
A Polite Solution to Interact with EV3
Robots

Bachelor Thesis

Theodor Truffer
from

Kirchberg BE, Switzerland

Philosophisch-naturwissenschaftlichen Fakultät
der Universität Bern

September 6, 2016

Prof. Dr. Oscar Nierstrasz
Dr. Mircea Lungu, Jan Kurš

Software Composition Group
Institut für Informatik und angewandte Mathematik

2

University of Bern, Switzerland

Abstract

Lego Mindstorms is a combination of hardware and software to build and
program a variety of different Lego robots. The Evolution 3 (short EV3)
represents the third generation of these promising robots.
Besides Lego itself, plenty of other organisations, researchers and developers
have designed software to interact with the EV3 robots, many of them with
the target to teach Computational Thinking to amateur programmers, others
to reach high functionality and open new possibilities.
But although there are already a lot of existing projects, there seems to
be a gap between the simple and visual learning programs, and the richer
programming environments.
Polite for EV3 closes this gap by combining the simple but nonetheless
expressive object-oriented programming language Polite with powerful con-
cepts like State Machines and Real Time Programming.

1

Contents

1 Introduction 4

2 Related Work 6
2.1 Lego Mindstorms . 6
2.2 Phratch with JetStorm . 7
2.3 Live Robot Programming . 8
2.4 Others . 8

3 The Gap 9
3.1 Visual Programming Environments . 9

3.1.1 The Boundaries . 10
3.2 JetStorm . 10

3.2.1 The Limitations . 10
3.3 Polite . 11

3.3.1 Program Flow . 12
3.4 Run Time Adaption . 13
3.5 Summing Up . 13

4 Closing the Gap 14
4.1 First Architectural Layer . 14
4.2 The Interaction . 15

4.2.1 JetStorm’s Architecture . 15
4.2.2 Adapting JetStorm . 16
4.2.3 Introducing PoliteVehicle . 16
4.2.4 Initialization . 17
4.2.5 Wrapping Methods . 18

4.3 The Behavior . 20
4.3.1 Finite State Machines . 20

4.3.1.1 Using FSMs for Robotics 21
4.3.1.2 Mealy Machines . 22

4.3.2 State Machine Architecture . 22

2

CONTENTS 3

4.3.2.1 States and Transitions 23
4.3.2.2 Special States . 23
4.3.2.3 Epsilon Transitions 24
4.3.2.4 Wildcards . 25

4.4 Abstraction . 25
4.4.1 Nested State Machines . 26
4.4.2 Implementation of Nested Machines 27

4.5 Computability . 28
4.5.1 Context Matters . 28

4.5.1.1 Global Access . 29
4.5.1.2 Execution of Nested Machines 30

4.5.2 Turing Completeness . 30
4.6 The Execution Loop . 30
4.7 Run Time Programming . 31

5 Validation 32
5.1 Turing Completeness . 32

5.1.1 Turing Machines . 32
5.1.2 Simulating Turing Machines 33
5.1.3 Simulation . 33

5.2 Usability . 35

6 Conclusion and Future Work 36
6.1 Asynchronous Processing . 36
6.2 Extending PoliteVehicle . 37

7 Anleitung zu wissenschaftlichen Arbeiten 38
7.1 Tutorial . 38

7.1.1 Prerequisites . 38
7.1.2 Installation . 39
7.1.3 Start and Connect . 39
7.1.4 First Steps . 40
7.1.5 Robot Commands . 41
7.1.6 Building a State Machine . 42
7.1.7 Using the Context . 43
7.1.8 Further Instructions . 44

1
Introduction

Among the existing EV3 programming environments, two categories seem to become
apparent: Learning Environments and Scientific Environments. The Learning Programs
like Phratch or Lego Mindstorms’ Software are user-friendly and easy to learn. Since
their programming languages are purely visual, beginners understand them quickly. But
at the same time, this simplicity brings a lot of constraints. With growing complexity,
bigger programs quickly become confusing. Also, even if composing visual program-
ming blocks is easy to learn, at some point the students will have to deal with writing
code if they want to go deeper into programming.

The advantages and disadvantages of the Scientific Programs are the reverse of the
Learning Programs. They offer great functionality with principles like nested state
machines and live programming, or allow users and developers to write programs in
different programming languages, but at the same time they are hard to learn for unexpe-
rienced programmers. Polite for EV3 is a project which combines the benefits of both the
approaches.

Mircea Lungu and Jan Kurš’ paper On Planning an Evaluation of the Impact of
Identifier Names on the Readability and Maintainability of Programs [1] discusses the
new way of writing identifier names by allowing whitespaces (so called sentenced case),
resulting in more intuitively readable programming languages. Out of this idea, they
developed Polite Smalltalk [2] which extends the programming language Smalltalk by

4

CHAPTER 1. INTRODUCTION 5

introducing sentence cased writing of identifier names.

Polite for EV3 combines Polite Smalltalk with a strong back end based on concepts, best
suitable for controlling robotics. Full computability and functionality should be reached,
leaving the users with no constraints to implement their ideas, even with increasing
complexity of the robots behavior.

This work focuses on the back end of Polite for EV3, whereas the graphical user in-
terface and its interaction with the back end is discussed in Stefan Borer’s work, Lego
Playground [3].

Figure 1.1: The Robot Educator Vehicle

2
Related Work

There are already a number of projects which build interfaces between the user and the
EV3 robots. This section will only focus on the most important ones, which are the ones
that influenced this work in some noteworthy way.

2.1 Lego Mindstorms
Lego’s EV31 aims to teach students subjects like computer science, scientific working,
technology, engineering and mathetmatics. Therefore Lego’s own developed software
prioritizes a design which addresses a rather younger group of users. On their official
website2 it says:

Our software is optimised for classroom usage and follows the very latest
developments in intuitive software design, which results in an extremely
user-friendly interface.

The software consists of two main parts: a section for data logging and another for
programming. In the former one, the user is able to observe all sensors of a connected
EV3 robot in real time. Students can for example take a EV3 brick with a connected
temperature sensor and then constantly watch and log the temperature of an object,
interesting to their scientific work.
Inside the programming workspace users are able to develop programs using the Lego

1http://education.lego.com
2http://education.lego.com

6

http://education.lego.com
http://education.lego.com

CHAPTER 2. RELATED WORK 7

Mindstorms visual programming language. They can solve different exercises, create
own projects and load the programs on the brick to execute them.

The Lego Mindstorms programming language is based on LabVIEW3 and uses a graphi-
cal programming syntax, so there’s no actual code being written while creating programs.
The user designs the desired program flow using boxes of different colors, each color
representing a different group of elements: orange boxes for flow control, green boxes
for motor control and so on. This kind of syntax allows even inexperienced programmers
to implement simple tasks. Almost everything is done via drag and drop so there’s no
risk of creating syntax errors. Also, the user gets a feeling for how programming works,
without having to learn a specific syntax.
The EV3 software is available for Windows and OS X and can be downloaded for free
from Lego’s official website4.

2.2 Phratch with JetStorm
Phratch5 is a project built on the visual programming environment Scratch6, where the
user combines blocks via drag and drop to create a program. The important difference
is, Phratch can be extended easily and new blocks can be added. Phratch is running on
Pharo7 and thus written in the programming language Smalltalk8. A new block can be
added by writing a Smalltalk method with a specific annotation9. The annotation notifies
Phratch that this method should be a block.

Phratch alone doesn’t provide the functionality to interact with an EV3 brick. But
an extension called JetStormForPhratch[4] introduces new blocks to communicate with
EV3 robots, by plugging in the JetStorm library. The JetStorm library is a Pharo frame-
work which supports every interaction with EV3 robots. It offers Smalltalk methods
for establishing connection, initializing and controlling motors, reading sensors, even
drawing on the EV3 Brick’s screen.

3http://www.ni.com/labview
4http://www.lego.com/en-us/mindstorms/downloads
5http://www.phratch.com
6https://scratch.mit.edu/
7http://pharo.org
8http://pharo.org/
9Annotations in Smalltalk are called pragmas

http://www.ni.com/labview
http://www.lego.com/en-us/mindstorms/downloads
http://www.phratch.com
https://scratch.mit.edu/
http://pharo.org
http://pharo.org/

CHAPTER 2. RELATED WORK 8

2.3 Live Robot Programming
Live Robot Programming[5] (LRP) is a programming language developed to control the
behavior of robots by using the concept of nested state machines. In its GUI there’s a
canvas right next to the programming workspace. As the name implies, the programs
can be edited live. So while defining the state machines inside the workspace, the states
and transitions are being drawn inside the canvas, symbolised as vertices and edges of a
directed graph. Instead of having to restart the state machines after a change, the states
and transitions can be changed while the machine is running.
LRP can be used with different infrastructures of robots. There’s also an AddOn to
control Lego’s EV3 Bricks via JetStorm.

2.4 Others
There are a number of other interesting projects. Libraries like LeJOS10 run a Java Virtual
Machine on an EV3 Brick and thus allow developers to program the Brick in Java. Other
projects do analogous things with Python or C#. Searching on GitHub11 with the query
string ”EV3” will return projects related to this subject.

10http://www.lejos.com
11http://www.github.com

http://www.lejos.com
http://www.github.com

3
The Gap

There are already many different projects building interfaces between the users and
Lego’s EV3 robots. Different programming languages and concepts have been used to
implement. So at this point one might ask why does there have to be another project?

This chapter will illustrate the gap between visual, user-friendly programs like Lego
Mindstorm and highly funtional programs and APIs like JetStorm. In addition, it will
evaluate problems of controlling robotics and set goals for a new approach.

3.1 Visual Programming Environments
A Visual programming language, or visual programming environment, allows developers
to build programs by using graphical elements. Each graphical Element abstracts some
programming code. E.g. there could be a graphical if/else-block which can be dragged
into a workspace. This block can then be given a condition. More blocks can be dragged
to the if -section or to the else-section of the if/else-block, which will be executed when
the condition is true or false, respectively. Entire programs can be built and executed by
composing these blocks.

Such programming languages are user-friendly. All possible functions are abstracted into
blocks and users can at some place visually observe an overview of these blocks, so they
receive an overview of all possible commands in this programming environment. This

9

CHAPTER 3. THE GAP 10

way, they don’t have to learn the syntax, like in a textual programming language. Also,
through the abstraction of the code blocks it is not possible to produce syntax errors,
which are often an obstacle when learning how to program.

3.1.1 The Boundaries
Programs like Lego Mindstorm and Phratch are built on such visual programming envi-
ronment. They both aim to be as user-friendly as possible and target a rather younger
audience. On their offical website1, Scratch says to be ”..designed especially for ages 8
to 16, ..”. On one hand this indicates good learnability but at the same time hints that
these programs are not built for more complex, scientific use.

The simplicity of visual programming brings constraints to the functionality of programs
like Phratch and Lego Mindstorm. Users are bound to the visual elements provided by
the environment and thus not able to get use of the power and scalability of a common
programming language. Therefore, to target a more professional and scientific audience,
a project should be based on code to avoid restrictions and offer a greater range of
possibilites.

3.2 JetStorm
In contrast to the projects based on visual programming stands JetStorm, an API built
to interact with the EV3 bricks. JetStorm takes care of establishing a connection to the
robots and provides functions for every possible command supported by Lego’s EV3.

3.2.1 The Limitations
The question might appear, why does JetStorm need to be adapted, since every possi-
ble interaction with an EV3 robot seems to be covered by the API. The problem is its
verbosity. To emphasize this, some examples of what steps are necessary to actually
communicate with the robot are following.

The first example shows how to read the connected color sensor. To do this, we need to
execute the following steps:

First, we have to initialize an Ev3Vehicle object and connect it to our EV3 brick. This is
pretty straight forward.

ev3Vehicle := Ev3Vehicle newIp: '192.168.29.42' daisyChain: #EV3

1https://scratch.mit.edu/about

CHAPTER 3. THE GAP 11

Second, the vehicle needs to initialize its sensors via the following line:

ev3Vehicle detectSensors

Third, every sensor has multiple modes, so in this case if we want to get the actual color
that the sensor is reading, we have to set the sensors mode to #Mode2. For this, we also
have to know to which port (sensor1 - sensor4) the color sensor is connected.

ev3Vehicle sensor2 setMode: #Mode2

Finally, we want to read the sensor’s value:

ev3Vehicle sensor2 read

This will return the code of the color which the color sensor is reading at this moment.
So for example if the sensor is on a green surface, this line will return 3.

Of course, most of these lines of code only have to be executed once, at the begin-
ning of a program. Still, without a detailed instruction, a beginner would never be
able to figure this out. Also, an API where the code for reading the color is sensor2
read and the response is 3 is too complex for the requirements we set in simplicity and
user-friendliness.

Another example is this line of code, required to make the robot turn 90 degrees to
its left:

ev3Vehicle motorSync startSpeed: 20 turnRatio: -200 degrees: 180

This is very complicated for such a simple command and must be wrapped to provide a
nice interface.

JetStorm is a powerful API, yet a higher level of abstraction must be reached for a
simple usage.

3.3 Polite
In 2013, Jan Kurs and Mircea Lungu argued about the importance of identifier names [1].
Until then, there only seemed to be two absolute possibilities how to write identifiers: Ei-
ther CamelCaseIdentifiers or underscore identifiers. But they came up with a whole new
idea. By allowing whitespaces in the identifier names, a new practice of writing code de-
velops. Sentence case or phrase case is a way of writing identifiers that is much closer to
our natural language and thus increases the readability and maintainability of source code.

Out of this idea, a new programming language came into existence. Polite Smalltalk [2]

CHAPTER 3. THE GAP 12

is a synthesis of the object-oriented programming language Smalltalk with the newly
invented sentence case writing. Since Smalltalk itself was developed as a language with
high readability, Polite Smalltalk even goes one step further in this direction and allows
and encourages programmers to write code in a very nice and readable way.

Furthermore, since Polite is built on Smalltalk it inherits the functionality. Therefore,
Polite Smalltalk combines two important characteristics: simplicity and functionality.

Polite seems to be a good solution to build an interface to the Lego devices. Still,
the usage of this programming language without additional concepts will lead to prob-
lems when building programs for the robots. The next section will take a closer look at
these problems.

3.3.1 Program Flow
Controlling robotics can quickly reach a high complexity. With devices like the EV3
robots, the goal is often to teach the robots certain patterns of, sometimes humanoid,
behavior. By using their sensors, the robots gain the possibility to perceive their envi-
ronment. They are able to detect physical objects and even colors. Thus, users are able
to make a robot perform different actions depending on its surroundings. The robots
behavior can be constructed to observe and react to events triggered by environmental
inputs.

It should be safe to say that programming such behavior is a common use case. Imagine
building such a programm with Polite.
As in every common object-oriented programming language, the program flow in Polite
can be designed by using the usual control flow statements, such as if-/else-statements or
for- and while-loops. The execution of a program can take different turns and directions
based on these statements.
To program the robot’s behavior as explained above, some kind of rules have to be
defined. E.g. a certain input of one of the robot’s sensors leads to some action, like
starting or stopping a motor. Furthermore, such defined reactions may depend on the
current point of execution of the program. E.g. the robot might not have the same
reaction each time it reaches an obstacle, but act differently depending on what happened
before, or what kind of state it is currently in.

Defining such rules, states or reactions to inputs only by using the usual control flow
statements will soon become painful when the robot’s behavior is being extended. A
programmer will easily get lost in constructing different loops, thereby running the risk
of losing the overview of the program.
Without using additional patterns to control the EV3 devices, programs will quickly

CHAPTER 3. THE GAP 13

tend to acquire difficult structures that are hard to understand and extend. The usual
program flow does not seem to satisfy when it is used to control robotics. Although a
programming language like Polite provides full computability, some way of abstraction
is desired for a convenient interaction with the robots.

3.4 Run Time Adaption
As an additional function, we set the goal to allow users to adapt a program at run time.
I.e., a program should be changeable during its execution. Thus, the robot’s actions and
behavior would be adjustable while a task is being executed.

Since it is not possible to interfere in a currently processing program in Polite, the
realization of run time adaption also requires additional concepts or patterns on top of
the programming language.

3.5 Summing Up
The evaluation of the problems and goals can be summarized as followed:

• Visual programming languages don’t scale well for a more complex use with
robotics. They are too limited to target a scientific and professional audience.

• JetStorm’s level of abstraction is too low to be used directly and without an
additional layer of abstraction. Many commands of the JetStorm API are hardly
readable and require too much time to learn.

• Polite is a good candidate for a textual programming language. However, the tradi-
tional control flow approaches are too limited and are not suitable for programming
complicated robot behaviors.

The conclusion is, although there are strong projects to work with, there is still the need
for a new approach. A program providing a highly functional back end while at the same
time remaining user-friendly. To manage the high complexity that controlling robotics
implicate, an architecture built on strong concepts is required. The integration of features
like the support of real time adaption helps to additionally improve the functionality of
the system.

4
Closing the Gap

Now that the goals for this work have been set by analyzing the existing projects, the
architecture can be designed to ensure the desired characteristics. Different concepts
and patterns will be introduced and composed to build an envorinment able to fill the
evaluated gap and provide a strong back end.

4.1 First Architectural Layer
The environment’s highest level of abstraction, the User Interface Layer, uses Polite
Smalltalk as programming language and consists of a GUI built on Spec, a UI library for
Smalltalk. The UI is the focus of another thesis [3].

Figure 4.1: Interface Layer

14

CHAPTER 4. CLOSING THE GAP 15

4.2 The Interaction
For the interaction with the EV3 robots, a good API written in Smalltalk will be needed.
In sections 2.2 and 2.3 we discussed the projects Phratch and Live Robot Programming,
which are both written in Smalltalk and both are using JetStorm as the API.
The use of JetStorm is reasonable since it builds an interface and manages all communi-
cation to the EV3 Bricks in an object-oriented way.

4.2.1 JetStorm’s Architecture
Lego’s EV3 Brick is running on a Linux-based operating system. Besides USB and
Bluetooth, the brick also supports communication over WiFi, which can be established
via TCP. Commands and responses are then sent and received in form of bytestrings.
JetStorm takes care of two main tasks:

1. Establishing and maintaining a connection to the EV3 brick

2. Translating commands into the correspondent bytestring and sending them to the
brick, and accordingly translating received responses

To handle this, JetStorm is built on an object-oriented architecture, consisting five main
classes (decribed in Jannik Laval’s techical report [4]):

Figure 4.2: JetStorm architecture

CHAPTER 4. CLOSING THE GAP 16

The class EV3Brick builds the entry point. It controls the rest of the system. More
important for this work will be its subclass Ev3Vehicle. In addition to a brick, a vehicle
is able to synchronize two motors (e.g. left wheel, right wheel), so that no delay is
generated when those two motors are addressed simultaneously.

The EV3Bridge is responsible for the connection to the EV3 brick. It contains the
script to establish a TCP connection and is accessible via the EV3Brick-object.

The class Ev3Block handles the communication with the hardware. Each instance
of a subclass of Ev3Block represents a piece of hardware on the connected robot. For
example a subclass of Ev3Block would be Ev3ColorSensor or Ev3MotorSync. Each sub-
class provides methods for every possible command that can be sent to the corresponding
piece of hardware.

The classes Ev3Command and Ev3ReplyInterpreter are helper classes which build the
right byte array for a command and interpret the data received from the robot. Every
possible command and every possible answer is supported.

4.2.2 Adapting JetStorm
For a more user-friendly interaction, an additional layer of abstraction must be imple-
mented.

Lego Mindstorm provides a great range of different robots to construct. The following
section will introduce a class to build an interface to one kind of these robots, the classi-
cal Robot Educator Vehicle from the LEGO MINDSTORMS EV3 Education Core Set
(Figure 1.1). The introduced class will be adjusted to the hardware of only this kind
of robot. To interact with other types, new classes need to be implemented (See also:
Extending PoliteVehicle [6.2]).

The Robot Educator Vehicle is a robot with two wheels, therefore we will use Ev3Brick’s
subclass Ev3Vehicle, so we can benefit from its ability to synchronize two motors.
And since every action with JetStorm happens through one class, one class will also
suffice to wrap the whole API. We’ll call this class PoliteVehicle.

4.2.3 Introducing PoliteVehicle
The PoliteVehicle class is responsible for two things: It wraps the complicated commands
of the JetStorm API into better-named methods and simplifies the initialization of a robot
object.

CHAPTER 4. CLOSING THE GAP 17

To do so, the PoliteVehicle object contains an Ev3Vehicle as an instance variable, through
which it is able to communicate with the robot. Furthermore, it has an instance variable
for each sensor and motor, which are a direct reference to the sensors and motors inside
the Ev3Vehicle object. But while in the Ev3Vehicle the sensors are called sensor1 –
sensor4 and the motors motorA – motorD, the PoliteVehicle detects and identifies the
sensors and motors at initialization and stores them in the corresponding variables, called
colorSensor, rightWheel and so on.

Figure 4.3: The PoliteVehicle object

PoliteVehicle contains two integer variables, defaultSpeed and defaultDelay, which
are set to provide simple methods. For example, to get the robot start driving forward at
a specific speed, the message startAtSpeed: has to be sent to the motorSync object inside
the Ev3Vehicle. With the aid of defaultSpeed, PoliteVehicle wraps this message up as
follows:

driveForward
ev3Vehicle motorSync startAtSpeed: defaultSpeed.

4.2.4 Initialization
With the Ev3Vehicle of the JetStorm API one has to go through a number of steps to
create a robot object. Therefore, PoliteVehicle aims to automate this long initialization
process.

initialize
self ev3Vehicle: (Ev3Vehicle newIp: (self class defaultIp)

daisyChain: #EV3).
self ev3Vehicle detectSensors.
self ev3Vehicle syncMotorsLeft: (self ev3Vehicle motorB)

right: (self ev3Vehicle motorC).
self arm: self ev3Vehicle motorA.

CHAPTER 4. CLOSING THE GAP 18

self initializeSensors.
self defaultSpeed: 20.
self defaultDelay: 2.

Note that the arm is always motorA, the leftWheel always motorB and the rightWheel
motorC. That is how the motors are connected to the ports if you build the robot according
to the manual for the Robot Educator Vehicle. And unlike the sensors, the motors are
not able to detect to what object they are connected to, so there is no way of automating
the initialization of these variables without hardcoding them to these three motor ports.
However it is possible to change the assignment of these variables manually after the
initialization.

As mentioned above, the sensors have the ability to identify themselves, which makes
it possible to assign all connected sensors correctly to the instance variables, without
having to do anything manually.

initializeSensors
self assignSensor: self ev3Vehicle sensor1.
self assignSensor: self ev3Vehicle sensor2.
self assignSensor: self ev3Vehicle sensor3.
self assignSensor: self ev3Vehicle sensor4.

self colorSensor setMode: #Mode2.
self gyroSensor setMode: #Mode0.
self ultraSensor setMode: #Mode0.

assignSensor: aSensor
(aSensor getSensorType = 'Ultrasonic')

ifTrue: [self ultraSensor: aSensor].
(aSensor getSensorType = 'Color')

ifTrue: [self colorSensor: aSensor].
(aSensor getSensorType = 'Gyro')

ifTrue: [self gyroSensor: aSensor].
(aSensor getSensorType = 'Touch')

ifTrue: [self touchSensor: aSensor].

4.2.5 Wrapping Methods
This section gives a quick overview of the abstracted methods provided by the Po-
liteVehicle object. The most important robot actions are implemented, yet there is a
long list of possible commands which are not supported (see 6.2 Extending PoliteVehicle).

After actions like turnLeft there has to be a delay, because the control flow has to

CHAPTER 4. CLOSING THE GAP 19

be stalled until the execution of the action is over. This is what the instance variable
defaultDelay is used for.

• driveForward, driveBackward. Starts driving forward/backwards at the default
speed.

• stop. Stops the robots motors.

• turnLeft, turnLeft:, turnRight, turnRight:. Turns the robot to the left/right at
the defaultSpeed and afterwards waits for defaultDelay-seconds. The amount of
degrees to be turned can be passed as parameter, the default is 90 degrees.

• turnRandom, turnRandomBetween:And:. Turns randomly to the left or to the right.
The range of degrees can be passed as parameter.

• beep, beepLong. Let the robot make a short or long beeping sound.

• color. Reads the color sensor and returns the name of the color as String. There are
seven different possible colors: black, blue, green, yellow, red, white and brown.

• distance. Reads the ultrasonic sensor and returns its value. The returned number is
the number of millimeters to an obstacle in front of the robot.

• isTouched. Returns the value of the touchsensor; true if the sensor is touching
anything, false otherwise.

• isConnected. Asks if the object is currently connected to the Ev3Brick.

In addition, there are getters and setters for all instance variables which can be used
to access all methods of the JetStorm API. However for the sake of convenience, for
inexperienced programmers it should be sufficient to go with the methods provided by
the PoliteVehicle object.

CHAPTER 4. CLOSING THE GAP 20

Figure 4.4: Architecture of adapted JetStorm API

4.3 The Behavior
Section [3.3.1] showed that there is the need for additional concepts or patterns to allow
users to keep an overview of growing programs and robot’s behaviors. The following
sections will introduce such concepts and compose it to an architecture which fits the
need to control robotics in a more natural way.

4.3.1 Finite State Machines
The pattern of Finite State Machines has often been used before to control robotics.

There are many ways of modeling the behavior of systems, and the use of
state machines is one of the oldest and best known. State machines allow
us to think about the state of a system at a particular point in time and
characterize the behavior of the system based on that state.[6]

A finite state machine consists of a finite set of states and transitions. The machine
is always in exactly one state, called the current state. The transitions (or transition
function) are triggering events, which map current states and inputs to a successive state.
Additionally, one of the state is to be defined as the start-state, in which the machine’s
execution begins.

FSMs are often visualized as in Figure 4.5, where the vertices represent the states
and the edges represent the transitions of the state machine. Vertices with an incom-
ing arrow without originating state symbolise start-states, while vertices drawn with a
double-circle represent end-states.

CHAPTER 4. CLOSING THE GAP 21

Figure 4.5: Visualization of a Finite State Machine

4.3.1.1 Using FSMs for Robotics

A reason to use this pattern for robotics is that programming based on states and tran-
sitions seems to be a natural way of controlling a robot’s behavior: Depending on the
current state, a robot can react to events and conditions.

E.g., a robot could be in the state ”Driving”. To prevent the robot from driving into an
obstacle, a transition with the condition ”Distance Sensor < 20cm” leads to another
state called ”Standing”.

So when the robot is in the state ”Driving” and it approaches an obstacle, the tran-
sition with the condition ”Distance Sensor < 20cm” triggers and the robot changes its
state to ”Standing”. But with a (snippet of a) state machine like this, the robot will still
be driving into the obstacle: The robot, or more precisely, the state machine has changed
its state to ”Standing” but since a state is a purely logical element, no actual stopping of
the motors has been performed. Therefore, one important element is still missing: The
Action. I.e., we would want to execute ”stop motors” while switching from ”Driving”
to ”Standing”.

CHAPTER 4. CLOSING THE GAP 22

4.3.1.2 Mealy Machines

The kind of a state machine where the transition not only triggers the changeover to
another state, but also produces an output (in this case an Action) is called a Mealy
machine.

The formal definition of a Mealy machine[6]:

A Mealy machine is a 6-tuple (S, S0,Σ,Λ, T,G) consisting of the following:

• a finite set of states S

• a start state (also called initial state) S0 which is an element of S

• a finite set called the input alphabet Σ

• a finite set called the output alphabet Λ

• a transition function T : S × Σ→ S mapping pairs of a state and an
input symbol to the corresponding next state.

• an output function G : S × Σ → Λ mapping pairs of a state and an
input symbol to the corresponding output symbol.

In some formulations, the transition and output functions are coalesced into
a single function T : S × Σ→ S × Λ.

Since we will need an output function (whether it is integrated in the transition function
or not), the model of a Mealy machine is appropriate for controlling the behavior of the
EV3 robots.

4.3.2 State Machine Architecture
Concerning the concept of the finite state machines discussed in the previous section, the
goal is to construct a clean architecture in an object-oriented way. We’re beginning with
the very basic objects of a FSM: States and transitions.

CHAPTER 4. CLOSING THE GAP 23

4.3.2.1 States and Transitions

To get an object-oriented architecture, there must clearly be a State object and a Transi-
tion object. A state doesn’t really do anything but being a state, so for now the attribute
Name (String) to identify a state suffices. A transition consists of a condition and an
action. For the sake of convenience, those two attributes are executable Blocks. That way,
the processor can simply execute the condition-block and if it returns TRUE, execute the
action-block.

Now a transition leads from one state to another. There are several possible ways
to create this connection. To find the best, we’ll have a look at the execution of a state
machine:
The machine is always in exactly one state, the current state. The possible triggering
transitions are the ones originating from this state, all others can be ignored at this
moment. So for the executing entity, the most simple way is to load these transitions
directly from the current state. Therefore, it seems apparent that the state object contains
its outgoing transition objects.

If a transition triggers, the transition’s destination state becomes the current state. So
again, for a clean control flow, we store the successive state directly as an instance
variable of a transition.

Like this, there’s no need for arrays or lists of states and transitions. Still, the whole state
machine can be constructed by starting at the first state and going through all following
states and transitions.

Figure 4.6: State Machine Architecture so far

4.3.2.2 Special States

A finite state machine not only consists of normal states but has two special kinds of
states: A start state and (optionally) one or multiple end states. There must definitely be
a start state object to be the entry point of a state machine. To keep a slim architecture,
there will be no kind of state machine object. Therefore, a start state pretty much defines
the whole state machine: Following the outgoing transitions and destination states, the

CHAPTER 4. CLOSING THE GAP 24

machine can be reconstructed. The start state object obviously inherits from the state
object. It has two additional instance variables, a String called machineName and an
OrderedCollection called contextVars. Further explanations to this will follow in the
section Context Matters [4.5.1].

For the end state(s), there could of course also be defined a new object, inheriting
from the state object. But with a closer look, a simpler solution comes to mind: An end
state has no outgoing transitions, which would make no sense, since the machine stops at
an end state. Further, if some state has no outgoing transitions, the machine stops at this
state, hence making it an end state. So to not make it unnecessarily complicated, we chose
to have no end state object, but define all states without outoing transition to be end states.

Figure 4.7: Introduced PLStartState

4.3.2.3 Epsilon Transitions

An epsilon transition is a kind of a transition where the condition is always true. So when
entering a state with an epsilon transition, this transition will immediately be triggered.
This makes sense for example, if the machine’s execution begins and the robot should first
of all start driving forward. So this transition should be triggered without any condition.

It may occur to some that the need for an implementation of an Epsilon Transition
object is questionable, since it is just a transition with an always true condition.
A common use case for epsilon transitions is the initial execution of actions: often the
robot should execute an action like starting a motor at the very beginning of the execution
of a state machine. An epsilon transition originating from the start-state will be triggered
immediately after starting the machine and can thereby be used to execute such initial

CHAPTER 4. CLOSING THE GAP 25

actions. Therefore it seems to make sense to integrate this entity into our system as
well. Besides, Epsilon Transitions will be hidden in the backend, so they won’t affect the
simplicity of usage.

4.3.2.4 Wildcards

LRP [2.3] uses an additional feature, called wildcards. A wildcard is a transition with
no origin state, meaning that this transition can be triggered regardless of which state
the FSM is currently in. A wildcard is an abstraction of multiple transitions with the
same condition, action and target state, but with every possible state as origin state.
Therefore it does not change the model and behavior of the state machine, but simplifies
the programming interface.

A use case would be the following: The programmer wants to stop a program by
entering an end state as soon as a timer expires, no matter which state the FSM is in.
This case would need one transition for each state in the FSM, but can be implemented
with only one wildcard.
Therefore wilcards are a practical tool which will help to reach the desired level of
abstraction.

The implementation is pretty straightforward, in fact: since a transition does not know
its origin state, we can use the transition class to implement wildcards. We made the
wildcard object inherit from the transition object, since from a logical point of view, a
wildcard is kind of a transition. Also we modeled the situation where a wildcard can
have an empty next state. If a wildcard with an empty next state is triggered, the state
machine returns to the same state as it was before the execution of the wildcard.

The more important difference between wildcards and normal transitions is where they
are being stored. Normal transitions are stored inside their origin state, whereas wild-
cards do not have an origin state, or rather, have every state of the state machine as origin
state. Obviously, storing a transition inside every of these states is not a good solution.
The problem is solved by storing the wildcards in a global variable. The details of this
solution are in the section Context Matters [4.5.1].

4.4 Abstraction
As soon as a programmer goes beyond very simple and trivial robot behaviors, the state
machines quickly grow bigger with a long list of states and transitions. To avoid losing
the overview, the possibility to encapsulate and combine state machines needs to be
offered.

CHAPTER 4. CLOSING THE GAP 26

To provide this possibility, we introduce the concept of Nested State Machines.

4.4.1 Nested State Machines
In a common programming language with functions, the program flow often looks like
this: inside one function, another function is invoked. After the termination of this second
function, the program returns to the upper function and continues executing the next
lines of code.
With nested state machines it is the same: Inside a running state machine, a previously
stored state machine can be started. As soon as this machine reaches an end-state, the
upper state machine continues to execute.
Of course this can be carried on with nested machines inside nested machines, building a
hierarchy of machine executions, equivalent to a call stack of functions.
Like this, even very complex state machines can be abstracted and stored, to then be
called inside other state machines.

Usually nested machines are associated with states, meaning that a state machine can be
abstracted as a state. The decision not to have a state machine object would make such
an abstraction difficult, so we will introduce another approach: the execution of a nested
machine will take place as the action of a transition.

Figure 4.8: Execution of a Nested State Machine

For example, let there be a state machine M with a transition t which has state s1

CHAPTER 4. CLOSING THE GAP 27

as origin, state s2 as its next state and the execution of a nested machine N as action
(Figure 4.4.2). That way, when transition t is triggered, the execution of the machine M
stalls between state s1 and state s2, and the execution continues at the nested machine
N’s start state. After an end-state of machine N is reached, the upper state machine M
enters state s2 and continues its execution.

4.4.2 Implementation of Nested Machines
A state machine can be executed by invoking PLProcessor>>execute:1 and passing the
PLStartState of the machine as a parameter.

To nest a state machine, we create a method on the class side of MyScripts, e.g.
MyScripts>>executeNestedMachine2. The created method contains the code to create a
machine and after the creation, executes the machine by calling PLProcessor>>execute:.

We then set this method as a transition’s action. Since we created the method on
the class side, we don’t have to initialize an object first, but can simply call ’MyScripts,
execute nested machine’ inside the Action-Block. When this transition triggers, the
nested machine will be created and executed, and after its termination, the execution of
the upper machine will continue.

Figure 4.9: Method to create and execute a nested machine

The graphical user interface of Polite for EV3 provides an automated creation of
methods for nested machines. Users are able to store methods into, and load methods
from the MyScripts class via graphical elements.

1The class PLProcessor will be introduced and explained in section 4.6.
2The class MyScripts is a class explicitly introduced to store methods which execute nested machines.

CHAPTER 4. CLOSING THE GAP 28

4.5 Computability
To have a powerful, fully functional architecture, it must be guaranteed that every desired
program to control the robot can be developed with the used concepts. Or in other words,
we must be able to construct every computable function.

The pattern of the Mealy machine together with nested machines does not yet fulfill this
requirement. Consider this problem:

The Lego robot is equipped with a color sensor pointing to the floor. On the
floor in front of the robot is an arbitrary long line of tiles. Each tile is either
blue or yellow. A program should be able to let the robot drive over such a
line and at the end of the line decide if the numbers of blue tiles and yellow
tiles were equal or not. Based on this decision it will execute some further
action.

This problem is not solvable with a Mealy machine. There is no kind of variable to store
the number of detected blue or yellow tiles, the only way to remember the amount being
to construct more states. But since there is a finite number of states and the number of
tiles is arbitrary, there will always be a longer line which then is undecidable for the
program.

4.5.1 Context Matters
Therefore, there has to be a way to store variables in the context of a state machine to
guarantee full computability. Furthermore, we don’t want to store a wildcard in every
possible state which would create a great overhead. So a new object is needed, which we
will call PLContext.

PLContext is a global data class which stores all information needed in the context
of a state machine. This will be: wildcards, variables and timers. Besides these instance
variables, the context supports methods to handle these variables, for example starting or
resetting timers, storing and receiving variables and so on.

CHAPTER 4. CLOSING THE GAP 29

Figure 4.10: The State Machine Architecture with PLContext

4.5.1.1 Global Access

The context is defined globally to provide access during the execution of nested machines.
E.g., in the use case of a machine which terminates at the end of a timer, the timers and
the wildcards of this machine have to be checked at any time, even during the execution
of a nested machine.

The start of a nested machine will not create a new context. The context data of the
nested machine has to be merged with the context data of the upper machine. The global
access of the context allows doing this simply by adding the nested machine’s context
variables, at the beginning of its execution, to the global context .

The decision for a global context is also the reason for PLStartState’s instance vari-
able contextVars. The method PLStartState>>addToContext: can be called with an
executable block as parameter. The block contains methods for the creation and storage
of the machine’s context variables. The method will add this block to PLStartState’s
instance variable contextVars. When starting the machine, the processor will first of all
execute all blocks stored in contextVars, thus adding the machine’s context data to the
global context.

Section 7.1.7 gives an example on how to use the context properly.

CHAPTER 4. CLOSING THE GAP 30

4.5.1.2 Execution of Nested Machines

For the correct execution of a nested state machine, we need to add a small but important
detail. Since PLContext is a global variable, we have to make a copy of this context at
the beginning of the execution of a machine and restore this copy at the termination of a
machine. Only like this the context will have the exact same state right before and after
the execution of a nested state machine.

So we copy the context at the very beginning of the execution:

contextCopy = PLContext copy

And restore it at the very end:

PLContext = contextCopy

4.5.2 Turing Completeness
Of course, solving one problem does not imply Turing completeness of the constructed
model. Chapter 5 contains a proof to show that the constructed architecture at this point
indeed is Turing complete.

4.6 The Execution Loop
Now that we have all the pieces of a state machine together, all kinds of states and
transitions and a context to store wildcards and variables, let’s have a look at the ex-
ecution of such a machine. For the supervision of the whole workflow, we added the
class PLProcessor. So here’s an abstraction of how the method PLProcessor>>execute:
works:

1. Set the StartState as current state.

currentState = aPLStartState

2. Load all variables and wildcards into the context.

currentState contextVars loadIntoContext

3. Loop as long as the current state has transitions, which means as long as we haven’t
reached an end state yet.

WHILE: currentState hasTransitions

4. Loop through the wildcards, received from the global context. If the condition is
true, execute the action and set its next state as the current state. Then jump to the next

CHAPTER 4. CLOSING THE GAP 31

execution of the WHILE-Loop, since we don’t want to check the rest of the transitions if
one has already triggered.

FOR EACH: context getWildcards AS w

IF: w checkCondition
w executeAction
currentState = w getNextState
continue WHILE-Loop

END IF.

END FOR EACH.

5. Do the same as above with the transitions of the current state.

FOR EACH: currentState getTransitions AS t

IF: t checkCondition
t executeAction
currentState = t getNextState
continue WHILE-Loop

END IF.

END FOR EACH.

6. When the WHILE-Loop is over, it means we reached an end state and the execution
of the state machine has terminated.

END WHILE.

4.7 Run Time Programming
In chapter 3 the goal has been set to make the architecture support run time adaptation, i.e.
that a programmed robot behavior can be altered at runtime. The constructed execution
loop and the implemented state machine architecture are building a good base to support
real time adaption: a robot’s behavior is defined by the states and transitions of a state
machine. Therefore, to alter the behavior it suffices to modify, add or remove states and
transitions.

The runtime environment of Polite provides straightforward mechanisms for the run time
modification of objects. By integrating them in the GUI, it is possible to access and alter
the state machine’s components while executing a program, thus allowing programming
at run time.
Since this work focuses on the back end and doesn’t go any further into the GUI layer, it
suffices here to say that the implemented back end supports run time adaption.

5
Validation

To validate the functionality of the implemented architecture, the following section
proves full computability of the system. The used method is based on the Church-Turing
Thesis.

5.1 Turing Completeness
The Church-Turing Thesis is named after the mathematicians Alonzo Church and Alan
Turing. The thesis states, among other things, that the class of Turing computable func-
tions coincide with the informal notion of an effectively computable function1.

Therefore, to show that the model is able to compute all effectively computable functions,
it is sufficient to show that it is able to compute all Turing computable functions, or in
other words, it is Turing complete. A way to prove Turing completeness is to show that
the system is able to simulate the behavior of any Turing machine.

5.1.1 Turing Machines
The model of a Turing machine (TM) is quite similar to a finite state machine. It is
also defined as a set of states and transitions. But further, a TM has a read/write device
located on an infinite stripe of tape, which is divided into cells. Inside these cells are
either symbols of a defined alphabet, or Blanks, whereas a Blank can be interpreted as

1https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis

32

https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis

CHAPTER 5. VALIDATION 33

empty or nothing. The read/write device is always pointed at exactly one cell of the tape,
reading one input.

With the Mealy machine, we had a transition consisting of a condition (or input), an
action (or output), resulting in a successive state. Now with TMs, the transition’s input
is the symbol which the device is reading at this moment. The output consists of the
symbol it will write on the current position of the device. After writing a symbol to this
position, the device will move either one position to the left or one position to the right.

5.1.2 Simulating Turing Machines
So what is to be demonstrated is that the model of a Turing machine can be simulated
with the constructed system.

Assuming there are two variables, one containing a list of symbols of a defined al-
phabet, the other one containing a pointer to one element of this list. The list simulates
the infinite stripe of tape, while the pointer takes the place of the read/write device. The
transitions’ condition checks the symbol of the list, which the pointer is currently on,
equivalent to the read/write devices input in a TM. The transitions’ action writes a symbol
into the current list item and decides whether the pointer moves to the previous item, the
next item, or stays at the current item, equivalent to the moving of the read/write device.
If the pointer is pointing at a empty list item, or if it moves out of the list, the input will
return a Blank.

If we can build such a model with our architecture, the exact behavior of any Tur-
ing machine can be copied, thus the system would be Turing complete and therefore
capable of calculating every effectively computable function.

5.1.3 Simulation
Now we want to show that we can do so with the implemented architecture.

In any case, we have to define a start state q0 ∈ Q:

start := PLStartState new.

To simulate a Turing Machines endless tape of symbols, we add a Dictionary to the
machine’s context variables. A Dictionary allows us to add key-value associations, like
{1→ a} to it. The key will be the symbol’s position on the tape and the value will be
the symbol.

CHAPTER 5. VALIDATION 34

The definition of a Turing Machine says that there is only a finite number of sym-
bols (of a specified alphabet) on the tape, the rest are filled with blanks. Since we can’t
build an infinitely big Dictionary, we will only fill in the non-blanks of the input and then
define that null will be our definition of a blank.

Furthermore, we add a pointer, simulating the read/write device. The pointer is simply
storing a number which indicates what position the device is currently on. This would
look something like this:

start addToContext: [PLRunTime context addVariable: 'tape';
addVariable: 'pointer';
variables at: 'tape' put: (Dictionary new)]

When the machine is being started, this block will be executed, adding the two variables
to the current context. We can then add the non-blank symbols of the input to the Dictio-
nary. The Pointer is by default set to 0, the position where we want to start.

Once we have this set-up, we can build the rest of the Turing Machine. We need a
set of states, a subset of which are the final states, one is the start state, and the transition
function.

We have already built the start state. The rest of the set of states can easily be built by
instatiating new PLState objects.

In our architecture, a state is said to be a final state if there is no transition originating
from this state, so we don’t have to explicitly define a set of final states. Now we can
simulate the transition function, defined as followed:

δ : (Q \ F) × Γ→ Q× Γ× {L,R}

For an arbitrary transition δ(q1, γ1) 7→ (q2, γ2, d) in the Turing Machine, we define an
equivalent transition in our state machine:

q1
when: [((PLContext variables at: 'tape')

at: (PLContext variables at: 'pointer')) ifAbsent: [ˆ'blank']
= γ1]

do: [((PLContext variables at: 'tape')
at: (PLContext variables at: 'pointer') put: γ2).

(PLContext variables at: 'pointer') :=
(PLContext variables at: 'pointer') + d.]

goTo: q2.

We send the message PLState>>when:do:goTo: to state q1. This will add a transition
with origin state q1 to q1, whereas ’when:’ defines the condition, ’do:’ defines the action

CHAPTER 5. VALIDATION 35

and ’goTo:’ defines the next state.

In the condition-block we fetch the tape-variable and the pointer-variable from the
Context, get the symbol of the tape at the pointers current position and compare it to the
imput symbol γ1. ’ifAbsent:’ defines what to do if there’s nothing on this position, so we
configure it to return a ’blank’ in this case.

The action block writes γ2 to the current position of the tape and increments or decre-
ments the pointer. So d would be 1 in case of a move-right and -1 in case of a move-left.
Finally we define q2 to be the next state.

We are thus able to set up and simulate any Turing Machine. Therefore our archi-
tecture is said to be Turing Complete and, according to the Church-Turing thesis, capable
of calculating every computable function.

5.2 Usability
Turing completeness shows that there are no limitations in functionality. Still it does not
tell if the constructed system is suitable for the usage in robotics. In fact, the integrated
pattern of finite state machines does not fit well for controlling any class of robots. A
robot which is exclusively controlled remotely e.g. does not need any states and transi-
tions, and would be easier to manage with another architecture. Or an industrial robot
which executes the same moves over and over again and doesn’t need to react on some
kind of events.

The concept of state machines and especially Mealy machines, which is integrated
in the architecture, is based on rules of behavior: a transition triggers depending on the
current state and a condition, which can be the input of a sensor e.g.. The triggering
of a transition can execute an action and leads to another state. The composition of
these transitions (and states) builds a state machine, so a state machine can be seen as a
composition of rules of behavior, resulting in an autonomous intelligence.

Therefore, the integrated concept of Mealy machines is suitable for a class of robots
which act and complete tasks without the interaction of a human, and are able to perceive
and react to their environment. This class can be titled as the class of autonomous robots.
The other components of the implemented architecture, like Polite, run time adaption,
wildcards or nested state machines additionally improve the usability and allow users
to program autonomous robots in an easy and usable way. The abstraction of JetStorm
through PoliteVehicle finally builds an easy-to-use interface between this back end and
the autonomous Lego robots.

6
Conclusion and Future Work

The product of this work is a project which is capable of interacting with Lego Mind-
storms’ robots. It allows users to control the robot’s behavior by building a finite state
machine, whereas a better level of abstraction is supported through the implementation
of wilcards and the possibility of executing nested state machines. By integrating the
use of variables into our system, and with help of the Church-Turing Thesis, we proved
that our construct is Turing Complete and therefore able to calculate every computable
function.
We have met the previously set requirements and received a properly working system.
But still, the product can be extended and improved in many ways. In this section, we
will touch on some ideas for future work.

6.1 Asynchronous Processing
A new interesting feature would be to offer the possibility to run a nested state machine
asynchronously. That could especially be helpful if you have a robot with multiple
different robots. A user could e.g. let a state machine control the movement of the wheels
a nested machine control the movement of the arms. It is like the robot would learn
multitasking.
One can actually start a nested machine asynchronously already, by using PLProces-
sor>>start: instead of PLProcessor>>execute:, but this wouldn’t handle the Context
correctly. The submachine would have to create a new context instead of copying and
restoring the current context.

36

CHAPTER 6. CONCLUSION AND FUTURE WORK 37

Another idea would be to even let the execution of multiple transitions be asynchronous
or in other words let a transition have multiple next states and therefore splitting the
processing into multiple threads when triggering this transition. This behavior may not
seem to make a lot of sense with the Lego robots, but it does simulate Non-Deterministic
Finite Automata, which can for example be used for the evaluation of regular expressions.

6.2 Extending PoliteVehicle
The adaption to the JetStorm library through PoliteVehicle provides a more natural and
easy-to-read interface to interact with an Ev3Vehicle. Still there are a lot of possibilities
to improve this layer. On one hand, the list of commands of PoliteVehicle could be
extended, supporting more of the EV3s native commands and creating more abstractions
of combinations of those.

Also, PoliteVehicle is adjusted to only one kind of the great number of possible EV3
robots. More could be covered by the implementation of additional classes, or the
implementation of one adjustable class that could be configured to fit any kind of EV3
robot. In fact, PoliteVehicle is the only class which is associated to the Lego robot, so by
exchanging this class, this back end could be used to program any thinkable robot.

7
Anleitung zu wissenschaftlichen Arbeiten

7.1 Tutorial
This section provides a short tutorial to help getting started with Polite For EV3. It
contains Information on how to install and set up the project and a few examples to
create simple finite state machines to interact with an EV3 robot. It focuses on the
basic functions concerning the control of a connected robot, however the details of the
Graphical User Interace won’t be discussed since they are not part of this work. More
information about the GUI can be found in Stefan Borer’s work, Lego Playground [3].

7.1.1 Prerequisites
The EV3 Brick supports different ways for a connection with a device. Since this project
is based on run time programming, a connection via USB or Bluetooth was no option, so
we chose to support only Wi-Fi connections.
Unfortunately, the brick does not have the hardware to support Wi-Fi connections,
therefore a USB Wi-Fi adapter is necessary. Moreover, not every USB adapter is
compatible. On the official Lego Website1 they say:

[...] The NETGEAR N150 Wireless Adapter (WNA1100) is the recommended
Wi-Fi dongle for use with the EV3 Intelligent Brick.

1http://www.lego.com/en-us/mindstorms/support

38

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 39

7.1.2 Installation
The project was developed for Pharo 4.0, precisely in a Moose 5.1 image. You can
download the Moose 5.1 image or package at http://moosetechnology.org/
#install. If you are new to Pharo, you might want to read the Documentation first at
http://pharo.org/documentation.

Inside the Pharo VM, our Polite Lego project can be installed via the workspace, by
entering and executing the following.

Gofer new smalltalkhubUser: 'JanKurs' project: 'PoliteSmalltalk';
configurationOf: #PoliteSmalltalk; load.

(Smalltalk at: #ConfigurationOfPoliteSmalltalk)
perform: #loadDevelopment.

The project can also be found at http://smalltalkhub.com/#!/˜JanKurs/
PoliteSmalltalk.

7.1.3 Start and Connect
The project’s main GUI-object is called PLPlayground. So to start getting creative with
the robots, simply execute:

PLPlayground open.

The appearing GUI is splitted up in two sections. In the left panel you’ll find (from top
to bottom) a toolbar with control buttons, a workspace to enter and execute code and a
console in which the program will give the output of the executed code. The right panel
will give out an overview and a visualization of the current state machine, and it allows
the user to change the states and transition while the machine is being executed.

So let’s start by connecting a computer with the EV3 Brick. It is important that the
Brick and the computer are in the same Wi-Fi network. Also remember that the brick
needs a Wi-Fi adapter. A connection to a Wi-Fi network can be established by navigating
on the EV3 Bricks screen to Settings > WiFi. Once the Brick has managed to establish
the connection, you can find out its IP address in the menu section Brick Info. To connect
the Brick with the computer, click on the icon for connection in the top toolbar and
enter the Brick’s IP address in the appearing window.

http://moosetechnology.org/#install
http://moosetechnology.org/#install
http://pharo.org/documentation
http://smalltalkhub.com/#!/~JanKurs/PoliteSmalltalk
http://smalltalkhub.com/#!/~JanKurs/PoliteSmalltalk

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 40

Figure 7.1: Establishing a Connection

7.1.4 First Steps
For starters we’ll begin with some basic commands to introduce the most important
controlling objects.

PLRunTime is a global variable which allows you to access all objects you will need.
So in the example in Figure 7.1.4, by executing ’PLRunTime, robot, is connected’, we
fetch the robot object and ask if it is connected to the bridge. The robot object is of the
kind PoliteVehicle and was instantiated automatically while establishing the connection.
The other objects stored inside PLRunTime are called context, processor and log. We
will use them later in this tutorial.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 41

By clicking the green arrow, all code written in the workspace will be executed and if the
robot is connected, the console will return the value true.

Remember that the code is interpreted in Polite Smalltalk, which allows sentence-like
writing. For example, the method ’isConnected’ is here written as ’is connected’. Both
camel-case and sentence-case are accepted by the interpreter, however the identifiers
must be seperated by a colon.

7.1.5 Robot Commands
Now that we know how to access the robot, we can try out some basic commands. Below
is a list of the possible message to send to PoliteVehicle.

• driveForward, driveBackward. Starts driving forward/backwards at the default
speed.

• stop. Stops the robots motors.

• turnLeft, turnLeft:, turnRight, turnRight:. Turns the robot to the left/right at
the defaultSpeed and afterwards waits for defaultDelay-seconds. The amount of
degrees to be turned can be passed as parameter, the default being 90 degrees.

• turnRandom, turnRandomBetween:And:. Turns randomly to the left or to the right.
The range of degrees can be passed as parameter.

• beep, beepLong. Let the robot make a short or long beeping sound.

• color. Reads the color sensor and returns the name of the color as String. There are
seven different possible colors: black, blue, green, yellow, red, white and brown.

• distance. Reads the ultrasonic sensor and returns its value. The returned number is
the amount of millimeters to an obstacle in front of the robot.

• isTouched. Returns the value of the touchsensor; true if the sensor is touching
anything, false otherwise.

• isConnected. Asks if the object is currently connected to the Ev3Brick.

Furthermore there are getters and setters for all instance variables of PoliteVehicle.
So for example you can access the Ev3Vehicle from the JetStorm API, which supports
a great number of methods for the Ev3Brick. However to use these, one has to have a
closer look at this API, which can be interesting for experienced programmers but may
be complicated to understand for inexperienced ones.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 42

7.1.6 Building a State Machine
After learning the basics of how to control a robot, we can go a step further and create
some more complex behaviors through the concept of state machines. The following
example will create a state machine with three states: Start, Driving and End. Two
transitions are leading from Start to Driving and from Driving to End. The first is
triggered without a condition (and therefore called Epsilon-Transition) and will cause the
robot to ’drive forward’. The second is triggered on the robot’s distance sensor returning
less than 200 (millimeters) and will cause the robot to stop.

| start, driving, end |
start := PLStartState, new called: 'Start'

machine called: 'Watch your step'.
driving := PLState, new called: 'Driving'.
end := PLState, new called: 'End'.

start,
do: [:rt | rt, robot, drive forward]
go to: driving.

driving,
when: [:rt | (rt, robot, distance) < 200]
do: [:rt | rt, robot, stop]
go to: end.

PLRunTime, processor, start: start.

The creation of the states is pretty straightforward. The names you give them by calling
’new called:’ and ’machine called:’ are later represented in the visualization of the state
machine.

The creation of the transitions may look a bit more complicated. Since a transition
is stored in its origin state, a message with the necessary parameters must be sent to
this state to create a transition. So by calling ’PLState>>when:do:goTo:’ a transition is
added to this state with the condition passed as parameter after ’when:’, the action passed
after ’do:’ and the next state passed after ’goTo:’. If the ’when:’-Block is left out, the
condition will always be true and therefore the transition will be triggered immediately
after entering this state.
The condition and action are passed as executable Block-Closures. When executed, the
processor will pass the global variable PLRunTime to the block. By beginning the block
with [:rt — ...] we define the variable rt to be the PLRunTime variable so we can then
act upon it, e.g. to fetch the robot object.

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 43

7.1.7 Using the Context
To define some more complex behavior we want to additionally use the context of a state
machine. The context provides three handy elements: Timers, variables and wildcards.
In the next example we will add a timer and a wildcard to solve the following use case:

The robot should drive around, meaning that it should avoid objects by
turning around when approaching them. After doing this for thirty seconds,
the robot should stop.

This piece of code will build and start the desired state machine:

|start, end, driving, turning|
start := PLStart State, new called: 'Start'

machine called: 'Drive Around'.
driving := PLState, new called: 'Driving'.
turning := PLState, new called: 'Turning'.
end := PLState, new called: 'End'.

start, add to context: [:c | c, add timer: #MachineTimer]
start, add to context: [:c | c,

when: [:runtime |
(runtime, context, get time of: #MachineTimer) > 30]

do: [:runtime | runtime, robot, stop]
go to: end

start, do: [:rt | rt, robot, drive forward.]
go to: driving.

driving,
when: [:rt | (rt, robot, distance) < 200]
do: [:rt | rt, robot, stop]
go to: turning.

turning,
do: [:rt | rt, robot, turn random; drive forward]
go to: driving.

PLRunTime, processor, start: start.

Like in the previous example we build a state Driving with a transition triggering on
the distance sensor returning less than 200 millimeters. But instead of entering the end
state, the transition leads to the state Turning. In this state a transition is being executed
immediately (no condition) which causes the robot to turn around at a random amount of
degrees, start driving forward again and returning to the state Driving.

To make the machine reach an end state and stop after 30 seconds, we add a timer

CHAPTER 7. ANLEITUNG ZU WISSENSCHAFTLICHEN ARBEITEN 44

and a wildcard to the context. To do so, we use PLStartState’s method addToContext:.
The blocks passed to this method as parameter will be executed at the very beginning of
the state machine’s execution.

In the first block we add a timer called MachineTimer. The timer will instantly start.

Then we add a wildcard. This works just like adding a transition, but you add it to
the context instead of a state. This way it will be checked and can be triggered regardless
of the state the machine is currently in. So we define a comparison of the added timer as
condition, the halting of the robot as action and the End state as the successive state.

7.1.8 Further Instructions
With this knowledge and a bit of imagination a lot of different programs can be con-
structed for EV3 robots. Further instructions on the usage of the GUI, including nested
state machines, live-time interaction with the state machines and more can be found in
Stefan Borers work, Lego Playground [3].

Bibliography

[1] M. Lungu and J. Kurš, “On planning an evaluation of the impact of
identifier names on the readability and maintainability of programs,” in
USER’13: Proceedings of the 2nd Workshop on User evaluations for
Software Engineering Researchers, 2013, pp. 13 – 15. [Online]. Available:
http://scg.unibe.ch/archive/papers/Lung13a-Planning.pdf

[2] J. Kur, M. Lungu, O. Nierstrasz, and T. Steinmann, “Polite smalltalk - an
implementation,” Sep. 2016. [Online]. Available: http://dx.doi.org/10.5281/zenodo.
61578

[3] S. Borer, “Lego playground (to appear),” University of Bern, Bachelor’s thesis.

[4] J. Laval, “Jetstorm - a communication protocol between pharo and lego mindstorms,”
URIA – Ecole des Mines de Douai, Tech. Rep., 2014. [Online]. Available:
www.jannik-laval.eu/assets/files/papers/Lava14a-JetStorm.pdf

[5] J. Fabry and M. Campusano, “Live robot programming,” in Ibero-American Confer-
ence on Artificial Intelligence. Springer, 2014, pp. 445–456.

[6] D. R. Wright, “Finite state machines,” 2005, cSC215 Class Notes. Prof. David R.
Wright website, N. Carolina State Univ. Retrieved July 14, 2012.

45

http://scg.unibe.ch/archive/papers/Lung13a-Planning.pdf
http://dx.doi.org/10.5281/zenodo.61578
http://dx.doi.org/10.5281/zenodo.61578
www.jannik-laval.eu/assets/files/papers/Lava14a-JetStorm.pdf

	1 Introduction
	2 Related Work
	2.1 Lego Mindstorms
	2.2 Phratch with JetStorm
	2.3 Live Robot Programming
	2.4 Others

	3 The Gap
	3.1 Visual Programming Environments
	3.1.1 The Boundaries

	3.2 JetStorm
	3.2.1 The Limitations

	3.3 Polite
	3.3.1 Program Flow

	3.4 Run Time Adaption
	3.5 Summing Up

	4 Closing the Gap
	4.1 First Architectural Layer
	4.2 The Interaction
	4.2.1 JetStorm's Architecture
	4.2.2 Adapting JetStorm
	4.2.3 Introducing PoliteVehicle
	4.2.4 Initialization
	4.2.5 Wrapping Methods

	4.3 The Behavior
	4.3.1 Finite State Machines
	4.3.1.1 Using FSMs for Robotics
	4.3.1.2 Mealy Machines

	4.3.2 State Machine Architecture
	4.3.2.1 States and Transitions
	4.3.2.2 Special States
	4.3.2.3 Epsilon Transitions
	4.3.2.4 Wildcards

	4.4 Abstraction
	4.4.1 Nested State Machines
	4.4.2 Implementation of Nested Machines

	4.5 Computability
	4.5.1 Context Matters
	4.5.1.1 Global Access
	4.5.1.2 Execution of Nested Machines

	4.5.2 Turing Completeness

	4.6 The Execution Loop
	4.7 Run Time Programming

	5 Validation
	5.1 Turing Completeness
	5.1.1 Turing Machines
	5.1.2 Simulating Turing Machines
	5.1.3 Simulation

	5.2 Usability

	6 Conclusion and Future Work
	6.1 Asynchronous Processing
	6.2 Extending PoliteVehicle

	7 Anleitung zu wissenschaftlichen Arbeiten
	7.1 Tutorial
	7.1.1 Prerequisites
	7.1.2 Installation
	7.1.3 Start and Connect
	7.1.4 First Steps
	7.1.5 Robot Commands
	7.1.6 Building a State Machine
	7.1.7 Using the Context
	7.1.8 Further Instructions

