
7. Office Procedures

J. Hogg
O.M. Nierstrasz

D. Tsichritzis

ABSTRACT

This paper outlines an effort to introduce automation into forms-oriented office
procedures. The system allows its users to specify a set of operations on electronic
forms. Actions are triggered automatically when certain events occur, for example, when
forms or combinations of forms arrive at particular nodes in the network of stations. The
actions deal with operations on forms. The paper discusses the facilities provided for the
specification of form-oriented automatic procedures and sketches their implementation.

1. Introduction

Office automation implies that procedures followed in the office are understood, specified, translated
into programs, and performed automatically by computers and communication devices. There are many
problems, however, in accomplishing any degree of automation in the office.

The first difficulty is that most offices follow many procedures at the same time. Studies have indi-
cated that thousands of different procedures are inherent in the operation of each office, and they are differ-
ent among offices. In addition, the procedures are not always well understood and leave much flexibility
for human intervention. It is a very difficult task to capture the procedures in any meaningful model which
can later be used to guide the procedure specification.

The second difficulty is related to the nature of office procedures. Unlike regular data processing,
office procedures have many exceptions. In fact, the whole office function seems like an exception-han-
dling activity. Usual programming environments are very good at specifying repetitive procedures on vast
amounts of data. They are not appropriate for specifying exceptions, especially when the exceptions are
not well tabulated.

The third difficulty relates to the decision-oriented aspects of offices. There are many decisions in an
office, even mundane ones, which involve vast amounts of knowledge and experience that are beyond the
capabilities of any computer system. When office procedures are dependent on such decisions, they require
human intervention. When human intervention is predominant, the automation aspects vanish. User inter-
faces and database access tools are more helpful than the specification of the procedures themselves. Only
a very small part of the decision-oriented procedures can be fully automated.

Finally, office procedures are better understood at the local level. Individuals or offices know more
about what they are doing than outsiders. The specification of their procedures may be feasible. When pro-
cedures specified at the local level are combined they may have difficulty achieving overall goals, or satis-
fying well-accepted constraints. Manual procedures are linked by humans who have much versatility in
ironing out problems and incompatibilities. Automated office procedures do not show the same flexibility.

There are basically two design choices for a facility for office procedure specification. First, we need
to decide what capabilities to provide in the specification. Second, we need to decide on the way of pre-
senting this facility to the user. The generality of the specification is closely related to its goal. If it is
mainly a requirements specification facility, without plans for implementation; it can be very general and
powerful, for example, OSL [HaKu80]. If an implementation is desirable, then some of the generality
needs to be sacrificed. For example, the specification language used in SCOOP is less general, but it has

In Office Automation: Concepts and Tools, D. Tsichritzis (Ed.), pp. 137-166, Springer-Verlag, Heidelberg, 1985.

-2-

been implemented [Zism77].

There is also a choice of implementation environment. If the facility is implemented in LISP or some
other powerful artificial intelligence tool, then a powerful specification environment can be put together
with a reasonable effort. The problem of such an approach, however, is to achieve an acceptable level of
performance on a small workstation. If the facility is implemented in a regular software environment, then
the implementation effort is considerable. As a result, the facility is rather limited, but the performance is
acceptable.

The second design choice relates to the user environment. If the specification facility is used by pro-
grammers, then it can resemble a programming language. If the specification facility is mainly geared to
office workers with minimum programming expertise, then it should incorporate a very simple user inter-
face. In the end, the size of the manual is as important as the functionality of the system.

In the rest of the paper, we outline an office procedure specification facility related to forms. Forms
are used to specify procedures relating to form processing. Tw o kinds of procedures can be specified.
Queries can be stated in relation to information on forms which are present in many different workstations.
The query procedures are automatically executed in a distributed fashion and they return the cumulative
results. The second kind of procedure deals with coordination of forms arriving at a single workstation.
Depending on the specification, actions related to forms are automatically triggered and performed.

The specification and automation of forms-oriented procedures is realistic for two reasons. First,
forms structure information in a manner which is easily amenable to computerization. Second, forms-ori-
ented procedures are well understood, and carefully designed in an office environment. This design
includes not only operations on forms at the local level but flow of forms among different office sites.

The specification facility is provided on top of OFS, a passive form-processing system. OFS is an
electronic forms management system [Cheu79, Gibb79, Tsic82, TRGN82]. It provides an interface to
MRS, a small, relational database system [Hudy78, Korn79, Ladd79]. OFS and MRS were written in C,
within the UNIXTM operating system [KeRi78]. They hav e both been distributed widely to organizations.

An OFS system consists of a set of stations distributed over a number of machines in a network.
Each user has a private set of forms residing in his station. A user may only manipulate those forms which
he temporarily "owns", in the sense that they are part of his database. Communication and interaction
between stations is achieved by allowing users to mail forms to one another.

A distinction is made in OFS between form types, form blanks, and form instances. A form blank is
simply the form template used to display a form instance. A form instance corresponds to an actual filled
form, represented as a tuple in the database of forms. Its fields may have values assigned to it, and it
always has a unique key assigned at creation time by the system. A form type is the specification of a form
blank and a set of field types. A form file is a relation used to store all forms of the same type, belonging to
a station. The collection of form files for a station is a form database. Figures 1 and 2 show a form blank
and form instance, respectively, for the form type called order. Note that some fields of the form instance
need not have values associated with them. The key field must have a value which is automatically
assigned by the system.

Form fields may be of six different types. Manual fields of type 1 may be inserted or modified at any
time, type 2 fields may be inserted at any time but not modified, and type 3 fields must be inserted at form
creation and never modified. Automatic fields of type 1 are key fields, always the first of a form; type 2 are
date fields, and type 3 are signature fields, bearing the station’s name if the preceding field is filled in.

Form operations are creation, selection, and modification. Forms may also be attached to dossiers.
Dossiers are lists of forms which are not necessarily of the same form type, but which have something in
common that the user wishes to capture.

Forms may not be destroyed, although they may be mailed to a "wastebasket station", which concep-
tually shreds the electronic form. The wastebasket station may in fact archive rather than erase a form,
depending upon the needs of a particular application. Form instances are unique, and must always exist at
exactly one location in the system. They are either in a form file or waiting in a mail tray. Forms may be
mailed from one station to another. They must wait in a mail tray, and be explicitly retrieved in order to be
placed in the receiving station’s form file. Copies may be made of forms, but they are assigned a unique

-3-

ORDER FORM Ke y :

Customer number :
Customer name :

Description :
Item :
Price :

Quantity :
Total :

Figure 1: An order form blank

ORDER FORM Ke y : 00001.00000

Customer number : 354
Customer name : CSRI

Description : Office Forms System
Item : 254
Price : 200.00

Quantity : 2
Total :

Figure 2: An order form instance

key, consisting of the key of the original form together with a system-generated copy number distinguishing
the copy from the original.

Form files may be accessed as a whole, using a relational MRS interface. However, in this case, no
protection is provided against illegal operations such as destroying a form or creating a form with a key that
is already in use. Therefore, the MRS interface is not meant to be used except by privileged users.

OFS is basically a passive system, that is, the user has to initiate every action. The only automatic
form processing that OFS will do occurs if a form is mailed to a special automatic station. Such a station
periodically reads its mail and submits the forms as input to an application program. These programs must
be written so as to preserve the integrity of forms files. Consequently, the specification of an OFS auto-
matic procedure requires a great deal of knowledge of the inner workings of OFS, and is therefore not
intended for naive users. In the rest of the paper, we will discuss automatic procedures which have been
implemented on top of OFS.

2. Distributed Queries

Some office activities may require information which is spread over more than one station. We will
discuss how a station user specifies a query which is automatically performed on different stations, and how
the result of a query is presented to the user.

As the first step in query specification the user selects the form type on which the query is to be per-
formed. The form template is then displayed on the screen. A query sketch is next created by partially fill-
ing the template. This serves as an example, and informs the system of the kinds of forms qualifying for
the query. This approach has been used in QBE, SBA, and OBE [deJo80, Zloo80]. The user may fill in

-4-

zero or more fields of the template; values entered into the fields are interpreted as selection conditions.
For example, if the user enters ">10" into a field, then all forms which satisfy the query will have values
greater than 10 in this field. In addition to ">", one can also specify "<", or "=", etc., as well as a pattern
match. Such a condition is known as a simple condition. For each field, it is possible to specify a field con-
dition which is a disjunction of simple conditions. The forms that satisfy the query will satisfy the conjunc-
tion of all field conditions.

Once a query sketch has been created, the user next specifies the scope of the query. The allowable
choices are as follows:

Local: In this case the query is performed on the station database of the issuing station.

Group: In this case the query is performed on all station databases on the same node as the issuing sta-
tion.

Global: In this case the query is performed on all databases in the network (this includes the mailboxes at
the control node).

Explicit: In this case the user lists the station names of the station databases that are to be searched.

After specifying the scope, the query can be processed automatically. The results are stored in a tem-
porary database belonging to the issuing station. This database contains images rather than objects; the
objects themselves still reside in their respective station databases. A form image differs from a form, in
that it is temporary and read-only. It is also invisible to other automated procedures that process forms.
The tuples from this temporary database may be displayed by the station. When this occurs, the identifica-
tion of the station database in which the form was found is also indicated.

Each query involves a single form type. It is not possible to directly specify operations involving
more than one form type. However, arbitrarily complex multiple-type joins may be performed by first indi-
vidually constructing complete temporary databases. The station user can then invoke a relational database
system, and express his query (now over the local temporary database), using a high-level set-oriented rela-
tional query language.

MEETING ANNOUNCEMENT

To : Ke y :
From : Date :Vassos

Subject : *office automation*|*database*
Remarks :

Meeting Date :
Meeting Time :

Location :

Response :

Figure 3: A query sketch

An example of a query sketch is shown in figure 3. This query will search for meeting announce-
ments from "Vassos", on the subject "office automation" or "database". If this query is performed with a
local scope, then the meeting announcements sent to the station user (or at least residing at his station) will
be searched. If this query is performed with a global scope, then all meeting announcements in the system
will be searched. By using the "Response" field of this message type, it is also possible to determine who
has replied to the meeting announcement.

The strategy for processing a query automatically is determined by the scope of the query. Again we
distinguish the following cases:

-5-

Local:
In this case the query manager is not used, and the station process itself performs the query on its sta-
tion database.

Group:
In this case the station process sends the query to the query manager for the node. It then waits for
an answer from the query manager.

Global/Explicit:
In this case the station process sends the query to a control node manager. The control node manager
then passes the query to all query managers within the scope of the query. This may include the
query manager on the control node. The various query managers perform the query on their nodes,
and send the answer back to the control node manager. The control node manager assembles the
answers in a temporary database, and may also perform the query on the mailbox if it is included in
the query’s scope. Finally, the control node manager sends the temporary database to the station
process which issued the query.

Tw o problems arise in the automatic processing of queries: concurrency control of interfering global
or local operations, and control of data movement due to mailing operations. Tw o algorithms, the central-
ized concurrency control algorithm and the centralized movement control algorithm [TRGN82], are used to
circumvent these problems.

The concurrency control problem refers to the scheduling of operations which may conflict with
queries. There are two such sources of interference, local updates and other queries. The system gives
precedence to local updates. Stations are allowed to modify, create, or copy forms, even while queries are
in progress. In addition, separate queries can operate concurrently. Howev er, in this case, scheduling of the
queries is required. For example, suppose data item X on station i initially has value a1, and then is
changed, by a local update operation, to value a2. Similarly, on station j, the data item Y is changed from
b1 to b2. If we hav e two queries q1 and q2, it is possible that q1 will see X as a1 and Y as b2, while q2 will
see X as a2 and Y as b1. Whether we consider q1 as occurring before or after q2, this result is inconsistent
with the history of X and Y .

The source of this problem is that two distinct queries with overlapping scopes may be performed in
different order on different nodes. This problem can be solved by having the control node manager serial-
ize query requests. Each query, when accepted by the control node manager, is giv en a progressive
sequence number: Seq (query). This is similar to the use of timestamps. However, since the Seq numbers
are generated from a single node, any sequential ordering can be used. Queries are sent by the control node
manager to the satellite nodes in this order. The network protocol ensures that the order of queries sent
from one node to another is equal to the order received. Since there is a single query manager at each node,
the queries are performed in this order, i.e., of their Seq numbers.

The movement of messages from one station database to another also introduces difficulties with
query processing. In particular, the following pathological situations must be avoided.

The message M is missed by a query:

1. The query is performed on node i while the message M is on node j.

2. Message M is transferred to node i.

3. The query is performed on node j.

The message M is counted twice:

1. The query is performed on node i where it sees the message M .

2. Message M is transferred to node j.

3. The query is performed on node j where it again sees the message M .

We handle these problems by carefully orchestrating the order in which queries are performed. We
also pay attention to the movements of forms in the mailboxes. A query is first performed on the station
databases by the query managers, and then on the mailboxes by the control node manager. For messages
that are transferred, it is necessary to keep track of the sequence number of the last query that has seen the
message.

-6-

3. Form Procedures

The main automation facility deals with procedures that handle forms arriving at a station, and it is
provided by the TLA system [Hogg81, Nier81]. (TLA stands for "Three Letter Acronym", and, unlike
most acronyms, requires no apologies.) The user interface is presented in terms of objects with which the
OFS user is already familiar. Specifying operations within a procedure corresponds closely to performing
those operations within a manual system. A user who is editing an automatic forms procedure manipulates
sketches of forms. Sketches are form-like objects representing the forms that the procedure will eventually
manipulate. The same form template that OFS uses to display form instances is used quite differently in
TLA, to describe preconditions and actions in office procedures. The specifications are non-procedural and
have a simple syntax.

TLA does not assume any knowledge of the system state other than what is available to the user in
his (or her) form file or mail tray. This corresponds to the notion in OFS that users can only manipulate the
forms that they "own". Anything happening outside a user’s own workstation does not concern him. The
domain of automation is that of the individual workstation. The complexity of determining when to trigger
a procedure is thereby considerably reduced.

An automatic procedure is meant to capture the notion of an office worker collecting forms at his
desk until a "complete set" is compiled. He can then process the forms and file them or send them on their
way. Processing of the collection of forms may cause forms to be modified or new forms to be added to the
set. Reference tables and calculating tools are made available through an interface to a local library of
application programs.

The other aspect of automation supplied by TLA is that of "smart forms", which automatically fill
certain fields using previously filled-in fields as arguments. The domain here is that of the form alone, so
triggering takes place whenever a form is created or modified.

There are two types of automatic fields. The first type is filled in only if all its arguments fields have
values. The other type accepts null values, and is filled in even if some arguments fields are missing.
Fields are initially filled in sequence. When an automatic field is reached, an application program written
in a conventional programming language (usually C or the UNIXTM Shell) is executed. The output from
this program is assigned to that field. If any of the argument fields is subsequently modified, the automatic
fields which use it are also updated. Typical applications are arithmetic operations, such as sales tax calcu-
lations, or database queries, such as filling in a customer’s address.

"Smarter forms" with fields that change value depending upon time conditions, the state of the sys-
tem, or any other variable, were not implemented. Some "smarter form" problems can be solved with
TLA’s automatic procedures.

Automatic procedures have preconditions and actions, but no postconditions in the usual sense. Sat-
isfying all preconditions guarantees the successful completion of all actions. There is only a very limited
sense in which a procedure may "fail". For example, it may never be triggered, because missing forms do
not arrive. Postconditions may be interpreted in terms of the preconditions of another procedure to which
control of the forms is passed.

Automatic procedures run concurrently with the manual functions of the users. Conflicts can arise
over the form manipulations. Forms being collected by an automatic procedure can be modified or shipped
aw ay manually. They can even be "stolen" by a competing automatic procedure. This implies that when a
complete set of forms is gathered for a procedure, it has to be temporarily "removed" from the system. This
operation safeguards the forms until they are processed.

4. Interface

The specification of an automatic procedure in TLA bears some resemblance to SBA and OBE
[deJo80, Zloo80]. The precondition segment of a procedure bears a resemblance to a QBE query, with
forms instead of tables as the data objects. In the simplest form of a TLA precondition, putting a value in a
field of a precondition indicates that a form is to be found with a field matching that value. The action seg-
ment of the procedure is similar. The simplest operation is to assign to a field the value specified in an
action.

-7-

The order in which forms needed by a procedure arrive is not important. The order in which actions
are performed is not specified in detail. TLA merely ensures that the procedure be logically consistent.
The specification is non-procedural. The user indicates what forms are to be collected, and what is to be
done with them. He does not specify how they are to be collected or how the actions are to be performed.

Preconditions in TLA describe what, when and where. For each procedure there is a working set of
forms. The working set may include forms that come only from certain workstations, forms local to the
station specifying the procedure, or forms that have just been processed by another automatic procedure.
One may also specify a procedure to run only at certain times or ranges of times.

A TLA procedure is a collection of "sketches". A sketch resembles a form, but is to be distinguished
from form blanks, form types or form instances. A precondition sketch indicates a request to the system to
find "a form that looks like this". An action sketch indicates a request to modify a form that has already
been obtained. In either case, a sketch describes a form instance before or after processing by the proce-
dure. The medium of specification of a sketch is the same form blank that is the template for the form
instance being described. Actions and preconditions which do not refer to information found on a form are
specified by pseudo-sketches of "pseudo-forms". For example, the condition that a procedure process only
forms coming from user "john" must be indicated on a special source pseudo-sketch.

Sketches are used to capture the restrictions referring to values that appear on the face of the forms in
the working set. Local restrictions are constant field values, sets or ranges of values, and relations between
values of the fields on a given form. The local restrictions refer only to the values appearing on a single
form in the working set. TLA tries to determine whether a given form satisfies the local restrictions
(including the source condition) for a sketch in some automatic procedure. If it does, TLA notes the infor-
mation and attempts to match that form with other forms to obtain a complete working set for that proce-
dure.

Figure 4 is an example of a precondition sketch instructing TLA to watch for order forms requesting
"Veeblefetzers". Since this information can be found right on the order form, it is a local precondition. A
sample procedure including such a sketch might perform the single action of returning a form that says "We
stopped making those things years ago!"

ORDER FORM Ke y :

Customer number :
Customer name :

Description : Veeblefetzers
Item :
Price :

Quantity :
Total :

Figure 4: A precondition sketch

Global restrictions on the working set of an automatic procedure are the join conditions between val-
ues of fields appearing on different forms. One expects all the forms in a procedure’s working set to be
linked by certain common field values. Matching field values are therefore probably adequate to model
many applications of automatic procedures. However, simple inequality restrictions may also be specified.

Figure 5 shows how a link is made to find an inv form for the item requested on an order form. Each
sketch in a procedure has a name assigned by the user. This name is a prefix to the field name. In this way
a field of a different sketch can be referenced within a sketch. Note that one could alternatively have placed
the restriction "=inv.item" in the item number field of the order precondition sketch.

-8-

INVENTORY RECORD Key :

Item : =ord.item
Price :

Quantity in stock :

Description :

Figure 5: A global (join) precondition

We can also restrict the source of mail being processed by an automatic procedure. Suppose, for
example, that the accounting department receives an order form from the order department. This may be
interpreted as a request to forward a customer’s address to the warehouse so that the order may be filled. If,
however, the order form arrives from the warehouse, this may indicate that the order has gone through, and
that an invoice should be mailed out. Figure 6 shows an origin pseudo-form sketch for such an application.
Forms may thus be processed differently depending upon their point of origin. Alternatively, the special
field not may be filled in to indicate that only forms coming from stations not listed in the pseudo-sketch
should be processed by the procedure. The pseudo-station me is also available to indicate that forms must
(or must not) come from within the station’s own files.

ORIGIN PSEUDO-SKETCH NOT:
Stations:
ordering

Figure 6: An origin pseudo-sketch

All form modification actions are indicated on action sketches. Every form manipulated by a forms
procedure has a precondition sketch and an action sketch. Actions which do not concern themselves with
field values must be expressed via pseudo-forms.

The action sketch indicates all insertions and updates to the form. The values to be inserted may be
constant values, e.g., an authorization, copied field values, or possibly function calls to application pro-
grams. We distinguish, therefore, between the original and the updated values of any field. A field that
must be copied to another form may itself be modified, and the wrong value must not be used. Further-
more, the function calls may access both the original and updated values of fields. In fact, the original
value of a field will often be one of the arguments to a function call update to that field.

The action sketch in figure 7 illustrates several features. The price of an item is filled in by copying it
from an inv form. A program called "mult" is called to calculate the total. Finally, the original value of
quantity is accessed, whereas the updated value of price is used. Note that the symbols "#", "?" and "!" are
used to respectively access functions, original field values, and updated field values. If none of these sym-
bols is used, a constant string value is inserted.

-9-

ORDER FORM Ke y :

Customer number :
Customer name :

Description :
Item :
Price : ?inv.price

Quantity :
Total : #mult !price ?quantity

Figure 7: An action sketch

Some analysis is needed to ensure that every updated file ultimately depends only upon values origi-
nally available on the working set of forms. It is clearly incorrect to update each of two fields by copying
over the updated value of the other. Suppose that the price field of the order form were updated to
"!inv.price" and the price field of the inventory form were updated to "!order.price". No order of execution
could make sense of the request.

Field constraints must be obeyed. Procedures that create forms must fill in certain fields. Procedures
that modify forms must only modify fields of an appropriate type. Implied actions must also be evaluated,
if a procedure modifies or inserts a field which is an argument to an automatic field.

After all form modifications are completed, zero or more copies of each form are made. Each form
or copy may then be left in the user’s files, inserted into a dossier or shipped to another station. The mecha-
nism used to specify these operations is the destination pseudo-sketch; an example is shown as figure 8.
Copy 0 is the form manipulated by a procedure, and one additional destination pseudo-sketch is filled in for
each copy of that form. The operations available are leave, ship and dossier. The first of these requires no
where argument, but the others require the name of a station or a dossier, respectively. This may be given
as a simple constant or a field function value, just as in action sketches.

DESTINATION PSEUDO-SKETCH COPY: 0
Operation: ship

Where: accounting

Figure 8: Destination pseudo-sketch

A weak sort of postcondition is available by employing a function call to decide the operation,
dossier name or shipping destination. General postconditions can only be achieved by cooperating form
procedures that accept different cases of the working set of forms. Suppose, for example, that the process-
ing of an order causes the quantity of an item in stock to dip below a certain acceptable level. We may
wish, at this point, to send a memo to the manager, initiating an increase in the production of the item. The
procedure which processes the order is incapable of conditionally producing this memo as a postcondition
to inventory update. It could unconditionally produce such a memo and then functionally decide to mail it
either to the manager or to a garbage collection station. A cleaner approach, though, is to have a separate
procedure that searches for low inv entory items, and then sends the memo.

With this approach, individual tasks are clearly identified. Automatic procedures are simple and
completely devoid of control flow. Furthermore, the implementation is simpler, because postconditions cor-
respond to separate procedures. The low inv entory checker, for example, is only invoked when an inven-
tory form is updated.

-10-

5. Implementation

An automatic forms procedure in TLA is specified by a collection of sketches, and consequently
describes what is to be done rather than how to do it. The sketch representation is very convenient for the
user. This format, however, is wholly unsuitable for implementation. The specification must be analyzed
and translated for greater run-time efficiency.

We cannot predict when the forms required to trigger a forms procedure may arrive. The processing
must, therefore, be broken into distinct parts. The specification, in terms of sketches, contains information
of four basic kinds: local (form) constraints, global (working set) constraints, duplicate form types (so that
one form is not used to match two sketches within a single working dossier), and actions. The execution of
a forms procedure makes use of these four specifications at different stages. It is convenient to process
these specifications at procedure definition time, and translate them into formats that require no further run-
time analysis.

Suppose that TLA is notified of the availability of a form for automatic processing. It first checks
whether the form matches the local conditions of any precondition sketch for that form type. The local
conditions are comprised of the source restriction and the field constraints. If a form does not match the
local constraints of any precondition sketch, then TLA assumes that no procedure is prepared to handle it.
Suppose that a form does match the local constraints of one or more precondition sketches. That form is
then a candidate for a working set for a number of procedures. It is immaterial whether or not a working
set including that form is complete. There is always the possibility that at some time the missing forms of
the working set could arrive.

The form instance in figure 10 matches the local condition of the precondition sketch in figure 9, i.e.,
quantity>0. There may not necessarily be a global match if there is no order form with the same item num-
ber. Even if there is an order form with the same item number, it may not satisfy the other constraints of its
precondition sketch. Nevertheless, TLA notes that a local match has been made, and waits for the rest of
the working set to arrive.

INVENTORY RECORD Key :

Item : =ord.item
Price :

Quantity in stock : >0

Description :

Figure 9: Precondition sketch

INVENTORY RECORD Key : 00001.00000

Item : 465
Price : 16000.00

Quantity in stock : 12

Description : Workstation

Figure 10: Form instance matching local preconditions

TLA checks the local constraints of a form, records its findings, usually determines that the form
does not complete a working set, and then waits for more forms to arrive. Further processing may not

-11-

occur for some time. All local constraints for forms of the same type are extracted from all procedures and
stored in a common file. This file is opened to check the local constraints of a given form for all proce-
dures.

After the local constraints have been matched for a form, TLA checks link conditions between the
corresponding sketches of the procedure. The link conditions are stored in files by procedures. Suppose
that, in the previous example, TLA found an order for item 0002. It would note that the link between the
inventory and order form precondition sketches was satisfied by these two form instances. If the working
set consisted of only these two forms, then the procedure actions would be performed. Otherwise, TLA
would wait until forms were found to match the remaining links of the procedure.

Even if forms arrive together, the processing of the forms is sequential. TLA treats each form indi-
vidually. A locking algorithm guarantees that two forms cannot be processed at once at a given worksta-
tion. Generally, forms will not arrive simultaneously. One can expect a considerable delay between the
establishment of local constraints and the evaluation of links between forms.

Actions are performed only when a working set of forms has been compiled. Actions are stored in a
separate file. TLA preprocesses procedures, to check the legality of actions and to determine a legal order
of execution if one exists. No further run-time analysis is performed. Actions run to completion.

The example in figure 11 implicitly requires that price must first be copied from the inventory form
before its value may be multiplied by the quantity. This establishes a legal order of actions for that sketch.

ORDER FORM Ke y :

Customer number :
Customer name :

Description :
Item :
Price : ?inv.price

Quantity :
Total : #mult !price ?quantity

Figure 11: Ordering of actions

An admittedly unlikely case is captured in figure 12, which is triggered if TLA detects two inv entory
forms for a single item. Since there are two precondition sketches in the procedure, TLA assumes that they
refer to two different forms in the working set. Otherwise, any inv entory form would trivially satisfy both
precondition sketches, and thus trigger the procedure. When the procedure is written, TLA notes immedi-
ately that two precondition sketches describe forms of the same type. It performs a key comparison of
those forms in any working set identified to guarantee that they are not one and the same.

The TLA automatic procedure interpreter is triggered upon receipt of mail, form creation and form
modification. Since the last two are the responsibility of the user, triggering in these cases involves only the
spawning of a new interpreting process. In the first case, however, the interpreting process is initiated by
the user who sent the mail.

Automatic procedures are meant to run regardless of whether the user to whom the corresponding
station belongs ever signs on after the procedure is written. Mail in the system is routed through a host
control node. The sending station sends a message to the host consisting of the contents of the form tuple
and the name of the station which is to receive the mail. The host then stores the form, updates the receiv-
ing station’s mail tray and sends a message to the recipient’s station. At the recipient’s station machine, the
interpreting process is started. It communicates with the host, asking for images of each new form in the
recipient’s mailtray. The interpreter maintains files of form images for each form available for automatic
processing. It deletes the images when the forms have been processed either automatically or by the user.

-12-

INVENTORY RECORD Key :

Item :
Price :

Quantity in stock :

Description :

Precondition sketch inv1

INVENTORY RECORD Key :

Item : =inv1.item
Price :

Quantity in stock :

Description :

Precondition sketch inv2

Figure 12: Duplicate form types in a procedure

The images are copies of the contents of each form for use by the interpreter alone, and are stored just as
forms are stored. The user, howev er, has no access to the images as forms. They may not be modified,
shipped away, or otherwise manipulated. They are not properly forms or copies of forms, but merely
images of forms.

Mail may arrive while the interpreter is running. It, therefore, continues to process all mail until it
discovers an empty tray, in a manner similar to that of the line printer deamon in UNIXTM. Only one inter-
preter may run at any time for a given station. In this way we eliminate interference problems between
interpreters. A lock is placed on the running of the interpreter for a given station.

6. Sketch and Instance Graphs

The working set of a form procedure is abstracted in terms of a sketch graph, with the sketches as
coloured vertices, and the matching conditions as edges in the graph. The form-gathering algorithm must
find corresponding forms, and satisfy matching conditions of the sketch graph. An instance graph is asso-
ciated with the forms retrieved. The interpreter tries to match the sketch graph in the instance graph.

Consider the precondition sketches in figure 13. A link between the account and order forms is
established across the customer number. A link between the order and inventory forms is captured by two
global conditions, one by item number and the other by quantity.

The corresponding sketch graph is shown in figure 14. Each sketch is represented by a
labelled/coloured node. Each collection of global conditions between a pair of sketches is represented by a
single edge.

When a form is passed to the interpreter, it first reads the file of local constraints for the forms of that
type. Whenever a match is found, the interpreter notes which sketch of which procedure is matched by the
form, and it enters a tuple consisting of the form type, the form key, the procedure and the sketch matched
into a relation (called "NODE").

-13-

CUSTOMER ACCOUNT
Ke y:

Customer number: =order.number
Credit rating:

Balance:

ORDER FORM Ke y :

Customer number :
Customer name :

Description :
Item :
Price :

Quantity : ≤inv.quantity
Total :

INVENTORY RECORD Key :

Item : =order.item
Price :

Quantity in stock :

Description :

Figure 13: Precondition sketches of a procedure

Figure 14: A sketch graph for a single procedure

The file of global constraints for the matched procedure is then read. For every link concerning the
matched sketch, the system establishes whether the current form satisfies the join conditions with any of the
forms previously recorded in the NODE relation. For every new link found, the system inserts a tuple into
another relation called EDGE. EDGE records the form keys, types, sketch names, and the procedure name
of every link established.

-14-

The NODE and EDGE relations describe an instance graph, with forms as vertices or nodes and links
between them as edges. The vertices are coloured according to which sketch the form matches. If a form
matches two or more distinct sketches in one or more procedures, it is multiply represented, once for each
sketch. Procedure names partition the instance graph, since there can be no links between sketches of dif-
ferent procedures. For each partition, we wish to match the sketch graph that describes the working set of
forms for that procedure. Nodes are assigned a unique colour for each sketch, and the corresponding
colours are used in the instance graph. An instance of the sketch graph, then, must be found within the
instance graph.

Figure 15 shows the instance graph for the procedures of figure 13. Forms have been found to match
each of the precondition sketches of the procedure, but there is no complete working set. When a working
set is found, it is processed and disappears from the instance graph. Note that most of the disconnected
subgraphs of the instance graph are in fact subgraphs of the sketch graph. In the last case, however, there
are two orders for a single item, and the relationship is not that simple. The first account form to complete
either working set will complete the "copy" of the sketch graph to be found in the instance graph.

Figure 15: The instance graph for a procedure

The relationships between the forms in the working set of a form procedure are usually best
expressed in terms of the join conditions. The sketch graph will generally be connected. The instance
graph, however, will more often consist of several partially complete working sets of forms, and so will
usually be disconnected.

If the join conditions imposed on the working set of forms are "nice", then each connected subgraph
of the instance graph will also be a subgraph of the sketch graph. It is conceivable, however, that two forms
satisfying a precondition sketch may each satisfy a join condition with a third form satisfying a second
sketch in the same procedure. This anomaly will occur if the imposed join conditions are "not nice
enough". In this case, the connected subgraphs of the instance graph are not as simply related to the sketch
graph. Thus, establishing when a complete working set of forms has been compiled requires careful analy-
sis.

When the system has finished processing a form, we know that the instance graph contains no copies
of the sketch graph. If a copy of the sketch graph is identified, then a working set has been found, the pro-
cedure is executed, and the corresponding nodes and edges are purged from the instance graph. No more
working sets remain. When a new form arrives, a working set of forms may be completed only if that new
form is included. The analysis of the instance graph, then, need only concern the connected subgraphs that
include nodes representing the new form.

Join conditions giving rise to sketch trees seem natural, since the "cheapest" description of the rela-
tionships between sketches would contain no cycles. If A is related to B and B is related to C, then one
would hope not to find any other relationship holding between A and C. In practice, however, things may
not be that simple. Join conditions might give rise to cycles, or even disconnected sketch graphs. Suppose
that the warehouse, for example, has a single value form at its workstation, keeping track of the total dollar
value of its stock. The procedures which update it would include a blank precondition sketch for a value
form. Since there is no confusion about which value form is needed, there are no local or global conditions
to be specified for it. The corresponding sketch graph in figure 16 is therefore disconnected.

-15-

Figure 16: A disconnected sketch graph

7. Graph-Chasing

The algorithm which searches the instance graph for a copy of the sketch graph employs a list of
potential working sets. Initially there exists a single such set, containing only the key of the newly added
form. Edges are traversed in the instance graph and keys are added to each set until all edges and nodes in
the sketch graph have been checked.

We start at the node of the sketch graph corresponding to the new form. We traverse edges leading
out from that node, and check off any new nodes that we reach. We may follow any previously untraversed
edges leading from any node we have thus far reached. Edges will lead back to old nodes wherever cycles
occur. If the sketch graph is disconnected, then the subgraph containing the first node will be traversed
first. Edges not in that subgraph cannot lead from old nodes until an edge is traversed which checks off two
new nodes.

The sketch and instance graphs in figure 17 will be used to illustrate the graph-chasing algorithm.
The example contains both cycles and disjoint subgraphs.

Figure 17: Sample sketch and instance graphs

Sketches 3 and 5 are sketches for the same form type, but represent distinct forms in the procedure.
The terms {a, b, c, . . . p} are keys belonging to forms that match the local conditions of the sketch graph.
Form a, for example, matches sketch 1. Edges in the instance graph represent joins. Forms c and f , for
example, satisfy the global conditions between sketches 2 and 3.

The addition of form p results in the completion of the working set (a, c, f , h, p) where previously
no complete working set existed. The algorithm presented here will identify this set of forms.

As we trace a path through the sketch graph, we try to mimic our actions nondeterministically in the
instance graph. If we follow an edge in the sketch graph, we attempt to follow that edge in the instance
graph for each set in our list. For each success, we add a new key to some set, and for each failure, we
delete a set. Suppose that several edges may be traversed in the instance graph for a given edge of the

-16-

sketch graph. We then split the current set and add a new node for each copy. The closing of a cycle in the
sketch corresponds conceptually to a select on the set list. In this way we ensure that links actually exist in
the instance graph for the two relevant forms represented in each set.

Figure 18 describes the steps followed in locating the working set in our example. If at any point all
working sets are eliminated, the algorithm halts, with no working set of forms identified.

potential
working sets

1 2 3 4 5

p p is a new form matching sketch 5.

f p
g p

From node 5 in the sketch graph we can reach node 3
along edge (3,5). The edges ((3, f),(5, p)) and
((3,g),(5,p)) in the instance graph are followed, and
the potential working set is "split".

c f p
d f p
d g p

The edge (2,3) is now followed, splitting the first set
of the previous step.

a c f p
b d f p
b d g p

Follow edge (1,2).

a c f p Edge (2,5) completes a cycle. Perform a select on the
sets resulting from the last step. Since ((2,d),(5, p)) is
not in the instance graph, two potential working sets
are lost.

a c f h p All the edges in the sketch graph have been traversed.
A form that matches sketch 4 must be added.

a c f h p Check that form f differs from form p.

Figure 18: Finding a working set of forms

The sketch and instance graphs are described as follows: The sketch graph is G′(N ′, E′), where
N ′ = {1, . . . n} is the set of colours and E′ is a subset of N ′ × N ′ containing no (i, j) such that i = j. F is
the set of form keys. The instance graph is G(N , E), where N is a subset of N ′ × F and E is a subset of
N × N . Furthermore, we adopt the convention that if x = (i, k) belongs to N , then x′ = i and x′′ = k, and if
e = (x, y) belongs to E, then e′ = (x′, y′).

In the example,

N ′ = {1, 2, 3, 4, 5}

E′ = {(1, 2), (2, 3), (3, 5), (2, 5)},

F = {a, b, c, d , f , g, h, l, m, p},

N = {(1, a), (1, b), . . . (5, p)}, and

E = {((1, a), (2, c)), ((1, b), (2, d)), . . . ((2, c), (5, p))}.

We note, then, that for each x in N , x′ must belong to N ′, and for each e in E, e′ must belong to E′
— i.e., nodes and edges in the instance graph correspond to nodes and edges of the sketch graph.

Suppose that finding a complete set of forms is equivalent to locating an instance of the sketch graph
within the instance graph. We can express this as follows: We seek all subsets N ′′ of N such that

1. {x′|xmemberN ′′} = N ′
and

2. for each (i, j) in E′, there exist x and y in N ′′ such that x′ = i, y′ = j and (x, y) belongs to E — i.e.,
for each node and edge of the sketch graph, there exist unique corresponding nodes and edges in the

-17-

spanning graph G′[N ′′].
In the example,

N ′′ = {(1, a), (2, c), (3, f), (4, h), (5, p)}.

The algorithm for finding all such subsets N ′′ makes use of the knowledge that any working set of
forms must include the most recently added node, say x. Furthermore, there are two checklists, node and
edge, with slots for each element of N ′ and E′, respectively. These record whether or not the edges and
nodes have been inspected. All are initially set to false, and a set list, D, is initially set to empty. Each set
has n slots to hold all the keys of any working set of forms found by the algorithm in figure 19.

Let x in n represent the newly added form.
Add a set to D, with slot x′ set to x′′: x must belong to the working set.
Set node[x′] to true: check off node[x′] of the sketch graph.
for each e = (i, j) in E′ such that edge[e′] is false do

if both node[i] and node[j] are false then
for each set in D do

for each (y, z) in E where y′ = i and z′ = j do
copy the set
set slot i to y′′, slot j to z′′

end for
delete the original set

end for
else if exactly one of node[i] and node[j] is false then

/* without loss of generality, node[i] */
for each set in D do

for each (y, z) in E where y′ = i and z′ = j and y′′ is already in slot i of the set do
copy the set
set slot j to z′′

end for
delete the original set

end for
else if node[i] and node[j] are true then

for each set in D where (y, z) is not in E and
y′′ = 1, z′′ = j do
delete the set

end for
end if
set edge[e′] to true
set node[i] to true
set node[j] to true

end for
Check that forms of the same type are different.

Figure 19: The graph-chasing algorithm

If D is empty when the algorithm is finished, then no working sets were found. If D is not empty,
then the "first" set containing no duplicate keys is chosen as the working set.

The station’s owner may attempt to move some of the forms in the working set while the interpreter
is running. Each of the forms must therefore be set aside. Each form in the working set is deleted from the
system so that the only copy is the interpreter’s image of the form. If any of the forms cannot be found,
then the interpreter restores all the forms retained thus far, and aborts the forms procedure.

If all the forms are successfully obtained, then the interpreter performs the set of actions. In the
translation phase, the legality of actions, implied actions, and a legal order of actions have already been

-18-

determined.

Actions may "fail" if a string is too long to be inserted in a given field, or if a form is mailed to a non-
existent station. In the former case, TLA chooses to insert the null string by default, with the understanding
that both humans and procedures are intelligent enough to interpret this, not as a value, but as a non-value.
In the latter case, OFS (and consequently TLA) returns the mail to the sending workstation. Since TLA
procedures are capable of recognizing the source of mail, it is presumed that this anomaly could be appro-
priately dealt with if a user felt it necessary.

8. Concluding Remarks

Our form-processing facility captures, in some sense, what is meant by an "automatic forms proce-
dure". The context of OFS limits the range of possible actions upon forms. There are also many things that
persons can do with OFS which have not been modelled in TLA. Automatic procedures, for example, are
not smart enough to expect the timely return of a form which has been shipped away.

Form flow is determined by the particular configuration of procedures across the system. It is the
responsibility of the users and an office administrator to model and analyze so that there are no undesirable
side effects resulting from a particular combination of automatic procedures. Such analysis should be per-
formed within a reasonable complexity bound, and it should be performed mechanically if at all possible
(see the companion paper, "Message Flow Analysis").

The complexity of interpreting automatic procedures and form-gathering clearly depends on:

1. the size of the working set for a procedure,

2. the number of automatic procedures running at workstations, and

3. the number of form images "waiting" in the instance graphs of a workstation.

The complexity of identifying a sketch graph within the graph grows if the sketch graph is not merely a
subgraph of the instance graph. Obviously, whatever factors contribute to this complexity must be consid-
ered in any "good office design". However, exactly what constitutes "good design", and to what extent it is
feasible, is not easily established.

Partly completed working sets of forms may or may not have a particular meaning in terms of excep-
tions and errors. If forms are "missing" from a working set, the present forms may also be part of another
working set. The missing forms would determine which procedure is to be activated. There is no way of
telling which procedure forms are missing until they arrive. Missing forms may never arrive. There is no
way of interpreting their absence as an error, except by placing some arbitrary time limit upon form-gather-
ing.

Forms may satisfy partly completed working sets for a number of procedures. There is a need for
some convenient way of displaying these sets. Users could interpret what is "missing", and possibly act on
this information. Instance graphs could be quite complicated. Several partly completed sets may overlap in
a single instance graph. A graphic display would present this information in a much better fashion than
lists of form keys.

A simple feature that would increase user interaction with automatic procedures would be a function
whose value is determined by the user. When the interpreter sees this function assigned to a field in an
action sketch, it holds all the forms in the working set. It then notifies the user when he next signs on, and
waits until the user makes a request to inspect the working set. At that point the user is allowed to assign a
value to the field (or possibly abort the procedure), and then execution will resume.

Form flow between stations in TLA is determined by the interplay of automatic procedures. Flow of
execution could be made more explicit by passing control between procedures in different stations. One
should then also pass working sets of forms between procedures. In this way one could explicitly deter-
mine the order of operations. Procedures could then be called from other procedures without the need for
form-gathering. Decision points could be modelled by branching rather than by a variety of similar work-
ing sets of forms. Which procedure is to be called could be decided by evaluating a function whose argu-
ments are field values from the working set.

Many office automation systems have been strongly influenced by the SBA [deJo80] and OBE
[Zloo80] systems and Officetalk [ElNu80]. The most noticeable exceptions are SCOOP [Zism77] and BDL

-19-

[HHKW77], which are, however, more office-systems programming languages than office workers’ lan-
guages. TLA uses forms that are manipulated at workstations, like Officetalk; the non-procedural interface
for defining procedures was in large part inspired by the work of deJong and Zloof. However, TLA takes a
somewhat different approach from either.

A goal of the TLA project was to provide a facility for automating office procedures, which could be
used by office workers, as opposed to computer professionals, with a minimum of training. As a result,
there was an emphasis on providing familiar concepts and a highly uniform interface.

The form is a very familiar concept to all office workers. Therefore, the idea of a sketch is an easy
one to teach. By contrast, the SBA notion of boxes is both useful and powerful. However, it has no analog
in the office of today, and therefore requires a more expert office worker in its use.

In TLA, "conditions" (constraints) appear within a form itself. This reflects an underlying philoso-
phy in the TLA project that the user interface should be as uniform as possible. There are no separate con-
dition boxes attached to forms within the underlying manual system, and therefore there are no separate
conditions attached to sketches. Information that absolutely cannot be obtained from the form fields (such
as the source of the form) is specified using pseudo-sketches that resemble forms as closely as possible.

Our form specification facility, like its base systems, OFS and MRS, runs on very small computers.
Most of the development was done for an LSI-11/23. It will essentially run on any UNIXTM-oriented work-
station. This means that the hardware required for TLA is affordable by any office large enough to benefit
from automation. At the same time, incremental growth can be easily achieved by adding additional
machines, of a wide range of sizes, to a local net.

OFS, MRS, and TLA have been implemented on machines running under UNIXTM. Compatibility
with OFS was maintained in TLA. Changes to code, and the internal representation of an OFS system were
mostly additions to modules and UNIXTM file directories. Where existing files and code were modified,
compatibility was maintained, so that OFS would simply ignore the added TLA features. Conversion costs
from an OFS system to one that supports TLA are negligible, and any TLA system can be run with the OFS
subset. In essence, OFS, MRS and TLA are completely integrated.

9. References

[Cheu79] C. Cheung, OFS: A Distributed Office Form System with a Micro Relational System, M.Sc.
thesis, Department of Computer Science, University of Toronto, 1979.

[deJo80] P. de Jong, "The System for Business Automation: A Unified Application Development Sys-
tem", Proceedings of IFIP Congress 80, pp. 469-474, Tokyo, 1980.

[ElNu80] C. Ellis and G. Nutt, "Computer Science and Office Information Systems", ACM Computing
Surveys, 12(1), pp. 27-60, March 1980.

[Gibb79] S.J. Gibbs, OFS: An Office Form System for a Network Architecture, M.Sc. Thesis, Depart-
ment of Computer Science, University of Toronto, 1979.

[HaKu80] M. Hammer and J.S. Kunin, "Design Principles of an Office Specification Language", Pro-
ceedings of the NCC, pp. 541-547, 1980.

[HHKW77] M. Hammer, W.G. Howe, V.J. Kruskal and I. Wladawsky, "A Very High Level Programming
Language for Data Processing Applications", Communications of the ACM, 20(11), pp.
832-840, November 1977.

[Hogg81] J. Hogg, TLA: A System for Automating Form Procedures, M.Sc. thesis, Department of
Computer Science, University of Toronto, 1981.

[Hudy78] R. Hudyma, "Architecture of Microcomputer Distributed Database Systems", M.Sc. thesis,
Department of Computer Science, University of Toronto, 1978.

[KeRi78] B.W. Kernighan and D.M. Ritchie, "The C Programming Language", Prentice-Hall Software
Series, 1978.

[Korn79] J.Z. Kornatowsky, The MRS User’s Manual, Computer Systems Research Group, University
of Toronto, 1979.

-20-

[Ladd79] I. Ladd, "A Distributed Database Management System Based on Microcomputers", M.Sc.
thesis, Department of Computer Science, University of Toronto, 1979.

[Nier81] O.M. Nierstrasz, Automatic Coordination and Processing of Electronic Forms in TLA, M.Sc.
thesis, Department of Computer Science, University of Toronto, 1981.

[TRGN82] D.C. Tsichritzis, F. Rabitti, S.J. Gibbs, O.M. Nierstrasz and J. Hogg, "A System for Manag-
ing Structured Messages", IEEE Transactions on Communications, Com-30(1), pp. 66-73,
January 1982.

[Tsic82] D.C. Tsichritzis, "Form Management", Communications of the ACM, 25(7), pp. 453-478,
July 1982.

[Zism77] M. Zisman, Representation, Specification and Automation of Office Procedures, Ph.D. dis-
sertation, Wharton School, University of Pennsylvania, 1977.

[Zloo80] M.M. Zloof, "A Language for Office and Business Automation", 1980 AFIPS Office Auto-
mation Conference Digest, Atlanta, USA, March 1980.

