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Overview

❑ πL-calculus based object model

❑ integration of Generic Synchronizatio

❑ pre-methods, generators

❑ class abstractions

❑ inheritance, method dispatch strategie

❑ mixins

❑ references
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Pierce/Turner Basic Object Mo

The basic object model of Pierce and Turner c
features of objects:

def  emptyRef (X) = (υ c, s, g)

( (<set=s, get=g>)

| !g(Y).c(Z).( (Z) | (Z) )

| s(Y). ( (Y) | (<>)

| !s(Z).c(V).( (Z) |
)

)

Xreply

Yreply c

c Yreply

c Z
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〈lj,p,x〉 )

(xnew).!xnew(l,r,y).
lj][b] r | [l ≠ lj]x〈l,r,y〉 )
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Objects in the π-Calculus

Sangiorgi’s translation of an untyped OC(Ad
polyadic π-calculus:

[{ j∈1..n lj = ζ(y).bj}] p =def p(x).!x(l,r,y).( Πj∈

[a.lj]p =def (υ q)( [a]q | q(x).x

[a.lj ⇐ ζ(y).b]p =def (υ q)( [a]q | q(x).p
( [l = 

[x]p =def px
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πL-Calculus based Object Mo

Class
Metaobject

Intermediate-

Object
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x1,...,lj=xj>)
 )

1..n lj = ζ(y).bj}] t
Y). (S)
).[S.lj(<X,self=s>)] ))

(<X,reply=r>) )

bj[ ]Xreply

Xreply

l j
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πL-Calculus based Object Mod

[{ j∈1..n lj = ζ(y).bj}] r =def (υ x1,...,xn)( (<l1=
| Πj∈1..n !xj(X).

[{ j∈1..n lj = bj}] r =def (υ x1,...,xn,s,t)([{j∈
| t(S).( (S) | !s(

| Πj∈1..n !xj(X

[O.lj(X)] r =def (υ p)([O]p | p(Y).

[F]r =def (F)

r

r

Y

r
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Integration of GSP’s into Objec

Class
Metaobject

Intermed

Object
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Method
Wrapper

Method
Wrapper

Metaobject
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Observations

❑ record-based basic object model is a 
modelling object-oriented features,

❑ intermediate-objects as collections of
❑ controlling visibility of features based 
❑ classes as first class entities: class m
❑ inheritance as intermediate-object ext
❑ π−calculus expressive enough to mod

of OOPL’s.

☞ Problem: cannot define reusable clas
the usage of pre-methods (explicit se
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From Pre-methods to Generato

Generator:
❑ defines behaviour of objects,

❑ requires self as additional parameter,

❑ ∆ defines difference in relation to a pa

Wrapper:
❑ fixed-point operator over a generator,

❑ establishes correct self-binding.

☞ Inheritance as generator composition

GD self( ) GP self( ) ∆ self G( ,⊕=

W fix self G self( )[ ]=
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ce model of a class:
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elf ))
∆ self I( , ))

lf ' GP self '( ), )]
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Class Abstractions

A class abstraction (i.e. a function):
❑ defines a class metaobject

❑ requires a ∆ and a reference to a pare

Generator composition defines the inheritan

Application of fixed-point operator defines m

C class ∆ parent( , )=

GD self( ) GP self( ) ∆ self GP s(( ,⊕=

GB self I( , ) ∆ self I( , ) GP self I ⊕( ,⊕=

GS self( ) fix self ' GP self '( ) ∆ se(⊕[=
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(<reply=x>)

nit,self=s,reply=r>)

(Y) )

rocesses

s
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Encoding of the Fixed-point Op

The encoding of the fixed-point operator is b
cell and self being a function (and not a valu

def  wrapper(Init,res) = (υ r, s, x) (

| x(S).( !s(X). (X)

| (<init=I

| r(Y).( (Y) |
)

)

☞ functions are encoded as replicated p

emptyRef

Sget

generate

Sset re
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self ))

C)

P) GM 2
self GP( , )⊕
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Mixins

A mixin is an abstract subclass (a “subclass”
parent-class):

Applying a mixin M to a class C merges the b

Mixin composition:

☞ Mixin composition/application is asso

GM self GP( , ) GP self( ) ∆ self GP(( ,⊕=

GM C• self( ) GC self( ) GM self G( ,⊕=

W M C• fix self GM C• self( )[ ]=

GM 1 2,
self GP( , ) GP self( ) GM 1

self G( ,⊕=
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Summary

❑ an object is viewed as an agent conta
(representing state) and agents (repre

❑ class and mixin abstractions as functi
mixins as meta-level objects,

❑ subclass specification based on incre

❑ self-binding and method dispatch stra
point operators,

❑ compositional view of object-oriented
(e.g., inheritance as composition of ge

☞ Unifying concept of agents and forms
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