
CCJun - Polymetric Views in
Three-dimensional Space

Student Project

Author

Christoph Wysseier

May 2004

Supervised by:

Dr. Michele Lanza
Prof. Dr. Oscar Nierstrasz

Institut für Informatik und angewandte Mathematik
Universiẗat Bern

The address of the author:

Christoph Wysseier
Gesellschaftsstr. 38
CH-3012 Bern
chris@netstyle.ch

mailto:chris@netstyle.ch

Abstract

CodeCrawler is a tool to visualize software systems using polymetric views as a
lightweight reverse engineering approach. In this project we introduce the exten-
sion CCJun, which enriches the polymetric views with a third dimension and shows
how to generalize the visualization engine of CodeCrawler.

i

Contents

Abstract i

1 Introduction 1
1.1 Software Visualisation and Metrics. 1
1.2 CodeCrawler . 1
1.3 Structure of this document. 2

2 Description 3
2.1 Polymetric Views. 3
2.2 CodeCrawlers Overall Architecture. 3
2.3 CodeCrawlers Visualization Engine. 4

2.3.1 Figures . 4
2.3.2 Figure Models . 5

2.4 Jun - A 3D Graphics Framework. 5
2.5 Implementation of CCJun. 5

2.5.1 Figures . 6
2.5.2 Bridge to CodeCrawler. 6
2.5.3 Building polymetric views in 3D. 6
2.5.4 User Interface of CCJun. 7

3 Exemplification 9
3.1 Creating three-dimensinal Views. 9
3.2 The User Interface of CCJun. 9
3.3 Different Layouts. 11

4 Future Work 12

ii

Chapter 1

Introduction

CodeCrawler is a tool which implements polymetric views as a lightweight re-
verse engineering approach based on simple software visualisations enriched with
software metrics [LANZ 03a]. For this we chose Jun1 as 3D framework to real-
ize three-dimensional graphics. With CCJun we implemented a bridge between
CodeCrawler and Jun to realize three-dimensional polymetric views.

1.1 Software Visualisation and Metrics

Software visualization is widely used to infer information about software systems.
Lanza’s approach of polymetric views which are enriched with up to five software
metrics is the basic concept of CodeCrawler. With software metrics there exists an
instrument to measure the quality and complexity of software systems as a source
of information for software reengineering. Metrics measure properties of a soft-
ware system by mapping them to numbers.
The graphical represenation of a software system is realized by displaying nodes
for source code artifacts (e.g. classes, methods, attributes, etc.) and edges for
relationships (e.g. inheritance, invocation, etc.). The visual representation of soft-
ware systems is then extended with additional information computed by software
metrics. The results are added to the view by manipulating the size, position and
color of a node or by manipulating the width and color of an edge. The result is a
two-dimensional view called polymetric view of a software system.

1.2 CodeCrawler

CodeCrawler is a tool that supports the representation of polymetric views [LANZ 03b,
LANZ 03c]. CodeCrawler uses as visualization engine a package called HotDraw
[BRAN 95, JOHN 92] which is a lightweight 2D editor written in Smalltalk.
The goal of this project was to extend the graphical capabilities of CodeCrawler

1http://www.sra.co.jp/people/aoki/Jun/

1

http://www.sra.co.jp/people/aoki/Jun/

2 CHAPTER 1. INTRODUCTION

up to the third dimension. In order to do so we had to generalize the visualization
engine of CodeCrawler. Therefore we developed the package CCJun which works
as a bridge between CodeCrawler and Jun, a 3D graphics library for Smalltalk.

1.3 Structure of this document

In Chapter2 we describe the internal architecture and the visualization engine of
CodeCrawler. Furthermore the implementation of CCJun is described in this chap-
ter.
Chapter3 shows some applications of CCJun.
The last chapter (Chapter4) introduces some future work.

Chapter 2

Description

In this chapter we introduce the approach of polymetric views. Then we describe
the overall architecture of CodeCrawler with a focus on the visualization engine.
We then show the changes that have been made to CodeCrawler’s internal architec-
ture and the implementation of CCJun as an extension to display three-dimensional
polymetric views.

2.1 Polymetric Views

In Figure2.1 we see that, given two-dimensional nodes representing entities and
edges representing relationships, we enrich these simple visualizations with up to
5 metrics:
Node Size.The width and height of a node can render two measurements. We
follow the convention that the wider and the higher the node, the bigger the mea-
surements its size is reflecting.
Node Color. The color interval between white and black can display a measure-
ment. Here the convention is that the higher the measurement the darker the node
is. Thus light gray represents a smaller metric measurement than dark gray.
Node Position.The X and Y coordinates of the position of a node can reflect two
other measurements. This requires the presence of an absolute origin within a fixed
coordinate system, therefore not all layouts can exploit this dimension.
Edge Color.The only metric applicated to edges is their color.

2.2 CodeCrawlers Overall Architecture

CodeCrawler adopts what we call a bridge architecture, as we see in Figure2.2:
the internal architecture, e.g., the core of CodeCrawler, acts as a bridge between
the visualization engine (on the left) and the metamodel (on the right). It uses
as visualization engine the HotDraw framework and as metamodel the FAMIX
metamodel [DEME 01], whose implementation is called the Moose reengineering
environment [DUCA 00] [DUCA 01].

3

4 CHAPTER 2. DESCRIPTION

Figure 2.1: The principle of polymetric views

Figure 2.2: The general architecture of CodeCrawler, composed of three main sub-
systems: the core, the metamodel and the visualization engine.

2.3 CodeCrawlers Visualization Engine

CodeCrawler is tightly coupled to the 2D graphic editor HotDraw which provides
all the basic functionality used to display polymetric views. Polymetric views con-
sist mainly of nodes and edges which are mapped for the graphical representation
to rectangle and line figures.
Therefore Codecrawler uses two small hierarchies which are representing the fig-
ures on one hand and figure models on the other hand. This differentiation is
necessary to be protected against changes in HotDraw (See Figure2.3).

2.3.1 Figures

CodeCrawler offers the classesCCRectangleFigureand CCLineFigureto repre-
sent the nodes and edges on the screen. These classes are subclassing the simple
Rectangle and Line classes of HotDraw and are adding the additional functionality
needed by CodeCrawler. In fact there exist more figures such asCCNamedFigure

2.4. JUN - A 3D GRAPHICS FRAMEWORK 5

Figure 2.3: This simple UML diagram shows how CodeCrawler extends the Hot-
Draw framework.

and others but those are only special representations of the already presented ones.
The drawing of the figures on the canvas is realized using the classCCDrawing.

2.3.2 Figure Models

To be protected against changes of HotDraw there exists another small hierarchy
which serves as bridge between CodeCrawlers MetaModel and the HotDraw Fig-
ures. The three classesCCItemFigureModel, CCNodeFigureModelandCCEdge-
FigureModelare implementing figure operation (graphical operations, geometric
transformations, etc.).

2.4 Jun - A 3D Graphics Framework

Jun is a large 3D graphics framework with support for OpenGL1. Besides other
features it provides a hierarchy that allows to create OpenGL objects which are
displayed on screen using its own user interface. OpenGL is a good choice because
it is available on a lot of platforms incorporated in the operating system.

2.5 Implementation of CCJun

We implemented the tool CCJun to be able to create 3D views of polymetric views.
As the visualization engine we chose Jun. Because the goal was a platform-
independent implementation we chose the OpenGL objects of Jun to implement
the new functionality.

1http://www.opengl.org/

http://www.opengl.org/

6 CHAPTER 2. DESCRIPTION

Figure 2.4: Modified visualization engine to work with the 3D graphics framework
Jun.

2.5.1 Figures

To realize polymetric views without changing their simplicity we created the 3D
figures according to the implementation of the HotDraw figures. The only differ-
ence is the added third dimension which led us from rectangles to quaders and from
lines to cylinders.
Because of the different architecture of Jun these figures are implemented using a
single class calledCCJunCompoundObjectwhich inherits fromJunOpenGLCom-
poundObject. This class offers the creation of a lot of different figures which are
plugged together using polygons.

2.5.2 Bridge to CodeCrawler

Our goal was to provide the same functionality as for the HotDraw figures and
mapping them directly to Jun figures. This functionality includes positioning and
coloring the figures and even user interaction.
Our implementation oriented itself at the architecture of the figure models. There-
fore we built a little hierarchy using the classesCCJun3dObject, CCJunLineand
CCJunQuader. We can see a simple class diagram in Figure2.4which shows also
the connection to the figure models of CodeCrawler.
The root of this hierarchy is used to provide similar behavior for each 3D object.
This includes geometrical transformations, coloring and selection behavior.
The figureCCJunQuaderbuilds its own 3D figure by creating a box with the spec-
ified height, width, depth and color. Because there is today no additional metric for
the height we chose a standard value for it. The figureCCJunLinebuilds a cylinder
as 3D figure which is then connected from one node figure to another.

2.5.3 Building polymetric views in 3D

With the new figures and the bridge to CodeCrawler we are now able to create poly-
metric views in three-dimensional space. In CodeCrawler the polymetric views are

2.5. IMPLEMENTATION OF CCJUN 7

arranged by the view specification manager calledCCViewSpecManager. Every
view knows among other things its figure class which is used to build the view. To
create 3D views we extended the default attitude inCCViewSpecManagerto use
the new implemented figures.

2.5.4 User Interface of CCJun

Once the view is rendered on screen the user also wants interact with it. Therefore
CodeCrawler provides context-based menus which are adapted to the currently se-
lected node(s). The goal of CCJun was to develop a user interface that includes
similar features.
The user interface of CCJun is an extended version of viewfinder (see Figure2.5),
the integrated user interface of Jun. It provides an easy-to-use navigation interface
with zooming, rotating and selecting. To realize the context-based pop-up menus
on nodes or edges we extended this interface so that on selecting a node or edge
the menu is displayed. The menus are rendered depending on the type of object
that is selected.
The user interface is implemented using the Model-View-Controller pattern. CCJun
implements a controller (CCJunDisplayController) to provide mouse interacting
facilities, a model (CCJunDisplayModel) and a view (CCJunDisplayView). These
classes are shown in Figure2.4.
An interesting feature is the possible parellel use of CodeCrawlers two-dimensional
views and CCJun. It is for instance possible to select a few nodes in the 2D view
and to display them in 3D using CCJun. Like this a system reenginerer may decide
which part of a view should be visualized in 3D.
Using the user interface of CodeCrawler it is even possible to choose different lay-
outs which are rendered directly in CCJun. Like this it is possible to change the
layout to get a different view of a software system.

8 CHAPTER 2. DESCRIPTION

Figure 2.5: A little hierarchy displayed in the user interface of CCJun.

Chapter 3

Exemplification

In this chapter we present some example screenshots realized using CCJun. The
examples are focused to the interaction possibilities with CodeCrawler.

3.1 Creating three-dimensinal Views

An important feature of CCJun was its integration into CodeCrawler’s user inter-
face. Like this it is possible to use the given selection menus to select nodes or
edges to be displayed in CCJun’s user interface.
In Figure3.1you can see the internal architecture of CodeCrawler displayed using
CCJun. The items were selected directly from the two-dimensional view of the
complete representation of CodeCrawler’s architecture. As you can see the view
is similar but CCJun offers new interaction possibilities like rotating the whole
hierarchy.

3.2 The User Interface of CCJun

The goal of this project was to implement a three-dimensional representation of
polymetric views without losing the interaction possibilities of CodeCrawler. One
interaction possibility is shown in Figure3.2. The user is able to select an item
directly from the three-dimensional view. Using the right mouse button the context-
based menu to the selected item is shown. The hierarchy displayed is the same as
in Figure3.1.
In this example the menu provides the possibilities to inspect the figure, spawn a
two-dimensional blueprint of the class and to browse through the code. To better
recognize the selected node it is marked using a default color (i.e. green).

9

10 CHAPTER 3. EXEMPLIFICATION

Figure 3.1: In this figure the nodes to display in CCJun are chosen using Code-
Crawler’s two-dimensional view.

Figure 3.2: This figure shows the context-based menu on a node.

3.3. DIFFERENT LAYOUTS 11

Figure 3.3: This figure was realized using the Circle Layout chosen from Code-
Crawler’s user interface.

3.3 Different Layouts

The same hierarchy displayed using another layout is shown in Figure3.3. Using
the Circle Layout the nodes are placed on a circle while the edges still connect the
same edges. Changing the layout of a view may be executed without choosing the
nodes again.

Chapter 4

Future Work

In this chapter we present some possible future work.

• Three-dimensional polymetric views and semantics:One of the first steps
to be done exploring the possibilities of three-dimensional views is to add
another metric to the polymetric views. To not lose the simplicity of this
approach one must have an eye on the semantics.

• Adding extra information to three-dimensional views: Using the OpenGL
framework of Jun it is also possible to use other forms of visual information
representation. Possible ideas would be the use of textures or transparency.

• Representing runtime information An interesting research topic would be
to visualize runtime information as an animation of three-dimensional views.
This approach would provide another form of exploring a software system
during runtime which would be helpful to a software reengineer.

12

List of Figures

2.1 The principle of polymetric views. 4
2.2 The general architecture of CodeCrawler, composed of three main

subsystems: the core, the metamodel and the visualization engine.4
2.3 This simple UML diagram shows how CodeCrawler extends the

HotDraw framework. 5
2.4 Modified visualization engine to work with the 3D graphics frame-

work Jun. 6
2.5 A little hierarchy displayed in the user interface of CCJun.. . . . 8

3.1 In this figure the nodes to display in CCJun are chosen using Code-
Crawler’s two-dimensional view.. 10

3.2 This figure shows the context-based menu on a node.. 10
3.3 This figure was realized using the Circle Layout chosen from Code-

Crawler’s user interface.. 11

13

Bibliography

[BRAN 95] J. Brant. HotDraw. Master’s thesis, University of Illinois at Urbana-
Chanpaign, 1995. (p 1)

[DEME 01] S. Demeyer, S. Tichelaar, and S. Ducasse.FAMIX 2.1 — The
FAMOOS Information Exchange Model. Research report, University
of Bern, 2001. (p 3)

[DUCA 00] S. Ducasse, M. Lanza, and S. Tichelaar.Moose: an Extensi-
ble Language-Independent Environment for Reengineering Object-
Oriented Systems. In Proceedings of the Second International Sym-
posium on Constructing Software Engineering Tools (CoSET 2000),
June 2000. (p 3)

[DUCA 01] S. Ducasse, M. Lanza, and S. Tichelaar.The Moose Reengineering
Environment. Smalltalk Chronicles, August 2001.(p 3)

[JOHN 92] R. E. Johnson.Documenting Frameworks using Patterns. In Proceed-
ings OOPSLA ’92, volume 27, pages 63–76, October 1992.(p 1)

[L ANZ 03a] M. Lanza.Object-Oriented Reverse Engineering — Coarse-grained,
Fine-grained, and Evolutionary Software Visualization. PhD thesis,
University of Berne, Mai 2003. (p 1)

[L ANZ 03b] M. Lanza. CodeCrawler — Lessons Learned in Building a Software
Visualization Tool. In Proceedings of CSMR 2003, pages 409–418.
IEEE Press, 2003. (p 1)

[L ANZ 03c] M. Lanza and S. Ducasse.Polymetric Views — A Lightweight Visual
Approach to Reverse Engineering. IEEE Transactions on Software
Engineering, vol. 29, no. 9, pages 782–795, September 2003.(p 1)

14

	Abstract
	Introduction
	Software Visualisation and Metrics
	CodeCrawler
	Structure of this document

	Description
	Polymetric Views
	CodeCrawlers Overall Architecture
	CodeCrawlers Visualization Engine
	Figures
	Figure Models

	Jun - A 3D Graphics Framework
	Implementation of CCJun
	Figures
	Bridge to CodeCrawler
	Building polymetric views in 3D
	User Interface of CCJun

	Exemplification
	Creating three-dimensinal Views
	The User Interface of CCJun
	Different Layouts

	Future Work

