
12. Message Flow Analysis

O.M. Nierstrasz

ABSTRACT

Message management systems with facilities for the automatic processing of mes-
sages can exhibit anomalous behaviour such as infinite loops and deadlock. In this paper
we present some methods for analyzing the behaviour of these systems by generating
expressions of message flow from the procedure specifications. Message domains are
partitioned into state spaces, and procedures can be interpreted as automata effecting state
changes. Blocking of procedures and procedure loops can then be detected by studying
the resulting finite automaton and Petri net representations of message flow.

1. Overview

Automatic processing and routing of electronic documents yields some interesting problems when
the work that is done with them is sufficiently complicated. In this paper we consider the task of determin-
ing what global behaviour is exhibited by messages in a message management system when there exist a
number of automatic procedures running at user workstations, examining, processing and routing incoming
messages.

If the logic built into these procedures is anything but entirely routine, then we may see messages
being routed through the system in various ways. If the automatic procedures are adapted from existing
manual procedures, there is always a possibility that the translation will be faulty: that messages may get
improperly routed, or that procedures will wait indefinitely for messages that do not arrive. We therefore
propose some techniques for studying and analyzing the behaviour that can be expected to result from such
automatic procedures. The intended behaviour can thus be verified to some degree, and anomalous behav-
iour can be detected in advance.

In the following section we describe informally the systems that we are interested in modelling and
analyzing. Collections of workstations connected by a network are used to pass electronic documents, or
"messages". These messages are typically highly-structured, and often resemble forms. Similar messages
are classified into "message types". High-level automatic procedures may in fact be implemented by the
workers using the workstations. Complex activities can be broken down into simple steps that collect a set
of messages satisfying "trigger conditions", perform transformations on those messages, possibly creating
or destroying some, and then route or file them.

In the third section we introduce a formal model for discussing these systems. The model is then
used to develop a characterization of global behaviour in terms of message flow. The message domains (the
sets of values that messages may assume) are partitioned into state spaces. Procedures can then be viewed
as effecting state transition on messages, and the entire system can be viewed as a collection of finite state
automata, one per message type. We then show how to recover the coordination of messages performed by
the automatic procedures by "welding" the finite state automata into a Petri net (a popular modelling tool).

Sections six and seven are concerned with detecting anomalous behaviour. In section six we discuss
the problem of blocking, in which a procedure may wait indefinitely for a missing message to arrive. This
is especially troublesome if there are other messages waiting to be processed by that procedure. There are
various scenarios in which blocking may occur, including deadlock, where two procedures are each waiting
for messages that are stuck at the other procedure.

In Office Automation: Concepts and Tools, D. Tsichritzis (Ed.), pp. 283-314, Springer-Verlag, Heidelberg, 1985.

-2-

In section seven we discuss "procedure loops". Here we may see procedures firing indefinitely, pass-
ing messages back and forth between them. A special case is the "message loop", in which some messages
visit the same sequence of procedures indefinitely. These problems may also cause blocking, if a procedure
is waiting for a message in a loop. If messages are created in the loop, the file system will eventually get
saturated, and the network may even get overloaded with message traffic. We show how it is possible to
use the Petri net model of message flow to detect possible procedure loops.

2. Message Management

We are interested in office information systems that are superficially very similar to real offices. We
have a collection of workstations ("stations", for short) that are the logical equivalent of desks. Users com-
municate with each other by using electronic documents or messages instead of paper documents. Other
familiar objects may also have their counterparts in a computerized office system (bulletin boards, calcula-
tors, calendars and so on). By "simulating" a real office with the computerized system, the task of comput-
erization is simplified and the likelihood of acceptance by office workers is increased [AtBS79, ElNu80,
HaSi80]. If naive-user programming is to work, then electronic objects should have immediately recogniz-
able counterparts to familiar physical objects, and the operations we normally perform on the real objects
should translate naturally into operations on the electronic ones.

The static objects in these systems are electronic documents containing the information that we
would normally find on paper documents. They resemble our intuitive notion of a message in that they can
be sent from workstation to workstation, but in this setting they may have other constraints. Messages in an
office information system may be required to continue to exist after they hav e been received — documents
in offices often change many hands, possibly residing at a location for a long period of time before being
passed on. Furthermore, many messages fall into well-defined groups or "types". Forms and records are
highly structured — a collection of them resembles a relational database. Questions about forms can
resemble database queries ("tell me what customers owe us more than a thousand dollars").

Operations on messages include creation, destruction, display, modification and mailing. In addition,
since messages in this context may be a permanent record of information, we may wish to query a database
of messages. Such operations as selections and joins over sev eral messages by matching comparable fields,
for example, can be very useful. Similarly, when modifying messages, it should be possible to easily trans-
fer data from one message to another, or to use information in one field of a message to compute or gener-
ate new information for another field.

In order to automate office activities, one must be able to recognize conditions that cause events to be
triggered. Events may, in turn, cause other events to be triggered. Visible events include the arrival of mes-
sages and the creation and modification of messages. One must be able to select precisely those messages
that are of interest. A trigger condition thus resembles a query ("get me a message satisfying this condi-
tion") that applies to the future rather than just the present. Since a collection of messages may be required
in order to complete some activity, these conditions may potentially include joins, or matching between
messages.

A simple example is mail-forwarding. All messages satisfying a simple constraint can be automati-
cally forwarded to a particular location. Order forms for large amounts could be forwarded to a manager
for approval.

It is instructive to decompose activities into steps: in each step we must gather a set of resources
(messages), possibly transform them in some way, and release them. New messages may be created in the
process. Although an activity may consist of several steps chained together, we will concentrate on the
steps themselves. The advantage of this is that we can consider the steps to be atomic — they either suc-
ceed or fail in entirety. Multi-step activities naturally do not necessarily have this property. It is the steps
that we shall speak of as "procedures", though one should keep in mind that more complex activities exist
in general.

We also assume that these procedures are local to workstations. This view is very natural and consis-
tent with the principle that computerized office systems resemble real offices: users of the system and their
automated procedures only have direct control over the documents "belonging" to them. (We may extend
this, however, by allowing the presence of local procedures at other sites that "belong" to someone else. A

-3-

manager may, for example, be able to install a procedure at a worker’s station that selects and forwards cer-
tain messages back to him.) Another advantage of local procedures is that we do not have to address the
problem of activities that are triggered by events that take place at several physically different locations. If
all the "workstations" are timeshared on a single mainframe then we do not have serious problems imple-
menting such behaviour, but it is another matter when each workstation is a separate machine on a network.

3. Message Flow Modelling

Before we can begin to address questions of global behaviour in message management systems, we
need a formal framework for discussing automatic procedures. This framework must be powerful enough
to capture quite general procedures but should be divorced from any particular implementation of them. It
is immaterial, for example, whether procedures are written in some high-level programming language or in
some intermediate code generated by a programming-by-example interface.

We will first present a model for describing messages and the procedures that manipulate them.
Although we make some simplifying assumptions about procedures, we will show that quite general behav-
iour can be captured within the confines of our model.

3.1. Locations

The logical configuration of an office information system is similar to that of a physical office. There
are a number of workstations ("stations", for short), each of which is capable of communicating with any of
the others. Whether or not the system runs as a collection of physically independent communicating
machines or not is immaterial. Similarly the nature of the communication medium does not concern us
here.

The collection of workstations is represented by:

S = {s1, . . . sN }

In addition we have two pseudo-stations, α and ω , that represent creation and destruction of objects. Cre-
ation and destruction are thus explicitly modelled. In some situations such stations will exist in truth:
destruction of documents may in fact be implemented by permanently archiving them; also, creation of
documents may be the responsibility of a privileged authorizing agent that assigns, say, unique identifiers.
We require only that no messages be sent to α and that none be received from ω . That is, they must behave
as source and sink, respectively. The set of stations and pseudo-stations is:

S+ = S ∪ {α , ω }

Mailboxes are intermediate locations between stations. Messages passed between stations must be
put into a mailbox just as physical documents are placed in an "in-tray". Although there may not be any
"real" mailboxes in the system we are modelling, this allows us to distinguish between new mail and previ-
ously-seen messages. Furthermore, our model has one mailbox for every ordered pair of stations. This
allows us to readily identify the sender of a message without having to resort to modelling a sender field for
messages in transit. The latter approach would be entirely equivalent, however. The set of all mailboxes is
thus:

M = {mij | 1 ≤ i ≤ N , 1 ≤ j ≤ N}

where mij is the mailbox for messages sent from si to s j . Note that α and ω do not have mailboxes. A
message "from" α appears at the station creating the message. A message that is destroyed goes directly to
ω . A station is allowed to mail messages to itself.

The set of all locations is

L = S ∪ M

and, with the pseudo-stations:

L+ = S ∪ M ∪ {α , ω }

-4-

The set of locations from which si may receive messages is:

L(si) = {α , si} ∪ {mki | 1 ≤ k ≤ N}

This is the local scope of si — the locations that are accessible to the procedures at si . Messages may be
created at α , they may already reside locally at si , or they may arrive by mail from any of the N stations
(including si itself, if desired).

Similarly si may route messages to anything in the set:

R(si) = {ω , si} ∪ {mik | 1 ≤ k ≤ N}

(Note the reversal of subscripts on the mailboxes.)

3.2. Messages

Messages are assumed to be structured, and belong to one of several message types that encode this
structure. The set of message types is:

X = {X1, . . . XK }

The domain of a message type is assumed to be the Cartesian product of the attribute domains. (The
attributes are the "fields" of a structured message.) We hav e, therefore:

dom(Xi) =
ni

j=0
Π dom(Xij)

where ni is the number of attributes of message type Xi .

We reserve two attributes, Xi0 and Xi1 for the identity and the location of a message, respectively.
The identity of a message instance is the only attribute that is never allowed to change. Since message
instances may change value, we need some convention that allows us to keep track of their identity. We
thereby also distinguish between a message instance and a message value: a message instance may assume
different message values at different points in time. dom(Xi0) may be any enumerable set; for simplicity’s
sake we may assume it to be the set of positive integers. Of course, dom(Xi1) = L (a message whose "loca-
tion" is α or ω is not explicitly represented). A message value is represented by

x ∈ dom(Xi)

The kth attribute of x is denoted by either xk or x[k]. The latter notation is generally used when x is the
jth message in a tuple of messages, τ = (. . . , x, . . .), so x = τ [j], and xk = τ [j][k]. Message tuples are dis-
cussed below, in the section on procedures. The identity of x is x0, and its location is x1.

The system state is the collection of all the values of existing message instances. There is a set of
message values Di for each message type Xi . The system state is:

D = < D1, . . . DK >

where Di⊆dom(Xi). We do not represent messages whose "location" is α or ω . Such messages have not
yet entered, or they hav e already left, the system. We also insist that each Di contain at most one message
with a given identifier, i.e.

V-x ∈Di , y∈Di , y0 = x0 => y = x

In addition, we adopt the convention that

D(I) = Di where I = Xi

(i.e. if I is an arbitrary message type then D(I) represents the set of instances of that type).

-5-

3.3. Procedures

At each station si ∈S there may be a set of procedures that automatically process messages:

P(si) = {pij |1 ≤ j ≤ ki}

where ki is the number of procedures at si . The set of all procedures is:

P = {pij |1 ≤ i ≤ N , 1 ≤ j ≤ ki}
= ∪ N

i=1
P(si)

Every p∈ P has a set of input types, trigger conditions and actions. A procedure (within our model)
is a single-step activity. A collection of messages (inputs) matches the trigger condition and the actions are
performed, causing messages to be modified (possibly created or destroyed) and routed. The input types
are the types of the messages p needs in order to evaluate its trigger conditions:

I (p) = < I p1, . . . I pl p
>

where Ipi ∈ X . l p is the number of inputs to p.

The inputs to a procedure p form a set, or rather a tuple, of messages that we call an input tuple. We
usually represent such a tuple by the symbol τ , where x = τ [j] is the jth input message and xk = τ [j][k] is
the kth attribute value of the jth message. Such a tuple τ may trigger procedure p∈P(si) if

τ ∈
l p

j=1
Π dom(I pj) and it satisfies the trigger conditions of p. In addition, the messages in τ must be available

to p, that is, τ [j][1]∈L(si), and each of the messages in τ must be unique (a message cannot play two roles
for a single procedure). We formalize this in the set T (p) of message instances that may trigger p∈si ,
where:

1. T (p)⊆
l p

j=1
Π dom(I pj)

2. (τ ∈T (p))// \\(I pj = I pk)// \\(τ [j][0] = τ [k][0]) => j = k

3. τ ∈T (p) => V- j τ [j][1]∈L(si)

Tuple τ can thus trigger p if τ ∈T (p) and for all I pj ∈I (p) we hav e τ [j]∈D(I pj) or the jth message is to be
created by p (i.e. τ [j] does not exist yet). We then say that p is enabled.

In order to disambiguate conflicts between procedures, we allow for a partial ordering ">>" of proce-
dures. If both p and p′ are enabled and p >> p′, then procedure p must be fired. We say that p has prior-
ity over p′. p′ may only be fired if it is enabled and p is not. This is useful if p is triggered when message
x matches some coordinating message y and p′ is triggered when there is no coordinating y. Without par-
tial ordering of procedures it would be impossible to express the condition: "fire p′ with message x only if
there is no matching message y". For example, if procedure p matches inventory forms to order forms and
p′ looks for order forms for non-existent items, then the only way to capture the trigger condition of p′ is to
have it accept all order forms not accepted by p.

Actions map input tuples to output tuples. In our model, there is a one-to-one correspondence
between input messages and output messages even if the procedure creates or destroys some messages.
This is why we need the pseudo-stations α and ω . They allow us to (somewhat artificially) model mes-
sages that have not been created as arriving from α , and those that are destroyed as being sent to ω .

The action of procedure p is a mapping:

A(p): T (p) →
l p

j=1
Π dom(I pj)

such that the identities of input messages are never changed, and they are routed only to valid locations.
We use the notation a jk to refer to the individual attribute mappings of A(p). If τ ′ = A(p)(τ), then

a jk : τ |→τ ′[j][k]

-6-

For each j, therefore, a j0 is the identity map (can’t alter identity of τ [j]). Also, the a j1s are the routing
functions, since they are responsible for updating the location attributes. Clearly, the domain of a j1 is
R(si), where p∈P(si).

Within our model, user input, external databases and other outside sources of information are not
explicitly represented. When procedures make use of external information, we consider the mappings of
the procedures to map to a set of possible values (modulo the outside information sources). Consequently,
when we perform our analysis with traditional machine models such as finite automata and Petri nets, a cer-
tain amount of non-determinism appears that may not necessarily be evident in the system under analysis.
A function that sets a field of a message to anything a user wishes to enter is therefore modelled as a map-
ping from the input message to the entire domain of that message field. We should therefore keep in mind
that this "non-determinism" is often an artifact of our attempt to exclude arbitrary information sources from
the outside world.

If τ triggers p then the system state D is updated to reflect the firing of p. Input message instances
are replaced by their new values. If τ ′ = A(p)(τ), then the new system state D′ =< D′1, . . . D′K > is defined
by:

D′i = (Di − {τ [j]|I pj = Xi}) ∪ {τ ′[j]|(I pj = Xi)// \\(τ ′[j][1] ≠ ω)}

Messages that are destroyed are simply deleted from D′i .

4. Message Paths and States

Our model of message management views procedures and locations as basically static entities.
Although procedures are altered and workstations may be added to a system, we expect these events to
occur infrequently compared to the rate at which messages are processed and modified by the procedures.
Also, we do not expect to be able to formalize the changes in procedures and in system configuration in the
same way that we can formalize the changes in messages (through the procedures). We may try to measure
the large-scale changes in procedures, however, through how they effect the behaviour of messages. Since
it is the behaviour of the messages that best characterizes what is actually happening on a regular basis, it is
here that we are to concentrate our efforts in analyzing global behaviour.

What is immediately visible is that messages are created, are modified and routed by sequences of
procedures at different workstations, and are eventually destroyed. We can think of messages as tracing a
path through the network of stations as they encounter different procedures. In between the procedures
they acquire different values (including their location) which they hold until the next procedure changes
their value. We may thus think of a message path as being not merely a sequence of procedures encoun-
tered by the messages, but as an alternating sequence of values and procedures. This message path is an
expression of "message flow" since it encapsulates all the locations a message visits during its lifetime,
especially if we allow ourselves to think of procedures as extremely brief, temporary "locations".

Unfortunately this expression of message flow is impractical. In [Nier84] it is shown that there is no
effective way of comparing the message paths of two different messages. Briefly, it is shown how two mes-
sages can "simulate" two different Petri nets in such a way that the message paths are equivalent to the Petri
net languages. Since there is no effective way of determining whether two Petri net languages are equiv-
alent [Pete83], we cannot compare message paths.

We must therefore seek some less demanding way of describing message flow. By partitioning mes-
sage domains into finite state spaces we limit the possible combinations of messages and procedures to be
considered. Furthermore, since procedures can be thought of as effecting transitions of messages from state
to state, we can derive a finite state machine representation of message flow. We can thus extend the notion
of message paths to be alternating sequences of message states and procedures. As finite state machines
are a well-understood formalism, this leads to a classical interpretation of system behaviour.

We need not necessarily consider all message attributes when we partition our message domains into
a state space. Some attributes may not affect the path of messages at all. Attributes that do affect the path
do so by affecting either the triggering of procedures or the routing of the message.

To begin with, although the domain of a procedure’s actions and triggers is all of T (p), it is in fact
likely that only some of the attributes of the input messages are examined or modified. We would like to

-7-

identify the true arguments of a function as the ones that are actually used in the computation of the value
returned. We are assuming, of course, that all the functions we will be dealing with are effectively com-
putable, and describable by algorithms. A procedure that increments a field of a message clearly does not
need any of the information contained in the other fields of the message in order to compute the result. The
only true argument to the incrementing function is therefore the field that is modified.

The true arguments to a function can generally be determined by inspection. (There are situations
where this may not be so, but we shall not discuss them here.) For example, the true arguments to
f (x, y, z) = x2 + y are clearly x and y, provided the domains of x and y have more than one element.

We will now define selection attributes, routing attributes and control attributes:

Selection attributes are defined to be those attributes that are true arguments to the trigger conditions.

Xij is a selection attribute if Xij ∈arg(T (p)) for some p

Routing attributes are those that are true arguments to some routing function (recall that routing func-
tions are the components of an action A(p) that modify the locations of the input messages).

Xij is a routing attribute if Xij ∈arg(ak1) for some routing function ak1.

Control attributes are attributes that are true arguments to any action that modifies some selection
attribute, some routing attribute, or (recursively) some other control attribute:

Xij is a control attribute if:

(i) Xij is a selection attribute or

(ii) Xij is a routing attribute or

(iii) Xij ∈arg(akl) for some akl and attribute l of input I pk is a control attribute

Routing attributes are those that directly affect routing decisions. Selection attributes indirectly affect
routing by determining which procedure is likely to "grab" the message (and consequently route it). Con-
trol attributes affect routing even more indirectly by influencing the value of routing or selection attributes.
Note that the definition of control attribute is recursive, and so includes attributes that affect routing even
indirectly.

Non-control attributes (the ones left over) do not influence routing or message flow in any way. Con-
sequently we may ignore these when we decide how to partition our message state space. The non-control
attributes are only of interest to us if we have specific questions about their value. We might, for example,
like to know the range of values of a particular message field when it arrives at our station, even though that
field in no way affects its flow through the network.

Control attributes can be determined by a recursive application of the definition given above. Once
the routing and selection attributes are determined, it is a relatively straightforward operation to detect the
control attributes. An algorithm for doing this is described in [Nier84].

4.1. Obtaining message states

We will now consider the matter of how best to partition message domains into state spaces. Simple
trigger conditions provide us with excellent partitions, but complex conditions yield unusual message sub-
domains whose images under actions can be hard to follow. Since we are interested especially in the effect
of actions on message states, it is important to have states that are as simple as possible to trace. We may
therefore try to "box" complex subdomains, or reduce a complex condition to a collection of simple condi-
tions that cover it. We may also try to refine our partition by discovering new message states that result
from applying actions to existing message states. This "fine-tuning" may be continued indefinitely, how-
ev er, and so it is generally not practical to carry it too far.

Generally speaking, the best message state space would identify one message state per message
value. Since we require a finite number of message states to begin to analyze message flow, we must con-
sider carefully how we choose our partition.

Since control attributes are the only attributes that affect routing, our message states should corre-
spond to predicates over the control attributes. We can gather this information at the same time that we col-
lect the control attributes.

-8-

Selection attributes are those that are arguments to trigger conditions. The trigger conditions thus
automatically yield conditions that may be usable for generating message states. If a trigger condition can
be expressed as \\ //(// \\C j) where each C j is a predicate involving one or more control attributes, then we can
use the C j to generate message states. The conditions collected in this way at all stations yield a state space
by considering messages that may or may not satisfy each of these conditions. If, for example, there are c
conditions in total that involve messages of type Xi , then a message x ∈dom(Xi) may potentially fall in one
of 2c message states, corresponding to success or failure in matching each of these conditions.

Of course, not all combinations of conditions necessarily yield a usable message state: some combi-
nations may be contradictory. Conditions xi > 5 and xi < 3 clearly cannot both be true at the same time.
There may therefore be considerably less than 2c non-empty message states.

Message states that are expressible as a Cartesian product of attribute subdomains allow us to con-
sider each attribute independently. We would thus have

σ =
ni

j=0
Π R j

or

σ = {x ∈dom(Xi)|
j
// \\C j}

where each C j represents R j . C j is therefore a simple condition involving only attribute Xij , for example:
4 ≤ x j ≤ 10.

If the trigger conditions \\ //(// \\C j) hav e the property that each C j is a simple condition of this form, then
we automatically are able to derive our desired message states. Furthermore, when the attributes are
numeric and the conditions are of the form xiθ u where u is a constant and θ ∈{ = , ≠ , < , ≤ , > , ≥ } then the
conditions yield attribute ranges bounded by the constants. In this case, if we have c j conditions involving
attribute Xij , we hav e at most c j constants and at most c j + 1 ranges. Consequently we would have

j
Π(c j + 1) message states (where c j = 0 for non-control attributes). This is considerably less than the

potential 2c states resulting from non-simple conditions (where c is the total number of conditions involv-
ing all Xij , i.e. c = Σ c j).

Unfortunately we cannot reasonably expect all trigger conditions to be this well-behaved. There are
two options available. The first is to ignore all C j that are not of the form xiθ u, and the other alternative is
to try to convert them to simpler conditions that are more useful. The idea is to "box" the messages satisfy-
ing the condition by discovering the attribute ranges that correspond to solutions of the predicate. This can
be done, for example, with a condition like:

x2
i + x2

j ≤ 25

Here we can deduce that −5 ≤ xi ≤ 5 and −5 ≤ x j ≤ 5. With the condition:

xi = x j

however, we can deduce nothing since both attributes potentially range over their entire domains. Note that
we may use combinations of conditions to extract more information. If, for example, the condition above
were combined with x j > 0, then we may deduce that xi > 0 is also of interest. In a trigger condition of the
form \\ //(// \\C j), one should use the conjunctions // \\C j to deduce the simple conditions.

In the cases of both selection attributes and routing attributes, the problem is greatly simplified if trig-
gers and routing actions are expressed by users in terms of fairly simple conditions on attributes. Further-
more, the user may be asked to supply any additional information implied by conditions that involve com-
parisons of several attributes. Of course, depending on the complexity of the triggers and actions express-
ible within the system, it would be desirable if the system itself could do all the analysis of attribute ranges.

Other control attributes are slightly more complicated to handle since they appear in actions that may
not map to finite sets. We hav e, howev er, already obtained ranges for the control attributes found thus far
(the routing and selection attributes), so we may feel free to use this information at this point.

-9-

Consider a control attribute Xij that is modified by akj of procedure p (where Xi = I pk). By the defi-
nition of "control attribute", we know that all attributes in arg(akj) must also be control attributes. Also,
since Xij is a control attribute already discovered, we presumably have some range information about it. If
Rl is a range for Xij , then:

akj(τ)∈Rl

is a predicate over the inputs τ to procedure p. We may therefore attempt to "box" the set of inputs that sat-
isfy this condition, and thereby obtain ranges for the control attributes in arg(akj). The new ranges can be
used to further subdivide, or "fine-tune" the message states.

Note again that "boxing" may be impossible in some cases, yet trivial in others. Specifically, if akj is
a function of a single argument, then the condition akj(τ)∈Rl is a predicate over a single attribute. For
example, if akj returns something like xh + 1, and Rl is the range [a, b], then the resulting predicate is
xh + 1∈[a, b], and the resulting range for this attribute will (trivially) be [a − 1, b − 1].

If, on the other hand, akj is a complicated function of several arguments (for example, a high-order
polynomial), then the task of obtaining attribute ranges is a problem in numerical analysis with only
approximate solutions available.

4.2. State transitions

At this point in our analysis we expect each station to know what message states are currently of
interest. What is left is to determine what state transitions are effected by the procedures. For a message in
a giv en input state σ we would like to know the possible next state, σ ′, that may result if the message trig-
gers some procedure p.

To tell what happens when p fires, it is not, in general, sufficient to know the state of a single input
message. Attributes of all coordinating messages are potentially available to the actions that modify the
message we are interested in. Although we cannot predict what states the other inputs will be in, we know
that they must satisfy the trigger condition. We therefore introduce the following notation to represent the
possible inputs given one message in state σ :

τ p(σ) = {τ | τ ∈T (p), τ [k]∈σ }

(where σ ⊆dom(Xi) and Xi = I pk)

(For simplicity, Xi and k are understood.) Note that τ p(σ)[k] is the set of message values in σ that may
trigger p (possibly empty). This is equal to σ ∩ T (p)[k].

We also introduce p̂ (σ) as the set of procedures that σ might trigger, and âp(σ) as the set of values
that σ might be mapped to after triggering p:

p̂ (σ) = {p∈P| τ p(σ) ≠ ∅}

âp(σ) = {A(p)(τ)[k]| p∈p̂ (σ), τ ∈τ p(σ), Xi = I pk}

Procedure p then effects a state transition from σ to σ ′ if p∈p̂ (σ) and âp(σ) ∩σ ′ ≠ ∅. That is
p: σ → σ ′ if p is capable of mapping some message in state σ to some message in state σ ′, giv en the right

coordinating messages. We also introduce l̂ (σ) as the set alternating strings of message states and proce-
dures encountered by messages starting in state σ :

l̂ (σ) =




{pl̂ (σ ′)|p∈p̂ (σ), âp(σ) ∩σ ′ ≠ ∅}

λ (the empty string)

if σ ≠ ω and p̂ (σ) ≠ ∅
otherwise

l̂ (σ) therefore is the message flow language for message state σ . It represents all sequences of procedures

that messages in state σ may possibly encounter. l̂ (σ) may be "computed" by recursively applying its defi-

nition. Sequences of procedures are generated as l̂ (σ) is expanded. (Of course, a straightforward expan-
sion is impractical since infinite strings may be generated.)

-10-

Since messages in different states may still be able to trigger the same procedures, it is useful to keep
track of the message states together with the sequences of procedures encountered. We spoke earlier of a
message path as an alternating sequence of message values and procedures. We may easily extend this idea
to message states in the following definition:

φ (σ) =




{σ pφ (σ ′)|p∈p̂ (σ), âp(σ) ∩σ ′ ≠ ∅}

σ
if σ ≠ ω and p̂ (σ) ≠ ∅
otherwise

Note the similarity to the definition of l̂ . In fact, we may obtain l̂ (σ) by mapping the states in φ (σ) to the
empty string. φ (α) represents paths starting from message creation. Paths terminate when messages are
destroyed, so φ (ω) = ω .

At this point we can easily see that message behaviour can be compared to that of a finite state au-
tomaton. Let Σi be the set of message states for message type Xi , i.e. Σi is a partition of dom(Xi) obtained
by the approach described in the previous section. Then the finite automaton of Xi is:

< Σi , P × Σi , δ i , α , ω >

The states of the automaton are the message states. Inputs are strings over P × Σi , i.e. pairs of procedures
and next-states. The initial state is α , the final state ω , and the next-state function is:

δ i(σ , (p, σ ′)) |→ σ ′

where Xi = I pk , p∈p̂ (σ) and âp(σ) ∩σ ′ ≠ ∅. Note that we have K automata, one for each message type.
We shall discuss how these automata can been seen to interact in the next section.

The set of all state transitions can be found by having each station determine what transitions may
occur there. Not all message states may be reachable, however. (Similarly, not all state transitions are
"reachable".) An alternative way of finding the state transitions is to start with the procedures that are capa-
ble of creating new messages, and to trace message state transitions starting from there. The reachable state
transitions are thus collected by following the paths in φ (α). Since there are only a finite number of transi-
tions, an algorithm to compute φ (α) should terminate after encountering each transition at most once. Such
an algorithm is described in [Nier84].

Briefly, "symbolic messages" gather all the reachable state transitions by simply traversing a "span-
ning tree", starting at α , and visiting each station where the information about the transitions resides. A
symbolic message represents a choice of possible current message states and keeps track of the transitions
that have been traversed up to that point. Since different messages are often routed in different directions
by procedures, we need the ability to split a symbolic message whenever this happens. A symbolic mes-
sage may thus split into many parts going in different directions before all reachable states and all state
transitions are found.

When there are no new states and state transitions to visit, the symbolic message returns to the station
initiating it. Since the symbolic message may have split into separate parts, the work is not finished until
each of the parts returns. When the transitions have all been gathered, we may then generate a regular
expression capturing the message flow automaton by using a standard algorithm such as in [AhHU74].

5. Petri Net Representation

Although message behaviour can be compared to the behaviour of a finite automaton, this does not
tell the whole story since coordination is not explicitly represented. What we in fact have is a collection of
finite automata, one for each message type, interacting with each other. For procedures to fire, several of
these automata must be in the right state at the same time. In fact, it is possible to "weld" these automata
together in such a way as to produce a Petri net that captures the procedure interactions. The resulting Petri
net not only models the message flow and control flow apparent in the automata, but also captures the coor-
dination of messages by procedures. We thus explicitly represent the flow of messages of all types at once,
and the necessary trigger conditions (in terms of message states) of all procedures.

Consider, to begin with, a Petri net with one transition for each procedure, and places for the inputs
and outputs of the procedures. Each input and each output may correspond to several message states,

-11-

however. Let us then add one place for each message state of each message type. Now add transitions
from the places representing message states to the places representing inputs whenever messages in those
states match the trigger conditions for the procedure. Similarly add transitions from outputs to message
states when actions may map messages to those states. In figure 1 we represent procedure p with inputs i1

and i2 and outputs o1 and o2 as a single transition. Message states σ1 through σ4 and σ ′1 through σ ′5 are
represented by places. Petri net transitions are also present to represent the fact that input i1 corresponds to
message states σ1 and σ2, and that p generates outputs in state σ4. An entire Petri net may be built in this
way with transitions mapping message states of various types to other message states.

Figure 1: A Petri net interpretation of message flow

There is a serious problem here, however. In figure 1 it appears that messages in states σ ′1 or σ ′2
may map to messages in states σ ′3 or σ ′4. Suppose that in fact we only have state transitions p: σ ′1|→σ ′3
and p: σ ′2|→σ ′4. In this case that information would be lost by our Petri net interpretation. It is possible to
remedy this situation by adding extra Petri net states to "remember" what the previous message states were.
In figure 2 we have added states t1, t2, t′1 and t′2 to accomplish precisely that.

We may formalize this construction as follows:

Let P be the set of procedures in the system. I (p) = < . . . , I pj , . . . > is the list of input types to p.
O(p) = < . . . , O pj , . . . > is a "copy" of I (p) representing the outputs. Σi is the set of message states of type
Xi . Ti ⊆ {(p, σ j , σ k)|σ j , σ k ∈Σi , p∈p̂ (σ j), âp(σ j) ∩σ k ≠ ∅} is the set of state transitions for messages of
type Xi . There are at most |P| × |Σi |

2 of these (and, in general, far fewer). Also, let ri = {(p, σ j)|——
— σ k such

that (p, σ j , σ k)∈Ti}. The ris represent the σ js that trigger some procedure p. We shall use the elements of
these sets as labels for the places and transitions of our Petri net.

-12-

Figure 2: An "improved" Petri net interpretation

Let our Petri net have places with labels in:

{I pj |p∈P, I pj in I (p)} ∪
{O pj |p∈P, O pj in O(p)} ∪
(

Xi ∈X
∪ Σi) ∪(

Xi ∈X
∪ ri)

and transitions with labels in:

P ∪(
Xi ∈X
∪ ri) ∪(

Xi ∈X
∪ Ti)

Note that we have both places and transitions labeled (p, σ j)∈ri , but they are in fact to be considered dis-
joint. We therefore have places representing message states, procedure inputs and outputs, and "state
reminders" to remember previous states. The transitions represent procedures and the acts of "grabbing"
and "releasing" messages. The "grabbing" and "releasing" allows us to capture the idea that procedure
inputs and outputs may correspond to several states.

The transitions have the following inputs and outputs:

1. a transition labeled p∈P has inputs I (p) and outputs O(p),

2. a transition labeled (p, σ j)∈ri has input σ j , and has outputs (p, σ j) and I pk where I pk = Xi

3. a transition labeled (p, σ j , σ k)∈Ti has inputs (p, σ j) and O pk where O pk = Xi , and has output σ k .

-13-

It is now clear from the construction that tokens may "travel" from message state σ j to state σ k via
procedure p only if there is a state transition labeled (p, σ j , σ k)∈Ti . This is the problem that we set out to
correct after our first attempt at a Petri net representation. In addition, procedure p may only fire if it has at
least one message available for each of its inputs. We hav e therefore succeeded in "welding" together the
finite automata of message flow by reclaiming the coordination that we "sacrificed" in the previous section.

Note that the Petri net we have obtained is "conservative". (A Petri net is conservative if we can
assign weights to tokens according to their places so that the net weight of the entire net never changes.)
Since tokens represent message instances in certain states, this means that messages are "honestly" repre-
sented. We neither gain nor lose messages. To prove this, let us assign double the weight to tokens in the
places representing message states. Consider the transition firings in 1, 2 & 3 above. Transitions represent-
ing procedures are trivially conservative since they all have the same number of inputs as outputs. The
"grabbing" and "releasing" transitions are also conservative since the former "splits" a message state token
into a procedure input token and a "reminder" token, and the latter "joins" a "reminder" token and a proce-
dure output token. In either case, the total weight of the tokens is the same before and after.

The net is no longer conservative if we add extra transitions to represent the creation and destruction
of messages. This may be done by adding one transition for each place representing an α state or an ω
state. Tokens could then be added at will to the α states, and removed from the ω states. Equivalently, we
may simply delete procedure input and output places corresponding to the creation or destruction of mes-
sages. Message states α and ω need not be explicitly represented in this case.

6. Blocking and Deadlock

A procedure is blocked if it waits indefinitely for one of its inputs to arrive. If the procedure has only
one input, that simply means the procedure does not fire, but there may not necessarily be any far-reaching
effects. If, on the other hand, the procedure does have other inputs, then inputs that arrive to be processed
by that procedure may wait forever because of the blocking.

There may be several reasons for an input not to arrive:

1. The input is never created.

This causes blocking when a coordinating message is uniquely determined, but does not, in fact,
exist. If, for example, an order is placed for some "feeblevetzers", and no such items exist, then a
procedure that attempts to match such an order with a corresponding inventory record will be
blocked.

2. The message states corresponding to the trigger conditions of the procedure are unreachable.

This may happen because the message reaches a dead end, or because it enters an infinite loop, or it
may simply be that all possible paths avoid the procedure in question.

3. The message states corresponding to the trigger conditions of the procedure are avoidable.

Messages of the input type in question may be able to reach the procedure to trigger it, but alternative
paths may avoid it entirely. Blocking may occur here if the message is uniquely determined by the
other inputs. An order form that is to be matched against an inventory record for "veeblefetzers" will
be unable to proceed if the inventory record happens to be routed along a path that avoids it. (We
assume that there is a unique inventory record for any giv en item.) If, on the other hand, an inventory
record is waiting to be matched against an order form, then it may not matter that the order form can
be routed along alternative paths — there will be other orders for that item, so the procedure will not
necessarily be blocked.

4. There is a "blocking loop".

Tw o procedures are each waiting for a message that is stuck at the other. This is what is most com-
monly thought of when we speak of "deadlock" in systems where there is contention for resources.
The resources in our case are the messages.

5. The missing input is itself stuck at another procedure that is blocked.

The other procedure may be blocked for any of the first four reasons.

-14-

Note that in cases 1, 3, 4 and 5 we only have blocking if the awaited message is uniquely determined
by the other inputs. If it is not, then another message in the same state may eventually arrive, so we would
not have blocking. For example, since order forms would not be uniquely determined by any procedure
matching them against inventory forms, they could never be the cause of blocking in such a situation. In
case 2, we have blocking even if the awaited message is not uniquely determined since no message may
ev er reach the desired state.

Let us consider each of the cases in turn.

6.1. Message creation

The first case seems a degenerate one, and not so much a candidate for analysis. At any rate, one
may easily identify all the procedures that are responsible for creating messages of the awaited type. Possi-
bly this information can be useful in determining whether the awaited message has been created. If we can
determine that procedure p may not be supplied with some inputs for this reason, we say that p is
1-blocked, or 1-BL, for short.

Of course, if the procedure creating the messages is blocked, then no messages will be created. This
may be considered an instance of case 5, however.

6.2. Unreachable states

Cases 2 and 3 are quite similar in that we are interested specifically in the message paths. In case 2 it
is simply a matter of determining whether the message states corresponding to the trigger condition of a
procedure are reachable or not. This information is readily available as we collect the state transition infor-
mation, since only reachable states are encountered. Lists of reachable and unreachable states can thus be
compiled.

Exactly why a particular message state is not reachable is another matter. A characterization of mes-
sage flow may be useful in tracking down what is wrong, but it is well-nigh impossible to tell this without a
deeper understanding of what the procedures are supposed to do. There are, however, two readily identifi-
able situations that suggest that something is amiss:

i. A message may hit a dead end.

A message that ends up at a location where no procedure is prepared to handle it at all is at a "dead
end". Without user intervention the message will stay there forever. A dead end may be the conse-
quence of incorrect routing. Naturally this will prevent a message from reaching waiting procedures.
Again, we may discover dead ends as we collect the state transitions.

ii. A message may enter an infinite loop.

This happens if a message reaches a set of mutually reachable states from which there is no escape.
States outside that set would not be reachable. In particular, ω could never be reached. This too may
be the result of incorrect routing. In a directed graph, a set of mutually reachable nodes is called a
dicomponent [BoMu76], or a strongly connected component [AhHU74]. Once a message leaves a
dicomponent it may (by definition) never return. If the dicomponent cannot be left, then the message
is in an infinite loop. A depth-first search algorithm can partition a directed graph into its dicompo-
nents in order O(max(n, e)), where n is the number of nodes and e is the number of edges [AhHU74].
To identify infinite loops, one need only determine whether there are any dicomponents with no arcs
leaving them for another dicomponent.

A procedure for which a certain input cannot arrive because the input message states are not reach-
able is 2-blocked, or 2-BL.

6.3. Avoidable states

In case 3 we are concerned with messages that may or may not arrive. A state may be reachable, but
not necessarily by all messages of the specified type. Blocking is possible if any giv en message is not guar-
anteed to reach at least one of the message states corresponding to the trigger condition, and that message is
uniquely determined by one of the other inputs. To determine the latter, one needs to know something more
about constraints on the messages. If, for example, we know that a certain field of a message is a key field,

-15-

and we have a procedure that matches that message against another via that key field, then we know that for
any matching input it is uniquely determined. An inventory record, for example, is uniquely determined by
any order form.

As to the matter of reachability, we may rephrase it as follows: Is it possible for messages of a given
type to avoid all of the message states corresponding to the trigger condition for a given procedure? In fig-
ure 2, message states σ1 and σ2 must be simultaneously avoidable for input i1 to be avoidable. In this light
it is clear that we may easily answer this question. One need simply traverse the directed graph of the mes-
sage state automata, starting at α , and avoiding all nodes that are input message states to that procedure. If
we can construct a path to ω that avoids all these nodes, then it is possible for a message never to trigger the
procedure in question. Clearly we need only traverse each edge of the graph at most once, so the problem
is solvable in order O(t), where t is the number of state transitions (i.e. the number of edges in the graph).
If all paths encounter at least one of the input states, then they are unavoidable (as a set), and this cannot be
a source of blocking.

If the reachable message states corresponding to some input of procedure p are all avoidable, then p
is 3-blocked, or 3-BL.

6.4. Deadlock

There is the possibility of deadlock, wherein two procedures are each waiting for a message held by
the other.

Suppose that procedure p has some input x that uniquely determines some other input y. Suppose
also that y may come to p from p′, and it uniquely determines some input z at p′. Finally suppose that z
comes to p′ from p′′, where z uniquely determines the same x of procedure p. We then have a potential
deadlock in which x waits at p for y, y waits for z at p′, and z waits for x at p′′.

Let us suppose that we know for all procedures p when some input Xi ∈I (p) uniquely determines
some other input X j ∈I (p), and there is no other procedure p′ accepting messages of type Xi in the same
states as those accepted by p. Messages of type Xi must therefore wait at p for the arrival of some specific
message of type X j . A message of type Xi would uniquely determine one of type X j whenever we hav e
some trigger condition of the form xn = ym where x ∈dom(Xi), y∈dom(X j) and X jm is a key field of mes-
sages of type X j . We represent this information as a set of tuples:

AWAITS ⊆ {(p, Xi , X j)|p∈P, Xi , X j ∈X}

For (p, Xi , X j)∈AWAITS, we say that p: Xi → X j , or simply Xi → X j . Furthermore, we say that:

Xi
*

→ Xk

if we have a sequence:

Xi → X j → . . . → Xk

If p: Xi → X j , then messages of type Xi must await uniquely determined messages of type X j . Similarly,

if Xi
*

→ Xk , then messages of type Xi must await messages of type Xk , since the latter are uniquely deter-
mined by the former.

If Xi
*

→ X j , and X j
*

→ Xi , (i.e. Xi
*

→ Xi) then a message of type Xi aw aits a message of type X j and
vice versa. If the "two" messages of type Xi are in fact one and the same, then we have the distinct possi-
bility of deadlock. We need only find ourselves in the situation where messages of type Xi and X j are
aw aiting each other at precisely the same time. Since there is no other procedure that these messages can
trigger, then they will both wait forever, neither able to reach the other.

The set AWAITS of dependencies defines a directed graph with nodes in X and arcs in AWAITS.

Xi
*

→ Xi occurs precisely when there is a cycle in the directed graph. Cycles, of course, occur within the
dicomponents of the graph. As we mentioned earlier in this section, dicomponents can easily be deter-
mined by a standard algorithm such as in [AhHU74]. Any dicomponent with more than one node in it

would yield an instance of Xi
*

→ X j , and would therefore provide us with a potential deadlock.

-16-

If a procedure p can be blocked due to deadlock, then we say that p is 4-blocked or 4-BL.

6.5. Recursive blocking

Finally, blocking in one procedure may cause blocking in other procedures. If the first procedure is
preventing messages from moving on, then other procedures waiting for those messages will also be
blocked.

To detect recursive blocking we must find out not only which states are unreachable or avoidable, but
also which states are "blocking states". We call a message state a blocking state (BL-state) if every proce-
dure effecting a transition to that state is blocked, that is:

for each (p, σ , σ ′)∈Ti , p is blocked <==> σ ′ is a blocking state

Conversely, if every state leading to an input of some procedure p is a blocking state or is unreach-
able, then that procedure is 5-blocked, or 5-BL. This is a consequence of the fact that blocking states are a
variation on unreachable states — they are unreachable only as a result of other blocking.

Similarly, if an input is uniquely determined, and the reachable, non-blocking states are all avoidable,
then the procedure is 6-blocked, or 6-BL. We therefore end up with a recursive form of blocking.

We may summarize potential blocking detection in the following algorithm to be run at all stations
("new" BL-states mentioned in step 8 come from steps 7 or 13, whichever is appropriate):
1. for each procedure p do {
2. for each input X j ∈I (p) do {
3. if p: Xi → X j then
4. check if p is 3-BL
5. else check if p is 2-BL }

}
6. determine which p are 4-BL
7. identify all BL-states arising from the above
8. for each p not BL, such that (p, σ , σ ′)∈Ti where σ is a new BL-state do {
9. for each input X j ∈I (p) do {
10. if p: Xi → X j then
11. check if p is 6-BL
12. else check if p is 5-BL

}
}

13. identify all new BL-states arising from the new 5-BL or 6-BL procedures, if any
14. if there are no new BL states then STOP
15. else continue from step 8

Steps 4, 5, 6 and 7 are as described earlier in this section. Steps 11 and 12 are similar to 4 and 5.

The algorithm must terminate since there are only a finite number of procedures and a finite number
of states. As long as the algorithm continues to run, at least one new BL-state must be found at step 13.
Eventually we must run out of candidates for BL-states. Similarly, we eventually run out of candidates for
5-BL or 6-BL procedures.

The blocking that we uncover can be of interest in several ways. If a procedure p is 2-BL, then we
know that it cannot fire under normal circumstances. This means that (according to our analysis) there is at
least one input to the procedure for which there is no known path to the procedure. This may mean that p
is incorrect, in the sense that it has been created under the delusion that its inputs will arrive, or it may mean
that some incorrect procedure elsewhere is improperly routing messages, possibly to dead ends, or into
message loops. An examination of the message flow automaton will reveal how it is being routed, and pos-
sibly provide some insight into what the problem is.

If procedure p is 3-BL, then that means that a uniquely-determined input is (theoretically) capable of
avoiding p. An examination of the path that does (appear to) avoid p can provide insight into whether
there is truly a problem or not. Note that our analysis may have generated spurious paths, if there are state
transitions present in our model that for some reason never take place in the running system.

-17-

Procedure p and p′ are 4-BL if there is some theoretically possible configuration in which p and p′
are each preventing the progress of messages required by the other procedure. It remains for someone to
look more closely at that configuration to tell whether it is in fact reachable in the running system. If it is,
then we can either modify the procedures to avoid the blocking, or we can monitor the flow of these mes-
sages to detect blocking if it ever occurs.

Procedures that are 5-BL or 6-BL are only blocked if message inputs are stuck at a blocked proce-
dure. Naturally, if we solve the blocking at the other procedure, or if that blocking is not reflected in the
running system, then the 5-BL or 6-BL problem goes away.

7. Procedure Loops

Infinite loops may be thought of as the opposite extreme to blocking and deadlock. In the case of
blocking we had problems with messages being "stuck" and nothing happening as a consequence. Here we
have problems with too much happening. Messages either loop endlessly, visiting the same stations and
procedures, or procedures are fired repeatedly, creating an unending stream of messages. We shall discuss
here the kind of infinite loops that may arise, and how we may go about detecting them. The different
kinds of loops all turn out to be variations on what we call "procedure loops". Our Petri net model provides
us with an analytical approach to detecting when procedure loops may occur.

Our earlier discussion of message loops revealed that there may be situations in which messages
encounter the same states infinitely often. This may happen naturally with certain messages that are in fact
records expected to be handled repeatedly and indefinitely in more-or-less the same way. The inventory
records of a previous example are repeatedly processed by the same procedures whenever new order forms
arrive. This sort of message loop does not cause any problems since the inventory records must wait before
they are processed again. If, on the other hand, they do not have to wait, then we may have a message loop
that is unmoderated. Procedures will fire repeatedly, as fast as they possibly can until someone notices the
problem and repairs it.

Unmoderated message loops can be thought of as a special case of procedure loops. A procedure
loop exists when a given configuration of procedures and message instances provides the opportunity for
some procedures to fire infinitely often without human intervention. Every unmoderated message loop,
then, is clearly part of a procedure loop. Some procedure loops, however, may not contain any message
loop. Consider figure 3. Procedure p generates message x, which is consumed by procedure p′. p′ in turn
generates y, which triggers p. We hav e a procedure loop, but no message loop exists since all messages
handled by p and p′ have finite paths.

Figure 3: A procedure loop

Procedure loops depend not only on the presence of an unusual configuration of procedures, but also
on a corresponding configuration of messages to start the "chain-reaction". Our Petri net interpretation of
message flow can help us now. A Petri net can represent the interaction of procedures (up to the accuracy
of the message state-space partition), and a marking of that net can represent the current message states of

-18-

all the messages in the system. We limit our Petri net to those procedures that do not require any user
input. A procedure loop exists if the Petri net can be fired forever. This may happen if and only if there is
some transition firing sequence that may be repeated infinitely often [KaMi69]. Such a sequence must
yield a new marking that is "at least as big as" the initial marking, that is, the sequence must at least restore
all of the tokens used. If µ is a marking of the Petri net, and t1

. . . tn is a transition firing sequence yielding
new marking µ′, then t1

. . . tn can be repeated infinitely often if µ i ≤ µ′i for each i.

We approach the problem of detecting procedure loops by translating it into an equivalent problem
expressible in matrix equations. Petri nets are equivalent to vector addition systems [KaMi69]. This alter-
native representation encodes the transitions of a Petri net by using two matrices, A− and A+. Each matrix
has n rows and m columns, where n and m are the number of places and transitions, respectively. The (i, j)
entry of A− is −1 if place i is an input to transition t j and the (i, j) entry of A+ is +1 if place i is an output to
transition t j . For the net in figure 3, we have:

A− =




0

−1

−1

0





and A+ =




1

0

0

1





with p and p′ represented by the first and second columns of each matrix, respectively.

Transition t j is enabled in marking µ if µ + A−
j ≥ 0 (where A−

j is the jth column of A−). Suppose
A = A− + A+. In our example:

A =




1

−1

−1

1





If t j is enabled in µ, then the result of firing t j is µ′ = µ + Ai . Furthermore, if we have a sequence of transi-
tions that can be fired from µ, and we represent that sequence by a column vector x where x j is the number
of times t j is fired, then µ′ = µ + Ax is the marking that results after firing the sequence.

If we can find some non-negative integer column vector x ≠ 0 such that Ax ≥ 0, then
µ′ = µ + Ax > µ, so that any transition sequence represented by x can be fired indefinitely, starting from
some appropriate initial marking µ. Furthermore, we can always find a marking µ "big enough" that the
transition sequence represented by x can be fired at least once. The marking µ = −A− x, for example, guar-
antees this. Consequently, we hav e a procedure loop if and only if there is some x such that Ax ≥ 0. The
question that remains is whether or not we can easily solve Ax ≥ 0. To this end we present the following
theorem:

Theorem : The problem, "Does a Petri net have a marking in which some transition sequence can be fired
infinitely often?" can be solved in polynomial time.

Proof : By reduction to linear programming. Let A be the matrix encoding the transitions of the Petri net,
as described above. Then the problem is solved if we can answer whether there exists a non-negative inte-
ger column vector x ≠ 0 such that Ax ≥ 0. Let A′ be the matrix obtained by adding a column of zeroes at
the left side of A, followed by a row of ones at the top of A. A′ is therefore an (n + 1) × (m + 1) matrix such
that:

A′ij =







Aij

0

1

if i ≥ 1, j ≥ 1

if i ≥ 1, j = 1

if i = 0

Intuitively this corresponds to adding one place, p0, which is an output of every transition, and
adding one transition, t0, whose only output is p0. Consequently, p0 serves to count the total number of
transition firings.

Consider the linear programming problem A′ x′ ≥ (1, 0, . . . , 0)T where we seek to minimize the cost
function cx′, c = (1, 0, . . . , 0). (If v is a row-vector, then vT is the column-vector, v transpose.) The cost is
therefore x′0, the number of times that we need to fire t0.

-19-

The constraint A′ x′ ≥ (1, 0, . . . , 0)T guarantees that at least one transition fires, since each transition
places a token in p0. Furthermore, x′ = (1, 0, . . . , 0)T is a basic feasible solution, since transition t0 places
a token in p0. The cost of this solution is 1, since t0 fires once. This is therefore an upper bound on the
cost. The lower bound is 0, corresponding to a solution x′ that does not use t0. Such a solution would also
be a solution to our original problem, since it guarantees that we fire only transitions represented by A.

Furthermore, the solution is always either zero or one. Suppose that we have a solution such that
cx′ = x′0 lies between 0 and 1. (Such a solution would correspond to a "fractional" number of firings of t0.)
Consider x′ = x′′ + x′′′ where:

x′′i =




0

x′i
if i = 0

if i ≠ 0
and x′′′i =





x′0
0

if i = 0

if i ≠ 0

Now

A′ x′′ + A′ x′′′ ≥ (1, 0, . . . , 0)T

A′ x′′ ≥ (1, 0, . . . , 0)T − A′ x′′′
A′ x′′ ≥ (1 − x′0, 0, . . . , 0)T

Since (1 − x′0) > 0, there exists some k such that k(1 − x′0) > 1, so

A′ k x′′ ≥ (1, 0, . . . , 0)

but then c kx′′ = 0, a contradiction to our assumption that the minimum lay between 0 and 1.

The linear programming problem has a solution with cost 0 if and only if Ax ≥ 0 has a solution x ≠ 0.
This is easily seen by letting xi = x′i for all i > 0. Furthermore, x′ cannot be all zero else A′ x′ = 0, violat-
ing our constraint, A′ x′ ≥ (1, 0, . . . , 0)T . Hence x is a non-zero solution. Finally, x′ may be non-integral,
but linear programming always yields rational solutions. Since x′ is a rational solution, there exists a posi-
tive integer k such that kx′ is an integer. Furthermore, if x′ is a solution, then clearly so is kx′. This then
yields an integer solution for x, if one exists.

Since linear programming is solvable in polynomial time in the size of the input (by the ellipsoid
method [PaSt82]), so is infinite fireability of Petri nets.

8. Conclusions

We hav e presented a formalism for modelling message systems with automatic processing of mes-
sages, and we have introduced some concepts that are useful in characterizing the global behaviour of these
systems. We hav e shown how to generate finite state automaton and Petri net interpretations of message
flow by using our model. Finally, we hav e shown how these derived interpretations can be useful in analyz-
ing message behaviour. In particular, procedure loops and various kinds of blocking (including deadlock)
can be detected.

A number of extensions to the model would be desirable. Messages are currently very simple. There
is no explicit way of representing repeating groups within messages, nor do we explicitly handle "special-
izations" of message types. Similar and related (but non-identical) message types must therefore be treated
as being distinct. We also do not currently allow procedures to handle inputs with a choice of input types.
(One way to handle specializations, however, is to model them with a single "master" type combining the
attributes of all the specializations, and simply assign null values to the inapplicable fields of particular
message instances.)

A more radical extension is to allow for "intelligent messages" that carry procedures around with
them. Procedures are currently associated with workstations, and not messages. An alternative is to con-
sider the behaviour of a system that manages "objects", where an object combines the data-storing of mes-
sages and the functionality of procedures. It is not at all clear, howev er, how one would begin to analyze
object-flow, once the distinction between data and procedure is lost.

Other interesting issues are the evaluation of incremental changes to systems, and the evaluation of
transformations. In the first case we only make small, occasional changes such as adding or altering

-20-

procedures, and in the latter case we may coalesce or split workstations, or move procedures from one
workstation to another. What questions are appropriate to ask about the effect of such changes, and can we
make cheap evaluations based on the analysis of the unchanged system?

9. References

[AhHU74] A.V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer Algo-
rithms, Addison Wesley, 1974.

[AtBS79] G. Attardi, G. Barber and M. Simi, "Tow ards an Integrated Office Work Station", AI Labora-
tory, MIT, Cambridge, 1979.

[BoMu76] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North Holland, New York,
1976.

[ElNu80] C. Ellis and G. Nutt, "Computer Science and Office Information Systems", ACM Computing
Surveys, 12(1), pp. 27-60, March 1980.

[HaSi80] M. Hammer and M. Sirbu, "What is Office Automation?", Office Automation Conference,
Georgia, pp. 37-49, 1980.

[KaMi69] R.M. Karp and R. Miller, "Parallel Program Schemata", J. Computer and Systems Science 3,
pp. 167-195, May 1969.

[Nier84] O.M. Nierstrasz, Message Flow Analysis, Ph.D. thesis, Department of Computer Science,
University of Toronto, CSRI Technical Report #165, 1984.

[PaSt82] Christos H. Papadimitriou and Kenneth Steiglitz, Combinatorial Optimization, Prentice-
Hall, 1982.

[Pete83] J.L. Peterson, Petri Nets Theory and the Modeling of Systems, Prentice-Hall, 1983.

