Components, Scripts, and Glue 1.

Components, Scripts, and Glue

Jean-Guy Schneider

Software Composition Group
Institut fUr Informatik und angewandte Mathematik (IAM)
Universitat Bern

E-malil: schneidr@iam.unibe.ch
WWW: http://www.iam.unibe.ch/~scg/

UBS Developper Forum, June 3,1999 © J.-G. Schneider, O. Nierstrasz

http://www.iam.unibe.ch/~scg/

Components, Scripts, and Glue 2.

Overview

1. An Example
[Identifying missing keywords

2. Scripting and Software Composition
[1 Components, architectures, scripts and glue

3. Summing Up
[1 Separation of concerns; some pointers

UBS Developper Forum, June 3,1999 © J.-G. Schneider, O. Nierstrasz

Components, Scripts, and Glue 3.

Part I: Example

UBS Developper Forum, June 3,1999 © J.-G. Schneider, O. Nierstrasz

Components, Scripts, and Glue 4.

Example: Extracting Keywords

Keyword master file:
Component models and definitions

Information files:

#Label: 3

#Mod: Thu May 21 11:50:34 MET DST 1998 schneidr

#Keys: Python Component

Components and Modules can be written in Python or in C/C++. A
client of a module is not aware whether it is written in Python

or in a system programming language. On systems with dynamic
loading, recompilation of the Python interpreter is not neces-

sary; a module itself has to be a shared library.

#see python:1

Problem:
[1 check for keywords missing from master file

UBS Developper Forum, June 3,1999 © J.-G. Schneider, O. Nierstrasz

Components, Scripts, and Glue

First Approach: C Program

/* get keywords of a file */
List getKeys (char* fileName){
FILE* file;
char* line;
char first[80];
List newKeys = 0;

file = fopen (fileName, "r");
if (file) {
while (!(feof (file)){
line = read_line (file);
if (*line 1="#") {
sscanf (line, "%s", first);
appendToList (&newKeys, first,

UNIQUE);
free (line);
}
}
fclose (file),

}

return newKeys;

UBS Developper Forum, June 3,1999

/* Main */

int

main (int argc, char* argv[]}{
List orgKkeyWords = 0;
List foundKeyWords = 0;
int i;
/* Get valid keywords */
orgKeyWords = getKeys (KEYWORD_FILE);

/* Loop over arguments *
for (i=1; i < argc; i++) {
appendListToList (&foundKeyWords,
getKeyWords (argVv[i]), UNIQUE);,
}

/* remove keyword tag */
removeFromList (&foundKeyWords,
KEYS_TAG);

/* display difference of lists */

diffLists (orgKeyWords,
foundKeyWords);

return O;

© J.-G. Schneider, O. Nierstrasz

Components, Scripts, and Glue 6.

First Approach: Observations

[]

] [

O OO O

Approx. 100 lines C code (plus 200 lines library code)
Compile-time type checking

Non-trivial memory management (explicit malloc and
free)

User-defined data structures (e.g., lists)
Complex control structures
Difficult to adapt and extend

Use of an object-oriented approach does not reduce code
size considerably

UBS Developper Forum, June 3,1999 © J.-G. Schneider, O. Nierstrasz

Components, Scripts, and Glue 7.

Second Approach: Shell Script

#!/bin/sh
Check for unknown keywords

awk "1 /M {print $1} keywords | \ # get first word of non '#’ lines
sort > /tmp/$$ # sort into temporary file
wrong="" grep -h "#Keys’ $* |\ # get lines with '#Keys’ tag
tr -c’[A-Z][a-z] '\012*] |\ # split words into separate lines
grep -v’Keys’ |\ # remove lines with '#Keys’
sort -u|\ # sort, remove duplicates
comm-13 /tmp/$$ - ™ # compare with temporary file:
-13: contents unique to I-stream
if [-n "$wrong” | ; then # empty string in '$wrong’?
echo "There are unknown keywords:”
foriin $wrong ; do # iterate over unknow keywords
grep -n""Keys:.*$i" * # display files and line numbers of
done # unknown keywords
else

echo "All keywords are known”
fi

rm /tmp/$$ # remove temporary file

UBS Developper Forum, June 3,1999 © J.-G. Schneider, O. Nierstrasz

Components, Scripts, and Glue 8.

Second Approach: Observations

[]
[]

1 [

OO OO OO O

16 lines of source code

Use of standard UNIX components (awk, comm grep ,
sort , tr), text streams, and files

Pipes and filters

Simple expressions and control structures: simple
architecture

Regular expressions

Automatic memory management (garbage collection)
Extended functionality

Extensible

Run-time type checking

UBS Developper Forum, June 3,1999 © J.-G. Schneider, O. Nierstrasz

Components, Scripts, and Glue 9.

Part Il: Scripting and Software
Composition

UBS Developper Forum, June 3,1999 © J.-G. Schneider, O. Nierstrasz

Components, Scripts, and Glue 10.

Programming Paradigms

A programming language isa problem-solving tool.

Imperative style:

[1 program = algorithms + data
Functional style:

[1 program = functions o functions
Logic programming style:

[1 program = facts + rules
Object-oriented style:

[1 program = objects + messages

UBS Developper Forum, June 3,1999 © J.-G. Schneider, O. Nierstrasz

Components, Scripts, and Glue 11.

A Conceptual Framework for Compaosition

We can keep software systems open and flexible by building them
out of components.

applications = components + scripts

Architectural style: formalizes standard component
interfaces, connectors, and composition rules

Components: black-box entities export and import services
Scripts: specify a composition (i.e. an architecture)
Coordination abstractions: implement the connections
Glue code: overcomes compositional mismatches

UBS Developper Forum, June 3,1999 © J.-G. Schneider, O. Nierstrasz

Components, Scripts, and Glue 12.

Components

Components are “designed to be composed”
[1 black box entities

[] that provide services to other components
[and may also require services to work

| w—
=
provided services

required services
— -

“A software component is a composable element of a component
framework”

UBS Developper Forum, June 3,1999 © J.-G. Schneider, O. Nierstrasz

Components, Scripts, and Glue 13.

Software Architectures

Software Architecture: describes a software system as a
configuration of components and connectors.

Architectural Style:
[1 abstracts over a set of related software architectures

[1 defines a vocabulary of component and connector types
and a set of rules governing their composition

Examples:
[1 Data flow: Pipes and Filters, Data-flow network, ...

[1 Independent components: Event systems, ...
[1 Data-centered: Repository, Blackboard, ...

UBS Developper Forum, June 3,1999 © J.-G. Schneider, O. Nierstrasz

Components, Scripts, and Glue 14.

What is Scripting?

Unlike mainstream component programming, scripts
usually do not introduce new components, but simply

wire existing ones.

— Clemens Szyperski

Scripting labels a high-level language that gets
something outside itself (a browser, system facilities, ...)

to do the work of an application.

— Cameron Larid

A scripting language is a high-level language to create, customize,
and assemble components into a predefined software
architecture.

UBS Developper Forum, June 3,1999 © J.-G. Schneider, O. Nierstrasz

Components, Scripts, and Glue 15.

Glue code

The purpose of glue code is to adapt foreign components that do
not fit into the architectural style of a given framework.

ad hoc glue code
source | filter > [tmp/in$$

foreign -i Itmp/in$$ -0 /tmp/out$$ # not a filter!
cat /tmp/out$$ | finish

rm -f tmp/in$$ /tmp/out$$

UBS Developper Forum, June 3,1999 © J.-G. Schneider, O. Nierstrasz

Components, Scripts, and Glue 16.

Glue Abstractions

A glue abstraction defines a general way to bridge compositional
mismatch:

wrap -- a generic glue abstraction
foreign=%$1

in=/tmp/in$$

out=/tmp/out$$

cat > $in

$foreign -i $in -0 $out

cat $out

rm -f $in $out

using the adapted component
source | filter | wrap foreign | finish

UBS Developper Forum, June 3,1999 © J.-G. Schneider, O. Nierstrasz

Components, Scripts, and Glue 17.

Part Ill: Summing up

UBS Developper Forum, June 3,1999 © J.-G. Schneider, O. Nierstrasz

Components, Scripts, and Glue 18.

Separation of Concerns

Scripting languages Glue
(configuration) (adaptation, bridging)

Component
Frameworks

Coordination Architectural
description languages

Separation of computational elements and their relationships

UBS Developper Forum, June 3,1999 © J.-G. Schneider, O. Nierstrasz

Components, Scripts, and Glue 19.

Scripting and Application Development

What I think is quite important, but underrated, is the

dichotomy that scripting forces on application design. It
encourages the development of reusable components

(I.e., "bricks") in system programming languages and the
assembly of these components with scripts (i.e.,
"mortar”).

— Brent Welch

Scripting languages are used to create, customize, and assemble
components into a predefined architecture.

UBS Developper Forum, June 3,1999 © J.-G. Schneider, O. Nierstrasz

Components, Scripts, and Glue 20.

Pointers to Further Information

For further information about scripting:

Addendum to notes, errata,
Complete source code of examples,
Extended versions of packages, libraries,

Pointers to languages (web-sites, references, etc.),
Conferences,

O OO OO O

www.iam.unibe.ch/~scg/Teaching /Tutorials/ECOOP99-Scripting/

UBS Developper Forum, June 3,1999 © J.-G. Schneider, O. Nierstrasz

http://www.iam.unibe.ch/~scg/Teaching/Tutorials/ECOOP99-Scripting/

	Overview
	Part I: Example
	Example: Extracting Keywords
	First Approach: C Program
	First Approach: Observations
	Second Approach: Shell Script
	Second Approach: Observations

	Part II: Scripting and Software Composition
	Programming Paradigms
	A Conceptual Framework for Composition
	Components
	Software Architectures
	What is Scripting?
	Glue code
	Glue Abstractions

	Part III: Summing up
	Separation of Concerns
	Scripting and Application Development
	Pointers to Further Information

