
Scripting Browsers∗

Philipp Bunge, Tudor Gı̂rba, Lukas Renggli,
Jorge Ressia, David Röthlisberger

Software Composition Group, University of Bern, Switzerland

1 Glamour in a Nutshell

Browsers are crucial to make software models accessible. Problem domains often
require multiple views to access, interpret and edit the underlying elements. However,
browsers are expensive to create and burdensome to maintain.

Glamour is a framework dedicated to building browsers. It uses a components
and connectors architecture and it comes with an embedded domain specific language
that allows the user to build dedicated browsers quickly. It accommodates any kind
of domain models via on-the-fly transformations and it enforces a strict and explicit
separation between the presentation of the data and the navigation flow between
different entities.

Glamour is platform independent and can be used with various renders. For
details, we refer the reader to the Masters thesis of the first author [Bun09].

∗Submission for the ESUG 2009 Innovation Technology Awards. Glamour was awarded the 3rd
prize.

2 Glamour in Action

As a practical example of Glamour we show how to implement a simple Smalltalk
code browser (Figure 1) with less than 20 lines of code. A Glamour script consists
of two parts. The first part defines the overall location of the different panes in the
window. The second part defines how the panes should present the entities and what
the navigation between these panes is.

First we specify that the browser has a table layout. The upper part contains
the class tree and the method for each class and the lower part displays the source
code. The following code defines two rows. In the first row we create two columns:
one for the classes and one for the selectors. The second row is for displaying the
source code.

1 browser := GLMTableLayoutBrowser new.

2 browser row: [:row | row column: #classes; column: #selectors].

3 browser row: #source.

Next we specify the presentation to be shown in each pane of the browser. For
the class pane we use a tree to display the class hierarchy.

4 browser showOn: #classes; using: [

5 browser tree

6 children: [:class | class subclasses]].

For the selector pane we use a list, that displays the selectors of the currently
selected class. This dependency is specified in the from:-clause of the following code:

7 browser showOn: #selectors; from: #classes; using: [

8 browser list

9 display: [:class | class selectors]].

Finally, the source code pane depends on both, the currently selected class and
the selector. We also define two different text views. The first one shows the source
code, given a class and a selector. The second one shows the class comment for a given
class. In both cases we define conditions (lines 13 and 17) when the presentations
should be active. If both conditions are satisfied a tab panel is created.

10 browser showOn: #source; from: #classes; from: #selectors; using: [

11 browser text

12 title: 'Source';
13 when: [:class :selector | class notNil and: [selector notNil]];

14 display: [:class :selector | class sourceCodeAt: selector].

15 browser text

16 title: 'Comment';
17 when: [:class :selector | class notNil];

18 display: [:class :selector | class comment]].

To open the browser we evaluate the following code. Depending on the cho-
sen renderer a Morphic (see Figure 1(a)), Seaside (see Figure 1(b)), Widgetry (see
Figure 1(c)) or Adobe Air (see Figure 1(d)) user interface is opened.

2

19 browser openOn: Object.

Note that the browser can be composed to new and more complicated browsers.
Although it is possible to attach context menus and actions to the different panes.
Furthermore other presentations are available, such as Mondrian visualizations [MG06]
and Magritte forms [RDK07].

3 Availability

Glamour is developed in Pharo and VisualWorks. The Glamour model is independent
of the resulting user interface. Currently, Polymorphic and Seaside are supported in
Pharo, and Wrapper and Adobe Air in VisualWorks.

• Pharo. To load into a recent Pharo image, load the package GlamourLoader

from SqueakSource at http://www.squeaksource.com/Glamour.

• VisualWorks. To load into VisualWorks, load the bundle Glamour from Post-
gres StORE at db.iam.unibe.ch:5432_scgStore, use storeguest as both username
and password.

More details about Glamour can be found at: http://moose.unibe.ch/tools/glamour

4 Keywords

Browser, User Interface, Scripting, Pharo, VisualWorks, Seaside, Adobe Air

5 License

Glamour is open-source Software distributed under the MIT license, that grants
unrestricted copy, redistribution, usage and embedding in both free and proprietary
software.

References

[Bun09] Philipp Bunge. Scripting browsers with Glamour. Master’s thesis, Univer-
sity of Bern, April 2009.

[MG06] Michael Meyer and Tudor Gı̂rba. Mondrian: Scripting visualizations. Eu-
ropean Smalltalk User Group 2006 Technology Innovation Awards, August
2006. It received the 2nd prize.

3

http://www.squeaksource.com/Glamour
http://moose.unibe.ch/tools/glamour
http://www.opensource.org/licenses/mit-license.php

(a
)

M
or

ph
ic

(b
)

Se
as

id
e

(c
)

W
id

ge
tr

y

C
o

d
e
 B

ro
w

se
r

= =
=

˜= ˜˜ ac
ti
on

Fo
rE

ve
nt

:

ac
ti
on

Li
st

Fo
rE

ve
nt

:

ad
dD

ep
en

de
nt

:

al
lO

w
ne

rs

al
lO

w
ne

rs
N

oR
et

ry
:

Et
ch

ed
B
or

de
r

W
in

95
M

en
uB

or
de

r

W
in

X
PR

ou
nd

ed
Ed

ge
B
or

de
r

O
bj

ec
t

La
yo

ut

N
am

eS
co

pe

M
es

sa
ge

B
or

de
r

G
ra

ph
ic

sA
tt

ri
bu

te
s

=
 a

nO
bj

ec
t

"A

ns
w

er
 w

he
th

er
 t

he
 r

ec
ei

ve
r

an
d

th
e

ar
gu

m
en

t
re

pr
es

en
t

th
e

sa
m

e
ob

je
ct

.

If
 =

 is
 r

ed
ef

in
ed

 in
 a

ny
 s

ub
cl

as
s,

 c
on

si
de

r
al

so
 r

ed
ef

in
in

g
th

e
m

es
sa

ge
 h

as
h.

"

^

se
lf

=
=

 a
nO

bj
ec

t

(d
)

A
do

be
A

ir

F
ig

u
re

1:
T

h
e

sa
m

e
G

la
m

ou
r

co
d
e

b
ro

w
se

r
d
is

p
la

ye
d

u
si

n
g

fo
u
r

d
iff

er
en

t
ou

tp
u
t

fr
am

ew
or

k
s.

4

[RDK07] Lukas Renggli, Stéphane Ducasse, and Adrian Kuhn. Magritte — a meta-
driven approach to empower developers and end users. In Gregor Engels,
Bill Opdyke, Douglas C. Schmidt, and Frank Weil, editors, Model Driven
Engineering Languages and Systems, volume 4735 of LNCS, pages 106–120.
Springer, September 2007.

5

	Glamour in a Nutshell
	Glamour in Action
	Availability
	Keywords
	License

