
 

 

 

 

 

 

 

Analysing Java System Properties 
Implementation 

 

 

 

 

 

 

 

Supplementary documentation to the Bachelor’s thesis 

at the 

Software Composition Group (SCG), 

Institute of Computer Science and Applied Mathematics, 

University of Bern, Switzerland 

 

 

 

 

 

 

 

By 

David Wettstein 

November 2013 

 

 

 

 

Led by 

Prof. Dr. Oscar Nierstrasz 

Andrei Chiş 

 

 

  



Abstract 

 

This documentation describes the implementation of the Properties 

Investigator. It introduces the Java Platform Debugger Architecture (JPDA), 

looks at the Java Debug Interface (JDI) and then presents the two main 

components of the proposed tool, namely the Analyser and the Visualizer. 

 

 



Analysing Java System Properties Contents 

David Wettstein, 8. Dezember 2013  3 

Contents 

 

1 Standard System Properties .............................................................................................................. 4 

2 The Java Platform Debugger Architecture (JPDA) .......................................................................... 5 

2.1 Introducing JPDA .................................................................................................................... 5 

2.2 Working with JPDA ................................................................................................................ 5 

3 Implementation of Properties Analyser and Model ......................................................................... 8 

3.1 VMUtils and JDI ..................................................................................................................... 8 

3.2 The Properties Model ............................................................................................................ 10 

4 Implementation of Properties Visualizer........................................................................................ 13 

4.1 Implementing an Eclipse plugin ............................................................................................ 13 

4.2 The Properties Visualizer ...................................................................................................... 14 

4.2.1 PropertiesViewComposite ................................................................................................. 15 

4.2.2 DataComposite .................................................................................................................. 15 

4.2.3 Other functionality............................................................................................................. 15 

5 References ...................................................................................................................................... 17 

 

 



Analysing Java System Properties 1 Standard System Properties 

David Wettstein, 8. Dezember 2013  4 

1 Standard System Properties 

 

From the thesis we know the various issues that can arise when using System Properties in Java. 

Below is a list containing the standard System Properties in Java. They are initialized when the Java 

Virtual Machine is launched. Apart from them, users are free to define their own custom properties. 

 

Table 1: The standard system properties in Java 7, (Oracle, 2013) 

Key Description of Associated Value 

java.version Java Runtime Environment version 

java.vendor Java Runtime Environment vendor 

java.vendor.url Java vendor URL 

java.home Java installation directory 

java.vm.specification.version Java Virtual Machine specification version 

java.vm.specification.vendor Java Virtual Machine specification vendor 

java.vm.specification.name Java Virtual Machine specification name 

java.vm.version Java Virtual Machine implementation version 

java.vm.vendor Java Virtual Machine implementation vendor 

java.vm.name Java Virtual Machine implementation name 

java.specification.version Java Runtime Environment specification version 

java.specification.vendor Java Runtime Environment specification vendor 

java.specification.name Java Runtime Environment specification name 

java.class.version Java class format version number 

java.class.path Java class path 

java.library.path List of paths to search when loading libraries 

java.io.tmpdir Default temp file path 

java.compiler Name of JIT compiler to use 

java.ext.dirs Path of extension directory or directories 

os.name Operating system name 

os.arch Operating system architecture 

os.version Operating system version 

file.separator File separator ("/" on UNIX) 

path.separator Path separator (":" on UNIX) 

line.separator Line separator ("\n" on UNIX) 

user.name User's account name 

user.home User's home directory 

user.dir User's current working directory 

 

  



Analysing Java System Properties 2 The Java Platform Debugger Architecture (JPDA) 

David Wettstein, 8. Dezember 2013  5 

2 The Java Platform Debugger Architecture (JPDA) 

 

In this chapter we introduce the Java Platform Debugger Architecture (JPDA) and look at how it can 

be used to write debugging applications. 

 

2.1 Introducing JPDA 

The Java Platform Debugger Architecture is a debugging architecture with multiple layers. It allows 

developers to create applications for debugging that do not depend on the platform, the VM 

implementation or the JDK version. 

As we can see in Figure 2.1, JPDA consists of three layers. At the back-end there is the Java VM Tool 

Interface (JVMTI). This interface replaces the old Java Virtual Machine Debug Interface (JVMDI) and 

defines the debugging services provided by the virtual machine. The Java Debug Wire Protocol 

(JDWP) is then responsible for the communication between the debuggee and debugger processes. 

Finally, at the front-end is the Java Debug Interface, the component that we use within the thesis. Its 

goal is to provide a high level API for accessing the Java VM Tool Interface. 

 

Developers that need to write debugging applications can hook into JPDA at any layer. If needed, they 

could implement an entirely new front-end or rely on another virtual machine that implements JDWP. 

However, this is usually not required unless radical new features are needed. Most of the times 

developers only need to rely on JDI. This way, their application will automatically work with all 

virtual machines and platforms supported by Java.  

 

2.2 Working with JPDA 

To understand how the Java Platform Debugger Architecture works we will look at two types of 

activities one can do with it: query information and place breakpoints.   

 

Any JPDA activity is started with a request. Requests are issued from the debugger side. They can 

include queries for information (e.g. variables values), instructions for changing the state of the virtual 

machine, instructions for placing breakpoints, instructions for controlling the execution of the virtual 

machine, etc. 

 

Figure 2.1: Structure overview of the Java™ Platform Debugger Architecture (Oracle, 2013) 



Analysing Java System Properties 2 The Java Platform Debugger Architecture (JPDA) 

David Wettstein, 8. Dezember 2013  6 

Some types of requests are synchronous, providing immediate results to the caller, while others are 

asynchronous (e.g. breakpoints). JPDA responds to the second type of requests by using events. Events 

originate on the debuggee side, which means they come from the remote virtual machine running the 

application being debugged. They provide the debugger with the requested information. For example, 

if the debugger issues a request to be notified of classes being loaded into the system, whenever a new 

class is loaded an event is send to the debugger.  

A common use case when debugging is inspecting the values of variables from the stack (Figure 2.2 

→ green circle). To do this the debugger will issue a request for the desired value (1). This is achieved 

by calling the method StackFrame.getValue(LocalVariable var) on the stack frame 

containing the value of interest. 

 

JDI converts the request then into a byte stream in accordance with JDWP and sends it over the 

defined communications channel, for example a socket, to the back-end (2). The back-end decodes the 

byte stream and sends the request through JVMTI to the remote virtual machine running the debugged 

application (3). 

 

The remote virtual machine answers the request by returning the desired value (4). The back-end 

formats the response into a packet, which includes the value, according to JDWP. Afterwards the 

packet is sent back to the front-end through the communication channel (5). There the response packet 

is decoded and the value is returned as the result of the method call above (6). The debugger 

application can now display the requested value. 

 

Figure 2.2: Workflow of JPDA for a request 

 1 
 

 2 
 

 4 
 

 5 
 

 6 
 

 3 
 



Analysing Java System Properties 2 The Java Platform Debugger Architecture (JPDA) 

David Wettstein, 8. Dezember 2013  7 

A request for setting a breakpoint has a different workflow: when the request is made, control returns 

to the debugger immediately. The virtual machine continues the execution of the target program until 

that breakpoint is reached. When this happens the remote virtual machine sends an event through 

JVMTI (Figure 2.3 → 1). JVMTI, in turn, calls an event handling function set when issuing the initial 

request. This function filters the event, if required, queues it and afterwards converts and sends it 

through the communications channel according to JDWP (2). JDI then decodes it and generates a 

BreakpointEvent (3). Finally, the debugger application can get the event by extracting it from the 

EventQueue (4). 

 

  

Figure 2.3: Workflow of JPDA for an event 

 1 
 

 2 
 

 3 
 

 4 
 



Analysing Java System Properties 3 Implementation of Properties Analyser and Model 

David Wettstein, 8. Dezember 2013  8 

3 Implementation of Properties Analyser and Model 

 

In this chapter we look at the implementation of the Properties Analyser. First we describe the package 

VMUtils, which uses the Java Debug Interface (JDI) to get the necessary data. Then we give a 

description of the Properties Model and look at how it is constructed and exported into an XML file. 

 

3.1 VMUtils and JDI 

The main class of the VMUtils package is the VMHandler. This class starts and control the lifecycle 

of the remote virtual machine.  

 

The VMHandler uses a VMBridge object to acquire, respectively connect to the remote virtual 

machine through a defined port. 

To establish a connection to the target virtual machine, VMBridge uses a Connector object. We rely 

on an AttachingConnector connector that can be used to connect to a running VM through a 

socket. This connector is obtained from the VirtualMachineManager, an object that manages the 

connection to a target virtual machine. The procedure for connecting to a remove virtual machine is 

shown in Table 2. 

 

 

Figure 3.1: UML diagram of VMUtils with context to JDI 

Figure 3.2: Constructor of class VMHandler 



Analysing Java System Properties 3 Implementation of Properties Analyser and Model 

David Wettstein, 8. Dezember 2013  9 

Table 2: Connecting the debugger to the virtual machine (Oracle, 2013). 

Scenario Description 

Debugger attaches to 

previously-running VM 

1) Target VM is launched using the options -agentlib:jdwp=transport=xxx,server=y 

2) Target VM generates and outputs the tranport-specific address at which it will listen for a 

connection. 

3) Debugger is launched. Debugger selects a connector in the list returned by 

attachingConnectors() matching the transport with the name "xxx". 

4) Debugger presents the default connector parameters (obtained through 

Connector.defaultArguments()) to the end user, allowing the user to fill in the 

transport-specific address generated by the target VM. 

5) Debugger calls the AttachingConnector.attach(java.util.Map) method of the 

selected connector to attach to the target VM. A VirtualMachine mirror is returned. 

 

The AttachingConnector that we are using must have the name 

“com.sun.jdi.SocketAttach”. Connectors having this name implement a socket based 

communication with a VM on top of TCP/IP. By using the manager and the described connector, we 

can get a mirror of the target virtual machine, which is returned to the VMHandler. It generates then a 

new EventThread. 

 

The EventThread sets the event requests and enables them. Here we also add a class filter, since we 

are only interested in calls on the class java.lang.System. This thread is then used to handle the 

incoming events. In the run() method of this thread we get the JDI EventQueue (see Figure 3.3). 

EventQueue is a manager of incoming debugger events from a target VM (A particular virtual 

machine is assigned one instance of an EventQueue). 

The incoming events are always grouped in EventSets. To handle the events we iterate through each 

event in an EventSet. After all events have been handled, the EventSet is resumed, since events 

cause the target VM to suspend. If this is not done the target VM will hang. After the resumption, we 

proceed with the next EventSet. 

 

Out of all possible types of events we are only interested in events of type MethodExitEvents. Once 

we get these events, we have to further filter them as we get an even for every call to a method of the 

class java.lang.System. However, we are only interested in methods that work with System 

Properties.  

 

The data from the filtered events is then stored in a PropertiesModel, at which we will look in 

Chapter 3.2. In the class PropertiesModelThreadTrace the Analyser creates a new 

PropertiesModel and a new CallSiteBuilder.  

Figure 3.3: Snippet of the method run in class EventThread 



Analysing Java System Properties 3 Implementation of Properties Analyser and Model 

David Wettstein, 8. Dezember 2013  10 

In the method methodExitEvent(..) of the PropertiesModelThreadTrace we determine the 

location of a call and also the name of the called property. We use then the model to get the 

corresponding Property object. If this object does not yet exist, the model will create a new one.  

 

The task of the CallSiteBuilder is to extract the necessary data from the event (code location, 

property value) and store it into a property object. This procedure will be clearer after reading Chapter 

3.2. 

 

3.2 The Properties Model  

As we saw above, the PropertiesModel class handles the creation of Property objects. Before 

creating a new Property object, the PropertiesModel looks for a property with the same name. 

This check is necessary to avoid having multiple Property objects referring to the same property. 

Thus, the model ensures that each called property has a unique Property object that stores data about 

its usage.  

Information about the usage of a property is stored using a list of CallSite objects. A CallSite 

encapsulates a code location that uses a particular property, along with all the values the property had 

at that location. The location is captured using a Location object; the values using a list of 

PropertyValue objects. A list is required as the same call to a property can return different values at 

various points in time. To preserve the chronological order of those different values each 

PropertyValue object stores, alongside the value, an id, uniquely identifying that value.  Its value 

comes from a static integer variable id in the class CallSite. Each time a PropertyValue has to 

be added to a CallSite, the id is increased and given to that PropertyValue. This means the 

order, in which the values occurred in the program, can be obtained by sorting the values based on the 

id. 

Figure 3.4: Snippet of the method methodExitEvent in class PropertiesModelThreadTrace 

Figure 3.5: UML diagram of Properties Model 



Analysing Java System Properties 3 Implementation of Properties Analyser and Model 

David Wettstein, 8. Dezember 2013  11 

The class CallSiteBuilder uses the functionality previously described to add the extracted data 

from the event to a CallSite and a Property. This class also determines the type of a call (get or 

set) and creates a call site of the corresponding type (GetCallSite or SetCallSite).  

 

To work with the elements of a properties model we are using the visitor design pattern. The 

advantage of this pattern is that we can add new operations on the model without having to modify its 

classes.  

For our requirements we implemented two visitors. The first simply prints the model in the console. 

The second visitor, the PropertiesXMLExportVisitor, exports the model to an XML file. To 

implement this functionality we use the Java Architecture for XML Binding (JAXB). With JAXB we 

can easily map objects to an XML representation. Since we only need a simple export/import of Java 

objects into and from XML, we are using directly the class JAXB of the package javax.xml.bind, 

which defines the methods marshal(..) and unmarshal(..), for creating an XML representation 

for an object, or recreating an object from its XML representation. 

Figure 3.8: Visitor pattern of Properties Model 

Figure 3.7: How the CallSiteBuilder adds the extracted data to a CallSite 

Figure 3.6: How the CallSiteBuilder gets the value for the PropertyValue object 

Figure 3.9: Example of an xml file created by JAXB. 



Analysing Java System Properties 3 Implementation of Properties Analyser and Model 

David Wettstein, 8. Dezember 2013  12 

In JAXB, the root and the elements of the model are defined using annotations. The root class of the 

model, in our case the PropertiesModel, needs the annotation @XmlRootElement. The other 

elements of the model, for example the Property objects, need the @XmlElement(name = 

“elementName”) annotation. These annotations have to be placed on the get methods returning those 

elements. For example, the PropertiesModel object has a list of Property objects. This is 

accessed through the method getProperties having the annotation @XmlElement(name = 

“property”). In this way we indicate to JAXB that the nodes of the properties model, which is the 

tree root, are property elements. Apart from these annotations all classes used by JAXB have to define 

a constructor with no parameters. 

 

  

Figure 3.10: Declaration of XmlElement property 



Analysing Java System Properties 4 Implementation of Properties Visualizer 

David Wettstein, 8. Dezember 2013  13 

4 Implementation of Properties Visualizer 

 

In this chapter we look at the implementation of the Properties Visualizer. Before we do this, we give 

a general description about the implementation of Eclipse plugins. 

 

4.1 Implementing an Eclipse plugin 

The easiest way to start implementing an Eclipse plugin is to begin with one of the sample plugins 

provided by Eclipse. 

 

A new plugin project consists of the usual folders, src and bin, but had also two additional folders 

icons and META-INF. The META-INF contains the manifest file, MANIFEST.MF, used to define 

some important information about the plugin, like its dependencies and extensions. Further 

information about the extensions is stored in a file named plugin.xml in the root folder. 

 

The code of the plugin itself consists of at least one class. This class is set as the activator in the 

MANIFEST.MF file and controls the plugin life cycle. The activator extends the abstract subclass 

AbstractUIPlugin of the class Plugin, which implements the BundleActivator interface from 

the OSGi™ Framework (see Figure 4.1). 

 

The OSGi™ Framework is a service platform that allows Eclipse to start, stop or update modules or 

components without requiring a reboot: it defines a dynamic component system for Java. 

The AbstractUIPlugin class is the “abstract base class for plug-ins that integrate with the Eclipse 

platform UI”. This class provides services for managing UI resources, for example the 

ImageRegistry containing information about various images in the folder icons, of the plugin. 

Furthermore, subclasses of AbstractUIPlugin are also able to handle preferences and dialog 

windows (see Eclipse API1).  

  

                                                      
1 http://help.eclipse.org/kepler/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/ui/plugin/AbstractUIPlugin.html 

Figure 4.1: Relation of a plugin to Eclipse and the OSGi™ Framework 

http://help.eclipse.org/kepler/topic/org.eclipse.platform.doc.isv/reference/api/org/eclipse/ui/plugin/AbstractUIPlugin.html


Analysing Java System Properties 4 Implementation of Properties Visualizer 

David Wettstein, 8. Dezember 2013  14 

4.2 The Properties Visualizer 

The Properties Visualizer has several dependencies to other Eclipse plugins. The most important one 

is to the Properties Analyser plugin, as this plugin provides the functionality for recreating a Properties 

Model from an XML file. 

 

When starting the Properties Visualizer, the activator initializes the ImageRegistry with the icons 

used by its views. The plugin creates then the main view. 

The main view of the Properties Visualizer is composed of two parallel composites. The left 

composite shows all Property objects along with their CallSite objects. The right composite 

shows the values of the selected CallSite or Property. 

 

Each class of the Properties Visualizer, except the Utils class, extends a class or implements an 

interface from Eclipse. The central part of the implementation is the class PropertiesViewPart. 

This class initializes the two composites and provides the displayed data.  

Both composites, the PropertiesViewComposite and the DataComposite, extend the class 

Composite. Instances of this class are containers, which are capable of storing other containers, 

where a container is the abstract superclass of all window components in Eclipse. 

 

Figure 4.2: The view of the Properties Visualizer 

Figure 4.3: UML diagram of the PropertiesPlugin 



Analysing Java System Properties 4 Implementation of Properties Visualizer 

David Wettstein, 8. Dezember 2013  15 

4.2.1 PropertiesViewComposite 

For the PropertiesViewComposite we are using a FilteredTree. This class is a simple 

composite that provides a text widget (for the filter input) and a TreeViewer. It is constructed with a 

given PatternFilter, which does a pattern matching on the tree’s children. Since we need a slightly 

different behaviour, we implemented the class PropertiesPatternFilter, which extends the 

PatternFilter and overrides the methods isParentMatch(..) and isLeafMatch(..). 

 

The PropertiesViewContentProvider is responsible, as the name suggests, for the content of the 

PropertiesViewComposite. In the method getElements(..) of this class a new XMLImporter 

is created and used to import the PropertiesModel from the XML file. The Property objects from 

the model are then returned in an Object[] array. Each object in this array (properties) and its 

children (call-sites) are displayed by the methods getText(..) and getImage(..) from the 

PropertiesViewLabelProvider, which extends the class ColumnLabelProvider from Eclipse. 

 

4.2.2 DataComposite 

The viewer for the DataComposite, the ValueViewer, extends the class TableViewer from 

Eclipse. The ValueViewer sets up the table including the columns. Furthermore it implements the 

functionality for double-clicking on a table item. 

 

For the content we use an ArrayContentProvider. This provider is used for handling a collection 

of elements. The elements are then displayed with the ValueLabelProvider through its methods 

getColumnText(..) and getColumnImage(..). This class extends the ColumnLabelProvider 

and also implements the interface ITableLabelProvider by overriding the two mentioned 

methods. Since we are using the same label provider for every column, we have to implement all the 

different cases for the column index (e. g. column “Value” or column “Previous get”).  

 

4.2.3 Other functionality 

The PropertiesViewPart is also responsible for updating the content of the DataComposite. To 

fulfil this task it implements the interface ISelectionChangedListener and adds itself to the 

viewer of the PropertiesViewComposite. This listener is then used to update the viewer of the 

DataComposite with the values of the selected CallSite or Property from the properties tree. 

 

To sort our input by id in both viewers we are using the class IdComparator, which extends the class 

ViewerComparator from Eclipse. The task of this class is, on the on hand, to sort the properties by 

name and on the other hand, to sort the values of the call-sites by the id. 

 

For the tooltips of the viewer’s we are overriding the corresponding methods from the extended class 

ColumnLabelProvider in each label provider. 

 

Last but not least, the Utils class contains various methods that are often used by the other classes. 

These methods should always do the same so all attributes and methods are defined as static. This is 

the common way to implement such a class. In the Utils class are, for example, methods to navigate 



Analysing Java System Properties 4 Implementation of Properties Visualizer 

David Wettstein, 8. Dezember 2013  16 

through the data tree, like from a PropertyValue to the containing CallSite and from this to the 

containing Property, but also methods to open the source file or to highlight a predefined line. 

 

For launching the Analyser and importing the data into the plugin, we used an extension point to the 

right-click-menu of Eclipse and implemented an action handler. 

 

  

Figure 4.4: Bottom of the right-click menu of a Java project 



Analysing Java System Properties 5 References 

David Wettstein, 8. Dezember 2013  17 

5 References 

 

Oracle. (2013, 11 30). Interface VirtualMachineManager. Retrieved from JDI API Specification: 

http://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/com/sun/jdi/VirtualMachineManager.htm

l 

 

Oracle. (2013, 09 05). Java™ Debug Interface (JDI). Retrieved from Oracle Java™ SE 7 

Documentation: http://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/index.html 

 

Oracle. (2013, 11 30). Java™ Debug Interface (JDI) API. Retrieved from 

http://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/index.html 

 

Oracle. (2013, 09 05). Java™ Debug Wire Protocol Transport Interface (JDWP). Retrieved from 

Oracle Java™ SE 7 Documentation: 

http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/jdwpTransport.html 

 

Oracle. (2013, 09 05). Java™ Platform Debugger Architecture (JPDA). Retrieved from Oracle Java™ 

SE 7 Documentation: http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/index.html 

 

Oracle. (2013, 09 16). Java™ SE 7 API class System. Retrieved from Oracle Java™ SE 7 API: 

http://docs.oracle.com/javase/7/docs/api/java/lang/System.html 

 


