
Object Models in the πL-Calculus 1.

S © Jean-Guy Schneider

Calculus

up
 Mathematics (IAM)

h
eidr/
OAP Workshop, June 15,1999

Object Models in the πL -

Jean-Guy Schneider

Software Composition Gro
Institute of Computer Science and Applied

University of Berne

E-mail:schneidr@iam.unibe.c
WWW: http://www.iam.unibe.ch/~schn

http://www.iam.unibe.ch/~scg/

Object Models in the πL-Calculus 2.

S © Jean-Guy Schneider

n Policies

s

OAP Workshop, June 15,1999

Overview

❑ πL-calculus based object model

❑ integration of Generic Synchronizatio

❑ pre-methods, generators

❑ class abstractions

❑ inheritance, method dispatch strategie

❑ mixins

❑ references

Object Models in the πL-Calculus 3.

S © Jean-Guy Schneider

del

aptures the essential

(<>))reply
OAP Workshop, June 15,1999

Pierce/Turner Basic Object Mo

The basic object model of Pierce and Turner c
features of objects:

def emptyRef (X) = (υ c, s, g)

((<set=s, get=g>)

| !g(Y).c(Z).((Z) | (Z))

| s(Y). ((Y) | (<>)

| !s(Z).c(V).((Z) |
)

)

Xreply

Yreply c

c Yreply

c Z

Object Models in the πL-Calculus 4.

S © Jean-Guy Schneider

abí/Cardelli) into the

1..n[l = l j] [bj]r)

〈lj,p,x〉)

(xnew).!xnew(l,r,y).
lj][b] r | [l ≠ lj]x〈l,r,y〉)
OAP Workshop, June 15,1999

Objects in the π-Calculus

Sangiorgi’s translation of an untyped OC(Ad
polyadic π-calculus:

[{ j∈1..n lj = ζ(y).bj}] p =def p(x).!x(l,r,y).(Πj∈

[a.lj]p =def (υ q)([a]q | q(x).x

[a.lj ⇐ ζ(y).b]p =def (υ q)([a]q | q(x).p
([l =

[x]p =def px

Object Models in the πL-Calculus 5.

S © Jean-Guy Schneider

del (I)

Meta-Level

Base-Level
OAP Workshop, June 15,1999

πL-Calculus based Object Mo

Class
Metaobject

Intermediate-

Object

In
te

rf
ac

e-
A

da
pt

or

Object Models in the πL-Calculus 6.

S © Jean-Guy Schneider

el (II)

x1,...,lj=xj>)
)

1..n lj = ζ(y).bj}] t
Y). (S)
).[S.lj(<X,self=s>)]))

(<X,reply=r>))

bj[]Xreply

Xreply

l j
OAP Workshop, June 15,1999

πL-Calculus based Object Mod

[{ j∈1..n lj = ζ(y).bj}] r =def (υ x1,...,xn)((<l1=
| Πj∈1..n !xj(X).

[{ j∈1..n lj = bj}] r =def (υ x1,...,xn,s,t)([{j∈
| t(S).((S) | !s(

| Πj∈1..n !xj(X

[O.lj(X)] r =def (υ p)([O]p | p(Y).

[F]r =def (F)

r

r

Y

r

Object Models in the πL-Calculus 7.

S © Jean-Guy Schneider

t Model

Meta-Level

Base-Level

iate-
OAP Workshop, June 15,1999

Integration of GSP’s into Objec

Class
Metaobject

Intermed

Object

In
te

rf
ac

e-
A

da
pt

or
GSP

Method
Wrapper

Method
Wrapper

Metaobject

Object Models in the πL-Calculus 8.

S © Jean-Guy Schneider

robust basis for

pre-methods,
on scoping rules,
etaobjects,
ension,
el common features

s abstractions due to
lf-binding).
OAP Workshop, June 15,1999

Observations

❑ record-based basic object model is a
modelling object-oriented features,

❑ intermediate-objects as collections of
❑ controlling visibility of features based
❑ classes as first class entities: class m
❑ inheritance as intermediate-object ext
❑ π−calculus expressive enough to mod

of OOPL’s.

☞ Problem: cannot define reusable clas
the usage of pre-methods (explicit se

Object Models in the πL-Calculus 9.

S © Jean-Guy Schneider

rs

rent class.

P self())
OAP Workshop, June 15,1999

From Pre-methods to Generato

Generator:
❑ defines behaviour of objects,

❑ requires self as additional parameter,

❑ ∆ defines difference in relation to a pa

Wrapper:
❑ fixed-point operator over a generator,

❑ establishes correct self-binding.

☞ Inheritance as generator composition

GD self() GP self() ∆ self G(,⊕=

W fix self G self()[]=

Object Models in the πL-Calculus 10.

S © Jean-Guy Schneider

nt-class metaobject

ce model of a class:

ethod dispatch:

elf))
∆ self I(,))

lf ' GP self '(),)]
OAP Workshop, June 15,1999

Class Abstractions

A class abstraction (i.e. a function):
❑ defines a class metaobject

❑ requires a ∆ and a reference to a pare

Generator composition defines the inheritan

Application of fixed-point operator defines m

C class ∆ parent(,)=

GD self() GP self() ∆ self GP s((,⊕=

GB self I(,) ∆ self I(,) GP self I ⊕(,⊕=

GS self() fix self ' GP self '() ∆ se(⊕[=

Object Models in the πL-Calculus 11.

S © Jean-Guy Schneider

erator

ased on a reference
e):

(<reply=x>)

nit,self=s,reply=r>)

(Y))

rocesses

s

OAP Workshop, June 15,1999

Encoding of the Fixed-point Op

The encoding of the fixed-point operator is b
cell and self being a function (and not a valu

def wrapper(Init,res) = (υ r, s, x) (

| x(S).(!s(X). (X)

| (<init=I

| r(Y).((Y) |
)

)

☞ functions are encoded as replicated p

emptyRef

Sget

generate

Sset re

Object Models in the πL-Calculus 12.

S © Jean-Guy Schneider

 without specified

ehaviour of M and C:

ciative

self))

C)

P) GM 2
self GP(,)⊕
OAP Workshop, June 15,1999

Mixins

A mixin is an abstract subclass (a “subclass”
parent-class):

Applying a mixin M to a class C merges the b

Mixin composition:

☞ Mixin composition/application is asso

GM self GP(,) GP self() ∆ self GP((,⊕=

GM C• self() GC self() GM self G(,⊕=

W M C• fix self GM C• self()[]=

GM 1 2,
self GP(,) GP self() GM 1

self G(,⊕=

Object Models in the πL-Calculus 13.

S © Jean-Guy Schneider

ining local channels
senting behaviour),

ons; classes and

mental derivation,

tegies based on fixed-

 abstractions
nerators):
OAP Workshop, June 15,1999

Summary

❑ an object is viewed as an agent conta
(representing state) and agents (repre

❑ class and mixin abstractions as functi
mixins as meta-level objects,

❑ subclass specification based on incre

❑ self-binding and method dispatch stra
point operators,

❑ compositional view of object-oriented
(e.g., inheritance as composition of ge

☞ Unifying concept of agents and forms

Object Models in the πL-Calculus 14.

S © Jean-Guy Schneider

ncurrent Objects in a

ncurrent, Object-
er, Genericity and

 and Oscar
l Concurrent Objects

pe. Synchronizing
 1997.

ripts, and Glue: A
omposition, 1999.
OAP Workshop, June 15,1999

References

❑ Benjamin Pierce and David Turner. Co
Process Calculus, 1995.

❑ Ciaran McHale. Synchronization in Co
oriented Languages: Expressive Pow
Inheritance, 1994.

❑ Markus Lumpe, Jean-Guy Schneider,
Nierstrasz. Using Metaobjects to Mode
in PICT, 1996.

❑ Jean-Guy Schneider and Markus Lum
Concurrent Objects in the π-Calculus,

❑ Jean-Guy Schneider. Component, Sc
Conceptual Framework for Software C

	Overview
	Pierce/Turner Basic Object Model
	Objects in the p-Calculus
	pL-Calculus based Object Model (I)
	pL-Calculus based Object Model (II)
	Integration of GSP’s into Object Model
	Observations
	From Pre-methods to Generators
	Class Abstractions
	Encoding of the Fixed-point Operator
	Mixins
	Summary
	References

