

Analysing Java System Properties

Bachelor’s thesis

at the

Software Composition Group (SCG),

Institute of Computer Science and Applied Mathematics,

University of Bern, Switzerland

By

David Wettstein

November 2013

Led by

Prof. Dr. Oscar Nierstrasz

Andrei Chiş

Abstract

In Java, System Properties are global variables in disguise: every class can

access them and modify their values. Thus, they suffer from the same pitfalls

as global variables: it is difficult to reason about their usage, they can

introduce hidden dependencies between classes, they can cause naming

conflicts, etc.

An analysis of several open-source Java systems revealed that System

Properties are a common presence. Given the sheer size and complexity of

these systems, manually reasoning about System Properties is no longer an

option; tool support is required.

To address these problems in this thesis we introduce the Property

Investigator, a tool for understanding the usage of System Properties. The

tool allows developers to identify all System Properties used within an

application, inspect their values and determined from where these values

were set. To make it accessible to developers we have integrated it into the

Eclipse IDE.

Acknowledgements

I would like to thank the people in the SCG group for providing me with

feedbacks and funny moments during the seminars.

My thanks go especially to Andrei Chiş for his support and inputs during the

implementation of the project.

Analysing Java System Properties 1 Introduction

David Wettstein, 8. December 2013 4

Contents

1 Introduction .. 5

2 Java System Properties ... 7

2.1 What are Java System Properties? ... 7

2.2 Identifying Java System Properties ... 8

2.3 Usage of Java System Properties ... 9

3 Getting the data .. 12

3.1 What is the necessary data? ... 12

3.2 Java Debug Interface (JDI) .. 13

3.2.1 What is JDI? .. 13

3.2.2 Alternative solutions .. 13

3.3 The Properties Analyser .. 15

3.3.1 The Properties Model .. 16

3.4 Measurements .. 16

4 The Properties Investigator .. 18

4.1 Use cases ... 18

4.2 The Properties Visualizer .. 19

4.3 How can we use the plugin? .. 20

5 Future work .. 23

6 Conclusions .. 24

7 References .. 25

Analysing Java System Properties 1 Introduction

David Wettstein, 8. December 2013 5

1 Introduction

1.1 Global variables

A global variable is a variable with global scope. This means it can be accessed from anywhere in an

application and its value can be changed at any time. They are often used to communicate between

parts of a system that do not share a direct association.

Global variables can cause a wide range of problems, thus, their usage is considered a bad practice.

For example, since they can be freely accessed from anywhere within an application they have a

negative effect on code reuse and software testing. Furthermore, it can be difficult to understand the

reason behind a global variable if its usage is scattered across the entire code base. Last but not least,

global variables can cause naming conflicts when integrating modules or concurrency issues when

used in multithreaded applications.

1.2 Java System Properties

In Java, System Properties are used to describe the current environment (e.g. the current user, the Java

version, the operating system). They are part of the standard library and can be freely accessed through

public methods. Developers are allowed to define and use their own custom System Properties or

change the values of the default ones. Therefore, Java System Properties behave like global variables

and inherit all their negative effects.

1.3 Challenges

Given the sheer size and complexity of today’s software systems, manually reasoning about the usage

of System Properties does not scale. Tool support is needed to automate and ease this activity.

Such tools must be able to locate all System Properties used within an application. This is not a

straightforward requirement as System Properties are identified using String objects whose values

might only be known at runtime. For example, the identifier of a System Property can be computed by

concatenating the results of several method calls. Therefore, this information can only be obtained by

running the application.

Just knowing what System Properties are present within an application is not enough. For each one

developers need to identify the code locations that reference it. Then, for each code location where a

System Property is accessed, they need to know what the value of the property is. To make matters

worse, during the execution of the program the same call to a System Property can return different

values.

Last but not least, understanding how a System Property got to have a certain value is an important

aspect. To support this, tools should allow developers to determine the previous code location that

changed the value of a System Property.

Analysing Java System Properties 1 Introduction

David Wettstein, 8. December 2013 6

1.4 A tool for reasoning about System Properties

We addressed the challenges mentioned above by implementing a dedicated tool, the Properties

Investigator. To cover all the use cases we selected an approach based on dynamic analysis. The tool

that we propose has two components. The first component, the Analyser, is responsible for extracting

the required information. The second component, the Visualizer, is responsible for displaying this

information to the user. These two components form an Eclipse plugin.

1.5 Outline

The remaining of this thesis is structured as follows:

- Chapter 2 describes Java System Properties in more details, looks at their usage within

various applications and discusses the problems that they can cause.

- Chapter 3 focuses on the data need to reason about System Properties and presents the first

component of the tool, the Analyser.

- Chapter 4 introduces the second component of the tool, the Visualizer, and shows how the

Properties Investigator can be used to understand the usage of System Properties.

- Chapter 5 discusses how the proposed tool can be improved and Chapter 6 concludes the

thesis

Analysing Java System Properties 2 Java System Properties

David Wettstein, 8. December 2013 7

2 Java System Properties

In this chapter we introduce Java System Properties. We show how they can be accessed and modified

and look at their usage within real world applications.

2.1 What are Java System Properties?

In Java instances of the class Properties are used to maintain a collection of key/value pairs. The

Properties class is defined in the package java.util and inherits from java.util.Hashtable.

Hashtable implements the interface java.util.Map<K,V>, which allows the keys and the values

to have different types. As a result of the inheritance relation the Properties class also inherits this

interface. However, the Properties class discourages the usage of this interface and instead

provides an alternative API, in which both keys and values are String values. Storing other types of

values or keys will lead to errors when working with a Properties object. The primary use case of

the Properties class is to manage configuration values.

The System class from the Java SDK is a utility class providing several important features, like access

to the standard input, standard output and standard error streams, access to environment variables, etc.

It further manages a global instance of a Properties object, containing information about the

configuration of the current working environment. System Properties in Java are nothing more than

properties stored in this object.

As it is stored in a private static field, the Properties object can only be accessed through methods

of the System class, listed in Table 1.

Table 1: Public static methods for working with the ‘properties’ field in the class System (Oracle, 2013)

Method Description

getProperties() Returns the current system properties.

getProperty(String key) Gets the system property indicated by the specified key.

getProperty(String key, String def) Gets the system property indicated by the specified key.

setProperties(Properties props) Sets the system properties to the Properties argument.

setProperty(String key, String value) Sets the system property indicated by the specified key.

Reading the values of System Properties can be done using one of the first three get methods. The

difference between these methods is, on the one hand, in the return type and on the other hand in their

parameters. getProperties() returns the Properties object responsible for storing System

Properties. The value of a specific property can be accessed based on its key using

getProperty(String key) or getProperty(String key, String defautValue). The

first will return null if there is no property with the given key, while the second will, in the same

situation, return the defautValue parameter.

Creating custom System Properties or changing the value of existing ones can be done in multiple

ways. After the program has started, the entire Properties object storing the current System

Analysing Java System Properties 2 Java System Properties

David Wettstein, 8. December 2013 8

Properties can be changed using the method setProperties(Properties props). Changing the

value of a single System Property is done with the method setProperty(String key, String

value).

Changes made to the Properties object storing System Properties are not persistent. They will not

exist in a future invocation of the Java interpreter as System Properties are re-initialized each time the

Java runtime starts.

A third mechanism to modify System Properties or create new ones is with the -D option of the Java

Virtual Machine. For example, launching a Java program with the line java –Dfoo=”some

string” SomeClass will set the System Property foo to the value ”some string”.

Table 2: Possible ways to set one or multiple properties

Option Example

Method setProperties(Properties props)
java.util.Properties props = new Properties();

System.setProperties(props);

Method setProperty(String key, String value) System.setProperty(”custom.property”, ”value”);

Console -Dproperty=”value” java –Dfoo=”some string” SomeClass

Since the System class is public and all methods from Table 1 are also public, System Properties can

be modified from within the entire code base. This further raises security concerns, especially when

working with applets, where potentially untrusted code is running on the virtual machine of a user. To

eliminate these security risks, Java uses a security manager to control how System Properties are

accessed at runtime. This is implemented by the class java.lang.SecurityManager.

In the context of System Properties, the system checks if the code accessing a property has the

necessary permission before performing any operation. This is done by calling the method

checkPermission(Permission perm) of the SecurityManager, where a permission of the

class java.util.PropertyPermission (extends java.security.Permission) is used. The

possible permissions are read, write or none.

2.2 Identifying Java System Properties

Because Java System Properties behave like global variables, they exhibit similar problems. These

problems range from hidden dependencies that increase the difficulty of writing unit tests to naming

conflicts. These problems can be addressed only if developers are able to understand how Java System

Properties are used within an application. To achieve this they have to answer the following questions:

 From where is a System Property set?

 Where is it read?

 How can we determine where was a certain value set?

 What are all the values of a specific System Property during the execution?

In order to answer these questions, we have to locate all the places where a System Property is used.

Before we can think about how we could get the necessary information, we have to look how a System

Property can be specified.

Analysing Java System Properties 2 Java System Properties

David Wettstein, 8. December 2013 9

There are four different possibilities to specify a custom System Property (we illustrated them using a

setProperty(..) call):

 The simplest possibility is to hard-code the key of a Property with a string literal in the

method call.

 One could also define a (static final) constant variable containing the key as a String object,

and call the methods using this constant variable.

 The third possibility is to use a variable. This variable can either be an instance variable, a

local variable or a method parameter.

 The fourth way is to compute the key of a property at runtime (using a method call, string

concatenation, etc.).

The keys of the properties defined in the first two ways can be known at compile time. On the other

hand, the keys of the Properties defined with the third and fourth mechanism are only known at

runtime. To determine these values, one has to use dynamic analysis.

2.3 Usage of Java System Properties

To learn how System Properties are used in practice, we performed an analysis on several Java

projects from Pangea1, an easy-to-setup repository for empirical studies. The analysis was done using

Moose, an open-source platform for software and data analysis. The Java projects contained by Pangea

were taken from the Qualitas Corpus2 version 20120401 including 111 open-source Java systems.

The average size of the analysed systems is 100’809 NCLOC (the non-comment lines of code). They

contain on average 780 classes. There are three projects, which we did not include in our analysis as

1 http://www.moosetechnology.org/docs/pangea
2 http://www.qualitascorpus.com

Figure 2.3: Key of property defined by variable

Figure 2.4: Key of property defined by string concatenation and method call

Figure 2.1: Key of property defined by string literal

Figure 2.2: Key of property defined by constant variable

http://www.moosetechnology.org/docs/pangea
http://www.qualitascorpus.com/

Analysing Java System Properties 2 Java System Properties

David Wettstein, 8. December 2013 10

their large size caused parsing problems: Eclipse (two and a half million NCLOC), gt2 (half a million

NCLOC) and Netbeans (two million NCLOC).

For each project we identified all the places where a getProperty(..) or setProperty(..)

method is called. Then we classified the calls in six categories, depending on the way in which their

parameters are specified. This classification is presented in Table 3. One observation regarding this

classification is that we consider a variable to be a constant if its name contains only uppercase letters.

We did not explicitly check for the final and static modifiers.

Table 3: Categories used to classify the creation of a String object.

Category Description

Literals Hardcoded Strings like “custom.property”

Constants Strings in Java constants like CUSTOM.PROPERTY

Variables String variables that are not constants like propertyVar

Invocations Method invocations returning a string like propertyMethod()

Concatenations String concatenations like “custom.” + ”property” or even with methods

Constructors Constructor calls like new String(“custom.property”) or new Foo(a,b)

Out of 111 projects, 107 are using System Properties. A few projects invoked the method

getProperty(…) more than 200 times, but 75% of the projects invoke it less than 40 times. Calls to

the method setProperty(…) were less frequent, as we can see in the diagrams below. Each bullet in

the diagrams represents one of the 107 projects in Pangea that uses System Properties.

Projects: Number of get calls:

25% quartile 4 or less calls

median 13 or less calls

75% quartile 39.5 or less calls

100% quartile 407 or less calls

Projects: Number of set calls:

25% quartile 0 or less calls

median 1 or less calls

75% quartile 6.5 or less calls

100% quartile 178 or less calls

Figure 2.6: Total calls on setProperty(..) per project

Figure 2.5: Total calls on getProperty(..) per project

Analysing Java System Properties 2 Java System Properties

David Wettstein, 8. December 2013 11

Projects making heavy use of System Properties include: Apache Tomcat, Apache Ant, Apache

Hadoop, Azureus, JBoss.

Table 4: Results of analysis

Method Total Literals Constants Variables Invocations Concatenations Constructors

getProperty(..) 4353 3886 239 200 6 19 3

setProperty(..) 739 572 122 42 2 1 0

Table 4 presents the results of the analysis. Out of all the calls of interest, 4353 were

getProperty(..) calls (788 specified a default value in case the property did not exist). Because

the last three categories had a shared percentage of less than one percent, we combined them into one

category named others.

Figures 2.7 and 2.8 show the distribution of the results. We can see that, in most cases, Java System

Properties are identified using string literals or constant variables. The value of these String objects is

known at compile time. However, there are also cases, when the value can only be determined at

runtime. As our aim in towards a complete analysis, we want to be able to also cover those cases.

To conclude, this analysis reveals that System Properties are used within Java systems. It further

shows that they are identified not only using string literals and constants but also using String objects

stored in variables or returned by method calls. This motivates the need to use an approach based on

dynamic analysis to help developers reason about them.

Figure 2.7: Calls to getProperty(..) Figure 2.8: Calls to setProperty(..)

Analysing Java System Properties 3 Getting the data

David Wettstein, 8. December 2013 12

3 Getting the data

This chapter looks at what kind of data developers need to successfully reason about System

Properties. It then provides a short description of the Java Debug Interface (JDI), the infrastructure

selected for extracting these data along with some alternatives. The second part of this chapter is about

the Properties Analyser, the first half of the proposed tool. The chapter concludes by presenting some

performance measurements.

3.1 What is the necessary data?

Before we can start implementing a tool that analyses calls on System Properties, we have to figure

out what data can help developers reason about these properties.

First, to map a property call to a property, we need its name (the key used in the call). Then we need to

know the type of the call (get/set) and the value of the property at that call. We also need the code

location of a call: class, method and line number. Furthermore, we need a chronology of these calls, so

that we can determine what call set a value and what calls used that value.

After identifying the necessary data, we need to decide if we use a static or a dynamic approach to

extract it, in other words we need to decide if we want to run the application or not. With a static

approach we could find out the locations of the calls. We would also get the properties defined in a

static way (string literal or constant). This means that the keys created, for example by using a method

or a string concatenation, may not be obtained. Getting the values of System Properties using a static

approach would be much harder.

From Chapter 2 we already know that the keys used to identify System Properties are also defined

dynamically. With a static analysis of the properties we would not get these calls. Although there are

not many, these properties could be crucial. Therefore, we decided to use a dynamic approach for

analysing the calls on Java System Properties based on the Java Debug Interface (JDI), a component

of the Java Platform Debugger Architecture (JPDA).

Analysing Java System Properties 3 Getting the data

David Wettstein, 8. December 2013 13

3.2 Java Debug Interface (JDI)

3.2.1 What is JDI?

The Java Debug Interface (JDI) is a high-level application-programming interface (API) belonging to

the Java SE platform. It is the top layer of the Java Platform Debugger Architecture (JPDA).

The Java Debug Interface offers a mechanism for controlling and querying a Java virtual machine

(VM). This functionality is useful for applications like debuggers that have to interact with a running

system. Furthermore, JDI provides introspective access to the VM. This means that with JDI we have

access not only to the state, but also to the VM’s classes, arrays, interfaces, primitive types and also

the instances of all those types.

Moreover, JDI lets users control a virtual machine’s execution explicitly. One can suspend and resume

threads, set breakpoints or watchpoints. If a thread is suspended, its state, local variables and stack

trace can be inspected. Users can also be notified when different kinds of events are raised. For

example, events are triggered when exceptions are raised, classes are loaded or threads are created.

We are using JDI to connect to a remote virtual machine and enable event requests for calls accessing

System Properties. Additionally, we use JDI for processing the incoming events from the remote

virtual machine and extracting the necessary data out of them.

3.2.2 Alternative solutions

3.2.2.1 Aspect Oriented Programming, AspectJ

As another possibility of dynamic analysis we looked at AspectJ, the implementation of Aspect

Oriented Programming (AOP) for Java. Aspect Oriented Programming is a programming paradigm

aiming to increase the modularity of a system by allowing the separation of cross-cutting concerns. A

cross-cutting concern affects other concerns in an application and often cannot be decomposed from

the rest of the application when using object-oriented or procedural programming. This can lead to

Figure 3.1: Overview of JPDA layers

Analysing Java System Properties 3 Getting the data

David Wettstein, 8. December 2013 14

code duplication or increased dependencies. A common cross-cutting concern is, for example, data

logging. By using AOP, it is possible to encapsulate such cross-cutting concerns into aspects.

AspectJ extends Java with a new concept: join points. It further adds several new constructs: pointcuts,

advices, inter-type declarations and aspects. Pointcuts and advices influence the execution flow,

whereas inter-type declarations can alter the class hierarchy of a program. These constructs are then

encapsulated into aspects. To understand AspectJ better, the constructs are briefly described in the

Tables 5 and 6.

Table 5: Description of the constructs in AspectJ.

Type Definition Example

Join Point Well-defined point in the program flow A method call

Pointcut
Selects each join point with a specified

declaration

A method call on the method ClassA.methodA(int)

of class ClassA with one integer parameter

Advice
Piece of code that is executed when a

join point is matched by a pointcut
See Table 6 and Figure 3.2 (Advice is between {…})

Inter-type

declaration

Add custom methods or fields to an

existing class from within an aspect
Add method someMethod() to SomeClass

There are three different types of advices. The difference between them is the moment at which the

defined piece of code is being executed.

Table 6: Types of advices in AspectJ

Type Definition Example

Before advice
Code is executed before the program

continues with a selected join point

Before calling System.getProperty(..), do

something

After advice
Code is executed after the program has

continued with a selected join point

After calling System.getProperty(..), but

before the return value is returned, do something

Around advice

Code is executed when a join point is

selected and has explicit control over the

resumption of the join point

When calling System.getProperty(..), do

something and control resumption of the call

We could use AspectJ to get the required data by capturing calls on System Properties using pointcuts

and aspects to extract the actual data.

We decided not to use AspectJ, since we could not get all required data. On the one hand, we do not

get calls from reflection. For example, a pointcut call(void run()), won’t select a call using

reflection, like ((Method) run).invoke(args). Therefore, we would have to implement a

workaround. On the other hand, we also do not get calls from external libraries with the usual

pointcuts. There are some approaches to solve this problem, for example changing the byte code of the

library or using load time weaving, but they are not trivial to implement.

Figure 3.2: Before advice when the pointcut selects the join point of calling a

method *Propert* of class java.lang.System

Analysing Java System Properties 3 Getting the data

David Wettstein, 8. December 2013 15

3.2.2.2 Instrumenting class java.lang.System

A second alternative consists in instrumenting the class System from the Java Standard Library. We

did not use it, as it would have required shipping our adapted JDK with the tool. This could end up

causing compatibility or update problems. Furthermore, instrumenting core Java classes could cause

additional problems, since the Java Quick Starter preloads some of the classes during the start-up of

the operating system (Haase, 2007).

3.3 The Properties Analyser

After identifying the necessary data and the means to extract it, we are able to look at the Properties

Analyser. The Analyser is the first half of our tool.

The Analyser performs three main tasks:

 It connects to a remote virtual machine and gets the events of interest (calls to methods

accessing/altering System Properties) by using the Java Debug Interface (Figure 3.3 → 1).

 It extracts the required data from these events and stores it in the Properties Model (2).

 It persists the created Properties Model in a XML file (3).

After connecting to the virtual machine running the target application in debug mode, the Analyser

uses JDI to get notified when the events of interest occur. This is achieved by creating breakpoint

requests. Because we are only interested in events from the class System, a class filter is used.

During the execution of the program, the Analyser receives the events of interest. While JDI requests

come from the debugger side, events originate on the debuggee side. Events inform the debugger

Figure 3.3: Sketch of the whole workflow of our tool with focus on the first half, the Analyser

Analysing Java System Properties 3 Getting the data

David Wettstein, 8. December 2013 16

about changes of the state in the debugged application (e.g. application hits a breakpoint). Out of these

events the Analyser gets the data about the calls on System Properties. The Properties Model, at which

we will look next, is then populated using these data.

3.3.1 The Properties Model

To store the required data we designed a model consisting of a list of Property objects stored by an

instance of a PropertiesModel class. For each System Property, called at least once, we create a

new Property object. A Property object has two attributes, a name and a list of CallSite objects.

A CallSite has a Location, identifying the class, method and line number of the associated call,

and a list of PropertyValue objects. Each PropertyValue object stores a value of the

corresponding Property at that call location. A list is required, as during execution, the value of a

System Property can change at a specific call location.

To order the calls to a System Property, we use a static integer variable, id. Every time a new

CallSite or a PropertyValue is created, the id is being increased. This approach works, as when

an event is triggered, JDI block the entire virtual machine; thus the order is preserved even in

multithreaded contexts.

After getting the data and creating the model, we export it into an XML file. To simplify this step, our

tool uses the Java Architecture for XML Binding (JAXB) to marshal and unmarshal objects.

3.4 Measurements

To determine the speed of the Analyser, we performed a series of measurements on several simple

examples. The measurements were done using the features provided by the class

java.lang.System; the elapsed time was computed by using BigDecimal numbers.

Figure 3.4: UML diagram of important objects in Properties Model

Analysing Java System Properties 3 Getting the data

David Wettstein, 8. December 2013 17

The code above measures the time it takes for the whole workflow of the Analyser to complete. This

includes starting the tool, connecting to the remote virtual machine, constructing the model and finally

exporting the model to an XML file. To have a reference point, we did a first series of measurements

without using the Analyser.

Table 7: Results of the measurements in seconds

(System: CPU i7-2600K @ 3.4GHz, RAM 16 GB DDR3 1333 MHz, HD 1TB SATA/600 7200 RPM, Windows 7)

Method With JDI: Without JDI:

1000 Get Calls 3.3768 s 0.0005 s

1000 Set Calls 4.8402 s 0.0027 s

1000 Get and Set Calls 6.9876 s 0.0035 s

Junit Test (1000 Get Calls with an assert) 15.0524 s 0.0015 s

Demo App 2.5386 s 0.0036 s

The results of the measurements are shown above in Table 7. For each one we run the application five

times and took the lowest value.

As the results show, there is a significant decrease in performance when the tool is used. A possible

explanation for this degradation is that we use two JDI events, MethodEntryRequests and

MethodExitRequests, although in the end we are using only MethodExitRequests. Additionally,

by using JDI the Java virtual machine switches to interpreted-only mode (like when using the JVM

option -Xint). As a result, compilation to native code is disabled and all bytecodes are executed by

the interpreter. Therefore, the performance decreases. In his bachelor’s thesis, Andreas Elsner from the

University of Paderborn in Germany got similar results (Elsner, 2004).

Another reason for the big times with JDI could be the filtering of events. Although we filter the

events with a class filter (java.lang.System), the virtual machine will still send events for all

classes to the Java Debug Wire Protocol (JDWP) agent. The agent filters then the events and sends the

filtered results to JDI.

Figure 3.5: Snippet of the main method in the class VMHandler

Figure 3.6: Simple application, which does 1000 set calls in a for-loop

Analysing Java System Properties 4 The Properties Investigator

David Wettstein, 8. December 2013 18

4 The Properties Investigator

In this chapter we present the Properties Investigator, the proposed tool for reasoning about System

Properties. We first look at some possible use cases of the Properties Investigator. We then describe

the second half of the tool, the Visualizer. Finally we explain how the tool can be used.

4.1 Use cases

4.1.1 What System Properties am I using in my application?

When working with a large number of System Properties one could forget which names are already

used. To avoid naming conflicts one would have to go through the whole code of the application and

list the names.

Our tool provides a convenient way to automate this task. It performs an analysis that reveals the

names of all System Properties used at least once in the application.

4.1.2 What values do System Properties have in my application?

Another common question that appears when working with System Properties is ‘What are the

runtime values of a given Property’. Unfortunately, this information is not always obviously from the

code. Without a dynamic analysis, one has to collect it manually.

Our tool provides this information out of the box. Every call to a System Property is augmented with

all the values that occur at runtime. Furthermore, for a specific System Property, one can display an

overview showing the previous and the next value of that property (if the property had more than one

value).

4.1.3 From where are System Properties called within my application?

After the analysis, the plugin shows an overview of all calls and allows developers to go directly into

the source code to see the locations. Furthermore, the tool makes it possible to navigate

chronologically through the calls on a System Property.

Analysing Java System Properties 4 The Properties Investigator

David Wettstein, 8. December 2013 19

4.2 The Properties Visualizer

The goal of this component is to present the extracted data to users and help them understand the

usage of System Properties. It is implemented as an Eclipse plugin.

Like the Analyser, the Visualizer has to accomplish three tasks:

 After the Analyser has finished the analysis and exported the data into an XML file, the

Visualizer imports it and recreates the Properties Model (Figure 4.1 → 4).

 Then it creates an Eclipse view and populates it with data from the Properties Model (5).

 Once this is completed it allows user to explore and navigate through the data (6).

The view of the Visualizer consists of two parts. On the left there is a tree list of all System Properties

encountered during the analysis, along with their call-sites. If a developer is only interested in specific

properties or call-sites, he can use the filter from the top of the property list.

After selecting a property or a call-site (Figure 4.2 → 1), the corresponding values are shown in the

table from the right part of the view (2). Furthermore, the table also shows the previous and the

 2

Figure 4.2: Overview of the Visualizer

 3

 4

 1

Figure 4.1: Sketch of the whole workflow of our tool with focus on the second half, the Visualizer

Analysing Java System Properties 4 The Properties Investigator

David Wettstein, 8. December 2013 20

Figure 4.5: Java section of Eclipse views

following get and set calls on the selected property, if present (3). By hovering on a value, the plugin

view will display the previous or next values directly in the popup (4).

4.3 How can we use the plugin?

The Visualizer, together with the Analyser, forms the Properties Investigator. In this section we will

look at how the tool can be used, as a whole. The first step is to launch the application, for which the

usage of the System Properties has to be traced, in debug mode. To do this, the following arguments

have to be passed to the Java Virtual Machine (VM) that will run the application:

 -Xdebug -Xrunjdwp:transport=dt_socket,address=8000,server=y,suspend=y

With these arguments the remote VM runs the application in debug mode with the JDWP transport

option “dt_socket” on port “8000”. Furthermore, the application is suspended until the debugger has

connected and resumed the remote VM.

Now the plugin can be started by right-clicking on the corresponding project in the Project Explorer or

Package Explorer and selecting the command “Analyse System Properties Calls”. This resumes the

VM and the Analyser starts collecting the data.

When the application has finished executing the plugin automatically opens the Properties View3,

showing the obtained data, if it is not already opened. It is also possible to open the view manually

from the register “Window → Show view → Other…”.

Henceforth, the data about the obtained calls on Java System Properties is displayed in the view of the

Visualizer, alphabetically sorted by the names of the properties. As we already saw, the list containing

3 All the screenshots were taken after an analysis of the application Apache JMeter.

Figure 4.3: Status info from the VM of the launched application

Figure 4.4: Bottom of the right-click menu of a Java project

Analysing Java System Properties 4 The Properties Investigator

David Wettstein, 8. December 2013 21

the property names is implemented as a tree, so it is possible to click on a specific property to see its

call-sites. Additionally, to see a call-site directly in the code, simply double-clicking on it will open

the source file, when available.

In this list we find all the names of the properties and the locations from where they were called. As

mentioned in Chapter 4.1, two of the use cases were about getting this information.

The text field at the top of the list of property names, can be used to filter the properties using regular

expressions with a ‘*’ for any string or a ‘?’ for any character. This filter is useful when searching for

properties with a specific name or when trying to locate properties called from a specific class or

method.

After selecting a property, the values of all call-sites from where that property is accessed are shown in

the right half of the view. By selecting a specific call-site in the properties list, the view will only show

the values for that call-site.

In a label right above the table (Figure 4.7 → 0) we can see either the name of the currently selected

property and the number of call-sites from where it was accessed, or the location of the currently

selected call-site.

The first column of the table shows the type of the call-site (1): get or set. In the second column the id

of the value is shown (2). As we already know, the id is a static variable and is increased for every new

value. The values of the selected property are displayed in the third column (3). To see the location of

a value directly in the source code, it is possible to double-click on the value.

Figure 4.7: The table with the values of a selected property

 0

 1 2 3 4

Figure 4.6: Filtered list of properties by class name

Analysing Java System Properties 4 The Properties Investigator

David Wettstein, 8. December 2013 22

The remaining columns show the previous, respectively the next calls on the selected property (4).

These columns show the corresponding call-site. When double-clicking on one of these call-sites the

view opens and displays it in the table of values and also opens the source file, if available. This

implies that it is possible to navigate through the call-sites of a property.

Knowing the order in which the values were set, is also a use case we defined above. Navigating

through the call-sites can help developers understand how a property got to have a certain value.

Last but not least, a tool tip is displayed when hovering over an item. In the properties list the tool tip

shows information about the call-site, like the class in which the property was called. In the right side

of the view, where the values are displayed, the tool tip shows directly the previous and next values of

the hovered value. Using tooltips this information is accessible without switching the call-site.

Figure 4.8: Tool tip of a Property Value

Analysing Java System Properties 5 Future work

David Wettstein, 8. December 2013 23

5 Future work

5.1 Properties Analyser

The Properties Analyser has some limitations as we only trace calls to the methods

getProperty(..) and setProperty(..) of the System class. However, System Properties can

also be accessed using the methods getProperties() and setProperties(..), working with

the entire Property object. For example, importing System Properties from a file would most likely

use these methods.

A second problem with the current implementation is that it can take a long time to extract the

necessary data. To address this, the Analyser should be optimised. The question here is how far the

tool could be optimised, since we are limited by the speed of the Java Debug Interface.

5.2 Properties Visualizer

On the side of the Eclipse plugin, the process of starting the tool should be simplified. Users should

not have to manually launch the application in debug mode. This could be addressed by providing a

dedicated launch configuration.

Another feature that could improve the user experience is a tooltip showing up directly in the code

editor of Eclipse, when hovering over a call involving a System Property. When reading code

developers would immediately see what value was returned by a getProperty(..) call, or what

value was overridden by a setProperty(..) call, after an analysis of their application.

Analysing Java System Properties 6 Conclusions

David Wettstein, 8. December 2013 24

6 Conclusions

System Properties are a common presence within Java applications. Since they behave like global

variables, they are difficult to understand. This problem cannot be manually addressed given the

complexity of today’s systems. Apart from that, identifying the System Properties used from a method

or a class is not always possible without running the program.

Therefore, developers need tool support to understand the usage of Java System Properties. In this

thesis we have implemented such a tool, the Properties Investigator. To get the necessary information

we used an approach based on dynamic analysis implemented using the Java Debug Interface. We

then display this information to the user by using an Eclipse plugin. Using it developers can view the

values and navigate through the call-sites of System Properties. As a result, they are able to better

understand the usage of Java System Properties within the traced applications.

Analysing Java System Properties 7 References

David Wettstein, 8. December 2013 25

7 References

Eclipse. (2013, 09 08). Introduction to AspectJ. Retrieved from Eclipse AspectJ Docs:

http://eclipse.org/aspectj/doc/released/progguide/starting-aspectj.html

Elsner, A. (2004, 09). Selektive Aufzeichnung von Laufzeitinformationen bei der Ausführung von

Java-Programmen. Bachelor's Thesis, 41-42. Paderborn, Germany. Retrieved 10 28, 2013,

from http://www.fujaba.de/uploads/tx_sibibtex/BachelorAElsner.pdf

Haase, C. (2007, 05). Consumer JRE: Leaner, Meaner Java Technology. Retrieved 10 26, 2013, from

Oracle Technology Network, Articles, Java Platform:

http://www.oracle.com/technetwork/articles/javase/consumerjre-135093.html

Oracle. (2013). Java™ Platform Debugger Architecture (JPDA). Retrieved 09 05, 2013, from Oracle

Java™ SE 7 Documentation:

http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/index.html

Oracle. (2013, 09 16). Java™ SE 7 API class System. Retrieved from Oracle Java™ SE 7 API:

http://docs.oracle.com/javase/7/docs/api/java/lang/System.html

Wikipedia. (2013, 08 30). Global variable. Retrieved from Wikipedia:

http://en.wikipedia.org/wiki/Global_variable

