Using Objects to Implement Office Procedures Page 1

Using Objects to Implement Office Procedures®

Oscar Nierstrasz
John Mooney
Ken Twaites

Department of Computer Science
University of Toronto
Toronto, Ontario, M5S 1A1

ABSTRACT
Office information systems (OISs) provide facilities for automatically triggering procedures when certain
conditions become true or particular events take place such as receipt of mail. Such systems are character-
ized by a high degree of parallel activity that cooperates with but may run independently of user processes.
Traditional high-level programming languages do not readily capture this sort of behaviour. This makes
building a customized OIS a painful process. "Objects" are entities with contents and a set of rules describ-
ing their use. We believe that objects are a useful primitive for designing and building such systems quickly.

1. Introduction

An office information system is a computer system that models the activities of an office. One would
expect to find that the objects defined in an OIS parallel the real objects in a physical office such as desks or
workstations, memos, forms, telephones, calculators, tables, mail trays and so on. An OIS presents a uni-
form medium in which to represent the objects in an office thus permitting the automation or partial
automation of routine activities and providing the advantage of increased speed of communication.

Automation in an OIS is enabled by permitting events to trigger other events. The receipt of a certain
kind of message, for example, may trigger a procedure which automatically reads the message and
responds to it. The creation or modification of any object may also trigger an event. By specifying exactly
what situations may trigger an event a user passes the responsibility of firing it to the system. What distin-
guishes an electronic office from a physical office is that in it we may implement "intelligent” office
objects. Such objects may be passive and merely constrain their appearance or range of values, or they may
be active and initiate more involved office procedures. These procedures need not be explicitly called in all
cases. Instead, one might ask for an event to be triggered whenever a particular situation arises, without
indicating what other events might possibly be responsible.

"Objects" can be used to model intelligent office objects and office procedures in an easy, natural
way. Intelligent forms with the full range of field types and constraints can be specified. Standard form
manipulations can also be easily defined. In addition, it is simple to define office procedures that are mod-
elled on sequential scripts, finite automata or even augmented Petri nets.

The term object is a familiar one but also a notoriously imprecise one. It suggests at once a collec-
tion of similar concepts: abstract data types, intelligent messages, modules, actors [Hewi77], boxes
[deJo80], data frames [EmbI80], automatic procedures [TRGH81] and Smalltalk objects [BYTES81].

 In Proceedings of the Canadian Information Processing Society Conference, Ottawa, May 1983, pp. 65-73.

Using Objects to Implement Office Procedures Page 2

Rather than invent a new word, we will try to present a simple definition of "object" that adequately cap-
tures its vernacular usage and is also powerful enough to model real object-based systems. A computer
implementation of such objects would allow us to simulate (say) intelligent messages or all of the parts of
an office information system.

We are currently implementing an object-based system at the University of Toronto. It is being writ-
ten in the C programming language on a VAX-11/780 running the UNIX operating system. The design and
implementation of the project is divided into two major parts -- the object manager and the user interface.
The object manager identifies fireable events, and fires the rules of each of the participants of the event.
The user interface enables the user to define new object classes and interact with existing object instances
through the use of a special "user object".

2. An object model

An object-based system (OBS) enables one to model objects within a computer. It allows users to
define classes of objects with contents resembling database relations and behaviours resembling bodies of
associated code. A behaviour consists of rules for the creation, transformation and destruction of objects.
The difference between this definition of objects and most others in the literature is that we allow an
object’s rule to be triggered implicitly rather than having to be called explicitly. An object behaves as
though it is always watching for a triggering condition to become true.

An OBS enforces the behaviour by detecting conditions that will trigger events. This is the task of
managing a set of objects. A general OBS could be used as a programming language for building OISs.

A more formal notion of an object is needed before we can begin to discuss the properties of an OBS.
The state of the world is characterized by the states of the objects in it. A particular object may take on a
number of values in its lifetime, but the changes happen in a restricted way. A chair may change colour if it
is painted, but it cannot be changed into a bicycle. We need, therefore, a model that captures the individual
characteristics of objects in the same class, and also allows us to describe how these objects may interact.
Objects interact by "doing things" to each other that "make sense™. You can paint a chair, but not a puddle
of water. When two or more objects interact, something "happens", that is, the properties of some of the
objects may change. When a chair is painted, one of its properties--its colour--changes.

2.1. Objects

An "object" is a thing -- something with an identity. Objects can be partitioned into groups of similar
objects (chairs, desks), and they have a set of properties which makes them unique (wooden classroom
chair, comfy chair with leather upholstery). Objects also have a behaviour which captures their relationship
to other objects. An object "knows" its behaviour and is responsible for it. You can sit on a chair, but you
can’t drive it to Montreal. If you try, it simply won’t cooperate.

Objects can be partitioned into classes on the basis of some reasonable grouping -- chairs, bicycles,
presidents. Objects in the same class are referred to as instances of that object class. Instances are charac-
terized by their contents -- a set of instance variables that retain their values between the firing of events.
Associated with an object instance is its behaviour, a set of rules that use the instance variables and make
them available to other objects.

A specification for a trivial object class called secret follows. It stores a secret message and a key to
unlock the message. Anyone who knows the key can obtain the message. When the message is disclosed,
the object instance self-destructs.

secret: object{
/* instance variable declarations */
msg, key : string;
OWner : user;

Using Objects to Implement Office Procedures Page 3

* rules */

alpha(m,k){
[* only users may create secrets */
~user;
m, K : string;

/* conditions */

m#"™;
ki"";

msg — m;
key — k;
owner « 7

}

omega(k){
~ ' user;
k : string;

[* if key matches */
[* return msg */
[* then self-destruct */
k = key;
Hmsg)
}

The secret object has three instance variables in its contents: msg, key and owner. It has two rules in
its behaviour: alpha and omega. alpha and omega are reserved words for rules that create and destroy
object instances. Any other rules would apply to instances that have been created but not yet destroyed. "™
is a reserved word that identifies another object invoking that rule. "*" is another reserved word meaning
"myself".

A user object could automatically obtain these messages with the following rule:

getmsg{
/* no " variable: getmsg is */
[* triggered--not explicitly called */

S ! Secret;

/* TRUE is a boolean constant */
ready = TRUE;

save — s.omega(key);
ready — FALSE;

}

ready, save and key are instance variables of the user object. The getmsg rule can only fire if the ready vari-
able is set to TRUE. This prevents getmsg from firing repeatedly and stomping on its saved messages.
(There might be another rule that allows users to look at the saved message and reset the ready variable.)
Whereas the alpha and omega rules of the secret object must be explicitly called, the getmsg rule may be
fired automatically whenever there is a secret object with a matching omega rule. For that reason, the
getmsg rule accepts no parameters and returns no value.

An object’s acquaintance is another object that it knows about. Acquaintances communicate by
invoking rules in each other’s behaviours. The acquaintance variable in the getmsg rule is s. The alpha and

Using Objects to Implement Office Procedures Page 4

omega rules have only the ™ acquaintance -- the object invoking the rule. The getmsg rule has no invoking
acquaintance.

A rule may only fire if all the conditions it contains are true. A rule is active if the conditions on its
instance variables alone are true. getmsg is only active if ready=TRUE. alpha and omega in the secret
object are always active -- there are no conditions on contents, only on values passed by acquaintances.

Specialization can be a useful tool in defining new classes that are derived from existing classes. A
sub-class identifies a special case of the existing class which requires some additional attention. A sub-
class may be defined by specializing its superclass’ contents or behaviour. Contents may be specialized by
adding new instance variables or by restricting the domain of existing ones. Behaviour may be specialized
by adding new rules or by modifying existing rules.

2.2. Events

An event is a collection of object instances and a collection of rules applying to those object
instances. The objects in the collection are called the participants of the event. All acquaintances men-
tioned in the rules of the event must belong to the set of participants. From the example in the previous sec-
tion, the getmsg rule and the omega rule together with the two objects involved would constitute an event.

A rule in an event is fireable if all the conditions in the rule are true. Firing a rule consists of execut-
ing statements within the rule. Before any rule in an event can fire there must be unanimous agreement.
This means that all the rules in the event must be fireable. At this point the event itself may be fired and the
contents of the objects participating in the event may be updated according their behaviour. If any rule in
an event is not fireable then nothing happens.

3. Office procedures

An office procedure is a program for accomplishing a particular task. Typically such tasks require
the manipulation of some set of physical objects (paper forms, books, telephones, pencils), some clearly
defined actions, some decision-making, and some information-gathering and waiting. We propose that
objects, as they are described above, are a natural choice for implementing office procedures on a computer.
High-level programming languages like Pascal, COBOL or LISP, on the other hand, do not provide the
primitives needed for easily defining this type of behaviour.

One may define an office procedure to accomplish a simple one-time task like modifying some field
on a form, or to handle a large-scale, ongoing task like inventory control. In the first case the office proce-
dure would be handled by a single event, perhaps involving only one rule in a single object. A single event
would be appropriate because the task is logically indivisible; it is not composed of smaller subtasks which
may succeed or fail. For the same reason the creation of a form is an indivisible task even though it may
involve the filling in of several fields. The form is either created or it is not created. It is not possible to
have a partially created form. If it is the intention, however, to allow the creation of a form with some or all
of its field blank, then this task must be broken into its indivisible components. The first subtask--the actual
creation of the form object--would still be indivisible, however.

In the second case, a large-scale office procedure would have to be broken into its indivisible steps.
Every step which must succeed entirely or fail entirely would correspond to the firing of a single event.
Waiting, information-gathering and decisions that influence the control flow of the procedure are modelled
by conditions within the rules that make an event fireable or not. The specification of a procedure is dis-
tributed across the rules of the objects involved.

One has the option of building a procedure out of objects that talk directly to one another (order
forms talk directly to inventory records and customer records) or creating intermediate objects that coordi-
nate the others (a "fillorder" procedure collects the inventory form, the order form and the customer record,
then fills the order). The first approach is preferable if one wants to limit for all time how the objects
involved in the procedure are to be used. The procedure is, in a sense, insulated from the rest of the system,
because the objects involved are incapable of communicating with any other object classes. The second
approach is more flexible if future applications that make use of these objects are anticipated. Each object

Using Objects to Implement Office Procedures Page 5

is provided with a set of rules which a wide set of object classes can access. The objects involved are more
passive in nature. Events are brought together by “procedure objects” that collect the other objects and
invoke rules within them.

Localized intelligence is the kind that applies to the contents of one object alone, such as the fields of
an intelligent form. Objects are capable of modelling a wide variety of important field types. [Geha82]
identifies most of the following:

A required field must be filled at object creation time. Such a field would be set in an object’s alpha rule.

An unchangeable field may be filled at any time but must never be modified. The condition fieldznull is
simply placed in any rule that modifies its value.

A virtual field is one whose value is computed but never stored:

total{
~: object;
t: integer;
t « price x quantity;
O
Since the only access to an object’s contents is through its rules, it is absolutely transparent whether a field
is virtual or not.

Ordered fields are fields that must be filled in some set order. Here we simply place the condition
field, # null in any rule that modifies field 4.

Lock fields are similar: a lock field is set to true or false, and rules that modify the fields to be locked sim-
ply test the lock field.

A personalized field is one that is a function of the person performing an operation. An example is a signa-
ture field which is automatically filled whenever some other field is filled:

quantity=(q){
~:user;
g : integer;
q>0;
quantity — q;
/* obtain caller’s name */
signature — ".name;

}

Any rule that would require a personalized field or a signature field to be filled would simply fire the appro-
priate rule in the calling object to obtain the necessary information.

Default fields can be set to constants in the alpha rule.

Key fields and date or time fields can be set by calling a system function. Keys could also be allocated by a
special object that keeps track of a counter.

Certain standard operations can also be easily accommodated. Create and destroy operations are
accomplished by an object’s initial and final rules. Retrieval involves nothing more than restricting one’s
acquaintances by placing a condition in a rule:

Using Objects to Implement Office Procedures Page 6

myboss{
[* any object can ask */
/* who your boss is */
~: object;

m I manager;

/* find the right manager */
m.name() = boss;

Hm);
If boss is a variable containing your boss’ name, then the condition m.name()=boss guarantees that mis the
desired manager object.

Editing operations have already been discussed. Any rule may specify the conditions under which an
instance variable may be modified. The niceties of editing and displaying objects are the job of the user
interface, and are not part of the object model.

Mailing and printing operations present minor difficulties in that they deal with entities not inherent
to the object model, namely machines and printers. Objects limit their scope by placing conditions on their
acquaintances. One may model ownership by explicitly including an owner or location field in every
object. The set of all objects would then be partitioned according to workstations or machines. The opera-
tion of mailing an object would be accomplished by simply firing a rule that changed that variable. The
object manager would have to be smart enough to realize that changing the location variable of an object
means that that object must be moved from one machine to another.

Objects are also able to capture large-scale intelligence. An office procedure consisting of a simple
sequence of steps can be modelled by an object in which the steps appear as rules and a counter is used to
keep track of the next step to be fired.

stepn{
counter = n;
counter ++;
}
Obijects can simulate finite automata:
ruley
{
state = j;
state — j';
state = 1;
state < I;
|
}

A state variable keeps track of the automaton’s state. Each rule is composed of a number of alternatives
that describe the action to be performed in each state, and the appropriate next state to follow.

Objects can also simulate (augmented) Petri nets [Zism77]:

Using Objects to Implement Office Procedures Page 7

transition;{
[* input states */
state[j] > O;
state[k] > 0;

/* additional conditions */
/* actions */

[* outputs */
state[l] ++;
state[m] ++;

In all of the above cases, it is the object manager’s responsibility to detect when a rule may be fired.
Merely defining the objects is enough to guarantee the desired behaviour.

4. The object manager

The task of the object manager in an OBS is to manage the internal representation of objects. This
entails the translation of object class definitions (or modifications to them) into their internal representa-
tions, and the management of object instances by searching for and firing events. Users are modelled by a
special "user object" implemented by the user interface, which presents objects and events to users, inter-
prets user requests, and communicates with the object manager. It will be discussed in greater detail in the
next section.

4.1. Translation

The translation of object instances presents no special difficulties. The object manager need only
generate the appropriate data structure for storing the instance variables of each object instance. This is
similar to the task of implementing relational databases.

Much more difficult is the problem of translating behaviours. A rule may be broken down into sev-
eral parts. There are conditions and actions. Some conditions may be determined from the values of the
instance variables alone. These conditions determine whether a rule is active or not. If a rule is not active,
it is certainly not fireable. All other conditions depend on values sent by acquaintances, and hence cannot
be determined until an event is constructed. It is therefore very useful to keep track of which rules are
active in order to simplify the task of constructing events. A simple bit vector can be maintained for this
purpose. Whenever a rule is fired that modifies some instance variables, the object manager must check
whether any other rules have been activated or deactivated. Every rule must then keep a list of what new
rules to check.

The remaining conditions can be divided into conditions on the invoking object and parameters
passed by it, and conditions on other acquaintances and values returned by them.

Actions must also be segregated. Some actions set temporary variables to be used in calculations or
to be passed to an acquaintance. Others modify the contents of an object. Those statements that modify an
object’s instance variables must not be executed until a fireable event has been identified, for it is these
statements that constitute the permanent side effects of firing the event. All other statements "merely"
establish conditions or aid in passing values between objects.

Finally, when an object fires a rule, it may not only activate or deactivate one of its own rules, it may
in fact effect a state change that some other object was waiting for. One must therefore also keep track of
who may be invoking one’s rules. A rule that becomes active becomes available to another object waiting
to invoke it.

Using Objects to Implement Office Procedures Page 8

4.2. Event management

The object manager must guarantee that every fireable event eventually either get fired or become
disabled by the firing of some other event. It is not possible to guarantee that all fireable events get fired
because two events may overlap in objects that may only participate in one of the two. If, for example, two
users have the same key for their getmsg rule, then a secret object with a matching key could only disclose
its msg to one of the two objects since the object would self-destruct after the firing of the first rule. We
assume, in cases like this, that the firing of either event is equally appropriate for accomplishing the task at
hand. What follows is a scenario that informally describes the algorithm that searches for and fires events.

Initially our system is stable and free of objects. A stable system has no fireable events. User
objects may be created through the use of the user interface. Let us consider the case where we have a sta-
ble system with some set of object instances in existence. Spontaneously some event fires. This event is
presumably the work of a user object, which may "improvise rules" not in its behaviour and may sponta-
neously change state. A "clock™ object may also spontaneously change state, as may any object that speaks
to the outside world.

Because an event has been fired, the system may no longer be stable. If some new event has become
fireable, it must involve one of the participants of the last event fired. Every object in the event that has
undergone a change of contents is placed on a queue and its active rule list is updated. Starting at the head
of the queue we take an object and try to construct an event. We take every active rule in turn and try to
find acquaintances for it. If the rule needs to be invoked, we must first look for an invoking acquaintance
with an active invoking rule. For each acquaintance we must recursively search for its acquaintances. At
each step the conditions on values passed between objects must be checked.

If none of the active rules of the object yields a fireable event, we remove the object from the queue.
Alternatively, if a fireable event is found, we fire it and add those objects that have changed contents to the
end of the queue. This process is continued until the queue is emptied and the system has stabilized.
Although there can be no guarantee that the system will ever stabilize we may be certain that every fireable
event is found and fired or is deactivated in a finite and reasonable amount of time.

5. The user interface

An OBS might be created in which all interactions among objects take place internally and there is
no user input to the system. Objects would be defined at system start-up and all modification of object
classes and instances would be done by the system as it runs. While this system may be useful in some
applications, it would not be able to effectively model the complex interactions between people and office
procedures. A method of allowing people to dynamically manipulate object classes and instances and to

send and receive messages in the system is required.

The user interface to an OBS must allow users to define, modify and possibly delete object classes,
and it must enable users to create object instances, communicate with them, and destroy them. Since the
second function may also be carried out by other objects, it is natural to present this portion of the user
interface as though it were an object itself. The behaviour of this "user object" is the code associated with

the interface together with the user’s needs and imagination.

Using Objects to Implement Office Procedures Page 9

In addition to this, a user object may have a set of default rules to handle its automatic behaviour in
dealing with other objects that wish to communicate with it. The user interface needn’t interrupt the user to

satisfy a query about the user’s name, for instance.

There are similarities between defining and modifying object classes and creating and interacting
with object instances. It may therefore be desirable to model object class definitions as objects themselves,
thereby enabling objects to create new object classes. In an existing implementation, this would be a rela-
tively simple matter of linking the code that creates new object instances with the code that creates new
classes. The difficulty lies in deciding on an appropriate definition of the "object-class" object class. At

present, however, we shall not consider this twist.

5.1. Class manipulation

The manipulation of object classes involves the definition of new object classes and the changing of
contents and behaviour in existing object classes. This is done out of view of the object manager and, when
complete, the object manager is informed of the manipulation by causing a particular user object rule to
become active. When the rule is fired, a token string representing the manipulation is passed to the man-

ager and an object class definition in the system is created or updated.

The user manipulates an object class by editing the class definition. An object class hame is entered
and, if the class exists, the current definition is edited. If the class does not exist, a new class is created.

When the manipulation is complete, the definition is compiled and passed to the object manager.

In creating a class, the user must give a unique class name. If the class is a sub-class of another class,
the user must specify the superclass. The contents are then specified as zero or more variables and their
types. If initial values are given then each subsequent instance takes on these values when created. If no
variables are specified then the class behaves like a function. The behaviour is given by specifying zero or
more rules, each with a unique rule name within the object class. Each rule is comprised of an optional set
of acquaintances, an optional set of conditions and an optional set of actions. The actions may be assign-

ment of values to variables, sending or receiving of messages, or a set of sub-rules.

Using Objects to Implement Office Procedures Page 10

The changing of an object class involves altering the class definition. Deletion of a class may require
all instances of the class to be first deleted or it may alternatively result in the class definition and all

instances being deleted.

5.2. Instance manipulation

Instance manipulation involves the creation and changing of object instances. The user interface
must provide the object and rule names and the required parameters. It may guide the user in constructing
the event by displaying a template which the user may fill in, or it may expect the user to explicitly indicate
the rule to be fired. For example, using the secret object described in section 2.1, to create a new instance
the user may type secret.alpha(string, key). Alternatively, a template may be presented to the user, who is
expected to fill in values for string and key. When the alpha rule (the initial rule which creates instances)
for that object is satisfied, the prepared event is presented to the object manager so that the newly created

object can be stored, and other objects may communicate with it.

Changes to existing objects are handled in a similar fashion. The user interface allows the user to
choose from the active rules applying to that object to invoke the changes. Object retrieval can be accom-
plished by indicating conditions to be met and patterns to be matched within the fields of a template.
Object deletion is merely a special case of modification. In any case, once the user interface constructs a

fireable event that satisfies the user, it presents it to the object manager to fire it.

5.3. The user object

In order to integrate the user interface into the object-based environment, the user is modelled as a
special "user object" that is capable of spontaneously communicating with other objects independent of its
predefined behaviour. (The alternative, of course, is to design a user object behaviour that captures all pos-
sible events that users might ever wish to participate in.) Not every event involving users requires the active
participation of a logged-in human being, however. A predefined behaviour enables one to specify certain
automatic behaviour. Messages sent to a user object can be automatically answered in some cases and

information can be automatically received and stored. Examples of automatic behaviour are the name and

Using Objects to Implement Office Procedures

newcharge rules in the simple user object described below.

user : object {

[* instance variables */
charges : integer;
loginid, pswd, newpswd : string;

* rules */
alpha(id,pw){ /* rule for creating user objects */
/* only ’superusers’ can create them */
~ . superuser;
id, pw : string;
loginid ~ id;
pswd « pw;
newpswd — pw;
charges ~ 0;

}

name{ /* return loginid to anyone */
~: object;
}(loginid)

chgpswd(pw){ /* change user’s password - */
[* this is done by specifying the rule */
/* name or by altering the newpswd variable */
A : accounting;
pw : string;
{ ~
: user;
“=7*; [*can only talk to self */
pw " [* non-null string */
newpswd — pw;

/* newpswd was otherwise altered */
pswd # newpswd;
}
pswd — newpswd;
/* inform accounting object of change */
A.pswdupdate(newpswd);

newcharge(c) { /* increment charges by ¢ */
~: accounting;
C : integer;
charges — charges +c;

}

Page 11

Using Objects to Implement Office Procedures Page 12

omega{ /* only superusers can destroy */
~: superuser;

}

In other cases, events initiated by other objects may need to communicate with the user directly. A
request for a non-existing rule in the case of a user object is taken to mean that the user is to be prompted
(rather than that the request be considered inappropriate). In addition, a customized prompt rule in the user

object behaviour may be fired to prompt for user input.

The contents of the user object may be modified without restriction by the user himself (pswd), or by
other objects (charges) through the rules defined. (Values that must not be altered directly by users can be
associated with other objects.) The contents may be part of a "virtual screen”, a large desk top of which the
user interface can present windows to the user [BYTE81, Swin74]. Separate windows would be available
for the user to manage different activities, such as defining several new object classes, retrieving and modi-
fying objects and monitoring events. One window could be used, for example, to monitor the mailbox for
receipt of fresh mail, and another window might be a clock that displays the current time. Whenever the
user logs in, the virtual screen assumes its current incarnation, depending on what events were fired in

which the user object was a participant during the user’s absence.

A user may define rules that apply specifically to himself. In effect, he becomes a sub-class of the
user object class. With these rules he may specify automatic replies to prompts or he may customize
responses. The user may also, upon request, cause certain rules to become active. These rules could be
commands the user wishes to execute and they may be activated by altering a variable in the rule’s contents
or by specifying the rule name (chgpswd). Temporary rules may be specified which fire once and then dis-
appear. (This is equivalent to modifying the class to include the rule, invoking the rule, and then modifying

the class to delete the rule.) Temporary rules are useful for defining behaviour that occurs only once.

Useful concepts that are not inherently part of the object model are ownership and location. Users
might, for instance, only be allowed to modify certain kinds of objects that they own. This would be

accomplished by endowing such objects with ownership fields that are set to a user object’s name upon the

Using Objects to Implement Office Procedures Page 13

firing of a mail rule (in that or some other object). In addition, rules that modify that object’s contents

could insist that the object modifying it be the owner or some other object owned by him.

6. Conclusion

Obijects are a natural choice for modelling the behaviour of office information systems. The object
model we have presented is capable of expressing many of the components of such systems. Intelligent
forms and messages, workstations, office procedures and even users can be defined as object classes. A
wide collection of field types can be easily expressed. In addition, several useful frameworks for defining

office procedures, such as automata and Petri nets, can be easily simulated.

Although objects do not explicitly model the outside world, it is possible to include special object
classes that talk to the rest of the universe. Users communicate with objects in this way. One benefit of this
approach is that several different user interfaces could be grafted onto the same system without having to

significantly alter the object manager.

Obijects naturally capture the three most important aspects of office information systems: information
management, communication and partial automation. Information is stored in object instances and man-
aged by rules, communication between objects occur when events are fired, and automation is achieved
through rules that may be triggered automatically. Specialization is used for defining special cases of

object classes, or for defining superclasses with properties that their specializations have in common.

We are building a prototype OBS at the University of Toronto. Our object model is fairly well devel-
oped at this point. We are currently in the design stage of our project, and we expect to have an working
version of the system within one year. We have drawn from our experience in building an intelligent mes-
sage management system [TRGH81]. Our object is to design a programming system in which similar and
more powerful systems can be written quickly and painlessly. Existing software can always be accessed

through function calls within objects’ rules.

Concurrently with the development of this system, we are studying notions of correctness in office

procedures. Poorly defined objects may unexpectedly exhibit infinite loops, deadlock and other undesirable

Using Objects to Implement Office Procedures Page 14

behaviour [NiTs82]. Techniques for automatically detecting these anomalies and for presenting users with

a view of global behaviour of object systems are being developed.

7. An object grammar

The object grammar that follows is only a skeleton. There are, for example, no special keywords like
"alpha" or "null", no built-in arithmetic expressions, and we have not included pattern-matching in our con-

ditions.

<object> ::= <object-class> [":" <super-class>] "{"
{ <declaration>";" }
{ <rule>}
¢
<declaration> ::= <variable> { "," <variable> } ":" <type>
<rule> ::= <rule-name> ["(" [<variable> { "," <variable>}]")"]
"{" { <statement>";" } "}"
["(" [<variable> { "," <variable>}1")"]
<statement> ::= <declaration>
| <condition>
| <send>
| <assignment>
| <sub-rule>
<condition> ::= <variable> <comparator> <expression>
<comparator> ::="="
|

NV V. IN A

|
|
|
|
<send> ::= <acquaintance> "." <rule-name>
"(" [<expression>{ "," <expression>}1")"
<acquaintance> ::= <variable>
| "<" <object-class> ">"
<assignment> ::= <variable>" " <expression>
<expression> ::= <value>
| <variable>
| <function> "(" [<expression> { "," <expression>}]")"
| <send>
<sub-rule> ::="{"
{ <statement>";" }
{"|" { <statement>";"} }
<rule-name> ::= <identifier>
<acquaintance> ::= <identifier>
<type> ::= <identifier>
<object-class> ::= <identifier>
<super-class> ::= <identifier>
<variable> ::= <identifier>

Using Objects to Implement Office Procedures Page 15

<function> ::= <identifier>

References

[AtBS79] Attardi, G., Barber, G. and Simi, M., "Towards an Integrated Office Work Station", Al Labora-

tory, MIT, Cambridge, 1979.
[BaHe80] Barber, G. and Hewitt, C., "Research in Office Semantics", MIT, Cambridge, 1980.

[BySJ82] Byrd, R.J., Smith, S.E and de Jong, P, "An Actor-Based Programming System", SIGOA Con-

ference on Office Information Systems, SIGOA Newsletter Vol. 3 No. 1 and 2.
[BYTE81] Special issue on Smalltalk, Byte Vol. 6, No. 8, Aug. 1981.

[Cook79] Cook, C.L., "Streamlining Office Procedures”, System Sciences Lab, Office Research Group,

SSL79-10, Xerox PARC, Nov. 1979.

[deJo80] deJong, P., "The System for Business Automation: A Unified Application Development Sys-

tem", IBM Research Report #34539, Yorktown Heights, N.Y., 1980.

[EINu79] Ellis, C.A. and Nutt, G.J., "Computer Science and Office Information Systems", Xerox PARC,

June 1979.

[EmbI80] Embley, D.W., A Forms-based Nonprocedural Programming System, Department of Computer

Science, University of Nebraska-Lincoln, 1980.

[FiHe80] Fikes, R.E. and Henderson, D.A., "On Supporting the Use of Procedures in Office Work™, MIT

workshop, Cambridge, 1980.

[Fike81] Fikes, R.E., "Odyssey: A Knowledge-Based Assistant"”, Artificial Intelligence, Vol. 16, No. 3,

July, 1981.

[Geha82] Gehani, N.H., "The potential of forms in office automation”, IEEE Transactions on Communi-

cations, Vol. 30, No. 1, January 1982.

[Gibb82] Gibbs, S., "Office Information Models and the Representation of *Office Objects’™, SIGOA

Conference on Office Information Systems, SIGOA Newsletter Vol. 3 No. 1 and 2.

Using Objects to Implement Office Procedures Page 16

[HaKu80]

[Hewi77]

[HONT81]

[LaTs80]

[LuYa81]

[MaPa77]

[Morg78]

[NiTs82]

[Pete77]

[Pott78]

[Swin74]

[SSKH81]

[TRGH81]

Hammer, M. and Kunin, J.S., "Design Principles of an Office Specification Language"”, NCC

1980.

Hewitt, C., "Viewing Control Structures as Patterns of Passing Messages"”, Atrtificial Intelli-

gence, Vol. 8, No. 3, pp. 323-364, June 1977.

Hogg, J., Nierstrasz, O.M. and Tsichritzis, D., "Form Procedures", in Omega Alpha, Technical

Report 127, Computer Systems Research Group, University of Toronto, 1981.
Ladd, I. and Tsichritzis, D., "An Office Form Model", Proceedings NCC, Anaheim, 1980.

Luo, D. and Yao, S.B., "Form Operation By Example", Department of Computer Science, Pur-

due University, W. Lafayette, Indiana, 1981.

Malhotra, A. and Parkman, J., "A System for the Automation of Almost-Routine Functions",

IBM Research Report #27769, Yorktown Heights, NY, 1977.

Morgan, H.L., "Control and Tracking of Office Documents", MIDCON Proceedings, Dallas,

Texas, 1978.

Nierstrasz, O.M. and Tsichritzis, D., "Message Flow Modeling", Alpha Beta, Technical Report

143, Computer Systems Research Group, University of Toronto, 1982.
Peterson, J., Petri Nets, ACM Computing Surveys Vol. 9, No. 3, pp. 223-252, Sept. 1977.

Potts, D., Specifications Language for Office Procedures Execution, Thesis, The Wharton

School, University of Pennsylvania, Philadelphia, 1978.

Swinehart, D.C., "Copilot: A Multiple Process Approach to Interactive Programming Sys-
tems", Stanford Artificial Intelligence Laboratory Memo AIM230, Stanford University, July

1974.

Sirbu, M., Schoichet, S., Kunin, J. and Hammer, M., "OAM: An Office Analysis Methodol-

ogy", MIT Office Automation Group Memo OAM-16, Cambridge, 1981.

Tsichritzis, D., Rabitti, F.,Gibbs, S., Hogg, J., Nierstrasz, O., and Kornatowski, J., "A Message

Management System"”, IEEE Transactions on Communications, Vol. 30, No. 1, January 1982.

Using Objects to Implement Office Procedures Page 17

[Tsic81] Tsichritzis, D., "Form Management”, Communications of the ACM, July 1982.

[Zism77] Zisman, M.D., Representation, Specification and Automation of Office Procedures, PhD thesis,

Wharton School, University of Pennsylvania, Philadelphia, 1977.

