
Components, Scripts, and Glue 1.

U © J.-G. Schneider, O. Nierstrasz

d Glue

up
athematik (IAM)

h
cg/
BS Developper Forum, June 3,1999

Components, Scripts, an

Jean-Guy Schneider

Software Composition Gro
Institut für Informatik und angewandte M

Universität Bern

E-mail:schneidr@iam.unibe.c
WWW: http://www.iam.unibe.ch/~s

http://www.iam.unibe.ch/~scg/


Components, Scripts, and Glue 2.

U © J.-G. Schneider, O. Nierstrasz

s and glue

nters
BS Developper Forum, June 3,1999

Overview

1. An Example
☞ Identifying missing keywords

2. Scripting and Software Composition
☞ Components, architectures, script

3. Summing Up
☞ Separation of concerns; some poi



Components, Scripts, and Glue 3.

U © J.-G. Schneider, O. Nierstrasz
BS Developper Forum, June 3,1999

Part I: Example



Components, Scripts, and Glue 4.

U © J.-G. Schneider, O. Nierstrasz

or in C/C++. A
n in Python
ms with dynamic
ot neces-

aster file
BS Developper Forum, June 3,1999

Example: Extracting Keywords

Keyword master file:
Component  models and definitions

Information files:
#Label: 3
#Mod: Thu May 21 11:50:34 MET DST 1998 schneidr
#Keys: Python Component
Components and Modules can be written in Python
client of a module is not aware whether it is writte
or in a system programming language. On syste
loading, recompilation of the Python interpreter is n
sary; a module itself has to be a shared library.
#see python:1

Problem:
☞ check for keywords missing from m



Components, Scripts, and Glue 5.

U © J.-G. Schneider, O. Nierstrasz

c, char* argv[]){
rds = 0;

Words = 0;

ywords */
 = getKeys (KEYWORD_FILE);

rguments */
c; i++) {
tToList  (&foundKeyWords,
 (argv[i]), UNIQUE);

word tag */
ist  (&foundKeyWords,
G);

rence of lists */
orgKeyWords,

ords);
BS Developper Forum, June 3,1999

First Approach: C Program
/* get keywords of a file */
List getKeys  (char* fileName){

FILE* file;
char* line;
char first[80];
List newKeys = 0;

file = fopen (fileName, "r");
if (file) {

while (!(feof (file))){
line = read_line  (file);
if (*line != ‘#’) {

sscanf  (line, "%s", first);
appendToList  (&newKeys, first,

UNIQUE);
free (line);

}
}
fclose (file);

}
return newKeys;

}

/* Main */
int main  (int arg

List orgKeyWo
List foundKey
int i;
/* Get valid ke
orgKeyWords

/* Loop over a
for (i=1; i < arg

appendLis
getKeyWords
}

/* remove key
removeFromL

KEYS_TA

/* display diffe
diffLists  (

foundKeyW
return 0;

}



Components, Scripts, and Glue 6.

U © J.-G. Schneider, O. Nierstrasz

es library code)

licit malloc  and

ts)

oes not reduce code
BS Developper Forum, June 3,1999

First Approach: Observations

❑ Approx. 100 lines C code (plus 200 lin

❑ Compile-time type checking

❑ Non-trivial memory management (exp
free )

❑ User-defined data structures (e.g., lis

❑ Complex control structures

❑ Difficult to adapt and extend

❑ Use of an object-oriented approach d
size considerably



Components, Scripts, and Glue 7.

U © J.-G. Schneider, O. Nierstrasz

d of non ’#’ lines
porary file

th ’#Keys’ tag
into separate lines
s with ’#Keys’
e duplicates
ith temporary file:
ts unique to I-stream
g in ’$wrong’?

 unknow keywords
 and line numbers of
ywords

porary file
BS Developper Forum, June 3,1999

Second Approach: Shell Script
#!/bin/sh
# Check for unknown keywords

awk ’! /^#/ {print $1}’ keywords | \ #  get first wor
sort  > /tmp/$$ #  sort into tem

wrong=”` grep  -h ’^#Keys’ $* | \ #  get lines wi
tr  -c ’[A-Z][a-z]’ ’[\012*]’ | \ #  split words 
grep  -v ’Keys’ | \ #  remove line
sort  -u | \ #  sort, remov
comm -13 /tmp/$$ - `” #  compare w

# -13: conten
if [ -n ”$wrong” ] ; then #  empty strin

echo  ”There are unknown keywords:”
   for i in $wrong ; do #  iterate over

grep  -n ”^#Keys:.*$i” * #  display files
done #  unknown ke

else
echo  ”All keywords are known”

fi

rm /tmp/$$ #  remove tem



Components, Scripts, and Glue 8.

U © J.-G. Schneider, O. Nierstrasz

ns

wk, comm, grep ,

ures: simple

bage collection)
BS Developper Forum, June 3,1999

Second Approach: Observatio

❑ 16 lines of source code

❑ Use of standard UNIX components (a
sort , tr ), text streams, and files

❑ Pipes and filters

❑ Simple expressions and control struct
architecture

❑ Regular expressions

❑ Automatic memory management (gar

❑ Extended functionality

❑ Extensible

❑ Run-time type checking



Components, Scripts, and Glue 9.

U © J.-G. Schneider, O. Nierstrasz

oftware
BS Developper Forum, June 3,1999

Part II: Scripting and S
Composition



Components, Scripts, and Glue 10.

U © J.-G. Schneider, O. Nierstrasz

ving tool.
BS Developper Forum, June 3,1999

Programming Paradigms

A programming language is a problem-sol

Imperative style:
☞ program = algorithms + data

Functional style:
☞ program = functions  functions

Logic programming style:
☞ program = facts + rules

Object-oriented style:
☞ program = objects + messages



Components, Scripts, and Glue 11.

U © J.-G. Schneider, O. Nierstrasz

omposition

ible by building them

scripts

component
on rules

d import services

itecture)

he connections

atches
BS Developper Forum, June 3,1999

A Conceptual Framework for C

We can keep software systems open and flex
out of components.

applications = components + 

Architectural style: formalizes standard 
interfaces, connectors, and compositi

Components: black-box entities export an

Scripts: specify a composition (i.e. an arch

Coordination abstractions: implement t

Glue code: overcomes compositional mism



Components, Scripts, and Glue 12.

U © J.-G. Schneider, O. Nierstrasz

”

ents

ment of a component

provided services
BS Developper Forum, June 3,1999

Components

Components are “designed to be composed
❑ black box entities

❑ that provide services to other compon

❑ and may also require services to work

“A software component is a composable ele
framework”

required services



Components, Scripts, and Glue 13.

U © J.-G. Schneider, O. Nierstrasz

are system as a
nectors.

ware architectures

t and connector types
omposition

flow network, ...

ystems, ...

oard, ...
BS Developper Forum, June 3,1999

Software Architectures

Software Architecture: describes a softw
configuration of components and con

Architectural Style:
☞ abstracts over a set of related soft

☞ defines a vocabulary of componen
and a set of rules governing their c

Examples:
☞ Data flow: Pipes and Filters, Data-

☞ Independent components: Event s

☞ Data-centered: Repository, Blackb



Components, Scripts, and Glue 14.

U © J.-G. Schneider, O. Nierstrasz

ming, scripts
ts, but simply

emens Szyperski

at gets
tem facilities, ...)

 Cameron Larid

to create, customize,
 software
BS Developper Forum, June 3,1999

What is Scripting?

Unlike mainstream component program
usually do not introduce new componen
wire existing ones.

— Cl

Scripting labels a high-level language th
something outside itself (a browser, sys
to do the work of an application.

—

A scripting language is a high-level language
and assemble components into a predefined
architecture.



Components, Scripts, and Glue 15.

U © J.-G. Schneider, O. Nierstrasz

 components that do
amework.

t a filter!
BS Developper Forum, June 3,1999

Glue code

The purpose of glue code is to adapt foreign
not fit into the architectural style of a given fr

# ad hoc glue code
source | filter  > /tmp/in$$

foreign -i  /tmp/in$$ -o  /tmp/out$$ # no

cat /tmp/out$$ | finish

rm -f /tmp/in$$ /tmp/out$$



Components, Scripts, and Glue 16.

U © J.-G. Schneider, O. Nierstrasz

bridge compositional
BS Developper Forum, June 3,1999

Glue Abstractions

A glue abstraction defines a general way to 
mismatch:

# wrap  -- a generic glue abstraction
foreign=$1
in=/tmp/in$$
out=/tmp/out$$
cat > $in
$foreign -i $in -o $out
cat $out
rm -f $in $out

# using the adapted component
source | filter | wrap foreign  | finish



Components, Scripts, and Glue 17.

U © J.-G. Schneider, O. Nierstrasz

 up
BS Developper Forum, June 3,1999

Part III: Summing



Components, Scripts, and Glue 18.

U © J.-G. Schneider, O. Nierstrasz

eir relationships

tation, bridging)

ctural
ption languages
BS Developper Forum, June 3,1999

Separation of Concerns

Separation of computational elements and th

Component
Frameworks

Scripting languages
(configuration)

Glue
(adap

Archite
descri

Coordination



Components, Scripts, and Glue 19.

U © J.-G. Schneider, O. Nierstrasz

lopment

rrated, is the
ation design. It
e components
nguages and the
ipts (i.e.,

— Brent Welch

mize, and assemble
BS Developper Forum, June 3,1999

Scripting and Application Deve

What I think is quite important, but unde
dichotomy that scripting forces on applic
encourages the development of reusabl
(i.e., "bricks") in system programming la
assembly of these components with scr
"mortar").

Scripting languages are used to create, custo
components into a predefined architecture.



Components, Scripts, and Glue 20.

U © J.-G. Schneider, O. Nierstrasz

ies,

rences, etc.),

OP99-Scripting/
BS Developper Forum, June 3,1999

Pointers to Further Information

For further information about scripting:

❑ Addendum to notes, errata,

❑ Complete source code of examples,

❑ Extended versions of packages, librar

❑ Pointers to languages (web-sites, refe

❑ Conferences,

www.iam.unibe.ch/~scg/Teaching /Tutorials/ECO

http://www.iam.unibe.ch/~scg/Teaching/Tutorials/ECOOP99-Scripting/

	Overview
	Part I: Example
	Example: Extracting Keywords
	First Approach: C Program
	First Approach: Observations
	Second Approach: Shell Script
	Second Approach: Observations

	Part II: Scripting and Software Composition
	Programming Paradigms
	A Conceptual Framework for Composition
	Components
	Software Architectures
	What is Scripting?
	Glue code
	Glue Abstractions

	Part III: Summing up
	Separation of Concerns
	Scripting and Application Development
	Pointers to Further Information


