
Roman DSL
1. Goals
• Support roman numbers within the host-language:
III + IV = VII

• Keep syntax of host-language.

• Avoid boilerplate of any kind.

2. Implementation
• Show method RomanDSL class>>#romanToArabic:.

• Implement the transformation on the class side:
RomanDSL class>>transformRoman
 <transform>

 ^ DSLTreePattern new
 expression: '`var' do: [:context |
 | arabic |
 arabic := self romanToArabic: context node name.
 arabic notNil
 ifTrue: [context node swapWith: arabic lift]]

• <transform> tells the compiler that this is a
transformation rule.

• DSLTreePattern defines the scope `var of an action
to be performed on the parse tree.

• The action block calls #romanToArabic: to transform
the roman number to an Integer object.

• If the node is actually a roman number (#notNil),
replace the it (#swapWith:) with the arabic number.

• #lift turns the Integer into a LiteralNode.

3. Test it
• Implement a test-case on the instance side:
RomanDSL>>testAdd
 self assert: III + IV = VII

• The test passes (⌘T).

• Show decompiled code (View | Decompile).

4. Debug it
• Put a #halt at the beginning of RomanDSL>>testAdd.

• Run the test and step through it.

5. Other Examples
• CUBrainfuckExample

Completely new language within the host-language.
Evaluate CUBrainfuckExample debug to show
debugger.

• CUSwapExample / CUControlExample
Add new features to host-language.

