to a local
variable or a field, NullSpy inserts bytecode that checks at run time whether the variable
is assigned null. If the variable is assigned null, NullSpy stores all the data about the
variable.

3.2.4 Bytecode Adaptation

Each time we encounter a variable assignment we first extract the data about the
variable and then we add our own bytecode right after the assignment bytecode. The
inserted bytecode checks at run time whether the value being assigned to the variable
is null. If this is the case, we store the previously explained information about this
assignment. The explanation of the way we do it can be found in the Appendix B.5.

Once we have gone through the bytecode of all the class files, the modified class
files are stored in the destination directory as mentioned in Section 3.1. After the
instrumentation we add our supplementary supporter classes to the project. The most
important ones are VariableTester 1 which tests whether a variable is null and
NullDisplayer 1 which matches data and prints the location of a null assignment

when a null pointer exception is thrown.

3.3 Challenges

In this section we present some of the difficulties we encountered during the imple-
mentation of NullSpy.

3.3.1 Obtaining Target Variable Data Difficulties

In Subsection 3.2.2 we have explained how to extract the information about target
variable when the whole method invocation is contained within one line of code. However,
we have encountered a persistent problem, namely getting the pc-interval of the target
variable when the method invocation is split throughout multiple lines of code, thus when
method invocation pc-interval covers multiple lines in source code.

1In package ch.scg.nullSpy.runtimeSupporter
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31 Image image = Iconkit.instance().registerAndLoadImage(
32 (Component)view, imageName);

Code 3.8: Method invocation split in two lines example.

1 Line number table:
2 [pc: 0, line: 31]
3 [pc: 3, line: 32]
4 [pc: 11, line: 31]
5 ...

Bytecode 3.9: Line number table of Code 3.8.

In order to understand the difficulties in situations where method invoca-
tions are split into multiple lines, we look at three different examples. In the
first example shown in Code 3.8, we are interested in the method invocation
registerAndLoadImage(...) . The invocation starts at line 31 and ends at

line 32. The second line only contains the arguments of the method call. These situations
cannot be resolved by just looking at the bytecode, therefore the line number table
(Bytecode 3.9) has to be consulted.

Please note that there is no target variable (in the terms we defined it) in Code 3.8
because the target variable would be a method invocation itself. NullSpy does not support
target variables which are return objects of method invocations. Enabling the coverage
of such situations is a part of the future work. Other target variables NullSpy does
not support are elements of collections since a collection can hold other collections,
etc.

The line number 31 is listed twice in the line number table (Bytecode 3.9). This
indicates that the method invocation is split into multiple lines in source code.

The line number table entries in Bytecode 3.9 indicate the followings:

• line 2: execution of the static method invocation Iconkit.instance()

• line 3: starting point where the parameters are loaded onto the operand stack

• line 4: execution of the method registerAndLoadImage(...)

To obtain the method invocation pc-interval we had to perform further analyses. By
using the algorithm described in Subsection 3.2.2 we would get <0,0> as the method
invocation pc-interval, which is incorrect. The correct method invocation pc-interval in
this example is <0,11>.
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127 Connector oldConnector = ((ChangeConnectionHandle.UndoActivity)
128 getUndoActivity()).getOldConnector();

Code 3.10: Alternating line number example.

1 Line number table:
2 ...
3 [pc: 47, line: 128]
4 [pc: 51, line: 127]
5 [pc: 54, line: 128]
6 [pc: 57, line: 127]
7 ...

Bytecode 3.11: Line number table/interval to Code 3.10.

A more complicated situation such as the one shown in the example Code 3.10 can
arise. In this example the method invocation is situated in the second line unlike the
invocation in the previous example. This is interesting because line numbers 127 and
128 are stored in an alternating way in the line number table shown in Bytecode 3.11.
The line number table indicates the followings:

• line 3: the method invocation getUndoActivity()

• line 4: the cast to ChangeConnectionsHandle.UndoActivity

• line 5: the second method invocation getOldConnector()

• line 6: the assignment to the variable oldConnector

First, the method invocation getUndoActivity() at line 128 is ex-
ecuted and then the execution jumps back to line 127 to perform the cast to
ChangeConnectionsHandle.UndoActivity . After the cast, again execution

jumps to line 128 where the method getOldConnector() is invoked.

With the default analyses we would obtain <47,48> as the invocation pc-interval,
whereas the correct one is <47,54>. Another interesting thing is that the start-pc of the
invocation is mapped to line 128. So the invocation does not start with the smaller line
number, i.e., line 127 what normally would be expected.

The third situation we encountered is presented in the example (Code 3.12). In the
line number table, there are several pairs of entries corresponding to the same source
code line number (line number table shown in Bytecode 3.13), i.e., lines 3 and 12 both
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149 for (int i = 0; i < ColorMap.size(); i++)
150 choice.addItem(
151 new ChangeAttributeCommand(
152 ColorMap.name(i),
153 attribute,
154 ColorMap.color(i),
155 this
156 )
157 );

Code 3.12: Nested interval example.

1 Line number table:
2 ...
3 [pc: 8, line: 149]
4 [pc: 13, line: 150]
5 [pc: 14, line: 151]
6 [pc: 18, line: 152]
7 [pc: 22, line: 153]
8 [pc: 23, line: 154]
9 [pc: 27, line: 155]

10 [pc: 28, line: 151]
11 [pc: 31, line: 150]
12 [pc: 34, line: 149]
13 ...

Code 3.13: Line number table/interval to Code 3.12.
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correspond to the source code line 149, lines 4 and 11 both correspond to the source code
line number 150 and lines 5 and 10 both correspond to the source code line 151. The
first line of these pairs indicates the start-pc of an expression and the latter represents the
end-pc of the expression. Again, we examine the line number table:

1. line 3: start-pc of the for-loop

2. line 4: start-pc of the method invocation addItem(...)

3. line 5: new ChangeAttributeCommand(...) start-pc
which is actually argument loading onto the stack

4. line 6-8: argument loading onto the operand stack

5. line 9-10: object creation new ChangeAttributeCommand(...)

6. line 11: call to addItem(...)

7. line 12: for-loop incrementation

By using the algorithm of extracting the pc-interval of a target variable (described
in Subsection 3.2.2) we would again get the wrong outermost pc-interval of the
method invocation. To handle this mistake we implemented a supporting class called
MultipleLineManager 2. Its responsibility is to extract the outermost pc-interval
of invocations in split line situations. For complexity reasons we only explain the key
idea behind this system. For each invocation we look for the end-pc. With that we go
back and forth through the line number table of the method including the invocation
and check whether there is another entry with the same source code line number as the
end-pc. In examples like the one shown in Code 3.10 we also have to pay attention that
the end- and start-pc of the outermost pc-interval do not have to match the same source
code line number.

Another difficulty with the invocations split into multiple lines is that even with the
system of getting the outermost pc-interval we sometimes still get a smaller one than the
one representing the invocation. This happens because we cannot get more information
out of the line number table. For this reason we have to take the number of arguments
the invocation expects for help complete the outermost pc-interval.

3.3.2 Obtaining Assignment Data Difficulties - Fields

We mentioned that NullSpy collects data about fields with help of the
class Javassist.expt.ExprEditor . This class uses the method

2In package ch.unibe.scg.nullSpy.instrumentator.controller.methodInvocation.
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loopBody(...) to iterate through bytecode of a method and scans for specific
opcodes, in our place we are only interested in the opcodes which matches the regex

“put.*”. One parameter passed to the method loopBody(...) is the mehodInfo
object which contains the bytecode of the method we want to instrument.

Since the loopBody(...) is invoked within a while-loop , it iterates
through the given methodInfo until it reaches the end of the bytecode sequence.
When it goes through the bytecode sequence we instrument the bytecode. But because
the changes made on the bytecode is updated after the while-loop , the method
loopBody(...) still finds the specific opcodes at locations within the origin byte-

code sequence instead of the modified one.

Due to this situation we had difficulties finding the right start-pc of field assignments.
The class FieldAnalyzer 3 serves as the explanation of how we still managed to
find the start-pc of a field assignment.

3.3.3 Bytecode Adaptation Difficulties

The reason we decided to use Javassist for NullSpy was that it allows us to instrument
code using the source-code-level API.

One big problem we encountered was inserting code when a variable assignment
is the last line of code before a closing curly bracket. We tried to insert the code by
specifying the exact line number that we want to instrument, i.e., the line after the
assignment. Unfortunately Javassist first checks whether the specified line contains
some code (standalone symbols and Java keywords excluded). If there is no code at the
specified line, Javassist computes the next line containing a code and inserts our code
right before that line.

Let us look at an example where the local variable var is assigned a value at the
end of the if-block at line 3 in Code 3.14. We want to insert the assignment checking
code for assignment check just after, at line 4. Since line 4 does not contain any source
code, except the closing curly bracket, Javassist adds the code right before the next line
which contains the code, which, in this case, is the beginning of the else-body , line
5 in Code 3.15). So our added code which serves to check the value of the local variable
var at run time is added at the wrong place.

Due to this problem we needed to work on the bytecode-level. How we build the
bytecode sequence insert is explained in Appendix B.5.

3In package ch.unibe.scg.nullSpy.instrumentator.controller.
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1 Object var;
2 if (...) {
3 var = ...;
4 // We want to insert code before this line.
5 } else {
6 var = ...;
7 }

Code 3.14: Bytecode adaptation example.

1 Object var;
2 if (...) {
3 var = ...;
4 } else {
5 // We accidentally inserted code here.
6 var = ...;
7 }

Code 3.15: Wrong Adaptation to Code 3.14.

3.4 Limitations

During the implementation of NullSpy we had to change the concept a few times
due to limitations of Javassist or too much computational overhead resulting in serious
performance degradation.

NullSpy is not capable of tracking null assignment in three circumstances: if the
culprit of a null pointer exception is caused by

• an element of a collection and

• an object that is a return value of a method invocation and

• when the null pointer exception is triggered in a multithreaded environment.

In situations where an element of a collection causes a null pointer exception, we did
not develop a way to refer to that element. We have a rough idea of how to store this
information, but it would involve effort that is beyond the scope of this thesis. Hence, we
cannot identify collection elements.

To be able to track null assignment of target variables we have to statically analyze
bytecode and obtain information about that variable. We are not able to statically extract
information about an object that is the return value of a method call. For this issue we



CHAPTER 3. NULLSPY: THE NULL POINTER TRACKING TOOL 32

also have a rough idea of how to deal with it. But again, the effort required would be
beyond the scope of this thesis.

Another situation NullSpy does not support yet is when a null pointer exception is
triggered in another thread than the one including the main() method, the null pointer
exception cannot go up the call hierarchy until the main() method since each thread
has its own stack. Because the null pointer exception does not reach the main()

method our inserted catch-block of the main() method cannot be reached. Thus
the null pointer exception cannot handled by NullSpy. The usage of multiple threads is
another problem that is not handled in the scope of this work.



4
Validation

We have evaluated NullSpy on the JHotDraw project. We compared the time it takes
to execute both original and the instrumented version of the project.

4.1 JHotDraw

JHotDraw1 is an open-source Java GUI framework for technical and structured
Graphics. It was used to check whether the logic of the bytecode manipulation behind
NullSpy is working as desired. It is big enough to get reliable numbers and it provides
many varied and complex examples for testing NullSpy’s utility.

4.2 Execution Time Difference

JHotDraw already provides an Ant buildfile build.xml that packs the project into an
executable jar file. We modified the buildfile so that it also creates a jar file out of the
class files instrumented by NullSpy. The steps to create an executable jar of the modified
project are followings: load the project, modify the project, store the modified project,

1http://www.jhotdraw.org/

33

http://www.jhotdraw.org/


CHAPTER 4. VALIDATION 34

create a jar file of the original project and one of the modified one. We then run the
tests included in each jar file thirty times, recording the execution time. At the end we
calculate the average time for the original and the modified project. The execution times
are listed in Table 4.1 and the average times are shown in Table 4.2.

Original project Modified project
1 7.223 7.442
2 7.427 7.738
3 7.171 7.893
4 7.035 7.379
5 7.488 7.458
6 7.194 7.691
7 6.849 7.472
8 7.286 8.068
9 7.083 7.519
10 7.27 7.55
11 7.16 7.177
12 7.161 7.55
13 7.225 7.223
14 7.037 7.316
15 7.067 7.54
16 6.975 7.77
17 7.287 7.117
18 7.52 7.488
19 7.303 7.35
20 6.942 7.307
21 7.147 7.535
22 7.222 7.644
23 7.145 7.32
24 7.334 8.187
25 7.364 7.488
26 7.269 7.942
27 7.441 7.943
28 7.223 7.467
29 6.912 7.647
30 7.363 7.784

Table 4.1: Execution time.
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Original project Modified project
7.2041 7.566 834

Table 4.2: Average time.

The run time of the modified project takes rounded 0.363s longer than the original one.
Thus after instrumenting the code, the project results in approximately 5% performance
overhead. We claim this overhead is acceptable for the advantages NullSpy offers.

4.3 NullSpy Demonstration

We want to demonstrate how NullSpy helps the user find the real culprit that leads to
a null pointer exception. The relevant example used for the demonstration is shown in
Code 4.1.

The main() method at line 6 invokes three methods ( makeReader() ,
readNumbers() , closeReader ) and prints out the field numbers . In the
makeReader() method it tries to read a file named “file.txt”. If the example does

not find that file, it will execute the catch-block and assign null to the field reader at
line 18.

The call to readNumbers() at line 8 is not important for our demonstration
since the null pointer exception triggered at line 27 is handled by the catch statement at
line 31. NullSpy presents the developer the exact location of the null assignment only for
an unhandled null pointer exception. That is why we skip it in our analysis.

The null pointer exception is triggered when the method closeReader() is
called. There is an attempt at line 39 to close the reader. But because the field reader
is null, the method call close() causes a null pointer exception. Since only the
IOException is caught with the catch-block, the null pointer exception goes up the
call hierarchy until the main() method. As discussed in Subsection 3.2.1, in the
catch-block of main() we extract information from the null pointer exception stack
trace, multiple comparisons are performed and finally the link to the null assignment
and the common null pointer exception stack trace are displayed. The resulting stack
trace is presented in Stack trace 4.1. Hence, we can see how the origin of the null
pointer exception can be indicated by NullSpy even when it is far away from the actual
occurrence of the null pointer exception.
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1 public class Ideone {
2

3 public static List<Integer> numbers;
4 public static BufferedReader reader;
5

6 public static void main(String[] args) {
7 makeReader();
8 readNumbers();
9 closeReader();

10 System.out.println(numbers);
11 }
12

13 // Buggy, reader should not be null if there is no file to read
14 private static void makeReader() {
15 try {
16 reader = new BufferedReader(new FileReader(new File("file

.txt")));
17 } catch (FileNotFoundException e) {
18 reader = null;
19 }
20 }
21

22 // Not really important.
23 private static List<Integer> readNumbers() {
24 try {
25 List<Integer> numbers = new ArrayList<Integer>();
26 String text = null;
27 while ((text = reader.readLine()) != null) {
28 numbers.add(Integer.parseInt(text));
29 }
30 return numbers;
31 } catch (Exception e) {
32 return new ArrayList<Integer>();
33 }
34 }
35

36 // NPE triggered here!
37 private static void closeReader() {
38 try {
39 reader.close();
40 } catch (IOException e) {
41 e.printStackTrace();
42 }
43 }
44 }

Code 4.1: NullSpy demonstration example.
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Field this.reader at line 18 is null: (Ideone.java: 18)
Exception in thread "main" java.lang.NullPointerException

at Ideone.closeReader(Ideone.java:39)
at Ideone.main(Ideone.java:9)

Stack trace 4.1: Stack trace of the demonstration example Code 4.1.



5
Conclusion and Future Work

In this chapter we reflect on the implementation process and the results of the project.
We summarize what goals we have achieved so far and propose further work.

5.1 Conclusion

In short, we successfully managed to meet the main goal we have set at the beginning
of the project. NullSpy is now capable of tracking a null pointer exception to its root and
provide the user with more information about its origin without a significant overhead.
The most important steps that lead to the success of NullSpy are listed below:

1. Extracting the information about target variables was crucial, because they are the
candidates for causing null pointer exceptions. To achieve this, we developed an
algorithm which finds the target variable, statically extracts the needed information
about the target variable to create its unique identifier and stores the details.

2. Collecting data about variable assignments: local variables and fields. For this
purpose we statically analyze and instrument the bytecode. We use Javassist
to scan bytecode for instructions that represent variable assignments (regexes:

“astore.*” and “put.*”). We extract information about those assignments and pass
the collected information to the code we insert after each variable assignment.
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During run time we check whether the assignment value is null. If it is the case,
we store the information about this assignment.

3. NullSpy handles the uncaught null pointer exception. We wrap up the main()
method with a catch-block. In this catch-block we extract details of where the
null pointer exception occurred from the exception stack trace. With this data
and the identifier for target variables and variable assignments we perform several
comparisons to find the location of the null assignment.

During the implementation we encountered many difficulties. For most of the
problems we came across we managed to find a solution. Those unsolved ones remain as
future work.

After the implementation of NullSpy we used the project JHotDraw to validate the
implementation. First we measured the time how long JHotDraw takes to execute all its
tests without modifying the bytecode. After that we instrumented the project and again
measured the execution time. The result is a performance overhead of approximately 5%.
So NullSpy could help the developer find the null assignment without a big impact on
performance. While 5% may be too much for some time-critical applications, we believe
that for most common Java applications such as JHotDraw, this overhead is justifiable by
the improved ability to debug null pointer exceptions.

5.2 Future Work

5.2.1 Support Unsupported Target Variables and Variable Assign-
ments

As mentioned in Section 3.4, if the culprit that caused the null pointer exception is
an element of a collection or the return object of a method invocation, NullSpy cannot
track the null assignment of the culprit variable. This can be overcome by additional
instrumentation of the bytecode to keep track of individual elements of collections and
by inter-procedural analysis of the bytecode.

5.2.2 Track Null Pointer Exception Root for all Projects

For now NullSpy works only on projects that have a clear starting point in the
main() method. NullSpy can be improved to also be applicable to projects that do not

have a main() method, e.g., Java-Applets or web applications. For this, a suitable or
even customizable way on where to place the try-catch has to be implemented.
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5.2.3 Plug-in for Eclipse

Another possible future work is to transform NullSpy into an Eclipse plug-in project,
which would allow a simpler way to start tracking null assignments.
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A
Anleitung zu wissenschaftlichen Arbeiten

NullSpy is a program which helps Java developers find the root of null pointer
exceptions by providing an additional link next to the common stack trace. The key idea
behind NullSpy is to help developers save time when fixing bugs that manifest themselves
as null pointer exceptions. This approach tries to provide the service mentioned while
keeping the overhead at a minimum. To demonstrate how NullSpy works, this chapter
serves as a small tutorial that takes the example shown in Code 4.1 as the testing code to
show the features of NullSpy.

A.1 Installation

1. Take the example shown in Code 4.1 and import it into Eclipse.

2. Checkout NullSpy from https://github.com/litran8/
nullpointer-javassist and import it into eclipse

3. Look for the class MainProjectModifier 1 and run it with two parameters:

(a) path to the bin folder of the example source code

(b) path to where the modified project should be stored

1In package ch.unibe.scg.nullSpy.run.
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4. Look for the class ExecutableJarCreator 1 and run it with three parame-
ters:

(a) path to the folder containing the modified project

(b) path to where the executable jar file should be stored

(c) the name of the class containing the main() method

5. Look for the class ModifiedProjectLauncher 1 and run it with two pa-
rameters:

(a) path to the executable jar file

(b) the name of the class containing the main() method

If these steps are followed as explained, the result is similar to the stack trace shown
in Stack trace 4.1.



B
Additional Explanations

B.1 Bytecode Combinations of Target Variables

In the algorithm that identifies the target variable pc-interval we have to split the
outermost invocation pc-interval into candidate target variable pc-intervals. Here we
discuss how the extraction of all possible combinations of target variables that are
embedded in the outermost pc-interval are extracted.

We developed a system that checks whether the combinations of specific opcodes are
valid. Bear in mind that aload_0 represents this if we are analyzing a non-static method.
If we are analyzing a static method the opcode aload_0 refers to the first argument
of the method, if there are any, or to the first declared local variable of the method.
The combinations for identifying the candidate target variable pc-intervals are listed
below:

• non-static field

– (aload.* | getstatic).getfield
If the instruction before getfield is “aload.*”, the combination refers to an
access to a public or a private field of this object, or access to public field of
argument/local variable.
If the instruction before getfield is getstatic, the combination refers to an
access to a field of a static field.

44
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– (aload.* | getstatic).getfield.getfield
Access to a public field declared in another class then the currently analyzed
one.
We support only up to two consecutive getfield instructions; we have not
encountered any case with more than two instructions in row.

• static field

– getstatic
Access to a static field of any class

• local variable

– aload.*
Access to a local variable of the currently analyzed method

To illustrate how this list is used we go through the synthetic bytecode example shown
in Bytecode B.1. This bytecode represents the source code shown in Code B.2.

The outermost pc-interval of the method invocation move(...) is <26,33>.
When we iterate through the outermost invocation pc-interval we encounter the opcode

“aload.*” at line 1. We check what comes after this opcode. Again, there is the opcode
“aload.*” at line 2. With that we look at the list of the possible target variable bytecode
combinations and search for “aload.*” followed by “aload.*”. This expression does not
fit into our template which indicates that those two opcodes do not have any relationship
with each other. So we can be sure that they are two separate target variable candidates.
After that we check the opcode at line 3 and see if the opcodes from lines 2 and 3 fit into
our template. For the opcode at line 4 it is the same situation.

But when we check the opcode “getfield” at line 5 we see that the opcodes “aload.*”
followed by “getfield” fits into our template. With that we know that the combination of
the opcodes at line 4 and line 5 represents one target variable candidate.

After this process, the outermost pc-interval is split into
{<26,26>,<27,27>,<28,28>,<29,30>}.

We continue this process until the following opcode does not fit into the allowed
pattern of the template. As long as the checked opcode fits into our template, we consider
them as one possible target variable.

For other non-primitive types (e.g., Strings) and inlined variable creation we do a
similar process. If there is an embedded method invocation, we take the outermost
pc-interval of that as a target variable candidate of the external method invocation. The
end-pc of the embedded method invocation always comes before the external one in the
bytecode sequence. So we will have already figured out the outermost pc-interval of the
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1 26 aload_1 [figure]
2 27 aload_2 [x]
3 28 aload_3 [y]
4 29 aload_0 [this]
5 30 getfield AppendixMethodReceiverBytecodeCombi.forwardDirection :

java.lang.Integer [17]
6 33 invokevirtual Figure.move(java.lang.Integer, java.lang.Integer,

java.lang.Integer) : void [27]

Bytecode B.1: Synthetic bytecode example to illustrate the system to split the outermost
invocation pc-interval into candidate target variable pc-intervals.

figure.move(x, y, forwardDirection);

Code B.2: The source code of Bytecode B.1.

embedded method invocation before we examine the external one.

B.2 Target Variables

We explained that we extract target variable information to create its unique identifier
for the several comparisons which have to be done to find out the location of the null
assignment of the target variable. In Subsection 3.2.2 where we describe the algorithm for
the extraction of target variable pc-interval, we gave a hint of what kind of information
we need to create this unique identifier. The complete list of what data we store about
the target variable is listed next:

• target variable id (simple counter which increments on every occurrence)

• source code line number of the target variable

• name of the class containing the method invocation

• name of the method which contains the invocation

• parameter types and return type of the method which contains the invocation

• is the variable a local variable or a field

• is the variable static or not

• variable name
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• statically declared variable type

• name of the class declaring the variable, if the variable is a field, else empty string

• attribute index, if the variable is a local variable

B.3 Local Variable Assignments

To find the location of the null assignment NullSpy has to perform several compar-
isons of the identifiers representing local variables or fields with the identifiers of target
variables. To create those identifiers of local variables we have to collect information
about them. We listed part of the information needed to create a identifier of a local
variable in Subsubsection 3.2.3.1. The full list contains following information:

• source code line number of the local variable

• name of the class containing the local variable

• name of the method which contains the local variable

• parameter types and return type of the method which contains the invocation

• is the variable a local variable or a field

• local variable name

• statically declared local variable type

• attribute index

• local variable slot

• start-pc: the pc where the local variable assignment actually starts

• store-pc: the pc of the “astore.*” opcode

• after-pc: the following pc after store-pc, before which we insert our code

B.4 Field Assignments

Bytecode has two instructions that indicate field assignments, namely putfield and
putstatic. However, we distinguish more than two “different” kinds of field assign-
ments.



APPENDIX B. ADDITIONAL EXPLANATIONS 48

By “different” we mean that there are different kinds of instruction sets that represent
a field assignment. The following list contains all “different” kinds of field assignments.
The placeholder |. . . |indicates a set of instructions which represents the value that is
assigned to a field, i.e., the object which is loaded onto the operand stack for the
assignment.

1. aload_0, |. . . |, putfield
represents an assignment to a field of the currently analyzed class,
e.g., this.field = |. . . |;

2. |. . . |, putstatic
represents an assignment to a static field of any class
e.g., Class.field = |. . . |;

3. aload.*, |. . . |, putfield
represents an assignment to a field declared in another class than the analyzed one
e.g., memberObject.memberField = |. . . |;
We use the term member field to describe a field declared in another class than the
class under analysis.
Thus we call the object used to access the member field member object.

4. aload.*, (getfield)+, |. . . |, putfield
represents an assignment to a member field with a public modifier
e.g., this.field.memberField... = |. . . |;
e.g., memberObject.memberField... = |. . . |;

5. getstatic, (getfield)*, |. . . |, putfield
represents an assignment to a member field with a public modifier and a static
member object
e.g., Class.memberObject...memberField = |. . . |;

In Subsubsection 3.2.3.2 we listed a part of the data which we actually extracted from
field assignment bytecode to create the unique identifier for the field.

If the assignment is to a field of the currently analyzed class, we extract following
information about it:

• source code line number of the local variable

• name of the class containing the field assignment

• name of the method which contains the field assignment

• parameter types and return type of the method which contains the field assignment

• is the variable a local variable or a field
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• class name in which the field is declared

• is the field static or not

• field name

• statically declared field type

• start-pc: the pc where the field assignment actually starts

• store-pc: the pc of the “put.*” opcode

• after-pc: the next pc after store-pc; before that pc we insert our code

If we detect an assignment to a member field we additionally have to store the
information about the member object:

• is the member object a local variable or a field

• class name in which the member object is declared

• is the member field static or not

• member object name

• statically declared member object type

B.5 Bytecode Instrumentation

The aim of NullSpy is to find the location of the null assignment of the variable
which caused the null pointer exception. We achieve this goal by instrumenting bytecode
with the help of the bytecode-level API of Javassist.

After each non-primitive variable assignment we insert bytecode that repre-
sents a method invocation. The invoked method is part of the class named
VariableTester 1. Depending on the variable (local variable or field) being ana-

lyzed at the moment, a different method is invoked.

If we take the source code snippet Code B.3 which is the source code at line 16 from
the demonstration example Code 4.1 and decompile the instrumented version of this
snippet, it looks the way as shown in Code B.4.

We mentioned that Javassist provides the way to modify bytecode either with the
source- or bytecode-level API. Due to a limitation of Javassist we modify the class files

1In package ch.scg.nullSpy.runtimeSupporter. This package is added to the modified project when the
bytecode modification is done.
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16 reader = new BufferedReader(new FileReader(new File("file.txt")));

Code B.3: Source code at line 16 of the NullSpy demonstration example shown in
Code 4.1.

16 reader = new BufferedReader(new FileReader(new File("file.txt")));
VariableTester.testDirectField("Ideone", "makeReader", "()V", "
field", "reader", "Ljava/io/BufferedReader;", "Ideone", 1, reader,
25, 0, 23, 26);

Code B.4: Decompiled instrumented version of Code B.3.

at bytecode-level by constructing a bytecode sequence and including it into the file. How
we build this sequence is shown in Code B.5.

The code snippet Code B.5 creates the method invocation which we insert at bytecode
and which tests a field assignment for null value. The header of that method is presented
in Code B.6.

This method takes seven java.lang.String objects, one integer, one Object and four
integers as arguments. The code snippet Code B.5 reproduces these arguments.

The instruction “addLdc” from line 16 to 22 is used to add strings to the bytecode.
For adding a boolean we use the integers “1” and “0” to represent the boolean value
true and false respectively, as used in Java bytecode. Hence, line 25 to 29 adds an integer
to the bytecode sequence.

The object, in our case a field, is added to the bytecode sequence by using the method
addAload(...) at line 31 and the method addGetfield(...) at lines 32
and 33. These lines add the instruction set which loads a field onto the operand stack:

“aload_0”, “getfield”. NullSpy takes the field itself as an argument to evaluate its value in
the check-method.

The line number and pcs are added to the bytecode sequence from line 35 to 38.

Finally all classes of the arguments the check-method takes are prepared from line
40 to 43 and the instruction “invokestatic” at line 45 is added to the bytecode. If we
add a method invocation to the bytecode we have to specify what kind of arguments the
invocation takes. For this reason we prepared the classes.

With the classes CodeAttribute and CodeIterator from the Javassist API we can
enter our bytecode sequence into existing ones. CodeAttribute represents the byte-
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1 private byte[] getInsertCodeByteArray(Variable var) {
2 Bytecode bytecode = new Bytecode(cp);
3

4 Field field = (Field) var;
5 CtBehavior behavior = field.getBehavior();
6

7 String varName = field.getVarName();
8 String varType = field.getVarType();
9 String varID = field.getVarID();

10 String fieldDeclClassName = field.getFieldDeclaringClassName();
11 int varLineNr = field.getVarLineNr();
12 int varStartPc = field.getStartPc();
13 int varStorePc = field.getStorePc();
14 int varAfterPc = field.getAfterPc();
15

16 bytecode.addLdc(behavior.getDeclaringClass().getName());
17 bytecode.addLdc(behavior.getName());
18 bytecode.addLdc(behavior.getSignature());
19 bytecode.addLdc(varID);
20 bytecode.addLdc(varName);
21 bytecode.addLdc(varType);
22 bytecode.addLdc(fieldDeclClassName);
23

24 // int 1 -> static, 0 -> nonStatic
25 if (field.isStatic()) {
26 addIntegerToBytecode(bytecode, 1);
27 } else {
28 addIntegerToBytecode(bytecode, 0);
29 }
30

31 bytecode.addAload(0);
32 bytecode.addGetfield(
33 fieldDeclaringClassName varName, varType);
34

35 addIntegerToBytecode(bytecode, varLineNr);
36 addIntegerToBytecode(bytecode, varStartPc);
37 addIntegerToBytecode(bytecode, varStorePc);
38 addIntegerToBytecode(bytecode, varAfterPc);
39

40 CtClass variableTester = ClassPool.getDefault().get(
41 "ch.unibe.scg.nullSpy.runtimeSupporter.VariableTester");
42 CtClass str = ClassPool.getDefault().get("java.lang.String");
43 CtClass object = ClassPool.getDefault().get("java.lang.Object");
44

45 bytecode.addInvokestatic(variableTester,
46 "testDirectField", CtClass.voidType, new CtClass[] {
47 str, str, str, str, str, str, str,
48 CtClass.intType, object, CtClass.intType,
49 CtClass.intType, CtClass.intType,
50 CtClass.intType });
51

52 byte[] bytecodeArray = bytecode.get();
53 return byteCodeArray;
54 }

Code B.5: This bytecode is inserted after each assignment to a field of the currently
analyzed class. It represents the bytecode added after a field assignment.
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31 public static void testDirectField(
32 String classNameInWhichVarIsAccessed,
33 String behaviorName,
34 String behaviorSignature,
35 String varID, String varName, String varType,
36 String varDeclaringClassName,
37 int isStatic,
38 Object varValue,
39 int varLineNr,
40 int startPc, int storePc, int afterPc
41 ) {...}

Code B.6: Check field method header.

code of a behavior and with CodeIterator we can iterate through that bytecode.
We obtain a CodeIterator object from the CodeAttribute. So we first move the
CodeIterator to the position in the bytecode with codeIterator.move(pc)
where we want to enter our bytecode and then enter our sequence with a call to
codeIterator.insert(ourByteCode) .
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